Directory of Open Access Journals (Sweden)
D Cébron
2016-04-01
Full Text Available The present paper is concerned with the numerical simulation of Magneto-Hydro-Dynamic (MHD problems with industrial tools. MHD has receivedattention some twenty to thirty years ago as a possible alternative inpropulsion applications; MHD propelled ships have even been designed forthat purpose. However, such propulsion systems have been proved of lowefficiency and fundamental researches in the area have progressivelyreceived much less attention over the past decades. Numerical simulationof MHD problem could however provide interesting solutions in the field ofturbulent flow control. The development of recent efficient numericaltechniques for multi-physic applications provide promising tool for theengineer for that purpose. In the present paper, some elementary testcases in laminar flow with magnetic forcing terms are analysed; equationsof the coupled problem are exposed, analytical solutions are derived ineach case and are compared to numerical solutions obtained with anumerical tool for multi-physic applications. The present work can be seenas a validation of numerical tools (based on the finite element method foracademic as well as industrial application purposes.
Multi-physics modeling in electrical engineering. Application to a magneto-thermo-mechanical model
International Nuclear Information System (INIS)
Journeaux, Antoine
2013-01-01
The modeling of multi-physics problems in electrical engineering is presented, with an application to the numerical computation of vibrations within the end windings of large turbo-generators. This study is divided into four parts: the impositions of current density, the computation of local forces, the transfer of data between disconnected meshes, and the computation of multi-physics problems using weak coupling, Firstly, the representation of current density within numerical models is presented. The process is decomposed into two stages: the construction of the initial current density, and the determination of a divergence-free field. The representation of complex geometries makes the use of analytical methods impossible. A method based on an electrokinetic problem is used and a fully geometrical method are tested. The geometrical method produces results closer to the real current density than the electrokinetic problem. Methods to compute forces are numerous, and this study focuses on the virtual work principle and the Laplace force considering the recommendations of the literature. Laplace force is highly accurate but is applicable only if the permeability is uniform. The virtual work principle is finally preferred as it appears as the most general way to compute local forces. Mesh-to-mesh data transfer methods are developed to compute multi-physics models using multiples meshes adapted to the subproblems and multiple computational software. The interpolation method, a locally conservative projection, and an orthogonal projection are compared. Interpolation method is said to be fast but highly diffusive, and the orthogonal projections are highly accurate. The locally conservative method produces results similar to the orthogonal projection but avoid the assembly of linear systems. The numerical computation of multi-physical problems using multiple meshes and projections is then presented. However for a given class of problems, there is not an unique coupling
A Global Sensitivity Analysis Methodology for Multi-physics Applications
Energy Technology Data Exchange (ETDEWEB)
Tong, C H; Graziani, F R
2007-02-02
Experiments are conducted to draw inferences about an entire ensemble based on a selected number of observations. This applies to both physical experiments as well as computer experiments, the latter of which are performed by running the simulation models at different input configurations and analyzing the output responses. Computer experiments are instrumental in enabling model analyses such as uncertainty quantification and sensitivity analysis. This report focuses on a global sensitivity analysis methodology that relies on a divide-and-conquer strategy and uses intelligent computer experiments. The objective is to assess qualitatively and/or quantitatively how the variabilities of simulation output responses can be accounted for by input variabilities. We address global sensitivity analysis in three aspects: methodology, sampling/analysis strategies, and an implementation framework. The methodology consists of three major steps: (1) construct credible input ranges; (2) perform a parameter screening study; and (3) perform a quantitative sensitivity analysis on a reduced set of parameters. Once identified, research effort should be directed to the most sensitive parameters to reduce their uncertainty bounds. This process is repeated with tightened uncertainty bounds for the sensitive parameters until the output uncertainties become acceptable. To accommodate the needs of multi-physics application, this methodology should be recursively applied to individual physics modules. The methodology is also distinguished by an efficient technique for computing parameter interactions. Details for each step will be given using simple examples. Numerical results on large scale multi-physics applications will be available in another report. Computational techniques targeted for this methodology have been implemented in a software package called PSUADE.
Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem
Energy Technology Data Exchange (ETDEWEB)
Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-12-21
This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.
Non-Linear Multi-Physics Analysis and Multi-Objective Optimization in Electroheating Applications
Czech Academy of Sciences Publication Activity Database
di Barba, P.; Doležel, Ivo; Mognaschi, M. E.; Savini, A.; Karban, P.
2014-01-01
Roč. 50, č. 2 (2014), s. 7016604-7016604 ISSN 0018-9464 Institutional support: RVO:61388998 Keywords : coupled multi-physics problems * finite element method * non-linear equations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.386, year: 2014
Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit
Energy Technology Data Exchange (ETDEWEB)
Merzari, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Obabko, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States); Tautges, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, Jerome [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferencz, Robert Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-12-21
This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models of a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.
Perkó, Z.
2015-01-01
This thesis presents novel adjoint and spectral methods for the sensitivity and uncertainty (S&U) analysis of multi-physics problems encountered in the field of reactor physics. The first part focuses on the steady state of reactors and extends the adjoint sensitivity analysis methods well
The application of a multi-physics tool kit to spatial reactor dynamics
International Nuclear Information System (INIS)
Clifford, I.; Jasak, H.
2009-01-01
Traditionally coupled field nuclear reactor analysis has been carried out using several loosely coupled solvers, each having been developed independently from the others. In the field of multi-physics, the current generation of object-oriented tool kits provides robust close coupling of multiple fields on a single framework. This paper describes the initial results obtained as part of continuing research in the use of the OpenFOAM multi-physics tool kit for reactor dynamics application development. An unstructured, three-dimensional, time-dependent multi-group diffusion code Diffusion FOAM has been developed using the OpenFOAM multi-physics tool kit as a basis. The code is based on the finite-volume methodology and uses a newly developed block-coupled sparse matrix solver for the coupled solution of the multi-group diffusion equations. A description of this code is given with particular emphasis on the newly developed block-coupled solver, along with a selection of results obtained thus far. The code has performed well, indicating that the OpenFOAM tool kit is suited to reactor dynamics applications. This work has shown that the neutronics and simplified thermal-hydraulics of a reactor May be represented and solved for using a common calculation platform, and opens up the possibility for research into robust close-coupling of neutron diffusion and thermal-fluid calculations. This work has further opened up the possibility for research in a number of other areas, including research into three-dimensional unstructured meshes for reactor dynamics applications. (authors)
International Nuclear Information System (INIS)
Cacuci, Dan Gabriel; Badea, Madalina Corina
2014-01-01
Highlights: • We applied the PMCMPS methodology to a paradigm neutron diffusion model. • We underscore the main steps in applying PMCMPS to treat very large coupled systems. • PMCMPS reduces the uncertainties in the optimally predicted responses and model parameters. • PMCMPS is for sequentially treating coupled systems that cannot be treated simultaneously. - Abstract: This work presents paradigm applications to reactor physics of the innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS)” developed by Cacuci (2014). This methodology enables the assimilation of experimental and computational information and computes optimally predicted responses and model parameters with reduced predicted uncertainties, taking fully into account the coupling terms between the multi-physics systems, but using only the computational resources that would be needed to perform predictive modeling on each system separately. The paradigm examples presented in this work are based on a simple neutron diffusion model, chosen so as to enable closed-form solutions with clear physical interpretations. These paradigm examples also illustrate the computational efficiency of the PMCMPS, which enables the assimilation of additional experimental information, with a minimal increase in computational resources, to reduce the uncertainties in predicted responses and best-estimate values for uncertain model parameters, thus illustrating how very large systems can be treated without loss of information in a sequential rather than simultaneous manner
Final report on LDRD project : coupling strategies for multi-physics applications.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Moffat, Harry K.; Carnes, Brian; Hooper, Russell Warren; Pawlowski, Roger P.
2007-11-01
Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.
A Finite-Volume computational mechanics framework for multi-physics coupled fluid-stress problems
International Nuclear Information System (INIS)
Bailey, C; Cross, M.; Pericleous, K.
1998-01-01
Where there is a strong interaction between fluid flow, heat transfer and stress induced deformation, it may not be sufficient to solve each problem separately (i.e. fluid vs. stress, using different techniques or even different computer codes). This may be acceptable where the interaction is static, but less so, if it is dynamic. It is desirable for this reason to develop software that can accommodate both requirements (i.e. that of fluid flow and that of solid mechanics) in a seamless environment. This is accomplished in the University of Greenwich code PHYSICA, which solves both the fluid flow problem and the stress-strain equations in a unified Finite-Volume environment, using an unstructured computational mesh that can deform dynamically. Example applications are given of the work of the group in the metals casting process (where thermal stresses cause elasto- visco-plastic distortion)
The Cea multi-scale and multi-physics simulation project for nuclear applications
International Nuclear Information System (INIS)
Ledermann, P.; Chauliac, C.; Thomas, J.B.
2005-01-01
Full text of publication follows. Today numerical modelling is everywhere recognized as an essential tool of capitalization, integration and share of knowledge. For this reason, it becomes the central tool of research. Until now, the Cea developed a set of scientific software allowing to model, in each situation, the operation of whole or part of a nuclear installation and these codes are largely used in nuclear industry. However, for the future, it is essential to aim for a better accuracy, a better control of uncertainties and better performance in computing times. The objective is to obtain validated models allowing accurate predictive calculations for actual complex nuclear problems such as fuel behaviour in accidental situation. This demands to master a large and interactive set of phenomena ranging from nuclear reaction to heat transfer. To this end, Cea, with industrial partners (EDF, Framatome-ANP, ANDRA) has designed an integrated platform of calculation, devoted to the study of nuclear systems, and intended at the same time for industries and scientists. The development of this platform is under way with the start in 2005 of the integrated project NURESIM, with 18 European partners. Improvement is coming not only through a multi-scale description of all phenomena but also through an innovative design approach requiring deep functional analysis which is upstream from the development of the simulation platform itself. In addition, the studies of future nuclear systems are increasingly multidisciplinary (simultaneous modelling of core physics, thermal-hydraulics and fuel behaviour). These multi-physics and multi-scale aspects make mandatory to pay very careful attention to software architecture issues. A global platform is thus developed integrating dedicated specialized platforms: DESCARTES for core physics, NEPTUNE for thermal-hydraulics, PLEIADES for fuel behaviour, SINERGY for materials behaviour under irradiation, ALLIANCES for the performance
Design of a Modular Monolithic Implicit Solver for Multi-Physics Applications
Carton De Wiart, Corentin; Diosady, Laslo T.; Garai, Anirban; Burgess, Nicholas; Blonigan, Patrick; Ekelschot, Dirk; Murman, Scott M.
2018-01-01
The design of a modular multi-physics high-order space-time finite-element framework is presented together with its extension to allow monolithic coupling of different physics. One of the main objectives of the framework is to perform efficient high- fidelity simulations of capsule/parachute systems. This problem requires simulating multiple physics including, but not limited to, the compressible Navier-Stokes equations, the dynamics of a moving body with mesh deformations and adaptation, the linear shell equations, non-re effective boundary conditions and wall modeling. The solver is based on high-order space-time - finite element methods. Continuous, discontinuous and C1-discontinuous Galerkin methods are implemented, allowing one to discretize various physical models. Tangent and adjoint sensitivity analysis are also targeted in order to conduct gradient-based optimization, error estimation, mesh adaptation, and flow control, adding another layer of complexity to the framework. The decisions made to tackle these challenges are presented. The discussion focuses first on the "single-physics" solver and later on its extension to the monolithic coupling of different physics. The implementation of different physics modules, relevant to the capsule/parachute system, are also presented. Finally, examples of coupled computations are presented, paving the way to the simulation of the full capsule/parachute system.
International Nuclear Information System (INIS)
Zhang, Jinzhao; Segurado, Jacobo; Schneidesch, Christophe
2013-01-01
Since 1980's, Tractebel Engineering (TE) has being developed and applied a multi-physical modelling and safety analyses capability, based on a code package consisting of the best estimate 3D neutronic (PANTHER), system thermal hydraulic (RELAP5), core sub-channel thermal hydraulic (COBRA-3C), and fuel thermal mechanic (FRAPCON/FRAPTRAN) codes. A series of methodologies have been developed to perform and to license the reactor safety analysis and core reload design, based on the deterministic bounding approach. Following the recent trends in research and development as well as in industrial applications, TE has been working since 2010 towards the application of the statistical sensitivity and uncertainty analysis methods to the multi-physical modelling and licensing safety analyses. In this paper, the TE multi-physical modelling and safety analyses capability is first described, followed by the proposed TE best estimate plus statistical uncertainty analysis method (BESUAM). The chosen statistical sensitivity and uncertainty analysis methods (non-parametric order statistic method or bootstrap) and tool (DAKOTA) are then presented, followed by some preliminary results of their applications to FRAPCON/FRAPTRAN simulation of OECD RIA fuel rod codes benchmark and RELAP5/MOD3.3 simulation of THTF tests. (authors)
Module-based Hybrid Uncertainty Quantification for Multi-physics Applications: Theory and Software
Energy Technology Data Exchange (ETDEWEB)
Tong, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, Xiao [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Iaccarino, Gianluca [Stanford Univ., CA (United States); Mittal, Akshay [Stanford Univ., CA (United States)
2013-10-08
In this project we proposed to develop an innovative uncertainty quantification methodology that captures the best of the two competing approaches in UQ, namely, intrusive and non-intrusive approaches. The idea is to develop the mathematics and the associated computational framework and algorithms to facilitate the use of intrusive or non-intrusive UQ methods in different modules of a multi-physics multi-module simulation model in a way that physics code developers for different modules are shielded (as much as possible) from the chores of accounting for the uncertain ties introduced by the other modules. As the result of our research and development, we have produced a number of publications, conference presentations, and a software product.
Developing a multi-physics solver in APOLLO3 and applications to cross section homogenization
International Nuclear Information System (INIS)
Dugan, Kevin-James
2016-01-01
Multi-physics coupling is becoming of large interest in the nuclear engineering and computational science fields. The ability to obtain accurate solutions to realistic models is important to the design and licensing of novel reactor designs, especially in design basis accident situations. The physical models involved in calculating accident behavior in nuclear reactors includes: neutron transport, thermal conduction/convection, thermo-mechanics in fuel and support structure, fuel stoichiometry, among others. However, this thesis focuses on the coupling between two models, neutron transport and thermal conduction/convection.The goal of this thesis is to develop a multi-physics solver for simulating accidents in nuclear reactors. The focus is both on the simulation environment and the data treatment used in such simulations.This work discusses the development of a multi-physics framework based around the Jacobian-Free Newton-Krylov (JFNK) method. The framework includes linear and nonlinear solvers, along with interfaces to existing numerical codes that solve neutron transport and thermal hydraulics models (APOLLO3 and MCTH respectively) through the computation of residuals. a new formulation for the neutron transport residual is explored, which reduces the solution size and search space by a large factor; instead of the residual being based on the angular flux, it is based on the fission source.The question of whether using a fundamental mode distribution of the neutron flux for cross section homogenization is sufficiently accurate during fast transients is also explored. It is shown that in an infinite homogeneous medium, using homogenized cross sections produced with a fundamental mode flux differ significantly from a reference solution. The error is remedied by using an alternative weighting flux taken from a time dependent calculation; either a time-integrated flux or an asymptotic solution. The time-integrated flux comes from the multi-physics solution of the
A theory manual for multi-physics code coupling in LIME.
Energy Technology Data Exchange (ETDEWEB)
Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren
2011-03-01
The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.
Poulet, Thomas; Paesold, Martin; Veveakis, Manolis
2017-03-01
Faults play a major role in many economically and environmentally important geological systems, ranging from impermeable seals in petroleum reservoirs to fluid pathways in ore-forming hydrothermal systems. Their behavior is therefore widely studied and fault mechanics is particularly focused on the mechanisms explaining their transient evolution. Single faults can change in time from seals to open channels as they become seismically active and various models have recently been presented to explain the driving forces responsible for such transitions. A model of particular interest is the multi-physics oscillator of Alevizos et al. (J Geophys Res Solid Earth 119(6), 4558-4582, 2014) which extends the traditional rate and state friction approach to rate and temperature-dependent ductile rocks, and has been successfully applied to explain spatial features of exposed thrusts as well as temporal evolutions of current subduction zones. In this contribution we implement that model in REDBACK, a parallel open-source multi-physics simulator developed to solve such geological instabilities in three dimensions. The resolution of the underlying system of equations in a tightly coupled manner allows REDBACK to capture appropriately the various theoretical regimes of the system, including the periodic and non-periodic instabilities. REDBACK can then be used to simulate the drastic permeability evolution in time of such systems, where nominally impermeable faults can sporadically become fluid pathways, with permeability increases of several orders of magnitude.
Multi-objective and multi-physics optimization methodology for SFR core: application to CFV concept
International Nuclear Information System (INIS)
Fabbris, Olivier
2014-01-01
Nuclear reactor core design is a highly multidisciplinary task where neutronics, thermal-hydraulics, fuel thermo-mechanics and fuel cycle are involved. The problem is moreover multi-objective (several performances) and highly dimensional (several tens of design parameters).As the reference deterministic calculation codes for core characterization require important computing resources, the classical design method is not well suited to investigate and optimize new innovative core concepts. To cope with these difficulties, a new methodology has been developed in this thesis. Our work is based on the development and validation of simplified neutronics and thermal-hydraulics calculation schemes allowing the full characterization of Sodium-cooled Fast Reactor core regarding both neutronics performances and behavior during thermal hydraulic dimensioning transients.The developed methodology uses surrogate models (or meta-models) able to replace the neutronics and thermal-hydraulics calculation chain. Advanced mathematical methods for the design of experiment, building and validation of meta-models allows substituting this calculation chain by regression models with high prediction capabilities.The methodology is applied on a very large design space to a challenging core called CFV (French acronym for low void effect core) with a large gain on the sodium void effect. Global sensitivity analysis leads to identify the significant design parameters on the core design and its behavior during unprotected transient which can lead to severe accidents. Multi-objective optimizations lead to alternative core configurations with significantly improved performances. Validation results demonstrate the relevance of the methodology at the pre-design stage of a Sodium-cooled Fast Reactor core. (author) [fr
Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications
International Nuclear Information System (INIS)
Kenjereš, Saša
2014-01-01
We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called 'bad' cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is
Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications
Kenjereš, Saša
2014-08-01
We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called "bad" cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is obtained
Abdeljabbar Kharrat, Nourhene; Plateaux, Régis; Miladi Chaabane, Mariem; Choley, Jean-Yves; Karra, Chafik; Haddar, Mohamed
2018-05-01
The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.
International Nuclear Information System (INIS)
Salko, Robert K.; Schmidt, Rodney C.; Avramova, Maria N.
2015-01-01
Highlights: • COBRA-TF was adopted by the Consortium for Advanced Simulation of LWRs. • We have improved code performance to support running large-scale LWR simulations. • Code optimization has led to reductions in execution time and memory usage. • An MPI parallelization has reduced full-core simulation time from days to minutes. - Abstract: This paper describes major improvements to the computational infrastructure of the CTF subchannel code so that full-core, pincell-resolved (i.e., one computational subchannel per real bundle flow channel) simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis. A set of serial code optimizations—including fixing computational inefficiencies, optimizing the numerical approach, and making smarter data storage choices—are first described and shown to reduce both execution time and memory usage by about a factor of ten. Next, a “single program multiple data” parallelization strategy targeting distributed memory “multiple instruction multiple data” platforms utilizing domain decomposition is presented. In this approach, data communication between processors is accomplished by inserting standard Message-Passing Interface (MPI) calls at strategic points in the code. The domain decomposition approach implemented assigns one MPI process to each fuel assembly, with each domain being represented by its own CTF input file. The creation of CTF input files, both for serial and parallel runs, is also fully automated through use of a pressurized water reactor (PWR) pre-processor utility that uses a greatly simplified set of user input compared with the traditional CTF input. To run CTF in
International Nuclear Information System (INIS)
Huang, J H; Wang, X J; Wang, J
2016-01-01
The primary purpose of this paper is to propose a mathematical model of PLZT ceramic with coupled multi-physics fields, e.g. thermal, electric, mechanical and light field. To this end, the coupling relationships of multi-physics fields and the mechanism of some effects resulting in the photostrictive effect are analyzed theoretically, based on which a mathematical model considering coupled multi-physics fields is established. According to the analysis and experimental results, the mathematical model can explain the hysteresis phenomenon and the variation trend of the photo-induced voltage very well and is in agreement with the experimental curves. In addition, the PLZT bimorph is applied as an energy transducer for a photovoltaic–electrostatic hybrid actuated micromirror, and the relation of the rotation angle and the photo-induced voltage is discussed based on the novel photostrictive mathematical model. (paper)
PUMA Development through a Multi physics Approach
International Nuclear Information System (INIS)
Cheon, Jinsik; Kim, Junehyung; Lee, Byoungoon; Lee, Chanbock
2013-01-01
Meanwhile advances of numerical methods make it possible for the multi physics problem to be solved in a fully coupled way. In addition to a multidimensional, multi physical approach, a nuclear fuel performance analysis code, which is 1D code, should be improved by accommodating the state-of-the-art in the numerical analysis to support current fuel design and performance analysis. In particular, the coupling between the mechanical equilibrium equation and a set of numerically stiff kinetics equations for fission gas release is of great importance for a multi physics simulation of nuclear fuel. Instead, coupling between temperature and fuel constituent was found to be made with a relative ease by employing an ordinary differential equations solver. As an effort for a new SFR metal fuel performance analysis code, called PUMA (Performance of Uranium Metal fuel rod Analysis code), the deformation of U-Zr fuel for SFR in connection with a fission gas release model is analyzed. A finite element analyses for purely mechanical problems are performed using a backward differentiation formula, and are subjected to scrupulous verification with Abaqus. Then mechanical equilibrium equation and the equations for fission gas release are coupled with the same differential-algebraic equations (DAE) solver
Design and multi-physics optimization of rotary MRF brakes
Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan
2018-03-01
Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.
Modular ORIGEN-S for multi-physics code systems
International Nuclear Information System (INIS)
Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack
2011-01-01
The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including
Modular ORIGEN-S for multi-physics code systems
Energy Technology Data Exchange (ETDEWEB)
Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)
2011-07-01
The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including
International Nuclear Information System (INIS)
Fiorina, C.; Mikityuk, K.
2015-01-01
A new multi-physics solver for nuclear reactor analysis, named GeN-Foam (Generalized Nuclear Foam), has been developed by the FAST group at the Paul Scherrer Institut. It is based on OpenFOAM and has been developed for the multi-physics transient analyses of pin-based (e.g., liquid metal Fast Reactors, Light Water Reactors) or homogeneous (e.g., fast spectrum Molten Salt Reactors) nuclear reactors. It includes solutions of coarse or fine mesh thermal-hydraulics, thermal-mechanics and neutron diffusion. In particular, thermal-hydraulics solution can combine on the same mesh both a traditional RANS model and a porous medium model, depending on the desired degree of approximation for each region. In case the active reactor core is modeled as a porous medium, a simple sub-solver computes the sub-scale radial temperature profiles in fuel and cladding. The mesh used for neutronics calculations is deformed according to the displacement field predicted by the thermal-mechanics solver, thus allowing for a direct prediction of expansion-related feedback effects in Fast Reactors. To limit computational requirements, GeN-Foam permits the use of three different unstructured meshes for thermal-hydraulics, thermal-mechanics and neutron diffusion. For the same reason, an adaptive time step is employed. The different equations can be solved altogether or selectively included. In this work, GeN-Foam is applied to the analysis of the European Sodium Fast Reactor (ESFR). In particular, a 3-D model of the ESFR core is set up employing a coarse-mesh porous-medium approach for the thermal-hydraulics. The reactor steady-state and different accidental transients are investigated to offer an overview of GeN-Foam use and capabilities, as well as to preliminarily investigate the impact of a relatively accurate thermal-mechanic treatment on the predicted ESFR behavior. A code-to-code benchmark against the TRACE system code is performed to verify the adequacy of the results provided by the new
International Nuclear Information System (INIS)
Suarez, V.; Hernandez W, J.; Calderon, A.; Rojas T, J. B.; Juarez, A. G.; Marin, E.; Castaneda, A.
2012-10-01
We investigate the heat transfer through a homogeneous and isotropic solid exited by periodic light beam on its front surface. For this, we use the infrared photothermal radiometry in order to obtain the evolution of the temperature difference on the rear surface of the silicon sample as a function of the exposure time. Also, we solved the heat conduction equation for this problem with the boundary conditions congruent with the physical situation, by means of application the Com sol multi physics software and the heat transfer module. Our results show a good agree between the experimental and simulated results, which demonstrate the utility of this methodology in the study of the thermal response in solids. (Author)
Review of multi-physics temporal coupling methods for analysis of nuclear reactors
International Nuclear Information System (INIS)
Zerkak, Omar; Kozlowski, Tomasz; Gajev, Ivan
2015-01-01
Highlights: • Review of the numerical methods used for the multi-physics temporal coupling. • Review of high-order improvements to the Operator Splitting coupling method. • Analysis of truncation error due to the temporal coupling. • Recommendations on best-practice approaches for multi-physics temporal coupling. - Abstract: The advanced numerical simulation of a realistic physical system typically involves multi-physics problem. For example, analysis of a LWR core involves the intricate simulation of neutron production and transport, heat transfer throughout the structures of the system and the flowing, possibly two-phase, coolant. Such analysis involves the dynamic coupling of multiple simulation codes, each one devoted to the solving of one of the coupled physics. Multiple temporal coupling methods exist, yet the accuracy of such coupling is generally driven by the least accurate numerical scheme. The goal of this paper is to review in detail the approaches and numerical methods that can be used for the multi-physics temporal coupling, including a comprehensive discussion of the issues associated with the temporal coupling, and define approaches that can be used to perform multi-physics analysis. The paper is not limited to any particular multi-physics process or situation, but is intended to provide a generic description of multi-physics temporal coupling schemes for any development stage of the individual (single-physics) tools and methods. This includes a wide spectrum of situation, where the individual (single-physics) solvers are based on pre-existing computation codes embedded as individual components, or a new development where the temporal coupling can be developed and implemented as a part of code development. The discussed coupling methods are demonstrated in the framework of LWR core analysis
Multi-physic simulations of irradiation experiments in a technological irradiation reactor
International Nuclear Information System (INIS)
Bonaccorsi, Th.
2007-09-01
A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)
International Nuclear Information System (INIS)
Navarro, V.; Alonso, J.; Asensio, L.; Yustres, A.; Pintado, X.
2012-01-01
Document available in extended abstract form only. The use of numerical methods, especially the Finite Element Method (FEM), for solving boundary problems in Unsaturated Soil Mechanics has experienced significant progress. Several codes, both built mainly for research purposes and commercial software, are now available. In the last years, Multi-physic Partial Differentiation Equation Solvers (MPDES) have turned out to be an interesting proposal. In this family of solvers, the user defines the governing equations and the behaviour models, generally using a computer algebra environment. The code automatically assembles and solves the equation systems, saving the user having to redefine the structures of memory storage or to implement solver algorithms. The user can focus on the definition of the physics of the problem, while it is possible to couple virtually any physical or chemical process that can be described by a PDE. This can be done, for instance, in COMSOL Multiphysics (CM). Nonetheless, the versatility of CM is compromised by the impossibility to implement models with variables defined by implicit functions. Elasto-plastic models involve an implicit coupling among stress increments, plastic strains and plastic variables increments. For this reason, they cannot be implemented in CM in a straightforward way. This means a very relevant limitation for the use of this tool in the analysis of geomechanical boundary value problems. In this work, a strategy to overcome this problem using the multi-physics concept is presented. A mixed method is proposed, considering the constitutive stresses, the pre-consolidation pressure and the plastic variables as main unknowns of the model. Mixed methods usually present stability problems. However, the algorithmics present in CM include several numerical strategies to minimise this kind of problems. Besides, CM is based on the application of the FEM with Lagrange multipliers, an approach that significantly contributes stability
Problem posing reflections and applications
Brown, Stephen I
2014-01-01
As a result of the editors' collaborative teaching at Harvard in the late 1960s, they produced a ground-breaking work -- The Art Of Problem Posing -- which related problem posing strategies to the already popular activity of problem solving. It took the concept of problem posing and created strategies for engaging in that activity as a central theme in mathematics education. Based in part upon that work and also upon a number of articles by its authors, other members of the mathematics education community began to apply and expand upon their ideas. This collection of thirty readings is a tes
Neutrino statistics: elementary problems and some applications
Energy Technology Data Exchange (ETDEWEB)
Kuchowicz, B
1973-01-01
The treatment of neutrinos includes neutrinos in statistical equilibrium, mathematical refinements, application to stars, the relic neutrinos in cosmology, and some unsolved problems and prospects. (JFP)
Space time problems and applications
DEFF Research Database (Denmark)
Dethlefsen, Claus
models, cubic spline models and structural time series models. The development of state space theory has interacted with the development of other statistical disciplines. In the first part of the Thesis, we present the theory of state space models, including Gaussian state space models, approximative...... analysis of non-Gaussian models, simulation based techniques and model diagnostics. The second part of the Thesis considers Markov random field models. These are spatial models applicable in e.g. disease mapping and in agricultural experiments. Recently, the Gaussian Markov random field models were...... techniques with importance sampling. The third part of the Thesis contains applications of the theory. First, a univariate time series of count data is analysed. Then, a spatial model is used to compare wheat yields. Weed count data in connection with a project in precision farming is analysed using...
Energy Technology Data Exchange (ETDEWEB)
Menanteau, L.
2004-10-15
This works concerns the development of a virtual proto-typing tool for electro-thermo-mechanical simulation of power converters. The programming of this code, written in an object-oriented language, includes a dual Schur Domain Decomposition Method. The solving of problems including floating sub-domains can be performed in steady-state whereas man can couple implicit and explicit integration schemes. These integration schemes can have different time steps. Moreover, the code includes parts of programme which permit the parallelization of calculus and so the optimisation of the times of resolution. The benchmarks which are presented validate the method and show its substantial gains in time of calculus. The last part of this work concerns the study of an industrial benchmark concerning the power converters used in railway transport: it concerns the electro-thermal simulation of a semiconductor chip in steady state and in transient. This sample allows to compare different strategies of tearing in sub-domains and to couple different time steps on the same structure. (author)
Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models
Energy Technology Data Exchange (ETDEWEB)
Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL; Poore III, Willis P. [ORNL; Muhlheim, Michael David [ORNL
2014-07-30
An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.
Chiral unitary theory: Application to nuclear problems
Indian Academy of Sciences (India)
Chiral unitary theory: Application to nuclear problems ... Physics Department, Nara Women University, Nara, Japan. 5 ... RCNP, Osaka University, Osaka, Japan ...... We acknowledge partial financial support from the DGICYT under contract ...
Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle
International Nuclear Information System (INIS)
Lei, Fei; Du, Bin; Liu, Xin; Xie, Xiaoping; Chai, Tian
2016-01-01
In this paper, implicit constrained multi-physics model of a motor wheel for an electric vehicle is built and then optimized. A novel optimization approach is proposed to solve the compliance problem between implicit constraints and stochastic global optimization. Firstly, multi-physics model of motor wheel is built from the theories of structural mechanics, electromagnetism and thermal physics. Then, implicit constraints are applied from the vehicle performances and magnetic characteristics. Implicit constrained optimization is carried out by a series of unconstrained optimization and verifications. In practice, sequentially updated subspaces are designed to completely substitute the original design space in local areas. In each subspace, a solution is obtained and is then verified by the implicit constraints. Optimal solutions which satisfy the implicit constraints are accepted as final candidates. The final global optimal solution is optimized from those candidates. Discussions are carried out to discover the differences between optimal solutions with unconstrained problem and different implicit constrained problems. Results show that the implicit constraints have significant influences on the optimal solution and the proposed approach is effective in finding the optimals. - Highlights: • An implicit constrained multi-physics model is built for sizing a motor wheel. • Vehicle dynamic performances are applied as implicit constraints for nonlinear system. • An efficient novel optimization is proposed to explore the constrained design space. • The motor wheel is optimized to achieve maximum efficiency on vehicle dynamics. • Influences of implicit constraints on vehicle performances are compared and analyzed.
Solving the rectangular assignment problem and applications
Bijsterbosch, J.; Volgenant, A.
2010-01-01
The rectangular assignment problem is a generalization of the linear assignment problem (LAP): one wants to assign a number of persons to a smaller number of jobs, minimizing the total corresponding costs. Applications are, e.g., in the fields of object recognition and scheduling. Further, we show
Modelling transport phenomena in a multi-physics context
Marra, Francesco
2015-01-01
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.
Modelling transport phenomena in a multi-physics context
Energy Technology Data Exchange (ETDEWEB)
Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)
2015-01-22
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.
Modelling transport phenomena in a multi-physics context
International Nuclear Information System (INIS)
Marra, Francesco
2015-01-01
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating
Acceleration methods for multi-physics compressible flow
Peles, Oren; Turkel, Eli
2018-04-01
In this work we investigate the Runge-Kutta (RK)/Implicit smoother scheme as a convergence accelerator for complex multi-physics flow problems including turbulent, reactive and also two-phase flows. The flows considered are subsonic, transonic and supersonic flows in complex geometries, and also can be either steady or unsteady flows. All of these problems are considered to be a very stiff. We then introduce an acceleration method for the compressible Navier-Stokes equations. We start with the multigrid method for pure subsonic flow, including reactive flows. We then add the Rossow-Swanson-Turkel RK/Implicit smoother that enables performing all these complex flow simulations with a reasonable CFL number. We next discuss the RK/Implicit smoother for time dependent problem and also for low Mach numbers. The preconditioner includes an intrinsic low Mach number treatment inside the smoother operator. We also develop a modified Roe scheme with a corresponding flux Jacobian matrix. We then give the extension of the method for real gas and reactive flow. Reactive flows are governed by a system of inhomogeneous Navier-Stokes equations with very stiff source terms. The extension of the RK/Implicit smoother requires an approximation of the source term Jacobian. The properties of the Jacobian are very important for the stability of the method. We discuss what the chemical physics theory of chemical kinetics tells about the mathematical properties of the Jacobian matrix. We focus on the implication of the Le-Chatelier's principle on the sign of the diagonal entries of the Jacobian. We present the implementation of the method for turbulent flow. We use a two RANS turbulent model - one equation model - Spalart-Allmaras and a two-equation model - k-ω SST model. The last extension is for two-phase flows with a gas as a main phase and Eulerian representation of a dispersed particles phase (EDP). We present some examples for such flow computations inside a ballistic evaluation
Predictive modeling of coupled multi-physics systems: I. Theory
International Nuclear Information System (INIS)
Cacuci, Dan Gabriel
2014-01-01
Highlights: • We developed “predictive modeling of coupled multi-physics systems (PMCMPS)”. • PMCMPS reduces predicted uncertainties in predicted model responses and parameters. • PMCMPS treats efficiently very large coupled systems. - Abstract: This work presents an innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS).” This methodology takes into account fully the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PMCMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This “maximum entropy”-approximate a priori distribution is combined, using Bayes’ theorem, with the “likelihood” provided by the multi-physics simulation models. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PMCMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially
A self-taught artificial agent for multi-physics computational model personalization.
Neumann, Dominik; Mansi, Tommaso; Itu, Lucian; Georgescu, Bogdan; Kayvanpour, Elham; Sedaghat-Hamedani, Farbod; Amr, Ali; Haas, Jan; Katus, Hugo; Meder, Benjamin; Steidl, Stefan; Hornegger, Joachim; Comaniciu, Dorin
2016-12-01
Personalization is the process of fitting a model to patient data, a critical step towards application of multi-physics computational models in clinical practice. Designing robust personalization algorithms is often a tedious, time-consuming, model- and data-specific process. We propose to use artificial intelligence concepts to learn this task, inspired by how human experts manually perform it. The problem is reformulated in terms of reinforcement learning. In an off-line phase, Vito, our self-taught artificial agent, learns a representative decision process model through exploration of the computational model: it learns how the model behaves under change of parameters. The agent then automatically learns an optimal strategy for on-line personalization. The algorithm is model-independent; applying it to a new model requires only adjusting few hyper-parameters of the agent and defining the observations to match. The full knowledge of the model itself is not required. Vito was tested in a synthetic scenario, showing that it could learn how to optimize cost functions generically. Then Vito was applied to the inverse problem of cardiac electrophysiology and the personalization of a whole-body circulation model. The obtained results suggested that Vito could achieve equivalent, if not better goodness of fit than standard methods, while being more robust (up to 11% higher success rates) and with faster (up to seven times) convergence rate. Our artificial intelligence approach could thus make personalization algorithms generalizable and self-adaptable to any patient and any model. Copyright © 2016. Published by Elsevier B.V.
The Unknown Component Problem Theory and Applications
Villa, Tiziano; Brayton, Robert K; Mishchenko, Alan; Petrenko, Alexandre; Sangiovanni-Vincentelli, Alberto
2012-01-01
The Problem of the Unknown Component: Theory and Applications addresses the issue of designing a component that, combined with a known part of a system, conforms to an overall specification. The authors tackle this problem by solving abstract equations over a language. The most general solutions are studied when both synchronous and parallel composition operators are used. The abstract equations are specialized to languages associated with important classes of automata used for modeling systems. The book is a blend of theory and practice, which includes a description of a software package with applications to sequential synthesis of finite state machines. Specific topologies interconnecting the components, exact and heuristic techniques, and optimization scenarios are studied. Finally the scope is enlarged to domains like testing, supervisory control, game theory and synthesis for special omega languages. The authors present original results of the authors along with an overview of existing ones.
ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code
Energy Technology Data Exchange (ETDEWEB)
Noble, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anderson, Andrew T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barton, Nathan R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bramwell, Jamie A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Capps, Arlie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, Michael H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chou, Jin J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dawson, David M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Diana, Emily R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunn, Timothy A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Faux, Douglas R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fisher, Aaron C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinz, Ines [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kanarska, Yuliya [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khairallah, Saad A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liu, Benjamin T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Margraf, Jon D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nichols, Albert L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reus, James F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robinson, Peter B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shestakov, Alek I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, Jerome M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Taller, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tsuji, Paul H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Christopher A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Jeremy L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-05-23
ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.
Relaxations to Sparse Optimization Problems and Applications
Skau, Erik West
Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we
Bilinear Inverse Problems: Theory, Algorithms, and Applications
Ling, Shuyang
We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical
Energy Technology Data Exchange (ETDEWEB)
Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-17
The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operating scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi-physics
IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.
Ha, Vi Q; Lykotrafitis, George
2016-12-08
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multi-Physics Analysis of the Fermilab Booster RF Cavity
International Nuclear Information System (INIS)
Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.
2012-01-01
After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.
Health problems of industrial applications of radioisotopes
International Nuclear Information System (INIS)
Kudrna, J.
1976-01-01
Radiation hygiene problems of industrial radioisotope applications are discussed. The observance of regulations is emphasised. Radiation protection is based on the principle of preventing early radiation damage and limiting late radiation damage to an acceptable level. The basic requirement is that the cumulated dose should be as low as possible, i.e., as low as is practically feasible in considering economic and social aspects. Notices 59/72 and 65/72, Collection of Laws, rule that if the limit of 3/10 of the maximum permissible dose is likely to be reached, control zones should be defined and marked at places of work where radioisotopes are handled. The characteristics of such a control zone are listed and the measures to be taken in case of accident are outlined. (B.S.)
Uncertainty Quantification with Applications to Engineering Problems
DEFF Research Database (Denmark)
Bigoni, Daniele
in measurements, predictions and manufacturing, and we can say that any dynamical system used in engineering is subject to some of these uncertainties. The first part of this work presents an overview of the mathematical framework used in Uncertainty Quantification (UQ) analysis and introduces the spectral tensor...... and thus the UQ analysis of the associated systems will benefit greatly from the application of methods which require few function evaluations. We first consider the propagation of the uncertainty and the sensitivity analysis of the non-linear dynamics of railway vehicles with suspension components whose......-scale problems, where efficient methods are necessary with today’s computational resources. The outcome of this work was also the creation of several freely available Python modules for Uncertainty Quantification, which are listed and described in the appendix....
Advanced multi-physics simulation capability for very high temperature reactors
International Nuclear Information System (INIS)
Lee, Hyun Chul; Tak, Nam Il; Jo Chang Keun; Noh, Jae Man; Cho, Bong Hyun; Cho, Jin Woung; Hong, Ser Gi
2012-01-01
The purpose of this research is to develop methodologies and computer code for high-fidelity multi-physics analysis of very high temperature gas-cooled reactors(VHTRs). The research project was performed through Korea-US I-NERI program. The main research topic was development of methodologies for high-fidelity 3-D whole core transport calculation, development of DeCART code for VHTR reactor physics analysis, generation of VHTR specific 190-group cross-section library for DeCART code, development of DeCART/CORONA coupled code system for neutronics/thermo-fluid multi-physics analysis, and benchmark analysis against various benchmark problems derived from PMR200 reactor. The methodologies and the code systems will be utilized a key technologies in the Nuclear Hydrogen Development and Demonstration program. Export of code system is expected in the near future and the code systems developed in this project are expected to contribute to development and export of nuclear hydrogen production system
A Multi-Physics simulation of the Reactor Core using CUPID/MASTER
International Nuclear Information System (INIS)
Lee, Jae Ryong; Cho, Hyoung Kyu; Yoon, Han Young; Cho, Jin Young; Jeong, Jae Jun
2011-01-01
KAERI has been developing a component-scale thermal hydraulics code, CUPID. The aim of the code is for multi-dimensional, multi-physics and multi-scale thermal hydraulics analysis. In our previous papers, the CUPID code has proved to be able to reproduce multidimensional thermal hydraulic analysis by validated with various conceptual problems and experimental data. For the numerical closure, it adopts a three dimensional, transient, two-phase and three-field model, and includes physical models and correlations of the interfacial mass, momentum, and energy transfer. For the multi-scale analysis, the CUPID is on progress to merge into system-scale thermal hydraulic code, MARS. In the present paper, a multi-physics simulation was performed by coupling the CUPID with three dimensional neutron kinetics code, MASTER. The MASTER is merged into the CUPID as a dynamic link library (DLL). The APR1400 reactor core during control rod drop/ejection accident was simulated as an example by adopting a porous media approach to employ fuel assembly. The following sections present the numerical modeling for the reactor core, coupling of the kinetics code, and the simulation results
A multi-physics code system based on ANC9, VIPRE-W and BOA for CIPS evaluation
International Nuclear Information System (INIS)
Zhang, B.; Sung, Y.; Secker, J.; Beard, C.; Hilton, P.; Wang, G.; Oelrich, R.; Karoutas, Z.; Sung, Y.
