WorldWideScience

Sample records for multi-order gradient noise-cancelling

  1. Alien Noise Cancellation

    First page Back Continue Last page Overview Graphics. Full FEXT Cancellation. Expectation Maximization based Algorithms. Partial Cancellation. Optimal Choice of what to Cancel and what not to! Alien Noise Cancellation. Efficient Crosstalk channel estimation. In addition:

  2. Adaptive noise cancellation

    Akram, N.

    1999-01-01

    In this report we describe the concept of adaptive noise canceling, an alternative method of estimating signals corrupted by additive noise of interference. The method uses 'primary' input containing the corrupted signal and a 'reference' input containing noise correlated in some unknown way with the primary noise, the reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. When the reference input is free of signal and certain other conditions are met then noise in the primary input can be essentially eliminated without signal distortion. It is further shown that the adaptive filter also acts as notch filter. Simulated results illustrate the usefulness of the adaptive noise canceling technique. (author)

  3. Vocal Noise Cancellation From Respiratory Sounds

    Moussavi, Zahra

    2001-01-01

    Although background noise cancellation for speech or electrocardiographic recording is well established, however when the background noise contains vocal noises and the main signal is a breath sound...

  4. Noise canceling in-situ detection

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  5. Active noise cancellation in hearing devices

    2013-01-01

    Disclosed is a hearing device system comprising at least one hearing aid circuitry and at least one active noise cancellation unit, the at least one hearing aid circuitry comprises at least one input transducer adapted to convert a first audio signal to an electric audio signal; a signal processor...... connected to the at least one input transducer and adapted to process said electric audio signal by at least partially correcting for a hearing loss of a user; an output transducer adapted to generate from at least said processed electric audio signal a sound pressure in an ear canal of the user, whereby...... the generated sound pressure is at least partially corrected for the hearing loss of the user; ; the at least one active noise cancellation unit being adapted to provide an active noise cancellation signal adapted to perform active noise cancellation of an acoustical signal entering the ear canal in addition...

  6. Thermal Noise Canceling in LNAs : A Review

    Nauta, Bram; Klumperink, Eric A.M.; Bruccoleri, Frederico

    2004-01-01

    Most wide-band amplifiers suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the

  7. Amplifiers Exploiting Thermal Noise Canceling: A Review

    Klumperink, Eric A.M.; Bruccoleri, F.; Stroet, P.M.; Stroet, Peter; Nauta, Bram

    2004-01-01

    Wide-band LNAs suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and

  8. Amplifiers Exploiting Thermal Noise Canceling: A Review

    Klumperink, Eric A.M.; Bruccoleri, Federico; Stroet, Peter; Nauta, Bram

    2004-01-01

    Wide-band LNAs suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and its key properties. Although the technique has been applied to wideband CMOS LNAs, it can just as well be implemented exploiting transconductance elements realized with oth...

  9. Thermal Noise Canceling in LNAs: A Review

    Nauta, Bram; Klumperink, Eric A.M.; Bruccoleri, Frederico

    2004-01-01

    Most wide-band amplifiers suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and its key properties. Although the technique has been applied to wideband CMOS LNAs, it can just as well be implemented exploiting transconductance elements realized with other types of t...

  10. Active noise canceling system for mechanically cooled germanium radiation detectors

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  11. An inductorless wideband LNA with a new noise canceling technique

    MOGHADAM, POURIA PAZHOUHESH; ABRISHAMIFAR, ADIB

    2017-01-01

    An inductorless wideband low-noise amplifier (LNA) employing a new noise canceling technique for multistandard applications is presented. The main amplifier has a cascode common gate structure, which provides good input impedance matching and isolation. The proposed noise canceling technique not only improves the noise figure and power gain but also embeds a g$_{m}$-boosting technique in itself, which reduces the power consumption of the main amplifier. Using current-steering and ...

  12. Noise cancellation properties of displacement noise free interferometer

    Sato, Shuichi; Kawamura, Seiji; Nishizawa, Atsushi; Chen Yanbei

    2010-01-01

    We have demonstrated the practical feasibility of a displacement- and frequency-noise-free laser interferometer (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach-Zehnder interferometers (MZIs). The noise cancellation efficiency was evaluated by comparing the displacement noise spectrum of the MZIs and the DFI, demonstrating up to 50 dB of noise cancellation. In addition, the possible extension of DFI as QND device is explored.

  13. Development of a Voice Activity Controlled Noise Canceller

    Abid Noor, Ali O.; Samad, Salina Abdul; Hussain, Aini

    2012-01-01

    In this paper, a variable threshold voice activity detector (VAD) is developed to control the operation of a two-sensor adaptive noise canceller (ANC). The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE) convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods. PMID:22778667

  14. Development of a Voice Activity Controlled Noise Canceller

    Aini Hussain

    2012-05-01

    Full Text Available In this paper, a variable threshold voice activity detector (VAD is developed to control the operation of a two-sensor adaptive noise canceller (ANC. The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods.

  15. Laboratory Investigation of Noise-Canceling Headphones Utilizing "Mr. Blockhead"

    Koser, John

    2013-01-01

    While I was co-teaching an introductory course in musical acoustics a few years ago, our class investigated several pieces of equipment designed for audio purposes. One piece of such equipment was a pair of noise-canceling headphones. Our students were curious as to how these devices were in eliminating background noise and whether they indeed…

  16. Experimental testing of the noise-canceling processor.

    Collins, Michael D; Baer, Ralph N; Simpson, Harry J

    2011-09-01

    Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. © 2011 Acoustical Society of America

  17. Laboratory Investigation of Noise-Canceling Headphones Utilizing ``Mr. Blockhead''

    Koser, John

    2013-09-01

    While I was co-teaching an introductory course in musical acoustics a few years ago, our class investigated several pieces of equipment designed for audio purposes. One piece of such equipment was a pair of noise-canceling headphones. Our students were curious as to how these devices were in eliminating background noise and whether they indeed block low-frequency sounds as advertised.

  18. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    Abstract — A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB,

  19. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB, while

  20. Simulation for noise cancellation using LMS adaptive filter

    Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung

    2017-06-01

    In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.

  1. Transient plasma estimation: a noise cancelling/identification approach

    Candy, J.V.; Casper, T.; Kane, R.

    1985-03-01

    The application of a noise cancelling technique to extract energy storage information from sensors occurring during fusion reactor experiments on the Tandem Mirror Experiment-Upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is examined. We show how this technique can be used to decrease the uncertainty in the corresponding sensor measurements used for diagnostics in both real-time and post-experimental environments. We analyze the performance of algorithm on the sensor data and discuss the various tradeoffs. The algorithm suggested is designed using SIG, an interactive signal processing package developed at LLNL

  2. Phase noise cancellation in polarisation-maintaining fibre links

    Rauf, B.; Vélez López, M. C.; Thoumany, P.; Pizzocaro, M.; Calonico, D.

    2018-03-01

    The distribution of ultra-narrow linewidth laser radiation is an integral part of many challenging metrological applications. Changes in the optical pathlength induced by environmental disturbances compromise the stability and accuracy of optical fibre networks distributing the laser light and call for active phase noise cancellation. Here we present a laboratory scale optical (at 578 nm) fibre network featuring all polarisation maintaining fibres in a setup with low optical powers available and tracking voltage-controlled oscillators implemented. The stability and accuracy of this system reach performance levels below 1 × 10-19 after 10 000 s of averaging.

  3. A method of background noise cancellation for SQUID applications

    He, D F; Yoshizawa, M

    2003-01-01

    When superconducting quantum inference devices (SQUIDs) operate in low-cost shielding or unshielded environments, the environmental background noise should be reduced to increase the signal-to-noise ratio. In this paper we present a background noise cancellation method based on a spectral subtraction algorithm. We first measure the background noise and estimate the noise spectrum using fast Fourier transform (FFT), then we subtract the spectrum of background noise from that of the observed noisy signal and the signal can be reconstructed by inverse FFT of the subtracted spectrum. With this method, the background noise, especially stationary inferences, can be suppressed well and the signal-to-noise ratio can be increased. Using high-T C radio-frequency SQUID gradiometer and magnetometer, we have measured the magnetic field produced by a watch, which was placed 35 cm under a SQUID. After noise cancellation, the signal-to-noise ratio could be greatly increased. We also used this method to eliminate the vibration noise of a cryocooler SQUID

  4. Multireference adaptive noise canceling applied to the EEG.

    James, C J; Hagan, M T; Jones, R D; Bones, P J; Carroll, G J

    1997-08-01

    The technique of multireference adaptive noise canceling (MRANC) is applied to enhance transient nonstationarities in the electroeancephalogram (EEG), with the adaptation implemented by means of a multilayer-perception artificial neural network (ANN). The method was applied to recorded EEG segments and the performance on documented nonstationarities recorded. The results show that the neural network (nonlinear) gives an improvement in performance (i.e., signal-to-noise ratio (SNR) of the nonstationarities) compared to a linear implementation of MRANC. In both cases an improvement in the SNR was obtained. The advantage of the spatial filtering aspect of MRANC is highlighted when the performance of MRANC is compared to that of the inverse auto-regressive filtering of the EEG, a purely temporal filter.

  5. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  6. A computer simulation of an adaptive noise canceler with a single input

    Albert, Stuart D.

    1991-06-01

    A description of an adaptive noise canceler using Widrows' LMS algorithm is presented. A computer simulation of canceler performance (adaptive convergence time and frequency transfer function) was written for use as a design tool. The simulations, assumptions, and input parameters are described in detail. The simulation is used in a design example to predict the performance of an adaptive noise canceler in the simultaneous presence of both strong and weak narrow-band signals (a cosited frequency hopping radio scenario). On the basis of the simulation results, it is concluded that the simulation is suitable for use as an adaptive noise canceler design tool; i.e., it can be used to evaluate the effect of design parameter changes on canceler performance.

  7. Multi-Stage Adaptive Noise Cancellation Technique for Synthetic Hard-α Inclusion

    Kim, Jae Joon

    2003-01-01

    Adaptive noise cancellation techniques are ideally suitable for reducing spatially varying noise due to the grain structure of material in ultrasonic nondestructive evaluation. Grain noises have an un-correlation property, while flaw echoes are correlated. Thus, adaptive filtering algorithms use the correlation properties of signals to enhance the signal-to-noise ratio (SNR) of the output signal. In this paper, a multi-stage adaptive noise cancellation (MANC) method using adaptive least mean square error (LMSE) filter for enhancing flaw detection in ultrasonic signals is proposed

  8. Characteristics of noise-canceling headphones to reduce the hearing hazard for MP3 users.

    Liang, Maojin; Zhao, Fei; French, David; Zheng, Yiqing

    2012-06-01

    Three pairs of headphones [standard iPod ear buds and two noise-canceling headphones (NCHs)] were chosen to investigate frequency characteristics of noise reduction, together with their attenuation effects on preferred listening levels (PLLs) in the presence of various types of background noise. Twenty-six subjects with normal hearing chose their PLLs in quiet, street noise, and subway noise using the three headphones and with the noise-canceling system on/off. Both sets of NCHs reduced noise levels at mid- and high-frequencies. Further noise reductions occurred in low frequencies with the noise canceling system switched on. In street noise, both NCHs had similar noise reduction effects. In subway noise, better noise reduction effects were found in the expensive NCH and with noise-canceling on. A two way repeated measures analysis of variance showed that both listening conditions and headphone styles were significant influencing factors on the PLLs. Subjects tended to increase their PLLs as the background noise level increased. Compared with ear buds, PLLs obtained from NCHs-on in the presence of background noise were reduced up to 4 dB. Therefore, proper selection and use of NCHs appears beneficial in reducing the risk of hearing damage caused by high music listening levels in the presence of background noise.

  9. Use of active noise cancellation devices in caregivers in the intensive care unit.

    Akhtar, S; Weigle, C G; Cheng, E Y; Toohill, R; Berens, R J

    2000-04-01

    Recent development of noise cancellation devices may offer relief from noise in the intensive care unit environment. This study was conducted to evaluate the effect of noise cancellation devices on subjective hearing assessment by caregivers in the intensive care units. Randomized, double-blind. Adult medical intensive care unit and pediatric intensive care unit of a teaching hospital. Caregivers of patients, including nurses, parents, respiratory therapists, and nursing assistants from a medical intensive care unit and pediatric intensive care, were enrolled in the study. Each participant was asked to wear the headphones, functional or nonfunctional noise cancellation devices, for a minimum of 30 mins. Subjective ambient noise level was assessed on a 10-point visual analog scale (VAS) before and during headphone use by each participant. Headphone comfort and the preference of the caregiver to wear the headphone were also evaluated on a 10-point VAS. Simultaneously, objective measurement of noise was done with a sound level meter using the decibel-A scale and at each of nine octave bands at each bedspace. The functional headphones significantly reduced the subjective assessment of noise by 2 (out of 10) VAS points (p noise profiles, based on decibel-A and octave band assessments. Noise cancellation devices improve subjective assessment of noise in caretakers. The benefit of these devices on hearing loss needs further evaluation in caregivers and critically ill patients.

  10. Newtonian-noise cancellation in large-scale interferometric GW detectors using seismic tiltmeters

    Harms, Jan; Venkateswara, Krishna

    2016-01-01

    The mitigation of terrestrial gravity noise, also known as Newtonian noise (NN), is one of the foremost challenges to improve low-frequency sensitivity of ground-based gravitational-wave detectors. At frequencies above 1 Hz, it is predicted that gravity noise from seismic surface Rayleigh waves is the dominant contribution to NN in surface detectors, and may still contribute significantly in future underground detectors. Noise cancellation based on a coherent estimate of NN using data from a seismometer array was proposed in the past. In this article, we propose an alternative scheme to cancel NN using a seismic tiltmeter. It is shown that even under pessimistic assumptions concerning the complexity of the seismic field, a single tiltmeter under each test mass of the detector is sufficient to achieve substantial noise cancellation. A technical tiltmeter design is presented to achieve the required sensitivity in the Newtonian-noise frequency band. (paper)

  11. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2004-01-01

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In contrast, this paper presents a feedforward noise-canceling technique, which allows for simultaneous noise and impedance matching, while canceling the noise and distortion contributions of the matching d...

  12. Inference from the futures: ranking the noise cancelling accuracy of realized measures

    Mirone, Giorgio

    We consider the log-linear relationship between futures contracts and their underlying assets and show that in the classical Brownian semi-martingale (BSM) framework the two series must, by no-arbitrage, have the same integrated variance. We then introduce the concept of noise cancelling...... measures in the presence of noise. Moreover, a thorough simulation analysis is employed to evaluate the estimators' sensitivity to different price and noise processes, and sampling frequencies....

  13. Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling

    Li, Jiaming; Luo, Le; Carvell, Jeff; Cheng, Ruihua; Lai, Tianshu; Wang, Zixin

    2014-01-01

    We present a shot-noise-limited measurement of optical Faraday rotations with sub-ten-nanoradian angular sensitivity. This extremely high sensitivity is achieved by using electronic laser noise cancelling and phase sensitive detection. Specially, an electronic laser noise canceller with a common mode rejection ratio of over 100 dB was designed and built for enhanced laser noise cancelling. By measuring the Faraday rotation of ambient air, we demonstrate an angular sensitivity of up to 9.0×10 −9  rad/√(Hz), which is limited only by the shot-noise of the photocurrent of the detector. To date, this is the highest angular sensitivity ever reported for Faraday polarimeters in the absence of cavity enhancement. The measured Verdet constant of ambient air, 1.93(3)×10 −9 rad/(G cm) at 633 nm wavelength, agrees extremely well with the earlier experiments using high finesse optical cavities. Further, we demonstrate the applications of this sensitive technique in materials science by measuring the Faraday effect of an ultrathin iron film

  14. Hardware Implementation of LMS-Based Adaptive Noise Cancellation Core with Low Resource Utilization

    Omid Sharifi Tehrani

    2011-10-01

    Full Text Available A hardware implementation of adaptive noise cancellation (ANC core is proposed. Adaptive filters are widely used in different applications such as adaptive noise cancellation, prediction, equalization, inverse modeling and system identification. FIR adaptive filters are mostly used because of their low computation costs and their linear phase. Least mean squared algorithm (LMS is used to train FIR adaptive filter weights. Advances in semiconductor technology especially in digital signal processors (DSP and field programmable gate arrays (FPGA with hundreds of mega hertz in speed, will allow digital designers to embed essential digital signal processing units in small chips. But designing a synthesizable core on an FPGA is not always as simple as DSP chips due to complexity and limitations of FPGAs. In this paper we design anLMS-based FIR adaptive filter for adaptive noise cancellation based on VHDL97 hardware description language (HDL and Xilinx SPARTAN3E (XC3S500E which utilizes low resources and is high performance and FPGA-brand independent so can be implemented on different FPGA brands (Xilinx, ALTERA, ACTEL. Simulations are done in MODELSIM and MATLAB and implementation is done with Xilinx ISE. Finally, result are compared with other papers for better judgment.

  15. Comparative study of adaptive-noise-cancellation algorithms for intrusion detection systems

    Claassen, J.P.; Patterson, M.M.

    1981-01-01

    Some intrusion detection systems are susceptible to nonstationary noise resulting in frequent nuisance alarms and poor detection when the noise is present. Adaptive inverse filtering for single channel systems and adaptive noise cancellation for two channel systems have both demonstrated good potential in removing correlated noise components prior detection. For such noise susceptible systems the suitability of a noise reduction algorithm must be established in a trade-off study weighing algorithm complexity against performance. The performance characteristics of several distinct classes of algorithms are established through comparative computer studies using real signals. The relative merits of the different algorithms are discussed in the light of the nature of intruder and noise signals

  16. Benign paroxysmal positional vertigo after use of noise-canceling headphones.

    Dan-Goor, Eric; Samra, Monica

    2012-01-01

    Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo. We describe a case of a woman presenting acutely with a severe episode of disabling positional vertigo. Although she had no known etiologic risk factors, this attack followed 12 hours of continuously wearing digital noise-canceling headphones. This is the first such reported association between BPPV and the use of this gadget. We also provide a short review of BPPV and speculate on the possible pathogenic mechanisms involved. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.

    Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young

    2003-01-01

    An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.

  18. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    Soltani, N.

    2016-01-01

    A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH techno...

  19. Noise-cancelled, cavity-enhanced saturation laser spectroscopy for laser frequency stabilisation

    Vine, Glenn de; McClelland, David E; Gray, Malcolm B

    2006-01-01

    We employ a relatively simple experimental technique enabling mechanical-noise free, cavityenhanced spectroscopic measurements of an atomic transition and its hyperfine structure. We demonstrate this technique with the 532 nm frequency doubled output from a Nd:YAG laser and an iodine vapour cell. The resulting cavity-enhanced, noise-cancelled, iodine hyperfine error signal is used as a frequency reference with which we stabilise the frequency of the 1064nm Nd:YAG laser. Preliminary frequency stabilisation results are then presented

  20. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    N. Soltani

    2016-12-01

    Full Text Available A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH technology is used to simulate the circuit elements.

  1. High performance magnetic bearings suitable for noise cancellation in permanent magnet motor driven pumps

    Zmood, R.; Cholewka, J.; Patak, C.; Feng, G.; Zhang, C.; Maleri, T.; Pinder, B.; McDonald, R.; Homrigh, J.

    1991-01-01

    Conventional pumps having external drive motors experience problems due to bearing noise. In addition failure of bearings and seals can lead to limited operational reliability and impaired integrity of these pumps. Pumps using DC brushless motors and magnetic bearings offer means of overcoming these problems. A design of a pump having a DC brushless motor and magnetic bearings with a potential for Naval applications in ships and submarines is discussed. In this paper attention is given to the selection of the magnetic bearings suitable for achieving active noise cancellation

  2. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%. PMID:26351656

  3. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

  4. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  5. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Rie Saotome

    2015-01-01

    Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.

  6. Study of Noise Canceling Performance of Feedforward Fuzzy-Based ANC System under Non-Causal Condition

    Mojallali, Hamed; Izadi-Zamanabadi, Roozbeh; Amini, Rouzbeh

    of noise canceling performance of feed-forward fuzzy-based ANC systems for ducts under non-causal condition is presented. For this purpose, we use fuzzy filtered-x algorithm as an adaptive filter and the results are compared with classical filteredx algorithm which is employed under the same conditions......Feed-forward active noise control (ANC) systems act as adaptive systems to control and cancel undesired signals and noises. If the delay in the noise canceling subsystems increases more than the delays in the primary path, non-causal condition will occur in these systems. In this paper, study....... Analysis shows that ANC systems using fuzzy algorithm has better efficiency for noise cancellation in non-causal condition....

  7. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  8. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  9. An adaptive noise cancelling system used for beam control at the Stanford Linear Accelerator Center

    Himel, T.; Allison, S.; Grossberg, P.; Hendrickson, L.; Sass, R.; Shoaee, H.

    1993-06-01

    The SLAC Linear Collider now has a total of twenty-four beam-steering feedback loops used to keep the electron and positron beams on their desired trajectories. Seven of these loops measure and control the same beam as it proceeds down the linac through the arcs to the final focus. Ideally by each loop should correct only for disturbances that occur between it and the immediate upstream loop. In fact, in the original system each loop corrected for all upstream disturbances. This resulted in undesirable over-correction and ringing. We added MIMO (Multiple Input Multiple Output) adaptive noise cancellers to separate the signal we wish to correct from disturbances further upstream. This adaptive control improved performance in the 1992 run

  10. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    Arnaud, N.; Balembois, L.; Bizouard, M.A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.

    2017-01-01

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry–Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  11. System and method for motor fault detection using stator current noise cancellation

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  12. System and method for bearing fault detection using stator current noise cancellation

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  13. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    Arnaud, N.; Balembois, L.; Bizouard, M.A.; Brisson, V. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Casanueva, J., E-mail: casanuev@lal.in2p3.fr [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Loriette, V.; Maksimovic, I. [ESPCI, CNRS, F-75005 Paris (France); Robinet, F. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France)

    2017-02-11

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry–Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  14. Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO

    Coughlin, M; Mukund, N; Mitra, S; Harms, J; Driggers, J; Adhikari, R

    2016-01-01

    Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings. (paper)

  15. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    Arnaud, N.; Balembois, L.; Bizouard, M. A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.

    2017-02-01

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry-Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  16. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  17. A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    Elsayed, Mohannad Yomn

    2010-06-01

    In this work, a complete single-ended readout circuit for capacitive MEMS gyroscope using chopper stabilization technique is presented. A novel noise cancellation technique is used to get rid of the bias noise. The circuit offers superior performance over state of the art readout circuits in terms of cost, gain, and noise for the given area and power consumption. The full circuit exhibits a gain of 58dB, a power dissipation of 1.3mW and an input referred noise of 12nV/√Hz. This would significantly improve the overall sensitivity of the gyroscope. The full circuit has been fabricated in 0.6um CMOS technology and it occupies an area of 0.4mm × 1mm. © 2010 IEEE.

  18. A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    Elsayed, Mohannad Yomn; Emira, Ahmed; Sedky, Sherif M.; Habib, S. E. D.

    2010-01-01

    In this work, a complete single-ended readout circuit for capacitive MEMS gyroscope using chopper stabilization technique is presented. A novel noise cancellation technique is used to get rid of the bias noise. The circuit offers superior performance over state of the art readout circuits in terms of cost, gain, and noise for the given area and power consumption. The full circuit exhibits a gain of 58dB, a power dissipation of 1.3mW and an input referred noise of 12nV/√Hz. This would significantly improve the overall sensitivity of the gyroscope. The full circuit has been fabricated in 0.6um CMOS technology and it occupies an area of 0.4mm × 1mm. © 2010 IEEE.

  19. A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.

    2011-01-01

    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.

  20. Reduced Pain and Anxiety with Music and Noise-Canceling Headphones During Shockwave Lithotripsy.

    Karalar, Mustafa; Keles, Ibrahim; Doğantekin, Engin; Kahveci, Orhan Kemal; Sarici, Hasmet

    2016-06-01

    We assessed the effects of music and noise-canceling headphones (NCHs) on perceived patient pain and anxiety from extracorporeal shockwave lithotripsy (SWL). Patients with renal calculi scheduled for SWL were prospectively enrolled. All 89 patients between the ages of 19 and 80 years were informed about this study and then randomized into three groups: Group 1 (controls), no headphones and music; Group 2, music with NCHs (patients listened to Turkish classical music with NCHs during SWL); and Group 3, music with non-NCHs (patients listened to Turkish classical music with non-NCHs during SWL). Hemodynamic and respiratory parameters were recorded before and just after the SWL session. All patient visual analog scale (VAS) and State-Trait Anxiety Inventory (STAI) scores were recorded just after the SWL procedure. There were significant differences in VAS scores among the groups (5.1, 3.6, and 4.5, respectively, p < 0.001), including between Groups 2 and 3 (p = 0.018). There were also significant differences in STAI-State anxiety scores among the groups (43.1, 33.5, and 38.9, respectively, p = 0.001), including between Groups 2 and 3 (p = 0.04). Music therapy during SWL reduced pain and anxiety. Music therapy with NCHs was more effective for pain and anxiety reduction. To reduce pain and anxiety, nonpharmacologic therapies such as music therapy with NCHs during SWL should be investigated further and used routinely.

  1. A multichannel nonlinear adaptive noise canceller based on generalized FLANN for fetal ECG extraction

    Ma, Yaping; Wei, Guo; Sun, Jinwei; Xiao, Yegui

    2016-01-01

    In this paper, a multichannel nonlinear adaptive noise canceller (ANC) based on the generalized functional link artificial neural network (FLANN, GFLANN) is proposed for fetal electrocardiogram (FECG) extraction. A FIR filter and a GFLANN are equipped in parallel in each reference channel to respectively approximate the linearity and nonlinearity between the maternal ECG (MECG) and the composite abdominal ECG (AECG). A fast scheme is also introduced to reduce the computational cost of the FLANN and the GFLANN. Two (2) sets of ECG time sequences, one synthetic and one real, are utilized to demonstrate the improved effectiveness of the proposed nonlinear ANC. The real dataset is derived from the Physionet non-invasive FECG database (PNIFECGDB) including 55 multichannel recordings taken from a pregnant woman. It contains two subdatasets that consist of 14 and 8 recordings, respectively, with each recording being 90 s long. Simulation results based on these two datasets reveal, on the whole, that the proposed ANC does enjoy higher capability to deal with nonlinearity between MECG and AECG as compared with previous ANCs in terms of fetal QRS (FQRS)-related statistics and morphology of the extracted FECG waveforms. In particular, for the second real subdataset, the F1-measure results produced by the PCA-based template subtraction (TS pca ) technique and six (6) single-reference channel ANCs using LMS- and RLS-based FIR filters, Volterra filter, FLANN, GFLANN, and adaptive echo state neural network (ESN a ) are 92.47%, 93.70%, 94.07%, 94.22%, 94.90%, 94.90%, and 95.46%, respectively. The same F1-measure statistical results from five (5) multi-reference channel ANCs (LMS- and RLS-based FIR filters, Volterra filter, FLANN, and GFLANN) for the second real subdataset turn out to be 94.08%, 94.29%, 94.68%, 94.91%, and 94.96%, respectively. These results indicate that the ESN a and GFLANN perform best, with the ESN a being slightly better than the GFLANN but about four times

  2. Beat Noise Cancellation in 2-D Optical Code-Division Multiple-Access Systems Using Optical Hard-Limiter Array

    Dang, Ngoc T.; Pham, Anh T.; Cheng, Zixue

    We analyze the beat noise cancellation in two-dimensional optical code-division multiple-access (2-D OCDMA) systems using an optical hard-limiter (OHL) array. The Gaussian shape of optical pulse is assumed and the impact of pulse propagation is considered. We also take into account the receiver noise and multiple access interference (MAI) in the analysis. The numerical results show that, when OHL array is employed, the system performance is greatly improved compared with the cases without OHL array. Also, parameters needed for practical system design are comprehensively analyzed.

  3. A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing.

    Hsu, Chung-Lun; Jiang, Haowei; Venkatesh, A G; Hall, Drew A

    2015-10-01

    Over the past two decades, nanopores have been a promising technology for next generation deoxyribonucleic acid (DNA) sequencing. Here, we present a hybrid semi-digital transimpedance amplifier (HSD-TIA) to sense the minute current signatures introduced by single-stranded DNA (ssDNA) translocating through a nanopore, while discharging the baseline current using a semi-digital feedback loop. The amplifier achieves fast settling by adaptively tuning a DC compensation current when a step input is detected. A noise cancellation technique reduces the total input-referred current noise caused by the parasitic input capacitance. Measurement results show the performance of the amplifier with 31.6 M Ω mid-band gain, 950 kHz bandwidth, and 8.5 fA/ √Hz input-referred current noise, a 2× noise reduction due to the noise cancellation technique. The settling response is demonstrated by observing the insertion of a protein nanopore in a lipid bilayer. Using the nanopore, the HSD-TIA was able to measure ssDNA translocation events.

  4. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of

  5. Joint Use of Adaptive Equalization and Cyclic Noise Cancellation for Band-Limited OQAM Based Multi-Carrier Transmission in Power-Line Communication Systems

    Kunishima, Hiromitsu; Koga, Hisao; Muta, Osamu; Akaiwa, Yoshihiko

    Power-line communication (PLC) technique is one method to realize high-speed communications in a home network. In PLC channels, the transmission signal quality is degraded by colored non-Gaussian noise as well as frequency-selectivity of the channels. In this paper, we describe our investigation of the performance of a OQAM-MCT system in which a noise canceller is used jointly with a time-domain per-subcarrier adaptive equalizer. Furthermore, we propose a noise cancellation method designed for the OQAM-MCT system. The performance of the OQAM-MCT system is evaluated in PLC channels with measured impulse responses in the presence of measured noise. Computer simulation results show that the bit rate of the OQAM-MCT system is improved using both an adaptive equalizer and noise canceller, and that the OQAM-MCT system achieves better performance than an OFDM system with an insufficient length of the guard interval.

  6. A Small-Area Self-Biased Wideband CMOS Balun LNA with Noise Cancelling and Gain Enhancement

    Bruun, Erik; Andreani, Pietro; Custódio, J. R.

    2010-01-01

    In this paper we present a low-power and small-area balun LNA. The proposed inverter-based topology uses selfbiasing and noise cancelling, yielding a very robust LNA with a low NF. Comparing this circuit with a conventional inverterbased circuit, we obtain a ∼3 dB enhancement in voltage gain......, with improved robustness against PVT variations. Simulations results in a 130 nm CMOS technology show a 17.7dB voltage gain, nearly flat over a wide bandwidth (200MHz-1GHz), and an NF of approximately 4dB. The total power consumption is below 7.5 mW, with a very small die area of 0.007 mm2. All data...

  7. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    Motazedifard, Ali; Bemani, F; Naderi, M H; Roknizadeh, R; Vitali, D

    2016-01-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers. (paper)

  8. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer

    Xin, Jun; Wang, Hailong; Jing, Jietai

    2016-01-01

    Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer can almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.

  9. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    Motazedifard, Ali; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D.

    2016-07-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers.

  10. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer

    Xin, Jun; Wang, Hailong [State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-01

    Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer can almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.

  11. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.

    Ergeneci, Mert; Gokcesu, Kaan; Ertan, Erhan; Kosmas, Panagiotis

    2018-02-01

    Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications. Additionally, none of these sEMG data acquisition systems can detect sEMG signals (i.e., contractions), which provides a valuable environment for further studies such as human machine interaction, gesture recognition, and fatigue tracking. To this end, we introduce an embedded, eight channel, noise canceling, wireless, wearable sEMG data acquisition system with adaptive muscle contraction detection. Our design consists of two stages, which are the sEMG sensors and the multichannel data acquisition unit. For the first stage, we propose a low cost, dry, and active sEMG sensor that captures the muscle activation potentials, a data acquisition unit that evaluates these captured multichannel sEMG signals and transmits them to a user interface. In the data acquisition unit, the sEMG signals are processed through embedded, adaptive methods in order to reject the power line noise and detect the muscle contractions. Through extensive experiments, we demonstrate that our sEMG sensor outperforms a widely used commercially available product and our data acquisition system achieves 4.583 dB SNR gain with accuracy in the detection of the contractions.

  12. A wide bandwidth fractional-N synthesizer for LTE with phase noise cancellation using a hybrid-ΔΣ-DAC and charge re-timing

    Ye, D.; Lu, Ping; Andreani, Pietro; van der Zee, Ronan A.R.

    2013-01-01

    This paper presents a 1MHz bandwidth, ΔΣ fractional-N PLL as the frequency synthesizer for LTE. A noise cancellation path composed of a novel hybrid ΔΣ DAC with 9 output bits is incorporated into the PLL in order to cancel the out-of-band phase noise caused by the quantization error. Further, a

  13. Reducing the Effects of Background Noise during Auditory Functional Magnetic Resonance Imaging of Speech Processing: Qualitative and Quantitative Comparisons between Two Image Acquisition Schemes and Noise Cancellation

    Blackman, Graham A.; Hall, Deborah A.

    2011-01-01

    Purpose: The intense sound generated during functional magnetic resonance imaging (fMRI) complicates studies of speech and hearing. This experiment evaluated the benefits of using active noise cancellation (ANC), which attenuates the level of the scanner sound at the participant's ear by up to 35 dB around the peak at 600 Hz. Method: Speech and…

  14. The effect on recognition memory of noise cancelling headphones in a noisy environment with native and nonnative speakers

    Brett R C Molesworth

    2014-01-01

    Full Text Available Noise has the potential to impair cognitive performance. For nonnative speakers, the effect of noise on performance is more severe than their native counterparts. What remains unknown is the effectiveness of countermeasures such as noise attenuating devices in such circumstances. Therefore, the main aim of the present research was to examine the effectiveness of active noise attenuating countermeasures in the presence of simulated aircraft noise for both native and nonnative English speakers. Thirty-two participants, half native English speakers and half native German speakers completed four recognition (cued recall tasks presented in English under four different audio conditions, all in the presence of simulated aircraft noise. The results of the research indicated that in simulated aircraft noise at 65 dB(A, performance of nonnative English speakers was poorer than for native English speakers. The beneficial effects of noise cancelling headphones in improving the signal to noise ratio led to an improved performance for nonnative speakers. These results have particular importance for organizations operating in a safety-critical environment such as aviation.

  15. A 0.18 μm CMOS inductorless complementary-noise-canceling-LNA for TV tuner applications

    Yuan Haiquan; Lin Fujiang; Fu Zhongqian; Huang Lu

    2010-01-01

    This paper presents an inductorless complementary-noise-canceling LNA (CNCLNA) for TV tuners. The CNCLNA exploits single-to-differential topology, which consists of a common gate stage and a common source stage. The complementary topology can save power and improve the noise figure. Linearity is also enhanced by employing a multiple gated transistors technique. The chip is implemented in SMIC 0.18 μm CMOS technology. Measurement shows that the proposed CNCLNA achieves 13.5-16 dB voltage gain from 50 to 860 MHz, the noise figure is below 4.5 dB and has a minimum value of 2.9 dB, and the best P 1dB is -7.5 dBm at 860 MHz. The core consumes 6 mA current with a supply voltage of 1.8 V, while the core area is only 0.2 x 0.2 mm 2 . (semiconductor integrated circuits)

  16. A comparative evaluation of adaptive noise cancellation algorithms for minimizing motion artifacts in a forehead-mounted wearable pulse oximeter.

    Comtois, Gary; Mendelson, Yitzhak; Ramuka, Piyush

    2007-01-01

    Wearable physiological monitoring using a pulse oximeter would enable field medics to monitor multiple injuries simultaneously, thereby prioritizing medical intervention when resources are limited. However, a primary factor limiting the accuracy of pulse oximetry is poor signal-to-noise ratio since photoplethysmographic (PPG) signals, from which arterial oxygen saturation (SpO2) and heart rate (HR) measurements are derived, are compromised by movement artifacts. This study was undertaken to quantify SpO2 and HR errors induced by certain motion artifacts utilizing accelerometry-based adaptive noise cancellation (ANC). Since the fingers are generally more vulnerable to motion artifacts, measurements were performed using a custom forehead-mounted wearable pulse oximeter developed for real-time remote physiological monitoring and triage applications. This study revealed that processing motion-corrupted PPG signals by least mean squares (LMS) and recursive least squares (RLS) algorithms can be effective to reduce SpO2 and HR errors during jogging, but the degree of improvement depends on filter order. Although both algorithms produced similar improvements, implementing the adaptive LMS algorithm is advantageous since it requires significantly less operations.

  17. Time Delay Mechanical-noise Cancellation (TDMC) to Provide Order of Magnitude Improvements in Radio Science Observations

    Atkinson, D. H.; Babuscia, A.; Lazio, J.; Asmar, S.

    2017-12-01

    Many Radio Science investigations, including the determinations of planetary masses, measurements of planetary atmospheres, studies of the solar wind, and solar system tests of relativistic gravity, rely heavily on precision Doppler tracking. Recent and currently proposed missions such as VERITAS, Bepi Colombo, Juno have shown that the largest error source in the precision Doppler tracking data is noise in the Doppler system. This noise is attributed to un-modeled motions of the ground antenna's phase center and is commonly referred to as "antenna mechanical noise." Attempting to reduce this mechanical noise has proven difficult since the deep space communications antennas utilize large steel structures that are already optimized for mechanical stability. Armstrong et al. (2008) have demonstrated the Time Delay Mechanical-noise Cancellation (TDMC) concept using Goldstone DSN antennas (70 m & 34 m) and the Cassinispacecraft to show that the mechanical noise of the 70 m antenna could be suppressed when two-way Doppler tracking from the 70 m antenna and the receive-only Doppler data from the smaller, stiffer 34 m antenna were combined with suitable delays. The proof-of-concept confirmed that the mechanical noise in the final Doppler observable was reduced to that of the stiffer, more stable antenna. Caltech's Owens Valley Radio Observatory (OVRO) near Bishop, CA now has six 10.4 m diameter antennas, a consequence of the closure of Combined Array for Research in Millimeter Astronomy (CARMA). In principle, a 10 m antenna can lead to an order-of-magnitude improvement for the mechanical noise correction, as the smaller dish offers better mechanical stability compared to a DSN 34-m antenna. These antennas also have existing Ka-band receiving systems, and preliminary discussions with the OVRO staff suggest that much of the existing signal path could be used for Radio Science observations.

  18. Adaptive noise cancellation

    Rizwan, N.

    1999-01-01

    Wavelet analysis consists of decomposing a signal or an image into a hierarchical set of approximations and details. The levels in the hierarchy correspond to those in a dyadic scale. Wavelet provide an alternative to classical Short Time Fourier Transforms for the analysis of non-stationary signals. Wavelets are defined in continuous time and discrete time. Recently Discrete Wavelet Transform (DWT) had emerged as a popular technique in Image Compression. DWT has high decorrelation and energy compaction efficiency. In this report, the effect of level of decomposition on image compression was studied and results are compared with DCT based image compression. DWT proved better in compression as there was high energy compaction and compressed image was free from blocking artifacts. (author)

  19. Linewidth-tolerant 10-Gbit/s 16-QAM transmission using a pilot-carrier based phase-noise cancelling technique.

    Nakamura, Moriya; Kamio, Yukiyoshi; Miyazaki, Tetsuya

    2008-07-07

    We experimentally demonstrated linewidth-tolerant 10-Gbit/s (2.5-Gsymbol/s) 16-quadrature amplitude modulation (QAM) by using a distributed-feedback laser diode (DFB-LD) with a linewidth of 30 MHz. Error-free operation, a bit-error rate (BER) of noise canceling capability provided by a pilot-carrier and standard electronic pre-equalization to suppress inter-symbol interference (ISI) gave clear 16-QAM constellations and floor-less BER characteristics. We evaluated the BER characteristics by real-time measurement of six (three different thresholds for each I- and Q-component) symbol error rates (SERs) with simultaneous constellation observation.

  20. An Adaptive Noise Cancellation System Based on Linear and Widely Linear Complex Valued Least Mean Square Algorithms for Removing Electrooculography Artifacts from Electroencephalography Signals

    Engin Cemal MENGÜÇ

    2018-03-01

    Full Text Available In this study, an adaptive noise cancellation (ANC system based on linear and widely linear (WL complex valued least mean square (LMS algorithms is designed for removing electrooculography (EOG artifacts from electroencephalography (EEG signals. The real valued EOG and EEG signals (Fp1 and Fp2 given in dataset are primarily expressed as a complex valued signal in the complex domain. Then, using the proposed ANC system, the EOG artifacts are eliminated in the complex domain from the EEG signals. Expression of these signals in the complex domain allows us to remove EOG artifacts from two EEG channels simultaneously. Moreover, in this study, it has been shown that the complex valued EEG signal exhibits noncircular behavior, and in the case, the WL-CLMS algorithm enhances the performance of the ANC system compared to real-valued LMS and CLMS algorithms. Simulation results support the proposed approach.

  1. Extraction of Overt Verbal Response from the Acoustic Noise in a Functional Magnetic Resonance Imaging Scan by Use of Segmented Active Noise Cancellation

    Jung, Kwan-Jin; Prasad, Parikshit; Qin, Yulin; Anderson, John R.

    2013-01-01

    A method to extract the subject's overt verbal response from the obscuring acoustic noise in an fMRI scan is developed by applying active noise cancellation with a conventional MRI microphone. Since the EPI scanning and its accompanying acoustic noise in fMRI are repetitive, the acoustic noise in one time segment was used as a reference noise in suppressing the acoustic noise in subsequent segments. However, the acoustic noise from the scanner was affected by the subject's movements, so the reference noise was adaptively adjusted as the scanner's acoustic properties varied in time. This method was successfully applied to a cognitive fMRI experiment with overt verbal responses. PMID:15723385

  2. A wideband LNA employing gate-inductive-peaking and noise-canceling techniques in 0.18 μm CMOS

    Bao Kuan; Fan Xiangning; Li Wei; Zhang Li; Wang Zhigong

    2012-01-01

    This paper presents a wideband low noise amplifier (LNA) for multi-standard radio applications. The low noise characteristic is achieved by the noise-canceling technique while the bandwidth is enhanced by gate-inductive-peaking technique. High-frequency noise performance is consequently improved by the flattened gain over the entire operating frequency band. Fabricated in 0.18 μm CMOS process, the LNA achieves 2.5 GHz of −3 dB bandwidth and 16 dB of gain. The gain variation is within ±0.8 dB from 300 MHz to 2.2 GHz. The measured noise figure (NF) and average IIP3 are 3.4 dB and −2 dBm, respectively. The proposed LNA occupies 0.39 mm 2 core chip area. Operating at 1.8 V, the LNA drains a current of 11.7 mA. (semiconductor integrated circuits)

  3. Active Control of Fan Noise: Feasibility Study. Volume 3; Active Fan Noise Cancellation in the NASA Lewis Active Noise Control Fan Facility

    Pla, Frederic G.; Hu, Ziqiang; Sutliff, Daniel L.

    1996-01-01

    This report describes the Active Noise Cancellation (ANC) System designed by General Electric and tested in the NASA Lewis Research Center's (LERC) 48 inch Active Noise Control Fan (ANCF). The goal of this study is to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for global active noise cancellation of fan tones. The GE ANC system is based on a modal control approach. A known acoustic mode propagating in the fan duct is canceled using an array of flush-mounted compact sound sources. The canceling modal signal is generated by a modal controller. Inputs to the controller are signals from a shaft encoder and from a microphone array which senses the residual acoustic mode in the duct. The key results are that the (6,0) was completely eliminated at the 920 Hz design frequency and substantially reduced elsewhere. The total tone power was reduced 6.8 dB (out of a possible 9.8 dB). Farfield reductions of 15 dB (SPL) were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB PWL decrease. The results indicate that global attenuation of PWL at the target frequency was obtained in the aft quadrant using an ANC actuator and sensor system totally contained within the duct. The quality of the results depended on precise mode generation. High spillover into spurious modes generated by the ANC actuator array caused less than optimum levels of PWL reduction. The variation in spillover is believed to be due to calibration procedure, but must be confirmed in subsequent tests.

  4. Non-linear signal response functions and their effects on the statistical and noise cancellation properties of isotope ratio measurements by multi-collector plasma mass spectrometry

    Doherty, W.

    2013-01-01

    A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker

  5. Asymptotic behavior of solutions of linear multi-order fractional differential equation systems

    Diethelm, Kai; Siegmund, Stefan; Tuan, H. T.

    2017-01-01

    In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation systems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of line...

  6. Active microphonic noise cancellation in radiation detectors

    Zimmermann, Sergio

    2013-01-01

    A new adaptive filtering technique to reduce microphonic noise in radiation detectors is presented. The technique is based on system identification that actively cancels the microphonic noise. A sensor is used to measures mechanical disturbances that cause vibration on the detector assembly, and the digital adaptive filtering estimates the impact of these disturbances on the microphonic noise. The noise then can be subtracted from the actual detector measurement. In this paper the technique is presented and simulations are used to support this approach. -- Highlights: •A sensor is used to measures mechanical disturbances that cause vibration on the detector assembly. •Digital adaptive filtering estimates the impact of these disturbances on the microphonic noise. •The noise is then subtracted from the actual detector measurement. •We use simulations to demonstrate the performance of this approach. •After cancellation, we recover most of the original energy resolution

  7. Noise-Canceling Helmet Audio System

    Seibert, Marc A.; Culotta, Anthony J.

    2007-01-01

    A prototype helmet audio system has been developed to improve voice communication for the wearer in a noisy environment. The system was originally intended to be used in a space suit, wherein noise generated by airflow of the spacesuit life-support system can make it difficult for remote listeners to understand the astronaut s speech and can interfere with the astronaut s attempt to issue vocal commands to a voice-controlled robot. The system could be adapted to terrestrial use in helmets of protective suits that are typically worn in noisy settings: examples include biohazard, fire, rescue, and diving suits. The system (see figure) includes an array of microphones and small loudspeakers mounted at fixed positions in a helmet, amplifiers and signal-routing circuitry, and a commercial digital signal processor (DSP). Notwithstanding the fixed positions of the microphones and loudspeakers, the system can accommodate itself to any normal motion of the wearer s head within the helmet. The system operates in conjunction with a radio transceiver. An audio signal arriving via the transceiver intended to be heard by the wearer is adjusted in volume and otherwise conditioned and sent to the loudspeakers. The wearer s speech is collected by the microphones, the outputs of which are logically combined (phased) so as to form a microphone- array directional sensitivity pattern that discriminates in favor of sounds coming from vicinity of the wearer s mouth and against sounds coming from elsewhere. In the DSP, digitized samples of the microphone outputs are processed to filter out airflow noise and to eliminate feedback from the loudspeakers to the microphones. The resulting conditioned version of the wearer s speech signal is sent to the transceiver.

  8. Numerical solutions of multi-order fractional differential equations by Boubaker polynomials

    Bolandtalat A.

    2016-01-01

    Full Text Available In this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.

  9. The multi-order envelope periodic solutions to the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation

    Xiao Yafeng; Xue Haili; Zhang Hongqing

    2011-01-01

    Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)

  10. Calculation of controllability and observability matrices for special case of continuous-time multi-order fractional systems.

    Hassanzadeh, Iman; Tabatabaei, Mohammad

    2017-03-28

    In this paper, controllability and observability matrices for pseudo upper or lower triangular multi-order fractional systems are derived. It is demonstrated that these systems are controllable and observable if and only if their controllability and observability matrices are full rank. In other words, the rank of these matrices should be equal to the inner dimension of their corresponding state space realizations. To reduce the computational complexities, these matrices are converted to simplified matrices with smaller dimensions. Numerical examples are provided to show the usefulness of the mentioned matrices for controllability and observability analysis of this case of multi-order fractional systems. These examples clarify that the duality concept is not necessarily true for these special systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Numerical analysis for trajectory controllability of a coupled multi-order fractional delay differential system via the shifted Jacobi method

    Priya, B. Ganesh; Muthukumar, P.

    2018-02-01

    This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.

  12. Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2005-01-01

    Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render

  13. Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors

    Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr

    2010-06-01

    An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.