2011-01-01
This paper summarizes the development of a multi-physics code system for evaluation of Crud Induced Power Shift (CIPS) phenomenon experienced in some Pressurized Water Reactors (PWR). CIPS is an unexpected change in reactor core axial power distribution, caused by boron compounds in crud deposited in the high power fuel assemblies undergoing subcooled boiling. As part of the Consortium for Advanced Simulation of Light Water Reactors (CASL) sponsored by the US Department of Energy (DOE), this paper describes the initial linkage and application of a multi-physics code system ANC9/VIPRE-W/BOA for evaluating changes in core power distributions due to boron deposited in crud. The initial linkage of the code system along with the application results will be the base for the future CASL development. (author)
A multi-physics code system based on ANC9, VIPRE-W and BOA for CIPS evaluation
Energy Technology Data Exchange (ETDEWEB)
Zhang, B.; Sung, Y.; Secker, J.; Beard, C.; Hilton, P.; Wang, G.; Oelrich, R.; Karoutas, Z.; Sung, Y. [Westinghouse Electric Company LLC, Pittsburgh (United States)
2011-07-01
This paper summarizes the development of a multi-physics code system for evaluation of Crud Induced Power Shift (CIPS) phenomenon experienced in some Pressurized Water Reactors (PWR). CIPS is an unexpected change in reactor core axial power distribution, caused by boron compounds in crud deposited in the high power fuel assemblies undergoing subcooled boiling. As part of the Consortium for Advanced Simulation of Light Water Reactors (CASL) sponsored by the US Department of Energy (DOE), this paper describes the initial linkage and application of a multi-physics code system ANC9/VIPRE-W/BOA for evaluating changes in core power distributions due to boron deposited in crud. The initial linkage of the code system along with the application results will be the base for the future CASL development. (author)
Multi-physics Model for the Aging Prediction of a Vanadium Redox Flow Battery System
International Nuclear Information System (INIS)
Merei, Ghada; Adler, Sophie; Magnor, Dirk; Sauer, Dirk Uwe
2015-01-01
Highlights: • Present a multi-physics model of vanadium redox-flow battery. • This model is essential for aging prediction. • It is applicable for VRB system of different power and capacity ratings. • Good results comparing with current research in this field. - Abstract: The all-vanadium redox-flow battery is an attractive candidate to compensate the fluctuations of non-dispatchable renewable energy generation. While several models for vanadium redox batteries have been described yet, no model has been published, which is adequate for the aging prediction. Therefore, the present paper presents a multi-physics model which determines all parameters that are essential for an aging prediction. In a following paper, the corresponding aging model of vanadium redox flow battery (VRB) is described. The model combines existing models for the mechanical losses and temperature development with new approaches for the batteries side reactions. The model was implemented in Matlab/Simulink. The modeling results presented in the paper prove to be consistent with the experimental results of other research groups
Application of eigenfunction orthogonalities to vibration problems
CSIR Research Space (South Africa)
Fedotov, I
2009-07-01
Full Text Available The modelling of vibration problems is of great importance in engineering. A popular method of analysing such problems is the variational method. The simplest vibration model is represented using the example of a long rod. Two kinds...
Inverse and Ill-posed Problems Theory and Applications
Kabanikhin, S I
2011-01-01
The text demonstrates the methods for proving the existence (if et all) and finding of inverse and ill-posed problems solutions in linear algebra, integral and operator equations, integral geometry, spectral inverse problems, and inverse scattering problems. It is given comprehensive background material for linear ill-posed problems and for coefficient inverse problems for hyperbolic, parabolic, and elliptic equations. A lot of examples for inverse problems from physics, geophysics, biology, medicine, and other areas of application of mathematics are included.
An algorithm for the split-feasibility problems with application to the split-equality problem.
Chuang, Chih-Sheng; Chen, Chi-Ming
2017-01-01
In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.
Energy Technology Data Exchange (ETDEWEB)
Qiu, Yuefeng, E-mail: yuefeng.qiu@kit.edu; Lu, Lei; Fischer, Ulrich
2015-10-15
Highlights: • Integrated approach for neutronics, thermal and structural analyses was developed. • MCNP5/6, TRIPOLI-4 were coupled with CFX, Fluent and ANSYS Workbench. • A novel meshing approach has been proposed for describing MC geometry. - Abstract: Coupled multi-physics analyses on fusion reactor devices require high-fidelity neutronic models, and flexible, accurate data exchanging between various calculation codes. An integrated coupling approach has been developed to enable the conversion of CAD, mesh, or hybrid geometries for Monte Carlo (MC) codes MCNP5/6, TRIPOLI-4, and translation of nuclear heating data for CFD codes Fluent, CFX and structural mechanical software ANSYS Workbench. The coupling approach has been implemented based on SALOME platform with CAD modeling, mesh generation and data visualization capabilities. A novel meshing approach has been developed for generating suitable meshes for MC geometry descriptions. The coupling approach has been concluded to be reliable and efficient after verification calculations of several application cases.
Rich Vehicle Routing Problems and Applications
DEFF Research Database (Denmark)
Wen, Min
very short computational time on real-life data involving up to 200 pairs of suppliers and customers. The second problem we consider is a dynamic vehicle routing problem with multiple objectives over a planning horizon that consists of multiple periods. In this problem, customer orders are revealed...... the company’s solution in terms of all the objectives, including the travel time, customer waiting and daily workload balances, under the given constraints considered in the work. Finally, we address an integrated vehicle routing and driver scheduling problem, in which a large number of practical constraints....... The method is implemented and tested on real-life data involving up to 2000 orders. It is shown that the method is able to provide solutions of good quality within reasonable running time....
International Nuclear Information System (INIS)
Ivanov, K.; Avramova, M.
2007-01-01
Current trends in nuclear power generation and regulation as well as the design of next generation reactor concepts along with the continuing computer technology progress stimulate the development, qualification and application of multi-physics multi-scale coupled code systems. The efforts have been focused on extending the analysis capabilities by coupling models, which simulate different phenomena or system components, as well as on refining the scale and level of detail of the coupling. This paper reviews the progress made in this area and outlines the remaining challenges. The discussion is illustrated with examples based on neutronics/thermohydraulics coupling in the reactor core modeling. In both fields recent advances and developments are towards more physics-based high-fidelity simulations, which require implementation of improved and flexible coupling methodologies. First, the progresses in coupling of different physics codes along with the advances in multi-level techniques for coupled code simulations are discussed. Second, the issues related to the consistent qualification of coupled multi-physics and multi-scale code systems for design and safety evaluation are presented. The increased importance of uncertainty and sensitivity analysis are discussed along with approaches to propagate the uncertainty quantification between the codes. The incoming OECD LWR Uncertainty Analysis in Modeling (UAM) benchmark is the first international activity to address this issue and it is described in the paper. Finally, the remaining challenges with multi-physics coupling are outlined. (authors)
Energy Technology Data Exchange (ETDEWEB)
Ivanov, K.; Avramova, M. [Pennsylvania State Univ., University Park, PA (United States)
2007-07-01
Current trends in nuclear power generation and regulation as well as the design of next generation reactor concepts along with the continuing computer technology progress stimulate the development, qualification and application of multi-physics multi-scale coupled code systems. The efforts have been focused on extending the analysis capabilities by coupling models, which simulate different phenomena or system components, as well as on refining the scale and level of detail of the coupling. This paper reviews the progress made in this area and outlines the remaining challenges. The discussion is illustrated with examples based on neutronics/thermohydraulics coupling in the reactor core modeling. In both fields recent advances and developments are towards more physics-based high-fidelity simulations, which require implementation of improved and flexible coupling methodologies. First, the progresses in coupling of different physics codes along with the advances in multi-level techniques for coupled code simulations are discussed. Second, the issues related to the consistent qualification of coupled multi-physics and multi-scale code systems for design and safety evaluation are presented. The increased importance of uncertainty and sensitivity analysis are discussed along with approaches to propagate the uncertainty quantification between the codes. The incoming OECD LWR Uncertainty Analysis in Modeling (UAM) benchmark is the first international activity to address this issue and it is described in the paper. Finally, the remaining challenges with multi-physics coupling are outlined. (authors)
Two-Step Multi-Physics Analysis of an Annular Linear Induction Pump for Fission Power Systems
Geng, Steven M.; Reid, Terry V.
2016-01-01
One of the key technologies associated with fission power systems (FPS) is the annular linear induction pump (ALIP). ALIPs are used to circulate liquid-metal fluid for transporting thermal energy from the nuclear reactor to the power conversion device. ALIPs designed and built to date for FPS project applications have not performed up to expectations. A unique, two-step approach was taken toward the multi-physics examination of an ALIP using ANSYS Maxwell 3D and Fluent. This multi-physics approach was developed so that engineers could investigate design variations that might improve pump performance. Of interest was to determine if simple geometric modifications could be made to the ALIP components with the goal of increasing the Lorentz forces acting on the liquid-metal fluid, which in turn would increase pumping capacity. The multi-physics model first calculates the Lorentz forces acting on the liquid metal fluid in the ALIP annulus. These forces are then used in a computational fluid dynamics simulation as (a) internal boundary conditions and (b) source functions in the momentum equations within the Navier-Stokes equations. The end result of the two-step analysis is a predicted pump pressure rise that can be compared with experimental data.
Energy Technology Data Exchange (ETDEWEB)
Bonaccorsi, Th
2007-09-15
A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)
Bi, Linfeng
2009-01-01
The main challenges in modeling fluid flow through naturally-fractured carbonate karst reservoirs are how to address various flow physics in complex geological architectures due to the presence of vugs and caves which are connected via fracture networks at multiple scales. In this paper, we present a unified multi-physics model that adapts to the complex flow regime through naturally-fractured carbonate karst reservoirs. This approach generalizes Stokes-Brinkman model (Popov et al. 2007). The fracture networks provide the essential connection between the caves in carbonate karst reservoirs. It is thus very important to resolve the flow in fracture network and the interaction between fractures and caves to better understand the complex flow behavior. The idea is to use Stokes-Brinkman model to represent flow through rock matrix, void caves as well as intermediate flows in very high permeability regions and to use an idea similar to discrete fracture network model to represent flow in fracture network. Consequently, various numerical solution strategies can be efficiently applied to greatly improve the computational efficiency in flow simulations. We have applied this unified multi-physics model as a fine-scale flow solver in scale-up computations. Both local and global scale-up are considered. It is found that global scale-up has much more accurate than local scale-up. Global scale-up requires the solution of global flow problems on fine grid, which generally is computationally expensive. The proposed model has the ability to deal with large number of fractures and caves, which facilitate the application of Stokes-Brinkman model in global scale-up computation. The proposed model flexibly adapts to the different flow physics in naturally-fractured carbonate karst reservoirs in a simple and effective way. It certainly extends modeling and predicting capability in efficient development of this important type of reservoir.
Fuzzy logic application for extruders replacement problem
Directory of Open Access Journals (Sweden)
Edison Conde Perez dos Santos
2017-03-01
Full Text Available In a scenario of uncertainty and imprecision, before taking the replacement analysis, a manager needs to consider the uncertain reality of a problem. In this scenario, the fuzzy logic makes an excellent option. Therefore, it is necessary to make a decision based on the fuzzy model. This study is based on the comparison of two methodologies used in the problem of asset replacement. The study, thus, was based on a comparison between two extruders for polypropylene yarn bibliopegy, comparing mainly the costs involved in maintaining the equipment.
Problem solving environment for distributed interactive applications
Rycerz, K.; Bubak, M.; Sloot, P.; Getov, V.; Gorlatch, S.; Bubak, M.; Priol, T.
2008-01-01
Interactive Problem Solving Environments (PSEs) offer an integrated approach for constructing and running complex systems, such as distributed simulation systems. To achieve efficient execution of High Level Architecture (HLA)-based distributed interactive simulations on the Grid, we introduce a PSE
Applicability Problem in Optimum Reinforced Concrete Structures Design
Directory of Open Access Journals (Sweden)
Ashara Assedeq
2016-01-01
Full Text Available Optimum reinforced concrete structures design is very complex problem, not only considering exactness of calculus but also because of questionable applicability of existing methods in practice. This paper presents the main theoretical mathematical and physical features of the problem formulation as well as the review and analysis of existing methods and solutions considering their exactness and applicability.
Selected problems in power applications of high Tc superconductors
DEFF Research Database (Denmark)
Tønnesen, Ole; Pedersen, Niels Falsig
2001-01-01
Two important problems connected with power applications of BSCCO tapes are discussed: (i) the problem of developing prototypes when the tape properties are changing, and (ii) the problem of flux pinning in intrinsic BSCCO. An overview of the different projects on superconducting power cables is ...
PFEM application in fluid structure interaction problems
Celigueta Jordana, Miguel Ángel; Larese De Tetto, Antonia; Latorre, Salvador
2008-01-01
In the current paper the Particle Finite Element Method (PFEM), an innovative numerical method for solving a wide spectrum of problems involving the interaction of fluid and structures, is briefly presented. Many examples of the use of the PFEM with GiD support are shown. GiD framework provides a useful pre and post processor for the specific features of the method. Its advantages and shortcomings are pointed out in the present work. Peer Reviewed
Linear Programming and Its Application to Pattern Recognition Problems
Omalley, M. J.
1973-01-01
Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.
Multi-Physics Simulation of TREAT Kinetics using MAMMOTH
Energy Technology Data Exchange (ETDEWEB)
DeHart, Mark; Gleicher, Frederick; Ortensi, Javier; Alberti, Anthony; Palmer, Todd
2015-11-01
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in a graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.
Application of Laplace transform to industrial problems
International Nuclear Information System (INIS)
Dubois, D.J.M.; Vagner, J.
1989-01-01
This paper presents two industrial applications of a new methodology based on Laplace transform properties which has been implemented in an industrial finite element program. In structures endowed with thermal and mechanical properties constant with the temperature, the stresses are computed for unit thermal shocks applied on the areas which are actually affected by the temperature variations. The analytical formulation and the general feature of this implementation are presented
Quantum game application to spectrum scarcity problems
Zabaleta, O. G.; Barrangú, J. P.; Arizmendi, C. M.
2017-01-01
Recent spectrum-sharing research has produced a strategy to address spectrum scarcity problems. This novel idea, named cognitive radio, considers that secondary users can opportunistically exploit spectrum holes left temporarily unused by primary users. This presents a competitive scenario among cognitive users, making it suitable for game theory treatment. In this work, we show that the spectrum-sharing benefits of cognitive radio can be increased by designing a medium access control based on quantum game theory. In this context, we propose a model to manage spectrum fairly and effectively, based on a multiple-users multiple-choice quantum minority game. By taking advantage of quantum entanglement and quantum interference, it is possible to reduce the probability of collision problems commonly associated with classic algorithms. Collision avoidance is an essential property for classic and quantum communications systems. In our model, two different scenarios are considered, to meet the requirements of different user strategies. The first considers sensor networks where the rational use of energy is a cornerstone; the second focuses on installations where the quality of service of the entire network is a priority.
Application of the group-theoretical method to physical problems
Abd-el-malek, Mina B.
1998-01-01
The concept of the theory of continuous groups of transformations has attracted the attention of applied mathematicians and engineers to solve many physical problems in the engineering sciences. Three applications are presented in this paper. The first one is the problem of time-dependent vertical temperature distribution in a stagnant lake. Two cases have been considered for the forms of the water parameters, namely water density and thermal conductivity. The second application is the unstea...
Bilevel programming problems theory, algorithms and applications to energy networks
Dempe, Stephan; Pérez-Valdés, Gerardo A; Kalashnykova, Nataliya; Kalashnikova, Nataliya
2015-01-01
This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained.
Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Kim, G-.H.; Smith, K.; Pesaran, A.
2009-06-01
This presentation outlines NREL's multi-physics simulation study to characterize an internal short by linking and integrating electrochemical cell, electro-thermal, and abuse reaction kinetics models.
Molten salt: Corrosion problems and electrometallurgy in nuclear applications
International Nuclear Information System (INIS)
Santarini, G.
1981-01-01
A bibliographic survey is given of corrosion problems and electrometallurgical problems of molten salt in nuclear reactor applications. Due to the high potential to be achieved, their high ionic conductivity and the rapidity of reactions in a molten salt atmosphere, molten salts are interesting solvents for various electrometallurgical processes. Another important field of application is in the separation or electrolytical refining of various metals (Be, U, Pu, Th, Hf, Zr). However, these very characteristics of molten salts may also cause serious corrosion problems. Results obtained for the molten-salt reactor and the different causes of corrosion are reviewed an possible countermeasures analyzed. (orig.)
Carleman estimates and applications to inverse problems for hyperbolic systems
Bellassoued, Mourad
2017-01-01
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of wh...
Development of a three dimension multi-physics code for molten salt fast reactor
International Nuclear Information System (INIS)
Cheng Maosong; Dai Zhimin
2014-01-01
Molten Salt Reactor (MSR) was selected as one of the six innovative nuclear reactors by the Generation IV International Forum (GIF). The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper: a new coupling model is presented that physically describes the inherent relations between the neutron flux, the delayed neutron precursor, the heat transfer and the turbulent flow. Based on the model, integrating nuclear data processing, CAD modeling, structured and unstructured mesh technology, data analysis and visualization application, a three dimension steady state simulation code system (MSR3DS) for the can-type molten salt fast reactor is developed and validated. In order to demonstrate the ability of the code, the three dimension distributions of the velocity, the neutron flux, the delayed neutron precursor and the temperature were obtained for the simplified MOlten Salt Advanced Reactor Transmuter (MOSART) using this code. The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor. Furthermore, the code can well predict the flow effect of fuel salt and the transport effect of the turbulent diffusion. (authors)
Some problems on nonlinear hyperbolic equations and applications
Peng, YueJun
2010-01-01
This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.
Review on study of multi-physics in environment engineering
International Nuclear Information System (INIS)
Liu Shanli; Zhao Jian; Sheng Jinchang
2006-01-01
This paper analyzes some problems on multi-field coupling ones between seepage mechanics and other physical and chemical processes (such as temperature field. stress field, solute transport. chemical action and so on) in environment engineering, it explains the research theory of multi-field coupling, it summarizes the abroad and domestic research about the model of multi-field problem and finally it looks into the future of research tendency in environment engineering. (authors)
Applications of neutrons for laboratory and industrial activation analysis problems
International Nuclear Information System (INIS)
Szabo, Elek; Bakos, Laszlo
1986-01-01
This chapter presents some particular applications and case studies of neutrons in activation analysis for research and industrial development purposes. The reactor neutrons have been applied in Hungarian laboratories for semiconductor research, for analysis of geological (lunar) samples, and for a special comparator measurement of samples. Some industrial applications of neutron generator and sealed sources for analytical problems are presented. Finally, prompt neutron activation analysis is outlined briefly. (R.P.)
Johnson, S.; Chiaramonte, L.; Cruz, L.; Izadi, G.
2016-12-01
Advances in the accuracy and fidelity of numerical methods have significantly improved our understanding of coupled processes in unconventional reservoirs. However, such multi-physics models are typically characterized by many parameters and require exceptional computational resources to evaluate systems of practical importance, making these models difficult to use for field analyses or uncertainty quantification. One approach to remove these limitations is through targeted complexity reduction and field data constrained parameterization. For the latter, a variety of field data streams may be available to engineers and asset teams, including micro-seismicity from proximate sites, well logs, and 3D surveys, which can constrain possible states of the reservoir as well as the distributions of parameters. We describe one such workflow, using the Argos multi-physics code and requisite geomechanical analysis to parameterize the underlying models. We illustrate with a field study involving a constraint analysis of various field data and details of the numerical optimizations and model reduction to demonstrate how complex models can be applied to operation design in hydraulic fracturing operations, including selection of controllable completion and fluid injection design properties. The implication of this work is that numerical methods are mature and computationally tractable enough to enable complex engineering analysis and deterministic field estimates and to advance research into stochastic analyses for uncertainty quantification and value of information applications.
Problem solving in magnetic field: Animation in mobile application
Najib, A. S. M.; Othman, A. P.; Ibarahim, Z.
2014-09-01
This paper is focused on the development of mobile application for smart phone, Android, tablet, iPhone, and iPad as a problem solving tool in magnetic field. Mobile application designs consist of animations that were created by using Flash8 software which could be imported and compiled to prezi.com software slide. The Prezi slide then had been duplicated in Power Point format and instead question bank with complete answer scheme was also additionally generated as a menu in the application. Results of the published mobile application can be viewed and downloaded at Infinite Monkey website or at Google Play Store from your gadgets. Statistics of the application from Google Play Developer Console shows the high impact of the application usage in all over the world.
Bayesian inverse problems for functions and applications to fluid mechanics
International Nuclear Information System (INIS)
Cotter, S L; Dashti, M; Robinson, J C; Stuart, A M
2009-01-01
In this paper we establish a mathematical framework for a range of inverse problems for functions, given a finite set of noisy observations. The problems are hence underdetermined and are often ill-posed. We study these problems from the viewpoint of Bayesian statistics, with the resulting posterior probability measure being defined on a space of functions. We develop an abstract framework for such problems which facilitates application of an infinite-dimensional version of Bayes theorem, leads to a well-posedness result for the posterior measure (continuity in a suitable probability metric with respect to changes in data), and also leads to a theory for the existence of maximizing the posterior probability (MAP) estimators for such Bayesian inverse problems on function space. A central idea underlying these results is that continuity properties and bounds on the forward model guide the choice of the prior measure for the inverse problem, leading to the desired results on well-posedness and MAP estimators; the PDE analysis and probability theory required are thus clearly dileneated, allowing a straightforward derivation of results. We show that the abstract theory applies to some concrete applications of interest by studying problems arising from data assimilation in fluid mechanics. The objective is to make inference about the underlying velocity field, on the basis of either Eulerian or Lagrangian observations. We study problems without model error, in which case the inference is on the initial condition, and problems with model error in which case the inference is on the initial condition and on the driving noise process or, equivalently, on the entire time-dependent velocity field. In order to undertake a relatively uncluttered mathematical analysis we consider the two-dimensional Navier–Stokes equation on a torus. The case of Eulerian observations—direct observations of the velocity field itself—is then a model for weather forecasting. The case of
Innovative applications of genetic algorithms to problems in accelerator physics
Directory of Open Access Journals (Sweden)
Alicia Hofler
2013-01-01
Full Text Available The genetic algorithm (GA is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.
Algorithmic Puzzles: History, Taxonomies, and Applications in Human Problem Solving
Levitin, Anany
2017-01-01
The paper concerns an important but underappreciated genre of algorithmic puzzles, explaining what these puzzles are, reviewing milestones in their long history, and giving two different ways to classify them. Also covered are major applications of algorithmic puzzles in cognitive science research, with an emphasis on insight problem solving, and…
Application of the kernel method to the inverse geosounding problem.
Hidalgo, Hugo; Sosa León, Sonia; Gómez-Treviño, Enrique
2003-01-01
Determining the layered structure of the earth demands the solution of a variety of inverse problems; in the case of electromagnetic soundings at low induction numbers, the problem is linear, for the measurements may be represented as a linear functional of the electrical conductivity distribution. In this paper, an application of the support vector (SV) regression technique to the inversion of electromagnetic data is presented. We take advantage of the regularizing properties of the SV learning algorithm and use it as a modeling technique with synthetic and field data. The SV method presents better recovery of synthetic models than Tikhonov's regularization. As the SV formulation is solved in the space of the data, which has a small dimension in this application, a smaller problem than that considered with Tikhonov's regularization is produced. For field data, the SV formulation develops models similar to those obtained via linear programming techniques, but with the added characteristic of robustness.
Application of Fuzzy Optimization to the Orienteering Problem
Directory of Open Access Journals (Sweden)
Madhushi Verma
2015-01-01
Full Text Available This paper deals with the orienteering problem (OP which is a combination of two well-known problems (i.e., travelling salesman problem and the knapsack problem. OP is an NP-hard problem and is useful in appropriately modeling several challenging applications. As the parameters involved in these applications cannot be measured precisely, depicting them using crisp numbers is unrealistic. Further, the decision maker may be satisfied with graded satisfaction levels of solutions, which cannot be formulated using a crisp program. To deal with the above-stated two issues, we formulate the fuzzy orienteering problem (FOP and provide a method to solve it. Here we state the two necessary conditions of OP of maximizing the total collected score and minimizing the time taken to traverse a path (within the specified time bound as fuzzy goals and the remaining necessary conditions as crisp constraints. Using the max-min formulation of the fuzzy sets obtained from the fuzzy goals, we calculate the fuzzy decision sets (Z and Z∗ that contain the feasible paths and the desirable paths, respectively, along with the degrees to which they are acceptable. To efficiently solve large instances of FOP, we also present a parallel algorithm on CREW PRAM model.
Moving interface problems and applications in fluid dynamics
Khoo, Boo Cheong; Lin, Ping
2008-01-01
This volume is a collection of research papers presented at the program on Moving Interface Problems and Applications in Fluid Dynamics, which was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences (IMS) of the National University of Singapore. The topics discussed include modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications including biological treatments with experimental verification, multi-medium flow or multi-phase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. Readers can benefit from some recent research results in these areas.
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-06-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).
Directory of Open Access Journals (Sweden)
Jennifer L. Docktor
2016-05-01
Full Text Available Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach, applying those principles to the specific conditions in the problem (Specific Application of Physics, using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression.
Coupled multi-physics simulation frameworks for reactor simulation: A bottom-up approach
International Nuclear Information System (INIS)
Tautges, Timothy J.; Caceres, Alvaro; Jain, Rajeev; Kim, Hong-Jun; Kraftcheck, Jason A.; Smith, Brandon M.
2011-01-01
A 'bottom-up' approach to multi-physics frameworks is described, where first common interfaces to simulation data are developed, then existing physics modules are adapted to communicate through those interfaces. Physics modules read and write data through those common interfaces, which also provide access to common simulation services like parallel IO, mesh partitioning, etc.. Multi-physics codes are assembled as a combination of physics modules, services, interface implementations, and driver code which coordinates calling these various pieces. Examples of various physics modules and services connected to this framework are given. (author)
Multi-physics fluid-structure interaction modelling software
CSIR Research Space (South Africa)
Malan, AG
2008-11-01
Full Text Available -structure interaction modelling software AG MALAN AND O OXTOBY CSIR Defence, Peace, Safety and Security, PO Box 395, Pretoria, 0001 Email: amalan@csir.co.za – www.csir.co.za Internationally leading aerospace company Airbus sponsored key components... of the development of the CSIR fl uid-structure interaction (FSI) software. Below are extracts from their evaluation of the devel- oped technology: “The fi eld of FSI covers a massive range of engineering problems, each with their own multi-parameter, individual...
Nuclear reactor multi-physics simulations with coupled MCNP5 and STAR-CCM+
International Nuclear Information System (INIS)
Cardoni, Jeffrey Neil; Rizwan-uddin
2011-01-01
The MCNP5 Monte Carlo particle transport code has been coupled to the computational fluid dynamics code, STAR-CCM+, to provide a high fidelity multi-physics simulation tool for pressurized water nuclear reactors. The codes are executed separately and coupled externally through a Perl script. The Perl script automates the exchange of temperature, density, and volumetric heating information between the codes using ASCII text data files. Fortran90 and Java utility programs assist job automation with data post-processing and file management. The MCNP5 utility code, MAKXSF, pre-generates temperature dependent cross section libraries for the thermal feedback calculations. The MCNP5–STAR-CCM+ coupled simulation tool, dubbed MULTINUKE, was applied to a steady state, PWR cell model to demonstrate its usage and capabilities. The demonstration calculation showed reasonable results that agree with PWR values typically reported in literature. Temperature and fission reaction rate distributions were realistic and intuitive. Reactivity coefficients were also deemed reasonable in comparison to historically reported data. The demonstration problem consisted of 9,984 CFD cells and 7,489 neutronic cells. MCNP5 tallied fission energy deposition over 3,328 UO_2 cells. The coupled solution converged within eight hours and in three MULTINUKE iterations. The simulation was carried out on a 64 bit, quad core, Intel 2.8 GHz microprocessor with 1 GB RAM. The simulations on a quad core machine indicated that a massively parallelized implementation of MULTINUKE can be used to assess larger multi-million cell models. (author)
The problem and solution of enterprise patent application
International Nuclear Information System (INIS)
Li Dabo; Yang Xiaoqing
2010-01-01
Recently, the situation of Chinese patent application is pleasant, but there are still some hiding disquiets. For the most enterprises, the passion of current patent application may not be derived from the internal motility but mainly derived by the government policy. Because of the shortage of related knowledge on patent, there are still some problems for our enterprises, such as blurring the scope of patent application and failing the organization of the documents of patent application which causing the patent cannot be applied timely. In some cases, the patent cannot obtain the effective protection even if it has been applied and obtained the authorization successfully. For such problems, we should enhance the cooperation between enterprises and agency organizations and build a patent engineer group which should participate in the whole R and D process and can prepare the documents of the patent application effectively and timely. What's more, we should inhibit the phenomena of infringement of patent rights and use 'existing technique' effectively by the methods of document retrieval. (authors)
8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications
Warnecke, Gerald
2001-01-01
The Eighth International Conference on Hyperbolic Problems - Theory, Nu merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computat...
Fixed Orientation Interconnection Problems: Theory, Algorithms and Applications
DEFF Research Database (Denmark)
Zachariasen, Martin
Interconnection problems have natural applications in the design of integrated circuits (or chips). A modern chip consists of billions of transistors that are connected by metal wires on the surface of the chip. These metal wires are routed on a (fairly small) number of layers in such a way...... that electrically independent nets do not intersect each other. Traditional manufacturing technology limits the orientations of the wires to be either horizontal or vertical — and is known as Manhattan architecture. Over the last decade there has been a growing interest in general architectures, where more than two...... a significant step forward, both concerning theory and algorithms, for the fixed orientation Steiner tree problem. In addition, the work maintains a close link to applications and generalizations motivated by chip design....
Application of Neutrosophic Set Theory in Generalized Assignment Problem
Directory of Open Access Journals (Sweden)
Supriya Kar
2015-09-01
Full Text Available This paper presents the application of Neutrosophic Set Theory (NST in solving Generalized Assignment Problem (GAP. GAP has been solved earlier under fuzzy environment. NST is a generalization of the concept of classical set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set. Elements of Neutrosophic set are characterized by a truth-membership function, falsity and also indeterminacy which is a more realistic way of expressing the parameters in real life problem. Here the elements of the cost matrix for the GAP are considered as neutrosophic elements which have not been considered earlier by any other author. The problem has been solved by evaluating score function matrix and then solving it by Extremum Difference Method (EDM [1] to get the optimal assignment. The method has been demonstrated by a suitable numerical example.
SIAM conference on inverse problems: Geophysical applications. Final technical report
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.
7th International Conference on Hyperbolic Problems Theory, Numerics, Applications
Jeltsch, Rolf
1999-01-01
These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phe...
Problems in Systematic Application of Software Metrics and Possible Solution
Rakic, Gordana; Budimac, Zoran
2013-01-01
Systematic application of software metric techniques can lead to significant improvements of the quality of a final software product. However, there is still the evident lack of wider utilization of software metrics techniques and tools due to many reasons. In this paper we investigate some limitations of contemporary software metrics tools and then propose construction of a new tool that would solve some of the problems. We describe the promising prototype, its internal structure, and then f...
Validation of a 3D multi-physics model for unidirectional silicon solidification
Simons, P.; Lankhorst, A.M.; Habraken, A.; Faber, A.J.; Tiuleanu, D.; Pingel, R.
2012-01-01
A model for transient movements of solidification fronts has been added to X-stream, an existing multi-physics simulation program for high temperature processes with flow and chemical reactions. The implementation uses an enthalpy formulation and works on fixed grids. First we show the results of a
Assessing climate impact on reinforced concrete durability with a multi-physics model
DEFF Research Database (Denmark)
Michel, Alexander; Flint, Madeleine M.
to shorter-term fluctuations in boundary conditions and therefore may underestimate climate change impacts. A highly sensitive fully-coupled, validated, multi-physics model for heat, moisture and ion transport and corrosion was used to assess a reinforced concrete structure located in coastal Norfolk...
Energy Technology Data Exchange (ETDEWEB)
Bonaccorsi, Th
2007-09-15
A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)
Application of Artificial Neural Networks to Complex Groundwater Management Problems
International Nuclear Information System (INIS)
Coppola, Emery; Poulton, Mary; Charles, Emmanuel; Dustman, John; Szidarovszky, Ferenc
2003-01-01
As water quantity and quality problems become increasingly severe, accurate prediction and effective management of scarcer water resources will become critical. In this paper, the successful application of artificial neural network (ANN) technology is described for three types of groundwater prediction and management problems. In the first example, an ANN was trained with simulation data from a physically based numerical model to predict head (groundwater elevation) at locations of interest under variable pumping and climate conditions. The ANN achieved a high degree of predictive accuracy, and its derived state-transition equations were embedded into a multiobjective optimization formulation and solved to generate a trade-off curve depicting water supply in relation to contamination risk. In the second and third examples, ANNs were developed with real-world hydrologic and climate data for different hydrogeologic environments. For the second problem, an ANN was developed using data collected for a 5-year, 8-month period to predict heads in a multilayered surficial and limestone aquifer system under variable pumping, state, and climate conditions. Using weekly stress periods, the ANN substantially outperformed a well-calibrated numerical flow model for the 71-day validation period, and provided insights into the effects of climate and pumping on water levels. For the third problem, an ANN was developed with data collected automatically over a 6-week period to predict hourly heads in 11 high-capacity public supply wells tapping a semiconfined bedrock aquifer and subject to large well-interference effects. Using hourly stress periods, the ANN accurately predicted heads for 24-hour periods in all public supply wells. These test cases demonstrate that the ANN technology can solve a variety of complex groundwater management problems and overcome many of the problems and limitations associated with traditional physically based flow models
Application of the problem solving in the discipline Constructive Processes
Directory of Open Access Journals (Sweden)
Juan Jesús Zamora-Vega
2017-04-01
Full Text Available The school cannot intend alone to transmit knowledge and practices on facts and phenomena of the life. To achieve this, it is demanded of a productive school, in which spreads the educational process by means of the participation of the students, directed by their teachers, in the solution of problems of the school and social practice. In this article the experience of the application is explained, of the resolution of problems in the subject Curriculum Own design Shop I and its integration with educational Shop II, through the heuristic method-elective for the constructive process of articles, which is one of the results of the titled investigation project "The initial and permanent formation of the professional of the career Labor Education-Computer science. A renovated focus". The relevancy and approval of the method was proven of empiric form and its results detailed in the development.
Inverse problem and uncertainty quantification: application to compressible gas dynamics
International Nuclear Information System (INIS)
Birolleau, Alexandre
2014-01-01
This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developing shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis. (author) [fr
International Nuclear Information System (INIS)
Lazaro, A.; Ordonez, J.; Martorell, S.; Przemyslaw, S.; Ammirabile, L.; Tsige-Tamirat, H.
2015-01-01
The sodium cooled fast reactor (SFR) is one of the reactor types selected by the Generation IV International Forum. SFR stand out due to its remarkable past operational experience in related projects and its potential to achieve the ambitious goals laid for the new generation of nuclear reactors. Regardless its operational experience, there is a need to apply computational tools able to simulate the system behaviour under conditions that may overtake the reactor safety limits from the early stages of the design process, including the three-dimensional phenomena that may arise in these transients. This paper presents the different steps followed towards the development of a multi-physics platform with capabilities to simulate complex phenomena using a coupled neutronic-thermal-hydraulic scheme. The development started with a one-dimensional thermal-hydraulic model of the European Sodium Fast Reactor (ESFR) design with point kinetic neutronic feedback benchmarked with its peers in the framework of the FP7-CP-ESFR project using the state-of-the-art thermal-hydraulic system code TRACE. The model was successively extended into a three-dimensional model coupled with the spatial kinetic neutronic code PARCS able to simulate three-dimensional multi-physic phenomena along with the comparison of the results for symmetric cases. The last part of the paper shows the application of the developed tool to the analysis of transients involving asymmetrical effects, such as the coast-down of a primary and secondary pump or the withdrawal of a peripheral control rod bank, demonstrating the unique capability of the code to simulate such transients and the capability of the design to withstand them under design basis
Application of the heuristically based GPT theory to termohydraulic problems
International Nuclear Information System (INIS)
Alvim, A.C.M.
1988-01-01
Application of heuristically based generalized perturbation theory (GPT) to the thermohydraulic (generally nonlinear) field is here illustrated. After a short description of the general methodology, the (linear) equations governing the importance function relevant to a generic multichannel problem are derived, within the physical model adopted in the COBRA IV-I Code. These equations are put in a form which should benefit of the calculational scheme of the original COBRA Code in the sense that only minor changes of it (mostly implying physical constants and source terms redefinitions) should be necessary for their solutions. (author) [pt
Time-reversed absorbing condition: application to inverse problems
International Nuclear Information System (INIS)
Assous, F; Kray, M; Nataf, F; Turkel, E
2011-01-01
The aim of this paper is to introduce time-reversed absorbing conditions in time-reversal methods. They enable one to 'recreate the past' without knowing the source which has emitted the signals that are back-propagated. We present two applications in inverse problems: the reduction of the size of the computational domain and the determination, from boundary measurements, of the location and volume of an unknown inclusion. The method does not rely on any a priori knowledge of the physical properties of the inclusion. Numerical tests with the wave and Helmholtz equations illustrate the efficiency of the method. This technique is fairly insensitive to noise in the data
Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian
2011-01-01
The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...
The Application of Artificial Intelligence to Astronomical Scheduling Problems
Johnston, Mark D.
1993-01-01
As artificial intelligence (AI) technology has moved from the research laboratory into more and more widespread use, one of the leading applications in astronomy has been to high-profile observation scheduling. The Spike scheduling system was developed by the Space Telescope Science Institute (STScI) for the purpose of long-range scheduling of Hubble Space Telescope (HST). Spike has been in daily operational use at STScI since well before HST launch in April 1990. The system has also been adapted to schedule other missions: one of these missions (EUVE) is currently operational, while another (ASTRO-D) will be launched in February 1993. Some other future space astronomy missions (XTE, SWAS, and AXAF) are making tentative plans to use Spike. Spike has proven to be a powerful and flexible scheduling framework with applicability to a wide variety of problems.
Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction.
Yochum, Maxime; Laforêt, Jérémy; Marque, Catherine
2018-02-01
Preterm labor is an important public health problem. However, the efficiency of the uterine muscle during labor is complex and still poorly understood. This work is a first step towards a model of the uterine muscle, including its electrical and mechanical components, to reach a better understanding of the uterus synchronization. This model is proposed to investigate, by simulation, the possible role of mechanotransduction for the global synchronization of the uterus. The electrical diffusion indeed explains the local propagation of contractile activity, while the tissue stretching may play a role in the synchronization of distant parts of the uterine muscle. This work proposes a multi-physics (electrical, mechanical) and multi-scales (cell, tissue, whole uterus) model, which is applied to a realistic uterus 3D mesh. This model includes electrical components at different scales: generation of action potentials at the cell level, electrical diffusion at the tissue level. It then links these electrical events to the mechanical behavior, at the cellular level (via the intracellular calcium concentration), by simulating the force generated by each active cell. It thus computes an estimation of the intra uterine pressure (IUP) by integrating the forces generated by each active cell at the whole uterine level, as well as the stretching of the tissue (by using a viscoelastic law for the behavior of the tissue). It finally includes at the cellular level stretch activated channels (SACs) that permit to create a loop between the mechanical and the electrical behavior (mechanotransduction). The simulation of different activated regions of the uterus, which in this first "proof of concept" case are electrically isolated, permits the activation of inactive regions through the stretching (induced by the electrically active regions) computed at the whole organ scale. This permits us to evidence the role of the mechanotransduction in the global synchronization of the uterus. The
The problem of application: aesthetics in creativity and health.
Sánchez-Camus, Roberto
2009-12-01
The Problem of Application investigates the multiple viewpoints in defining a critical aesthetic in applied arts practice. Amongst organisations, participants, and facilitators there are varying wants and needs in any creative project with an educational agenda. The product of arts based health initiatives often seek to inform and educate, whereby an aesthetic standard may seem contrary to this participatory approach. This research maintains that an aesthetic approach is a lively portion of the collaborative dialogue, which requires interrogation and consideration for a successful outcome. Through the analysis of a participatory arts project completed in West Africa addressing youth issues and HIV/AIDS, The Problem of Application seeks to uncover the multiple facets surrounding the defining of aesthetics in applied practice. The project entitled Youth Visions: Transforming our Futures Together worked with students aged 17-21 to develop an outdoor mural and a live performance inspired by the traditions of local festivals. With an anthropological approach to aesthetic criticism, Youth Visions revealed the multiple layers that define our focus of appreciation.
The application of artificial intelligence to astronomical scheduling problems
Johnston, Mark D.
1992-01-01
Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike
DESIGN of MICRO CANTILEVER BEAM for VAPOUR DETECTION USING COMSOL MULTI PHYSICS SOFTWARE
Sivacoumar R; Parvathy JM; Pratishtha Deep
2015-01-01
This paper gives an overview of micro cantilever beam of various shapes and materials for vapour detection. The design of micro cantilever beam, analysis and simulation is done for each shape. The simulation is done using COMSOL Multi physics software using structural mechanics and chemical module. The simulation results of applied force and resulting Eigen frequencies will be analyzed for different beam structures. The vapour analysis is done using flow cell that consists of chemical pill...