  14. Newtonian noise cancellation in tensor gravitational wave detector

    Paik, Ho Jung; Harms, Jan

    2016-01-01

    Terrestrial gravity noise produced by ambient seismic and infrasound fields poses one of the main sensitivity limitations in low-frequency ground-based gravitational-wave (GW) detectors. This noise needs to be suppressed by 3-5 orders of magnitude in the frequency band 10 mHz to 1 Hz, which is extremely challenging. We present a new approach that greatly facilitates cancellation of gravity noise in full-tensor GW detectors. It makes explicit use of the direction of propagation of a GW, and can therefore either be implemented in directional searches for GWs or in observations of known sources. We show that suppression of the Newtonian-noise foreground is greatly facilitated using the extra strain channels in full-tensor GW detectors. Only a modest number of auxiliary, high-sensitivity environmental sensors is required to achieve noise suppression by a few orders of magnitude. (paper)

  15. An improved VSS NLMS algorithm for active noise cancellation

    Sun, Yunzhuo; Wang, Mingjiang; Han, Yufei; Zhang, Congyan

    2017-08-01

    In this paper, an improved variable step size NLMS algorithm is proposed. NLMS has fast convergence rate and low steady state error compared to other traditional adaptive filtering algorithm. But there is a contradiction between the convergence speed and steady state error that affect the performance of the NLMS algorithm. Now, we propose a new variable step size NLMS algorithm. It dynamically changes the step size according to current error and iteration times. The proposed algorithm has simple formulation and easily setting parameters, and effectively solves the contradiction in NLMS. The simulation results show that the proposed algorithm has a good tracking ability, fast convergence rate and low steady state error simultaneously.

  16. An improved affine projection algorithm for active noise cancellation

    Zhang, Congyan; Wang, Mingjiang; Han, Yufei; Sun, Yunzhuo

    2017-08-01

    Affine projection algorithm is a signal reuse algorithm, and it has a good convergence rate compared to other traditional adaptive filtering algorithm. There are two factors that affect the performance of the algorithm, which are step factor and the projection length. In the paper, we propose a new variable step size affine projection algorithm (VSS-APA). It dynamically changes the step size according to certain rules, so that it can get smaller steady-state error and faster convergence speed. Simulation results can prove that its performance is superior to the traditional affine projection algorithm and in the active noise control (ANC) applications, the new algorithm can get very good results.

  17. Adaptive Noise Canceling Menggunakan Algoritma Least Mean Square (Lms)

    Nardiana, Anita; Sumaryono, Sari Sujoko

    2011-01-01

    Noise is inevitable in communication system. In some cases, noise can disturb signal. It is veryannoying as the received signal is jumbled with the noise itself. To reduce or remove noise, filter lowpass,highpass or bandpass can solve the problems, but this method cannot reach a maximum standard. One ofthe alternatives to solve the problem is by using adaptive filter. Adaptive algorithm frequently used is LeastMean Square (LMS) Algorithm which is compatible to Finite Impulse Response (FIR). T...

  18. Adaptive noise canceling of electrocardiogram artifacts in single channel electroencephalogram.

    Cho, Sung Pil; Song, Mi Hye; Park, Young Cheol; Choi, Ho Seon; Lee, Kyoung Joung

    2007-01-01

    A new method for estimating and eliminating electrocardiogram (ECG) artifacts from single channel scalp electroencephalogram (EEG) is proposed. The proposed method consists of emphasis of QRS complex from EEG using least squares acceleration (LSA) filter, generation of synchronized pulse with R-peak and ECG artifacts estimation and elimination using adaptive filter. The performance of the proposed method was evaluated using simulated and real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, which are independent component analysis (ICA) and ensemble average (EA) method. From this we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifacts from single channel EEG and simple to use for ambulatory/portable EEG monitoring system.

  19. Adaptive Beamforming Algorithms for Tow Ship Noise Canceling

    Robert, M.K.; Beerens, S.P.

    2002-01-01

    In towed array sonar, the directional noise originating from the tow ship, mainly machinery and hydrodynamic noise, often limits the sonar performance. When processed with classical beamforming techniques, loud tow ship noise induces high sidelobes that may hide detection of quiet targets in forward

  20. Tuning Out the World with Noise-Canceling Headphones

    McCulloch, Allison W.; Whitehead, Ashley; Lovett, Jennifer N.; Whitley, Blake

    2017-01-01

    Context is what makes mathematical modeling tasks different from more traditional textbook word problems. Math problems are sometimes stripped of context as they are worked on. For modeling problems, however, context is important for making sense of the mathematics. The task should be brought back to its real-world context as often as possible. In…

  1. Irradiance gradients

    Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques

  2. $L_{0}$ Gradient Projection.

    Ono, Shunsuke

    2017-04-01

    Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.

  3. Travelling gradient thermocouple calibration

    Broomfield, G.H.

    1975-01-01

    A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed

  4. Quaternion Gradient and Hessian

    Xu, Dongpo; Mandic, Danilo P.

    2014-01-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...

  5. Gradient Alloy for Optical Packaging

    National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...

  6. High Gradient Accelerator Research

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  7. Personalized multi-channel headphone sound reproduction based on active noise cancellation

    Schobben, D.W.E.; Aarts, R.M.

    2005-01-01

    A system for headphone signal processing is discussed which gives a listener the same impression as listening to a multi-channel loudspeaker set-up. It is important that this processing is optimized for each individual listener. If this is not the case, large localization errors may occur. In the

  8. A compressed sensing based method with support refinement for impulse noise cancelation in DSL

    Quadeer, Ahmed Abdul

    2013-06-01

    This paper presents a compressed sensing based method to suppress impulse noise in digital subscriber line (DSL). The proposed algorithm exploits the sparse nature of the impulse noise and utilizes the carriers, already available in all practical DSL systems, for its estimation and cancelation. Specifically, compressed sensing is used for a coarse estimate of the impulse position, an a priori information based maximum aposteriori probability (MAP) metric for its refinement, followed by least squares (LS) or minimum mean square error (MMSE) estimation for estimating the impulse amplitudes. Simulation results show that the proposed scheme achieves higher rate as compared to other known sparse estimation algorithms in literature. The paper also demonstrates the superior performance of the proposed scheme compared to the ITU-T G992.3 standard that utilizes RS-coding for impulse noise refinement in DSL signals. © 2013 IEEE.

  9. Application of Adaptive Noise Cancellation for Anti-Vibration in Yield Monitor

    Yan LI

    2014-04-01

    Full Text Available In the process of grain harvest, yield monitor system acquires real-time spatial distribution information of crop yield to provide important basis of decision-making for subsequent assignments of precision agriculture. The measurement accuracy has been seriously affected by Combine working vibration. Based on an innovative test platform of wheat combine harvester for yield monitor, well simulate the working vibration at the field situation; impact-based grain flow sensor with the structure of dual-parallel-beams as test terminals and using the NI (National Instrument data acquisition card to acquire signals; grain impacted frequency as fundamental frequency to process harmonic extraction, and for extracted signals, applied the improved LMS adaptive algorithm to interference cancellation, aim to eliminate interference cased by working vibration. The comparative experiment show that the maximum relative error less than 2 % under the proposed method and proved that the proposed algorithm in this paper is effective.

  10. Beamspace Adaptive Beamforming for Hydrodynamic Towed Array Self-Noise Cancellation

    Premus, Vincent

    2001-01-01

    ... against signal self-nulling associated with steering vector mismatch. Particular attention is paid to the definition of white noise gain as the metric that reflects the level of mainlobe adaptive nulling for an adaptive beamformer...

  11. Beamspace Adaptive Beamforming for Hydrodynamic Towed Array Self-Noise Cancellation

    Premus, Vincent

    2000-01-01

    ... against signal self-nulling associated with steering vector mismatch. Particular attention is paid to the definition of white noise gain as the metric that reflects the level of mainlobe adaptive nulling for an adaptive beamformer...

  12. A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation.

    Lim, Wootaek; Jang, Taekwang; Lee, Inhee; Kim, Hun-Seok; Sylvester, Dennis; Blaauw, David

    2016-06-01

    We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps.

  13. dc SQUID electronics based on adaptive noise cancellation and a high open-loop gain controller

    Seppae, H.

    1992-01-01

    A low-noise SQUID readout electronics with a high slew rate and an automatic gain control feature has been developed. Flux noise levels of 5x10 -7 Φ 0 /√Hz at 1 kHz and 2x10 -6 Φ 0 /√Hz at 1 Hz have been measured with this readout scheme. The system tolerates sinusoidal disturbances having amplitudes up to 140 Φ 0 at 1 kHz without loosing lock. The electronics utilizes a cooled GaAs FET to control the cancellation of the voltage noise of the room temperature amplifier, a PI 3/2 controller to provide a high open-loop gain at low frequencies, and a square-wave flux and offset voltage modulation to enable automatic control of the noise reduction. The cutoff frequency of the flux-locked-loop is 300 kHz and the feedback gain is more than 130 dB at 10 Hz. (orig.)

  14. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy.

    de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D

    2005-05-15

    We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

  15. Impulse Noise Cancellation of Medical Images Using Wavelet Networks and Median Filters

    Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeid; Gheissari, Niloofar

    2012-01-01

    This paper presents a new two-stage approach to impulse noise removal for medical images based on wavelet network (WN). The first step is noise detection, in which the so-called gray-level difference and average background difference are considered as the inputs of a WN. Wavelet Network is used as a preprocessing for the second stage. The second step is removing impulse noise with a median filter. The wavelet network presented here is a fixed one without learning. Experimental results show that our method acts on impulse noise effectively, and at the same time preserves chromaticity and image details very well. PMID:23493998

  16. All-mechanical quantum noise cancellation for accelerometry: broadband with momentum measurements, narrow band without

    Jacobs, Kurt; Balu, Radhakrishnan; Tezak, Nikolas; Mabuchi, Hideo

    2016-01-01

    We show that the ability to make direct measurements of momentum, in addition to the usual direct measurements of position, allows a simple configuration of two identical mechanical oscillators to be used for broadband back-action-free force metrology. This would eliminate the need for an optical reference oscillator in the scheme of Tsang and Caves (2010 Phys. Rev. Lett.  105 123601), along with its associated disadvantages. We also show that if one is restricted to position measurements alone then two copies of the same two-oscillator configuration can be used for narrow-band back-action-free force metrology. (paper)

  17. Active noise cancellation of low frequency noise propagating in a duct

    Farhad Forouharmajd

    2012-01-01

    Conclusions: With regard to the wide range of frequencies of different noise sources, having optimized circumstances in the duct, microphone location on the duct body or even the distance of the speakers may be important in signal processing, noise sampling and anti noise production.

  18. IIR digital filter design for powerline noise cancellation of ECG signal using arduino platform

    Rahmatillah, Akif; Ataulkarim

    2017-05-01

    Powerline noise has been one of significant noises of Electrocardiogram (ECG) signal measurement. This noise is characterized by a sinusoidal signal which has 50 Hz of noise and 0.3 mV of maximum amplitude. This paper describes the design of IIR Notch filter design to reject a 50 Hz power line noise. IIR filter coefficients were calculated using pole placement method with three variations of band stop cut off frequencies of (49-51)Hz, (48 - 52)Hz, and (47 - 53)Hz. The algorithm and coefficients of filter were embedded to Arduino DUE (ARM 32 bit microcontroller). IIR notch filter designed has been able to reject power line noise with average square of error value of 0.225 on (49-51) Hz filter design and 0.2831 on (48 - 52)Hz filter design.

  19. Investigation of Diesel’s Residual Noise on Predictive Vehicles Noise Cancelling using LMS Adaptive Algorithm

    Arttini Dwi Prasetyowati, Sri; Susanto, Adhi; Widihastuti, Ida

    2017-04-01

    Every noise problems require different solution. In this research, the noise that must be cancelled comes from roadway. Least Mean Square (LMS) adaptive is one of the algorithm that can be used to cancel that noise. Residual noise always appears and could not be erased completely. This research aims to know the characteristic of residual noise from vehicle’s noise and analysis so that it is no longer appearing as a problem. LMS algorithm was used to predict the vehicle’s noise and minimize the error. The distribution of the residual noise could be observed to determine the specificity of the residual noise. The statistic of the residual noise close to normal distribution with = 0,0435, = 1,13 and the autocorrelation of the residual noise forming impulse. As a conclusion the residual noise is insignificant.

  20. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In

  1. Wideband Balun-LNA with Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, D.M.W.; Nauta, Bram

    2008-01-01

    An inductorless low-noise amplifier (LNA) with active balun is proposed for multi-standard radio applications between 100 MHz and 6 GHz. It exploits a combination of a common-gate (CGH) stage and an admittance-scaled common-source (CS) stage with replica biasing to maximize balanced operation, while

  2. On-line adaptive line frequency noise cancellation from a nuclear power measuring channel

    Qadir Javed

    2011-01-01

    Full Text Available On-line software for adaptively canceling 50 Hz line frequency noise has been designed and tested at Pakistan Research Reactor 1. Line frequency noise causes much problem in weak signals acquisition. Sometimes this noise is so dominant that original signal is totally corrupted. Although notch filter can be used for eliminating this noise, but if signal of interest is in close vicinity of 50 Hz, then original signal is also attenuated and hence overall performance is degraded. Adaptive noise removal is a technique which could be employed for removing line frequency without degrading the desired signal. In this paper line frequency noise has been eliminated on-line from a nuclear power measuring channel. The adaptive LMS algorithm has been used to cancel 50 Hz noise. The algorithm has been implemented in labVIEW with NI 6024 data acquisition card. The quality of the acquired signal has been improved much as can be seen in experimental results.

  3. A wideband CMOS inductorless low noise amplifier employing noise cancellation for digital TV tuner applications

    Zhang Jihong; Bai Xuefei; Huang Lu

    2013-01-01

    A wideband inductorless low noise amplifier for digital TV tuner applications is presented. The proposed LNA scheme uses a composite NMOS/PMOS cross-coupled transistor pair to provide partial cancellation of noise generated by the input transistors. The chip is implemented in SMIC 0.18 μm CMOS technology. Measurement shows that the proposed LNA achieves 12.2–15.2 dB voltage gain from 300 to 900 MHz, the noise figure is below 3.1 dB and has a minimum value of 2.3 dB, and the best input-referred 1-dB compression point (IP1dB) is − 17 dBm at 900 MHz. The core consumes 7 mA current with a supply voltage of 1.8 V and occupies an area of 0.5 × 0.35 mm 2 . (semiconductor integrated circuits)

  4. Recognition of Voice Commands by Multisource ASR and Noise Cancellation in a Smart Home Environment

    Vacher , Michel; Lecouteux , Benjamin; Portet , François

    2012-01-01

    International audience; In this paper, we present a multisource ASR system to detect home automation orders in various everyday listening conditions in a realistic home. The system is based on a state of the art echo cancellation stage that feeds recently introduced ASR techniques. The evaluation was conducted on a realistic noisy data set acquired in a smart home where a microphone was placed near the noise source and several other microphones were placed in different rooms. This distant spe...

  5. An LCMV Filter for Single-Channel Noise Cancellation and Reduction in the Time Domain

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2013-01-01

    In this paper, we consider a recent class of optimal rectangular fil- tering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters...... signal-to-interference ratio. This is showed for both synthetic and real speech signals....

  6. Uniform gradient expansions

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  7. High gradient superconducting quadrupoles

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  8. Manipulating the Gradient

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  9. Bigravity from gradient expansion

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-01-01

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  10. Gradient-Index Optics

    2010-03-31

    nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and

  11. Wetting of flat gradient surfaces.

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Gradient Boosting Machines, A Tutorial

    Alexey eNatekin

    2013-12-01

    Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.

  13. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils

    Han, B H; Lee, S Y; Park, S

    2008-01-01

    Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path

  14. Denaturing gradient gel electrophoresis

    Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.

    2005-01-01

    It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations

  15. Ion temperature gradient instability

    1989-01-01

    Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc

  16. Characterization of gradient control systems

    Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.

    2005-01-01

    Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system

  17. Characterization of Gradient Control Systems

    Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.

    2005-01-01

    Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system

  18. Sobolev gradients and differential equations

    Neuberger, J W

    2010-01-01

    A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...

  19. Electric field gradients in metals

    Schatz, G.

    1979-01-01

    A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)

  20. The geomagnetic field gradient tensor

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...

  1. MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT

    ZURAIDAH FITRIAH

    2017-10-01

    Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient  (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.

  2. Combining Step Gradients and Linear Gradients in Density.

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  3. Block-conjugate-gradient method

    McCarthy, J.F.

    1989-01-01

    It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum

  4. Spatial gradient tuning in metamaterials

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  5. Low-gradient aortic stenosis.

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-07

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA gradient (gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  6. Graded/Gradient Porous Biomaterials

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  7. Dose gradient curve: A new tool for evaluating dose gradient.

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  8. Rapid Gradient-Echo Imaging

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  9. The influence of ALN-Al gradient material gradient index on ballistic performance

    Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang

    2013-01-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  10. Hydraulic gradients in rock aquifers

    Dahlblom, P.

    1992-05-01

    This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)

  11. A theory of gradient analysis

    Braak, ter C.J.F.

    1988-01-01

    The theory of gradient analysis is presented in this chapter, in which the heuristic techniques are integrated with regression, calibration, ordination and constrained ordination as distinct, well-defined statistical problems. The various techniques used for each type of problem are classified into

  12. Compositional gradients in Gramineae genes

    Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin

    2002-01-01

    In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...

  13. Orderings for conjugate gradient preconditionings

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  14. Color gradients in elliptical galaxies

    Franx, M.; Illingworth, G.

    1990-01-01

    The relationship of the color gradients within ellipticals and the color differences between them are studied. It is found that the local color appears to be strongly related to the escape velocity. This suggests that the local escape velocity is the primary factor that determines the metallicity of the stellar population. Models with and without dark halos give comparable results. 27 refs

  15. Passive synthetic aperture sonar techniques in combination with tow ship noise canceling: application to a triplet towed array

    Colin, M.E.G.D.; Groen, J.

    2002-01-01

    An important issue in research on passive ASW operations is improvement in signal-to-noise ratio (SNR) and bearing resolution for targets emitting low frequency signals. One of the techniques believed to improve these characteristics is Synthetic Aperture Sonar (SAS). The method is based on the

  16. Elemental gradients in macrophytes from a reactor effluent gradient

    Grace, J.B.; Tilly, L.J.

    1978-01-01

    The tissues of submersed macrophtes from along the thermal gradient were analyzed for phosphorus to determine whether any pattern correspondent to standing crop distributions could be detected. Although water concentrations of phosphorus showed no detectable relationship to the thermal effluent, tissue concentrations of this element in submersed macrophytes declined with distance from the effluent entry point. The occurrence of this concentration pattern suggests that phosphorus availability is greater near the discharge. Because phosphorus is the element most often determined to limit aquatic productivity, its greater availability may partially account for the apparent enhancement of macrophte growth near the thermal discharge. A patter of macrophyte abundance which indicated enchancement related to the discharge gradient in the reactor-cooling reservoir, Par Pond is reported. Correlative data tended to implicate light and temperature as important in influencing the differential abundance pattern

  17. Computational Strain Gradient Crystal Plasticity

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  18. Computational strain gradient crystal plasticity

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  19. Vertebrate pressure-gradient receivers

    Christensen-Dalsgaard, Jakob

    2011-01-01

    The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...

  20. Primordial vorticity and gradient expansion

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  1. Gradient computation for VTI acoustic wavefield tomography

    Li, Vladimir; Wang, Hui; Tsvankin, Ilya; Diaz, Esteban; Alkhalifah, Tariq Ali

    2016-01-01

    -power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space

  2. Instabilities in power law gradient hardening materials

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  3. An education gradient in health, a health gradient in education, or a confounded gradient in both?

    Lynch, Jamie L; von Hippel, Paul T

    2016-04-01

    There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Strain gradient effects in surface roughening

    Borg, Ulrik; Fleck, N.A.

    2007-01-01

    evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...

  5. Gradient remediability in linear distributed parabolic systems ...

    The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...

  6. Temperature Gradient in Hall Thrusters

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  7. Generalized Gradient Approximation Made Simple

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-01-01

    Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society

  8. Dai-Kou type conjugate gradient methods with a line search only using gradient.

    Huang, Yuanyuan; Liu, Changhe

    2017-01-01

    In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.

  9. Ternary gradient metal-organic frameworks.

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  10. Strain gradient effects on cyclic plasticity

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  11. High gradient RF breakdown study

    Laurent, L.; Luhmann, N.C. Jr.; Scheitrum, G.; Hanna, S.; Pearson, C.; Phillips, R.

    1998-01-01

    Stanford Linear Accelerator Center and UC Davis have been investigating high gradient RF breakdown and its effects on pulse shortening in high energy microwave devices. RF breakdown is a critical issue in the development of high power microwave sources and next generation linear accelerators since it limits the output power of microwave sources and the accelerating gradient of linacs. The motivation of this research is to find methods to increase the breakdown threshold level in X-band structures by reducing dark current. Emphasis is focused on improved materials, surface finish, and cleanliness. The test platform for this research is a traveling wave resonant ring. A 30 MW klystron is employed to provide up to 300 MW of traveling wave power in the ring to trigger breakdown in the cavity. Five TM 01 cavities have previously been tested, each with a different combination of surface polish and/or coating. The onset of breakdown was extended up to 250 MV/m with a TiN surface finish, as compared to 210 MV/m for uncoated OFE copper. Although the TiN coating was helpful in depressing the field emission, the lowest dark current was obtained with a 1 microinch surface finish, single-point diamond-turned cavity

  12. NIF optics phase gradient specfication

    Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.

    1997-01-01

    A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of ∼80 angstrom/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS ampersand T personnel

  13. Strength gradient enhances fatigue resistance of steels

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  14. Thermal conduction down steep temperature gradients

    Bell, A.R.; Evans, R.G.; Nicholas, D.J.

    1980-08-01

    The Fokker-Planck equation has been solved numerically in one spatial and two velocity dimensions in order to study thermal conduction in large temperature gradients. An initially cold plasma is heated at one end of the spatial grid producing temperature gradients with scale lengths of a few times the electron mean free path. The heat flow is an order of magnitude smaller than that predicted by the classical theory which is valid in the limit of small temperature gradients. (author)

  15. Testing the limits of gradient sensing.

    Vinal Lakhani

    2017-02-01

    Full Text Available The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis or grow (chemotropism towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell's accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts.

  16. Gradient Flow Convolutive Blind Source Separation

    Pedersen, Michael Syskind; Nielsen, Chinton Møller

    2004-01-01

    Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use...... of a circular four microphone array with a radius of 5 mm, and applying convolutive gradient flow instead of just applying instantaneous gradient flow, experimental results show an improvement of up to around 14 dB can be achieved for simulated impulse responses and up to around 10 dB for a hearing aid...

  17. On lower order strain gradient plasticity theories

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...... the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory....... The findings raise questions about the physical acceptability of this class of strain gradient theories....

  18. Community and ecosystem responses to elevational gradients

    Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.

    2013-01-01

    Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients...... elevational gradients for understanding community and ecosystem responses to global climate change at much larger spatial and temporal scales than is possible through conventional ecological experiments. However, future studies that integrate elevational gradient approaches with experimental manipulations...... will provide powerful information that can improve predictions of climate change impacts within and across ecosystems....

  19. STOCHASTIC GRADIENT METHODS FOR UNCONSTRAINED OPTIMIZATION

    Nataša Krejić

    2014-12-01

    Full Text Available This papers presents an overview of gradient based methods for minimization of noisy functions. It is assumed that the objective functions is either given with error terms of stochastic nature or given as the mathematical expectation. Such problems arise in the context of simulation based optimization. The focus of this presentation is on the gradient based Stochastic Approximation and Sample Average Approximation methods. The concept of stochastic gradient approximation of the true gradient can be successfully extended to deterministic problems. Methods of this kind are presented for the data fitting and machine learning problems.

  20. Gravity gradient preprocessing at the GOCE HPF

    Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.

    2009-04-01

    One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  1. Canonical trivialization of gravitational gradients

    Niedermaier, Max

    2017-01-01

    A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein–Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie–Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions. (paper)

  2. Canonical trivialization of gravitational gradients

    Niedermaier, Max

    2017-06-01

    A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein-Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie-Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions.

  3. Rank gradient and p-gradient of amalgamated free products and HNN extensions

    Pappas, Nathaniel

    2013-01-01

    We calculate the rank gradient and p-gradient of free products, free products with amalgamation over an amenable subgroup, and HNN extensions with an amenable associated subgroup. The notion of cost is used to compute the rank gradient of amalgamated free products and HNN extensions. For the p-gradient the Kurosh subgroup theorems for amalgamated free products and HNN extensions will be used.

  4. Preconditioning the modified conjugate gradient method ...

    In this paper, the convergence analysis of the conventional conjugate Gradient method was reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of the condition number of M-1A.

  5. Structures and Strength of Gradient Nanostructures

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    distance from the surface forming a gradient structure. In this study [2], by shot peening of a low carbon steel a gradient structure has been produced extending to about 1 mm below the surface. A number of strengthening mechanisms have been analyzed as a basis for a calculation of the stress and strain...

  6. On lower order strain gradient plasticity theories

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2002-01-01

    By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...