Some problems relating to application of safeguards in the future
International Nuclear Information System (INIS)
Tolchenkov, D.L.
1983-01-01
By the end of this century there will have been a considerable increase in the amount of nuclear material and the number of facilities subject to IAEA safeguards. The IAEA will therefore be faced with problems due to the increased volume of safeguards activity, the application of safeguards to new types of facility and to large facilities, the optimization of the existing IAEA safeguards system and so on. The authors analyse the potential growth in the IAEA's safeguards activities up to the year 2000 and consider how to optimize methods for the application of safeguards, taking into account a number of factors relating to a State's nuclear activity, the application of full-scope IAEA safeguards etc. On the basis of a hypothetical model of the nuclear fuel cycle that allows for the factors considered as part of the International Nuclear Fuel Cycle Evaluation (INFCE), the authors assess the possible risk of diversion as a function of a full-scope safeguards effort. They also examine possible conceptual approaches to safeguarding large-scale facilities such as fuel reprocessing and uranium enrichment plants. (author)
Applications of ordered weighted averaging (OWA operators in environmental problems
Directory of Open Access Journals (Sweden)
Carlos Llopis-Albert
2017-04-01
Full Text Available This paper presents an application of a prioritized weighted aggregation operator based on ordered weighted averaging (OWA to deal with stakeholders' constructive participation in water resources projects. They have different degree of acceptance or preference regarding the measures and policies to be carried out, which lead to different environmental and socio-economic outcomes, and hence, to different levels of stakeholders’ satisfaction. The methodology establishes a prioritization relationship upon the stakeholders, which preferences are aggregated by means of weights depending on the satisfaction of the higher priority policy maker. The methodology establishes a prioritization relationship upon the stakeholders, which preferences are aggregated by means of weights depending on the satisfaction of the higher priority policy maker. The methodology has been successfully applied to a Public Participation Project (PPP in watershed management, thus obtaining efficient environmental measures in conflict resolution problems under actors’ preference uncertainties.
Handbook of EOQ inventory problems stochastic and deterministic models and applications
Choi, Tsan-Ming
2013-01-01
This book explores deterministic and stochastic EOQ-model based problems and applications, presenting technical analyses of single-echelon EOQ model based inventory problems, and applications of the EOQ model for multi-echelon supply chain inventory analysis.
International Nuclear Information System (INIS)
Ammar, Karim
2014-01-01
Since Phenix shutting down in 2010, CEA does not have Sodium Fast Reactor (SFR) in operating condition. According to global energetic challenge and fast reactor abilities, CEA launched a program of industrial demonstrator called ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a reactor with electric power capacity equal to 600 MW. Objective of the prototype is, in first to be a response to environmental constraints, in second demonstrates the industrial viability of SFR reactor. The goal is to have a safety level at least equal to 3. generation reactors. ASTRID design integrates Fukushima feedback; Waste reprocessing (with minor actinide transmutation) and it linked industry. Installation safety is the priority. In all cases, no radionuclide should be released into environment. To achieve this objective, it is imperative to predict the impact of uncertainty sources on reactor behaviour. In this context, this thesis aims to develop new optimization methods for SFR cores. The goal is to improve the robustness and reliability of reactors in response to existing uncertainties. We will use ASTRID core as reference to estimate interest of new methods and tools developed. The impact of multi-Physics uncertainties in the calculation of the core performance and the use of optimization methods introduce new problems: How to optimize 'complex' cores (i.e. associated with design spaces of high dimensions with more than 20 variable parameters), taking into account the uncertainties? What is uncertainties behaviour for optimization core compare to reference core? Taking into account uncertainties, optimization core are they still competitive? Optimizations improvements are higher than uncertainty margins? The thesis helps to develop and implement methods necessary to take into account uncertainties in the new generation of simulation tools. Statistical methods to ensure consistency of complex multi-Physics simulation results are also
Advanced graphical user interface for multi-physics simulations using AMST
Hoffmann, Florian; Vogel, Frank
2017-07-01
Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.
Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer
2018-05-01
In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
Applications of functional analysis to optimal control problems
International Nuclear Information System (INIS)
Mizukami, K.
1976-01-01
Some basic concepts in functional analysis, a general norm, the Hoelder inequality, functionals and the Hahn-Banach theorem are described; a mathematical formulation of two optimal control problems is introduced by the method of functional analysis. The problem of time-optimal control systems with both norm constraints on control inputs and on state variables at discrete intermediate times is formulated as an L-problem in the theory of moments. The simplex method is used for solving a non-linear minimizing problem inherent in the functional analysis solution to this problem. Numerical results are presented for a train operation. The second problem is that of optimal control of discrete linear systems with quadratic cost functionals. The problem is concerned with the case of unconstrained control and fixed endpoints. This problem is formulated in terms of norms of functionals on suitable Banach spaces. (author)
Problem Based Learning: Application to Technology Education in Three Countries
Williams, P. John; Iglesias, Juan; Barak, Moshe
2008-01-01
An increasing variety of professional educational and training disciplines are now problem based (e.g., medicine, nursing, engineering, community health), and they may have a corresponding variety of educational objectives. However, they all have in common the use of problems in the instructional sequence. The problems may be as diverse as a…
Multi-physics and multi-scale characterization of shale anisotropy
Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.
2012-12-01
Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (μm to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (example
International Nuclear Information System (INIS)
Miyamoto, Akira; Sato, Etsuko; Sato, Ryo; Inaba, Kenji; Hatakeyama, Nozomu
2014-01-01
In collaboration with experimental experts we have reported in the present conference (Hatakeyama, N. et al., “Experiment-integrated multi-scale, multi-physics computational chemistry simulation applied to corrosion behaviour of BWR structural materials”) the results of multi-scale multi-physics computational chemistry simulations applied to the corrosion behaviour of BWR structural materials. In macro-scale, a macroscopic simulator of anode polarization curve was developed to solve the spatially one-dimensional electrochemical equations on the material surface in continuum level in order to understand the corrosion behaviour of typical BWR structural material, SUS304. The experimental anode polarization behaviours of each pure metal were reproduced by fitting all the rates of electrochemical reactions and then the anode polarization curve of SUS304 was calculated by using the same parameters and found to reproduce the experimental behaviour successfully. In meso-scale, a kinetic Monte Carlo (KMC) simulator was applied to an actual-time simulation of the morphological corrosion behaviour under the influence of an applied voltage. In micro-scale, an ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) code was applied to various metallic oxide surfaces of Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 modelled as same as water molecules and dissolved metallic ions on the surfaces, then the dissolution and segregation behaviours were successfully simulated dynamically by using UA-QCMD. In this paper we describe details of the multi-scale, multi-physics computational chemistry method especially the UA-QCMD method. This method is approximately 10,000,000 times faster than conventional first-principles molecular dynamics methods based on density-functional theory (DFT), and the accuracy was also validated for various metals and metal oxides compared with DFT results. To assure multi-scale multi-physics computational chemistry simulation based on the UA-QCMD method for
Applications of elliptic Carleman inequalities to Cauchy and inverse problems
Choulli, Mourad
2016-01-01
This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. The book presents three inverse problems, the first of which consists in determining the surface impedance of an obstacle from the far field pattern. The second problem investigates the detection of corrosion by electric measurement, while the third concerns the determination of an attenuation coefficient from internal data, which is motivated by a problem encountered in biomedical imaging.
Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.
2018-04-01
One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.
Application of the maximal covering location problem to habitat reserve site selection: a review
Stephanie A. Snyder; Robert G. Haight
2016-01-01
The Maximal Covering Location Problem (MCLP) is a classic model from the location science literature which has found wide application. One important application is to a fundamental problem in conservation biology, the Maximum Covering Species Problem (MCSP), which identifies land parcels to protect to maximize the number of species represented in the selected sites. We...
Ariane, Mostapha; Kassinos, Stavros; Velaga, Sitaram; Alexiadis, Alessio
2018-04-01
In this paper, the mass transfer coefficient (permeability) of boundary layers containing motile cilia is investigated by means of discrete multi-physics. The idea is to understand the main mechanisms of mass transport occurring in a ciliated-layer; one specific application being inhaled drugs in the respiratory epithelium. The effect of drug diffusivity, cilia beat frequency and cilia flexibility is studied. Our results show the existence of three mass transfer regimes. A low frequency regime, which we called shielding regime, where the presence of the cilia hinders mass transport; an intermediate frequency regime, which we have called diffusive regime, where diffusion is the controlling mechanism; and a high frequency regime, which we have called convective regime, where the degree of bending of the cilia seems to be the most important factor controlling mass transfer in the ciliated-layer. Since the flexibility of the cilia and the frequency of the beat changes with age and health conditions, the knowledge of these three regimes allows prediction of how mass transfer varies with these factors. Copyright © 2018 Elsevier Ltd. All rights reserved.
The application of irradiation to phyto sanitary problems
Energy Technology Data Exchange (ETDEWEB)
Ross, R T [USDA/APHIS/PPQ. Department of Agriculture, Room 1630 Soagribg, 1400 Independence Ave. Sw. Mail Code Stop 3438, 20250 Washington D.C. (United States)
1998-12-31
The first formally adopted regulatory policy for irradiation as a phyto sanitary treatment in the United States was issued in 1989 and was based on Title 7 of the Code of Federal Regulations. These regulations authorized irradiation as a quarantine treatment for papayas intended for movement from the State of Hawaii to the continental United States (U.S.), Guam, Puerto Rico, and the U.S. Virgin Islands. This authorization was specific for commodity, place of origin, and program, but was designed for a complex of three fruit flies rather than a single pest. Routine commercial shipments were never realized under this regulation due to the lack of a treatment facility in Hawaii. However, the authorization has proven useful from the standpoint of beginning to establish policies for irradiation as a phyto sanitary treatment in the United States. The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ) remains dedicated to using the most up-to-date, appropriate and least intrusive technology to provide quarantine security. The need for alternative treatments for pests mitigation systems is greater than ever. Global trade pressures and the possible loss of methyl bromide make it imperative that all practical treatment options be explored. Since 1989 irradiation treatment concepts have matured significantly. Technological advances, greater experience, and an increasingly larger body of research indicate that irradiation has important potential as a treatment for quarantine pest problems. It is in this light that PPQ is expanding its regulatory framework, is addressing irradiation treatment options, and is developing comprehensive policy statements intended to facilitate the development and formalization of new treatments for phyto sanitary applications. (Author)
The application of irradiation to phyto sanitary problems
International Nuclear Information System (INIS)
Ross, R.T.
1997-01-01
The first formally adopted regulatory policy for irradiation as a phyto sanitary treatment in the United States was issued in 1989 and was based on Title 7 of the Code of Federal Regulations. These regulations authorized irradiation as a quarantine treatment for papayas intended for movement from the State of Hawaii to the continental United States (U.S.), Guam, Puerto Rico, and the U.S. Virgin Islands. This authorization was specific for commodity, place of origin, and program, but was designed for a complex of three fruit flies rather than a single pest. Routine commercial shipments were never realized under this regulation due to the lack of a treatment facility in Hawaii. However, the authorization has proven useful from the standpoint of beginning to establish policies for irradiation as a phyto sanitary treatment in the United States. The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ) remains dedicated to using the most up-to-date, appropriate and least intrusive technology to provide quarantine security. The need for alternative treatments for pests mitigation systems is greater than ever. Global trade pressures and the possible loss of methyl bromide make it imperative that all practical treatment options be explored. Since 1989 irradiation treatment concepts have matured significantly. Technological advances, greater experience, and an increasingly larger body of research indicate that irradiation has important potential as a treatment for quarantine pest problems. It is in this light that PPQ is expanding its regulatory framework, is addressing irradiation treatment options, and is developing comprehensive policy statements intended to facilitate the development and formalization of new treatments for phyto sanitary applications. (Author)
The application of irradiation to phyto sanitary problems
Energy Technology Data Exchange (ETDEWEB)
Ross, R.T. [USDA/APHIS/PPQ. Department of Agriculture, Room 1630 Soagribg, 1400 Independence Ave. Sw. Mail Code Stop 3438, 20250 Washington D.C. (United States)
1997-12-31
The first formally adopted regulatory policy for irradiation as a phyto sanitary treatment in the United States was issued in 1989 and was based on Title 7 of the Code of Federal Regulations. These regulations authorized irradiation as a quarantine treatment for papayas intended for movement from the State of Hawaii to the continental United States (U.S.), Guam, Puerto Rico, and the U.S. Virgin Islands. This authorization was specific for commodity, place of origin, and program, but was designed for a complex of three fruit flies rather than a single pest. Routine commercial shipments were never realized under this regulation due to the lack of a treatment facility in Hawaii. However, the authorization has proven useful from the standpoint of beginning to establish policies for irradiation as a phyto sanitary treatment in the United States. The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ) remains dedicated to using the most up-to-date, appropriate and least intrusive technology to provide quarantine security. The need for alternative treatments for pests mitigation systems is greater than ever. Global trade pressures and the possible loss of methyl bromide make it imperative that all practical treatment options be explored. Since 1989 irradiation treatment concepts have matured significantly. Technological advances, greater experience, and an increasingly larger body of research indicate that irradiation has important potential as a treatment for quarantine pest problems. It is in this light that PPQ is expanding its regulatory framework, is addressing irradiation treatment options, and is developing comprehensive policy statements intended to facilitate the development and formalization of new treatments for phyto sanitary applications. (Author)
Jennifer L. Docktor; Jay Dornfeld; Evan Frodermann; Kenneth Heller; Leonardo Hsu; Koblar Alan Jackson; Andrew Mason; Qing X. Ryan; Jie Yang
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of...
Clark, Martyn; Samaniego, Luis; Freer, Jim
2014-05-01
Multi-model and multi-physics approaches are a popular tool in environmental modelling, with many studies focusing on optimally combining output from multiple model simulations to reduce predictive errors and better characterize predictive uncertainty. However, a careful and systematic analysis of different hydrological models reveals that individual models are simply small permutations of a master modeling template, and inter-model differences are overwhelmed by uncertainty in the choice of the parameter values in the model equations. Furthermore, inter-model differences do not explicitly represent the uncertainty in modeling a given process, leading to many situations where different models provide the wrong results for the same reasons. In other cases, the available morphological data does not support the very fine spatial discretization of the landscape that typifies many modern applications of process-based models. To make the uncertainty characterization problem worse, the uncertain parameter values in process-based models are often fixed (hard-coded), and the models lack the agility necessary to represent the tremendous heterogeneity in natural systems. This presentation summarizes results from a systematic analysis of uncertainty in process-based hydrological models, where we explicitly analyze the myriad of subjective decisions made throughout both the model development and parameter estimation process. Results show that much of the uncertainty is aleatory in nature - given a "complete" representation of dominant hydrologic processes, uncertainty in process parameterizations can be represented using an ensemble of model parameters. Epistemic uncertainty associated with process interactions and scaling behavior is still important, and these uncertainties can be represented using an ensemble of different spatial configurations. Finally, uncertainty in forcing data can be represented using ensemble methods for spatial meteorological analysis. Our systematic
The inverse conductivity problem with limited data and applications
International Nuclear Information System (INIS)
Isakov, Victor
2007-01-01
This paper describes recent uniqueness results in inverse problems for semiconductor devices and in the inverse conductivity problem. We remind basic inverse probelsm in semiconductor theory and outline use of an adjoint equation and a proof of uniqueness of piecewise constant doping profile. For the inverse conductivity problem we give a first uniqueness proof when the Dirichlet-to-Neumann map is given at an arbitrarily small part of the boundary of a three-dimensional domain
Application of collocation meshless method to eigenvalue problem
International Nuclear Information System (INIS)
Saitoh, Ayumu; Matsui, Nobuyuki; Itoh, Taku; Kamitani, Atsushi; Nakamura, Hiroaki
2012-01-01
The numerical method for solving the nonlinear eigenvalue problem has been developed by using the collocation Element-Free Galerkin Method (EFGM) and its performance has been numerically investigated. The results of computations show that the approximate solution of the nonlinear eigenvalue problem can be obtained stably by using the developed method. Therefore, it can be concluded that the developed method is useful for solving the nonlinear eigenvalue problem. (author)
Application of nuclear techniques on environmental pollution problems
International Nuclear Information System (INIS)
Sumatra, Made
1998-01-01
Radioanalysis and tracer techniques that can be used on environmental pollution problems. Neutron activation analysis (NAA) and X-ray fluorescence (XRF) spectrometry are the two methods that are used frequently on such problems. These methods are used for metal analysis. Tracer technique with radioactive labeled compounds are used to study the fate of the pollution substances in environmental systems. It is very important to validate every new developed analysis method, due to the environmental pollution problem closely related to the low enforcement. (author)
Applications of decision analysis and related techniques to industrial engineering problems at KSC
Evans, Gerald W.
1995-01-01
This report provides: (1) a discussion of the origination of decision analysis problems (well-structured problems) from ill-structured problems; (2) a review of the various methodologies and software packages for decision analysis and related problem areas; (3) a discussion of how the characteristics of a decision analysis problem affect the choice of modeling methodologies, thus providing a guide as to when to choose a particular methodology; and (4) examples of applications of decision analysis to particular problems encountered by the IE Group at KSC. With respect to the specific applications at KSC, particular emphasis is placed on the use of the Demos software package (Lumina Decision Systems, 1993).
Inverse problems basics, theory and applications in geophysics
Richter, Mathias
2016-01-01
The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.
Application of nonlinear Krylov acceleration to radiative transfer problems
International Nuclear Information System (INIS)
Till, A. T.; Adams, M. L.; Morel, J. E.
2013-01-01
The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)
APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS
Directory of Open Access Journals (Sweden)
Vorona Yu.V.
2015-12-01
Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.
Application of a Mathematical Model to an Advertisement Reservation Problem
Directory of Open Access Journals (Sweden)
Ozlem COSGUN
2013-01-01
Full Text Available Television networks provide TV programs free of charge to the public. However, they acquire their revenue by telecasting advertisements in the midst of continuing programs or shows. A key problem faced by the TV networks in Turkey is how to accept and televise the advertisements reserved by a client on a specified advertisement break which we called “Advertisement Reservation Problem” (ARP. The problem is complicated by limited time inventory, by different rating points for different target groups, competition avoidance and the relationship between TV networks and clients. In this study we have developed a mathematical model for advertisement reservation problem and extended this model for some cases encountered in real business life. We have also discussed how these cases affect the decisions of a TV network. Mixed integer linear programming approach is proposed to solve these problems. This approach has been implemented to a case taken from one of the biggest TV networks of Turkey.
Inverse problems in ordinary differential equations and applications
Llibre, Jaume
2016-01-01
This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.
Controlled neural network application in track-match problem
International Nuclear Information System (INIS)
Baginyan, S.A.; Ososkov, G.A.
1993-01-01
Track-match problem of high energy physics (HEP) data handling is formulated in terms of incidence matrices. The corresponding Hopfield neural network is developed to solve this type of constraint satisfaction problems (CSP). A special concept of the controlled neural network is proposed as a basis of an algorithm for the effective CSP solution. Results of comparable calculations show the very high performance of this algorithm against conventional search procedures. 8 refs.; 1 fig.; 1 tab
Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications
2015-06-24
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly
DEFF Research Database (Denmark)
Lepech, Michael; Geiker, Mette; Michel, Alexander
This paper looks to address the grand challenge of integrating construction materials engineering research within a multi-scale, inter-disciplinary research and management framework for sustainable concrete infrastructure. The ultimate goal is to drive sustainability-focused innovation and adoption...... cycles in the broader architecture, engineering, construction (AEC) industry. Specifically, a probabilistic design framework for sustainable concrete infrastructure and a multi-physics service life model for reinforced concrete are presented as important points of integration for innovation between...... design, consists of concrete service life models and life cycle assessment (LCA) models. Both types of models (service life and LCA) are formulated stochastically so that the service life and time(s) to repair, as well as total sustainability impact, are described by a probability distribution. A central...
Contribution to the study of multi-physical phenomena in cementitious materials
International Nuclear Information System (INIS)
Bary, B.
2010-09-01
This document is a synthesis of the applied research studies undertaken by the author during ten years, first at the University of Marne-La-Vallee during the period 1999-2002, then at the CEA. These studies concern the modeling and the numerical simulations of the cementitious materials behavior subjected on the one hand to moderate thermomechanical and hydric loadings, and on the other hand to chemical attacks due to the migration of calcium, carbonate and sulfate ions. The developed approaches may be viewed as multi-physical in the sense that the models used for describing the behavior couple various fields and phenomena such as mechanics, thermal, hydric and ionic transfers, and chemistry. In addition, analytical up-scaling techniques are applied to estimate the physical properties associated with these phenomena (mechanical, hydraulic and diffusive parameters) as a function of the microstructure and the hydric state of the material. (author)
Audigier, Chloé; Mansi, Tommaso; Delingette, Hervé; Rapaka, Saikiran; Passerini, Tiziano; Mihalef, Viorel; Jolly, Marie-Pierre; Pop, Raoul; Diana, Michele; Soler, Luc; Kamen, Ali; Comaniciu, Dorin; Ayache, Nicholas
2017-09-01
We aim at developing a framework for the validation of a subject-specific multi-physics model of liver tumor radiofrequency ablation (RFA). The RFA computation becomes subject specific after several levels of personalization: geometrical and biophysical (hemodynamics, heat transfer and an extended cellular necrosis model). We present a comprehensive experimental setup combining multimodal, pre- and postoperative anatomical and functional images, as well as the interventional monitoring of intra-operative signals: the temperature and delivered power. To exploit this dataset, an efficient processing pipeline is introduced, which copes with image noise, variable resolution and anisotropy. The validation study includes twelve ablations from five healthy pig livers: a mean point-to-mesh error between predicted and actual ablation extent of 5.3 ± 3.6 mm is achieved. This enables an end-to-end preclinical validation framework that considers the available dataset.
Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis
Energy Technology Data Exchange (ETDEWEB)
Wilson, Paul; Evans, Thomas; Tautges, Tim
2012-12-24
This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well
Publication misrepresentation among neurosurgery residency applicants: an increasing problem.
Kistka, Heather M; Nayeri, Arash; Wang, Li; Dow, Jamie; Chandrasekhar, Rameela; Chambless, Lola B
2016-01-01
OBJECT Misrepresentation of scholarly achievements is a recognized phenomenon, well documented in numerous fields, yet the accuracy of reporting remains dependent on the honor principle. Therefore, honest self-reporting is of paramount importance to maintain scientific integrity in neurosurgery. The authors had observed a trend toward increasing numbers of publications among applicants for neurosurgery residency at Vanderbilt University and undertook this study to determine whether this change was a result of increased academic productivity, inflated reporting, or both. They also aimed to identify application variables associated with inaccurate citations. METHODS The authors retrospectively reviewed the residency applications submitted to their neurosurgery department in 2006 (n = 148) and 2012 (n = 194). The applications from 2006 were made via SF Match and those from 2012 were made using the Electronic Residency Application Service. Publications reported as "accepted" or "in press" were verified via online search of Google Scholar, PubMed, journal websites, and direct journal contact. Works were considered misrepresented if they did not exist, incorrectly listed the applicant as first author, or were incorrectly listed as peer reviewed or published in a printed journal rather than an online only or non-peer-reviewed publication. Demographic data were collected, including applicant sex, medical school ranking and country, advanced degrees, Alpha Omega Alpha membership, and USMLE Step 1 score. Zero-inflated negative binomial regression was used to identify predictors of misrepresentation. RESULTS Using univariate analysis, between 2006 and 2012 the percentage of applicants reporting published works increased significantly (47% vs 97%, p < 0.001). However, the percentage of applicants with misrepresentations (33% vs 45%) also increased. In 2012, applicants with a greater total of reported works (p < 0.001) and applicants from unranked US medical schools (those not
The application of weight windows to 'Global' Monte Carlo problems
International Nuclear Information System (INIS)
Becker, T. L.; Larsen, E. W.
2009-01-01
This paper describes two basic types of global deep-penetration (shielding) problems-the global flux problem and the global response problem. For each of these, two methods for generating weight windows are presented. The first approach, developed by the authors of this paper and referred to generally as the Global Weight Window, constructs a weight window that distributes Monte Carlo particles according to a user-specified distribution. The second approach, developed at Oak Ridge National Laboratory and referred to as FW-CADIS, constructs a weight window based on intuitively extending the concept of the source-detector problem to global problems. The numerical results confirm that the theory used to describe the Monte Carlo particle distribution for a given weight window is valid and that the figure of merit is strongly correlated to the Monte Carlo particle distribution. Furthermore, they illustrate that, while both methods are capable of obtaining the correct solution, the Global Weight Window distributes particles much more uniformly than FW-CADIS. As a result, the figure of merit is higher for the Global Weight Window. (authors)
Essential linear algebra with applications a problem-solving approach
Andreescu, Titu
2014-01-01
This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory; • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them. Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course. ...
Square matrices of order 2 theory, applications, and problems
Pop, Vasile
2017-01-01
This unique and innovative book presents an exciting and complete detail of all the important topics related to the theory of square matrices of order 2. The readers exploring every detailed aspect of matrix theory are gently led toward understanding advanced topics. They will follow every notion of matrix theory with ease, accumulating a thorough understanding of algebraic and geometric aspects of matrices of order 2. The prime jewel of this book is its offering of an unusual collection of problems, theoretically motivated, most of which are new, original, and seeing the light of publication for the first time in the literature. Nearly all of the exercises are presented with detailed solutions and vary in difficulty from easy to more advanced. Many problems are particularly challenging. These, and not only these, invite the reader to unleash their creativity and research capabilities and to discover their own methods of attacking a problem. Matrices have a vast practical importance to mathematics, science, a...
International Nuclear Information System (INIS)
Horesh, L; Haber, E
2009-01-01
The l 1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging
Horesh, L.; Haber, E.
2009-09-01
The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.
Application of Influence Function Method to the Fretting Wear Problems
Energy Technology Data Exchange (ETDEWEB)
Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck [Yeungnam University, Gyongsan (Korea, Republic of)
2006-07-01
Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems.
Application of Influence Function Method to the Fretting Wear Problems
International Nuclear Information System (INIS)
Lee, Choon Yeol; Tian, Li Si; Bae, Joon Woo; Chai, Young Suck
2006-01-01
Numerical analysis by influence function method (IFM) is demonstrated in this study in order to investigate the fretting wear problems on the secondary side of the steam generator, caused by flow induced vibration. Two-dimensional numerical contact model in terms of Cauchy integral equation is developed. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. The work rate model is adopted to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses, which show the utilization of the present method to the fretting wear problems
Problem Analysis: Application in Developing Marketing Strategies for Colleges.
Martin, John; Moore, Thomas
1991-01-01
The problem analysis technique can help colleges understand students' salient needs in a competitive market. A preliminary study demonstrates the usefulness of the approach for developing strategies aimed at maintaining student loyalty and improving word-of-mouth promotion to other prospective students. (Author/MSE)
Delayed Stochastic Linear-Quadratic Control Problem and Related Applications
Directory of Open Access Journals (Sweden)
Li Chen
2012-01-01
stochastic differential equations (FBSDEs with Itô’s stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we present the optimal feedback regulator for the time delay system via a new type of Riccati equations and also apply to a population optimal control problem.
Application of meshless EFG method in fluid flow problems
Indian Academy of Sciences (India)
Meshless method; element-free Galerkin method; steady state analysis; transient ... ﬂuid ﬂow problems using the meshless element-free Galerkin method. The unknown function of velocity u ( x ) is approximated by moving least square ...
APPLICATIONS OF RESEARCH TO THE PROBLEM OF INSTRUCTIONAL FLEXIBILITY.
SARTAIN, HARRY W.
SELECTED RESEARCH ON THE PROBLEM OF INSTRUCTIONAL FLEXIBILITY IS SURVEYED AND DISCUSSED. BROAD TOPICS OF DISCUSSION ARE DEPARTMENTALIZATION, HOMOGENEOUS SECTIONING, INTERCLASS ABILITY SECTIONING, THE EXTENT OF VARIABILITY IN READING DEVELOPMENT, AND PRACTICES THAT MAY INCREASE FLEXIBILITY. AMONG THOSE PRACTICES TO INCREASE FLEXIBILITY ARE TEAM…
Application of the Least Squares Method in Axisymmetric Biharmonic Problems
Directory of Open Access Journals (Sweden)
Vasyl Chekurin
2016-01-01
Full Text Available An approach for solving of the axisymmetric biharmonic boundary value problems for semi-infinite cylindrical domain was developed in the paper. On the lateral surface of the domain homogeneous Neumann boundary conditions are prescribed. On the remaining part of the domain’s boundary four different biharmonic boundary pieces of data are considered. To solve the formulated biharmonic problems the method of least squares on the boundary combined with the method of homogeneous solutions was used. That enabled reducing the problems to infinite systems of linear algebraic equations which can be solved with the use of reduction method. Convergence of the solution obtained with developed approach was studied numerically on some characteristic examples. The developed approach can be used particularly to solve axisymmetric elasticity problems for cylindrical bodies, the heights of which are equal to or exceed their diameters, when on their lateral surface normal and tangential tractions are prescribed and on the cylinder’s end faces various types of boundary conditions in stresses in displacements or mixed ones are given.
Application of inorganic mass spectrometry to problems in atmospheric chemistry
International Nuclear Information System (INIS)
Kelly, W.R.
1990-01-01
The measurement of isotopes by thermal ionization mass spectrometry is a highly sensitive and accurate technique which can be used to determine the concentration of specific nuclides as well as the isotopic composition in environmental samples. The first application uses isotope dilution which makes possible the determination of all elements with two or more stable isotopes in all types of matrices. The second application is a very powerful and useful application in atmospheric chemistry because it permits the use of stable isotopes as definitive intentional tracers of emissions from high temperature combustion sources. The use of stable isotopes of S, Nd, Sm, and U in the study of visibility, deposition, and definitive tracing of emissions will be presented
The storage location assignment problem: application in an agribusiness company
Directory of Open Access Journals (Sweden)
Helton C. Gomes
2015-09-01
Full Text Available The goal of this work is propose an efficient storage scheme for a company in the agribusiness sector. The company studied herein is located in the Alto Paranaíba region of Minas Gerais, and exports coffee beans. Efficient storage can provide improvements in the use of space, operational resources, and staff time, as well as facilitating the order picking process. To accomplish this, the problem was mathematically modeled as a Storage Location Assignment Problem (SLAP, aimed at minimizing handling costs and maximizing space utilization and storage efficiency. The mathematical model using the company data was solved using the CPLEX solver, version 12.1. The results obtained were compared with the actual company scenario, and several advantages were observed.
A genetic algorithm application in backcross breeding problem
Carnia, E.; Napitupulu, H.; Supriatna, A. K.
2018-03-01
In this paper we discuss a mathematical model of goat breeding strategy, i.e. the backcrossing breeding. The model is aimed to obtain a strategy in producing better variant of species. In this strategy, a female (doe) of a lesser quality goat, in terms of goat quality is bred with a male (buck) of an exotic goat which has a better goat quality. In this paper we will explore a problem on how to harvest the population optimally. A genetic algorithm (GA) approach will been devised to obtain the solution of the problem. We do several trials of the GA implementation which gives different set of solutions, but relatively close to each other in terms of the resulting total revenue, except a few. Further study need to be done to obtain GA solution that closer to the exact solution.
Advances in Consumption-Investment Problems with Applications to Pension
DEFF Research Database (Denmark)
Kronborg, Morten Tolver
into a direct loss and an indirect loss. The direct loss is due to paying investment costs, and the indirect loss is due to lost investment opportunities, caused by the investors risk aversion. The indirect loss is measured by an indifference compensation ratio, defined as the minimum relative increase...... wealth, while being restricted to keep wealth above a given barrier. The problem is solved by use of the Martingale Method for stochastic optimization problems in complete markets. The solution becomes an OBPI (option based portfolio insurance) strategy where the option bought to protect against losses...... in the initial wealth the investor demands in compensation to accept incurring investment costs of a certain size. The magnitude of the indirect loss turns out to be between the same as and half of the expected direct loss, i.e. surprisingly big. Finally, a related analysis allows us to conclude that the size...
Ordinal optimization and its application to complex deterministic problems
Yang, Mike Shang-Yu
1998-10-01
We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.
Application of Moessbauer spectrum to geological and mineralogical problems
International Nuclear Information System (INIS)
Korovushkin, V.V.
1985-01-01
Main parameters of γ-resonance spectra (resonance effect value, chemical isomer shift, quadrupole splitting, nuclear Zeeman splitting) are considered. Methods of the sample preparation and technique for geological sample analysis using nuclear gamma-resonance (NGR) spectroscopy are described in brief. Possibility of direct application of the above method to determine the iron valence in minerals, their diagnosis and determination of quantitative distribution of iron between the mineral forms in rocks in the process of uranium ore formation and destruction, are discussed. Prospects for NGR-spectroscopy application to geology and mineralogy are pointed out
The Application of Problem-Based Learning in Mechanical Engineering
Putra, Z. A.; Dewi, M.
2018-02-01
The course of Technology and Material Testing prepare students with the ability to do a variety of material testing in the study of mechanical engineering. Students find it difficult to understand the materials to make them unable to carry out the material testing in accordance with the purpose of study. This happens because they knowledge is not adequately supported by the competence to find and construct learning experience. In this study, quasy experiment research method with pre-post-test with control group design was used. The subjects of the study were students divided in two groups; control and experiment with twenty-two students in each group. Study result: their grades showed no difference in between the pre-test or post-test in control group, but the difference in grade existed between the pre-test and post-test in experiment group. Yet, there is no significant difference in the study result on both groups. The researcher recommend that it is necessary to develop Problem-Based Learning that suits need analysis on D3 Program for Mechanical Engineering Department at the State University of Padang, to ensure the compatibility between Model of Study and problems and need. This study aims to analyze how Problem-Based Learning effects on the course of Technology and Material Testing for the students of D3 Program of Mechanical Engineering of the State University of Padang.
SPORT EDUCATION INSTITUTIONS BOLOGNA PROCESS APPLICATION EXPERIENCES AND PROBLEMS ANALYSIS
Directory of Open Access Journals (Sweden)
Vladislav Ilić
2008-08-01
Full Text Available Current changes in education legislative and efforts in direction of aligning domestic educational system with European union legislative and Bologna declaration were broadly welcomed in scientific institutions as positive and necessary step towards educational system modernization. However, together with new Higher education law implementation, ac creditation process start and education system modification a few important problems came to an attention. Although the time frame from the beginning of the changes is relatively short, certain conclusions and experiences about current problems can be presented. According to current experiences, new legislation was inadequately precise and correct in proper sport categorization, considering its distinctions as multidisciplinary and specific scientific area. It also failed to recognize needs and differences of sport higher education institutions in connection with students and teaching staff profile and quality. Above-mentioned factors caused problems which occurred in process of accreditation, knowledge transfer process, finding and adequate teaching staff acquiring with danger of potential lowering of numbers and quality of future graduates. As a conclusion,it can be said that prompt improvements and changes of current legislative are needed in order to meet true needs of sport and sport education.
Applications of Lie algebras in the solution of dynamic problems
International Nuclear Information System (INIS)
Fellay, G.
1983-01-01
The purpose of this paper is to give some insight into the Lie-algebras and their applications. The first part introduces the elementary properties of such algebras, e.g. nilpotency, solvability, etc. The second part shows how to use the demonstrated theory for solving differential equations with time-dependent coefficients. (Auth.)
The Review of Simulation for Business Organizations’ Problems and Applications
Waled Khaled, Yuan Yongsheng, Sajjad Nazir
2015-01-01
This paper is to show the general explanations about simulation and its importance in the modern world. This paper also shows us how the process of simulation is working step by step so it gives us the clear algorithm to apply simulation methods of any problem. It also defines the most important keywords which related to simulation methods. Moreover, in this paper, we explore the history of simulation and its developing and how it becomes one of the most widely using in the world in many fiel...
Application of computational fluid mechanics to atmospheric pollution problems
Hung, R. J.; Liaw, G. S.; Smith, R. E.
1986-01-01
One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.
Partial differential equations and boundary-value problems with applications
Pinsky, Mark A
2011-01-01
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems-rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate th
Structural analysis for diagnosis with application to ship propulsion problem
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, Mogens
2002-01-01
Aiming at design of algorithms for fault diagnosis, structural analysis of systems offers concise yet easy overall analysis. Graph-based matching, which is the essential tech-nique to obtain redundant information for diagnosis, is reconsidered in this paper. Matching is reformulated as a problem...... of relating faults to known parameters and measurements of a system. Using explicit fault modelling, minimal overdetermined subsystems are shown to provide necessary redundancy relations from the matching. Details of the method are presented and a realistic example used to clearly describe individual steps....
Minimization under entropy conditions, with applications in lower bound problems
International Nuclear Information System (INIS)
Toft, Joachim
2004-01-01
We minimize the functional f->∫ afdμ under the entropy condition E(f)=-∫ f log fdμ≥E, ∫ fdμ=1 and f≥0, where E is a member of R is fixed. We prove that the minimum is attained for f=e -sa /∫ e -sa dμ, where s is a member of R is chosen such that E(f)=E. We apply the result on minimizing problems in pseudodifferential calculus, where we minimize the harmonic oscillator
Complementary application of appreciative inquiry and organizational creative problem solving
Directory of Open Access Journals (Sweden)
John Fitzgerald Cabra Vidales
2013-07-01
Full Text Available En este artículo se resumen los procesos de Creative Problem Solving (CPS y Appreciative Inquiry (AI. Ambos son procesos que contenienen sus debilidades respectivas. Sin embargo, este artículo describe cómo el AI y el CPS pueden complementarse para superar algunas debilidades como la dinámica improductiva del grupo encontrada a veces en sesiones de mejoramiento continuo y de círculos de calidad. Ambos procesos son necesarios: el CPS para sobrevivir diariamente; el AI para prosperar al largo plazo.
Application of neural networks and cellular automata to calorimetric problems
Energy Technology Data Exchange (ETDEWEB)
Brenton, V; Fonvieille, H; Guicheney, C; Jousset, J; Roblin, Y; Tamin, F; Grenier, P
1994-09-01
Computing techniques based on parallel processing have been used to treat the information from the electromagnetic calorimeters in SLAC experiments E142/E143. Cluster finding and separation of overlapping showers are performed by a cellular automaton, pion and electron identification is done by using a multilayered neural network. Both applications are presented and their resulting performances are shown to be improved compared to more standard approaches. (author). 9 refs.; Submitted to Nuclear Instruments and Methods (NL).
Application of neural networks and cellular automata to calorimetric problems
International Nuclear Information System (INIS)
Brenton, V.; Fonvieille, H.; Guicheney, C.; Jousset, J.; Roblin, Y.; Tamin, F.; Grenier, P.
1994-09-01
Computing techniques based on parallel processing have been used to treat the information from the electromagnetic calorimeters in SLAC experiments E142/E143. Cluster finding and separation of overlapping showers are performed by a cellular automaton, pion and electron identification is done by using a multilayered neural network. Both applications are presented and their resulting performances are shown to be improved compared to more standard approaches. (author)
Computation of Thermodynamic Equilibria Pertinent to Nuclear Materials in Multi-Physics Codes
Piro, Markus Hans Alexander
Nuclear energy plays a vital role in supporting electrical needs and fulfilling commitments to reduce greenhouse gas emissions. Research is a continuing necessity to improve the predictive capabilities of fuel behaviour in order to reduce costs and to meet increasingly stringent safety requirements by the regulator. Moreover, a renewed interest in nuclear energy has given rise to a "nuclear renaissance" and the necessity to design the next generation of reactors. In support of this goal, significant research efforts have been dedicated to the advancement of numerical modelling and computational tools in simulating various physical and chemical phenomena associated with nuclear fuel behaviour. This undertaking in effect is collecting the experience and observations of a past generation of nuclear engineers and scientists in a meaningful way for future design purposes. There is an increasing desire to integrate thermodynamic computations directly into multi-physics nuclear fuel performance and safety codes. A new equilibrium thermodynamic solver is being developed with this matter as a primary objective. This solver is intended to provide thermodynamic material properties and boundary conditions for continuum transport calculations. There are several concerns with the use of existing commercial thermodynamic codes: computational performance; limited capabilities in handling large multi-component systems of interest to the nuclear industry; convenient incorporation into other codes with quality assurance considerations; and, licensing entanglements associated with code distribution. The development of this software in this research is aimed at addressing all of these concerns. The approach taken in this work exploits fundamental principles of equilibrium thermodynamics to simplify the numerical optimization equations. In brief, the chemical potentials of all species and phases in the system are constrained by estimates of the chemical potentials of the system
Some applications of AI to the problems of accelerator physics
International Nuclear Information System (INIS)
Higo, T.; Shoaee, H.; Spencer, J.E.
1987-01-01
Failure of orbit correction schemes to recognize betatron oscillation patterns obvious to any machine operator is a good problem with which to analyze the uses of Artificial Intelligence and the roles and relationships of operators, control systems and machines. Because such error modes are very common, their generalization could provide an efficient machine optimization and control strategy. A set of first-order, unitary transformations connecting canonical variable through measured results are defined which can either be compared to design for commissioning or to past results for 'golden orbit' operation. Because these relate directly to hardware variables, the method is simple, fast and direct. It has implications for machine design, controls, monitoring and feedback. Chronological analysis of such machine signatures can predict or provide a variety of information such as mean time to failure, failure modes and fast feedback or feedforward for optimizing figures of merit such as luminosity or current transmission. The use of theoretical and empirical scaling relations for such problems is discussed in terms of various figures of merit, the variables on which they depend as well as their functional dependences
Directory of Open Access Journals (Sweden)
Yvette Baggen
2017-01-01
Full Text Available In opening up the black box of what entrepreneurship education (EE should be about, this study focuses on the exploration of relationships between two constructs: opportunity identification (OI and complex problem-solving (CPS. OI, as a domain-specific capability, is at the core of entrepreneurship research, whereas CPS is a more domain-general skill. On a conceptual level, there are reasons to believe that CPS skills can help individuals to identify potential opportunities in dynamic and nontransparent environments. Therefore, we empirically investigated whether CPS relates to OI among 113 masters students. Data is analyzed using multiple regressions. The results show that CPS predicts the number of concrete ideas that students generate, suggesting that having CPS skills supports the generation of detailed, potential business ideas of good quality. The results of the current study suggest that training CPS, as a more domain-general skill, could be a valuable part of what should be taught in EE.
Application of PDSLin to the magnetic reconnection problem
Yuan, Xuefei
2013-01-01
Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth\\'s magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver. © 2013 IOP Publishing Ltd.
Application of PDSLin to the magnetic reconnection problem
Yuan, Xuefei; Li, Xiaoyesherry; Yamazaki, Ichitaro; Jardin, Stephen C.; Koniges, Alice E.; Keyes, David E.
2013-01-01
Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth's magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver. © 2013 IOP Publishing Ltd.
Application of PSO for solving problems of pattern recognition
Directory of Open Access Journals (Sweden)
S. N. Chukanov
2016-01-01
Full Text Available The problem of estimating the norm of the distance between the two closed smooth curves for pattern recognition is considered. Diffeomorphic transformation curves based on the model of large deformation with the transformation of the starting points of domain in required is formed on the basis of which depends on time-dependent vector field of velocity is considered. The action of the translation, rotation and scaling closed curve, the invariants of the action of these groups are considered. The position of curves is normalized by centering, bringing the principal axes of the image to the axes of the coordinate system and bringing the area of a closed curve corresponding to one. For estimating of the norm of the distance between two closed curves is formed the functional corresponding normalized distance between the two curves, and the equation of evolution diffeomorphic transformations. The equation of evolution allows to move objects along trajectories which correspond to diffeomorphic transformations. The diffeomorphisms do not change the topology along the geodesic trajectories. The problem of inexact comparing the minimized functional contains a term that estimates the exactness of shooting points in the required positions. In the equation of evolution is introduced the variance of conversion error. An algorithm for solving the equation of diffeomorphic transformation is proposed, built on the basis of PSO, which can significantly reduce the number of computing operations, compared with gradient methods for solving. The developed algorithms can be used in bioinformatics and biometrics systems, classification of images and objects, machine vision systems, neuroimaging, for pattern recognition and object tracking systems. Algorithm for estimating the norm of distance between the closed curves by diffeomorphic transformation can spread to spatial objects (curves, surfaces, manifolds.
Application of autoradiography methods for solving problems of microelectronics
International Nuclear Information System (INIS)
Frejer, K.; Trojtler, Kh.-Kh.; Birkgol'ts, V.
1979-01-01
Methods of contact autoradiography with halogen-silver emulsions and autoradiography, caused by the interaction of neutrons with solid track detectors, are successfully used for determination of lateral and longitudal distributions of matter in the basic semiconductor material as well as in the frameworks of its preparation. Possibilities for application and power parameters of some autoradiographic methods related to sensitivity of detection and local resolution are considered on the example of the basic material - silicon. In this case, special attention was paid on investigation of elements combibation, for example: boron/phosphorus as well as on the methods of correlation of solid track and halogen-silver autoradiogrammes [ru
Applications of vacuum technology to novel accelerator problems
Energy Technology Data Exchange (ETDEWEB)
Garwin, E.L.
1983-01-01
Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10/sup -9/ torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed.
Applications of vacuum technology to novel accelerator problems
International Nuclear Information System (INIS)
Garwin, E.L.
1983-01-01
Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10 -9 torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed
Bayindir Çevik, Ayfer; Olgun, Nermin
2015-04-01
This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.
[Mobile applications and management of hypertension: possibilities, problems and perspectives].
Becker, S; Mitchell, A; Königsmann, T; Kribben, A; Erbel, R
2012-11-01
Via the internet smartphones allow the download of applications ("Apps") that can address various requirements of daily life. These technical advances create new opportunities to better meet needs of patients suffering from hypertension. This may apply particularly for medication adherence, blood pressure control and lifestyle-changing activities. At the moment younger users in particular are interested in such technology. From other clinical contexts it is known that text messages via cell phones improve medication adherence. A combination of a smartphone and a blood pressure measurement device with the possibility to electronically collect data is promising as the quality of data may improve. Technology interventions by mobile applications that are supported by education or an additional intervention demonstrate a beneficial impact for the reduction of physical inactivity and/or overweight and obesity. However, it is not clear what parts of the technology or interventions are effective. For future developments it will be important to reduce costs and better meet hardware and software requirements of elderly users.
Coupling between a multi-physics workflow engine and an optimization framework
Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.
2016-03-01
A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.
Propagation of neutron-reaction uncertainties through multi-physics models of novel LWR's
Directory of Open Access Journals (Sweden)
Hernandez-Solis Augusto
2017-01-01
Full Text Available The novel design of the renewable boiling water reactor (RBWR allows a breeding ratio greater than unity and thus, it aims at providing for a self-sustained fuel cycle. The neutron reactions that compose the different microscopic cross-sections and angular distributions are uncertain, so when they are employed in the determination of the spatial distribution of the neutron flux in a nuclear reactor, a methodology should be employed to account for these associated uncertainties. In this work, the Total Monte Carlo (TMC method is used to propagate the different neutron-reactions (as well as angular distributions covariances that are part of the TENDL-2014 nuclear data (ND library. The main objective is to propagate them through coupled neutronic and thermal-hydraulic models in order to assess the uncertainty of important safety parameters related to multi-physics, such as peak cladding temperature along the axial direction of an RBWR fuel assembly. The objective of this study is to quantify the impact that ND covariances of important nuclides such as U-235, U-238, Pu-239 and the thermal scattering of hydrogen in H2O have in the deterministic safety analysis of novel nuclear reactors designs.
Application of neutron backscatter techniques to level measurement problems
International Nuclear Information System (INIS)
Leonardi-Cattolica, A.M.; McMillan, D.H.; Telfer, A.; Griffin, L.H.; Hunt, R.H.
1982-01-01
We have designed and built portable level detectors and fixed level monitors based on neutron scattering and detection principles. The main components of these devices, which we call neutron backscatter gauges, are a neutron emitting radioisotope, a neutron detector, and a ratemeter. The gauge is a good detector for hydrogen but is much less sensitive to most other materials. This allows level measurements of hydrogen bearing materials, such as hydrocarbons, to be made through the walls of metal vessels. Measurements can be made conveniently through steel walls which are a few inches thick. We have used neutron backscatter gauges in a wide variety of level measurement applications encountered in the petrochemical industry. In a number of cases, the neutron techniques have proven to be superior to conventional level measurement methods, including gamma ray methods
The application of value analysis techniques for complex problems
International Nuclear Information System (INIS)
Chiquelin, W.R.; Cossel, S.C.; De Jong, V.J.; Halverson, T.W.
1986-01-01
This paper discusses the application of the Value Analysis technique to the transuranic package transporter (TRUPACT). A team representing five different companies or organizations with diverse technical backgrounds was formed to analyze and recommend improvements. The results were a 38% systems-wide savings, if incorporated, and a shipping container which is volumetrically and payload efficient as well as user friendly. The Value Analysis technique is a proven tool widely used in many diverse areas both in the government and the private sector. Value Analysis uses functional diagramming of a piece of equipment or process to discretely identify every facet of the item being analyzed. A standard set of questions is then asked: What is it?, What does it do?, What does it cost?, What else will do the task?, and What would that cost? Using logic and a disciplined approach, the result of the Value Analysis performs the necessary functions at a high quality and the lowest overall cost
Quantum iterative deepening with an application to the halting problem.
Directory of Open Access Journals (Sweden)
Luís Tarrataca
Full Text Available Classical models of computation traditionally resort to halting schemes in order to enquire about the state of a computation. In such schemes, a computational process is responsible for signaling an end of a calculation by setting a halt bit, which needs to be systematically checked by an observer. The capacity of quantum computational models to operate on a superposition of states requires an alternative approach. From a quantum perspective, any measurement of an equivalent halt qubit would have the potential to inherently interfere with the computation by provoking a random collapse amongst the states. This issue is exacerbated by undecidable problems such as the Entscheidungsproblem which require universal computational models, e.g. the classical Turing machine, to be able to proceed indefinitely. In this work we present an alternative view of quantum computation based on production system theory in conjunction with Grover's amplitude amplification scheme that allows for (1 a detection of halt states without interfering with the final result of a computation; (2 the possibility of non-terminating computation and (3 an inherent speedup to occur during computations susceptible of parallelization. We discuss how such a strategy can be employed in order to simulate classical Turing machines.
Quantum Iterative Deepening with an Application to the Halting Problem
Tarrataca, Luís; Wichert, Andreas
2013-01-01
Classical models of computation traditionally resort to halting schemes in order to enquire about the state of a computation. In such schemes, a computational process is responsible for signaling an end of a calculation by setting a halt bit, which needs to be systematically checked by an observer. The capacity of quantum computational models to operate on a superposition of states requires an alternative approach. From a quantum perspective, any measurement of an equivalent halt qubit would have the potential to inherently interfere with the computation by provoking a random collapse amongst the states. This issue is exacerbated by undecidable problems such as the Entscheidungsproblem which require universal computational models, e.g. the classical Turing machine, to be able to proceed indefinitely. In this work we present an alternative view of quantum computation based on production system theory in conjunction with Grover's amplitude amplification scheme that allows for (1) a detection of halt states without interfering with the final result of a computation; (2) the possibility of non-terminating computation and (3) an inherent speedup to occur during computations susceptible of parallelization. We discuss how such a strategy can be employed in order to simulate classical Turing machines. PMID:23520465
Applications of stable isotope tracers to air pollution problems
International Nuclear Information System (INIS)
Kelly, W.R.
1985-01-01
One of the fundamental environmental problems facing the United States is how to effect acid rain abatement in the northeast United States and southeastern Canada in a cost effective manner. There are several key scientific questions that must be addressed in order to design an effective strategy. These questions include the following: (1) where do pollutants from a specified source area go., (2) what chemical transformations occur during transport., and (3) where and how are these pollutants deposited. One approach to address these questions is the use of enriched stable isotopes as intentional tracers of aerosol and sulfur emissions. Isotopic tracers can determine the location and pathways of pollutants in the environment and trace pollutants back to their original source. For an element with n isotopes, it is possible to intentionally tag n-2 sources. (For example, Nd, which has seven isotopes, could be used to tag 5 different aerosol sources). To trace sulfur compounds, the two minor isotopes of sulfur, 33 S and 36 S, could be used. Methods developed at NBS using high precision mass spectrometry permits the detection of the small changes in isotopic composition brought about by the intentional tagging at a source. This may make possible the identification of a source at a particular sampling site
Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems
Energy Technology Data Exchange (ETDEWEB)
Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yu, Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division
2017-09-30
The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The efforts in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the
Directory of Open Access Journals (Sweden)
Svatoslav Stanêk
2008-03-01
Full Text Available The paper presents an existence principle for solving a large class of nonlocal regular discrete boundary value problems with the ÃÂ†-Laplacian. Applications of the existence principle to singular discrete problems are given.
Application of the artificial bee colony algorithm for solving the set covering problem.
Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando
2014-01-01
The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem.
Applications of the infinite momentum method to quantum electrodynamics and bound state problem
International Nuclear Information System (INIS)
Brodsky, S.J.
1973-01-01
It is shown that the infinite momentum method is a valid and useful calculational alternative to standard perturbation theory methods. The most exciting future applications may be in bound state problems in quantum electrodynamics
Applications of Desensitization Procedures for School-Related Problems; A Review.
Prout, H. Thompson; Harvey, John R.
1978-01-01
A variety of desensitization and counterconditioning procedures have been utilized to deal with school-related problems. These procedures are reviewed with respect to applications for treating school phobia, test anxiety, and other academic anxieties. (Author)
Nonlinear Preconditioning and its Application in Multicomponent Problems
Liu, Lulu
2015-12-07
obtained when the forcing terms are picked suitably. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN, and maintain fast convergence even for challenging problems, such as high-Reynolds number Navier-Stokes equations.
Application of fluorescent dyes for some problems of bioelectromagnetics
Babich, Danylo; Kylsky, Alexandr; Pobiedina, Valentina; Yakunov, Andrey
2016-04-01
Fluorescent organic dyes solutions are used for non-contact measurement of the millimeter wave absorption in liquids simulating biological tissue. There is still not any certain idea of the physical mechanism describing this process despite the widespread technology of microwave radiation in the food industry, biotechnology and medicine. For creating adequate physical model one requires an accurate command of knowledge concerning to the relation between millimeter waves and irradiated object. There were three H-bonded liquids selected as the samples with different coefficients of absorption in the millimeter range like water (strong absorption), glycerol (medium absorption) and ethylene glycol (light absorption). The measurements showed that the greatest response to the action of microwaves occurs for glycerol solutions: R6G (building-up luminescence) and RC (fading luminescence). For aqueous solutions the signal is lower due to lower quantum efficiency of luminescence, and for ethylene glycol — due to the low absorption of microwaves. In the area of exposure a local increase of temperature was estimated. For aqueous solutions of both dyes the maximum temperature increase is about 7° C caused with millimeter waves absorption, which coincides with the direct radio physical measurements and confirmed by theoretical calculations. However, for glycerol solution R6G temperature equivalent for building-up luminescence is around 9° C, and for the solution of ethylene glycol it's about 15°. It is assumed the possibility of non-thermal effect of microwaves on the different processes and substances. The application of this non-contact temperature sensing is a simple and novel method to detect temperature change in small biological objects.
Attitudinal Analyses of Toleration and Respect and the Problem of Institutional Applicability
DEFF Research Database (Denmark)
Lægaard, Sune
2015-01-01
of institutional application is that institutions in general and the state in particular arguably cannot have attitudes of the required kind. This problem is distinct from, and broader than, well-known problems about whether political toleration is normatively legitimate. To make sense of political toleration...
2D problems of surface growth theory with applications to additive manufacturing
Manzhirov, A. V.; Mikhin, M. N.
2018-04-01
We study 2D problems of surface growth theory of deformable solids and their applications to the analysis of the stress-strain state of AM fabricated products and structures. Statements of the problems are given, and a solution method based on the approaches of the theory of functions of a complex variable is suggested. Computations are carried out for model problems. Qualitative and quantitative results are discussed.
SEMIGROUPS N TIMES INTEGRATED AND AN APPLICATION TO A PROBLEM OF CAUCHY TYPE
Directory of Open Access Journals (Sweden)
Danessa Chirinos Fernández
2016-06-01
Full Text Available The theory of semigroups n times integrated is a generalization of strongly continuous semigroups, which was developed from 1984, and is widely used for the study of the existence and uniqueness of problems such Cauchy in which the operator domain is not necessarily dense. This paper presents an application of semigroups n times integrated into a problem of viscoelasticity, which is formulated as a Cauchy problem on a Banach space presents .
International Nuclear Information System (INIS)
Barucq, Helene; Bekkey, Chokri; Djellouli, Rabia
2004-01-01
We present a general procedure based on the pseudo-differential calculus for deriving artificial boundary conditions for an eigenvalue problem that characterizes the propagation of guided modes in optical waveguides. This new approach allows the construction of local conditions that (a) are independent of the frequency regime, (b) preserve the sparsity pattern of the finite element discretization, and (c) are applicable to arbitrarily shaped convex artificial boundaries. The last feature has the potential for reducing the size of the computational domain. Numerical results are presented to highlight the potential of conditions of order 1/2 and 1, for improving significantly the computational efficiency of finite element methods for the solution of optical waveguide problems
Integral Full Core Multi-Physics PWR Benchmark with Measured Data
Energy Technology Data Exchange (ETDEWEB)
Forget, Benoit; Smith, Kord; Kumar, Shikhar; Rathbun, Miriam; Liang, Jingang
2018-04-11
In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevant multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.
Study and application of Dot 3.5 computer code in radiation shielding problems
International Nuclear Information System (INIS)
Otto, A.C.; Mendonca, A.G.; Maiorino, J.R.
1983-01-01
The application of nuclear transportation code S sub(N), Dot 3.5, to radiation shielding problems is revised. Aiming to study the better available option (convergence scheme, calculation mode), of DOT 3.5 computer code to be applied in radiation shielding problems, a standard model from 'Argonne Code Center' was selected and a combination of several calculation options to evaluate the accuracy of the results and the computational time was used, for then to select the more efficient option. To illustrate the versatility and efficacy in the application of the code for tipical shielding problems, the streaming neutrons calculation along a sodium coolant channel is ilustrated. (E.G.) [pt
Some applications of fractal mathematics in the evaluation of environmental problems
Energy Technology Data Exchange (ETDEWEB)
Thimm, H. F.; Poon, D. C.; McCormack, M.
1997-11-01
Application of fractal mathematics to commonly occurring environmental problems in the petroleum industry is discussed. Examples are provided to illustrate application of the technique. The specific examples cited involve the interpretation of mercury contamination data at a gas plant and the determination of the optimal volume of soil excavation at a contaminated site. 10 refs., 4 figs.
Update on Research and Application of Problem-Based Learning in Medical Science Education
Fan, Chuifeng; Jiang, Biying; Shi, Xiuying; Wang, Enhua; Li, Qingchang
2018-01-01
Problem-based learning (PBL) is a unique form of pedagogy dedicated to developing students' self-learning and clinical practice skills. After several decades of development, although applications vary, PBL has been recognized all over the world and implemented by many medical schools. This review summarizes and updates the application and study of…
The spherical harmonics method, II (application to problems with plane and spherical symmetry)
Energy Technology Data Exchange (ETDEWEB)
Mark, C
1958-12-15
The application of the spherical harmonic method to problems with plane or spherical symmetry is discussed in detail. The numerical results of some applications already made are included to indicate the degree of convergence obtained. Formulae for dealing with distributions of isotropic sources are developed. Tables useful in applying the method are given in Section 11. (author)
Lakshmi Devaraj, Shanmuga
2018-04-01
The recent trend in learning Mathematics is through android apps like Byju’s. The clock problems asked in aptitude tests could be learnt using such computer applications. The Clock problems are of four categories namely: 1. What is the angle between the hands of a clock at a particular time 2. When the hands of a clock will meet after a particular time 3. When the hands of a clock will be at right angle after a particular time 4. When the hands of a clock will be in a straight line but not together after a particular time The aim of this article is to convert the clock problems which were solved using the traditional approach to algebraic equations and solve them. Shortcuts are arrived which help in solving the questions in just a few seconds. Any aptitude problem could be converted to an algebraic equation by tracing the way the problem proceeds by applying our analytical skills. Solving of equations would be the easiest part in coming up with the solution. Also a computer application could be developed by using the equations that were arrived at in the analysis part. The computer application aims at solving the four different problems in Clocks. The application helps the learners of aptitude for CAT and other competitive exams to know the approach of the problem. Learning Mathematics with a gaming tool like this would be interesting to the learners. This paper provides a path to creating gaming apps to learn Mathematics.
International Nuclear Information System (INIS)
Horrein, L.; Bouscayrol, A.; Cheng, Y.; El Fassi, M.
2015-01-01
Highlights: • Internal Combustion Engine (ICE) dynamical and static models. • Organization of ICE model using Energetic Macroscopic Representation. • Description of the distribution of the chemical, thermal and mechanical power. • Implementation of the ICE model in a global vehicle model. - Abstract: In the simulation of new vehicles, the Internal Combustion Engine (ICE) is generally modeled by a static map. This model yields the mechanical power and the fuel consumption. But some studies require the heat energy from the ICE to be considered (i.e. waste heat recovery, thermal regulation of the cabin). A dynamical multi-physical model of a diesel engine is developed to consider its heat energy. This model is organized using Energetic Macroscopic Representation (EMR) in order to be interconnected to other various models of vehicle subsystems. An experimental validation is provided. Moreover a multi-physical quasi-static model is also derived. According to different modeling aims, a comparison of the dynamical and the quasi-static model is discussed in the case of the simulation of a thermal vehicle. These multi-physical models with different simulation time consumption provide good basis for studying the effects of the thermal energy on the vehicle behaviors, including the possibilities of waste heat recovery
Rethinking the lecture: the application of problem based learning methods to atypical contexts.
Rogal, Sonya M M; Snider, Paul D
2008-05-01
Problem based learning is a teaching and learning strategy that uses a problematic stimulus as a means of motivating and directing students to develop and acquire knowledge. Problem based learning is a strategy that is typically used with small groups attending a series of sessions. This article describes the principles of problem based learning and its application in atypical contexts; large groups attending discrete, stand-alone sessions. The principles of problem based learning are based on Socratic teaching, constructivism and group facilitation. To demonstrate the application of problem based learning in an atypical setting, this article focuses on the graduate nurse intake from a teaching hospital. The groups are relatively large and meet for single day sessions. The modified applications of problem based learning to meet the needs of atypical groups are described. This article contains a step by step guide of constructing a problem based learning package for large, single session groups. Nurse educators facing similar groups will find they can modify problem based learning to suit their teaching context.
Application of symbolic and algebraic manipulation software in solving applied mechanics problems
Tsai, Wen-Lang; Kikuchi, Noboru
1993-01-01
As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.
Zhang, Shao-Liang; Imamura, Toshiyuki; Yamamoto, Yusaku; Kuramashi, Yoshinobu; Hoshi, Takeo
2017-01-01
This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas – and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.
The single-sink fixed-charge transportation problem: Applications and solution methods
DEFF Research Database (Denmark)
Goertz, Simon; Klose, Andreas
2007-01-01
The single-sink fixed-charge transportation problem (SSFCTP) consists in finding a minimum cost flow from a number of supplier nodes to a single demand node. Shipping costs comprise costs proportional to the amount shipped as well as a fixed-charge. Although the SSFCTP is an important special case...... of the well-known fixed-charge transportation problem, just a few methods for solving this problem have been proposed in the literature. After summarising some applications of this problem arising in manufacturing and transportation, we give an overview on approximation algorithms and worst-case results...
Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement
Directory of Open Access Journals (Sweden)
Bo Yang
2016-07-01
Full Text Available A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s2, which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by
A multi-physics analysis for the actuation of the SSS in opal reactor
Directory of Open Access Journals (Sweden)
Ferraro Diego
2018-01-01
models, available for OPAL reactor, are coupled by means of a shared unstructured mesh geometry definition of relevant zones inside the Reflector Vessel. Several scenarios, both regarding coupled and uncoupled neutronic & thermohydraulic behavior, are presented and analyzed, showing the capabilities to develop and manage advanced modelling that allows to predict multi-physics variables observed when an in-depth performance analysis of a Research Reactor like OPAL is carried out.
A multi-physics analysis for the actuation of the SSS in opal reactor
Ferraro, Diego; Alberto, Patricio; Villarino, Eduardo; Doval, Alicia
2018-05-01
OPAL reactor, are coupled by means of a shared unstructured mesh geometry definition of relevant zones inside the Reflector Vessel. Several scenarios, both regarding coupled and uncoupled neutronic & thermohydraulic behavior, are presented and analyzed, showing the capabilities to develop and manage advanced modelling that allows to predict multi-physics variables observed when an in-depth performance analysis of a Research Reactor like OPAL is carried out.
Multi-physics design and analyses of long life reactors for lunar outposts
Schriener, Timothy M.
event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete
Energy Technology Data Exchange (ETDEWEB)
Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie [Annie Kammerer Consulting, Rye, NH (United States); Youngblood, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho State Univ., Pocatello, ID (United States)
2015-07-01
Risk-Informed Margin Management Industry Application on External Events. More specifically, combined events, seismically induced external flooding analyses for a generic nuclear power plant with a generic site soil, and generic power plant system and structure. The focus of this report is to define the problem above, set up the analysis, describe the methods to be used, tools to be applied to each problem, and data analysis and validation associated with the above.
Time efficient optimization of instance based problems with application to tone onset detection
Bauer, Nadja; Friedrichs, Klaus; Weihs, Claus
2016-01-01
A time efficient optimization technique for instance based problems is proposed, where for each parameter setting the target function has to be evaluated on a large set of problem instances. Computational time is reduced by beginning with a performance estimation based on the evaluation of a representative subset of instances. Subsequently, only promising settings are evaluated on the whole data set. As application a comprehensive music onset detection algorithm is introduce...
Directory of Open Access Journals (Sweden)
Milev Jordan
2016-01-01
Full Text Available The main purpose of the paper is to present practical application of Eurocodes in the field of RC structures design. The selected examples represent the main problems in practical application of Eurocodes for seismic analysis and design of RC Structures in Bulgarian construction practice. The analysis is focused on some structural and economic problems as well as on some contradictions in Eurocode 8 itself. Special attention is paid to the practical solution of the following problems: recognition of torsionally flexible systems, stiffness reduction of RC elements for linear analysis dimensions and detailing of confined boundary areas of shear walls, detailing of wall structures, etc. Those problems appear during the practical design of some buildings in Bulgaria. Several proposals for solving some problems defined in the paper are presented through some practical examples. Some conclusions are made for further application of Eurocode 8 in the design and construction practice. The importance of some rules and procedures in Eurocode 8 is supported by the examples of damaged RC members during the past earthquakes. The problems of Eurocode 8 and their solutions are illustrated through the experience of Bulgarian construction practice.
Georgescu, Dan I; Higham, Nicholas J; Peters, Gareth W
2018-03-01
We derive explicit solutions to the problem of completing a partially specified correlation matrix. Our results apply to several block structures for the unspecified entries that arise in insurance and risk management, where an insurance company with many lines of business is required to satisfy certain capital requirements but may have incomplete knowledge of the underlying correlation matrix. Among the many possible completions, we focus on the one with maximal determinant. This has attractive properties and we argue that it is suitable for use in the insurance application. Our explicit formulae enable easy solution of practical problems and are useful for testing more general algorithms for the maximal determinant correlation matrix completion problem.
Applications of intelligent optimization in biology and medicine current trends and open problems
Grosan, Crina; Tolba, Mohamed
2016-01-01
This volume provides updated, in-depth material on the application of intelligent optimization in biology and medicine. The aim of the book is to present solutions to the challenges and problems facing biology and medicine applications. This Volume comprises of 13 chapters, including an overview chapter, providing an up-to-date and state-of-the research on the application of intelligent optimization for bioinformatics applications, DNA based Steganography, a modified Particle Swarm Optimization Algorithm for Solving Capacitated Maximal Covering Location Problem in Healthcare Systems, Optimization Methods for Medical Image Super Resolution Reconstruction and breast cancer classification. Moreover, some chapters that describe several bio-inspired approaches in MEDLINE Text Mining, DNA-Binding Proteins and Classes, Optimized Tumor Breast Cancer Classification using Combining Random Subspace and Static Classifiers Selection Paradigms, and Dental Image Registration. The book will be a useful compendium for a broad...
An introduction to fuzzy linear programming problems theory, methods and applications
Kaur, Jagdeep
2016-01-01
The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty.
Attitudinal Analyses of Toleration and Respect, and the Problem of Institutional Applicability
DEFF Research Database (Denmark)
Lægaard, Sune
2010-01-01
have a sufficiently similar meaning when applied to institutions such as the state as to individual persons? The paper presents the standard analyses and explains in what sense they are attitudinal and why the attitudinal component is necessary. It then presents the problem of institutional...... applicability that the attitudinal component brings about: the ascription of the requisite attitudes to institutions in general and the state in particular is problematic since institutions arguably cannot have attitudes of the required kind. This problem is distinguished from other problems, including...... the problem of making sense of political toleration raised by Glen Newey, and some possible responses to the problem are considered, including Peter Jones’ disaggregative response to Newey, all of which are found inadequate. The paper instead proposes that the analysis of institutional toleration and respect...
Inverse problems with Poisson data: statistical regularization theory, applications and algorithms
International Nuclear Information System (INIS)
Hohage, Thorsten; Werner, Frank
2016-01-01
Inverse problems with Poisson data arise in many photonic imaging modalities in medicine, engineering and astronomy. The design of regularization methods and estimators for such problems has been studied intensively over the last two decades. In this review we give an overview of statistical regularization theory for such problems, the most important applications, and the most widely used algorithms. The focus is on variational regularization methods in the form of penalized maximum likelihood estimators, which can be analyzed in a general setup. Complementing a number of recent convergence rate results we will establish consistency results. Moreover, we discuss estimators based on a wavelet-vaguelette decomposition of the (necessarily linear) forward operator. As most prominent applications we briefly introduce Positron emission tomography, inverse problems in fluorescence microscopy, and phase retrieval problems. The computation of a penalized maximum likelihood estimator involves the solution of a (typically convex) minimization problem. We also review several efficient algorithms which have been proposed for such problems over the last five years. (topical review)
Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara
2012-10-01
of concrete instances with special properties. The aim of this special section is to provide a forum for highly topical ongoing work in the area of regularization in Banach spaces, its numerics and its applications. Indeed, we have been lucky enough to obtain a number of excellent papers both from colleagues who have previously been contributing to this topic and from researchers entering the field due to its relevance in practical inverse problems. We would like to thank all contributers for enabling us to present a high quality collection of papers on topics ranging from various aspects of regularization via efficient numerical solution to applications in PDE models. We give a brief overview of the contributions included in this issue (here ordered alphabetically by first author). In their paper, Iterative regularization with general penalty term—theory and application to L1 and TV regularization, Radu Bot and Torsten Hein provide an extension of the Landweber iteration for linear operator equations in Banach space to general operators in place of the inverse duality mapping, which corresponds to the use of general regularization functionals in variational regularization. The L∞ topology in data space corresponds to the frequently occuring situation of uniformly distributed data noise. A numerically efficient solution of the resulting Tikhonov regularization problem via a Moreau-Yosida appriximation and a semismooth Newton method, along with a δ-free regularization parameter choice rule, is the topic of the paper L∞ fitting for inverse problems with uniform noise by Christian Clason. Extension of convergence rates results from classical source conditions to their generalization via variational inequalities with a priori and a posteriori stopping rules is the main contribution of the paper Regularization of linear ill-posed problems by the augmented Lagrangian method and variational inequalities by Klaus Frick and Markus Grasmair, again in the context of some
International Nuclear Information System (INIS)
Yoshimura, Shinobu; Kawai, Hiroshi; Sugimoto, Shin'ichiro; Hori, Muneo; Nakajima, Norihiro; Kobayashi, Kei
2010-01-01
Recently importance of nuclear energy has been recognized again due to serious concerns of global warming and energy security. In parallel, it is one of critical issues to verify safety capability of ageing nuclear power plants (NPPs) subjected to strong earthquake. Since 2007, we have been developing the multi-scale and multi-physics based numerical simulator for quantitatively predicting actual quake-proof capability of ageing NPPs under operation or just after plant trip subjected to strong earthquake. In this paper, we describe an overview of the simulator with some preliminary results. (author)
International Nuclear Information System (INIS)
Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W.
2016-01-01
This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.
Energy Technology Data Exchange (ETDEWEB)
Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)
2016-05-15
This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.
Thinking about Applications: Effects on Mental Models and Creative Problem-Solving
Barrett, Jamie D.; Peterson, David R.; Hester, Kimberly S.; Robledo, Issac C.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.
2013-01-01
Many techniques have been used to train creative problem-solving skills. Although the available techniques have often proven to be effective, creative training often discounts the value of thinking about applications. In this study, 248 undergraduates were asked to develop advertising campaigns for a new high-energy soft drink. Solutions to this…
Application of the annihilation and creation operators in magnetic resonance problems
International Nuclear Information System (INIS)
Nosel, W.
1981-01-01
Application of the annihilation and creation operators in the following problems is presented: in the resonance of the free spins in rotating and oscillating magnetic field, in the influence of the nonresonance magnetic fields on magnetic resonance, in the thermodynamics of the spins with dipolar interaction and in the nuclear magnetic relaxation. (author)
The Views of Undergraduates about Problem-Based Learning Applications in a Biochemistry Course
Tarhan, Leman; Ayyildiz, Yildizay
2015-01-01
The effect of problem-based learning (PBL) applications in an undergraduate biochemistry course on students' interest in this course was investigated through four modules during one semester. Students' views about active learning and improvement in social skills were also collected and evaluated. We conducted the study with 36 senior students from…
Large scale inverse problems computational methods and applications in the earth sciences
Scheichl, Robert; Freitag, Melina A; Kindermann, Stefan
2013-01-01
This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications.
The Parity of Set Systems under Random Restrictions with Applications to Exponential Time Problems
DEFF Research Database (Denmark)
Björklund, Andreas; Dell, Holger; Husfeldt, Thore
2015-01-01
problems. We find three applications of our reductions: 1. An exponential-time algorithm: We show how to decide Hamiltonicity in directed n-vertex graphs with running time 1.9999^n provided that the graph has at most 1.0385^n Hamiltonian cycles. We do so by reducing to the algorithm of Björklund...
Hamadneh, Iyad M.; Al-Masaeed, Aslan
2015-01-01
This study aimed at finding out mathematics teachers' attitudes towards photo math application in solving mathematical problems using mobile camera; it also aim to identify significant differences in their attitudes according to their stage of teaching, educational qualifications, and teaching experience. The study used judgmental/purposive…
Application of EGS and ETRAN to Problems in Medical Physics and Dosimetry
Nelson, W R
1980-01-01
The author looks at a few applications of Monte Carlo programs to problems of interest in medical physics and dosimetry. In particular, two areas are considered: 1) bremsstrahlung production from medical accelerators; 2) photon dosimetry at medium to low energies. (16 refs) .
Application of NASA management approach to solve complex problems on earth
Potate, J. S.
1972-01-01
The application of NASA management approach to solving complex problems on earth is discussed. The management of the Apollo program is presented as an example of effective management techniques. Four key elements of effective management are analyzed. Photographs of the Cape Kennedy launch sites and supporting equipment are included to support the discussions.
Yang, Eunice
2016-01-01
This paper discusses the use of a free mobile engineering application (app) called Autodesk® ForceEffect™ to provide students assistance with spatial visualization of forces and more practice in solving/visualizing statics problems compared to the traditional pencil-and-paper method. ForceEffect analyzes static rigid-body systems using free-body…
Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas
2018-06-01
In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable TV type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted TV for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.
White, Michael J; Harmel, R Daren; Arnold, Jeff G; Williams, Jimmy R
2014-01-01
The Soil and Water Assessment Tool (SWAT) is a basin-scale hydrologic model developed by the United States Department of Agriculture Agricultural Research Service. SWAT's broad applicability, user-friendly model interfaces, and automatic calibration software have led to a rapid increase in the number of new users. These advancements also allow less experienced users to conduct SWAT modeling applications. In particular, the use of automated calibration software may produce simulated values that appear appropriate because they adequately mimic measured data used in calibration and validation. Autocalibrated model applications (and often those of unexperienced modelers) may contain input data errors and inappropriate parameter adjustments not readily identified by users or the autocalibration software. The objective of this research was to develop a program to assist users in the identification of potential model application problems. The resulting "SWAT Check" is a stand-alone Microsoft Windows program that (i) reads selected SWAT output and alerts users of values outside the typical range; (ii) creates process-based figures for visualization of the appropriateness of output values, including important outputs that are commonly ignored; and (iii) detects and alerts users of common model application errors. By alerting users to potential model application problems, this software should assist the SWAT community in developing more reliable modeling applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Some applications of the moving finite element method to fluid flow and related problems
International Nuclear Information System (INIS)
Berry, R.A.; Williamson, R.L.
1983-01-01
The Moving Finite Element (MFE) method is applied to one-dimensional, nonlinear wave type partial differential equations which are characteristics of fluid dynamic and related flow phenomena problems. These equation systems tend to be difficult to solve because their transient solutions exhibit a spacial stiffness property, i.e., they represent physical phenomena of widely disparate length scales which must be resolved simultaneously. With the MFE method the node points automatically move (in theory) to optimal locations giving a much better approximation than can be obtained with fixed mesh methods (with a reasonable number of nodes) and with significantly reduced artificial viscosity or diffusion content. Three applications are considered. In order of increasing complexity they are: (1) a thermal quench problem, (2) an underwater explosion problem, and (3) a gas dynamics shock tube problem. The results are briefly shown
The Fractional Fourier Transform and Its Application to Energy Localization Problems
Directory of Open Access Journals (Sweden)
ter Morsche Hennie G
2003-01-01
Full Text Available Applying the fractional Fourier transform (FRFT and the Wigner distribution on a signal in a cascade fashion is equivalent to a rotation of the time and frequency parameters of the Wigner distribution. We presented in ter Morsche and Oonincx, 2002, an integral representation formula that yields affine transformations on the spatial and frequency parameters of the -dimensional Wigner distribution if it is applied on a signal with the Wigner distribution as for the FRFT. In this paper, we show how this representation formula can be used to solve certain energy localization problems in phase space. Examples of such problems are given by means of some classical results. Although the results on localization problems are classical, the application of generalized Fourier transform enlarges the class of problems that can be solved with traditional techniques.
International Nuclear Information System (INIS)
Rawat, K.K.; Subbaiah, K.V.
1996-01-01
General purpose Monte Carlo code MCNP is being widely employed for solving deep penetration problems by applying variance reduction techniques. These techniques depend on the nature and type of the problem being solved. Application of geometry splitting and implicit capture method are examined to study the deep penetration problems of neutron, gamma and coupled neutron-gamma in thick shielding materials. The typical problems chosen are: i) point isotropic monoenergetic gamma ray source of 1 MeV energy in nearly infinite water medium, ii) 252 Cf spontaneous source at the centre of 140 cm thick water and concrete and iii) 14 MeV fast neutrons incident on the axis of 100 cm thick concrete disk. (author). 7 refs., 5 figs
International Nuclear Information System (INIS)
Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; Sousa L, M. A.
2016-10-01
The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)
Suzuki, Yuma; Shimizu, Tetsuhide; Yang, Ming
2017-01-01
The quantitative evaluation of the biomolecules transport with multi-physics in nano/micro scale is demanded in order to optimize the design of microfluidics device for the biomolecules detection with high detection sensitivity and rapid diagnosis. This paper aimed to investigate the effectivity of the computational simulation using the numerical model of the biomolecules transport with multi-physics near a microchannel surface on the development of biomolecules-detection devices. The biomolecules transport with fluid drag force, electric double layer (EDL) force, and van der Waals force was modeled by Newtonian Equation of motion. The model validity was verified in the influence of ion strength and flow velocity on biomolecules distribution near the surface compared with experimental results of previous studies. The influence of acting forces on its distribution near the surface was investigated by the simulation. The trend of its distribution to ion strength and flow velocity was agreement with the experimental result by the combination of all acting forces. Furthermore, EDL force dominantly influenced its distribution near its surface compared with fluid drag force except for the case of high velocity and low ion strength. The knowledges from the simulation might be useful for the design of biomolecules-detection devices and the simulation can be expected to be applied on its development as the design tool for high detection sensitivity and rapid diagnosis in the future.
Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi
2014-01-01
This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.
Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong
2015-10-01
This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.
On application of CFD codes to problems of nuclear reactor safety
International Nuclear Information System (INIS)
Muehlbauer, Petr
2005-01-01
The 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in May 2002 at Aix-en-Province, France, recommended formation of writing groups to report the need of guidelines for use and assessment of CFD in single-phase nuclear reactor safety problems, and on recommended extensions to CFD codes to meet the needs of two-phase problems in nuclear reactor safety. This recommendations was supported also by Working Group on the Analysis and Management of Accidents and led to formation oaf three Writing Groups. The first writing Group prepared a summary of existing best practice guidelines for single phase CFD analysis and made a recommendation on the need for nuclear reactor safety specific guidelines. The second Writing Group selected those nuclear reactor safety applications for which understanding requires or is significantly enhanced by single-phase CFD analysis, and proposed a methodology for establishing assesment matrices relevant to nuclear reactor safety applications. The third writing group performed a classification of nuclear reactor safety problems where extension of CFD to two-phase flow may bring real benefit, a classification of different modeling approaches, and specification and analysis of needs in terms of physical and numerical assessments. This presentation provides a review of these activities with the most important conclusions and recommendations (Authors)
APPLICATION OF THE PERFORMANCE SELECTION INDEX METHOD FOR SOLVING MACHINING MCDM PROBLEMS
Directory of Open Access Journals (Sweden)
Dušan Petković
2017-04-01
Full Text Available Complex nature of machining processes requires the use of different methods and techniques for process optimization. Over the past few years a number of different optimization methods have been proposed for solving continuous machining optimization problems. In manufacturing environment, engineers are also facing a number of discrete machining optimization problems. In order to help decision makers in solving this type of optimization problems a number of multi criteria decision making (MCDM methods have been proposed. This paper introduces the use of an almost unexplored MCDM method, i.e. performance selection index (PSI method for solving machining MCDM problems. The main motivation for using the PSI method is that it is not necessary to determine criteria weights as in other MCDM methods. Applicability and effectiveness of the PSI method have been demonstrated while solving two case studies dealing with machinability of materials and selection of the most suitable cutting fluid for the given machining application. The obtained rankings have good correlation with those derived by the past researchers using other MCDM methods which validate the usefulness of this method for solving machining MCDM problems.
DEFF Research Database (Denmark)
Zhou, Mingdong; Alexandersen, Joe; Sigmund, Ole
2016-01-01
This paper presents an industrial application of topology optimization for combined conductive and convective heat transfer problems. The solution is based on a synergy of computer aided design and engineering software tools from Dassault Systemes. The considered physical problem of steady......-state heat transfer under convection is simulated using SIMULIA-Abaqus. A corresponding topology optimization feature is provided by SIMULIA-Tosca. By following a standard workflow of design optimization, the proposed solution is able to accommodate practical design scenarios and results in efficient...