  7. Ultra-high gradient compact accelerator developments

    Brussaard, G.J.H.; Wiel, van der M.J.

    2004-01-01

    Continued development of relatively compact, although not quite 'table-top', lasers with peak powers in the range up to 100 TW has enabled laser-plasma-based acceleration experiments with amazing gradients of up to 1 TV/m. In order to usefully apply such gradients to 'controlled' acceleration,

  8. An Inexpensive Digital Gradient Controller for HPLC.

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  9. 40 CFR 230.25 - Salinity gradients.

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  10. Microinstabilities in weak density gradient tokamak systems

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient

  11. Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyse

    Marko Gómez-Hernández; Guadalupe Williams-Linera; Roger Guevara; D. Jean Lodge

    2012-01-01

    Gradient analysis is rarely used in studies of fungal communities. Data on macromycetes from eight sites along an elevation gradient in central Veracruz, Mexico, were used to demonstrate methods for gradient analysis that can be applied to studies of communities of fungi. Selected sites from 100 to 3,500 m altitude represent tropical dry forest, tropical montane cloud...

  12. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.

    2011-01-01

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  13. Dual fuel gradients in uranium silicide plates

    Pace, B.W. [Babock and Wilcox, Lynchburg, VA (United States)

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  14. Approximate error conjugation gradient minimization methods

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  15. Protein gradient films of fibroin and gelatine.

    Claussen, Kai U; Lintz, Eileen S; Giesa, Reiner; Schmidt, Hans-Werner; Scheibel, Thomas

    2013-10-01

    Gradients are a natural design principle in biological systems that are used to diminish stress concentration where materials of differing mechanical properties connect. An interesting example of a natural gradient material is byssus, which anchors mussels to rocks and other hard substrata. Building upon previous work with synthetic polymers and inspired by byssal threads, protein gradient films are cast using glycerine-plasticized gelatine and fibroin exhibiting a highly reproducible and smooth mechanical gradient, which encompasses a large range of modulus from 160 to 550 MPa. The reproducible production of biocompatible gradient films represents a first step towards medical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Gradient pre-emphasis to counteract first-order concomitant fields on asymmetric MRI gradient systems.

    Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A

    2017-06-01

    To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Intracellular chemical gradients: morphing principle in bacteria

    Endres Robert G

    2012-09-01

    Full Text Available Abstract Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012 postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.

  18. Sound beam manipulation based on temperature gradients

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  19. Unimodal and crossmodal gradients of spatial attention

    Föcker, J.; Hötting, K.; Gondan, Matthias

    2010-01-01

    Behavioral and event-related potential (ERP) studies have shown that spatial attention is gradually distributed around the center of the attentional focus. The present study compared uni- and crossmodal gradients of spatial attention to investigate whether the orienting of auditory and visual...... spatial attention is based on modality specific or supramodal representations of space. Auditory and visual stimuli were presented from five speaker locations positioned in the right hemifield. Participants had to attend to the innermost or outmost right position in order to detect either visual...... or auditory deviant stimuli. Detection rates and event-related potentials (ERPs) indicated that spatial attention is distributed as a gradient. Unimodal spatial ERP gradients correlated with the spatial resolution of the modality. Crossmodal spatial gradients were always broader than the corresponding...

  20. Full Gradient Solution to Adaptive Hybrid Control

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2017-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  1. Continuous spray forming of functionally gradient materials

    McKechnie, T.N.; Richardson, E.H.

    1995-01-01

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers

  2. Vegetation patterns and environmental gradients in Benin

    Adomou, A.

    2005-01-01

    Key words: West Africa, Benin, vegetation patterns, floristic areas, phytogeography, chorology, floristic gradients, climatic factors, water availability, Dahomey Gap, threatened plants, biodiversity, conservation.Understanding plant species distribution patterns and the underlying factors is a

  3. Coreless Concept for High Gradient Induction Cell

    Krasnykh, Anatoly

    2008-01-01

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM(reg s ign)) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments

  4. Flexoelectricity: strain gradient effects in ferroelectrics

    Ma Wenhui [Department of Physics, Shantou Unversity, Shantou, Guangdong 515063 (China)

    2007-12-15

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 {mu} C m{sup -1} for lead zirconate titanate to 100 {mu} C m{sup -1} for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems.

  5. On fracture in finite strain gradient plasticity

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  6. TEK twisted gradient flow running coupling

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2014-01-01

    We measure the running of the twisted gradient flow coupling in the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions in the large N limit.

  7. Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients

    Sánchez, S. F.; Sánchez-Menguiano, L.

    2017-07-01

    We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.

  8. Stability of gradient semigroups under perturbations

    Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.

    2011-07-01

    In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

  9. Stability of gradient semigroups under perturbations

    Aragão-Costa, E R; Carvalho, A N; Caraballo, T; Langa, J A

    2011-01-01

    In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646–68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646–68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space)

  10. Gradient High Performance Liquid Chromatography Method ...

    Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid ..... nimesulide, phenylephrine. Hydrochloride, chlorpheniramine maleate and caffeine anhydrous in pharmaceutical dosage form. Acta Pol.

  11. Ultimate gradient in solid-state accelerators

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams

  12. Quasistatic nonlinear viscoelasticity and gradient flows

    Ball, John M.; Şengül, Yasemin

    2014-01-01

    We consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is λ-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the d...

  13. Tolman temperature gradients in a gravitational field

    Santiago, Jessica; Visser, Matt

    2018-01-01

    Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...

  14. Tearing modes with pressure gradient effect in pair plasmas

    Cai Huishan; Li Ding; Zheng Jian

    2009-01-01

    The general dispersion relation of tearing mode with pressure gradient effect in pair plasmas is derived analytically. If the pressure gradients of positron and electron are not identical in pair plasmas, the pressure gradient has significant influence at tearing mode in both collisionless and collisional regimes. In collisionless regime, the effects of pressure gradient depend on its magnitude. For small pressure gradient, the growth rate of tearing mode is enhanced by pressure gradient. For large pressure gradient, the growth rate is reduced by pressure gradient. The tearing mode can even be stabilized if pressure gradient is large enough. In collisional regime, the growth rate of tearing mode is reduced by the pressure gradient. While the positron and electron have equal pressure gradient, tearing mode is not affected by pressure gradient in pair plasmas.

  15. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise

    Zhang, Mingji; Or, Siu Wing

    2017-01-01

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME vo...

  16. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application

    Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng

    2015-09-01

    The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.

  17. Income inequality and socioeconomic gradients in mortality.

    Wilkinson, Richard G; Pickett, Kate E

    2008-04-01

    We investigated whether the processes underlying the association between income inequality and population health are related to those responsible for the socioeconomic gradient in health and whether health disparities are smaller when income differences are narrower. We used multilevel models in a regression analysis of 10 age- and cause-specific US county mortality rates on county median household incomes and on state income inequality. We assessed whether mortality rates more closely related to county income were also more closely related to state income inequality. We also compared mortality gradients in more- and less-equal states. Mortality rates more strongly associated with county income were more strongly associated with state income inequality: across all mortality rates, r= -0.81; P=.004. The effect of state income inequality on the socioeconomic gradient in health varied by cause of death, but greater equality usually benefited both wealthier and poorer counties. Although mortality rates with steep socioeconomic gradients were more sensitive to income distribution than were rates with flatter gradients, narrower income differences benefit people in both wealthy and poor areas and may, paradoxically, do little to reduce health disparities.

  18. Jupiter's evolution with primordial composition gradients

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  19. Gradient dissimilation in Mongolian: Implications for diachrony

    Jatteau, Adèle; Hejná, Michaela

    2018-01-01

    This paper explores the implications of ‘gradient dissimilation’ (Jatteau & Hejná 2016) for the diachronic implementation of dissimilation. Since this sound change is usually considered as typically sporadic, lexically regular cases should result from lexical diffusion. In contrast with this ass......This paper explores the implications of ‘gradient dissimilation’ (Jatteau & Hejná 2016) for the diachronic implementation of dissimilation. Since this sound change is usually considered as typically sporadic, lexically regular cases should result from lexical diffusion. In contrast...... with this assumption, we explore the hypothesis that gradient dissimilation may represent the phonetic precursor of completed, regular dissimilatory processes. Such cases of dissimilation might then be reanalysed as Neogrammarian types of change. To assess this question, we gather and analyse new data from Halh...... Mongolian, a language reported to show gradient dissimilation (Svantesson et al. 2005), and compare it to two completed patterns of dissimilation reconstructed within the Mongolic family: Mongolian Chahar and Monguor. The results suggest that the gradient dissimilation in Halh may represent the phonetic...

  20. Gradient algorithm applied to laboratory quantum control

    Roslund, Jonathan; Rabitz, Herschel

    2009-01-01

    The exploration of a quantum control landscape, which is the physical observable as a function of the control variables, is fundamental for understanding the ability to perform observable optimization in the laboratory. For high control variable dimensions, trajectory-based methods provide a means for performing such systematic explorations by exploiting the measured gradient of the observable with respect to the control variables. This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a general quantum control landscape in the presence of noise. In order to demonstrate the method's utility, the experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three model quantum control problems: spectrally filtered and integrated second harmonic generation as well as excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid in the continued investigation and understanding of controlled quantum phenomena.

  1. An implicit tensorial gradient plasticity model - formulation and comparison with a scalar gradient model

    Poh, L.H.; Peerlings, R.H.J.; Geers, M.G.D.; Swaddiwudhipong, S.

    2011-01-01

    Many rate-independent models for metals utilize the gradient of effective plastic strain to capture size-dependent behavior. This enhancement, sometimes termed as "explicit" gradient formulation, requires higher-order tractions to be imposed on the evolving elasto-plastic boundary and the resulting

  2. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.

    2015-01-01

    Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing climates.

  3. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.

  4. Inversion gradients for acoustic VTI wavefield tomography

    Li, Vladimir; Wang, Hui; Tsvankin, Ilya; Dí az, Esteban; Alkhalifah, Tariq Ali

    2017-01-01

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.

  5. Gradient pattern analysis applied to galaxy morphology

    Rosa, R. R.; de Carvalho, R. R.; Sautter, R. A.; Barchi, P. H.; Stalder, D. H.; Moura, T. C.; Rembold, S. B.; Morell, D. R. F.; Ferreira, N. C.

    2018-06-01

    Gradient pattern analysis (GPA) is a well-established technique for measuring gradient bilateral asymmetries of a square numerical lattice. This paper introduces an improved version of GPA designed for galaxy morphometry. We show the performance of the new method on a selected sample of 54 896 objects from the SDSS-DR7 in common with Galaxy Zoo 1 catalogue. The results suggest that the second gradient moment, G2, has the potential to dramatically improve over more conventional morphometric parameters. It separates early- from late-type galaxies better (˜ 90 per cent) than the CAS system (C˜ 79 per cent, A˜ 50 per cent, S˜ 43 per cent) and a benchmark test shows that it is applicable to hundreds of thousands of galaxies using typical processing systems.

  6. Dynamics of gradient formation by intracellular shuttling

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  7. Relativistic klystrons for high-gradient accelerators

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S.; Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Hopkins, D.B.; Sessler, A.M.; Haimson, J.; Mecklenburg, B.

    1991-01-01

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. The authors have learned how to overcome their previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power

  8. Substrate curvature gradient drives rapid droplet motion.

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces.

  9. Nonlinear conjugate gradient methods in micromagnetics

    J. Fischbacher

    2017-04-01

    Full Text Available Conjugate gradient methods for energy minimization in micromagnetics are compared. The comparison of analytic results with numerical simulation shows that standard conjugate gradient method may fail to produce correct results. A method that restricts the step length in the line search is introduced, in order to avoid this problem. When the step length in the line search is controlled, conjugate gradient techniques are a fast and reliable way to compute the hysteresis properties of permanent magnets. The method is applied to investigate demagnetizing effects in NdFe12 based permanent magnets. The reduction of the coercive field by demagnetizing effects is μ0ΔH = 1.4 T at 450 K.

  10. Inversion gradients for acoustic VTI wavefield tomography

    Li, Vladimir

    2017-03-21

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.

  11. Vertical gradients of sunspot magnetic fields

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  12. Conjugate gradient algorithms using multiple recursions

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  13. METALLICITY GRADIENTS OF THICK DISK DWARF STARS

    Carrell, Kenneth; Chen Yuqin; Zhao Gang, E-mail: carrell@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-12-01

    We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc <|Z| < 3 kpc, which is the vertical height range most consistent with the thick disk of our Galaxy. In the radial direction, we find metallicity gradients between +0.02 and +0.03 dex kpc{sup -1} for bins in the vertical direction between 1 kpc <|Z| < 3 kpc. Both of these results agree with similar values determined from other populations of stars, but this is the first time a radial metallicity gradient for the thick disk has been found at these vertical heights. We are also able to separate thin and thick disk stars based on kinematic and spatial probabilities in the vertical height range where there is significant overlap of these two populations. This should aid further studies of the metallicity gradients of the disk for vertical heights lower than those studied here but above the solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.

  14. Review of new shapes for higher gradients

    Geng, R.L.

    2006-01-01

    High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient E acc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field H pk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field H crit,RF , a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of H pk /E acc has been recently proposed. For a reduced H pk /E acc , a higher ultimate E acc is sustained when H pk finally strikes H crit,RF . The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called 'Low-loss' shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration

  15. Review of new shapes for higher gradients

    Geng, R. L.

    2006-07-01

    High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient Eacc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field Hpk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field Hcrit,RF, a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of Hpk/ Eacc has been recently proposed. For a reduced Hpk/ Eacc, a higher ultimate Eacc is sustained when Hpk finally strikes Hcrit,RF. The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called “Low-loss” shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration.

  16. Frequency Analysis of Gradient Estimators in Volume Rendering

    Bentum, Marinus Jan; Lichtenbelt, Barthold B.A.; Malzbender, Tom

    1996-01-01

    Gradient information is used in volume rendering to classify and color samples along a ray. In this paper, we present an analysis of the theoretically ideal gradient estimator and compare it to some commonly used gradient estimators. A new method is presented to calculate the gradient at arbitrary

  17. Lactate uptake against a concentration gradient

    Nordström, Carl-Henrik; Nielsen, Troels Halfeld; Nielsen, Hans Boye

    2014-01-01

    The recently published article by Jalloh et al (Jalloh I, Helmy A, Shannon RJ, Gallagher CN, Menon D, Carpenter K, Hutchinson P. Lactate uptake by the injured human brain - evidence from an arterio-venous gradient and cerebral microdialysis study. J Neurotrauma. 2013 Aug 22. [Epub ahead of print......]) concludes that lactate may be transported across the blood brain barrier into the brain against a concentration gradient. Unfortunately the authors have misinterpreted the concept of analytical imprecision and their conclusion is based on analytical artifact. As the topic of lactate transport into the brain...

  18. Measurement of gradient magnetic field temporal characteristics

    Bartusek, K.; Jflek, B.

    1994-01-01

    We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters

  19. Magnetic field of longitudinal gradient bend

    Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas

    2018-06-01

    The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.

  20. CFRMF neutron flux gradient and spectral determinations

    Rogers, J.W.; Turk, E.H.; Hogg, C.H.

    1976-01-01

    Recently more accurate and complete measurements of the flux gradient have been measured by the activation of 235 U and Au samples. Neutron spectrum characteristics were studied by making activation measurements with and without the ends of the CFRMF test region plugged with 10 B. These measurements define the flux gradient to +-1 to 2% and indicate there is no detectable streaming of thermal or resonance neutrons from the ends in the central 30 cm of the CFRMF test region. Measurements of the Cd ratio of Au foil activations were conducted and these results also indicate there is no streaming of thermal and resonance neutrons into the CFRMF test region

  1. The effect of density gradients on hydrometers

    Heinonen, Martti; Sillanpää, Sampo

    2003-05-01

    Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.

  2. Relativistic klystron research for high gradient accelerators

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs

  3. Gradient Learning Algorithms for Ontology Computing

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  4. Gradient Learning Algorithms for Ontology Computing

    Wei Gao

    2014-01-01

    Full Text Available The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting.

  5. Up-gradient transport in a probabilistic transport model

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  6. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise.

    Zhang, Mingji; Or, Siu Wing

    2017-10-25

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of gradient noise of 0.16-620 nT/m/ Hz in a broad frequency range of 1 Hz-170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/ f ) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.

  7. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  8. Energy Transfer Using Gradient Index Metamaterial

    Boopalan Ganapathy

    2018-01-01

    Full Text Available The gradient refractive index structure in this paper is used to increase the quantum of energy transfer. This is done by improving the directive gain of the pyramidal horn antenna at a frequency of 10 GHz. A three-dimensional array of closed square rings is placed in front of the horn antenna aperture to form a gradient refractive index structure. This structure increases the directive gain by 1.6 dB as compared to that of the conventional horn antenna. The structure nearly doubles the wireless power transfer quantum between the transmitter and the receiver when placed at both ends. The increase in the directivity is achieved by converting the spherical wave emanating from the horn to a plane wave once it passes through the structure. This transformation is realized by the gradient refractive index structure being placed perpendicular to the direction of propagation. The gradient refractive index is constructed by changing the dimensions of a closed square ring placed in the unit cell of the array. The change in the refractive index gives rise to an improvement of the half power beam width and side lobe level compared to that of the normal horn. The design and simulation were done using CST Studio software.

  9. Crack Tip Mechanics in Distortion Gradient Plasticity

    Fuentes-Alonso, Sandra; Martínez Pañeda, Emilio

    2017-01-01

    Gradient Plasticity (DGP), the influence on crack tip mechanics of DGP's distinguishing features that entail superior modelling capabilities has not been investigated yet. In this work crack tip fields are thoroughly examined by implementing the higher order theory of DGP in an implicit finite element...

  10. Discrete gradients in discrete classical mechanics

    Renna, L.

    1987-01-01

    A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated

  11. Gradient based filtering of digital elevation models

    Knudsen, Thomas; Andersen, Rune Carbuhn

    We present a filtering method for digital terrain models (DTMs). The method is based on mathematical morphological filtering within gradient (slope) defined domains. The intention with the filtering procedure is to improbé the cartographic quality of height contours generated from a DTM based...

  12. Gradient Space under Orthography and Perspective

    1982-05-24

    surfaceorientation to image geometry [8, 9, 10, 13, 15]. The descriptions of important gradient space properties, however, have been scattered throughout...Kanade, T. A Theory of Origami World. Artificial Intelligence 13:279-311, 1980. *[8] Kanade, T. and Kender, J. Mapping Image Properies into Shape

  13. Joining of Tungsten Armor Using Functional Gradients

    John Scott O'Dell

    2006-01-01

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  14. Mass balance gradients and climatic change

    Oerlemans, J.; Hoogendoorn, N.C.

    1989-01-01

    It is generally assumed that the mass-balance gradient on glaciers is more or less conserved under climatic change. In studies of the dynamic response of glaciers to climatic change, one of the following assumptions is normally made: (i) the mass-balance perturbation is independent of altitude

  15. Considerations of ion temperature gradient driven turbulence

    Cowley, S.C.; Kulsrud, R.M.

    1991-02-01

    The ion temperature gradient driven instability is considered in this paper. Physical pictures are presented to clarify the nature of the instability. The saturation of a single eddy is modeled by a simple nonlinear equation. We show that eddies which are elongated in the direction of the temperature gradient are the most unstable and have the highest saturation amplitudes. In a sheared magnetic field, such elongated eddies twist with the field lines. This structure is shown to be alternative to the usual Fourier mode picture in which the mode is localized around the surface where k parallel = 0. We show how these elongated twisting eddies, which are an integral part of the ''ballooning mode'' structure, could survive in a torus. The elongated eddies are shown to be unstable to secondary instabilities that are driven by the large gradients in the long eddy. We argue that this mechanism isotropizes ion temperature gradient turbulence. We further argue that the ''mixing length'' is set by this nonlinear process, not by a linear eigenmode width. 17 refs., 6 figs

  16. Analysis of magnetic gradients to study gravitropism.

    Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan

    2013-01-01

    Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.

  17. Gradient computation for VTI acoustic wavefield tomography

    Li, Vladimir

    2016-09-06

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a pseudospectral operator that employes a separable approximation of the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified stack-power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations. Whereas the kernels computed with the two wave-equation operators are similar, the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show that the modified stack-power objective function produces cleaner gradients than the more conventional DSO operator.

  18. Conjugate Gradient Algorithms For Manipulator Simulation

    Fijany, Amir; Scheid, Robert E.

    1991-01-01

    Report discusses applicability of conjugate-gradient algorithms to computation of forward dynamics of robotic manipulators. Rapid computation of forward dynamics essential to teleoperation and other advanced robotic applications. Part of continuing effort to find algorithms meeting requirements for increased computational efficiency and speed. Method used for iterative solution of systems of linear equations.

  19. Examining the Education Gradient in Chronic Illness

    Chatterji, Pinka; Joo, Heesoo; Lahiri, Kajal

    2015-01-01

    We examine the education gradient in diabetes, hypertension, and high cholesterol. We take into account diagnosed as well as undiagnosed cases and use methods accounting for the possibility of unmeasured factors that are correlated with education and drive both the likelihood of having illness and the propensity to be diagnosed. Data come from the…

  20. Subspace learning from image gradient orientations

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    2012-01-01

    We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As image data is typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities fails very often to estimate reliably the

  1. Multi-order nonlinear diffraction in second harmonic generation

    Saltiel, S. M.; Neshev, D.; Krolikowski, Wieslaw

    We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes.......We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes....

  2. Effects of Gradient Coil Noise and Gradient Coil Replacement on the Reproducibility of Resting State Networks.

    Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen

    2018-01-01

    The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.

  3. Gradient waveform pre-emphasis based on the gradient system transfer function.

    Stich, Manuel; Wech, Tobias; Slawig, Anne; Ringler, Ralf; Dewdney, Andrew; Greiser, Andreas; Ruyters, Gudrun; Bley, Thorsten A; Köstler, Herbert

    2018-02-25

    The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Degraded character recognition based on gradient pattern

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  5. Voltammetry under a Controlled Temperature Gradient

    Jan Krejci, Jr.

    2010-07-01

    Full Text Available Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a second driving force. This application of the Soret phenomenon increases the mass transfer in the Nernst layer and enables more accurate control of the electrode response enhancement by a combination of diffusion and thermal diffusion. We have thus studied the effect of Soret phenomenon by cyclic voltammetry measurements in ferro/ferricyanide. The time dependence of sensor response disappears when applying the Soret phenomenon, and the complicated shape of the cyclic voltammogram is replaced by a simple exponential curve. We have derived the Cotrell-Soret equation describing the steady-state response with an applied temperature difference.

  6. Anisotropic gradients in the upper mantle

    Garmany, J.

    1981-01-01

    Pn amplitudes in some widely spaced sets of orthogonal marine refraction lines on young oceanic crust are greater in the fast direction than in the slow direction. This is inconsistent with the predicted amplitude behavior for simple head waves, but can be explained by an increase in anisotropy with depth. It appears that these gradients are due to increasing olivine crystal orientation, although changes in the relative abundance of two anisotropic minerals without variable tectonization could also account for the observations. Depth variation of tectonization most probably indicates very high temperature gradients at the Moho. This would imply a substantial amount of convective heat transport in the whole oceanic crust near mid-ocean rises

  7. Model predictive control for wind power gradients

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....

  8. Entanglement-Gradient Routing for Quantum Networks.

    Gyongyosi, Laszlo; Imre, Sandor

    2017-10-27

    We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.

  9. Social gradients in periodontal diseases among adolescents.

    López, Rodrigo; Fernández, Olaya; Baelum, Vibeke

    2006-06-01

    To investigate the association between socioeconomic position and periodontal diseases among adolescents. Data were obtained from 9203 Chilean high school students. Clinical examinations included direct recordings of clinical attachment level and the necrotizing ulcerative gingival lesions. Students answered a questionnaire on various dimensions of socioeconomic position. Seven periodontal outcomes were analyzed. Logistic regression analyses were used to identify socioeconomic variables associated with the periodontal outcomes. The occurrence of all periodontal outcomes investigated followed social gradients, and paternal income and parental education were the most influential variables. The study demonstrates the existence of significant social gradients in periodontal diseases already among adolescents. This is worrying, and indicates a new potential for further insight into the mechanisms of periodontal disease causation.

  10. Opinion formation models on a gradient.

    Michael T Gastner

    Full Text Available Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales proportional g(-1/4, not proportional g(-4/7 as in independent percolation, and the cluster size distribution is consistent with first-order percolation.