Cross entropy-based memetic algorithms: An application study over the tool switching problem
Directory of Open Access Journals (Sweden)
Jhon Edgar Amaya
2013-05-01
Full Text Available This paper presents a parameterized schema for building memetic algorithms based on cross-entropy (CE methods. This novel schema is general in nature, and features multiple probability mass functions and Lamarckian learning. The applicability of the approach is assessed by considering the Tool Switching Problem, a complex combinatorial problem in the field of Flexible Manufacturing Systems. An exhaustive evaluation (including techniques ranging from local search and evolutionary algorithms to constructive methods provides evidence of the effectiveness of CE-based memetic algorithms.
Algebraic structures in generalized Clifford analysis and applications to boundary value problems
Directory of Open Access Journals (Sweden)
José Játem
2015-12-01
Full Text Available The present article has a threefold purpose: First it is a survey of the algebraic structures of generalized Clifford-type algebras and shows the main results of the corresponding Clifford-type analysis and its application to boundary value problems known so far. Second it is aimed to implement algorithms to provide the fast and accurate computation of boundary value problems for inhomogeneous equations in the framework of the generalized Clifford analysis. Finally it is also aimed to encourage the development of a generalized discrete Clifford analysis.
International Nuclear Information System (INIS)
Rozkowski, A.
1978-01-01
Results of hydrogeological studies made with use of natural isotopes and carried out within the Lublin Coal Field are presented in the paper. The studies have proved advantageous possibilities of isotope technique application for solving the hydrogeological problems of mineral deposits. Examination of isotope relations in ground waters complements traditional hydrogeological methods. This trend of complex investigations enables solving some peculiar hydrodynamic and hydrochemical problems. Exact recognition of these conditions is required to elaborate out proper prognosis on water content degree in given deposit and on value of ground water inflow into areas of designed mines. (author)
Directory of Open Access Journals (Sweden)
Kyncl Martin
2017-01-01
cases. Moreover, using such construction, the local conservation laws are not violated. Algorithms for the solution of the modified Riemann problems were coded and used within our own developed code for the solution of the compressible gas flow (the Euler, the Navier-Stokes, and the RANS equations. Numerical examples show superior behaviour of the suggested boundary conditions. Constructed boundary conditions are robust and accelerate the convergence of the method. The original result of our work is the analysis of various modifications of the Riemann problem and its applications.
2016-01-01
This book captures current trends and developments in the field of systems thinking and soft operations research which can be applied to solve today's problems of dynamic complexity and interdependency. Such ‘wicked problems’ and messes are seemingly intractable problems characterized as value-laden, ambiguous, and unstable, that resist being tamed by classical problem solving. Actions and interventions associated with this complex problem space can have highly unpredictable and unintended consequences. Examples of such complex problems include health care reform, global climate change, transnational serious and organized crime, terrorism, homeland security, human security, disaster management, and humanitarian aid. Moving towards the development of solutions to these complex problem spaces depends on the lens we use to examine them and how we frame the problem. It will be shown that systems thinking and soft operations research has had great success in contributing to the management of complexity. .
ALAM/CLAM and some applications of computer algebra systems to problems in general relativity
International Nuclear Information System (INIS)
Russell-Clark, R.A.
1973-01-01
This paper is divided into three parts. Part A presents a historical survey of the development of the system, a brief description of its features and, finally, a critical assessment. ALAM and CLAM have been used in many problems in General Relativity; the vast majority of these belong to a set of standard calculations termed ''metric applications''. However, four large non-standard applications have been attempted successfully and these are described in Part B. CAMAL is the only other system which has been used extensively for work in relativity. CAMAL has played an important role in two research projects and details of these are given in Part C
Energy Technology Data Exchange (ETDEWEB)
Deister, F.; Hirschel, E.H. [Univ. Stuttgart, IAG, Stuttgart (Germany); Waymel, F.; Monnoyer, F. [Univ. de Valenciennes, LME, Valenciennes (France)
2003-07-01
An automatic adaptive hybrid Cartesian grid generation and simulation system is presented together with applications. The primary computational grid is an octree Cartesian grid. A quasi-prismatic grid may be added for resolving the boundary layer region of viscous flow around the solid body. For external flow simulations the flow solver TAU from the ''deutsche zentrum fuer luft- und raumfahrt (DLR)'' is integrated in the simulation system. Coarse grids are generated automatically, which are required by the multilevel method. As an application to an internal problem the thermal and dynamic modeling of a subway station is presented. (orig.)
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
Energy Technology Data Exchange (ETDEWEB)
Jamet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
This report gives a general presentation of barrier theory for finite difference operators, with its applications to some boundary value problems. (author) [French] Ce rapport est un expose synthetique de la theorie des barrieres pour les operateurs aux differences finies et ses applications a certaines classes de problemes lineaires elliptiques du 'type de Dirichlet'. (auteur)
Application of Monte Carlo method to solving boundary value problem of differential equations
International Nuclear Information System (INIS)
Zuo Yinghong; Wang Jianguo
2012-01-01
This paper introduces the foundation of the Monte Carlo method and the way how to generate the random numbers. Based on the basic thought of the Monte Carlo method and finite differential method, the stochastic model for solving the boundary value problem of differential equations is built. To investigate the application of the Monte Carlo method to solving the boundary value problem of differential equations, the model is used to solve Laplace's equations with the first boundary condition and the unsteady heat transfer equation with initial values and boundary conditions. The results show that the boundary value problem of differential equations can be effectively solved with the Monte Carlo method, and the differential equations with initial condition can also be calculated by using a stochastic probability model which is based on the time-domain finite differential equations. Both the simulation results and theoretical analyses show that the errors of numerical results are lowered as the number of simulation particles is increased. (authors)
Application of goal programming to decision problem on optimal allocation of radiation workers
International Nuclear Information System (INIS)
Sa, Sangduk; Narita, Masakuni
1993-01-01
This paper is concerned with an optimal planning in a multiple objective decision-making problem of allocating radiation workers to workplaces associated with occupational exposure. The model problem is formulated with the application of goal programming which effectively followed up diverse and conflicting factors influencing the optimal decision. The formulation is based on the data simulating the typical situations encountered at the operating facilities such as nuclear power plants where exposure control is critical to the management. Multiple goals set by the decision-maker/manager who has the operational responsibilities for radiological protection are illustrated in terms of work requirements, exposure constraints of the places, desired allocation of specific personnel and so on. Test results of the model are considered to indicate that the model structure and its solution process can provide the manager with a good set of analysis of his problems in implementing the optimization review of radiation protection during normal operation. (author)
Directory of Open Access Journals (Sweden)
K. Karthikeyan
2012-10-01
Full Text Available This paper describes the application of an evolutionary algorithm, Restart Covariance Matrix Adaptation Evolution Strategy (RCMA-ES to the Generation Expansion Planning (GEP problem. RCMA-ES is a class of continuous Evolutionary Algorithm (EA derived from the concept of self-adaptation in evolution strategies, which adapts the covariance matrix of a multivariate normal search distribution. The original GEP problem is modified by incorporating Virtual Mapping Procedure (VMP. The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units is considered. Two different constraint-handling methods are incorporated and impact of each method has been compared. In addition, comparison and validation has also made with dynamic programming method.
Institute of Scientific and Technical Information of China (English)
Feng Junwen
2006-01-01
To overcome the limitations of the traditional surrogate worth trade-off (SWT) method and solve the multiple criteria decision making problem more efficiently and interactively, a new method labeled dual worth trade-off (DWT) method is proposed. The DWT method dynamically uses the duality theory related to the multiple criteria decision making problem and analytic hierarchy process technique to obtain the decision maker's solution preference information and finally find the satisfactory compromise solution of the decision maker. Through the interactive process between the analyst and the decision maker, trade-off information is solicited and treated properly, the representative subset of efficient solutions and the satisfactory solution to the problem are found. The implementation procedure for the DWT method is presented. The effectiveness and applicability of the DWT method are shown by a practical case study in the field of production scheduling.
Application of artificial intelligence for nuclear power plant surveillance and diagnosis problems
International Nuclear Information System (INIS)
Monnier, B.; Ricard, B.; Doutre, J.L.; Martin-Mattei, C.; Fernandes, A.
1991-01-01
This paper presents three expert systems in the field of surveillance and diagnosis of nuclear power plants. Each application is described from the point of view of knowledge modeling. Then, a general knowledge model is proposed for a class of diagnosis problems. At the end, the paper shows the future frame of the surveillance of the nuclear power plant main components at EDF in which the greatest part of those expert systems will run
Particular application of methods of AdaBoost and LBP to the problems of computer vision
Волошин, Микола Володимирович
2012-01-01
The application of AdaBoost method and local binary pattern (LBP) method for different spheres of computer vision implementation, such as personality identification and computer iridology, is considered in the article. The goal of the research is to develop error-correcting methods and systems for implements of computer vision and computer iridology, in particular. This article considers the problem of colour spaces, which are used as a filter and as a pre-processing of images. Method of AdaB...
Splitting methods for split feasibility problems with application to Dantzig selectors
International Nuclear Information System (INIS)
He, Hongjin; Xu, Hong-Kun
2017-01-01
The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets. (paper)
Applications of the Monte Carlo simulation in dosimetry and medical physics problems
International Nuclear Information System (INIS)
Rojas C, E. L.
2010-01-01
At the present time the computers use to solve important problems extends to all the areas. These areas can be of social, economic, of engineering, of basic and applied science, etc. With and appropriate handling of computation programs and information can be carried out calculations and simulations of real models, to study them and to solve theoretical or application problems. The processes that contain random variables are susceptible of being approached with the Monte Carlo method. This is a numeric method that, thanks to the improvements in the processors of the computers, it can apply in many tasks more than what was made in the principles of their practical application (at the beginning of the decade of 1950). In this work the application of the Monte Carlo method will be approached in the simulation of the radiation interaction with the matter, to investigate dosimetric aspects of some problems that exist in the medical physics area. Also, contain an introduction about some historical data and some general concepts related with the Monte Carlo simulation are revised. (Author)
Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie
2016-06-01
High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show
International Nuclear Information System (INIS)
Omori, Ryota, Sakakibara, Yasushi; Suzuki, Atsuyuki
1997-01-01
Applications of genetic algorithms (GAs) to optimization problems in the solvent extraction process for spent nuclear fuel are described. Genetic algorithms have been considered a promising tool for use in solving optimization problems in complicated and nonlinear systems because they require no derivatives of the objective function. In addition, they have the ability to treat a set of many possible solutions and consider multiple objectives simultaneously, so they can calculate many pareto optimal points on the trade-off curve between the competing objectives in a single iteration, which leads to small computing time. Genetic algorithms were applied to two optimization problems. First, process variables in the partitioning process were optimized using a weighted objective function. It was observed that the average fitness of a generation increased steadily as the generation proceeded and satisfactory solutions were obtained in all cases, which means that GAs are an appropriate method to obtain such an optimization. Secondly, GAs were applied to a multiobjective optimization problem in the co-decontamination process, and the trade-off curve between the loss of uranium and the solvent flow rate was successfully obtained. For both optimization problems, CPU time with the present method was estimated to be several tens of times smaller than with the random search method
Jackson, C. E., Jr.
1977-01-01
A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.
DEFF Research Database (Denmark)
Lepech, M.; Michel, Alexander; Geiker, Mette
2016-01-01
and widespread depassivation, are the mechanism behind experimental results of HPFRCC steel corrosion studies found in the literature. Such results provide an indication of the fundamental mechanisms by which steel reinforced HPFRCC materials may be more durable than traditional reinforced concrete and other......Using a newly developed multi-physics transport, corrosion, and cracking model, which models these phenomena as a coupled physiochemical processes, the role of HPFRCC crack control and formation in regulating steel reinforcement corrosion is investigated. This model describes transport of water...... and chemical species, the electric potential distribution in the HPFRCC, the electrochemical propagation of steel corrosion, and the role of microcracks in the HPFRCC material. Numerical results show that the reduction in anode and cathode size on the reinforcing steel surface, due to multiple crack formation...
Development and verification of the neutron diffusion solver for the GeN-Foam multi-physics platform
International Nuclear Information System (INIS)
Fiorina, Carlo; Kerkar, Nordine; Mikityuk, Konstantin; Rubiolo, Pablo; Pautz, Andreas
2016-01-01
Highlights: • Development and verification of a neutron diffusion solver based on OpenFOAM. • Integration in the GeN-Foam multi-physics platform. • Implementation and verification of acceleration techniques. • Implementation of isotropic discontinuity factors. • Automatic adjustment of discontinuity factors. - Abstract: The Laboratory for Reactor Physics and Systems Behaviour at the PSI and the EPFL has been developing in recent years a new code system for reactor analysis based on OpenFOAM®. The objective is to supplement available legacy codes with a modern tool featuring state-of-the-art characteristics in terms of scalability, programming approach and flexibility. As part of this project, a new solver has been developed for the eigenvalue and transient solution of multi-group diffusion equations. Several features distinguish the developed solver from other available codes, in particular: object oriented programming to ease code modification and maintenance; modern parallel computing capabilities; use of general unstructured meshes; possibility of mesh deformation; cell-wise parametrization of cross-sections; and arbitrary energy group structure. In addition, the solver is integrated into the GeN-Foam multi-physics solver. The general features of the solver and its integration with GeN-Foam have already been presented in previous publications. The present paper describes the diffusion solver in more details and provides an overview of new features recently implemented, including the use of acceleration techniques and discontinuity factors. In addition, a code verification is performed through a comparison with Monte Carlo results for both a thermal and a fast reactor system.
International Nuclear Information System (INIS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A.K.; Polivanov, M.C.
1993-01-01
The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. The authors demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schroedinger equation as an example, it is shown that all types of solutions of the linear problem, as well as spectral data known in the literature, are given as specific values of this unique function - the resolvent function. A new form of the inverse problem is formulated. 7 refs
International Nuclear Information System (INIS)
Gilai, D.
1976-01-01
The Maximum Principle deals with optimization problems of systems, which are governed by ordinary differential equations, and which include constraints on the state and control variables. The development of nuclear engineering confronted the designers of reactors, shielding and other nuclear devices with many requests of optimization and savings and it was straight forward to use the Maximum Principle for solving optimization problems in nuclear engineering, in fact, it was widely used both structural concept design and dynamic control of nuclear systems. The main disadvantage of the Maximum Principle is that it is suitable only for systems which may be described by ordinary differential equations, e.g. one dimensional systems. In the present work, starting from the variational approach, the original Maximum Principle is extended to multidimensional systems, and the principle which has been derived, is of a more general form and is applicable to any system which can be defined by linear partial differential equations of any order. To check out the applicability of the extended principle, two examples are solved: the first in nuclear shield design, where the goal is to construct a shield around a neutron emitting source, using given materials, so that the total dose outside of the shielding boundaries is minimized, the second in material distribution design in the core of a power reactor, so that the power peak is minimised. For the second problem, an iterative method was developed. (B.G.)
Directory of Open Access Journals (Sweden)
M. E. Haji Abadi
2013-09-01
Full Text Available In this paper, the continuous optimal control theory is used to model and solve the maximum entropy problem for a continuous random variable. The maximum entropy principle provides a method to obtain least-biased probability density function (Pdf estimation. In this paper, to find a closed form solution for the maximum entropy problem with any number of moment constraints, the entropy is considered as a functional measure and the moment constraints are considered as the state equations. Therefore, the Pdf estimation problem can be reformulated as the optimal control problem. Finally, the proposed method is applied to estimate the Pdf of the hourly electricity prices of New England and Ontario electricity markets. Obtained results show the efficiency of the proposed method.
SALOME. A software integration platform for multi-physics, pre-processing and visualisation
International Nuclear Information System (INIS)
Bergeaud, Vincent; Lefebvre, Vincent
2010-01-01
In order to ease the development of applications integrating simulation codes, CAD modelers and post-processing tools. CEA and EDF R and D have invested in the SALOME platform, a tool dedicated to the environment of the scientific codes. The platform comes in the shape of a toolbox which offers functionalities for CAD, meshing, code coupling, visualization, GUI development. These tools can be combined to create integrated applications that make the scientific codes easier to use and well-interfaced with their environment be it other codes, CAD and meshing tools or visualization software. Many projects in CEA and EDF R and D now use SALOME, bringing technical coherence to the software suites of our institutions. (author)
A Multi-physics Approach to Understanding Low Porosity Soils and Reservoir Rocks
Prasad, M.; Mapeli, C.; Livo, K.; Hasanov, A.; Schindler, M.; Ou, L.
2017-12-01
We present recent results on our multiphysics approach to rock physics. Thus, we evaluate geophysical measurements by simultaneously measuring petrophysical properties or imaging strains. In this paper, we present simultaneously measured acoustic and electrical anisotropy data as functions of pressure. Similarly, we present strains and strain localization images simultaneously acquired with acoustic measurements as well as NMR T2 relaxations on pressurized fluids as well as rocks saturated with these pressurized fluids. Such multiphysics experiments allow us to constrain and assign appropriate causative mechanisms to development rock physics models. They also allow us to decouple various effects, for example, fluid versus pressure, on geophysical measurements. We show applications towards reservoir characterization as well as CO2 sequestration applications.
Directory of Open Access Journals (Sweden)
Luciana Cidrim
Full Text Available ABSTRACT Purpose: to present a new application for mobile devices, referred to as Desembaralhando, for intervention in the problem of dyslexic children mirror writring. Methods: the development of the application is the result of a set of clinical and speech therapy information and experiences, which points out frequency of letter mirroring as a challenging problem in children with dyslexia. The application, developed in the light of the multisensory approach, was created by a multidisciplinary team of computer scientists, a game designer and a speech therapist, in order to meet users requirements, such as appropriate fonts and colors. Results: the activities stimulate phonological awareness skills from the association between images and words, audio aids, as well as an original function that is the rotational movement of letters b/d and a/e, which facilitates the perception of the visual layout of the letters. Conclusions: guidelines such as the choice of typography and interface colors appropriate to dyslexic children are used to favor intervention, in order to minimize the difficulties of these children regarding letters mirroring.
Development of multi-physics code systems based on the reactor dynamics code DYN3D
Energy Technology Data Exchange (ETDEWEB)
Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)
2011-07-15
The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)
Development of multi-physics code systems based on the reactor dynamics code DYN3D
International Nuclear Information System (INIS)
Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo
2011-01-01
The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sato, S; Sugiyama, S; Nagata, K; Nanba, K; Shimono, M [Sumitomo Light Metal Industries Ltd., Tokyo (Japan)
1977-06-01
The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack on copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection was observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-12-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.
The application of surface science in the solution of aircraft materials problems
International Nuclear Information System (INIS)
Arnott, D.R.
1999-01-01
Full text: There is now a tendency for both commercial and military aircraft to be maintained and operated for several decades. Indeed some of our front-line defence aircraft have programme withdrawal lives approaching half a century. This places significant demands on the materials used in engines and airframes. The properties and performance of the materials can degrade with time leading to an increase in the importance of repair and maintenance technologies. As most materials problems start at a surface or an interface, it is not surprising that surface sensitive tools are used to resolve many degradation problems. In some cases, the resolution of problems can lead to life-enhancing improvements for the aircraft. This paper will examine some of the practical issues in the use of surface analytical tools for the examination and resolution of practical aircraft problems. Illustrations will be drawn from the application of surface analysis in the areas of corrosion, fracture and adhesive bonding. Copyright (1999) Australian X-ray Analytical Association Inc
Some problems in mechanics of growing solids with applications to AM technologies
Manzhirov, A. V.
2018-04-01
Additive Manufacturing (AM) technologies are an exciting area of the modern industrial revolution and have applications in engineering, medicine, electronics, aerospace industry, etc. AM enables cost-effective production of customized geometry and parts by direct fabrication from 3D data and mathematical models. Despite much progress in AM technologies, problems of mechanical analysis for AM fabricated parts yet remain to be solved. This paper deals with three main mechanical problems: the onset of residual stresses, which occur in the AM process and can lead to failure of the parts, the distortion of the final shape of AM fabricated parts, and the development of technological solutions aimed at improving existing AM technologies and creating new ones. An approach proposed deals with the construction of adequate analytical model and effective methods for the simulation of AM processes for fabricated solid parts.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
Application of calorimetry and thermodynamics to critical problems in materials science
International Nuclear Information System (INIS)
Atake, Tooru
2009-01-01
Calorimetry and thermodynamic studies have long been playing a very important role in the research fields of fundamental science and technology. Some topics and examples of thermodynamics studies are given, and the details are explained on the basis of the present author's experience, focusing attention to application of adiabatic calorimetry and thermodynamics to solve critical problems in materials science: (1) condensed gas calorimetry and third law entropy, (2) phase transition and polymorphism in simple molecular crystals, (3) incommensurate phase transitions, (4) particle size effects on the phase transitions in ferroelectric/ferroelastic crystals, (5) relaxor ferroelectrics and multi-ferroics, and some other topics in materials science and technology
International Nuclear Information System (INIS)
Dattoli, G.; Torre, A.; Mancho, A.M.
2000-01-01
The theory of generalized Bessel functions has found significant applications in the analysis of radiation phenomena, associated with charges moving in magnetic devices. In this paper we exploit the monomiality principle to discuss the theory of two-variable Laguerre polynomials and introduce the associated Laguerre-Bessel functions. We study their properties (addition and multiplication theorems, generating function, recurrence relations and so on) and discuss the link with the ordinary case. The usefulness of the obtained results to treat problems relevant to the paraxial propagation of electromagnetic waves is also discussed.
Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems
Sharov, J. V.
2017-12-01
Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.
An Application of Computer Vision Systems to Solve the Problem of Unmanned Aerial Vehicle Control
Directory of Open Access Journals (Sweden)
Aksenov Alexey Y.
2014-09-01
Full Text Available The paper considers an approach for application of computer vision systems to solve the problem of unmanned aerial vehicle control. The processing of images obtained through onboard camera is required for absolute positioning of aerial platform (automatic landing and take-off, hovering etc. used image processing on-board camera. The proposed method combines the advantages of existing systems and gives the ability to perform hovering over a given point, the exact take-off and landing. The limitations of implemented methods are determined and the algorithm is proposed to combine them in order to improve the efficiency.
Visibility-Based Goal Oriented Metrics and Application to Navigation and Path Planning Problems
2017-12-14
Oriented Metrics and Application to Navigation and Path Planning Problems Report Term: 0-Other Email : ytsai@math.utexas.edu Distribution Statement: 1...error bounds that we have obtained. Report Date: 06-Dec-2017 INVESTIGATOR(S): Phone Number: 5122327757 Principal: Y Name: Yen-Hsi Tsai Email ...w1 w2 ◆ and ~z = ✓ z1 z2 ◆ . Then we can write D0 h (PN (xi,j)) = Rp (R+⌘)2+h2 + 1 2h (µ2w1 µ2z1) 0 µ2w2µ3z2 2h 0 ! . It follows that the non
International Nuclear Information System (INIS)
Yoo, K.J.
1982-01-01
The albedo boundary conditions are incorporated into the finite element method using bicubic Hermite element functions in order to reduce the computer memory and computation time in two-group diffusion calculations by excluding the reflector regions in computation space. The basis functions at the core-reflector interfaces are newly established to satisfy the albedo boundary conditions, and then the ''weak'' form of two-group diffusion equations is discretized using the principle of the weighted residual method in combination with the Galerkin approximation. The discretized two-group diffusion equation is then solved by the Gaussian elimination method with the scaled column pivoting algorithm in one-dimensional problem and Gauss-Seidel method in two-dimensional problem. Prior to the application of the method to two-group diffusion problems, the same method is applied to the one-speed neutron transport equation in a bare slab reactor with the vacuum boundary condition to confirm its usefulness in the diffusion calculations. To investigate the applicability of our diffusion method, several numerical calculations are performed: two-dimensional IAEA benchmark problem and two-dimensional ZION problem. The results are compared with the available results from the conventional finite difference and other finite element methods. If the albedo values are appropriately adjusted, our results of the two-dimensional IAEA benchmark problem are agreed within 0.002% of ksub(eff) with the fine mesh PDQ results. Comparing with CITATION results, one-eighth of core memory and one-fifteenth of computing time are required to obtain the same accuracy even though no acceleration technique is used in the present case. Also, it is found that the results are comparable with the other finite element results. However, no significant saving is obtained in computation time comparing with the other finite element results, where the reflector regions are explicity included. This mainly comes from
The application of neural network techniques to magnetic and optical inverse problems
International Nuclear Information System (INIS)
Jones, H.V.
2000-12-01
The processing power of the computer has increased at unimaginable rates over the last few decades. However, even today's fastest computer can take several hours to find solutions to some mathematical problems; and there are instances where a high powered supercomputer may be impractical, with the need for near instant solutions just as important (such as in an on-line testing system). This led us to believe that such complex problems could be solved using a novel approach, whereby the system would have prior knowledge about the expected solutions through a process of learning. One method of approaching this kind of problem is through the use of machine learning. Just as a human can be trained and is able to learn from past experiences, a machine is can do just the same. This is the concept of neural networks. The research which was conducted involves the investigation of various neural network techniques, and their applicability to solve some known complex inverse problems in the field of magnetic and optical recording. In some cases a comparison is also made to more conventional methods of solving the problems, from which it was possible to outline some key advantages of using a neural network approach. We initially investigated the application of neural networks to transverse susceptibility data in order to determine anisotropy distributions. This area of research is proving to be very important, as it gives us information about the switching field distribution, which then determines the minimum transition width achievable in a medium, and affects the overwrite characteristics of the media. Secondly, we investigated a similar situation, but applied to an optical problem. This involved the determination of important compact disc parameters from the diffraction pattern of a laser from a disc. This technique was then intended for use in an on-line testing system. Finally we investigated another area of neural networks with the analysis of magnetisation maps and
Directory of Open Access Journals (Sweden)
Anjan Mukherjee
2014-12-01
Full Text Available Interval valued neutrosophic soft set introduced by Irfan Deli in 2014[8] is a generalization of neutrosophic set introduced by F. Smarandache in 1995[19], which can be used in real scientific and engineering applications. In this paper the Hamming and Euclidean distances between two interval valued neutrosophic soft sets (IVNS sets are defined and similarity measures based on distances between two interval valued neutrosophic soft sets are proposed. Similarity measure based on set theoretic approach is also proposed. Some basic properties of similarity measures between two interval valued neutrosophic soft sets is also studied. A decision making method is established for interval valued neutrosophic soft set setting using similarity measures between IVNS sets. Finally an example is given to demonstrate the possible application of similarity measures in pattern recognition problems.
Imran, H. M.; Kala, J.; Ng, A. W. M.; Muthukumaran, S.
2018-04-01
Appropriate choice of physics options among many physics parameterizations is important when using the Weather Research and Forecasting (WRF) model. The responses of different physics parameterizations of the WRF model may vary due to geographical locations, the application of interest, and the temporal and spatial scales being investigated. Several studies have evaluated the performance of the WRF model in simulating the mean climate and extreme rainfall events for various regions in Australia. However, no study has explicitly evaluated the sensitivity of the WRF model in simulating heatwaves. Therefore, this study evaluates the performance of a WRF multi-physics ensemble that comprises 27 model configurations for a series of heatwave events in Melbourne, Australia. Unlike most previous studies, we not only evaluate temperature, but also wind speed and relative humidity, which are key factors influencing heatwave dynamics. No specific ensemble member for all events explicitly showed the best performance, for all the variables, considering all evaluation metrics. This study also found that the choice of planetary boundary layer (PBL) scheme had largest influence, the radiation scheme had moderate influence, and the microphysics scheme had the least influence on temperature simulations. The PBL and microphysics schemes were found to be more sensitive than the radiation scheme for wind speed and relative humidity. Additionally, the study tested the role of Urban Canopy Model (UCM) and three Land Surface Models (LSMs). Although the UCM did not play significant role, the Noah-LSM showed better performance than the CLM4 and NOAH-MP LSMs in simulating the heatwave events. The study finally identifies an optimal configuration of WRF that will be a useful modelling tool for further investigations of heatwaves in Melbourne. Although our results are invariably region-specific, our results will be useful to WRF users investigating heatwave dynamics elsewhere.
May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe
2011-10-01
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
C Hauman
2014-06-01
Full Text Available The vehicle routing problem with time windows is a widely studied problem with many real-world applications. The problem considered here entails the construction of routes that a number of identical vehicles travel to service different nodes within a certain time window. New benchmark problems with multi-objective features were recently suggested in the literature and the multi-objective optimisation cross-entropy method is applied to these problems to investigate the feasibility of the method and to determine and propose reference solutions for the benchmark problems. The application of the cross-entropy method to the multi-objective vehicle routing problem with soft time windows is investigated. The objectives that are evaluated include the minimisation of the total distance travelled, the number of vehicles and/or routes, the total waiting time and delay time of the vehicles and the makespan of a route.
Application of Ant-Colony-Based Algorithms to Multi-Reservoir Water Resources Problems
Directory of Open Access Journals (Sweden)
Alireza Borhani Darian
2011-01-01
Full Text Available In this paper, the continuous Ant Colony Optimization Algorithm (ACOR is used to investigate the optimum operation of complex multi-reservoir systems. The results are compared with those of the well-known Genetic Algorithm (GA. For this purpose, GA and ACOR are used to solve the long-term operation of a three-reservoir system in Karkheh Basin, southwestern Iran. The solution must determine monthly releases from the three reservoirs and their optimum allocations among the four agricultural demand areas. Meanwhile, a minimum discharge must be maintained within the river reaches for environmental concerns. Review of past research shows that only a few applications of Ant Colony have been generally made in water resources system problems; however, up to the time of initiating this paper, we found no other application of the ACOR in this area. Therefore, unlike GA, application of Ant-Colony-based algorithms in water resources systems has not been thoroughly evaluated and deserves serious study. In this paper, the ACOR is stuided as the most recent Ant-Colony-based algorithm and its application in a multi-reservoir system is evaluated. The results indicate that with when the number of decision variables increases, a longer computational time is required and the optimum solutions found are inferior. Therefore, the ACOR would be unable to solve complex water resources problems unless some modifications are considered. To overcome a part of these drawbacks, a number of techniques are introduced in this paper that considerably improve the quality of the method by decreasing the required computation time and by enhancing optimum solutions found.
Numerical simulations of coupled problems in engineering
2014-01-01
This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.
Seyhan, Hatice Güngör
2015-01-01
This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…
The multi-physics, user-friendly gas-dynamics code Visual Tsunami 2.0
International Nuclear Information System (INIS)
Debonnel, C. S.; Trubov, L.; Zeballos, C. A.; Peterson, P. F.
2007-01-01
Since the early 1990's, the series of simulation code known as TSUNAMI has been the main tool employed to explore gas dynamics phenomena in thick-liquid protected inertial fusion target chambers. The applicability and user-friendliness of the code was recently extended through a set of MATLAB pre- and post-processing tools and graphical user interfaces [1]. Geometry, initial, and boundary conditions can be specified from within AutoCAD through a set of in-house AutoLISP graphical user interfaces. A novel MATLAB core was recently developed and tested, and is now routinely used with the user-friendly pre- and post-processors [2]. An overview of Visual Tsunami 2.0, the latest version of the code, is presented here. (authors)
Energy Technology Data Exchange (ETDEWEB)
Sauget, M
2007-12-15
This research is about the application of neural networks used in the external radiotherapy domain. The goal is to elaborate a new evaluating system for the radiation dose distributions in heterogeneous environments. The al objective of this work is to build a complete tool kit to evaluate the optimal treatment planning. My st research point is about the conception of an incremental learning algorithm. The interest of my work is to combine different optimizations specialized in the function interpolation and to propose a new algorithm allowing to change the neural network architecture during the learning phase. This algorithm allows to minimise the al size of the neural network while keeping a good accuracy. The second part of my research is to parallelize the previous incremental learning algorithm. The goal of that work is to increase the speed of the learning step as well as the size of the learned dataset needed in a clinical case. For that, our incremental learning algorithm presents an original data decomposition with overlapping, together with a fault tolerance mechanism. My last research point is about a fast and accurate algorithm computing the radiation dose deposit in any heterogeneous environment. At the present time, the existing solutions used are not optimal. The fast solution are not accurate and do not give an optimal treatment planning. On the other hand, the accurate solutions are far too slow to be used in a clinical context. Our algorithm answers to this problem by bringing rapidity and accuracy. The concept is to use a neural network adequately learned together with a mechanism taking into account the environment changes. The advantages of this algorithm is to avoid the use of a complex physical code while keeping a good accuracy and reasonable computation times. (author)
Energy Technology Data Exchange (ETDEWEB)
Azmy, Y.Y. [The Pennsylvania State University, 229 Reber Building, University Park, PA 16802 (United States)]. e-mail: yya3@psu.edu
2004-07-01
Particle transport problems are notorious for their difficulty. This fact requires that production level computer codes designed to address realistic engineering problems possess three important features: (i) high computational efficiency as measured by solution accuracy for a fixed computational cost; (ii) a wide variety of options to enhance robustness of the transport solver; and (iii) a broad collection of support codes that extend the reach of the transport solver to a wide variety of applications. The Discrete Ordinates of Oak Ridge System (DOORS) code package was designed with these features in mind. In this paper, capabilities of member codes in the DOORS package are overviewed with particular emphasis on two newly developed peripheral codes: BOT3P the mesh-generation and visualization code package, and GipGui the graphical user interface for the cross section manipulation code, GIP. Two large applications are used to illustrate the tight coupling between the peripheral codes and the DORT and TORT transport solvers in two and three dimensional geometries, respectively. These are: (i) criticality calculations for the C5G7MOX core benchmark; and (ii) dose distribution calculations for the Target Service Cell (TSC) of the Spallation Neutron Source (SNS). (Author)
International Nuclear Information System (INIS)
Azmy, Y.Y.
2004-01-01
Particle transport problems are notorious for their difficulty. This fact requires that production level computer codes designed to address realistic engineering problems possess three important features: (i) high computational efficiency as measured by solution accuracy for a fixed computational cost; (ii) a wide variety of options to enhance robustness of the transport solver; and (iii) a broad collection of support codes that extend the reach of the transport solver to a wide variety of applications. The Discrete Ordinates of Oak Ridge System (DOORS) code package was designed with these features in mind. In this paper, capabilities of member codes in the DOORS package are overviewed with particular emphasis on two newly developed peripheral codes: BOT3P the mesh-generation and visualization code package, and GipGui the graphical user interface for the cross section manipulation code, GIP. Two large applications are used to illustrate the tight coupling between the peripheral codes and the DORT and TORT transport solvers in two and three dimensional geometries, respectively. These are: (i) criticality calculations for the C5G7MOX core benchmark; and (ii) dose distribution calculations for the Target Service Cell (TSC) of the Spallation Neutron Source (SNS). (Author)
Luo, Shunlong; Sun, Yuan
2017-08-01
Quantifications of coherence are intensively studied in the context of completely decoherent operations (i.e., von Neuamnn measurements, or equivalently, orthonormal bases) in recent years. Here we investigate partial coherence (i.e., coherence in the context of partially decoherent operations such as Lüders measurements). A bona fide measure of partial coherence is introduced. As an application, we address the monotonicity problem of K -coherence (a quantifier for coherence in terms of Wigner-Yanase skew information) [Girolami, Phys. Rev. Lett. 113, 170401 (2014), 10.1103/PhysRevLett.113.170401], which is introduced to realize a measure of coherence as axiomatized by Baumgratz, Cramer, and Plenio [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401]. Since K -coherence fails to meet the necessary requirement of monotonicity under incoherent operations, it is desirable to remedy this monotonicity problem. We show that if we modify the original measure by taking skew information with respect to the spectral decomposition of an observable, rather than the observable itself, as a measure of coherence, then the problem disappears, and the resultant coherence measure satisfies the monotonicity. Some concrete examples are discussed and related open issues are indicated.
Proximal methods for the resolution of inverse problems: application to positron emission tomography
International Nuclear Information System (INIS)
Pustelnik, N.
2010-12-01
The objective of this work is to propose reliable, efficient and fast methods for minimizing convex criteria, that are found in inverse problems for imagery. We focus on restoration/reconstruction problems when data is degraded with both a linear operator and noise, where the latter is not assumed to be necessarily additive.The reliability of the method is ensured through the use of proximal algorithms, the convergence of which is guaranteed when a convex criterion is considered. Efficiency is sought through the choice of criteria adapted to the noise characteristics, the linear operators and the image specificities. Of particular interest are regularization terms based on total variation and/or sparsity of signal frame coefficients. As a consequence of the use of frames, two approaches are investigated, depending on whether the analysis or the synthesis formulation is chosen. Fast processing requirements lead us to consider proximal algorithms with a parallel structure. Theoretical results are illustrated on several large size inverse problems arising in image restoration, stereoscopy, multi-spectral imagery and decomposition into texture and geometry components. We focus on a particular application, namely Positron Emission Tomography (PET), which is particularly difficult because of the presence of a projection operator combined with Poisson noise, leading to highly corrupted data. To optimize the quality of the reconstruction, we make use of the spatio-temporal characteristics of brain tissue activity. (author)
Students’ understanding and application of the area under the curve concept in physics problems
Directory of Open Access Journals (Sweden)
Dong-Hai Nguyen
2011-06-01
Full Text Available This study investigates how students understand and apply the area under the curve concept and the integral-area relation in solving introductory physics problems. We interviewed 20 students in the first semester and 15 students from the same cohort in the second semester of a calculus-based physics course sequence on several problems involving the area under the curve concept. We found that only a few students could recognize that the concept of area under the curve was applicable in physics problems. Even when students could invoke the area under the curve concept, they did not necessarily understand the relationship between the process of accumulation and the area under a curve, so they failed to apply it to novel situations. We also found that when presented with several graphs, students had difficulty in selecting the graph such that the area under the graph corresponded to a given integral, although all of them could state that “the integral equaled the area under the curve.” The findings in this study are consistent with those in previous mathematics education research and research in physics education on students’ use of the area under the curve.
Directory of Open Access Journals (Sweden)
Kenan Karagül
2014-07-01
Full Text Available In this study, Fleet Size and Mix Vehicle Routing Problem is considered in order to optimize the distribution of the tourists who have traveled between the airport and the hotels in the shortest distance by using the minimum cost. The initial solution space for the related methods are formed as a combination of Savings algorithm, Sweep algorithm and random permutation alignment. Then, two well-known solution methods named as Standard Genetic Algorithms and random search algorithms are used for changing the initial solutions. Computational power of the machine and heuristic algorithms are used instead of human experience and human intuition in order to solve the distribution problem of tourists coming to hotels in Alanya region from Antalya airport. For this case study, daily data of tourist distributions performed by an agency operating in Alanya region are considered. These distributions are then modeled as Vehicle Routing Problem to calculate the solutions for various applications. From the comparisons with the decision of a human expert, it is seen that the proposed methods produce better solutions with respect to human experience and insight. Random search method produces a solution more favorable in terms of time. As a conclusion, it is seen that, owing to the distribution plans offered by the obtained solutions, the agencies may reduce the costs by achieving savings up to 35%.
Directory of Open Access Journals (Sweden)
Thomas Guntz
2018-03-01
Full Text Available In this paper we present the first results of a pilot experiment in the interpretation of multimodal observations of human experts engaged in solving challenging chess problems. Our goal is to investigate the extent to which observations of eye-gaze, posture, emotion and other physiological signals can be used to model the cognitive state of subjects, and to explore the integration of multiple sensor modalities to improve the reliability of detection of human displays of awareness and emotion. Domains of application for such cognitive model based systems are, for instance, healthy autonomous ageing or automated training systems. Abilities to observe cognitive abilities and emotional reactions can allow artificial systems to provide appropriate assistance in such contexts. We observed chess players engaged in problems of increasing difficulty while recording their behavior. Such recordings can be used to estimate a participant’s awareness of the current situation and to predict ability to respond effectively to challenging situations. Feature selection has been performed to construct a multimodal classifier relying on the most relevant features from each modality. Initial results indicate that eye-gaze, body posture and emotion are good features to capture such awareness. This experiment also validates the use of our equipment as a general and reproducible tool for the study of participants engaged in screen-based interaction and/or problem solving.
Yang, Eunice
2016-02-01
This paper discusses the use of a free mobile engineering application (app) called Autodesk® ForceEffect™ to provide students assistance with spatial visualization of forces and more practice in solving/visualizing statics problems compared to the traditional pencil-and-paper method. ForceEffect analyzes static rigid-body systems using free-body diagrams (FBDs) and provides solutions in real time. It is a cost-free software that is available for download on the Internet. The software is supported on the iOS™, Android™, and Google Chrome™ platforms. It is easy to use and the learning curve is approximately two hours using the tutorial provided within the app. The use of ForceEffect has the ability to provide students different problem modalities (textbook, real-world, and design) to help them acquire and improve on skills that are needed to solve force equilibrium problems. Although this paper focuses on the engineering mechanics statics course, the technology discussed is also relevant to the introductory physics course.
The self-similar field and its application to a diffusion problem
International Nuclear Information System (INIS)
Michelitsch, Thomas M
2011-01-01
We introduce a continuum approach which accounts for self-similarity as a symmetry property of an infinite medium. A self-similar Laplacian operator is introduced which is the source of self-similar continuous fields. In this way ‘self-similar symmetry’ appears in an analogous manner as transverse isotropy or cubic symmetry of a medium. As a consequence of the self-similarity the Laplacian is a non-local fractional operator obtained as the continuum limit of the discrete self-similar Laplacian introduced recently by Michelitsch et al (2009 Phys. Rev. E 80 011135). The dispersion relation of the Laplacian and its Green’s function is deduced in closed forms. As a physical application of the approach we analyze a self-similar diffusion problem. The statistical distributions, which constitute the solutions of this problem, turn out to be Lévi-stable distributions with infinite variances characterizing the statistics of one-dimensional Lévi flights. The self-similar continuum approach introduced in this paper has the potential to be applied on a variety of scale invariant and fractal problems in physics such as in continuum mechanics, electrodynamics and in other fields. (paper)
The optimal solution of a non-convex state-dependent LQR problem and its applications.
Directory of Open Access Journals (Sweden)
Xudan Xu
Full Text Available This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR problem, in which the control penalty weighting matrix [Formula: see text] in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting [Formula: see text]. It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting [Formula: see text], in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions.
Zörnig, Peter
2015-08-01
We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.
Young Consumers’ Perception of Problems and Usefulness of Mobile Shopping Applications
Directory of Open Access Journals (Sweden)
Blaženka Knežević
2017-03-01
Full Text Available Objective: The objective of this paper is to explain how young consumers from Croatia perceive problems and usefulness of mobile shopping applications. Research Design & Methods: The paper is based on descriptive statistics of data collected in a wide-range survey on mobile commerce attitudes within young population in Croatia. The questionnaire was designed upon recent literature in the fields of electronic and mobile commerce. The quantitative data analysis regarding mobile application problems and usefulness was conducted on 276 validated questionnaires. Findings: The majority of young population in Croatia is experienced in smartphone usage and can be referred to as “handset generation”. They express a high level of satisfaction regarding mobile purchasing and have positive attitudes towards the usefulness of mobile shopping applications. They are aware of mobile purchasing obstacles and risks and perceive some of them as very important. Implications & Recommendations: The results of this study can be useful for researchers and practitioners in the retail industry. The findings can be used as a basis for adjusting policies towards mobile commerce within business strategies, not only in the retailing industry, but in other industries as well. Contribution & Value Added: The paper is a valuable contribution to research fields of retail marketing, retail management, electronic commerce and, especially, mobile commerce because it deals with primary data collected in a specific geographical market. As the authors developed their own set of questions, the presented findings can be used as a basis for future research in various markets and groups of consumers.
CSIR Research Space (South Africa)
Shatalov, M
2012-09-01
Full Text Available are transformed into systems of ordinary differential equations with initial conditions. This reduction is obtained by means of application of particular finite difference schemes to the spatial derivatives. Many of the wave propagation problems describing...
Directory of Open Access Journals (Sweden)
Claudia M. Colciago
2018-06-01
Full Text Available This paper deals with fast simulations of the hemodynamics in large arteries by considering a reduced model of the associated fluid-structure interaction problem, which in turn allows an additional reduction in terms of the numerical discretisation. The resulting method is both accurate and computationally cheap. This goal is achieved by means of two levels of reduction: first, we describe the model equations with a reduced mathematical formulation which allows to write the fluid-structure interaction problem as a Navier-Stokes system with non-standard boundary conditions; second, we employ numerical reduction techniques to further and drastically lower the computational costs. The non standard boundary condition is of a generalized Robin type, with a boundary mass and boundary stiffness terms accounting for the arterial wall compliance. The numerical reduction is obtained coupling two well-known techniques: the proper orthogonal decomposition and the reduced basis method, in particular the greedy algorithm. We start by reducing the numerical dimension of the problem at hand with a proper orthogonal decomposition and we measure the system energy with specific norms; this allows to take into account the different orders of magnitude of the state variables, the velocity and the pressure. Then, we introduce a strategy based on a greedy procedure which aims at enriching the reduced discretization space with low offline computational costs. As application, we consider a realistic hemodynamics problem with a perturbation in the boundary conditions and we show the good performances of the reduction techniques presented in the paper. The results obtained with the numerical reduction algorithm are compared with the one obtained by a standard finite element method. The gains obtained in term of CPU time are of three orders of magnitude.
Development of common user data model for APOLLO3 and MARBLE and application to benchmark problems
International Nuclear Information System (INIS)
Yokoyama, Kenji
2009-07-01
A Common User Data Model, CUDM, has been developed for the purpose of benchmark calculations between APOLLO3 and MARBLE code systems. The current version of CUDM was designed for core calculation benchmark problems with 3-dimensional Cartesian, 3-D XYZ, geometry. CUDM is able to manage all input/output data such as 3-D XYZ geometry, effective macroscopic cross section, effective multiplication factor and neutron flux. In addition, visualization tools for geometry and neutron flux were included. CUDM was designed by the object-oriented technique and implemented using Python programming language. Based on the CUDM, a prototype system for a benchmark calculation, CUDM-benchmark, was also developed. The CUDM-benchmark supports input/output data conversion for IDT solver in APOLLO3, and TRITAC and SNT solvers in MARBLE. In order to evaluate pertinence of CUDM, the CUDM-benchmark was applied to benchmark problems proposed by T. Takeda, G. Chiba and I. Zmijarevic. It was verified that the CUDM-benchmark successfully reproduced the results calculated with reference input data files, and provided consistent results among all the solvers by using one common input data defined by CUDM. In addition, a detailed benchmark calculation for Chiba benchmark was performed by using the CUDM-benchmark. Chiba benchmark is a neutron transport benchmark problem for fast criticality assembly without homogenization. This benchmark problem consists of 4 core configurations which have different sodium void regions, and each core configuration is defined by more than 5,000 fuel/material cells. In this application, it was found that the results by IDT and SNT solvers agreed well with the reference results by Monte-Carlo code. In addition, model effects such as quadrature set effect, S n order effect and mesh size effect were systematically evaluated and summarized in this report. (author)
Application of Raptor-M3G to reactor dosimetry problems on massively parallel architectures - 026
International Nuclear Information System (INIS)
Longoni, G.
2010-01-01
The solution of complex 3-D radiation transport problems requires significant resources both in terms of computation time and memory availability. Therefore, parallel algorithms and multi-processor architectures are required to solve efficiently large 3-D radiation transport problems. This paper presents the application of RAPTOR-M3G (Rapid Parallel Transport Of Radiation - Multiple 3D Geometries) to reactor dosimetry problems. RAPTOR-M3G is a newly developed parallel computer code designed to solve the discrete ordinates (SN) equations on multi-processor computer architectures. This paper presents the results for a reactor dosimetry problem using a 3-D model of a commercial 2-loop pressurized water reactor (PWR). The accuracy and performance of RAPTOR-M3G will be analyzed and the numerical results obtained from the calculation will be compared directly to measurements of the neutron field in the reactor cavity air gap. The parallel performance of RAPTOR-M3G on massively parallel architectures, where the number of computing nodes is in the order of hundreds, will be analyzed up to four hundred processors. The performance results will be presented based on two supercomputing architectures: the POPLE supercomputer operated by the Pittsburgh Supercomputing Center and the Westinghouse computer cluster. The Westinghouse computer cluster is equipped with a standard Ethernet network connection and an InfiniBand R interconnects capable of a bandwidth in excess of 20 GBit/sec. Therefore, the impact of the network architecture on RAPTOR-M3G performance will be analyzed as well. (authors)
Application of a unified fatigue modelling to some thermomechanical fatigue problems
International Nuclear Information System (INIS)
Dang, K. van; Maitournam, H.; Moumni, Z.
2005-01-01
Fatigue under thermomechanical loadings is an important topic for nuclear industries. For instance, thermal fatigue cracking is observed in the mixing zones of the nuclear reactor. Classical computations using existing methods based on strain amplitude or fracture mechanics are not sufficiently predictive. In this paper an alternative approach is proposed based on a multiscale modelling thanks to shakedown hypothesis. Examples of predictive results are presented. Finally an application to the RHR problem is discussed. Main ideas of the fatigue modelling: Following an idea of Professor D. Drucker who wrote in 1963 'when applied to the microstructure there is a hope that the concept of endurance limit and shakedown are related, and that fatigue failure can be related to energy dissipated in idealized material when shakedown does not occur.' we have developed a theory of fatigue based on this concept which is different from classical fatigue approaches. Many predictive applications have been already done particularly for the automotive industry. Fatigue resistance of structures undergoing thermomechanical loadings in the high cycle regime as well as in the low cycle regime are calculated using this modelling. However, this fatigue theory is until now rarely used in nuclear engineering. After recalling the main points of the theory, we shall present some relevant applications which were done in different industrial sectors. We shall apply this modelling to the prediction of thermal cracking observed in the mixing zones of RHR. (authors)
The application of nuclear science technology to understanding and solving environmental problems
International Nuclear Information System (INIS)
Zuk, W.M.
1997-01-01
The Australian Nuclear Science and Technology Organisation (ANSTO) has for many years been involved in applying nuclear science-based and related technologies to the understanding of environmental processes and to the development and implementation of practical and effective solutions to site specific problems, for a broad spectrum of industry, government regulatory agencies, and other organisations in Australia, Europe, North and South America and South East Asia. ANSTO's environmental science program arose out of the need for research to predict, measure, evaluate and monitor the environmental impacts associated with : uranium mining and processing in Australia; the operation of the research reactor at Lucas Heights; and the safe treatment and disposal of radioactive and conventional wastes associated with these activities. The expertise developed in these activities, has found application to a much broader range of environmental concerns. This paper will present an overview of ANSTO's application of nuclear science-based techniques to, inter alia: coastal and marine studies; minesite rehabilitation; transport and geochemical modelling of radionuclides, heavy metals and organic chemicals in the geosphere; the application of naturally-occurring radionuclides and radioactive tracers to corrosion and sedimentation studies in the coastal environment; dating sediments, fish corals and archaeological samples; the understanding of the kinetics and the physiological responses of aquatic organisms to radionuclides and metals in the environment: and the use of aquatic organism as archival and 'realtime' monitors of pollutants
Applications of artificial intelligence in engineering problems. Vol. 1 and 2. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Sriram, D; Adey, R [eds.
1986-01-01
The purpose of the first international conference on the application of AI to engineering problems is to provide a forum for engineers all over the world to present their work on these applications. The interest being shown in the engineering community is evident by the large number of papers from the conference that are compiled into these volumes. The topics span various engineering disciplines. These topics are grouped into the following categories: - Knowledge representation and acquisition. Robotics. Natural language processing. Inexact inference techniques. General design methodologies. Constraints. Design strategies specific to a particular domain. Diagnostic systems. Intelligent front ends. Tools and techniques for building expert systems. Most of the papers deal with knowledge-based expert systems. In addition to the regular sessions, two sessions discussing a number of ongoing projects were also included in the conference. A panel on the future of AI in the engineering industry and another panel on networking were scheduled. Distinguished invited speakers from academia and industry presented lectures on their experiences with the application of AI.
Energy Technology Data Exchange (ETDEWEB)
Le Pallec, J. C.; Crouzet, N.; Bergeaud, V.; Delavaud, C. [CEA/DEN/DM2S, CEA/Saclay, 91191 Gif sur Yvette Cedex (France)
2012-07-01
The control of uncertainties in the field of reactor physics and their propagation in best-estimate modeling are a major issue in safety analysis. In this framework, the CEA develops a methodology to perform multi-physics simulations including uncertainties analysis. The present paper aims to present and apply this methodology for the analysis of an accidental situation such as REA (Rod Ejection Accident). This accident is characterized by a strong interaction between the different areas of the reactor physics (neutronic, fuel thermal and thermal hydraulic). The modeling is performed with CRONOS2 code. The uncertainties analysis has been conducted with the URANIE platform developed by the CEA: For each identified response from the modeling (output) and considering a set of key parameters with their uncertainties (input), a surrogate model in the form of a neural network has been produced. The set of neural networks is then used to carry out a sensitivity analysis which consists on a global variance analysis with the determination of the Sobol indices for all responses. The sensitivity indices are obtained for the input parameters by an approach based on the use of polynomial chaos. The present exercise helped to develop a methodological flow scheme, to consolidate the use of URANIE tool in the framework of parallel calculations. Finally, the use of polynomial chaos allowed computing high order sensitivity indices and thus highlighting and classifying the influence of identified uncertainties on each response of the analysis (single and interaction effects). (authors)
Application of the invariant embedding method to analytically solvable transport problems
Energy Technology Data Exchange (ETDEWEB)
Wahlberg, Malin
2005-05-01
The applicability and performance of the invariant embedding method for calculating various transport quantities is investigated in this thesis. The invariant embedding method is a technique to calculate the reflected or transmitted fluxes in homogeneous half-spaces and slabs, without the need for solving for the flux inside the medium. In return, the embedding equations become non-linear, and in practical cases they need to be solved by numerical methods. There are, however, fast and effective iterative methods available for this purpose. The objective of this thesis is to investigate the performance of these iterative methods in model problems, in which also an exact analytical solution can be obtained. Some of these analytical solutions are also new, hence their derivation constitutes a part of the thesis work. The cases investigated in the thesis all concern the calculation of reflected fluxes from half-spaces. The first problem treated was the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production (i.e. like binary fission), when bombarded by o flux of monoenergetic particles of the same type. Both constant cross sections and energy dependent cross sections with a power law dependence were used in the calculations. The second class of problems concerned the calculation of the path length distribution of reflected particles from a medium without multiplication. It is an interesting new observation that the distribution of the path length travelled in the medium before reflection can be calculated with invariant embedding methods, which actually do not solve the flux distribution in the medium. We have tested the accuracy and the convergence properties of the embedding method also for this case. Finally, very recently a theory of connecting the infinite and half-space medium solutions by embedding-like integral equations was developed and reported in the literature
Energy Technology Data Exchange (ETDEWEB)
Nash, Stephen G.
2013-11-11
The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for
Application of the invariant embedding method to analytically solvable transport problems
International Nuclear Information System (INIS)
Wahlberg, Malin
2005-05-01
The applicability and performance of the invariant embedding method for calculating various transport quantities is investigated in this thesis. The invariant embedding method is a technique to calculate the reflected or transmitted fluxes in homogeneous half-spaces and slabs, without the need for solving for the flux inside the medium. In return, the embedding equations become non-linear, and in practical cases they need to be solved by numerical methods. There are, however, fast and effective iterative methods available for this purpose. The objective of this thesis is to investigate the performance of these iterative methods in model problems, in which also an exact analytical solution can be obtained. Some of these analytical solutions are also new, hence their derivation constitutes a part of the thesis work. The cases investigated in the thesis all concern the calculation of reflected fluxes from half-spaces. The first problem treated was the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production (i.e. like binary fission), when bombarded by o flux of monoenergetic particles of the same type. Both constant cross sections and energy dependent cross sections with a power law dependence were used in the calculations. The second class of problems concerned the calculation of the path length distribution of reflected particles from a medium without multiplication. It is an interesting new observation that the distribution of the path length travelled in the medium before reflection can be calculated with invariant embedding methods, which actually do not solve the flux distribution in the medium. We have tested the accuracy and the convergence properties of the embedding method also for this case. Finally, very recently a theory of connecting the infinite and half-space medium solutions by embedding-like integral equations was developed and reported in the literature
Lauer, J. L.; King, V. W.
1979-01-01
A far-infrared interferometer was converted into an emission microspectrophotometer for surface analysis. To cover the mid-infrared as well as the far-infrared the Mylar beamsplitter was made replaceable by a germanium-coated salt plate, and the Moire fringe counting system used to locate the moveable Michelson mirror was improved to read 0.5 micron of mirror displacement. Digital electronics and a dedicated minicomputer were installed for data collection and processing. The most critical element for the recording of weak emission spectra from small areas was, however, a reflecting microscope objective and phase-locked signal detection with simultaneous referencing to a blackbody source. An application of the technique to lubrication problems is shown.
Application of Discrete Fourier Transform in solving the inverse problem in gamma-ray logging
International Nuclear Information System (INIS)
Zorski, T.
1980-01-01
A new approach to the solution of inverse problem in gamma-ray logging is presented. The equation: I(z) = ∫sup(+infinite)sub(-infinite) phi (z-z')Isub(infinite)(z')dz', which relates the measured intensity I(z) with the intensity Isub(infinite)(z) not disturbed by finite thickness of an elementary layer, is solved for Isub(infinite)(z). Discrete Fourier Transform and convolution theorem are used. As a result of our solution discrete values of Isub(infinite)(z) given at a step of Δh are obtained. Examples of application of this method for Δh <= 4.5 cm and for the curves I(z) theoretically calculated are also discussed. (author)
Application of the HGPT methodology of reactor operation problems with a nodal mixed method
International Nuclear Information System (INIS)
Baudron, A.M.; Bruna, G.B.; Gandini, A.; Lautard, J.J.; Monti, S.; Pizzigati, G.
1998-01-01
The heuristically based generalized perturbation theory (HGPT), to first and higher order, applied to the neutron field of a reactor system, is discussed in relation to quasistatic problems. This methodology is of particular interest in reactor operation. In this application it may allow an on-line appraisal of the main physical responses of the reactor system when subject to alterations relevant to normal system exploitation, e.g. control rod movement, and/or soluble boron concentration changes to be introduced, for instance, for compensating power level variations following electrical network demands. In this paper, after describing the main features of the theory, its implementation into the diffusion, 3D mixed dual nodal code MINOS of the SAPHYR system is presented. The results from a small scale investigation performed on a simplified PWR system corroborate the validity of the methodology proposed
Application of a Monte Carlo Penelope code at diverse dosimetric problems in radiotherapy
International Nuclear Information System (INIS)
Sanchez, R.A.; Fernandez V, J.M.; Salvat, F.
1998-01-01
In the present communication it is presented the results of the simulation utilizing the Penelope code (Penetration and Energy loss of Positrons and Electrons) in several applications of radiotherapy which can be the radioactive sources simulation: 192 Ir, 125 I, 106 Ru or the electron beams simulation of a linear accelerator Siemens KDS. The simulations presented in this communication have been on computers of type Pentium PC of 100 throughout 300 MHz, and the times of execution were from some hours until several days depending of the complexity of the problem. It is concluded that Penelope is a very useful tool for the Monte Carlo calculations due to its great ability and its relative handling facilities. (Author)
International Nuclear Information System (INIS)
Ritenour, R.L.
1989-01-01
The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes
Electrochemical estimation on the applicability of nickel plating to EAC problems in CRDM nozzle
International Nuclear Information System (INIS)
Oh, Si Hyoung; Hwang, Il Soon
2002-01-01
The applicability of nickel-plating to EAC problems in CRDM nozzle was estimated in the light of electrochemical aspect. The passive film growth law for nickel was improved to include oxide dissolution rate improving conventional point defect model to explain retarded passivation of plated nickel in PWR primary side water environment and compared with experimental data. According to this model, oxide growth and passivation current is closely related with oxide dissolution rate because steady state is made only if oxide formation and oxide destruction rate are same, from which oxide dissolution rate constant, k s , was quantitatively obtained utilizing experimental data. Commonly observed current-time behavior, i∝t m ,where m is different from 1 or 0.5, for passive film formation can be accounted for by virtue of enhanced oxide dissolution in high temperature aqueous environment
Directory of Open Access Journals (Sweden)
Şeyda Gür
2018-01-01
Full Text Available Increased healthcare costs are pushing hospitals to reduce costs and increase the quality of care. Operating rooms are the most important source of income and expense for hospitals. Therefore, the hospital management focuses on the effectiveness of schedules and plans. This study includes analyses of recent research on operating room scheduling and planning. Most studies in the literature, from 2000 to the present day, were evaluated according to patient characteristics, performance measures, solution techniques used in the research, the uncertainty of the problem, applicability of the research, and the planning strategy to be dealt within the solution. One hundred seventy studies were examined in detail, after scanning the Emerald, Science Direct, JSTOR, Springer, Taylor and Francis, and Google Scholar databases. To facilitate the identification of these studies, they are grouped according to the different criteria of concern and then, a detailed overview is presented.
Interval Neutrosophic Sets and Their Application in Multicriteria Decision Making Problems
Directory of Open Access Journals (Sweden)
Hong-yu Zhang
2014-01-01
Full Text Available As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decision making method. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, a method for multicriteria decision making problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method.
Interval neutrosophic sets and their application in multicriteria decision making problems.
Zhang, Hong-yu; Wang, Jian-qiang; Chen, Xiao-hong
2014-01-01
As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decision making method. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, a method for multicriteria decision making problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method.
Lobato, Fran Sérgio
2017-01-01
This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.
Application of spectral Lanczos decomposition method to large scale problems arising geophysics
Energy Technology Data Exchange (ETDEWEB)
Tamarchenko, T. [Western Atlas Logging Services, Houston, TX (United States)
1996-12-31
This paper presents an application of Spectral Lanczos Decomposition Method (SLDM) to numerical modeling of electromagnetic diffusion and elastic waves propagation in inhomogeneous media. SLDM approximates an action of a matrix function as a linear combination of basis vectors in Krylov subspace. I applied the method to model electromagnetic fields in three-dimensions and elastic waves in two dimensions. The finite-difference approximation of the spatial part of differential operator reduces the initial boundary-value problem to a system of ordinary differential equations with respect to time. The solution to this system requires calculating exponential and sine/cosine functions of the stiffness matrices. Large scale numerical examples are in a good agreement with the theoretical error bounds and stability estimates given by Druskin, Knizhnerman, 1987.
THE APPLICATION OF WAVELET-MULTIFRACTAL ANALYSIS IN PROBLEMS OF METAL STRUCTURE
Directory of Open Access Journals (Sweden)
VOLCHUK V. N.
2015-09-01
Full Text Available Raising of problem. In order to obtain acceptable results of the evaluation of the metal structure developed methodology should include the use of both classical and modern methods of its evaluation and the properties of the produced goods. Thus, to establish the relationship between mechanical properties and structural elements of metal to use multifractal theory. The proposed method is the most appropriate to quantify the majority of real structures, which are integral approximation figures Euclid introduces some uncertainty, and therefore not always acceptable in practical problems of modern materials science. According to the proposed method, each of heterogeneous objects, which are the structures most metals can be characterized by variety of statistical Renyi dimensions. The range of dimensions multifractals interpreted as some of the physical laws, which have a separate statistical properties that make it possible to their financial performance. Application of statistical dimensions of the structural elements for the assessment of qualitative characteristics of metal contributes to their formalization as a function of the fractal dimension. This in turn makes it possible to identify and anticipate the physical and mechanical properties of the metal without producing special mechanical tests. Purpose obtain information about the possible application of wavelet-multifractal analysis to assess the microstructure of the metal. Conclusion. Using the methods of wavelet multifractal analysis, a statistical evaluation of the structural elements of steel St3ps. An analysis of the characteristics of uniformity, consistency and regularity of the structural elements has shown that most of the change observed in the samples subjected to accelerated cooling water in the temperature range of the intermediate (bainitic conversion 550 – 4500С, less - in samples cooled in the temperature range 650 pearlite transformation 6000С and the smallest
Application of the random phase approximation to complex problems in materials science
International Nuclear Information System (INIS)
Schimka, L.
2012-01-01
This thesis is devoted to the assessment and application of the random phase approximation (RPA) in the adiabatic-connection fluctuation-dissipation (ACFD) framework in solid state physics. The first part presents a review of density functional theory (DFT) and the ACFD theorem in the RPA. This includes an introduction to the many-body problem as well as a description of the implementation of the RPA in the Vienna Ab-initio Simulation Package (VASP). In the results part, the quality of the RPA is assessed and its performance compared to three (beyond) DFT functionals. The experimental values are corrected for the effect of phonon zero-point vibrational energies which were calculated at the DFT level from ab-initio. We find that the RPA describes all bonding situations very accurately, making it a promising candidate for more complex problems in solid state physics. In light of these findings, we investigate the carbon-water interaction in two specific cases: the adsorption of water on benzene and the adsorption of water on a graphene layer. We compare our results to a different correlated method: diffusion Monte Carlo (DMC). We find very good agreement and thus believe that our values can serve as a benchmark for the development of other DFT functionals to treat water-carbon interfaces. The highlight of this thesis is the successful application of the RPA to the long-standing and (at DFT level) unsolved CO adsorption puzzle. We show results for CO adsorption on Cu, late 4d metals and Pt. RPA is at present the only ab-initio method that describes adsorption and surface energies accurately at the same time and predicts the correct adsorption site in every single case. (author) [de
Directory of Open Access Journals (Sweden)
Dheeraj Kumar Joshi
2018-03-01
Full Text Available Uncertainties due to randomness and fuzziness comprehensively exist in control and decision support systems. In the present study, we introduce notion of occurring probability of possible values into hesitant fuzzy linguistic element (HFLE and define hesitant probabilistic fuzzy linguistic set (HPFLS for ill structured and complex decision making problem. HPFLS provides a single framework where both stochastic and non-stochastic uncertainties can be efficiently handled along with hesitation. We have also proposed expected mean, variance, score and accuracy function and basic operations for HPFLS. Weighted and ordered weighted aggregation operators for HPFLS are also defined in the present study for its applications in multi-criteria group decision making (MCGDM problems. We propose a MCGDM method with HPFL information which is illustrated by an example. A real case study is also taken in the present study to rank State Bank of India, InfoTech Enterprises, I.T.C., H.D.F.C. Bank, Tata Steel, Tata Motors and Bajaj Finance using real data. Proposed HPFLS-based MCGDM method is also compared with two HFL-based decision making methods.
Lawrence, Chris C.; Febbraro, Michael; Flaska, Marek; Pozzi, Sara A.; Becchetti, F. D.
2016-08-01
Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrix condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.
Directory of Open Access Journals (Sweden)
Liudmila Kirikova
2014-06-01
Full Text Available The increasing significance of science and the new ties with foreign countries affect the education and training of specialists. Continuous updating of specialty knowledge and the possibility to read the most recent scientific literature in a foreign language and to participate in joint conferences together with foreign partners require the education and training of specialists who would be capable of cooperating in scientific and professional activity while fluently communicating in a foreign language. The aim of the study was to reveal the peculiari- ties of the expression of problem-based learning (PBL elements in foreign language studies at Lithuanian University of Health Sciences (LUHS. The results of the pedagogical experiment conducted at LUHS when teaching the foreign language module showed that the application of PBL elements stimulated the formation of students’ deep approach to studies and skills of independent work. The use of group learning aim forma - tion, concept maps, problem solving, discussion, group work, and brainstorming techniques had a significant effect on the students, and allowed for their empowerment for successful studies.
Simon, Sheldon R
2004-12-01
The technology supporting the analysis of human motion has advanced dramatically. Past decades of locomotion research have provided us with significant knowledge about the accuracy of tests performed, the understanding of the process of human locomotion, and how clinical testing can be used to evaluate medical disorders and affect their treatment. Gait analysis is now recognized as clinically useful and financially reimbursable for some medical conditions. Yet, the routine clinical use of gait analysis has seen very limited growth. The issue of its clinical value is related to many factors, including the applicability of existing technology to addressing clinical problems; the limited use of such tests to address a wide variety of medical disorders; the manner in which gait laboratories are organized, tests are performed, and reports generated; and the clinical understanding and expectations of laboratory results. Clinical use is most hampered by the length of time and costs required for performing a study and interpreting it. A "gait" report is lengthy, its data are not well understood, and it includes a clinical interpretation, all of which do not occur with other clinical tests. Current biotechnology research is seeking to address these problems by creating techniques to capture data rapidly, accurately, and efficiently, and to interpret such data by an assortment of modeling, statistical, wave interpretation, and artificial intelligence methodologies. The success of such efforts rests on both our technical abilities and communication between engineers and clinicians.
Application of the N-quantum approximation method to bound state problems
International Nuclear Information System (INIS)
Raychaudhuri, A.
1977-01-01
The N-quantum approximation (NQA) method is examined in the light of its application to bound state problems. Bound state wave functions are obtained as expansion coefficients in a truncated Haag expansion. From the equations of motion for the Heisenberg field and the NQA expansion, an equation satisfied by the wave function is derived. Two different bound state systems are considered. In one case, the bound state problem of two identical scalars by scalar exchange is analyzed using the NQA. An integral equation satisfied by the wave function is derived. In the nonrelativistic limit, the equation is shown to reduce to the Schroedinger equation. The equation is solved numerically, and the results compared with those obtained for this system by other methods. The NQA method is also applied to the bound state of two spin 1/2 particles with electromagnetic interaction. The integral equation for the wave function is shown to agree with the corresponding Bethe Salpeter equation in the nonrelativistic limit. Using the Dirac (4 x 4) matrices the wave function is expanded in terms of structure functions and the equation for the wave function is reduced to two disjoint sets of coupled equation for the structure functions
High order methods for incompressible fluid flow: Application to moving boundary problems
Energy Technology Data Exchange (ETDEWEB)
Bjoentegaard, Tormod
2008-04-15
Fluid flows with moving boundaries are encountered in a large number of real life situations, with two such types being fluid-structure interaction and free-surface flows. Fluid-structure phenomena are for instance apparent in many hydrodynamic applications; wave effects on offshore structures, sloshing and fluid induced vibrations, and aeroelasticity; flutter and dynamic response. Free-surface flows can be considered as a special case of a fluid-fluid interaction where one of the fluids are practically inviscid, such as air. This type of flows arise in many disciplines such as marine hydrodynamics, chemical engineering, material processing, and geophysics. The driving forces for free-surface flows may be of large scale such as gravity or inertial forces, or forces due to surface tension which operate on a much smaller scale. Free-surface flows with surface tension as a driving mechanism include the flow of bubbles and droplets, and the evolution of capillary waves. In this work we consider incompressible fluid flow, which are governed by the incompressible Navier-Stokes equations. There are several challenges when simulating moving boundary problems numerically, and these include - Spatial discretization - Temporal discretization - Imposition of boundary conditions - Solution strategy for the linear equations. These are some of the issues which will be addressed in this introduction. We will first formulate the problem in the arbitrary Lagrangian-Eulerian framework, and introduce the weak formulation of the problem. Next, we discuss the spatial and temporal discretization before we move to the imposition of surface tension boundary conditions. In the final section we discuss the solution of the resulting linear system of equations. (Author). refs., figs., tabs
Energy Technology Data Exchange (ETDEWEB)
Stankova, K.
2009-02-02
Inverse (or reverse) Stackelberg games have become the subject of recent game theory research, as a special type or as an extension of Stackelberg games. So far, only very little theory about inverse Stackelberg games is available and the available theory is still in its infancy. In this thesis we focus on theoretically solving such problems and we propose to treat several challenging problems in various fields inside this framework. In Stackelberg games a so-called leader determines actions for one or more so-called followers. The problem of finding an optimal strategy for the leader in these games is in general extremely hard to solve, and often even completely unsolvable. Starting from simple static problems and proceeding to more difficult dynamic ones, we show how to find the optimal strategy for the leader in a heuristic manner. In this thesis, the application of game theory is proposed in the following domains: The optimal toll design problem, the electricity markets liberalization problem, and the theory of incentives. The optimal toll design problem is a game of the Stackelberg type in which a road authority acts as the leader and drivers in the road network act as the followers. The road authority sets tolls on some of the links in the network in order to maximize its objective function, while the drivers make their travel decisions in order to minimize their perceived travel costs. If the toll that the road authority sets is traffic-flow invariant, the problem is the 'classical' Stackelberg game; if the toll is traffic-flow dependent, the problem is of the inverse Stackelberg type. We determine the optimal traffic-flow dependent toll for the road authority for both static and dynamic variants of the problem. If the solution concept for the drivers' behavior is the deterministic user equilibrium, the problem can be dealt with analytically. If the stochastic user equilibrium applies, numerical methods have to be applied to find a solution
International Nuclear Information System (INIS)
Stankova, K.
2009-01-01
Inverse (or reverse) Stackelberg games have become the subject of recent game theory research, as a special type or as an extension of Stackelberg games. So far, only very little theory about inverse Stackelberg games is available and the available theory is still in its infancy. In this thesis we focus on theoretically solving such problems and we propose to treat several challenging problems in various fields inside this framework. In Stackelberg games a so-called leader determines actions for one or more so-called followers. The problem of finding an optimal strategy for the leader in these games is in general extremely hard to solve, and often even completely unsolvable. Starting from simple static problems and proceeding to more difficult dynamic ones, we show how to find the optimal strategy for the leader in a heuristic manner. In this thesis, the application of game theory is proposed in the following domains: The optimal toll design problem, the electricity markets liberalization problem, and the theory of incentives. The optimal toll design problem is a game of the Stackelberg type in which a road authority acts as the leader and drivers in the road network act as the followers. The road authority sets tolls on some of the links in the network in order to maximize its objective function, while the drivers make their travel decisions in order to minimize their perceived travel costs. If the toll that the road authority sets is traffic-flow invariant, the problem is the 'classical' Stackelberg game; if the toll is traffic-flow dependent, the problem is of the inverse Stackelberg type. We determine the optimal traffic-flow dependent toll for the road authority for both static and dynamic variants of the problem. If the solution concept for the drivers' behavior is the deterministic user equilibrium, the problem can be dealt with analytically. If the stochastic user equilibrium applies, numerical methods have to be applied to find a solution. As the problem
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
An Application of Context- and Problem-Based Learning (C-PBL) into Teaching Thermodynamics
Baran, Mukadder; Sozbilir, Mustafa
2017-05-01
This study aims to investigate the applicability of context- and problem-based learning (C-PBL) into teaching thermodynamics and to examine its influence on the students' achievements in chemistry, retention of knowledge, students' attitudes, motivation and interest towards chemistry. The embedded mixed method design was utilized with a group of 13 chemistry students in a 2-year program of "Medical Laboratory and Techniques" at a state university in an underdeveloped city at the southeastern region of Turkey. The research data were collected via questionnaires regarding the students' attitudes, motivation and interest in chemistry, an achievement test on "thermodynamics" and interviews utilized to find out the applicability of C-PBL into thermodynamics. The findings demonstrated that C-PBL led a statistically significant increase in the students' achievement in thermodynamics and their interest in chemistry, while no statistically significant difference was observed in the students' attitudes and motivation towards chemistry before and after the intervention. The interviews revealed that C-PBL developed not only the students' communication skills but also their skills in using time effectively, making presentations, reporting research results and using technology. It was also found to increase their self-confidence together with the positive attitudes towards C-PBL and being able to associate chemistry with daily life. In light of these findings, it could be stated that it will be beneficial to increase the use of C-PBL in teaching chemistry.
Energy Technology Data Exchange (ETDEWEB)
Chang, Sung Pil [Inha University, Incheon (Korea, Republic of)
2006-04-15
This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.
International Nuclear Information System (INIS)
Chang, Sung Pil
2006-01-01
This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies
Directory of Open Access Journals (Sweden)
Keisuke Fujisaki
2013-11-01
Full Text Available To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model and the homogeneous model (macro-model. However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity.
Andersen, Anders H.; Rayens, William S.; Li, Ren-Cang; Blonder, Lee X.
2000-10-01
In this paper we describe the enormous potential that multilinear models hold for the analysis of data from neuroimaging experiments that rely on functional magnetic resonance imaging (MRI) or other imaging modalities. A case is made for why one might fully expect that the successful introduction of these models to the neuroscience community could define the next generation of structure-seeking paradigms in the area. In spite of the potential for immediate application, there is much to do from the perspective of statistical science. That is, although multilinear models have already been particularly successful in chemistry and psychology, relatively little is known about their statistical properties. To that end, our research group at the University of Kentucky has made significant progress. In particular, we are in the process of developing formal influence measures for multilinear methods as well as associated classification models and effective implementations. We believe that these problems will be among the most important and useful to the scientific community. Details are presented herein and an application is given in the context of facial emotion processing experiments.
Extension of CFD Codes Application to Two-Phase Flow Safety Problems - Phase 3
International Nuclear Information System (INIS)
Bestion, D.; Anglart, H.; Mahaffy, J.; Lucas, D.; Song, C.H.; Scheuerer, M.; Zigh, G.; Andreani, M.; Kasahara, F.; Heitsch, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Smith, B.L.; Watanabe, T.
2014-11-01
The Writing Group 3 on the extension of CFD to two-phase flow safety problems was formed following recommendations made at the 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in Aix-en-Provence, in May 2002. Extension of CFD codes to two-phase flow is significant potentiality for the improvement of safety investigations, by giving some access to smaller scale flow processes which were not explicitly described by present tools. Using such tools as part of a safety demonstration may bring a better understanding of physical situations, more confidence in the results, and an estimation of safety margins. The increasing computer performance allows a more extensive use of 3D modelling of two-phase Thermal hydraulics with finer nodalization. However, models are not as mature as in single phase flow and a lot of work has still to be done on the physical modelling and numerical schemes in such two-phase CFD tools. The Writing Group listed and classified the NRS problems where extension of CFD to two-phase flow may bring real benefit, and classified different modelling approaches in a first report (Bestion et al., 2006). First ideas were reported about the specification and analysis of needs in terms of validation and verification. It was then suggested to focus further activity on a limited number of NRS issues with a high priority and a reasonable chance to be successful in a reasonable period of time. The WG3-step 2 was decided with the following objectives: - selection of a limited number of NRS issues having a high priority and for which two-phase CFD has a reasonable chance to be successful in a reasonable period of time; - identification of the remaining gaps in the existing approaches using two-phase CFD for each selected NRS issue; - review of the existing data base for validation of two-phase CFD application to the selected NRS problems
Zeevi, Tal; Levy, Ayelet; Brauner, Neima; Gefen, Amit
2018-06-01
Scientific evidence regarding microclimate and its effects on the risk of pressure ulcers (PU) remains sparse. It is known that elevated skin temperatures and moisture may affect metabolic demand as well as the mechanical behaviour of the tissue. In this study, we incorporated these microclimate factors into a novel, 3-dimensional multi-physics coupled model of the human buttocks, which simultaneously determines the biothermal and biomechanical behaviours of the buttocks in supine lying on different support surfaces. We compared 3 simulated thermally controlled mattresses with 2 reference foam mattresses. A tissue damage score was numerically calculated in a relevant volume of the model, and the cooling effect of each 1°C decrease of tissue temperature was deduced. Damage scores of tissues were substantially lower for the non-foam mattresses compared with the foams. The percentage tissue volume at risk within the volume of interest was found to grow exponentially as the average tissue temperature increased. The resultant average sacral skin temperature was concluded to be a good predictor for an increased risk of PU/injuries. Each 1°C increase contributes approximately 14 times as much to the risk with respect to an increase of 1 mmHg of pressure. These findings highlight the advantages of using thermally controlled support surfaces as well as the need to further assess the potential damage that may be caused by uncontrolled microclimate conditions on inadequate support surfaces in at-risk patients. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Multi-Scale Multi-physics Methods Development for the Calculation of Hot-Spots in the NGNP
International Nuclear Information System (INIS)
Downar, Thomas; Seker, Volkan
2013-01-01
Radioactive gaseous fission products are released out of the fuel element at a significantly higher rate when the fuel temperature exceeds 1600°C in high-temperature gas-cooled reactors (HTGRs). Therefore, it is of paramount importance to accurately predict the peak fuel temperature during all operational and design-basis accident conditions. The current methods used to predict the peak fuel temperature in HTGRs, such as the Next-Generation Nuclear Plant (NGNP), estimate the average fuel temperature in a computational mesh modeling hundreds of fuel pebbles or a fuel assembly in a pebble-bed reactor (PBR) or prismatic block type reactor (PMR), respectively. Experiments conducted in operating HTGRs indicate considerable uncertainty in the current methods and correlations used to predict actual temperatures. The objective of this project is to improve the accuracy in the prediction of local 'hot' spots by developing multi-scale, multi-physics methods and implementing them within the framework of established codes used for NGNP analysis.The multi-scale approach which this project will implement begins with defining suitable scales for a physical and mathematical model and then deriving and applying the appropriate boundary conditions between scales. The macro scale is the greatest length that describes the entire reactor, whereas the meso scale models only a fuel block in a prismatic reactor and ten to hundreds of pebbles in a pebble bed reactor. The smallest scale is the micro scale--the level of a fuel kernel of the pebble in a PBR and fuel compact in a PMR--which needs to be resolved in order to calculate the peak temperature in a fuel kernel.
Multi-Scale Multi-physics Methods Development for the Calculation of Hot-Spots in the NGNP
Energy Technology Data Exchange (ETDEWEB)
Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Seker, Volkan [Univ. of Michigan, Ann Arbor, MI (United States)
2013-04-30
Radioactive gaseous fission products are released out of the fuel element at a significantly higher rate when the fuel temperature exceeds 1600°C in high-temperature gas-cooled reactors (HTGRs). Therefore, it is of paramount importance to accurately predict the peak fuel temperature during all operational and design-basis accident conditions. The current methods used to predict the peak fuel temperature in HTGRs, such as the Next-Generation Nuclear Plant (NGNP), estimate the average fuel temperature in a computational mesh modeling hundreds of fuel pebbles or a fuel assembly in a pebble-bed reactor (PBR) or prismatic block type reactor (PMR), respectively. Experiments conducted in operating HTGRs indicate considerable uncertainty in the current methods and correlations used to predict actual temperatures. The objective of this project is to improve the accuracy in the prediction of local "hot" spots by developing multi-scale, multi-physics methods and implementing them within the framework of established codes used for NGNP analysis.The multi-scale approach which this project will implement begins with defining suitable scales for a physical and mathematical model and then deriving and applying the appropriate boundary conditions between scales. The macro scale is the greatest length that describes the entire reactor, whereas the meso scale models only a fuel block in a prismatic reactor and ten to hundreds of pebbles in a pebble bed reactor. The smallest scale is the micro scale--the level of a fuel kernel of the pebble in a PBR and fuel compact in a PMR--which needs to be resolved in order to calculate the peak temperature in a fuel kernel.
Garg, Dinesh; Narahari, Y
2008-01-01
In this paper, we focus on mechanism design for single leader Stackelberg problems, which are a special case of hierarchical decision making problems in which a distinguished agent, known as the leader, makes the first move and this action is followed by the actions of the remaining agents, which are known as the followers. These problems are also known as single leader rest follower (SLRF) problems. There are many examples of such problems in the areas of electronic commerce, supply chain ma...