  11. Superconducting niobium cavities with high gradients

    Kneisel, P.; Saito, K.

    1992-01-01

    Present accelerator projects making use of superconducting cavity technology are constructed with design accelerating gradients E acc ranging between 5 MV/m and 8 MV/m and Q-values of several 10 9 . Future plans for upgrades of existing accelerators or for linear colliders call for gradients greater than 15 MV/m corresponding to peak surface electric fields above 30 MV/m. These demands challenge state-of-the-art production technology and require improvements in processing and handling of these cavities to overcome the major performance limitation of field emission loading. This paper reports on efforts to improve the performance of cavities made from niobium from different suppliers by using improved cleaning techniques after processing and ultrahigh vacuum annealing at temperatures of 1400 C. In single cell L-band cavities peak surface electric fields as high as 50 MV/m have been measured without significant field emission loading. (Author) 8 refs., fig

  12. Optimizing sampling approaches along ecological gradients

    Schweiger, Andreas; Irl, Severin D. H.; Steinbauer, Manuel

    2016-01-01

    1. Natural scientists and especially ecologists use manipulative experiments or field observations along gradients to differentiate patterns driven by processes from those caused by random noise. A well-conceived sampling design is essential for identifying, analysing and reporting underlying...... patterns in a statistically solid and reproducible manner, given the normal restrictions in labour, time and money. However, a technical guideline about an adequate sampling design to maximize prediction success under restricted resources is lacking. This study aims at developing such a solid...... and reproducible guideline for sampling along gradients in all fields of ecology and science in general. 2. We conducted simulations with artificial data for five common response types known in ecology, each represented by a simple function (no response, linear, exponential, symmetric unimodal and asymmetric...

  13. Spectrum of resistivity gradient driven turbulence

    Terry, P.W.; Diamond, P.H.; Shaing, K.C.; Garcia, L.; Carreras, B.A.

    1986-01-01

    The resistivity fluctuation correlation function and electrostatic potential spectrum of resistivity gradient driven turbulence are calculated analytically and compared to the results of three dimensional numerical calculations. Resistivity gradient driven turbulence is characterized by effective Reynolds' numbers of order unity. Steady-state solution of the renormalized spectrum equations yields an electrostatic potential spectrum (circumflex phi 2 )/sub ktheta/ approx. k/sub theta//sup -3.25/. Agreement of the analytically calculated potential spectrum and mean-square radial velocity with the results of multiple helicity numerical calculations is excellent. This comparison constitutes a quantitative test of the analytical turbulence theory used. The spectrum of magnetic fluctuations is also calculated, and agrees well with that obtained from the numerical computations. 13 refs., 8 figs

  14. Transport due to ion pressure gradient turbulence

    Connor, J.W.

    1986-01-01

    Turbulent transport due to the ion pressure gradient (or temperature drift) instability is thought to be significant when etasub(i)=d(ln Tsub(i))/d(ln n)>1. The invariance properties of the governing equations under scale transformations are used to discuss the characteristics of this turbulence. This approach not only clarifies the relationships between earlier treatments but also, in certain limits, completely determines the scaling properties of the fluctuations and the consequent thermal transport. (author)

  15. Radial oxygen gradients over rat cortex arterioles

    Galler, Michael

    2011-01-01

    Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...

  16. Sodium setpoint and gradient in bicarbonate hemodialysis.

    Basile, Carlo; Libutti, Pasquale; Lisi, Piero; Vernaglione, Luigi; Casucci, Francesco; Losurdo, Nicola; Teutonico, Annalisa; Lomonte, Carlo

    2013-01-01

    The demonstration of an individual osmolar setpoint in hemodialysis (HD) is crucial to individualize dialysate sodium concentrations. Furthermore, the diffusive gradient between plasma and dialysate sodium is important in the "fine tuning" of the intradialytic sodium mass balance (MB). The design of this study included part A: a retrospective analysis of predialysis plasma sodium concentrations extracted from a 6-year database in our HD population (147 prevalent white anuric patients); and part B: study of intradialytic sodium kinetics in 48 patients undergoing one 4-hour bicarbonate HD session. Direct potentiometry with an ion-selective electrode was used for sodium measurements. Study part A: the mean number of plasma sodium measurements per patient was 16.06 ± 14.03 over a mean follow-up of 3.55 ± 1.76 years. The mean of the averaged plasma sodium concentrations was 136.7 ± 2.1 mmol/L, with a low mean intraindividual coefficient of variation (1.39 ± 0.4). Study part B: mean predialysis and postdialysis plasma sodium concentrations were 135.8 ± 0.9 and 138.0 ± 0.9 mmol/L (p<0.001). Mean inlet dialyzer sodium concentration was 138.7 ± 1.1 mmol/L; the hourly diffusion concentration gradients showed a statistically significant transfer from dialysate to plasma (Wilks ? <0.0001). A statistically significant relationship was found between sodium MB and diffusion gradient (p<0.02), and between sodium MB and ultrafiltration volume (p<0.01). A relatively "fixed" and individual osmolar setpoint in HD patients was shown for the first time in a long-term follow-up. A dialysate sodium concentration of 140 mmol/L determined a dialysate to plasma sodium gradient.

  17. High gradient accelerators for linear light sources

    Barletta, W.A.

    1988-01-01

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs

  18. CERN/KEK: Very high accelerating gradients

    Anon.

    1993-01-15

    Full text: A world-wide effort is under way to develop linear electron-positron colliders so that physics experiments can be extended into a range of energies where circular machines (necessarily much larger than CERN's 27-kilometre LEP machine) would be crippled by synchrotron radiation. CERN is studying the feasibility of building a 2 TeV machine called CLIC powered not by individual klystrons, but by a high intensity electron 'drive' linac running parallel to the main linac (November 1990, page 7). This drive linac will itself be powered by similar superconducting cavities to those developed for LEP. A high gradient is an obvious design aim for any future high energy linear collider because it makes it shorter and therefore cheaper - the design figure for the CLIC machine is 80 MV/m. The CLIC study group has taken a significant step forward in demonstrating the technical feasibility of their machine by achieving peak and average accelerating gradients of 137 MV/m and 84 MV/m respectively in a short section of accelerating structure during high gradient tests at the Japanese KEK Laboratory last year. This result obtained within the framework of a CERN/KEK collaboration on linear colliders was obtained using a 20-cell accelerating section built at CERN using state-of the- art technology which served both as a model for CLIC studies as well as a prototype for the Japanese Linear Collider studies. The operating frequency of the model accelerating section is 2.6 times lower than the CLIC frequency but was chosen because a high power r.f. source and pulse compression scheme has been developed for this frequency at KEK. Testing CLIC models at 11.4 GHz is however more stringent than at 30 GHz because the chance of electrical breakdown increases as the frequency is lowered. This recent result clearly demonstrates that a gradient of 80 MV/m is feasible.

  19. Error Estimation in Preconditioned Conjugate Gradients

    Strakoš, Zdeněk; Tichý, Petr

    2005-01-01

    Roč. 45, - (2005), s. 789-817 ISSN 0006-3835 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR KJB1030306 Institutional research plan: CEZ:AV0Z10300504 Keywords : preconditioned conjugate gradient method * error bounds * stopping criteria * evaluation of convergence * numerical stability * finite precision arithmetic * rounding errors Subject RIV: BA - General Mathematics Impact factor: 0.509, year: 2005

  20. Conjugate gradient optimization programs for shuttle reentry

    Powers, W. F.; Jacobson, R. A.; Leonard, D. A.

    1972-01-01

    Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.

  1. M-step preconditioned conjugate gradient methods

    Adams, L.

    1983-01-01

    Preconditioned conjugate gradient methods for solving sparse symmetric and positive finite systems of linear equations are described. Necessary and sufficient conditions are given for when these preconditioners can be used and an analysis of their effectiveness is given. Efficient computer implementations of these methods are discussed and results on the CYBER 203 and the Finite Element Machine under construction at NASA Langley Research Center are included.

  2. Pressure gradient turbulent transport and collisionless reconnection

    Connor, J.W.

    1993-01-01

    The scale invariance technique is employed to discuss pressure gradient driven turbulent transport when an Ohm's law with electron inertia, rather than resistivity, is relevant. An expression for thermal diffusivity which has many features appropriate to L-mode transport in tokamaks, is seen to have greater generality than indicated by their particular calculation. The results of applying the technique to a more appropriate collisionless Ohm's law are discussed. (Author)

  3. CERN/KEK: Very high accelerating gradients

    Anon.

    1993-01-01

    Full text: A world-wide effort is under way to develop linear electron-positron colliders so that physics experiments can be extended into a range of energies where circular machines (necessarily much larger than CERN's 27-kilometre LEP machine) would be crippled by synchrotron radiation. CERN is studying the feasibility of building a 2 TeV machine called CLIC powered not by individual klystrons, but by a high intensity electron 'drive' linac running parallel to the main linac (November 1990, page 7). This drive linac will itself be powered by similar superconducting cavities to those developed for LEP. A high gradient is an obvious design aim for any future high energy linear collider because it makes it shorter and therefore cheaper - the design figure for the CLIC machine is 80 MV/m. The CLIC study group has taken a significant step forward in demonstrating the technical feasibility of their machine by achieving peak and average accelerating gradients of 137 MV/m and 84 MV/m respectively in a short section of accelerating structure during high gradient tests at the Japanese KEK Laboratory last year. This result obtained within the framework of a CERN/KEK collaboration on linear colliders was obtained using a 20-cell accelerating section built at CERN using state-of the- art technology which served both as a model for CLIC studies as well as a prototype for the Japanese Linear Collider studies. The operating frequency of the model accelerating section is 2.6 times lower than the CLIC frequency but was chosen because a high power r.f. source and pulse compression scheme has been developed for this frequency at KEK. Testing CLIC models at 11.4 GHz is however more stringent than at 30 GHz because the chance of electrical breakdown increases as the frequency is lowered. This recent result clearly demonstrates that a gradient of 80 MV/m is feasible

  4. Designing optimal nanofocusing with a gradient hyperlens

    Shen Lian

    2017-11-01

    Full Text Available We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT, which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  5. Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients

    Yu, Mingbiao; Cai, Tijing

    2018-05-01

    The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.

  6. Self-organization of intracellular gradients during mitosis

    Fuller Brian G

    2010-01-01

    Full Text Available Abstract Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.

  7. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  8. Air temperature gradient in large industrial hall

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  9. Crosswind Shear Gradient Affect on Wake Vortices

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  10. Gradient Dynamics and Entropy Production Maximization

    Janečka, Adam; Pavelka, Michal

    2018-01-01

    We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.

  11. Diffusiophoresis in one-dimensional solute gradients

    Ault, Jesse T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Patrick B. [Unilever R& D Port Sunlight, Bebington (United Kingdom); Shin, Sangwoo [Univ. of Hawaii at Manoa, Honolulu, HI (United States); Stone, Howard A. [Princeton Univ., Princeton, NJ (United States)

    2017-11-06

    Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γp relative to the solute diffusivity Ds for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.

  12. Diffusiophoresis in one-dimensional solute gradients

    Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo; Stone, Howard A.

    2017-01-01

    Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.

  13. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  14. A strain gradient plasticity theory with application to wire torsion

    Liu, J. X.; El Sayed, Tamer S.

    2014-01-01

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity

  15. HYBRID SILICON-ON-SAPPHIRE/SCALED CMOS INTERFERENCE MITIGATION FRONT END BASED ON SIMULTANEOUS NOISE CANCELLATION, ACTIVE-INTERFERENCE CANCELLATION AND N-PATH-MIXER FILTERING

    2017-04-01

    supported under the RF focal plane gate array (FPGA) program, SOS CMOS in conjunction with series stacking of devices is exploited to enable...OOB IIP3 of +7 and +17.5dBm respectively. The clock path direct current (DC) power consumption at 700MHz is 90mW from a 1.2V supply. The proposed...the circulator architecture to enhance the TX-RX isolation and track ANT variations. These innovations (i) lower the overall power consumption due

  16. Intensity noise cancellation in solid-state laser at 1.5  μm using SHG depletion as a buffer reservoir.

    Audo, Kevin; Alouini, Mehdi

    2018-03-01

    An absorption mechanism based on second-harmonic generation (SHG) is successfully implemented as a buffer reservoir in a solid-state Er,Yb:Glass laser emitting at the telecom wavelength. We show that a slight absorption mechanism based on SHG rate conversion of 0.016% using a beta barium borate crystal enables the canceling out of the excess intensity noise at the relaxation oscillation frequency, i.e., 35 dB reduction, as well as canceling the amplified spontaneous emission beating at the free spectral range resonances of the laser lying in the gigahertz range. Laser robustness is discussed.

  17. Recognition of handwritten characters using local gradient feature descriptors

    Surinta, Olarik; Karaaba, Mahir F.; Schomaker, Lambert R.B.; Wiering, Marco A.

    2015-01-01

    Abstract In this paper we propose to use local gradient feature descriptors, namely the scale invariant feature transform keypoint descriptor and the histogram of oriented gradients, for handwritten character recognition. The local gradient feature descriptors are used to extract feature vectors

  18. Is the temperature gradient or the derivative of the density gradient responsible for drift solitons?

    Salat, A.

    1990-01-01

    In conventional drift wave theory the density gradient κ n =d lnn/dχ determines the linear phase velocity, and the (electron) temperature gradient κ T =d lnT/dχ gives rise to a nonlinear term which leads to the existence of soliton-type solutions and solitary waves. LAKHIN, MIKHAILOVSKI and ONISHCHENKO, Phys. Lett. A 119, 348 (1987) and Plasma Phys. and Contr. Fus. 30, 457 (1988), recently claimed that it is not κ T but essentially the derivative of the density gradient, dκ n /dχ, that is relevant. This claim is refuted by means of an expansion scheme in ε=eΦ/T≤1, where Φ is the drift wave potential. (orig.)

  19. Tunable high-gradient permanent magnet quadrupoles

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  20. Stereo vision with distance and gradient recognition

    Kim, Soo-Hyun; Kang, Suk-Bum; Yang, Tae-Kyu

    2007-12-01

    Robot vision technology is needed for the stable walking, object recognition and the movement to the target spot. By some sensors which use infrared rays and ultrasonic, robot can overcome the urgent state or dangerous time. But stereo vision of three dimensional space would make robot have powerful artificial intelligence. In this paper we consider about the stereo vision for stable and correct movement of a biped robot. When a robot confront with an inclination plane or steps, particular algorithms are needed to go on without failure. This study developed the recognition algorithm of distance and gradient of environment by stereo matching process.

  1. Higher-order force gradient symplectic algorithms

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  2. Impact of Ozone Gradient on Grapevine Leaves

    Alebic-Juretic, Ana; Bokan-Vucelic, Itana; Mifka, Boris; Zatezalo, Marija; Zubak, Velimir

    2017-04-01

    Due to complex orography and air mass circulation, the Rijeka Bay area is characterized by O3 gradient, with concentrations risen with the altitude (1). Therefore AOT40 values were often exceeded and should result in harmful effects on vegetation. Based on previous controlled experiments (2), we examined the possible effect of atmospheric ozone on grape leaves under natural O3 gradient. Grapevine leaves (2-5) were collected from May to September 2016 at two sampling points in the proximity of two AQM stations: Site 1 in the city centre (20m asl) and Site 2 (186m asl) in the suburban settlement. Subsequent to weighing and determination of surface area, the leaves (0,5 g) were extracted in 95% ethanol and analysed on chlorophyl a (Chla), chlorophyl b (Chlb) and carotene (Car) content by UV-VIS spectrometry on 3 wavelengths (664, 649, 470 nm) (3) In summer 2016 O3 gradient was not that pronounced as usual (1), but stil the concentrations differed by approx. 20%, exceeding national AOT40 value at both sites (22.360 and 28.061 μg m-3 h, respectively, at Sites 1 and 2). The concentrations of other pollutants were bellow limit values (LV). The Cha and Chb in a sample leaves collected at the end of May at Site 2 are equal to that with filtered O3 in control experiment (2), i.e. without damage caused by ozone, while the Car content is lower approx. 50% and is kept at the same level. The con-centrations of pigments obtained in July prooved the possible damage by O3, while in subsequent months could speed up natural ageing. This is the first evidence of O3 damage on plants in the Rijeka Bay area, in spite of weaker O3 gradient and lacking visible signs of damage. Preliminary results indicate the need for more frequent sampling, particularly in the period included in AOT40 (May-July). References: 1. Alebić-Juretić A (2012) Int J Remote Sensing, 33(2): 335-345 2. Britvec M, Reichenauer T, Soja G., Ljubešić N, Pećina M (2001) Biologia (Bratislava),56/4: 417-424 3. Sumanata

  3. Gradient-index optics fundamentals and applications

    Gomez-Reino, Carlos; Bao, Carmen

    2010-01-01

    Gradient-Index (GRIN) optics provides a comprehensive and thorough treatment on fundamentals and applications of light propagation through inhomogeneous media. The book can be used both as a classroom text for students in physics and engineering and as a reference for specialists. A description of the phenomena, components and technology used in GRIN Optics are presented. The relationship to lenses, waveguides, optical connections, spatial solitons and vision is demonstrated. Applications of GRIN components and hybrid structures for optical connections, optical sensing and Talbot effect are analyzed.

  4. Microfluidic high gradient magnetic cell separation

    Inglis, David W.; Riehn, Robert; Sturm, James C.; Austin, Robert H.

    2006-04-01

    Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly enhance in principle the fractionating power of magnetic fields. We discuss our efforts and those of others to build practical microfluidic devices for the magnetic separation of blood cells. We also discuss our attempts to integrate magnetic separation with other microfluidic features for developing handheld medical diagnostic tools.

  5. Quasi parton distributions and the gradient flow

    Monahan, Christopher; Orginos, Kostas

    2017-01-01

    We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernel that relates the smeared quasi PDF and the light-front PDF.

  6. Human impact gradient on mammalian biodiversity

    Mariana Munguía

    2016-04-01

    Full Text Available Drastic changes have been caused by human influence in natural landscapes, which may exert an intensive effect on species loss. However, species loss from human pressure is not random but depends on a series of environmentally associated factors. Linking species traits to environmental attributes may allow us to detect the ecological impacts of habitat so that meaningful habitat degradation gradients can be identified. The relationships between environmental factors and species traits provide the basis for identifying those biological traits that make species more sensitive to disturbance. These relationships are also helpful to detect the geographic distribution of latent risk to reveal areas where biodiversity is threatened. Here, we identify a “Human Impact Gradient for Biodiversity (HIGB” based on a three-table ordination method (RLQ analysis and fourth-corner analysis to identify key species traits that are associated with environmental gradient. Species distribution and environmental geographic data were gathered nationwide to analyze 68 localities, which represent 27% of Mexico’s surface, including 211 species of mammals. Nine environmental variables (including biophysical, geophysical and land-use impacts were analyzed by using the Geographic Information System. Three types of species’ traits were evaluated: locomotion, trophic habit and body size. We identified a human impact gradient, which was mainly determined by the percentage of the area that was covered by seedlings, the plant richness, the understory coverage percentage and the human settlement index. The most important species traits that are associated with non-human-impacted sites were carnivores, frugivores–herbivores and a body size that was greater than 17.8 kg; 25 species were selected by the decision criteria framework for species that were sensitive to degradation based on ecological function information. Conversely, granivores, fossorial and semifossorial

  7. PET regularization by envelope guided conjugate gradients

    Kaufman, L.; Neumaier, A.

    1996-01-01

    The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations

  8. Theory of resistivity-gradient-driven turbulence

    Garcia, L.; Carreras, B.A.; Diamond, P.H.; Callen, J.D.

    1984-10-01

    A theory of the nonlinear evolution and saturation of resistivity-driven turbulence, which evolves from linear rippling instabilities, is presented. The nonlinear saturation mechanism is identified both analytically and numerically. Saturation occurs when the turbulent diffusion of the resistivity is large enough so that dissipation due to parallel electron thermal conduction balances the nonlinearly modified resistivity gradient driving term. The levels of potential, resistivity, and density fluctuations at saturation are calculated. A combination of computational modeling and analytic treatment is used in this investigation

  9. Mullite-alumina functionally gradient ceramics

    Pena, P.; Bartolome, J.; Requena, J.; Moya, J.S.

    1993-01-01

    Cracks free mullite-alumina Functionally Gradient Ceramics (FGC) have been obtained by sequential slip casting of Mullite-alumina slurries with different mullite/alumina ratios. These slurries were prepared with 65 % solids content and viscosities ranging from 10 to 40 mPa.s. The presence of cracks perpendicular to the FGC layers have been attributed to residual stresses developed because of the mismatch in thermal expansion between layers. The microstructure of the different layers, and de residual stress value σ R in each layer was also determined. (orig.)

  10. A method for easily customizable gradient gel electrophoresis.

    Miller, Andrew J; Roman, Brandon; Norstrom, Eric

    2016-09-15

    Gradient polyacrylamide gel electrophoresis is a powerful tool for the resolution of polypeptides by relative mobility. Here, we present a simplified method for generating polyacrylamide gradient gels for routine analysis without the need for specialized mixing equipment. The method allows for easily customizable gradients which can be optimized for specific polypeptide resolution requirements. Moreover, the method eliminates the possibility of buffer cross contamination in mixing equipment, and the time and resources saved with this method in place of traditional gradient mixing, or the purchase of pre-cast gels, are noteworthy given the frequency with which many labs use gradient gel SDS-PAGE. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Role of the vertical pressure gradient in wave boundary layers

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  12. Structural and compositional gradients: basic idea, preparation, applications

    Ilschner, B.

    1993-01-01

    The term gradient materials refers to gradients of chemical composition and/or microstructural parameters which are intentionally introduced into components of any kind of homogeneous or heterogeneous materials, including metallic alloys, ceramics, glasses, polymers, and composites. After a short review of the development of the gradient materials technology since 1972, some fundamental aspects concerning the effects of such gradients on physical or mechanical properties are discussed. A selection of technical applications which have been discussed recently is presented. Finally, different methods for the preparation of gradients from gaseous, liquid or powder precursors are reviewed. (orig.)

  13. A substrate independent approach for generation of surface gradients

    Goreham, Renee V. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Mierczynska, Agnieszka; Pierce, Madelene [Ian Wark Research Institute, University of South Australia, Mawson Lakes 5095 (Australia); Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir, E-mail: krasimir.vasilev@unisa.edu.au [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands.

  14. A substrate independent approach for generation of surface gradients

    Goreham, Renee V.; Mierczynska, Agnieszka; Pierce, Madelene; Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E.; Vasilev, Krasimir

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands

  15. Cell orientation gradients on an inverse opal substrate.

    Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze

    2015-05-20

    The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.

  16. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  17. Adaptive Gradient Multiobjective Particle Swarm Optimization.

    Han, Honggui; Lu, Wei; Zhang, Lu; Qiao, Junfei

    2017-10-09

    An adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (stocktickerMOG) method and a self-adaptive flight parameters mechanism, is developed to improve the computation performance in this paper. In this AGMOPSO algorithm, the stocktickerMOG method is devised to update the archive to improve the convergence speed and the local exploitation in the evolutionary process. Meanwhile, the self-adaptive flight parameters mechanism, according to the diversity information of the particles, is then established to balance the convergence and diversity of AGMOPSO. Attributed to the stocktickerMOG method and the self-adaptive flight parameters mechanism, this AGMOPSO algorithm not only has faster convergence speed and higher accuracy, but also its solutions have better diversity. Additionally, the convergence is discussed to confirm the prerequisite of any successful application of AGMOPSO. Finally, with regard to the computation performance, the proposed AGMOPSO algorithm is compared with some other multiobjective particle swarm optimization algorithms and two state-of-the-art multiobjective algorithms. The results demonstrate that the proposed AGMOPSO algorithm can find better spread of solutions and have faster convergence to the true Pareto-optimal front.

  18. The phenotypic variance gradient - a novel concept.

    Pertoldi, Cino; Bundgaard, Jørgen; Loeschcke, Volker; Barker, James Stuart Flinton

    2014-11-01

    Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life-history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in phenotypic plasticity, whereas significant differences among phenotypic variances (variance or coefficient of variation) are interpreted as differences in the degree of developmental instability or canalization. We highlight some potential problems with this approach to quantifying phenotypic variance and suggest a novel and more informative way to plot reaction norms: namely "a plot of log (variance) on the y-axis versus log (mean) on the x-axis, with a reference line added". This approach gives an immediate impression of how the degree of phenotypic variance varies across an environmental gradient, taking into account the consequences of the scaling effect of the variance with the mean. The evolutionary implications of the variation in the degree of phenotypic variance, which we call a "phenotypic variance gradient", are discussed together with its potential interactions with variation in the degree of phenotypic plasticity and canalization.