International Nuclear Information System (INIS)
Osaka, Yoshiaki; Takagi, Yuu; Hoshino, Sumito; Shinohara, M.; Ogata, Takashi; Tsuchida, Akihiko; Aoki, Tatsuya
2007-01-01
Application of multidisciplinary treatment using chemoradiotherapy (CRT) for advanced esophageal cancer and the problems thereof were examined by stage. Subjects consisted of 169 cases of patients with advanced esophageal cancer who underwent CRT from 1998 to 2004 (stage III/IVa/IVb: 102/55/12 cases). Mean age was 63.4 years old, and male-to-female ratio was 145: 24. In all cases, low dose FP+radiation 40 Gy (4 weeks) was performed. Surgery was performed for resectable cases, and additional irradiation of 20-30 Gy for unresectable cases and those who refused surgery. Considerations included percentage of effectiveness, side effects, and prognosis. Side effects: Low white blood cell (WBC) was 65.1%, esophagitis was 30.2%, anemia was 21.3%, and thrombocytopenia was 12.4%. Stage III: Percentage of effectiveness was 52.0%. Survival rate of 5: 51.0% for resected cases (n=69) and 16.8% for unresected cases (n=33) (p=0.0002). Reasons for unresection: 17 cases of refusal of surgery, 11 cases comprising physical reasons, and 5 cases of others. Stage IVa: The percentage of effectiveness was 45.4%. Survival rate of 5: 23.1% in resected cases (n=13), and 9.8% in unresected cases (n=42). Stage IVb (all cases unresected): The percentage of effectiveness was 25.0%. Survival rate of 1: 11.7%. Survival rate of 2: 0%. In stage III, if prognosis of resected cases after CRT was good and resection was possible after CRT, surgery was desirable. In stage IVa, if it is a single organ T4 case, resection is possible after CRT, which is a good application of CRT. The stage IVb prognosis is poor, so chemotherapy with new regimens should be considered. (author)
Some problems of manufacturing and industrial application of CoMo-Al2O3 catalyst
International Nuclear Information System (INIS)
Walendziewski, J.
1991-01-01
The monograph presents results of studies of some selected problems relating to CoMo-Al 2 O 3 catalyst: method of production alumina support and catalyst; application of catalyst in the selected hydro refining processes; physicochemical properties of the used catalyst; reclamation of metal compounds from the spent catalyst. Results of investigations of catalyst preparation illustrate how the physicochemical properties of alumina support and catalyst, mainly porous structure could be controlled by the selection of raw materials and parameters of aluminum hydroxide precipitation, method of forming and calcination temperature of support. Application of the catalyst of modified porous structure has shown its high activity in hydro refining process of light cracking catalytic oil (over 95% hydrodesulphurization) and mild hydro cracking process of vacuum gas oil (sulphur content in product below 0.03% wt.). As an effect of studying of hydro refining process of aromatic hydrocarbon fraction it has been found that H 2 S concentration in reaction mixture is the main factor influencing process selectivity. Some effect on the selectivity exerts also other process parameters and chemical composition of the catalyst - cobalt molybdenum content ratio and promoters content. Long term exploitation of the domestic CoMo-Al 2 O 3 catalyst in hydrodesulphurization process indicates its satisfied thermal stability although results in deteriorating of mechanical resistance, lowering of specific surface area, increase in mean pore radius and decrease in acidity of catalyst. In the last chapter of the monograph the results of investigations of reclamation of metal compounds (molybdic acid, aluminum hydroxide, cobalt carbonate) from the spent catalyst as well as an original technology of manufacture of the fresh one using these compounds have been presented. (author). 338 refs, 31 figs, 32 tabs
Energy Technology Data Exchange (ETDEWEB)
Vigneron, V [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; [Universite d` Evry, 91 - Orsay (France)
1997-05-01
Up to recent days, feature extraction bas been mostly considered a supervised process of (linear filters) mapping the original measurements into more effective features so as to minimize a criterion, assuming that the variables are already selected and given. Furthermore, data are rare and/or expensive, even sometimes not representative of the exact distribution. From an experimental device, the physicist gets some measurements, spoiled by noise and some determinist distortions. The `problem` is then to seek `good` values of a `number` of `interesting` parameters. But, neither `good`, nor the `number`, nor `interesting` are clearly defined notions. Frequently, the physicist is unable to write the mathematical equations of the observed phenomenon. He hopes that usual recipes called Fourier transform, deconvolution, least squares... Will produce shining revelations. Of course, these recipes are well-known and their honorability well established, sometimes with a name of a mathematician as a quality-label. In Pattern Recognition the input items have to be identified under various transformations of their representations. Contemporary neural-network research concentrates mostly on decision making systems, whereas the fundamental functions associated with the preprocessing of observations have often been ignored. This paper is a step toward theories that are expected to help the emergence of invariant-features. In this context, the Learning Theory approach (through advances tools like ACP, CCA or factorial cumulants) offers a great potential for archiving optimal solutions of complex real world problems, because it deals with undefined knowledge which is in mind of the physicist before he carries out the experiment: non-linear correlations, hidden dependencies... These questions are complex and very problem-dependant, but we focus on a specific one: ill-conditioned problems, i.e. when the physicist has not a sufficient amount of experimental data. In order to illustrate
International Nuclear Information System (INIS)
Petersen, Claudio Zen; Vilhena, Marco T.; Barros, Ricardo C.
2009-01-01
In this paper the application of the Laplace transform method is described in order to determine the energy-dependent albedo matrix that is used in the boundary conditions multigroup neutron diffusion eigenvalue problems in slab geometry for nuclear reactor global calculations. In slab geometry, the diffusion albedo substitutes without approximation the baffle-reflector system around the active domain. Numerical results to typical test problems are shown to illustrate the accuracy and the efficiency of the Chebysheff acceleration scheme. (orig.)
Evaluation of Value Added Tax Application Problems in Terms of Taxation of Electronic Commerce
Directory of Open Access Journals (Sweden)
Güneş ÇETİN GERGER
2016-07-01
Full Text Available Nowadays electronic taxation is being one of the important issues for revenue administrations. Tax administrations try to organize their tax system fairly and give attention on equity. Value added tax is most preferable taxes among the consumption taxes. Because it’s application is easy and taxpayers don’t show resistance to the value added tax. On electronic commerce value added taxes are using commonly. To provide equity in taxation, some taxation principles are adapted for value added taxes too. In this paper, we are trying to analyze the development of e-commerce in the world and e-taxation regulations and problems in the European Union (EU and Organization for Economic Cooperation and Development (OECD countries. The EU and OECD countries are making regulations in this issue. The last regulation is Base Erosion and Profit Shifting 15 point action plan in 2014. Taxation of the digital economy is the first action plan. In addition this, some regulations about taxation of digital economy are being done in Turkey in the case of Base Erosion and Profit Shifting action plan.
Giancotti, Marco; Campagnola, Stefano; Tsuda, Yuichi; Kawaguchi, Jun'ichiro
2014-11-01
This work studies periodic solutions applicable, as an extended phase, to the JAXA asteroid rendezvous mission Hayabusa 2 when it is close to target asteroid 1999 JU3. The motion of a spacecraft close to a small asteroid can be approximated with the equations of Hill's problem modified to account for the strong solar radiation pressure. The identification of families of periodic solutions in such systems is just starting and the field is largely unexplored. We find several periodic orbits using a grid search, then apply numerical continuation and bifurcation theory to a subset of these to explore the changes in the orbit families when the orbital energy is varied. This analysis gives information on their stability and bifurcations. We then compare the various families on the basis of the restrictions and requirements of the specific mission considered, such as the pointing of the solar panels and instruments. We also use information about their resilience against parameter errors and their ground tracks to identify one particularly promising type of solution.
Thoughts and Practice on Some Problems about Research and Application of Two-Line Hybrid Rice
Directory of Open Access Journals (Sweden)
Li-yun CHEN
2011-06-01
Full Text Available The main problems about research and application of two-line hybrid rice were reviewed, including the confusing nomenclature and male sterile lines classification, the unclear characteristics of photoperiod and temperature responses and the unsuitable site selection for male sterile line and hybrid rice seed production. In order to efficiently and accurately use dual-purpose genic male sterile lines, four types, including PTGMS (photo-thermo-sensitive genic male sterile rice, TGMS (thermo-sensitive genic male sterile rice, reverse PTGMS and reverse TGMS, were proposed. A new idea for explaining the mechanism of sterility in dual-purpose hybrid rice was proposed. The transition from sterile to fertile was involved in the cooperative regulation of major-effect sterile genes and photoperiod and/or temperature sensitive ones. The minor-effect genes with accumulative effect on sterility were important factors that affected the critical temperature of sterility transfer. In order to make better use of dual-purpose lines, the characterization of responses to photoperiod and temperature of PTGMS should be made and the identification method for the characterization of photoperiod and temperature responses of PTGMS should also be put forward. The optimal ecological site for seed production could be determined according to the historical climate data and the requirements for the meteorological conditions during the different periods of seed production.
International Nuclear Information System (INIS)
Hamed, Maged M.
2000-01-01
Parameter uncertainty is ubiquitous in marine environmental processes. Failure to account for this uncertainty may lead to erroneous results, and may have significant environmental and economic ramifications. Stochastic modeling of oil spill transport and fate is, therefore, central in the development of an oil spill contingency plan for new oil and gas projects. Over the past twenty years, several stochastic modeling tools have been developed for modeling parameter uncertainty, including the spectral, perturbation, and simulation methods. In this work we explore the application of a new stochastic methodology, the first-order reliability method (FORM), in oil spill modeling. FORM was originally developed in the structural reliability field and has been recently applied to various environmental problems. The method has many appealing features that makes it a powerful tool for modeling complex environmental systems. The theory of FORM is presented, identifying the features that distinguish the method from other stochastic tools. Different formulations to the reliability-based stochastic oil spill modeling are presented in a decision-analytic context. (Author)
An Ensemble Based Evolutionary Approach to the Class Imbalance Problem with Applications in CBIR
Directory of Open Access Journals (Sweden)
Aun Irtaza
2018-03-01
Full Text Available In order to lower the dependence on textual annotations for image searches, the content based image retrieval (CBIR has become a popular topic in computer vision. A wide range of CBIR applications consider classification techniques, such as artificial neural networks (ANN, support vector machines (SVM, etc. to understand the query image content to retrieve relevant output. However, in multi-class search environments, the retrieval results are far from optimal due to overlapping semantics amongst subjects of various classes. The classification through multiple classifiers generate better results, but as the number of negative examples increases due to highly correlated semantic classes, classification bias occurs towards the negative class, hence, the combination of the classifiers become even more unstable particularly in one-against-all classification scenarios. In order to resolve this issue, a genetic algorithm (GA based classifier comity learning (GCCL method is presented in this paper to generate stable classifiers by combining ANN with SVMs through asymmetric and symmetric bagging. The proposed approach resolves the classification disagreement amongst different classifiers and also resolves the class imbalance problem in CBIR. Once the stable classifiers are generated, the query image is presented to the trained model to understand the underlying semantic content of the query image for association with the precise semantic class. Afterwards, the feature similarity is computed within the obtained class to generate the semantic response of the system. The experiments reveal that the proposed method outperforms various state-of-the-art methods and significantly improves the image retrieval performance.
Zhu, Jian; Wu, Qing-Ding; Wang, Ping; Li, Ke-Lin; Lei, Ming-Jing; Zhang, Wei-Li
2013-11-01
In order to fully understand adsorption nature of Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Fe3+ onto natural diatomite, and to find problems of classical isothermal adsorption models' application in liquid/solid system, a series of isothermal adsorption tests were conducted. As results indicate, the most suitable isotherm models for describing adsorption of Pb2+, Cd2+, Cu2+, Zn2+, Mn2+, Fe3+ onto natural diatomite are Tenkin, Tenkin, Langmuir, Tenkin, Freundlich and Freundlich, respectively, the adsorption of each ion onto natural diatomite is mainly a physical process, and the adsorption reaction is favorable. It also can be found that, when using classical isothermal adsorption models to fit the experimental data in liquid/solid system, the equilibrium adsorption amount q(e) is not a single function of ion equilibrium concentration c(e), while is a function of two variables, namely c(e) and the adsorbent concentration W0, q(e) only depends on c(e)/W(0). Results also show that the classical isothermal adsorption models have a significant adsorbent effect, and their parameter values are unstable, the simulation values of parameter differ greatly from the measured values, which is unhelpful for practical use. The tests prove that four-adsorption-components model can be used for describing adsorption behavior of single ion in nature diatomite-liquid system, its parameters k and q(m) have constant values, which is favorable for practical quantitative calculation in a given system.
THE ALL-SOURCE GREEN’S FUNCTION AND ITS APPLICATIONS TO TSUNAMI PROBLEMS
Directory of Open Access Journals (Sweden)
ZHIGANG XU
2007-01-01
Full Text Available The classical Green’s function provides the global linear response to impulse forcing at a particular source location. It is a type of one-source-all-receiver Green’s function. This paper presents a new type of Green’s function, referred to as the all-source-one-receiver, or for short the all-source Green’s function (ASGF, in which the solution at a point of interest (POI can be written in terms of global forcing without requiring the solution at other locations. The ASGF is particularly applicable to tsunami problems. The response to forcing anywhere in the global ocean can be determined within a few seconds on an ordinary personal computer or on a web server. The ASGF also brings in two new types of tsunami charts, one for the arrival time and the second for the gain, without assuming the location of the epicenter or reversibility of the tsunami travel path. Thus it provides a useful tool for tsunami hazard preparedness and to rapidly calculate the real-time responses at selected POIs for a tsunami generated anywhere in the world’s oceans.
Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs
Lehmann, Andrew; Wardle, Mark
2018-05-01
The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.
Energy Technology Data Exchange (ETDEWEB)
Soubbaramayer, [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-03-01
This work deals with detonation and deflagration waves in magnetogasdynamics. Four types of detonations and four types of deflagration are considered. We point out that the propagation of these waves is not always completely determined by the initial boundary conditions and the conservation laws across the discontinuity. To fix the ideas we consider the piston problem and we show that in some cases more conditions must be added to the conservation laws in order to provide sufficient data for the unique determination of the propagation process. We then show that the needed additional conditions may be derived from an investigation of the internal structure of the detonation and deflagration process in magneto gas dynamics. This internal structure is investigated for the eight types of process under the influence of the combustion mechanism and the dissipative coefficients (viscosities, electrical and thermal conductivity). Finally all the possible solutions for the piston problem are discussed in a simple case. The methods developed here may be extended to ionizing shocks. (author) [French] On considere dans ce travail les ondes de detonation et de deflagration en magneto-dynamique. Quatre types de detonation et quatre types de deflagration sont etudies. On montre d'abord que la propagation de ces ondes n'est pas toujours completement determinee par les conditions initiales, les conditions aux limites et les conditions de choc. Pour fixer les idees nous considerons le probleme du piston et nous montrons que, dans certains cas, des conditions supplementaires doivent etre jointes aux conditions de choc pour determiner l'ecoulement d'une facon unique. Nous montrons ensuite que ces conditions supplementaires peuvent etre deduites de l'analyse de la structure interne des detonations et des deflagrations magnetodynamiques. Cette structure interne est etudiee en tenant compte du mecanisme de combustion et des coefficients de dissipation (viscosites, conductivites
Application of He's variational iteration method to the fifth-order boundary value problems
International Nuclear Information System (INIS)
Shen, S
2008-01-01
Variational iteration method is introduced to solve the fifth-order boundary value problems. This method provides an efficient approach to solve this type of problems without discretization and the computation of the Adomian polynomials. Numerical results demonstrate that this method is a promising and powerful tool for solving the fifth-order boundary value problems
Energy Technology Data Exchange (ETDEWEB)
Chau, H.T.P
2002-10-01
One of the main goals of classical and quantum physics is to solve the many-body problem. In nuclear theory, several methods have been developed and provide accurate results. In this thesis, we remind how symmetry can be used to obtain analytical solutions of the quantum many-body problem. We emphasize that unitary Lie algebras play a crucial role in quantum mechanics and propose and implement a method to build irreducible representations of this algebra from its highest-weight state. Calculations of bosonic and fermionic spectra are performed with realistic and with random interactions. Studies with rotational invariant two-body random interactions have unveiled high degree of order (a marked statistical preference is found for ground states with angular momentum equal to zero). In the second chapter of this thesis, it is argued that the spectral properties of this kind of interaction depend on the choice of the valence space. In particular, we propose a geometrical method to predict the properties of the ground state in certain cases. We also present numerical results when the geometrical approach can not be applied. In the third chapter, we study the link between quantum chaos and nuclear spectra calculated with realistic interactions. (author)
International Nuclear Information System (INIS)
Fernandes, L.; Friedlander, A.; Guedes, M.; Judice, J.
2001-01-01
This paper addresses a General Linear Complementarity Problem (GLCP) that has found applications in global optimization. It is shown that a solution of the GLCP can be computed by finding a stationary point of a differentiable function over a set defined by simple bounds on the variables. The application of this result to the solution of bilinear programs and LCPs is discussed. Some computational evidence of its usefulness is included in the last part of the paper
Chen, Hudong
2001-06-01
There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward
Directory of Open Access Journals (Sweden)
Stefan M. Stefanov
2014-01-01
Full Text Available We consider the data fitting problem, that is, the problem of approximating a function of several variables, given by tabulated data, and the corresponding problem for inconsistent (overdetermined systems of linear algebraic equations. Such problems, connected with measurement of physical quantities, arise, for example, in physics, engineering, and so forth. A traditional approach for solving these two problems is the discrete least squares data fitting method, which is based on discrete l2-norm. In this paper, an alternative approach is proposed: with each of these problems, we associate a nondifferentiable (nonsmooth unconstrained minimization problem with an objective function, based on discrete l1- and/or l∞-norm, respectively; that is, these two norms are used as proximity criteria. In other words, the problems under consideration are solved by minimizing the residual using these two norms. Respective subgradients are calculated, and a subgradient method is used for solving these two problems. The emphasis is on implementation of the proposed approach. Some computational results, obtained by an appropriate iterative method, are given at the end of the paper. These results are compared with the results, obtained by the iterative gradient method for the corresponding “differentiable” discrete least squares problems, that is, approximation problems based on discrete l2-norm.
Directory of Open Access Journals (Sweden)
Pedro Gómez-Gasquet
2018-04-01
Full Text Available Purpose: In the last years, there is an increasing interest in the manner that transversal competences (TC are introduced in the curricula. Transversal competences are generic and relevant skills that students have to develop through the several stages of the educational degrees. This paper analyses TCs in the context of the learning process of undergraduate and postgraduate courses. The main aim of this paper is to propose a framework to improve results. The framework facilities the student's training and one of the important pieces is undoubtedly that he has constant feedback from his assessments that allowing to improve the learning. An applying in the analysis and problem solving competence in the context of Master Degree in Advanced Engineering Production, Logistics and Supply Chain at the UPV is carried out. Design/methodology/approach: The work is the result of several years of professional experience in the application of the concept of transversal competence in the UPV with undergraduate and graduate students. As a result of this work and various educational innovation projects, a team of experts has been created, which has been discussing some aspects relevant to the improvement of the teaching-learning process. One of these areas of work has been in relation to the integration of various proposals on the application and deployment of transversal competences. With respect to this work, a conceptual proposal is proposed that has subsequently been empirically validated through the analysis of the results of several groups of students in a degree. Findings: The main result that is offered in the work is a framework that allows identifying the elements that are part of the learning process in the area of transversal competences. Likewise, the different items that are part of the framework are linked to the student's life cycle, and a temporal scope is established for their deployment. Practical implications: One of the most noteworthy
Multiscale modeling of high contrast brinkman equations with applications to deformable porous media
Brown, Donald
2013-06-18
Simulating porous media flows has a wide range of applications. Often, these applications involve many scales and multi-physical processes. A useful tool in the analysis of such problems in that of homogenization as an averaged description is derived circumventing the need for complicated simulation of the fine scale features. In this work, we recall recent developments of homogenization techniques in the application of flows in deformable porous media. In addition, homogenization of media with high-contrast. In particular, we recall the main ideas of the homogenization of slowly varying Stokes flow and summarize the results of [4]. We also present the ideas for extending these techniques to high-contrast deformable media [3]. These ideas are connected by the modeling of multiscale fluid-structure interaction problems. © 2013 American Society of Civil Engineers.
International Nuclear Information System (INIS)
Sauget, M.
2007-12-01
This research is about the application of neural networks used in the external radiotherapy domain. The goal is to elaborate a new evaluating system for the radiation dose distributions in heterogeneous environments. The al objective of this work is to build a complete tool kit to evaluate the optimal treatment planning. My st research point is about the conception of an incremental learning algorithm. The interest of my work is to combine different optimizations specialized in the function interpolation and to propose a new algorithm allowing to change the neural network architecture during the learning phase. This algorithm allows to minimise the al size of the neural network while keeping a good accuracy. The second part of my research is to parallelize the previous incremental learning algorithm. The goal of that work is to increase the speed of the learning step as well as the size of the learned dataset needed in a clinical case. For that, our incremental learning algorithm presents an original data decomposition with overlapping, together with a fault tolerance mechanism. My last research point is about a fast and accurate algorithm computing the radiation dose deposit in any heterogeneous environment. At the present time, the existing solutions used are not optimal. The fast solution are not accurate and do not give an optimal treatment planning. On the other hand, the accurate solutions are far too slow to be used in a clinical context. Our algorithm answers to this problem by bringing rapidity and accuracy. The concept is to use a neural network adequately learned together with a mechanism taking into account the environment changes. The advantages of this algorithm is to avoid the use of a complex physical code while keeping a good accuracy and reasonable computation times. (author)
Extension of portfolio theory application to energy planning problem – The Italian case
International Nuclear Information System (INIS)
Arnesano, M.; Carlucci, A.P.; Laforgia, D.
2012-01-01
Energy procurement is a necessity which needs a deep study of both the demand and the generation sources, referred to consumers territorial localization. The study presented in this paper extends and consolidate the Shimon Awerbuch’s study on portfolio theory applied to the energy planning, in order to define a broad generating mix which optimizes one or more objective functions defined for a determined contest. For this purpose the computation model was specialized in energy generation problem and extended with the addition of new cost-risk settings, like renewable energy availability, and Black–Litterman model, which extends Markowitz theory. Energy planning was then contextualized to the territory: the introduction of geographic and climatic features allows to plan energy infrastructures on both global and local (regional, provincial, municipal) scale. The result is an efficient decision making tool to drive the investment on typical energy policy assets. In general the tool allows to analyze several scenarios in support of renewable energy sources, environmental sustainability, costs and risks reduction. In this paper the model was applied to the energy generation in Italy, and the analysis was done: on the actual energy mix; assuming the use of nuclear technology; assuming the verisimilar improvement of several technologies in the future. -- Highlights: ► Extension and consolidation of Shimon Awerbuch’s studies. ► Introduction of aspects connected to realization and utilization of power plants. ► Application of the model on a national, provincial, municipal scale. ► Modification of Energy Portfolio based on subjective previsions (Black–Litterman).
International Nuclear Information System (INIS)
Ghasemi, Mojtaba; Ghavidel, Sahand; Aghaei, Jamshid; Gitizadeh, Mohsen; Falah, Hasan
2014-01-01
Highlights: • Chaotic invasive weed optimization techniques based on chaos. • Nonlinear environmental OPF problem considering non-smooth fuel cost curves. • A comparative study of CIWO techniques for environmental OPF problem. - Abstract: This paper presents efficient chaotic invasive weed optimization (CIWO) techniques based on chaos for solving optimal power flow (OPF) problems with non-smooth generator fuel cost functions (non-smooth OPF) with the minimum pollution level (environmental OPF) in electric power systems. OPF problem is used for developing corrective strategies and to perform least cost dispatches. However, cost based OPF problem solutions usually result in unattractive system gaze emission issue (environmental OPF). In the present paper, the OPF problem is formulated by considering the emission issue. The total emission can be expressed as a non-linear function of power generation, as a multi-objective optimization problem, where optimal control settings for simultaneous minimization of fuel cost and gaze emission issue are obtained. The IEEE 30-bus test power system is presented to illustrate the application of the environmental OPF problem using CIWO techniques. Our experimental results suggest that CIWO techniques hold immense promise to appear as efficient and powerful algorithm for optimization in the power systems
Directory of Open Access Journals (Sweden)
A. Spivakovsky
2013-03-01
Full Text Available The problem of flexible architecture design for critical parts of “KSU Feedback” application which do not have full requirements or clearly defined scope. Investigated recommended practices for solving such type of tasks and shown how they are applied in “KSU Feedback” architecture.
Kilic, Çigdem; Sancar-Tokmak, Hatice
2017-01-01
This case study investigates how preservice primary school teachers describe their experiences with digital story-based problem solving applications and their plans for the future integration of this technology into their teaching. Totally 113 preservice primary school teachers participated in the study. Data collection tools included a…
Beal, Carole R.; Rosenblum, L. Penny
2018-01-01
Introduction: The authors examined a tablet computer application (iPad app) for its effectiveness in helping students studying prealgebra to solve mathematical word problems. Methods: Forty-three visually impaired students (that is, those who are blind or have low vision) completed eight alternating mathematics units presented using their…
Directory of Open Access Journals (Sweden)
R. Venkata Rao
2016-01-01
Full Text Available The teaching-learning-based optimization (TLBO algorithm is finding a large number of applications in different fields of engineering and science since its introduction in 2011. The major applications are found in electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics, chemistry, biotechnology and economics. This paper presents a review of applications of TLBO algorithm and a tutorial for solving the unconstrained and constrained optimization problems. The tutorial is expected to be useful to the beginners.
Application of Genetic Algorithm for the Bin Packing Problem with a New Representation Scheme
Directory of Open Access Journals (Sweden)
N. Mohamadi
2010-10-01
Full Text Available The Bin Packing Problem (BPP is to find the minimum number of binsneeded to pack a given set of objects of known sizes so that they donot exceed the capacity of each bin. This problem is known to beNP-Hard [5]; hence many heuristic procedures for its solution havebeen suggested. In this paper we propose a new representation schemeand solve the problem by a Genetic Algorithm. Limited computationalresults show the efficiency of this scheme.
Application of Viral Systems for Single-Machine Total Weighted Tardiness Problem
International Nuclear Information System (INIS)
Santosa, Budi; Affandi, Umar
2013-01-01
In this paper, a relatively new algorithm inspired by the viral replication system called Viral Systems is used to solve the Single-Machine Total Weighted Tardiness (SMTWTP). SMTWTP is a job scheduling problem which is one of classical combinatorial problems known as np-hard problems. This algorithm makes the process of finding solutions through neighborhood and mutation mechanism. The experiment was conducted to evaluate its performance. There are seven parameters which are required to tune in to find best solution. The experiment was implemented on data sets of 40 jobs, 50 jobs, and 100 jobs. The results show that the algorithm can solve 235 optimally out of 275 problems.
Lancaster, F. Wilfrid, Ed.
More than 100 representatives from various types of libraries attended a clinic on the current and future applications of minicomputers in library operations. Among the library-related problems considered were: (1) circulation and control, (2) cataloging, (3) education and training, (4) information retrieval, (5) acquisitions, and (6) serials…
Energy Technology Data Exchange (ETDEWEB)
Yoo, Kisoo; Jeong, Kwon Seok [Korea Southern Power Corporation, Gimhae (Korea, Republic of)
2012-06-15
Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.
International Nuclear Information System (INIS)
Yoo, Kisoo; Jeong, Kwon Seok
2012-01-01
Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated
Directory of Open Access Journals (Sweden)
Jingtao Shi
2013-01-01
Full Text Available This paper is concerned with the relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems. Under certain differentiability conditions, relations among the adjoint processes, the generalized Hamiltonian function, and the value function are given. A linear quadratic recursive utility portfolio optimization problem in the financial engineering is discussed as an explicitly illustrated example of the main result.
Strasser, S
1983-01-01
Contingency theory as a managerial perspective is conceptually elegant, but it may cause a number of unforeseen problems when applied in real work settings. Health care administrators can avoid many of these problems by using a hybrid contingency theory framework that blends the manager's own perceptions and experience with established contingency models.
van Weert, K.; Dhaene, J.; Goovaerts, M.
2011-01-01
In this paper we discuss multiperiod portfolio selection problems related to a specific provisioning problem. Our results are an extension of Dhaene et al. (2005) [14], where optimal constant mix investment strategies are obtained in a provisioning and savings context, using an analytical approach
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-01-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…
A review on application of neural networks and fuzzy logic to solve hydrothermal scheduling problem
International Nuclear Information System (INIS)
Haroon, S.; Malik, T.N.; Zafar, S.
2014-01-01
Electrical power system is highly complicated having hydro and thermal mix with large number of machines. To reduce power production cost, hydro and thermal resources are mixed. Hydrothermal scheduling is the optimal coordination of hydro and thermal plants to meet the system load demand at minimum possible operational cost while satisfying the system constraints. Hydrothermal scheduling is dynamic, large scale, non-linear and non-convex optimization problem. The classical techniques have failed in solving such problem. Artificial Intelligence Tools based techniques are used now a day to solve this complex optimization problem because of their no requirements on the nature of the problem. The aim of this research paper is to provide a comprehensive survey of literature related to both Artificial Neural Network (ANN) and Fuzzy Logic (FL) as effective optimization algorithms for the hydrothermal scheduling problem. The outcomes along with the merits and demerits of individual techniques are also discussed. (author)
The application of an artificial immune system for solving the identification problem
Directory of Open Access Journals (Sweden)
Astachova Irina
2017-01-01
Full Text Available Ecological prognosis sets the identification task, which is to find the capacity of pollution sources based on the available experimental data. This problem is an inverse problem, for the solution of which the method of symbolic regression is considered. The distributed artificial immune system is used as an algorithm for the problem solving. The artificial immune system (AIS is a model that allows solving various problems of identification, its concept was borrowed from biology. The solution is sought using a distributed version of the artificial immune system, which is implemented through a network. This distributed network can operate in any heterogeneous environment, which is achieved through the use of cross-platform Python programming language. AIS demonstrates the ability to restore the original function in the problem of identification. The obtained solution for the test data is represented by the graph.
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-08-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.
DEFF Research Database (Denmark)
Andersen, Søren Bøgh; Santos, Ilmar F.; Fuerst, Axel
2015-01-01
This paper presents an improved completely interconnected procedure for estimating the losses, cooling flows, fluid characteristics and temperature distribution in a gearless mill drive using real life data. The presented model is part of a larger project building a multi-physics model combining...... iteratively according to the heat flux transferred to the fluid, is modeled as a lumped model with two nodes interconnected by 11 channels and one pump. The flow model is based on Bernoulli's energy equation and solved by Newton-Raphson method. All the results from the three physical areas have been verified...
International Nuclear Information System (INIS)
Frackiewicz, Piotr
2011-01-01
We investigate implementations of the Eisert-Wilkens-Lewenstein (EWL) scheme of playing quantum games beyond strategic games. The scope of our research is decision problems, i.e. one-player extensive games. The research is based on the examination of their features when the decision problems are carried out via the EWL protocol. We prove that unitary operators can be adapted to play the role of strategies in decision problems with imperfect recall. Furthermore, we prove that unitary operators provide the decision maker with possibilities that are inaccessible for classical strategies.
Application of the expansion in Maxwellians to the solution of temperature relaxation problems
International Nuclear Information System (INIS)
Ender, A.Y.; Ender, I.A.
1985-01-01
This paper discusses the temperature relaxation problem: it is assumed that at an initial moment in a spatially uniform rarefied gas the distribution function is given in the form of two Maxwellians with arbitrary temperatures. It is required to determine the velocity distribution function for all moments of time. In the linear version of the problem at the initial time only one Maxwellian is considered whose temperature may differ by any amount from the background temperature. The authors note that in treating temperature relaxation problems it is not sufficient to determine the time dependence of energy assuming that the distribution function is a Maxwellian one at all times
Zeng, Shengda; Migórski, Stanisław
2018-03-01
In this paper a class of elliptic hemivariational inequalities involving the time-fractional order integral operator is investigated. Exploiting the Rothe method and using the surjectivity of multivalued pseudomonotone operators, a result on existence of solution to the problem is established. Then, this abstract result is applied to provide a theorem on the weak solvability of a fractional viscoelastic contact problem. The process is quasistatic and the constitutive relation is modeled with the fractional Kelvin-Voigt law. The friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals. The variational formulation of this problem leads to a fractional hemivariational inequality.
Application of the perturbation iteration method to boundary layer type problems.
Pakdemirli, Mehmet
2016-01-01
The recently developed perturbation iteration method is applied to boundary layer type singular problems for the first time. As a preliminary work on the topic, the simplest algorithm of PIA(1,1) is employed in the calculations. Linear and nonlinear problems are solved to outline the basic ideas of the new solution technique. The inner and outer solutions are determined with the iteration algorithm and matched to construct a composite expansion valid within all parts of the domain. The solutions are contrasted with the available exact or numerical solutions. It is shown that the perturbation-iteration algorithm can be effectively used for solving boundary layer type problems.
Energy Technology Data Exchange (ETDEWEB)
Frackiewicz, Piotr, E-mail: P.Frackiewicz@impan.gov.pl [Institute of Mathematics of the Polish Academy of Sciences, 00-956 Warsaw (Poland)
2011-08-12
We investigate implementations of the Eisert-Wilkens-Lewenstein (EWL) scheme of playing quantum games beyond strategic games. The scope of our research is decision problems, i.e. one-player extensive games. The research is based on the examination of their features when the decision problems are carried out via the EWL protocol. We prove that unitary operators can be adapted to play the role of strategies in decision problems with imperfect recall. Furthermore, we prove that unitary operators provide the decision maker with possibilities that are inaccessible for classical strategies.
An L∞/L1-Constrained Quadratic Optimization Problem with Applications to Neural Networks
International Nuclear Information System (INIS)
Leizarowitz, Arie; Rubinstein, Jacob
2003-01-01
Pattern formation in associative neural networks is related to a quadratic optimization problem. Biological considerations imply that the functional is constrained in the L ∞ norm and in the L 1 norm. We consider such optimization problems. We derive the Euler-Lagrange equations, and construct basic properties of the maximizers. We study in some detail the case where the kernel of the quadratic functional is finite-dimensional. In this case the optimization problem can be fully characterized by the geometry of a certain convex and compact finite-dimensional set
International Nuclear Information System (INIS)
Son, H.H.; Luong, P.T.; Loan, N.T.
1990-04-01
The problems of Remote Sensing (passive or active) are investigated on the base of main principle which consists in interpretation of radiometric electromagnetic measurements in such spectral interval where the radiation is sensitive to interested physical property of medium. Those problems such as an analysis of composition and structure of atmosphere using the records of scattered radiation, cloud identification, investigation of thermodynamic state and composition of system, reconstructing the atmospheric temperature profile on the base of data processing of infrared radiation emitted by system Earth-Atmosphere... belong to class of inverse problems of mathematical physics which are often incorrect. Int his paper a new class of regularized solution corresponding to general formulated RATP-problem is considered. (author). 14 refs, 3 figs, 3 tabs
Closed form solution to a second order boundary value problem and its application in fluid mechanics
International Nuclear Information System (INIS)
Eldabe, N.T.; Elghazy, E.M.; Ebaid, A.
2007-01-01
The Adomian decomposition method is used by many researchers to investigate several scientific models. In this Letter, the modified Adomian decomposition method is applied to construct a closed form solution for a second order boundary value problem with singularity
National Research Council Canada - National Science Library
Keedwell, Edward
2005-01-01
... Intelligence and Computer Science 3.1 Introduction to search 3.2 Search algorithms 3.3 Heuristic search methods 3.4 Optimal search strategies 3.5 Problems with search techniques 3.6 Complexity of...
AN APPLICATION OF FUZZY PROMETHEE METHOD FOR SELECTING OPTIMAL CAR PROBLEM
Directory of Open Access Journals (Sweden)
SERKAN BALLI
2013-06-01
Full Text Available Most of the economical, industrial, financial or political decision problems are multi-criteria. In these multi criteria problems, optimal selection of alternatives is hard and complex process. Recently, some kinds of methods are improved to solve these problems. Promethee is one of most efficient and easiest method and solves problems that consist quantitative criteria. However, in daily life, there are criteria which are explained as linguistic and cannot modeled numerical. Hence, Promethee method is incomplete for linguistic criteria which are imprecise. To satisfy this deficiency, fuzzy set approximation can be used. Promethee method, which is extended with using fuzzy inputs, is applied to car selection for seven different cars in same class by using criteria: price, fuel, performance and security. The obtained results are appropriate and consistent.
Directory of Open Access Journals (Sweden)
Kapil Mittal
2016-12-01
Full Text Available The manufacturing of plywood consists of simple procedural steps, but the range of problems associated with the plywood manufacturing industries, especially in the case of small-scale industries (SSI, is large. This paper describes the major problems faced by the plywood SSIs along with their cause and the ultimate effect, i.e. pruning the profits. Many cogent tools and techniques are present for the task, but an attempt has been made to apply multiple attribute decision-making (MADM approach in ranking the problems in order of their extent on the basis of various parameters. Some suggestions for the improvement purposes have also been made to overcome the top-ranked problem. The study is the first of its type in a plywood industry, although same can be applied to other similar small-scale cluster industries like steel, textile, pharmaceutical, and automobile.
Application of particle swarm optimization algorithm in the heating system planning problem.
Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi
2013-01-01
Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem.
The eigenvalue problem. Alpha, lambda and gamma modes and its applications
International Nuclear Information System (INIS)
Carreno, A.; Vidal-Ferrandiz, A.; Verdu, G.; Ginestar, D.
2017-01-01
Modal analysis has been efficiently used to study different problems in reactor physics. In this sense, several eigenvalue problems can be defined for neutron transport equation: the λ-modes, the γ-modes and the α-modes. However, for simplicity, the neutron diffusion equation is used as approximation of each one of these equations that they have been discretized by a high order finite elements. The obtained algebraic eigenproblems are large problems and have to be solved using iterative methods. In this work, we analyze two methods. The first one is the Krylov-Schur method and the second one is the modified block Newton method. The comparison of modes and the performance of these methods have been studied in two benchmark problems, a homogeneous 3D reactor and the 3D Langenbuch reactor. (author)
Study and application of ANISN and DOT-II nuclear cores in reactor physics problems
International Nuclear Information System (INIS)
Dias, Artur Flavio
1980-01-01
To solve time-independent neutrons and/or gamma rays transport problems in nuclear reactors, two codes available at IPEN were studied and applied to solve benchmark problems. The ANISN code solves the one-dimensional Boltzmann transport equation for neutrons or gamma rays, in plane, spherical, or cylindrical geometries. The DOT-II code solves the same equation in two-dimensional space for plane, cylindrical and circular geometries. General anisotropic scattering allowed in both codes. Moreover, pointwise convergence criteria, and alternate step function difference equations are also used in order to remove the oscillating flux distributions, sometimes found in discrete ordinates solutions. Basic theories and numerical techniques used in these codes are studied and summarized. Benchmark problems have been solved using these codes. Comparisons of the results show that both codes can be used with confidence in the analysis of nuclear problems. (author)
Sparse approximation of multilinear problems with applications to kernel-based methods in UQ
Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren
2017-01-01
We provide a framework for the sparse approximation of multilinear problems and show that several problems in uncertainty quantification fit within this framework. In these problems, the value of a multilinear map has to be approximated using approximations of different accuracy and computational work of the arguments of this map. We propose and analyze a generalized version of Smolyak’s algorithm, which provides sparse approximation formulas with convergence rates that mitigate the curse of dimension that appears in multilinear approximation problems with a large number of arguments. We apply the general framework to response surface approximation and optimization under uncertainty for parametric partial differential equations using kernel-based approximation. The theoretical results are supplemented by numerical experiments.
Sparse approximation of multilinear problems with applications to kernel-based methods in UQ
Nobile, Fabio
2017-11-16
We provide a framework for the sparse approximation of multilinear problems and show that several problems in uncertainty quantification fit within this framework. In these problems, the value of a multilinear map has to be approximated using approximations of different accuracy and computational work of the arguments of this map. We propose and analyze a generalized version of Smolyak’s algorithm, which provides sparse approximation formulas with convergence rates that mitigate the curse of dimension that appears in multilinear approximation problems with a large number of arguments. We apply the general framework to response surface approximation and optimization under uncertainty for parametric partial differential equations using kernel-based approximation. The theoretical results are supplemented by numerical experiments.
Definition of new 3D invariants. Applications to pattern recognition problems with neural networks
International Nuclear Information System (INIS)
Proriol, J.
1996-01-01
We propose a definition of new 3D invariants. Usual pattern recognition methods use 2D descriptions of 3D objects, we propose a 2D approximation of the defined 3D invariants which can be used with neural networks to solve pattern recognition problems. We describe some methods to use the 2 D approximants. This work is an extension of previous 3D invariants used to solve some high energy physics problems. (author)
Yousef, Hamood. M.; Ismail, A. I. B. MD.
2017-08-01
Many attempts have been presented to solve the system of Delay Differential Equations (DDE) with Initial Value Problem. As a result, it has shown difficulties when getting the solution or cannot be solved. In this paper, a Variational Iteration Method is employed to find out an approximate solution for the system of DDE with initial value problems. The example illustrates convenient and an efficiency comparison with the exact solution.
Latorre, Vittorio
2014-01-01
We propose to solve large instances of the non-convex optimization problems reformulated with canonical duality theory. To this aim we propose an interior point potential reduction algorithm based on the solution of the primal-dual total complementarity (Lagrange) function. We establish the global convergence result for the algorithm under mild assumptions and demonstrate the method on instances of the Sensor Network Localization problem. Our numerical results are promising and show the possi...
Application of the HN method to the critical slab problem for reflecting boundary conditions
International Nuclear Information System (INIS)
Tuereci, R.G.; Guelecyuez, M.C.; Kaskas, A.; Tezcan, C.