  19. The multigrid preconditioned conjugate gradient method

    Tatebe, Osamu

    1993-01-01

    A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

  20. Performance evaluation of matrix gradient coils.

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  1. Three gradients and the perception of flat and curved surfaces.

    Cutting, J E; Millard, R T

    1984-06-01

    Researchers of visual perception have long been interested in the perceived slant of a surface and in the gradients that purportedly specify it. Slant is the angle between the line of sight and the tangent to the planar surface at any point, also called the surface normal. Gradients are the sources of information that grade, or change, with visual angle as one looks from one's feet upward to the horizon. The present article explores three gradients--perspective, compression, and density--and the phenomenal impression of flat and curved surfaces. The perspective gradient is measured at right angles to the axis of tilt at any point in the optic array; that is, when looking down a hallway at the tiles of a floor receding in the distance, perspective is measured by the x-axis width of each tile projected on the image plane orthogonal to the line of sight. The compression gradient is the ratio of y/x axis measures on the projected plane. The density gradient is measured by the number of tiles per unit solid visual angle. For flat surfaces and many others, perspective and compression gradients decrease with distance, and the density gradient increases. We discuss the manner in which these gradients change for various types of surfaces. Each gradient is founded on a different assumption about textures on the surfaces around us. In Experiment 1, viewers assessed the three-dimensional character of projections of flat and curved surfaces receding in the distance. They made pairwise judgments of preference and of dissimilarity among eight stimuli in each of four sets. The presence of each gradient was manipulated orthogonally such that each stimulus had zero, one, two, or three gradients appropriate for either a flat surface or a curved surface. Judgments were made were made for surfaces with both regularly shaped and irregularly shaped textures scattered on them. All viewer assessment were then scaled in one dimension. Multiple correlation and regression on the scale values

  2. cultivadas bajo un gradiente de sombra

    Marco V. Gutiérrez

    2007-01-01

    Full Text Available Se evaluó el crecimiento de 9 especies de palmas cultivadas bajo un gradiente de sombra producido por mallas de polipropileno negro de 40, 50, 60, 70 y 80% de sombra, más un tratamiento de malla aluminizada de 70%, y uno con plantas a pleno sol. Las especies evaluadas fueron Caryota mitis (cola de pez, Chamaedorea costaricana (pacaya, Chamaedorea tepejilote (tepejilote, Dypsis lutescens (areca, Licuala elegans (licuala, Phoenix roebelenii (fénix, Ptychosperma macarthurii (palma macarthur, Roystonea regia (palma real, y Veitchia merrillii (navideña. Se midió la altura de las plantas, la longitud de las hojas maduras, y el número de hojas cosechadas, durante 5 cosechas por 2 años. En general, la altura de las plantas y la longitud de las hojas fueron menores a 0-40% de sombra, se incrementaron a 50-70%, y decrecieron a 80%. C. mitis, C. tepejilote, L. elegans y P. macarthurii, se comportaron como especies obligadas de sombra y no sobrevivieron a pleno sol. C. costaricana y D. lutescens sobrevivieron a plena exposición solar, y su crecimiento alcanzó valores máximos a 50-60%. P. roebelenii, R. regia, y V. merrillii mostraron un crecimiento reducido a 0-40%, pero éste mejoró bajo los demás niveles de sombra a lo largo del gradiente. En general, 1-2 años es un periodo apropiado para el cultivo de palmas de crecimiento rápido (R. regia, Chamedorea spp., D. lutescens en casas de mallas. Palmas de lento crecimiento (L.elegans pueden permanecer 3-5 años en una casa de sombra. Se discute estrategias para el uso de gradientes de sombra en el tiempo y en el espacio, según la utilidad y los requerimientos de las especies, los requisitos establecidos por el mercado, y el ciclo de producción del material vegetal.

  3. Advanced compositional gradient and compartmentalization analysis

    Canas, Jesus A.; Petti, Daniela; Mullins, Oliver [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Acquisition of hydrocarbons samples from the reservoir prior to oil or gas production is essential in order to design production strategies and production facilities. In addition, reservoir compartmentalization and hydrocarbon compositional grading magnify the necessity to map fluid properties vertically and laterally in the reservoir prior to production. Formation testers supply a wealth of information to observe and predict the state of fluids in hydrocarbon reservoirs, through detailed pressure and fluid analysis measurements. With the correct understanding of the state of fluids in the reservoirs, reserve calculations and adequate development plans can be prepared. Additionally, flow barriers may then be revealed. This paper describes a new Downhole Fluid Analysis technology (DFA) for improved reservoir management. DFA is a unique process that combines new fluid identification sensors, which allow real time monitoring of a wide range of parameters as GOR, fluid density, viscosity, fluorescence and composition (CH{sub 4}, C2- C5, C6 +, CO{sub 2}), free gas and liquid phases detection, saturation pressure, as well WBM and OBM filtrate differentiation and pH. This process is not limited to light fluid evaluation and we extended to heavy oil (HO) reservoirs analysis successfully. The combination of DFA Fluid Profiling with pressure measurements has shown to be very effective for compartmentalization characterization. The ability of thin barriers to hold off large depletion pressures has been established, as the gradual variation of hydrocarbon quality in biodegraded oils. In addition, heavy oils can show large compositional variation due to variations in source rock charging but without fluid mixing. Our findings indicates that steep gradients are common in gas condensates or volatile oils, and that biodegradation is more common in HO than in other hydrocarbons, which generate fluid gradients and heavy ends tars near the OWC, limiting the aquifer activity and

  4. Composition gradients across spiral galaxies II. The stellar mass limit

    Shields, G.A.; Tinsley, B.M.

    1976-01-01

    The equivalent width of the Hβ emission from H ii regions in spiral galaxies increases with distance from the nucleus. This W (Hβ) gradient is interpreted in terms of a radial gradient in the temperature of the hottest exciting stars. (T/subu/). From Searle's observations of M101, an increase Δ log T/subu/=0.02--0.13 from the intermediate to outermost spiral arms of M101 is inferred. There is also a radial decrease in the metal abundance (Z) across M101, and the T/subu/ gradient is consistent with the prediction of Kahn's recent theory that the upper mass limit for star formation should be smaller in regions of high Z. It is noted also that, even in the absence of changes in the upper mass limit, a T/subu/ gradient is expected because metal-rich stars of given mass have smaller effective temperatures. Several observational and theoretical improvements are needed before firm conclusions can be drawn, but it is clear that the presence of a T/subu/ gradient may lead to several important systematic changes in the interpretation of gradients in the properties of H ii regions across galaxies. A T/subu/ gradient reduces the Z gradient that is inferred from emission-line ratios, and it may help to explain why O ii is strong in the innermost regions where O iii is weak. A T/subu/ gradient may also partly camouflage a helium abundance gradient

  5. B1 gradient coherence selection using a tapered stripline.

    van Meerten, S G J; Tijssen, K C H; van Bentum, P J M; Kentgens, A P M

    2018-01-01

    Pulsed-field gradients are common in modern liquid state NMR pulse sequences. They are often used instead of phase cycles for the selection of coherence pathways, thereby decreasing the time required for the NMR experiment. Soft off-resonance pulses with a B 1 gradient result in a spatial encoding similar to that created by pulsed-field (B 0 ) gradients. In this manuscript we show that pulse sequences with pulsed-field gradients can easily be converted to one which uses off-resonance B 1 field gradient (OFFBEAT) pulses. The advantage of B 1 gradient pulses for coherence selection is that the chemical shift evolution during the pulses is (partially) suppressed. Therefore no refocusing echos are required to correct for evolution during the gradient pulses. A tapered stripline is shown to be a convenient tool for creating a well-defined gradient in the B 1 field strength. B 1 gradient coherence selection using a tapered stripline is a simple and cheap alternative to B 0 pulsed-field gradients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Fano resonances from gradient-index metamaterials.

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-27

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  7. Ultimate-gradient accelerators physics and prospects

    Skrinsky, Aleksander Nikolayevich

    1995-01-01

    As introduction, the needs and ways for ultimate acceleration gradients are discussed briefly. The Plasma Wake Field Acceleration is analized in the most important details. The structure of specific plasma oscillations and "high energy driver beam SP-plasma" interaction is presented, including computer simulation of the process. Some pratical ways to introduce the necessary mm-scale bunching in driver beam and to arrange sequential energy multiplication are dicussed. The influence of accelerating beam particle - plasma binary collisions is considered, also. As applications of PWFA, the use of proton super-colliders beams (LHC and Future SC) to drive the "multi particle types" accelerator, and the arrangements for the electron-positron TeV range collider are discussed.

  8. High gradient lens for charged particle beam

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  9. Fractional calculus and morphogen gradient formation

    Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja

    2012-12-01

    Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.

  10. Molecular evolution and the latitudinal biodiversity gradient.

    Dowle, E J; Morgan-Richards, M; Trewick, S A

    2013-06-01

    Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.

  11. Accelerated gradient methods for constrained image deblurring

    Bonettini, S; Zanella, R; Zanni, L; Bertero, M

    2008-01-01

    In this paper we propose a special gradient projection method for the image deblurring problem, in the framework of the maximum likelihood approach. We present the method in a very general form and we give convergence results under standard assumptions. Then we consider the deblurring problem and the generality of the proposed algorithm allows us to add a energy conservation constraint to the maximum likelihood problem. In order to improve the convergence rate, we devise appropriate scaling strategies and steplength updating rules, especially designed for this application. The effectiveness of the method is evaluated by means of a computational study on astronomical images corrupted by Poisson noise. Comparisons with standard methods for image restoration, such as the expectation maximization algorithm, are also reported.

  12. Error analysis of stochastic gradient descent ranking.

    Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan

    2013-06-01

    Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.

  13. Simulation studies on high-gradient experiments

    Yamaguchi, S.

    1992-12-01

    Computer simulation of the characteristics of the dark current emitted from a 0.6 m long S-band accelerating structure has been made. The energy spectra and the dependence of the dark current on the structure length were simulated. By adjusting the secondary electron emission (SEE) coefficients, the simulated energy spectra qualitatively reproduced the observed ones. It was shown that the dark current increases exponentially with the structure length. The measured value of the multiplication factor of the dark current per unit cell can be explained if the SEE coefficient is set to 1.2. The critical gradient for dark current capture E cri has been calculated for two structures of 180 cells. They are E cri [MV/m] = 13.1 f and 8.75 f for a/λ = 0.089 and 0.16, respectively, where f is the frequency in GHz, a the iris diameter and λ the wave length

  14. Eigen-Gradients for Traffic Sign Recognition

    Sheila Esmeralda Gonzalez-Reyna

    2013-01-01

    Full Text Available Traffic sign detection and recognition systems include a variety of applications like autonomous driving, road sign inventory, and driver support systems. Machine learning algorithms provide useful tools for traffic sign identification tasks. However, classification algorithms depend on the preprocessing stage to obtain high accuracy rates. This paper proposes a road sign characterization method based on oriented gradient maps and the Karhunen-Loeve transform in order to improve classification performance. Dimensionality reduction may be important for portable applications on resource constrained devices like FPGAs; therefore, our approach focuses on achieving a good classification accuracy by using a reduced amount of attributes compared to some state-of-the-art methods. The proposed method was tested using German Traffic Sign Recognition Benchmark, reaching a dimensionality reduction of 99.3% and a classification accuracy of 95.9% with a Multi-Layer Perceptron.

  15. Dynamic pulsed-field-gradient NMR

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  16. Magnon dark modes and gradient memory.

    Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X

    2015-11-16

    Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.

  17. A fast, preconditioned conjugate gradient Toeplitz solver

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  18. Formulating viscous hydrodynamics for large velocity gradients

    Pratt, Scott

    2008-01-01

    Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τ ij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τ ij . By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τ ij . Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time

  19. Gradient Measurements of Nitrous Acid (hono)

    Kleffmann, J.; Kurtenbach, R.; Lörzer, J.; Wiesen, P.; Kalthoff, N.; Vogel, B.; Vogel, H.

    Nitrous acid (HONO) plays an important role in photochemical air pollution due to its photodissociation by solar UV radiation into hydroxyl radicals and thus significantly enhances photooxidation processes. Furthermore, HONO is an important indoor pol- lutant, which can react with amines leading to nitrosamines, which are known to be carcinogenic. Despite its importance in atmospheric chemistry the mechanisms lead- ing to HONO formation are still not completely understood at present. Although it is commonly proposed that HONO is formed by heterogeneous processes, i.e. by the conversion of NO2 on wet surfaces, it is still under discussion whether HONO produc- tion is dominated by the surface of particles or by the ground surface. Simultaneous vertical profile measurements of HONO, the precursor NO2 and the aerosol surface area, which could answer this question are not available at present. Accordingly, in the present study night-time HONO, NO2 and particle surface area gradients in the altitude range 10-190 m were measured on the meteorological tower at the Forschungszentrum Karlsruhe/Germany using a new, very sensitive HONO in- strument (LOPAP), a commercial NOx monitor and a SMPS system. For all gradient measurements during the campaign it was observed that the [HONO]/[NO2] ratio decreased with increasing altitude. In contrast, the particle sur- face area was found to be more or less constant. Accordingly, no correlation between the [HONO]/[NO2] ratio and the particle surface area was observed showing that HONO formation was dominated by processes on ground surfaces and that signifi- cant HONO formation on particle surfaces could be excluded for the measurement site.

  20. High-gradient compact linear accelerator

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  1. Self-induced temperature gradients in Brownian dynamics

    Devine, Jack; Jack, M. W.

    2017-12-01

    Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.

  2. Modified conjugate gradient method for diagonalizing large matrices.

    Jie, Quanlin; Liu, Dunhuan

    2003-11-01

    We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitable for first principle calculations.

  3. COMPARISON OF GKS CALCULATED CRITICAL ION TEMPERATURE GRADIENTS AND ITG GROWTH RATES TO DIII-D MEASURED GRADIENTS AND DIFFUSIVITIES

    BAKER, DR; STAEBLER, GM; PETTY, CC; GREENFIELD, CM; LUCE, TC

    2003-01-01

    OAK-B135 The gyrokinetic equations predict that various drift type waves or modes can be unstable in a tokamak. For some of these modes, such as the ion temperature gradient (ITG) mode and the electron temperature gradient mode, there exists a critical gradient, above which the mode is unstable. Since the existence of unstable modes can cause increased transport, plasmas which are centrally heated tend to increase in temperature gradient until the modes become unstable. Under some conditions the increased transport can fix the gradient at the critical value. here they present a comparison between the measured ion temperature gradients and the critical gradient as calculated by a gyrokinetic linear stability (GKS) code. They also present the maximum linear growth rate as calculated by this code for comparison to experimentally derived transport coefficients. The results show that for low confinement mode (L-mode) discharges, the measured ion temperature gradient is significantly greater than the GKS calculated critical gradient over a large region of the plasma. This is the same region of the plasma where the ion thermal diffusivity is large. For high confinement mode (H-mode) discharges the ion temperature gradient is closer to the critical gradient, but often still greater than the critical gradient over some region. For the best H-mode discharges, the ion temperature is less than or equal to the critical gradient over the whole plasma. In general they find that the position in the plasma where the ion thermal diffusivity starts to increase rapidly is where the maximum linear growth rate is greater than the E x B shearing rate

  4. Gradient porous hydroxyapatite ceramics fabricated by freeze casting method

    Zuo Kaihui; Zhang Yuan; Jiang Dongliang; Zeng Yuping

    2011-01-01

    By controlling the cooling rates and the composition of slurries, the gradient porous hydroxyapatite ceramics are fabricated by the freeze casting method. According to the different cooling rate, the pores of HAP ceramics fabricated by gradient freeze casting are divided into three parts: one is lamellar pores, another is column pore and the last one is fine round pores. The laminated freeze casting is in favour of obtaining the gradient porous ceramics composed of different materials and the ceramics have unclear interfaces.

  5. Stability of Gradient Field Corrections for Quantitative Diffusion MRI

    Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-01-01

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fie...

  6. Minimizing inner product data dependencies in conjugate gradient iteration

    Vanrosendale, J.

    1983-01-01

    The amount of concurrency available in conjugate gradient iteration is limited by the summations required in the inner product computations. The inner product of two vectors of length N requires time c log(N), if N or more processors are available. This paper describes an algebraic restructuring of the conjugate gradient algorithm which minimizes data dependencies due to inner product calculations. After an initial start up, the new algorithm can perform a conjugate gradient iteration in time c*log(log(N)).

  7. Comparison of genetic algorithms with conjugate gradient methods

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  8. Fundamental limits to position determination by concentration gradients.

    Filipe Tostevin

    2007-04-01

    Full Text Available Position determination in biological systems is often achieved through protein concentration gradients. Measuring the local concentration of such a protein with a spatially varying distribution allows the measurement of position within the system. For these systems to work effectively, position determination must be robust to noise. Here, we calculate fundamental limits to the precision of position determination by concentration gradients due to unavoidable biochemical noise perturbing the gradients. We focus on gradient proteins with first-order reaction kinetics. Systems of this type have been experimentally characterised in both developmental and cell biology settings. For a single gradient we show that, through time-averaging, great precision potentially can be achieved even with very low protein copy numbers. As a second example, we investigate the ability of a system with oppositely directed gradients to find its centre. With this mechanism, positional precision close to the centre improves more slowly with increasing averaging time, and so longer averaging times or higher copy numbers are required for high precision. For both single and double gradients, we demonstrate the existence of optimal length scales for the gradients for which precision is maximized, as well as analyze how precision depends on the size of the concentration-measuring apparatus. These results provide fundamental constraints on the positional precision supplied by concentration gradients in various contexts, including both in developmental biology and also within a single cell.

  9. Gradient-type methods in inverse parabolic problems

    Kabanikhin, Sergey; Penenko, Aleksey

    2008-01-01

    This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.

  10. Refined discrete and empirical horizontal gradients in VLBI analysis

    Landskron, Daniel; Böhm, Johannes

    2018-02-01

    Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489-20502, 1997. https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these

  11. Role of spatial averaging in multicellular gradient sensing.

    Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew

    2016-05-20

    Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.

  12. Signal restoration for NMR imaging using time-dependent gradients

    Frahm, J.; Haenicke, W.

    1984-01-01

    NMR imaging experiments that employ linear but time-dependent gradients for encoding spatial information in the time-domain signals result in distorted images when treated with conventional image reconstruction techniques. It is shown here that the phase and amplitude distortions can be entirely removed if the timeshape of the gradient is known. The method proposed is of great theoretical and experimental simplicity. It consists of a retransformation of the measured time-domain signal and corresponds to synchronisation of the signal sampling with the time-development of the gradient field strength. The procedure complements other treatments of periodically oscillating gradients in NMR imaging. (author)

  13. Destabilization of drift waves due to nonuniform density gradient

    Hirose, A.; Ishihara, O.

    1985-01-01

    It is shown that the conventional mode differential equation for low frequency electrostatic waves in a tokamak does not contain full ion dynamics. Both electrons and ions contribute to the ballooning term, which is subject to finite ion Larmor radius effects. Also, both fluid ion approximation and kinetic ion model yield the same correction. Reexamined are the density gradient universal mode and ion temperature gradient instability employing the lowest order Pearlstein-Berk type radial eigenfunctions. No unstable, bounded, energy outgoing eigenfunctions have been found. In particular, a large ion temperature gradient (eta/sub i/) tends to further stabilize the temperature gradient driven mode

  14. Complex Surface Concentration Gradients by Stenciled "Electro Click Chemistry"

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    2010-01-01

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click...... reaction" between alkynes and azides at room temperature. A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, while the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically...

  15. Collisional transport in a plasma with steep gradients

    Wang, W.; Okamoto, M.; Nakajima, N.; Murakami, S.

    1999-06-01

    The validity is given to the newly proposed two δf method for neoclassical transport calculation, which can be solve the drift kinetic equation considering effects of steep plasma gradients, large radial electric field, finite banana width, and an orbit topology near the axis. The new method is applied to the study of ion transport with steep plasma gradients. It is found that the ion thermal diffusivity decreases as the scale length of density gradient decreases, while the ion particle flux due to ion-ion self collisions increases with increasing gradient. (author)

  16. Generation of tunable and pulsatile concentration gradients via microfluidic network

    Zhou, Bingpu

    2014-06-04

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.

  17. Modeling chemical gradients in sediments under losing and gaining flow conditions: The GRADIENT code

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2018-02-01

    Interfaces between sediments and water bodies often represent biochemical hotspots for nutrient reactions and are characterized by steep concentration gradients of different reactive solutes. Vertical profiles of these concentrations are routinely collected to obtain information on nutrient dynamics, and simple codes have been developed to analyze these profiles and determine the magnitude and distribution of reaction rates within sediments. However, existing publicly available codes do not consider the potential contribution of water flow in the sediments to nutrient transport, and their applications to field sites with significant water-borne nutrient fluxes may lead to large errors in the estimated reaction rates. To fill this gap, the present work presents GRADIENT, a novel algorithm to evaluate distributions of reaction rates from observed concentration profiles. GRADIENT is a Matlab code that extends a previously published framework to include the role of nutrient advection, and provides robust estimates of reaction rates in sediments with significant water flow. This work discusses the theoretical basis of the method and shows its performance by comparing the results to a series of synthetic data and to laboratory experiments. The results clearly show that in systems with losing or gaining fluxes, the inclusion of such fluxes is critical for estimating local and overall reaction rates in sediments.

  18. Biogeochemical gradients above a coal tar DNAPL

    Scherr, Kerstin E., E-mail: kerstin.brandstaetter-scherr@boku.ac.at [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Backes, Diana [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Scarlett, Alan G. [University of Plymouth, Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom); Lantschbauer, Wolfgang [Government of Upper Austria, Directorate for Environment and Water Management, Division for Environmental Protection, Kärntner Strasse 10-12, 4021 Linz (Austria); Nahold, Manfred [GUT Gruppe Umwelt und Technik GmbH, Ingenieurbüro für Technischen Umweltschutz, Plesching 15, 4040 Linz (Austria)

    2016-09-01

    Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares – Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H’ and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are

  19. Soil Fertility Gradient in the Restinga Ecosystem

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due

  20. Applying Gradient Descent in Convolutional Neural Networks

    Cui, Nan

    2018-04-01

    With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.

  1. The educational gradient in coronary heart disease

    Ariansen, Inger; Mortensen, Laust Hvas; Igland, Jannicke

    2015-01-01

    BACKGROUND: Independently of cardiovascular disease (CVD) risk factors, cognitive ability may account for some of the excess risk of coronary heart disease (CHD) associated with lower education. We aimed to assess how late adolescence cognitive ability and midlife CVD risk factors are associated...... with the educational gradient in CHD in Norway. METHODS: In a cohort of 57 279 men born during 1949-1959, health survey information was linked to military conscription records of cognitive ability, to national educational data, to hospitalisation records from the Cardiovascular Disease in Norway (CVDNOR) project...... and to the Norwegian Cause of Death Registry. RESULTS: Age and period adjusted HR for incident CHD events was 3.62 (95% CI 2.50 to 5.24) for basic relative to tertiary education, and was attenuated after adjustment; to 2.86 (1.87 to 4.38) for cognitive ability, to 1.90 (1.30 to 2.78) for CVD risk factors, and to 1...

  2. Competition along productivity gradients: news from heathlands.

    Delerue, Florian; Gonzalez, Maya; Achat, David L; Puzos, Luc; Augusto, Laurent

    2018-05-01

    The importance of competition in low productive habitats is still debated. Studies which simultaneously evaluate preemption of resources and consequences for population dynamics are needed for a comprehensive view of competitive outcomes. We cultivated two emblematic species of European heathlands (Calluna vulgaris and Molinia caerulea) in a nursery for 2 years at two fertility levels, reproducing the productivity gradient found in phosphorus (P)-depleted heathlands in southwest France. The second year, we planted Ulex europaeus seedlings, a ubiquitous heathland species, under the cover of the two species to evaluate its ability to regenerate. Half of the seedlings were placed in tubes for exclusion of competitor roots. We measured the development of the competitors aboveground and belowground and their interception of resources (light, water, inorganic P). Ulex seedlings' growth and survival were also measured. Our results on resources interception were consistent with species distribution in heathlands. Molinia, which dominates rich heathlands, was the strongest competitor for light and water in the rich soil. Calluna, which dominates poor heathlands, increased its root allocation in the poor soil, decreasing water and inorganic P availability. However, the impact of total competition and root competition on Ulex seedlings decreased in the poor soil. Other mechanisms, especially decrease of water stress under neighbouring plant cover, appeared to have more influence on the seedlings' response. We found no formal contradiction between Tilman and Grime's theories. Root competition has a primary role in acquisition of soil resources in poor habitats. However, the importance of competition decreases with decreasing fertility.

  3. Evaluation of the Field Gradient Lattice Detector

    AUTHOR|(CDS)2072983

    A novel Micro Pattern Gas Detector, named the Field Gradient Lattice Detector, has been implemented using technologies available to CERN’s Printed Circuit Workshop. Numerous prototypes based on various materials were constructed in different geometries and their gain performance has been studied using 55Fe and 109Cd X-ray sources in Argon-CO2 gas mixtures. Two axis (2D) prototype structures have been shown to provide stable gains of around 1000 while a 3D design, based on the same polyimide foils used in other MPGD elements, holds a gain of 5000 for 8.9 keV X-rays even at high rates of 22 kHz/mm2. At a gain of 3100, the device has been tested up to 1 MHz/mm2 and shows no signs of degradation in performance. The energy resolution of the 3D-in-polyimide is modest, around 40% for 5.9 keV X-rays and 30% if the source is collimated indicating a variation in gain over the 3x3 cm2 active area. Having the most promise for future applications, the 3D-in-polyimide design has been selected for testing with a custom-bu...

  4. Bioinspired adaptive gradient refractive index distribution lens

    Yin, Kezhen; Lai, Chuan-Yar; Wang, Jia; Ji, Shanzuo; Aldridge, James; Feng, Jingxing; Olah, Andrew; Baer, Eric; Ponting, Michael

    2018-02-01

    Inspired by the soft, deformable human eye lens, a synthetic polymer gradient refractive index distribution (GRIN) lens with an adaptive geometry and focal power has been demonstrated via multilayer coextrusion and thermoforming of nanolayered elastomeric polymer films. A set of 30 polymer nanolayered films comprised of two thermoplastic polyurethanes having a refractive index difference of 0.05 were coextruded via forced-assembly technique. The set of 30 nanolayered polymer films exhibited transmission near 90% with each film varying in refractive index by 0.0017. An adaptive GRIN lens was fabricated from a laminated stack of the variable refractive index films with a 0.05 spherical GRIN. This lens was subsequently deformed by mechanical ring compression of the lens. Variation in the optical properties of the deformable GRIN lens was determined, including 20% variation in focal length and reduced spherical aberration. These properties were measured and compared to simulated results by placido-cone topography and ANSYS methods. The demonstration of a solid-state, dynamic focal length, GRIN lens with improved aberration correction was discussed relative to the potential future use in implantable devices.

  5. Height perception influenced by texture gradient.

    Tozawa, Junko

    2012-01-01

    Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.

  6. The Origins of UV-optical Color Gradients in Star-forming Galaxies at z ˜ 2: Predominant Dust Gradients but Negligible sSFR Gradients

    Liu, F. S.; Jiang, Dongfei; Faber, S. M.; Koo, David C.; Yesuf, Hassen M.; Tacchella, Sandro; Mao, Shude; Wang, Weichen; Guo, Yicheng; Fang, Jerome J.; Barro, Guillermo; Zheng, Xianzhong; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin

    2017-07-01

    The rest-frame UV-optical (I.e., NUV - B) color is sensitive to both low-level recent star formation (specific star formation rate—sSFR) and dust. In this Letter, we extend our previous work on the origins of NUV - B color gradients in star-forming galaxies (SFGs) at z˜ 1 to those at z˜ 2. We use a sample of 1335 large (semimajor axis radius {R}{SMA}> 0\\buildrel{\\prime\\prime}\\over{.} 18) SFGs with extended UV emission out to 2{R}{SMA} in the mass range {M}* ={10}9{--}{10}11 {M}⊙ at 1.5negative NUV - B color gradients (redder centers), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame FUV - NUV color is approximately linear with {A}{{V}}, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the NUV - B color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at Cosmic Noon is self-similar inside 2{R}{SMA}.

  7. Microstructural gradients in thin hard coatings -- tailor-made

    Pantleon, Karen; Oettel, Heinrich

    1998-01-01

    ) alternating sputtering with and without substrate voltage and (c) pulsed bias voltage. On the basis of X-ray diffraction measurements, it is demonstrated that residual stress gradients and texture gradients can be designed tailor-made. Furthermore, results of microhardness measurements and scratch tests...

  8. Microgravimetry and the Measurement and Application of Gravity Gradients,

    1980-06-01

    Neumann, R., 1972, High precision gravimetry--recent develop- ments: Report to Paris Commission of E.A.E.G., Compagnie Generale de Geophysique , Massy...experimentation on vertical gradient: Compagnie Generale de Geophysique , Massy, France. 12. Fajklewicz, Z. J., 1976, Gravity vertical gradient

  9. Competitive ability, stress tolerance and plant interactions along stress gradients.

    Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier

    2018-04-01

    Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.

  10. Development and propagation of a pollution gradient in the marine ...

    The development and propagation of a pollution gradient in the marine boundary layer over the Arabian Sea during the Intensive Field Phase of the Indian Ocean Experiment (1999) is investigated. A hypothesis for the generation of the pollution gradient is presented. Infrared satellite images show the formation of the ...

  11. Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.

    Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart

    2018-04-01

    In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.

  12. Ponderomotive force effects on temperature-gradient-driven instabilities

    Sundaram, A.K.; Hershkowitz, N.

    1992-01-01

    The modification of temperature-gradient-driven instabilities due to the presence of nonuniform radio-frequency fields near the ion cyclotron frequency is investigated in the linear regime. Employing the fluid theory, it is shown that the induced field line compression caused by ion cyclotron range of frequencies (ICRF) fields makes the net parallel compressibility positive, and thus provides a stabilizing influence on the ion-temperature-gradient-driven mode for an appropriately tailored profile of radio-frequency (rf) pressure. Concomitantly, the radial ponderomotive force generates an additional contribution via coupling between the perturbed fluid motion and the equilibrium ponderomotive force and this effect plays the role of dissipation to enhance or decrease the growth of temperature-gradient-driven modes depending upon the sign of rf pressure gradients. For decreased growth of temperature-gradient-driven instabilities, the plasma density gradients and rf pressure gradients must have opposite signs while enhancement in growth arises when both gradients have the same sign. Finally, the kinetic effects associated with these modes are briefly discussed

  13. Calculation of Vertical Temperature Gradients in Heated Rooms

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...

  14. Advances in high-gradient magnetic fishing for bioprocessing

    Goncalves Gomes, Claudia Sofia

    2006-01-01

    “High-gradient magnetic fishing” (HGMF) er en metode til processering af fødestrømme med biologiske molekyler. HGMF integrerer brugen af superparamagnetiske adsorbenter med separation og processering med høj-gradient magnetisk separation (HGMS) i et magnetisk filter. Adsorbenterne er uporøse og...

  15. Global correlation imaging of magnetic total field gradients

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2012-01-01

    Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)

  16. Substrate-Bound Protein Gradients to Study Haptotaxis

    Sebastien G. Ricoult

    2015-03-01

    Full Text Available Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however it is increasingly clear that in vivo many physiologically relevant guidance proteins – including many secreted cues – are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact-printing, light patterning and 3D fabrication to pattern substrate-bound protein gradients in vitro, and focus on their application to study axon guidance. The range of methods to create substrate-bound gradients discussed herein make possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function.

  17. Scattering-angle based filtering of the waveform inversion gradients

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  18. Adaptive Regularization of Neural Networks Using Conjugate Gradient

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...

  19. Wing coloration and pigment gradients in scales of pierid butterflies

    Giraldo, Marco A.; Stavenga, Doekele G.

    Depending on the species, the individual scales of butterfly wings have a longitudinal gradient in structure and reflectance properties, as shown by scanning electron microscopy and microspectrophotometry. White scales of the male Small White, Pieris rapae crucivora, show a strong gradient in both

  20. Effects of lithology on geothermal gradient on the southeast Nigeria ...

    A study of the effects of lithologic formations on geothermal gradients is carried out in the south-east Niger Delta, Nigeria, using continuous temperature and lithologic log data from closely-spaced petroleum wells. The gradient profiles obtained for the deep wells, logged to depths between 6500 ft (1981m) and 8500ft ...

  1. Scattering-angle based filtering of the waveform inversion gradients

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  2. A new method of determining moisture gradient in wood

    Zhiyong Cai

    2008-01-01

    Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...

  3. Near-surface temperature gradient in a coastal upwelling regime

    Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.

    2014-08-01

    In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.

  4. Directional phytoscreening: contaminant gradients in trees for plume delineation.

    Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G

    2013-08-20

    Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.

  5. Color Gradient in the King Type Globular Cluster NGC 7089

    Young-Jong Sohn

    1999-12-01

    Full Text Available We use BV CCD images to investigate the reality of the color gradient within a King type globular cluster NGC 7089. Surface photometry shows that there is a strong radial color gradient in the central region of the cluster in the sense of bluer center with the amplitude of -0.39 +/- 0.07 mag/arcsec2 in (B - V. In the outer region of the cluster, however, the radial color gradient shows a reverse case, i.e., redder toward the center. (B - V color profile which was derived from resolved stars in VGC 7089 field also shows a significant color gradient in the central region of the clusters, indicating that lights from the combination of red giant stars and blue horizontal branch stars cause the radial color gradient. Color gradient of the outer region of NGC 7089 may be due to the unresolved background of the cluster. Similar color gradients in the central area of clusters have been previously observed exserved exclusively in highly concentrated systems classified as post core collapse clusters. We caution, however, to confirm the reality of the color gradient from resolved stars, we need more accurate imaging data of the cluster with exceptional seeing condition because the effect of completeness correlates with local density of stars.

  6. New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems

    Al-Bayati, A.; Al-Asadi, N.

    1997-01-01

    This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab

  7. pH-gradient chromatofocusing of proteins on a chip

    Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, J.G.E.

    2015-01-01

    We present a novel microfluidic system for the pH-gradient focusing of proteins with the integration of 16 parallel micro-mixers, a micro-column, and a multiplexer. In this work we successfully achieved the creation of 16 non-linear gradients and the generation of a solid-phase micro-column for the

  8. The disparate impact of the ion temperature gradient and the density gradient on edge transport and the low-high transition in tokamaks

    Kleva, Robert G.; Guzdar, Parvez N.

    2009-01-01

    Steepening of the ion temperature gradient in nonlinear fluid simulations of the edge region of a tokamak plasma causes a rapid degradation in confinement. As the density gradient steepens, there is a continuous improvement in confinement analogous to the low (L) to high (H) transition observed in tokamaks. In contrast, as the ion temperature gradient steepens, there is a rapid increase in the particle and energy fluxes and no L-H transition. For a given pressure gradient, confinement always improves when more of the pressure gradient arises from the density gradient, and less of the pressure gradient arises from the ion temperature gradient.

  9. Pressure gradients fail to predict diffusio-osmosis

    Liu, Yawei; Ganti, Raman; Frenkel, Daan

    2018-05-01

    We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.

  10. Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications

    2018-01-01

    Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell–hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell–hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior. PMID:29485612

  11. Role of polarized G protein signaling in tracking pheromone gradients

    McClure, Allison W.; Minakova, Maria; Dyer, Jayme M.; Zyla, Trevin R.; Elston, Timothy C.; Lew, Daniel J.

    2015-01-01

    Summary Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial, and illuminate a novel mechanism for gradient tracking. PMID:26609960

  12. HG2006 Workshop on High-Gradient Radio Frequency

    2006-01-01

    Meeting to be held at CERN on 25-27 September 2006 in Room 40/S2-B01 (Building 40). The objective of the workshop is to bring the high-gradient RF community together to present and discuss recent theoretical and experimental developments. Significant progress has recently been made in understanding the basic physics of rf breakdown and developing techniques for achieving higher gradients. This workshop should contribute to maintaining these efforts and to promoting contacts and collaboration. The scientific programme will be organized in half day sessions dedicated to: High-gradient rf experimental results Theory and computation High-gradient technology, materials and processing Specialized experiments on related high-gradient or high-power phenomenon like dc discharge and pulsed surface heating Reports from collaborations and projects. Each session will consist of selected presentations followed by a dedicated discussion. Information about the meeting and participant registration is available at http...

  13. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  14. Stability of boundary layer flow based on energy gradient theory

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  15. Abundance gradients in disc galaxies and chemical evolution models

    Diaz, A.I.

    1989-01-01

    The present state of abundance gradients and chemical evolution models of spiral galaxies is reviewed. An up to date compilation of abundance data in the literature concerning HII regions over galactic discs is presented. From these data Oxygen and Nitrogen radial gradients are computed. The slope of the Oxygen gradient is shown to have a break at a radius between 1.5 and 1.75 times the value of the effective radius of the disc, i.e. the radius containing half of the light of the disc. The gradient is steeper in the central parts of the disc and becomes flatter in the outer parts. N/O gradients are shown to be rather different from galaxy to galaxy and only a weak trend of N/O with O/H is found. The existing chemical evolution models for spiral galaxies are reviewed with special emphasis in the interpretation of numerical models having a large number of parameters. (author)

  16. Discrete gradient methods for solving variational image regularisation models

    Grimm, V; McLachlan, Robert I; McLaren, David I; Quispel, G R W; Schönlieb, C-B

    2017-01-01

    Discrete gradient methods are well-known methods of geometric numerical integration, which preserve the dissipation of gradient systems. In this paper we show that this property of discrete gradient methods can be interesting in the context of variational models for image processing, that is where the processed image is computed as a minimiser of an energy functional. Numerical schemes for computing minimisers of such energies are desired to inherit the dissipative property of the gradient system associated to the energy and consequently guarantee a monotonic decrease of the energy along iterations, avoiding situations in which more computational work might lead to less optimal solutions. Under appropriate smoothness assumptions on the energy functional we prove that discrete gradient methods guarantee a monotonic decrease of the energy towards stationary states, and we promote their use in image processing by exhibiting experiments with convex and non-convex variational models for image deblurring, denoising, and inpainting. (paper)

  17. Influence of permittivity on gradient force exerted on Mie spheres.

    Chen, Jun; Li, Kaikai; Li, Xiao

    2018-04-01

    In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.

  18. Investigation of axial power gradients near a control rod tip

    Loberg, John, E-mail: John.Loberg@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Osterlund, Michael, E-mail: Michael.Osterlund@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Bejmer, Klaes-Hakan, E-mail: Klaes-Hakan.Bejmer@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Blomgren, Jan, E-mail: Jan.Blomgren@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Kierkegaard, Jesper, E-mail: Jesper.Kierkegaar@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden)

    2011-07-15

    Highlights: > Pin power gradients near BWR control rod tips have been investigated. > A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. > Small nodes increases pin power gradients; standard nodes underestimates gradients. > The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, {approx}15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.

  19. Gradients estimation from random points with volumetric tensor in turbulence

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  20. Investigation of axial power gradients near a control rod tip

    Loberg, John; Osterlund, Michael; Bejmer, Klaes-Hakan; Blomgren, Jan; Kierkegaard, Jesper

    2011-01-01

    Highlights: → Pin power gradients near BWR control rod tips have been investigated. → A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. → Small nodes increases pin power gradients; standard nodes underestimates gradients. → The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, ∼15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.

  1. Cardiovascular Responses of Snakes to Gravitational Gradients

    Hsieh, Shi-Tong T.; Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Snakes are useful vertebrates for studies of gravitational adaptation, owing to their elongate body and behavioral diversification. Scansorial species have evolved specializations for regulating hemodynamics during exposure to gravitational stress, whereas, such adaptations are less well developed in aquatic and non-climbing species. We examined responses of the amphibious snake,\\italicize (Nerodia rhombifera), to increments of Gz (head-to-tail) acceleration force on both a short- and long-arm centrifuge (1.5 vs. 3.7 m radius, from the hub to tail end of snake). We recorded heart rate, dorsal aortic pressure, and carotid arterial blood flow during stepwise 0.25 G increments of Gz force (referenced at the tail) in conscious animals. The Benz tolerance of a snake was determined as the Gz level at which carotid blood flow ceased and was found to be significantly greater at the short- than long-arm centrifuge radius (1.57 Gz vs. 2.0 Gz, respectively; P=0.016). A similar pattern of response was demonstrated in semi-arboreal rat snakes,\\italicize{Elaphe obsoleta}, which are generally more tolerant of Gz force (2.6 Gz at 1.5m radius) than are water snakes. The tolerance differences of the two species reflected cardiovascular responses, which differed quantitatively but not qualitatively: heart rates increased while arterial pressure and blood flow decreased in response to increasing levels of Gz. Thus, in both species of snakes, a reduced gradient of Gz force (associated with greater centrifuge radius) significantly decreases the Gz level that can be tolerated.

  2. Efficient and robust gradient enhanced Kriging emulators.

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  3. Minimum weight protection - Gradient method; Protection de poids minimum - Methode du gradient

    Danon, R.

    1958-12-15

    After having recalled that, when considering a mobile installation, total weight has a crucial importance, and that, in the case of a nuclear reactor, a non neglectable part of weight is that of protection, this note presents an iterative method which results, for a given protection, to a configuration with a minimum weight. After a description of the problem, the author presents the theoretical formulation of the gradient method as it is applied to the concerned case. This application is then discussed, as well as its validity in terms of convergence and uniqueness. Its actual application is then reported, and possibilities of practical applications are evoked.

  4. An extended discrete gradient formula for oscillatory Hamiltonian systems

    Liu Kai; Shi Wei; Wu Xinyuan

    2013-01-01

    In this paper, incorporating the idea of the discrete gradient method into the extended Runge–Kutta–Nyström integrator, we derive and analyze an extended discrete gradient formula for the oscillatory Hamiltonian system with the Hamiltonian H(p,q)= 1/2 p T p+ 1/2 q T Mq+U(q), where q:R→R d represents generalized positions, p:R→R d represents generalized momenta and M is an element of R dxd is a symmetric and positive semi-definite matrix. The solution of this system is a nonlinear oscillator. Basically, many nonlinear oscillatory mechanical systems with a partitioned Hamiltonian function lend themselves to this approach. The extended discrete gradient formula presented in this paper exactly preserves the energy H(p, q). We derive some properties of the new formula. The convergence is analyzed for the implicit schemes based on the discrete gradient formula, and it turns out that the convergence of the implicit schemes based on the extended discrete gradient formula is independent of ‖M‖, which is a significant property for the oscillatory Hamiltonian system. Thus, it transpires that a larger step size can be chosen for the new energy-preserving schemes than that for the traditional discrete gradient methods when applied to the oscillatory Hamiltonian system. Illustrative examples show the competence and efficiency of the new schemes in comparison with the traditional discrete gradient methods in the scientific literature. (paper)

  5. A flexoelectric theory with rotation gradient effects for elastic dielectrics

    Anqing, Li; Shenjie, Zhou; Lu, Qi; Xi, Chen

    2016-01-01

    In this paper, a general flexoelectric theory in the framework of couple stress theory is proposed for isotropic dielectrics, in which the rotation gradient and the polarization gradient are involved to represent the nonlocal mechanical and electrical effects, respectively. The present flexoelectric theory shows only the anti-symmetric part of rotation gradient can induce polarization, while the symmetric part of rotation gradient cannot induce polarization in isotropic dielectrics. The electrostatic stress is obtained naturally in the governing equations and boundary conditions in terms of the variational principle, which is composed of two parts: the Maxwell stress corresponding to the polarization and the remainder relating to the polarization gradient. The current theory is able to account for the effects of size, direct and inverse flexoelectricities, and electrostatic force. To illustrate this theory, a simple application of Bernoulli–Euler cantilever beam is discussed. The numerical results demonstrate neither the higher-order constant l 1 nor the higher-order constant l 2 associated with the symmetric and anti-symmetric parts of rotation gradient, respectively, can be ignored in the flexoelectric theory. In addition, the induced deflection increases as the increase of the flexoelectric coefficient. The polarization is no longer constant and the potential is no longer linear along the thickness direction of beam because of the influence of polarization gradient. (paper)

  6. A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model

    Pouriayevali, Habib; Xu, Bai-Xiang

    2017-11-01

    A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin's framework (Int J Plast 24:702-725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320-343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.

  7. Apparent Brecciation Gradient, Mount Desert Island, Maine

    Hawkins, A. T.; Johnson, S. E.

    2004-05-01

    Mount Desert Island, Maine, comprises a shallow level, Siluro-Devonian igneous complex surrounded by a distinctive breccia zone ("shatter zone" of Gilman and Chapman, 1988). The zone is very well exposed on the southern and eastern shores of the island and provides a unique opportunity to examine subvolcanic processes. The breccia of the Shatter Zone shows wide variation in percent matrix and clast, and may represent a spatial and temporal gradient in breccia formation due to a single eruptive or other catastrophic volcanic event. The shatter zone was divided into five developmental stages based on the extent of brecciation: Bar Harbor Formation, Sols Cliffs breccia, Seeley Road breccia, Dubois breccia, and Great Head breccia. A digital camera was employed to capture scale images of representative outcrops using a 0.5 m square Plexiglas frame. Individual images were joined in Adobe Photoshop to create a composite image of each outcrop. The composite photo was then exported to Adobe Illustrator, which was used to outline the clasts and produce a digital map of the outcrop for analysis. The fractal dimension (Fd) of each clast was calculated using NIH Image and a Euclidean distance mapping method described by Bérubé and Jébrak (1999) to quantify the morphology of the fragments, or the complexity of the outline. The more complex the fragment outline, the higher the fractal dimension, indicating that the fragment is less "mature" or has had less exposure to erosional processes, such as the injection of an igneous matrix. Sols Cliffs breccia has an average Fd of 1.125, whereas Great Head breccia has an average Fd of 1.040, with the stages between having intermediate values. The more complex clasts of the Sols Cliffs breccia with a small amount (26.38%) of matrix material suggests that it is the first stage in a sequence of brecciation ending at the more mature, matrix-supported (71.37%) breccia of Great Head. The results of this study will be used to guide isotopic

  8. Fifty shades of gradients: does the pressure gradient in venous sinus stenting for idiopathic intracranial hypertension matter? A systematic review.

    McDougall, Cameron M; Ban, Vin Shen; Beecher, Jeffrey; Pride, Lee; Welch, Babu G

    2018-03-02

    OBJECTIVE The role of venous sinus stenting (VSS) for idiopathic intracranial hypertension (IIH) is not well understood. The aim of this systematic review is to attempt to identify subsets of patients with IIH who will benefit from VSS based on the pressure gradients of their venous sinus stenosis. METHODS MEDLINE/PubMed was searched for studies reporting venous pressure gradients across the stenotic segment of the venous sinus, pre- and post-stent pressure gradients, and clinical outcomes after VSS. Findings are reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS From 32 eligible studies, a total of 186 patients were included in the analysis. Patients who had favorable outcomes had higher mean pressure gradients (22.8 ± 11.5 mm Hg vs 17.4 ± 8.0 mm Hg, p = 0.033) and higher changes in pressure gradients after stent placement (19.4 ± 10.0 mm Hg vs 12.0 ± 6.0 mm Hg, p = 0.006) compared with those with unfavorable outcomes. The post-stent pressure gradients between the 2 groups were not significantly different (2.8 ± 4.0 mm Hg vs 2.7 ± 2.0 mm Hg, p = 0.934). In a multivariate stepwise logistic regression controlling for age, sex, body mass index, CSF opening pressure, pre-stent pressure gradient, and post-stent pressure gradient, the change in pressure gradient with stent placement was found to be an independent predictor of favorable outcome (p = 0.028). Using a pressure gradient of 21 as a cutoff, 81/86 (94.2%) of patients with a gradient > 21 achieved favorable outcomes, compared with 82/100 (82.0%) of patients with a gradient ≤ 21 (p = 0.022). CONCLUSIONS There appears to be a relationship between the pressure gradient of venous sinus stenosis and the success of VSS in IIH. A randomized controlled trial would help elucidate this relationship and potentially guide patient selection.

  9. Effects of degree correlation on scale-free gradient networks

    Pan Guijun; Yan Xiaoqing; Ma Weichuan; Luo Yihui; Huang Zhongbing

    2010-01-01

    We have studied the effects of degree correlation on congestion pressure in scale-free gradient networks. It is observed that the jamming coefficient J is insensitive to the degree correlation coefficient r for assortative and strongly disassortative scale-free networks, and J markedly decreases with an increase in r for weakly disassortative scale-free networks. We have also investigated the effects of degree correlation on the topology structure of scale-free gradient networks, and discussed the relation between the topology structure properties and transport efficiency of gradient networks.