2004-01-01
The recently developed H N method is used to solve the critical slab problem for a slab which is surrounded by a reflector. In the special case for R=0 (the reflection coefficient) the problem reduces to the one under vacuum boundary conditions. It is shown that the method is concise and leads to fast converging numerical results. The presented numerical results are compared with the data available in literature
International Nuclear Information System (INIS)
Dahal, Keshav Prasad
2000-01-01
The work contained in this thesis demonstrates that there is a significant requirement for the development and application of new optimisation techniques for solving industrial scheduling problems, in order to achieve a better schedule with significant economic and operational impact. An investigation of how modern heuristic approaches, such as genetic algorithm (GA), simulated annealing (SA), fuzzy logic and hybrids of these techniques, may be developed, designed and implemented appropriately for solving short term and long term NP-hard scheduling problems that exist in electric power utilities and process facilities. GA and SA based methods are developed for generator maintenance scheduling using a novel integer encoding and appropriate GA and SA operators. Three hybrid approaches (an inoculated GA, a GA/SA and a GA with fuzzy logic) are proposed in order to improve the solution performance, and to take advantage of any flexibilities inherent in the problem. Five different GA-based approaches are investigated for solving the generation scheduling problem. Of those, a knowledge-based hybrid GA approach achieves better solutions in a shorter computational time. This approach integrates problem specific knowledge, heuristic dispatch calculation and linear programming within the GA-framework. The application of a GA-based methodology is proposed for the scheduling of storage tanks of a water treatment facility. The proposed approach is an integration of a GA and a heuristic rule-base. The GA string considers the tank allocation problem, and the heuristic approach solves the rate determination problems within the framework of the GA. For optimising the schedule of operations of a bulk handling port facility, a generic modelling tool is developed characterising the operational and maintenance activities of the facility. A GA-based approach is integrated with the simulation software for optimising the scheduling of operations of the facility. Each of these approaches is
A non-standard optimal control problem arising in an economics application
Directory of Open Access Journals (Sweden)
Alan Zinober
2013-04-01
Full Text Available A recent optimal control problem in the area of economics has mathematical properties that do not fall into the standard optimal control problem formulation. In our problem the state value at the final time the state, y(T = z, is free and unknown, and additionally the Lagrangian integrand in the functional is a piecewise constant function of the unknown value y(T. This is not a standard optimal control problem and cannot be solved using Pontryagin's Minimum Principle with the standard boundary conditions at the final time. In the standard problem a free final state y(T yields a necessary boundary condition p(T = 0, where p(t is the costate. Because the integrand is a function of y(T, the new necessary condition is that y(T should be equal to a certain integral that is a continuous function of y(T. We introduce a continuous approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary Value Problem (TPBVP. The minimising free value y(T is calculated in an outer loop iteration using the Golden Section or Brent algorithm. Comparative nonlinear programming (NP discrete-time results are also presented.
Problems with numerical techniques: Application to mid-loop operation transients
Energy Technology Data Exchange (ETDEWEB)
Bryce, W.M.; Lillington, J.N.
1997-07-01
There has been an increasing need to consider accidents at shutdown which have been shown in some PSAs to provide a significant contribution to overall risk. In the UK experience has been gained at three levels: (1) Assessment of codes against experiments; (2) Plant studies specifically for Sizewell B; and (3) Detailed review of modelling to support the plant studies for Sizewell B. The work has largely been carried out using various versions of RELAP5 and SCDAP/RELAP5. The paper details some of the problems that have needed to be addressed. It is believed by the authors that these kinds of problems are probably generic to most of the present generation system thermal-hydraulic codes for the conditions present in mid-loop transients. Thus as far as possible these problems and solutions are proposed in generic terms. The areas addressed include: condensables at low pressure, poor time step calculation detection, water packing, inadequate physical modelling, numerical heat transfer and mass errors. In general single code modifications have been proposed to solve the problems. These have been very much concerned with means of improving existing models rather than by formulating a completely new approach. They have been produced after a particular problem has arisen. Thus, and this has been borne out in practice, the danger is that when new transients are attempted, new problems arise which then also require patching.
Nguyen, Dong-Hai
This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve
Analysis of the exit problem for randomly perturbed dynamical systems in applications
Roozen, H.
1990-01-01
In the preface of his book entitled 'Theory and applications of stochastic differential equations', Z. Schuss (1980) noticed a gap between the theory of stochastic differential equations and its applications. In addition to the work of Schuss and many others in the field, the present work
International Nuclear Information System (INIS)
Kim, V.V.; Skalozubov, V.I.
1999-01-01
Based on consideration and generalization of results of verification/validation researches the necessity of development of an objective evaluation criterions of software applicability (calculated codes) for separate types of domestic reactor accidents is justified. These criterions should be used in a normative position of certification or the application order of calculated codes for the analysis of reactor safety
Performance model for “Just-in-Time” problems in real-time multimedia applications
R.D. van der Mei (Rob); F.J. Seinstra; G.M. Koole (Ger); R. Yang (Ran); D. Roubos; H. Bal
2008-01-01
htmlabstractOver the last few years, the use of large-scale multimedia data applications has been growing tremendously, and this growth is not likely to slow down in the near future. Many multimedia applications operate in a real-time environment (e.g., surveillance cameras, iris scans), which
Grabner, Peter
2017-01-01
This volume is dedicated to Robert F. Tichy on the occasion of his 60th birthday. Presenting 22 research and survey papers written by leading experts in their respective fields, it focuses on areas that align with Tichy’s research interests and which he significantly shaped, including Diophantine problems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.
Directory of Open Access Journals (Sweden)
Junyoung Ko
2017-10-01
Full Text Available This paper presents the application of the Coupled Eulerian–Lagrangian (CEL technique on the constructability problems of site on very soft soil. The main objective of this study was to investigate the constructability and application of two ground improvement methods, such as the forced replacement method and the deep mixing method. The comparison between the results of CEL analyses and field investigations was performed to verify the CEL modelling. The behavior of very soft soil and constructability with methods can be appropriately investigated using the CEL technique, which would be useful tools for comprehensive reviews in preliminary design.
International Nuclear Information System (INIS)
Zhou Kaiyi; Sheate, William R.
2011-01-01
Since the Law of the People's Republic of China on Environmental Impact Assessment was enacted in 2003 and Huanfa 2004 No. 98 was released in 2004, Strategic Environmental Assessment (SEA) has been officially being implemented in the expressway infrastructure planning field in China. Through scrutinizing two SEA application cases of China's provincial level expressway infrastructure (PLEI) network plans, it is found that current SEA practice in expressway infrastructure planning field has a number of problems including: SEA practitioners do not fully understand the objective of SEA; its potential contributions to strategic planning and decision-making is extremely limited; the employed application procedure and prediction and assessment techniques are too simple to bring objective, unbiased and scientific results; and no alternative options are considered. All these problems directly lead to poor quality SEA and consequently weaken SEA's effectiveness.
Kobak, B. V.; Zhukovskiy, A. G.; Kuzin, A. P.
2018-05-01
This paper considers one of the classical NP complete problems - an inhomogeneous minimax problem. When solving such large-scale problem, there appear difficulties in obtaining an exact solution. Therefore, let us propose getting an optimum solution in an acceptable time. Among a wide range of genetic algorithm models, let us choose the modified Goldberg model, which earlier was successfully used by authors in solving NP complete problems. The classical Goldberg model uses a single-point crossover and a singlepoint mutation, which somewhat decreases the accuracy of the obtained results. In the article, let us propose using a full two-point crossover with various mutations previously researched. In addition, the work studied the necessary probability to apply it to the crossover in order to obtain results that are more accurate. Results of the computation experiment showed that the higher the probability of a crossover, the higher the quality of both the average results and the best solutions. In addition, it was found out that the higher the values of the number of individuals and the number of repetitions, the closer both the average results and the best solutions to the optimum. The paper shows how the use of a full two-point crossover increases the accuracy of solving an inhomogeneous minimax problem, while the time for getting the solution increases, but remains polynomial.
Directory of Open Access Journals (Sweden)
V.A. Bazhenov
2014-12-01
Full Text Available Authors in their works study vibroimpact system dynamic behaviour by numerical parametric continuation technique combined with shooting and Newton-Raphson’s methods. The technique is adapted to two-mass two-degree-of-freedom vibroimpact system under periodic excitation. Impact is simulated by nonlinear contact interaction force based on Hertz’s contact theory. Stability or instability of obtained periodic solutions is determined by monodromy matrix eigenvalues (multipliers based on Floquet’s theory. In the present paper we describe the state of problem of parameter continuation method using for nonlinear tasks solution. Also we give the short survey of numerous contemporary literature in English and Russian about parameter continuation method application for nonlinear problems. This method is applied for vibroimpact problem solving more rarely because of the difficulties connected with repeated impacts.
DEFF Research Database (Denmark)
Karsten, Christian Vad; Pisinger, David; Røpke, Stefan
2015-01-01
-commodity network flow problem with transit time constraints which puts limits on the duration of the transit of the commodities through the network. It is shown that for the particular application it does not increase the solution time to include the transit time constraints and that including the transit time...... is essential to offer customers a competitive product. © 2015 Elsevier Ltd. All rights reserved....
Кіхтенко, Ігор Миколайович
2016-01-01
Subject of research – the relevance of radiation damage at modern development of industry and medicine. In the world of radiation sources used in different fields of practice and their application in the future will increase, which greatly increases the likelihood of injury in a significant contingent of people.Research topic – the definition of the role of nuclear energy and the industrial use of ionizing radiation sources in the problem of radiation damage. The purpose of research – identif...
Liu, Yikan
2015-01-01
In this paper, we establish a strong maximum principle for fractional diffusion equations with multiple Caputo derivatives in time, and investigate a related inverse problem of practical importance. Exploiting the solution properties and the involved multinomial Mittag-Leffler functions, we improve the weak maximum principle for the multi-term time-fractional diffusion equation to a stronger one, which is parallel to that for its single-term counterpart as expected. As a direct application, w...
International Nuclear Information System (INIS)
Chauliac, Christian; Bestion, Dominique; Crouzet, Nicolas; Aragones, Jose-Maria; Cacuci, Dan Gabriel; Weiss, Frank-Peter; Zimmermann, Martin A.
2010-01-01
The NURESIM project, the numerical simulation platform, is developed in the frame of the NURISP European Collaborative Project (FP7), which includes 22 organizations from 14 European countries. NURESIM intends to be a reference platform providing high quality software tools, physical models, generic functions and assessment results. The NURESIM platform provides an accurate representation of the physical phenomena by promoting and incorporating the latest advances in core physics, two-phase thermal-hydraulics and fuel modelling. It includes multi-scale and multi-physics features, especially for coupling core physics and thermal-hydraulics models for reactor safety. Easy coupling of the different codes and solvers is provided through the use of a common data structure and generic functions (e.g., for interpolation between non-conforming meshes). More generally, the platform includes generic pre-processing, post-processing and supervision functions through the open-source SALOME software, in order to make the codes more user-friendly. The platform also provides the informatics environment for testing and comparing different codes. The contribution summarizes the achievements and ongoing developments of the simulation platform in core physics, thermal-hydraulics, multi-physics, uncertainties and code integration
International Nuclear Information System (INIS)
Trowbridge, C.W.
1976-06-01
Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c) which both lead to a more economic use of the computer than (a) some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation. (author)
An application of robust ridge regression model in the presence of outliers to real data problem
Shariff, N. S. Md.; Ferdaos, N. A.
2017-09-01
Multicollinearity and outliers are often leads to inconsistent and unreliable parameter estimates in regression analysis. The well-known procedure that is robust to multicollinearity problem is the ridge regression method. This method however is believed are affected by the presence of outlier. The combination of GM-estimation and ridge parameter that is robust towards both problems is on interest in this study. As such, both techniques are employed to investigate the relationship between stock market price and macroeconomic variables in Malaysia due to curiosity of involving the multicollinearity and outlier problem in the data set. There are four macroeconomic factors selected for this study which are Consumer Price Index (CPI), Gross Domestic Product (GDP), Base Lending Rate (BLR) and Money Supply (M1). The results demonstrate that the proposed procedure is able to produce reliable results towards the presence of multicollinearity and outliers in the real data.
Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem
Lakshtanov, E.; Vainberg, B.
2013-10-01
The paper concerns the isotropic interior transmission eigenvalue (ITE) problem. This problem is not elliptic, but we show that, using the Dirichlet-to-Neumann map, it can be reduced to an elliptic one. This leads to the discreteness of the spectrum as well as to certain results on a possible location of the transmission eigenvalues. If the index of refraction \\sqrt{n(x)} is real, then we obtain a result on the existence of infinitely many positive ITEs and the Weyl-type lower bound on its counting function. All the results are obtained under the assumption that n(x) - 1 does not vanish at the boundary of the obstacle or it vanishes identically, but its normal derivative does not vanish at the boundary. We consider the classical transmission problem as well as the case when the inhomogeneous medium contains an obstacle. Some results on the discreteness and localization of the spectrum are obtained for complex valued n(x).
History-Dependent Problems with Applications to Contact Models for Elastic Beams
International Nuclear Information System (INIS)
Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław; Ochal, Anna; Sofonea, Mircea
2016-01-01
We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problem which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations
History-Dependent Problems with Applications to Contact Models for Elastic Beams
Energy Technology Data Exchange (ETDEWEB)
Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław; Ochal, Anna, E-mail: ochal@ii.uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland); Sofonea, Mircea [Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (France)
2016-02-15
We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problem which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations.
Multilevel variance estimators in MLMC and application for random obstacle problems
Chernov, Alexey
2014-01-06
The Multilevel Monte Carlo Method (MLMC) is a recently established sampling approach for uncertainty propagation for problems with random parameters. In this talk we present new convergence theorems for the multilevel variance estimators. As a result, we prove that under certain assumptions on the parameters, the variance can be estimated at essentially the same cost as the mean, and consequently as the cost required for solution of one forward problem for a fixed deterministic set of parameters. We comment on fast and stable evaluation of the estimators suitable for parallel large scale computations. The suggested approach is applied to a class of scalar random obstacle problems, a prototype of contact between deformable bodies. In particular, we are interested in rough random obstacles modelling contact between car tires and variable road surfaces. Numerical experiments support and complete the theoretical analysis.
Mielke, Alexander
1991-01-01
The theory of center manifold reduction is studied in this monograph in the context of (infinite-dimensional) Hamil- tonian and Lagrangian systems. The aim is to establish a "natural reduction method" for Lagrangian systems to their center manifolds. Nonautonomous problems are considered as well assystems invariant under the action of a Lie group ( including the case of relative equilibria). The theory is applied to elliptic variational problemson cylindrical domains. As a result, all bounded solutions bifurcating from a trivial state can be described by a reduced finite-dimensional variational problem of Lagrangian type. This provides a rigorous justification of rod theory from fully nonlinear three-dimensional elasticity. The book will be of interest to researchers working in classical mechanics, dynamical systems, elliptic variational problems, and continuum mechanics. It begins with the elements of Hamiltonian theory and center manifold reduction in order to make the methods accessible to non-specialists,...
Energy Technology Data Exchange (ETDEWEB)
Trowbridge, C W
1976-06-01
Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential, and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c), which both lead to a more economical use of the computer than (a), some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation.
Multilevel variance estimators in MLMC and application for random obstacle problems
Chernov, Alexey; Bierig, Claudio
2014-01-01
The Multilevel Monte Carlo Method (MLMC) is a recently established sampling approach for uncertainty propagation for problems with random parameters. In this talk we present new convergence theorems for the multilevel variance estimators. As a result, we prove that under certain assumptions on the parameters, the variance can be estimated at essentially the same cost as the mean, and consequently as the cost required for solution of one forward problem for a fixed deterministic set of parameters. We comment on fast and stable evaluation of the estimators suitable for parallel large scale computations. The suggested approach is applied to a class of scalar random obstacle problems, a prototype of contact between deformable bodies. In particular, we are interested in rough random obstacles modelling contact between car tires and variable road surfaces. Numerical experiments support and complete the theoretical analysis.
Li, Dongni; Guo, Rongtao; Zhan, Rongxin; Yin, Yong
2018-06-01
In this article, an innovative artificial bee colony (IABC) algorithm is proposed, which incorporates two mechanisms. On the one hand, to provide the evolutionary process with a higher starting level, genetic programming (GP) is used to generate heuristic rules by exploiting the elements that constitute the problem. On the other hand, to achieve a better balance between exploration and exploitation, a leading mechanism is proposed to attract individuals towards a promising region. To evaluate the performance of IABC in solving practical and complex problems, it is applied to the intercell scheduling problem with limited transportation capacity. It is observed that the GP-generated rules incorporate the elements of the most competing human-designed rules, and they are more effective than the human-designed ones. Regarding the leading mechanism, the strategies of the ageing leader and multiple challengers make the algorithm less likely to be trapped in local optima.
Application of the Green's function method to some nonlinear problems of an electron storage ring
International Nuclear Information System (INIS)
Kheifets, S.
1984-01-01
One of the most important characteristics of an electron storage ring is the size of the beam. However analytical calculations of beam size are beset with problems and the computational methods and programs which are used to overcome these are inadequate for all problems in which stochastic noise is an essential part. Two examples are, for an electron storage ring, beam-size evaluation including beam-beam interactions, and finding the beam size for a nonlinear machine. The method described should overcome some of the problems. It uses the Green's function method applied to the Fokker-Planck equation governing the distribution function in the phase space of particle motion. The new step is to consider the particle motion in two degrees of freedom rather than in one dimension. The technique is described fully and is then applied to a strong-focusing machine. (U.K.)
Study and application of the ANISN and DOT 3.5 codes to problems in nuclear radiation shielding
International Nuclear Information System (INIS)
Otto, A.C.
1983-01-01
The application of the Sn transport codes ANISN and DOT 3.5 to problems in radiation shielding is reviewed. In addition, a large array of codes involved in radiation shielding calculations is described and applied in this work. The ANISN and DOT 3.5 codes solve the multigroup transport equation in plane, cylindrical and spherical geometries, the first in one dimension and the second in two dimensions, by using the Sn approximation and were designed to solve coupled neutron-photon transport problems commonly found in reactor shielding calculations. In this work the numerical methods used in these codes are reviewed and their basic application to deep-penetration and void problems is discussed. Benchmark problems are solved by employing the array of codes previously mentioned. In particular, the ability of the ISOFLUXO program coupled to the DOT 3.5 code of mapping contours of regions with approximately the same scalar fluxes is illustrated, showing that they can be efficiently used in shielding analysis. (Author) [pt
Leung, Y.-F.; Marion, J.
1999-01-01
The degradation of trail resources associated with expanding recreation and tourism visitation is a growing management problem in protected areas worldwide. In order to make judicious trail and visitor management decisions, protected area managers need objective and timely information on trail resource conditions. This paper introduces a trail survey method that efficiently characterizes the lineal extent of common trail problems. The method was applied to a large sample of trails within Great Smoky Mountains National Park, a highuse protected area in the USA. The Trail ProblemAssessment Method (TPAM) employs a continuous search for multiple indicators of predefined tread problems, yielding census data documenting the location, occurrence and extent of each problem. The present application employed 23 different indicators in three categories to gather inventory, resource condition, and design and maintenance data of each surveyed trail. Seventy-two backcountry hiking trails (528 km), or 35% of the Park's total trail length, were surveyed. Soil erosion and wet soil were found to be the two most common impacts on a lineal extent basis. Trails with serious tread problems were well distributed throughout the Park, although wet muddy treads tended to be concentrated in areas where horse use was high. The effectiveness of maintenance features installed to divert water from trail treads was also evaluated. Water bars were found to be more effective than drainage dips. The TPAM was able to provide Park managers with objective and quantitative information for use in trail planning, management and maintenance decisions, and is applicable to other protected areas elsewhere with different environmental and impact characteristics.
Energy Technology Data Exchange (ETDEWEB)
Antony, J. [Glasgow Caledonian University (United Kingdom). Six Sigma and Process Improvement Research Centre; Kumar, M. [Glasgow Caledonian University (United Kingdom). Division of Management; Tiwari, M.K. [National Institute of Foundry and Forge Technology, Ranchi (India). Department of Manufacturing Engineering
2005-08-15
Six Sigma is a systematic methodology for continuous process quality improvement and for achieving operational excellence. The overstatement that often accompanies the presentation and adoption of Six Sigma in industry can lead to unrealistic expectations as to what Six Sigma is truly capable of achieving. This paper deals with the application of Six Sigma based methodology in eliminating an engine-overheating problem in an automotive company. The DMAIC (define-measure-analyse-improve-control) approach has been followed here to solve an underlying problem of reducing process variation and the associated high defect rate. This paper explores how a foundry can use a systematic and disciplined approach to move towards the goal of Six Sigma quality level. The application of the Six Sigma methodology resulted in a reduction in the jamming problem encountered in the cylinder head and increased the process capability from 0.49 to 1.28. The application of DMAIC has had a significant financial impact (saving over $US110 000 per annum) on the bottom-line of the company. (author)
Application of the PDCA Problem-Solving Method in treatment of wastewater from poultry processing
Directory of Open Access Journals (Sweden)
Yovanka Pérez Ginoris
2011-12-01
Full Text Available Amongst the technologies developed for the treatment of industrial waste-water, activated sludge systems deserve special mention. The aim of the present work was to explore the use of PDCA management methods for identifying problems in a system for the biological treatment of effluent from a poultry processing plant and to evaluate the priority solutions adopted or proposed for solving them. To accomplish this objective the following steps are required: analysis of inputs and outputs of the effluent treatment process; identification of operational problems in the system based on the use of performance measures; and identification of fundamental causes leading to problems. Four steps in the PDCA cycle were followed: planning, execution, verification, and corrective action. At the planning stage, the problem was identified by analysis of the historic Sludge Volume Index (SVI record, which gave values of about 500 mL/g in the first half of 2010. Analysis of the phenomenon was achieved by monitoring physical, chemical and biological parameters to give a picture of how the system for waste-water treatment actually worked. The survey of fundamental causes used procedures of brainstorming, Ishakawa diagrams, and prioritization. The results suggest that after partial implantation of the proposed action plan, the problem of sludge sedimentation shown by the SVI was much reduced, its value decreased from about 500 mL/g to about 250 mL/g in the second half of 2010. It is therefore concluded that the PDCA methodology is adequate for solving problems in effluent treatment plants.
Tradeoffs in process strategy games with application in the WDM reconfiguration problem
DEFF Research Database (Denmark)
Cohen, Nathann; Coudert, David; Mazauric, Dorian
2011-01-01
We consider a variant of the graph searching games that models the routing reconfiguration problem in WDM networks. In the digraph processing game, a team of agents aims at processing, or clearing, the vertices of a digraph D. We are interested in two different measures: (1) the total number...... tradeoffs may happen even for a basic class of digraphs. On the other hand, we exhibit classes of graphs for which good tradeoffs can be achieved. We finally detail the relationship between this game and the routing reconfiguration problem. In particular, we prove that any instance of the processing game, i...
Riemann problems and their application to ultra-relativistic heavy ion collisions
International Nuclear Information System (INIS)
Plohr, B.J.; Sharp, D.H.
1986-07-01
Heavy ion collisions at sufficiently high energies to form quark-gluon plasma are considered. The phase transformation from a quark-gluon phase to hadrons as the nuclear matter cools is modeled as a hydrodynamical flow. Nonlinear waves are the predominant feature of this type of flow and the Riemann problem of a relativistic gas undergoing a phase transformation is explored as a method to numerically model this phase transition process in nuclear matter. The solution of the Riemann problem is outlined and results of preliminary numerical computations of the flow are presented. 10 refs., 2 figs
Muskhelishvili, N I
2011-01-01
Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem
Exit problems of Lévy processes with applications in finance
Pistorius, M.R.
2003-01-01
In this thesis we study the pricing of options of American type in a continuous time setting. We begin with a general introduction where we briefly sketch history and different aspects of the option pricing problem. In the first chapter we consider four perpetual options of American type driven by a
The Application of a Communication Model to the Problems of Learning Disabled Children.
Florio-Forslund, Evelyn
This paper examines the problems of learning disabled children and discusses possibilities for improving their self-concept and attitude toward school. It first notes the suspected link between juvenile delinquency and learning disabilities and suggests that initial efforts to help learning disabled children be directed at the lower-class urban…
Some Theoretical Aspects of Nonzero Sum Differential Games and Applications to Combat Problems
1971-06-01
the Equilibrium Solution . 7 Hamilton-Jacobi-Bellman Partial Differential Equations ............. .............. 9 Influence Function Differential...Linearly .......... ............ 18 Problem Statement .......... ............ 18 Formulation of LJB Equations, Influence Function Equations and the TPBVP...19 Control Lawe . . .. ...... ........... 21 Conditions for Influence Function Continuity along Singular Surfaces
International Nuclear Information System (INIS)
Sentis, R.
1984-07-01
The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms
Population SAMC vs SAMC: Convergence and Applications to Gene Selection Problems
Faming Liang, Mingqi Wu
2013-01-01
The Bayesian model selection approach has been adopted by more and more people when analyzing a large data. However, it is known that the reversible jump MCMC (RJMCMC) algorithm, which is perhaps the most popular MCMC algorithm for Bayesian model selection, is prone to get trapped into local modes when the model space is complex. The stochastic approximation Monte Carlo (SAMC) algorithm essentially overcomes the local trap problem suffered by conventional MCMC algorithms by introducing a self-adjusting mechanism based on the past samples. In this paper, we propose a population SAMC (Pop-SAMC) algorithm, which works on a population of SAMC chains and can make use of crossover operators from genetic algorithms to further improve its efficiency. Under mild conditions, we show the convergence of this algorithm. Comparing to the single chain SAMC algorithm, Pop-SAMC provides a more efficient self-adjusting mechanism and thus can converge faster. The effectiveness of Pop-SAMC for Bayesian model selection problems is examined through a change-point identification problem and a gene selection problem. The numerical results indicate that Pop-SAMC significantly outperforms both the single chain SAMC and RJMCMC.
Application of Problem Based Learning ((PBL) in a Course on Financial Accounting Principles
Manaf, Nor Aziah Abdul; Ishak, Zuaini; Hussin, Wan Nordin Wan
2011-01-01
Purpose: This paper aims to share experiences in teaching a Financial Accounting Principles course using a hybrid problem based learning (PBL) method. The three specific objectives of this paper are to document how the PBL project for this course was developed and managed in class, to compare the academic performance of PBL students with non-PBL…
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...
Physics-based models for measurement correlations: application to an inverse Sturm–Liouville problem
International Nuclear Information System (INIS)
Bal, Guillaume; Ren Kui
2009-01-01
In many inverse problems, the measurement operator, which maps objects of interest to available measurements, is a smoothing (regularizing) operator. Its inverse is therefore unbounded and as a consequence, only the low-frequency component of the object of interest is accessible from inevitably noisy measurements. In many inverse problems however, the neglected high-frequency component may significantly affect the measured data. Using simple scaling arguments, we characterize the influence of the high-frequency component. We then consider situations where the correlation function of such an influence may be estimated by asymptotic expansions, for instance as a random corrector in homogenization theory. This allows us to consistently eliminate the high-frequency component and derive a closed form, more accurate, inverse problem for the low-frequency component of the object of interest. We present the asymptotic expression of the correlation matrix of the eigenvalues in a Sturm–Liouville problem with unknown potential. We propose an iterative algorithm for the reconstruction of the potential from knowledge of the eigenvalues and show that using the approximate correlation matrix significantly improves the reconstructions
International Nuclear Information System (INIS)
Taboada, Heidi A.; Baheranwala, Fatema; Coit, David W.; Wattanapongsakorn, Naruemon
2007-01-01
For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set
Directory of Open Access Journals (Sweden)
Yu Zhou
2017-01-01
Full Text Available The train-set circulation plan problem (TCPP belongs to the rolling stock scheduling (RSS problem and is similar to the aircraft routing problem (ARP in airline operations and the vehicle routing problem (VRP in the logistics field. However, TCPP involves additional complexity due to the maintenance constraint of train-sets: train-sets must conduct maintenance tasks after running for a certain time and distance. The TCPP is nondeterministic polynomial hard (NP-hard. There is no available algorithm that can obtain the optimal global solution, and many factors such as the utilization mode and the maintenance mode impact the solution of the TCPP. This paper proposes a train-set circulation optimization model to minimize the total connection time and maintenance costs and describes the design of an efficient multiple-population genetic algorithm (MPGA to solve this model. A realistic high-speed railway (HSR case is selected to verify our model and algorithm, and, then, a comparison of different algorithms is carried out. Furthermore, a new maintenance mode is proposed, and related implementation requirements are discussed.
Learner Perspectives of Online Problem-Based Learning and Applications from Cognitive Load Theory
Chen, Ruth
2016-01-01
Problem-based learning (PBL) courses have historically been situated in physical classrooms involving in-person interactions. As online learning is embraced in higher education, programs that use PBL can integrate online platforms to support curriculum delivery and facilitate student engagement. This report describes student perspectives of the…
Inverse problems in machine learning: An application to brain activity interpretation
International Nuclear Information System (INIS)
Prato, M; Zanni, L
2008-01-01
In a typical machine learning problem one has to build a model from a finite training set which is able to generalize the properties characterizing the examples of the training set to new examples. The model has to reflect as much as possible the set of training examples but, especially in real-world problems in which the data are often corrupted by different sources of noise, it has to avoid a too strict dependence on the training examples themselves. Recent studies on the relationship between this kind of learning problem and the regularization theory for ill-posed inverse problems have given rise to new regularized learning algorithms. In this paper we recall some of these learning methods and we propose an accelerated version of the classical Landweber iterative scheme which results particularly efficient from the computational viewpoint. Finally, we compare the performances of these methods with the classical Support Vector Machines learning algorithm on a real-world experiment concerning brain activity interpretation through the analysis of functional magnetic resonance imaging data.
Matrix based problem detection in the application of software process patterns
Amrit, Chintan; Hillegersberg, Jos Van
2007-01-01
Software development is rarely an individual effort and generally involves teams of developers. Such col- laborations require proper communication and regular coordination among the team members. In addition, coordination is required to sort out problems due to technical dependencies that exist when
To the problem of foreign experience application for power generation management
International Nuclear Information System (INIS)
Barinov, V.A.
1993-01-01
The structure and organization of the United Power System in the former USSR and problems arised later in connection with its reorganization are discussed. It is shown that the model, in which the Russian power system operation efficiency is achieved via the mechanism of coordination and competition, but not via the marketing force actions, is the most advantageous one
Problem analysis: application in the development of market strategies for health care organizations.
Martin, J
1988-03-01
The problem analysis technique is an approach to understanding salient customer needs that is especially appropriate under complex market conditions. The author demonstrates the use of the approach in segmenting markets and conducting competitive analysis for positioning strategy decisions in health care.
Czech Academy of Sciences Publication Activity Database
Mordukhovich, B. S.; Outrata, Jiří; Červinka, Michal
2007-01-01
Roč. 56, č. 4 (2007), s. 479-494 ISSN 0233-1934 R&D Projects: GA AV ČR IAA1030405 Institutional research plan: CEZ:AV0Z10750506 Keywords : equilibrium problems with complementarity constraints * multiobjective optimization * necessary optimality conditions * numerical methods * oligopolistic market s Subject RIV: BA - General Mathematics Impact factor: 0.408, year: 2007
On Problem Based Learning and Application to Computer Games Design Teaching
DEFF Research Database (Denmark)
Timcenko, Olga; Stojic, Radoslav
2012-01-01
Problem-based learning is a pedagogical approach which started in early 1970s. It is well developed and established until now. Aalborg University in Denmark is one of pioneering world universities in PBL and has accumulated a huge experience in PBL for many different study lines. One of them is M...
Application of oil spill model to marine pollution and risk control problems
Aseev, Nikita; Agoshkov, Valery; Sheloput, Tatyana
2017-04-01
Oil transportation by sea induces challenging problems of environmental control. Millions of tonnes of oil are yearly released during routine ship operations, not to mention vast spills due to different accidents (e.g. tanker collisions, grounding, etc.). Oil pollution is dangerous to marine organisms such as plants, fish and mammals, leading to widespread damage to our planet. In turn, fishery and travel agencies can lose money and clients, and ship operators are obliged to pay huge penalties for environmental pollution. In this work we present the method of accessing oil pollution of marine environment using recently developed oil spill model. The model describes basic processes of the oil slick evolution: oil transport due to currents, drift under the action of wind, spreading on the surface, evaporation, emulsification and dispersion. Such parameters as slick location, mass, density of oil, water content, viscosity and density of "water-in-oil" emulsion can be calculated. We demonstrate how to apply the model to damage calculation problems using a concept of average damage to particular marine area. We also formulate the problem of oil spill risk control, when some accident parameters are not known, but their probability distribution is given. We propose a new algorithm to solve such problems and show results of our model simulations. The work can be interesting to broad environmental, physics and mathematics community. The work is supported by Russian Foundation for Basic Research grant 16-31-00510.
International Nuclear Information System (INIS)
Garrett, G.G.
1975-01-01
In the U.S.A. over the past few months, widespread plant shutdowns because of cracking problems has produced considerable public pressure for a reappraisal of the reliability and safety of nuclear reactors. The awareness of such problems, and their solution, is particularly relevant to South Africa at this time. Some materials problems related to nuclear plant failure are examined in this paper. Since catastrophic failure (without prior warning from slow leakage) is in principle possible for light water (pressurised) reactors under operating conditions, it is essential to maintain rigorous manufacturing and quality control procedures, in conjunction with thorough and frequent examination by non-destructive testing methods. Although tests currently in progress in the U.S.A. on large-scale model reactors suggest that mathematical stress and failure analyses, for simple geometries at least, are sound, current in situ surveillance programmes aimed at categorizing the effects of irradiation are inadequate. In addition, the effects on materials properties and subsequent fracture resistance of the combined effects of irradiation and thermal shock (arising from the injection of emergency cooling water during a loss-of coolant accident) are unknown. The problem of stress corrosion cracking in stainless steel pipelines is considerable, and at present virtually impossible to predict. Much of the available laboratory data is inapplicable in that it cannot account for the complex interactions of stress state, temperature, material variations and segregation effects, and water chemistry, especially in conjunction with irradiation effects, that are experienced in an operating environment
Directory of Open Access Journals (Sweden)
Buscaglia Gustavo C.
2001-01-01
Full Text Available A new numerical approach is proposed to alleviate the computational cost of solving non-linear non-uniform homogenized problems. The article details the application of the proposed approach to lubrication problems with roughness effects. The method is based on a two-parameter Taylor expansion of the implicit dependence of the homogenized coefficients on the average pressure and on the local value of the air gap thickness. A fourth-order Taylor expansion provides an approximation that is accurate enough to be used in the global problem solution instead of the exact dependence, without introducing significant errors. In this way, when solving the global problem, the solution of local problems is simply replaced by the evaluation of a polynomial. Moreover, the method leads naturally to Newton-Raphson nonlinear iterations, that further reduce the cost. The overall efficiency of the numerical methodology makes it feasible to apply rigorous homogenization techniques in the analysis of compressible fluid contact considering roughness effects. Previous work makes use of an heuristic averaging technique. Numerical comparison proves that homogenization-based methods are superior when the roughness is strongly anisotropic and not aligned with the flow direction.
Long, Kim Chenming
Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this
International Nuclear Information System (INIS)
Gardner, R.P.; Guo, P.; Sood, A.; Mayo, C.W.; Dobbs, C.L.
1998-01-01
A review of our work on the application of the PGNAA method as applied to five industrial applications is given. Some introductory material is first given on the importance and use of Monte Carlo simulation in this area, some comments on the place of PGNAA in elemental analysis, and a brief description of the Monte Carlo - Library Least-Squares (MCLLS) approach to the nonlinear inverse PGNAA analysis problem. Then the applications of PGNAA are discussed for: (1) on-line bulk coal analysis, (2) nuclear oil well logging, (3) vitrified waste, (4) the analysis of sodium and aluminium in 'green liquor' in the presence of chlorine, and (5) the conveyor belt sorting of aluminum alloy samples. It is concluded that PGNAA is a rapidly emerging important new technology and measurement approach. (author)
Energy Technology Data Exchange (ETDEWEB)
Sato, S; Sugiyama, Y; Nagata, K; Namba, K; Shimono, M
1978-01-01
To meet the demand for high reliability condensers for thermal and nuclear power plants, especially for PWR plants, the condensers installed entirely with titanium tubes have been investigated and used. Some difficulties from conventional copper alloy tubes exist. Further investigations are necessary on three items: (1) tube vibration; (2) joining tubes to tube plate; (3) fouling (bio-fouling) control. Literature survey on the tube vibration suggests that the probability of tube vibration due to decreased stiffness of titanium tubes in comparison with conventional copper alloy tubes can be decreased by designing the proper span length between supports. Experiments on seal welding of tubes to a tube plate have successfully proved that pulsed TIG arc welding is applicable to get reliable and strong joints, even on site, by suitable countermeasures. Experiments on the fouling (bio-fouling) of titanium tubes in marine application reveal that the increased fouling of titanium tubes could be controlled by proper application of sponge ball cleaning.
Application of Geostatistics to the resolution of structural problems in homogeneous rocky massifs
International Nuclear Information System (INIS)
Lucero Michaut, H.N.
1985-01-01
The nature and possibilities of application of intrinsic functions to the structural research and the delimitation of the areas of influence in an ore deposit are briefly described. Main models to which the different distributions may be assimilated: 'logarithmic' and 'linear' among those with no sill value, and on the other hand, 'spherical', 'exponential' and 'gaussian' among those having a sill level, which allows the establishment of a range value liable to separate the field of independent samples from that of non-independent ones are shown. Thereafter as an original contribution to applied geostatistics the autor postulates 1) the application of the 'fracturing rank' as a regionalized variable after verifying its validity through strict probabilistic methodologies, and 2) a methodological extension of the conventional criterion of 'rock quality designation' to the analysis of the quality and degree of structural discontinuity in the rock surface. Finally, some examples are given of these applications. (M.E.L.) [es
A Genetic Algorithm for Selection of Fixed-Size Subsets with Application to Design Problems
Directory of Open Access Journals (Sweden)
Mark A. Wolters
2015-11-01
Full Text Available The R function kofnGA conducts a genetic algorithm search for the best subset of k items from a set of n alternatives, given an objective function that measures the quality of a subset. The function fills a gap in the presently available subset selection software, which typically searches over a range of subset sizes, restricts the types of objective functions considered, or does not include freely available code. The new function is demonstrated on two types of problem where a fixed-size subset search is desirable: design of environmental monitoring networks, and D-optimal design of experiments. Additionally, the performance is evaluated on a class of constructed test problems with a novel design that is interesting in its own right.
International Nuclear Information System (INIS)
Kitamura, Masaharu; Takahashi, Makoto
2002-01-01
A new framework for attaining higher safety of nuclear plants through introducing machine intelligence and robots has been proposed in this paper. The main emphasis of the framework is placed on user-centered human-machine cooperation in solving problems experienced during conducting operation, monitoring and maintenance activities in nuclear plants. In this framework, human operator is supposed to take initiative of actions at any moment of operation. No attempt has been made to replace human experts by machine intelligence and robots. Efforts have been paid to clarify the expertise and behavioral model of human experts so that the developed techniques are consistent with human mental activities in solving highly complicated operational and maintenance problems. Several techniques essential to the functioning of the framework have also been introduced. Modification of environment to provide support information has also been pursued to realize the concept of ubiquitous computing. (author)
The Fourier-grid formalism: philosophy and application to scattering problems using R-matrix theory
International Nuclear Information System (INIS)
Layton, E.G.
1993-01-01
The Fourier-grid (FG) method is a recent L 2 variational treatment of the quantum mechanical eigenvalue problem that does not require the use of a set of basis functions; it is rather a discrete variable representation approach. In this article we restate the FG philosophy in more general terms, examine and compare this method with other approaches to the eigenvalue problem, and begin the development of an FG R-matrix method for scattering. The philosophy of the FG method is to use the simplest representation for each of the kinetic and potential energy operators of the Hamiltonian, and use a generalized Fourier transform to put the matrix elements of one of the above operators in the same representation as the other, so the Hamiltonian has a single representation. (author)
Application of an enriched FEM technique in thermo-mechanical contact problems
Khoei, A. R.; Bahmani, B.
2018-02-01
In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.
He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi
2015-11-01
A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Symplectic finite element scheme: application to a driven problem with a regular singularity
Energy Technology Data Exchange (ETDEWEB)
Pletzer, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1996-02-01
A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear `tent` elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs.
Symplectic finite element scheme: application to a driven problem with a regular singularity
International Nuclear Information System (INIS)
Pletzer, A.
1996-02-01
A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear 'tent' elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs
Application of Improved Genetic Algorithm to Service Restoration Problem for Distribution Systems
Michibata, Ikuo; Aoki, Hidenori
The problem of recovery from power-system failures is the problem of handling operations that make it possible to supply power from other lines in response to power-system failures or construction by switching between the opened and closed states of sectionalizing switches. Considerable research has already been conducted with regard to this issue. This paper addresses the issue of determining target systems for final recovery in cases when some sections remain subject to power failure (i.e., sound bank capacity failure sections. In such research, calculations are implemented by setting a value of 2 to the sectionalizing switches of a single parameter. In addition, when the state of a sound section changes due to mutation improvements, the method of simultaneously changing the selected points and neighboring sectionalizing switches is applied. It is clear that the proposed method, consisting of conventional GA only, is superior in terms of average fitness values.
The application of game theory and cognitive economy to analyze the problem of undesired location
International Nuclear Information System (INIS)
Villani, S.
2008-01-01
The analysts of the processes of public bodies decision - taking have long been discussing on the establishment of proper strategies to manage environmental conflicts - above all the so-called problems of undesired location of public works and facilities - efficiently (i.e. on a short-period basis so as to grant decision and agreement stability) and fairly (the parties' satisfaction is itself a further guarantee of decision and agreement stability). Each strategy, anyway, is still in progress, like a universe to create and explore. Therefore, in this paper, we will focus on the analysis of the problem and provide as well some theoretical proposals to arrange a new interpreting model of public bodies decision-taking processes based on the achievements of two new subject-matters: evolutionary game theory and cognitive economy. Both sciences share their investigation field with law and economic science. [it
Bazile , Alban; Hachem , Elie; Larroya-Huguet , Juan-Carlos; Mesri , Youssef
2018-01-01
International audience; In this work, we present a new a posteriori error estimator based on the Variational Multiscale method for anisotropic adaptive fluid mechanics problems. The general idea is to combine the large scale error based on the solved part of the solution with the sub-mesh scale error based on the unresolved part of the solution. We compute the latter with two different methods: one using the stabilizing parameters and the other using bubble functions. We propose two different...