  10. Evolution of a Planar Wake in Adverse Pressure Gradient

    Driver, David M.; Mateer, George G.

    2016-01-01

    In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.

  11. Hamilton's gradient estimate for the heat kernel on complete manifolds

    Kotschwar, Brett

    2007-01-01

    In this paper we extend a gradient estimate of R. Hamilton for positive solutions to the heat equation on closed manifolds to bounded positive solutions on complete, non-compact manifolds with $Rc \\geq -Kg$. We accomplish this extension via a maximum principle of L. Karp and P. Li and a Bernstein-type estimate on the gradient of the solution. An application of our result, together with the bounds of P. Li and S.T. Yau, yields an estimate on the gradient of the heat kernel for complete manifol...

  12. Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators

    Checchin, Mattia [Fermilab; Grassellino, Anna [Fermilab; Martinello, Martina [IIT, Chicago; Posen, Sam [Fermilab; Romanenko, Alexander [Fermilab; Zasadzinski, John [IIT, Chicago (main)

    2017-05-01

    The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.

  13. Rainbow refractometry on particles with radial refractive index gradients

    Saengkaew, Sawitree [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France); Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Charinpanitkul, Tawatchai; Vanisri, Hathaichanok; Tanthapanichakoon, Wiwut [Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Biscos, Yves; Garcia, Nicolas; Lavergne, Gerard [ONERA/DMAE, Toulouse (France); Mees, Loic; Gouesbet, Gerard; Grehan, Gerard [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France)

    2007-10-15

    The rainbow refractrometry, under its different configurations (classical and global), is an attractive technique to extract information from droplets in evaporation such as diameter and temperature. Recently a new processing strategy has been developed which increases dramatically the size and refractive index measurements accuracy for homogeneous droplets. Nevertheless, for mono component as well as for multicomponent droplets, the presence of temperature and/or of concentration gradients induce the presence of a gradient of refractive index which affects the interpretation of the recorded signals. In this publication, the effect of radial gradient on rainbow measurements with a high accuracy never reached previously is quantified. (orig.)

  14. The Potential of Tropospheric Gradients for Regional Precipitation Prediction

    Boisits, Janina; Möller, Gregor; Wittmann, Christoph; Weber, Robert

    2017-04-01

    Changes of temperature and humidity in the neutral atmosphere cause variations in tropospheric path delays and tropospheric gradients. By estimating zenith wet delays (ZWD) and gradients using a GNSS reference station network the obtained time series provide information about spatial and temporal variations of water vapour in the atmosphere. Thus, GNSS-based tropospheric parameters can contribute to the forecast of regional precipitation events. In a recently finalized master thesis at TU Wien the potential of tropospheric gradients for weather prediction was investigated. Therefore, ZWD and gradient time series at selected GNSS reference stations were compared to precipitation data over a period of six months (April to September 2014). The selected GNSS stations form two test areas within Austria. All required meteorological data was provided by the Central Institution for Meteorology and Geodynamics (ZAMG). Two characteristics in ZWD and gradient time series can be anticipated in case of an approaching weather front. First, an induced asymmetry in tropospheric delays results in both, an increased magnitude of the gradient and in gradients pointing towards the weather front. Second, an increase in ZWD reflects the increased water vapour concentration right before a precipitation event. To investigate these characteristics exemplary test events were processed. On the one hand, the sequence of the anticipated increase in ZWD at each GNSS station obtained by cross correlation of the time series indicates the direction of the approaching weather front. On the other hand, the corresponding peak in gradient time series allows the deduction of the direction of movement as well. To verify the results precipitation data from ZAMG was used. It can be deduced, that tropospheric gradients show high potential for predicting precipitation events. While ZWD time series rather indicate the orientation of the air mass boundary, gradients rather indicate the direction of movement

  15. Enhanced Photovoltaic Properties of Gradient Doping Solar Cells

    Zhang Chun-Lei; Du Hui-Jing; Zhu Jian-Zhuo; Xu Tian-Fu; Fang Xiao-Yong

    2012-01-01

    An optimum design of a-Si:H(n)/a-Si:H(i)/c-Si(p) heterojunction solar cell is realized with 24.27% conversion efficiency by gradient doping of the a-Si:H(n) layer. The photovoltaic properties are simulated by the AFORSHET software. Besides the additional electric field caused by the gradient doping, the enhanced and widen spectral response also improves the solar cell performance compared with the uniform-doping mode. The simulation shows that the gradient doping is efficient to improve the photovoltaic performance of the solar cells. The study is valuable for the solar cell design with excellent performances

  16. Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures

    Abdula, Rzger A.

    2016-01-01

    Bottom hole temperature (BHT) data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km) was found for well Taq Taq-8 in the Low Folded Zone (central part of the area). The lowest geothermal gradients (14.9 °C/km) were observed for well Bekhme-1 in the High Folded Zone (northern and...

  17. Coupling of hydraulic and electric gradients in sandy soils

    Gregolec, G.; Zorn, R.; Kurzbach, A.; Roehl, K.E.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Laboratory studies were conducted to investigate the influence of hydraulic gradient on the migration of ions caused by an applied dc electric field. The model soil used was a uniform sand which was placed into an electrokinetic cell and saturated with sodium chloride solution. Applying only an electric gradient, steady state conditions are reached where the concentration distribution of sodium and chloride coincides with a theoretical model. The combination of electric and hydraulic gradients shows that it is possible to hinder ions from moving with the groundwater flow by applying an electric field. (orig.)

  18. Generating substrate bound functional chemokine gradients in vitro

    Hjortø, Gertrud Malene; Hansen, Morten; Larsen, Niels Bent

    2009-01-01

    Microcontact printing (mCP) is employed to generate discontinuous microscale gradients of active fractalkine, a chemokine expressed by endothelial cells near sites of inflammation where it is believed to form concentration gradients descending away from the inflamed area. In vivo, fractalkine...... active part of the molecules. Here, indirect mCP of a capture antibody recognizing a molecular tag on the target protein is successfully used to pattern tagged fractalkine in microscale gradient patterns. Fractalkine functions as an adhesion molecule for leukocytes. Cells expressing the fractalkine...

  19. Gradient estimates on the weighted p-Laplace heat equation

    Wang, Lin Feng

    2018-01-01

    In this paper, by a regularization process we derive new gradient estimates for positive solutions to the weighted p-Laplace heat equation when the m-Bakry-Émery curvature is bounded from below by -K for some constant K ≥ 0. When the potential function is constant, which reduce to the gradient estimate established by Ni and Kotschwar for positive solutions to the p-Laplace heat equation on closed manifolds with nonnegative Ricci curvature if K ↘ 0, and reduce to the Davies, Hamilton and Li-Xu's gradient estimates for positive solutions to the heat equation on closed manifolds with Ricci curvature bounded from below if p = 2.

  20. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on

  1. Development and propagation of a pollution gradient in the marine ...

    are significantly influenced by the diurnal cycle of coastal sea-land breeze circulations along India's west coast. Transport of ... cloud bands during INDOEX were in fact pollu- tion gradients ...... State Climate Office of North Carolina. We thank.

  2. Quasi Gradient Projection Algorithm for Sparse Reconstruction in Compressed Sensing

    Xin Meng

    2014-02-01

    Full Text Available Compressed sensing is a novel signal sampling theory under the condition that the signal is sparse or compressible. The existing recovery algorithms based on the gradient projection can either need prior knowledge or recovery the signal poorly. In this paper, a new algorithm based on gradient projection is proposed, which is referred as Quasi Gradient Projection. The algorithm presented quasi gradient direction and two step sizes schemes along this direction. The algorithm doesn’t need any prior knowledge of the original signal. Simulation results demonstrate that the presented algorithm cans recovery the signal more correctly than GPSR which also don’t need prior knowledge. Meanwhile, the algorithm has a lower computation complexity.

  3. Scattering angle base filtering of the inversion gradients

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.

  4. A density gradient theory based method for surface tension calculations

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  5. On combined gravity gradient components modelling for applied geophysics

    Veryaskin, Alexey; McRae, Wayne

    2008-01-01

    Gravity gradiometry research and development has intensified in recent years to the extent that technologies providing a resolution of about 1 eotvos per 1 second average shall likely soon be available for multiple critical applications such as natural resources exploration, oil reservoir monitoring and defence establishment. Much of the content of this paper was composed a decade ago, and only minor modifications were required for the conclusions to be just as applicable today. In this paper we demonstrate how gravity gradient data can be modelled, and show some examples of how gravity gradient data can be combined in order to extract valuable information. In particular, this study demonstrates the importance of two gravity gradient components, Txz and Tyz, which, when processed together, can provide more information on subsurface density contrasts than that derived solely from the vertical gravity gradient (Tzz)

  6. Theory of ion-temperature-gradient-driven turbulence in tokamaks

    Lee, G.S.; Diamond, P.H.

    1986-01-01

    An analytic theory of ion-temperature-gradient-driven turbulence in tokamaks is presented. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity chi/sub i/ = 0.4[(π/2)ln(1 + eta/sub i/)] 2 [(1 + eta/sub i/)/tau] 2 rho/sub s/ 2 c/sub s//L/sub s/ is derived and is found to be consistent with experimentally-deduced thermal diffusivities. The associated electron thermal diffusivity and particle and heat-pinch velocities are also calculated. The effect of impurity gradients on saturated ion-temperature-gradient-driven turbulence is discussed and a related explanation of density profile steepening during Z-mode operation is proposed. 35 refs., 4 figs

  7. Conditioning the full waveform inversion gradient to welcome anisotropy

    Alkhalifah, Tariq Ali

    2014-01-01

    Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.

  8. High Ra, high Pr convection with viscosity gradients

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  9. Bacterial pleomorphism and competition in a relative humidity gradient

    de Goffau, Marcus C.; Yang, Xiaomei; van Dijl, Jan Maarten; Harmsen, Hermie J. M.

    The response of different bacterial species to reduced water availability was studied using a simple relative humidity gradient technique. Interestingly, distinct differences in morphology and growth patterns were observed between populations of the same species growing at different relative

  10. Analysis of Gradient Waveform in Magnetic Resonance Imaging

    OU-YANG Shan-mei

    2017-12-01

    Full Text Available The accuracy of gradient pulse waveform affects image quality significantly in magnetic resonance imaging (MRI. Recording and analyzing the waveform of gradient pulse helps to make rapid and accurate diagnosis of spectrometer gradient hardware and/or pulse sequence. Using the virtual instrument software LabVIEW to control the high speed data acquisition card DAQ-2005, a multi-channel acquisition scheme was designed to collect the gradient outputs from a custom-made spectrometer. The collected waveforms were post-processed (i.e., histogram statistical analysis, data filtering and difference calculation to obtain feature points containing time and amplitude information. Experiments were carried out to validate the method, which is an auxiliary test method for the development of spectrometer and pulses sequence.

  11. Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures

    Rzger A. Abdula

    2017-09-01

    Full Text Available Bottom hole temperature (BHT data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km was found for well Taq Taq-8 in the Low Folded Zone (central part of the area. The lowest geothermal gradients (14.9 °C/km were observed for well Bekhme-1 in the High Folded Zone (northern and northeastern parts of the area. The average regional geothermal gradient for Iraqi Kurdistan is 21 °C/km.

  12. Ecological status of species on grazing gradients on the shallow ...

    Ecological status of species on grazing gradients on the shallow soils of the western ... Open Access DOWNLOAD FULL TEXT ... Vegetation data were gathered in such a way that those of different successional stages could be identified.

  13. Spatial gradients of polychlorinated biphenyls (PCBs) and organochlorine pesticides

    National Oceanic and Atmospheric Administration, Department of Commerce — Spatial gradients of polychlorinated biphenyls (PCBs) and organochlorine pesticides were examined in the young-of-the-year (YOY) blueÂżsh collected in the vicinity...

  14. Non-Conventional Thermodynamics and Models of Gradient Elasticity

    Hans-Dieter Alber

    2018-03-01

    Full Text Available We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin–Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler–Lagrange derivative of the free energy with respect to the strain. The present paper aims at developing a first version of gradient elasticity of non-Toupin–Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily expressed as Euler–Lagrange derivatives. This is accomplished in the framework of non-conventional thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate the differences of the present theory with Toupin–Mindlin’s gradient elasticity theory.

  15. Conditioning the full waveform inversion gradient to welcome anisotropy

    Alkhalifah, Tariq Ali

    2014-08-05

    Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.

  16. Penaeid Shrimp Salinity Gradient Tank Study 2005-2008

    National Oceanic and Atmospheric Administration, Department of Commerce — We designed an experimental gradient tank to examine salinity preferences of juvenile brown shrimp and white shrimp. Although no strong pattern of salinity avoidance...

  17. Topological charge using cooling and the gradient flow

    Alexandrou, C.; Athenodorou, A.; The Cyprus Institute, Nicosia; Jansen, K.

    2015-12-01

    The equivalence of cooling to the gradient flow when the cooling step n c and the continuous flow step of gradient flow τ are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate n c and τ and show that the results for the topological charge become equivalent when rescaling τ ≅ n c /(3-15c 1 ) where c 1 is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved and the Iwasaki gauge actions to configurations produced with N f = 2 + 1 + 1 twisted mass fermions. We compute the topological charge, its distribution and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling τ ≅ n c /(3-15c 1 ) leads to equivalent results.

  18. Formation of actin networks in microfluidic concentration gradients

    Natalja eStrelnikova

    2016-05-01

    Full Text Available The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  19. Comparative Studies of High-Gradient Rf and Dc Breakdowns

    Kovermann, Jan Wilhelm; Wuensch, Walter

    2010-01-01

    The CLIC project is based on normal-conducting high-gradient accelerating structures with an average accelerating gradient of 100 MV/m. The maximum achievable gradient in these structures is limited by the breakdown phenomenon. The physics of breakdowns is not yet fully understood quantitatively. A full knowledge could have strong impact on the design, material choice and construction of rf structures. Therefore, understanding breakdowns has great importance to reaching a gradient of 100MV/m with an acceptable breakdown probability. This thesis addresses the physics underlying the breakdown effect, focusing on a comparison of breakdowns in rf structures and in a dc spark setup. The dc system is simpler, easier to benchmark against simulations, with a faster turnaround time, but the relationship to rf breakdown must be established. To do so, an experimental approach based on optical diagnostics and electrical measurements methods was made. Following an introduction into the CLIC project, a general theoretical ...

  20. High-gradient electron accelerator powered by a relativisitic klystron

    Allen, M.A.; Boyd, J.K.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Haimson, J.; Hoag, H.A.; Hopkins, D.B.; Houck, T.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Mecklenburg, B.; Miller, R.H.; Ruth, R.D.; Ryne, R.D.; Sessler, A.M.; Vlieks, A.E.; Wang, J.W.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    We have used relativistic klystron technology to extract 290 MW of peak power at 11.4 GHz from an induction linac beam, and to power a short 11.4-GHz high-gradient accelerator. We have measured rf phase stability, field emission, and the momentum spectrum of an accelerated electron beam. An average accelerating gradient of 84 MV/m has been achieved with 80 MW of relativistic klystron power

  1. Refining geoid and vertical gradient of gravity anomaly

    Zhang Chijun

    2011-11-01

    Full Text Available We have derived and tested several relations between geoid (N and quasi-geoid (ζ with model validation. The elevation correction consists of the first-term (Bouguer anomaly and second-term (vertical gradient of gravity anomaly. The vertical gradient was obtained from direct measurement and terrain calculation. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.

  2. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  3. Functional trait space and the latitudinal diversity gradient

    Lamanna, Christine; Blonder, Benjamin; Violle, Cyrille

    2014-01-01

    The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha...... of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory....

  4. Interior Gradient Estimates for Nonuniformly Parabolic Equations II

    Lieberman Gary M

    2007-01-01

    Full Text Available We prove interior gradient estimates for a large class of parabolic equations in divergence form. Using some simple ideas, we prove these estimates for several types of equations that are not amenable to previous methods. In particular, we have no restrictions on the maximum eigenvalue of the coefficient matrix and we obtain interior gradient estimates for so-called false mean curvature equation.

  5. New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods

    Dai, Y.-H.; Liao, L.-Z.

    2001-01-01

    Conjugate gradient methods are a class of important methods for unconstrained optimization, especially when the dimension is large. This paper proposes a new conjugacy condition, which considers an inexact line search scheme but reduces to the old one if the line search is exact. Based on the new conjugacy condition, two nonlinear conjugate gradient methods are constructed. Convergence analysis for the two methods is provided. Our numerical results show that one of the methods is very efficient for the given test problems

  6. Several Guaranteed Descent Conjugate Gradient Methods for Unconstrained Optimization

    San-Yang Liu

    2014-01-01

    Full Text Available This paper investigates a general form of guaranteed descent conjugate gradient methods which satisfies the descent condition gkTdk≤-1-1/4θkgk2  θk>1/4 and which is strongly convergent whenever the weak Wolfe line search is fulfilled. Moreover, we present several specific guaranteed descent conjugate gradient methods and give their numerical results for large-scale unconstrained optimization.

  7. A Spectral Conjugate Gradient Method for Unconstrained Optimization

    Birgin, E. G.; Martinez, J. M.

    2001-01-01

    A family of scaled conjugate gradient algorithms for large-scale unconstrained minimization is defined. The Perry, the Polak-Ribiere and the Fletcher-Reeves formulae are compared using a spectral scaling derived from Raydan's spectral gradient optimization method. The best combination of formula, scaling and initial choice of step-length is compared against well known algorithms using a classical set of problems. An additional comparison involving an ill-conditioned estimation problem in Optics is presented

  8. Consolidation by Prefabricated Vertical Drains with a Threshold Gradient

    Xiao Guo; Kang-He Xie; Yue-Bao Deng

    2014-01-01

    This paper shows the development of an approximate analytical solution of radial consolidation by prefabricated vertical drains with a threshold gradient. To understand the effect of the threshold gradient on consolidation, a parametric analysis was performed using the present solution. The applicability of the present solution was demonstrated in two cases, wherein the comparisons with Hansbo’s results and observed data were conducted. It was found that (1) the flow with the threshold gradie...

  9. Hepatic venous pressure gradients measured by duplex ultrasound

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M.

    2002-01-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P -2 provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  10. Morphogengineering roots: comparing mechanisms of morphogen gradient formation

    2012-01-01

    Background In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. Results We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. Conclusions We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism. PMID:22583698

  11. Development and implementation of an 84-channel matrix gradient coil.

    Littin, Sebastian; Jia, Feng; Layton, Kelvin J; Kroboth, Stefan; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2018-02-01

    Design, implement, integrate, and characterize a customized coil system that allows for generating spatial encoding magnetic fields (SEMs) in a highly-flexible fashion. A gradient coil with a high number of individual elements was designed. Dimensions of the coil were chosen to mimic a whole-body gradient system, scaled down to a head insert. Mechanical shape and wire layout of each element were optimized to increase the local gradient strength while minimizing eddy current effects and simultaneously considering manufacturing constraints. Resulting wire layout and mechanical design is presented. A prototype matrix gradient coil with 12 × 7 = 84 elements consisting of two element types was realized and characterized. Measured eddy currents are gradient strengths between 24 mT∕m and 78 mT∕m could be realized locally with maximum currents of 150 A. Initial proof-of-concept imaging experiments using linear and nonlinear encoding fields are demonstrated. A shielded matrix gradient coil setup capable of generating encoding fields in a highly-flexible manner was designed and implemented. The presented setup is expected to serve as a basis for validating novel imaging techniques that rely on nonlinear spatial encoding fields. Magn Reson Med 79:1181-1191, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Gradient biomaterials and their influences on cell migration

    Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou

    2012-01-01

    Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610

  13. Characterization of a texture gradient in tantalum plate

    Wright, S.I.; Gray, G.T. III.

    1994-01-01

    Clark et al. have shown that significant texture gradients can be produced in rolled tantalum plate and that the strength of the gradient is dependent on the processing path. Texture gradients are often ignored because they are time consuming to characterize and add significant complexity to materials modeling. The variation in texture through the thickness of rolled materials is most commonly measured by sectioning samples to different depths through the thickness of the plate and then measuring the texture from these section planes by X-ray diffraction. A new technique based on automatic indexing of electron backscatter diffraction patterns in the scanning electron microscope enables spatially specific orientations to be measured in a practical manner. This technique allows spatial variations in texture to be measured directly enabling gradients in texture to be investigated in more detail than previously possible. This data can be used directly in coupled finite-element/polycrystal-plasticity models to simulate the effects of variations in texture on the plastic behavior of polycrystals. This work examines the variation in texture through the thickness of a tantalum plate and its resultant effect on the compressive deformation of samples prepared from the plate. The characterization of the texture gradient using the automatic point-by-point measurement technique mentioned above is described in detail. The effect of the gradient on the plastic response of through-thickness compression tests is also discussed

  14. Tight junction regulates epidermal calcium ion gradient and differentiation

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-01-01

    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  15. A parametric study of adverse pressure gradient turbulent boundary layers

    Monty, J.P.; Harun, Z.; Marusic, I.

    2011-01-01

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  16. Hepatic venous pressure gradients measured by duplex ultrasound

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M

    2002-08-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P < 0.0001) and with the Child-Pugh score (r = 0.63, P < 0.0001). An acceleration index cut-off value of 1 m.s{sup -2} provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  17. Thermal-gradient migration of brine inclusions in salt crystals

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables

  18. Thermal gradient migration of brine inclusions in salt crystals

    Yagnik, S.K.

    1982-01-01

    Natural salt deposits, which are being considered for high-level nuclear wastes repositories, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In the present work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boudaries was observed

  19. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  20. Mathematical modelling of digit specification by a sonic hedgehog gradient

    Woolley, Thomas E.; Baker, Ruth E.; Tickle, Cheryll; Maini, Philip K.; Towers, Matthew

    2013-01-01

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  1. Avoiding vacuum arcs in high gradient normal conducting RF structures

    Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter

    In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...

  2. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  3. Heavy Metal Diffusion through Soft Clay under High Hydraulic Gradients

    Zaheer Ahmed Almani

    2013-04-01

    Full Text Available This study was focused on the determination of contaminant transport parameters of heavy metal Zinc moving through saturated soft Bangkok undisturbed clay under high hydraulic gradients. These parameters were compared with contaminant transport determined under concentration gradient alone (pure diffusion. In total fifteen column tests were conducted and a mathematical model was applied to determine the coefficients. Two different source concentrations conditions, constant and decreasing, were applied. Testing periods were ranged from 15-60 days while hydraulic gradients were ranged from 0-500. The curves between relative concentration and time and pore volume were developed for the constant source condition whereas curves between source reservoirs concentrations and time were developed for decreasing source condition. The effective diffusion and distribution coefficients, De and Kd, were determined by curve fitting using the computer code POLLUTE v 6.3. The results showed that diffusion coefficient increases and distribution coefficient decreases as hydraulic gradient increases from 0 to high value of 500 due to contribution of dispersion and additional molecular diffusion at high advective velocity. Thus, testing at high gradients ensures the safe performance of earthen barriers under worse conditions.

  4. W-Cu gradient materials - processing, properties and application possibilities

    Joensson, M.; Kieback, B.

    2001-01-01

    The functionally graded material (FGM) of tungsten with its high thermal and mechanical resistance and copper with its very high thermal and electrical conductivity and ductility expands the application fields of this material in the direction of extreme demands such as plasma facing components in fusion reactors. The PM-production of W-Cu-gradients recommends itself because of the possibility to form the gradient by the mixing of powder components, but is also demanding because of the differences in their sintering behavior and thermal expansions. W-Gu-gradient samples of different concentration profiles have been formed in layers by powder stacking in a die and continuously by centrifugal powder forming. The consolidation routes were determined by the concentration areas of the gradients and encompass liquid phase sintering, pressure assisted solid phase sintering and the application of coated Tungsten powder and sintering additives. The microstructure and the concentration profiles of the samples have been investigated metaliographically and by EDX. The influence of processing and the gradient profile of the properties have been characterized by TRS and the investigation of residual thermal stresses by neutron diffraction. (author)

  5. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.

  6. Metallicity gradient of the thick disc progenitor at high redshift

    Kawata, Daisuke; Allende Prieto, Carlos; Brook, Chris B.; Casagrande, Luca; Ciucă, Ioana; Gibson, Brad K.; Grand, Robert J. J.; Hayden, Michael R.; Hunt, Jason A. S.

    2018-01-01

    We have developed a novel Markov Chain Monte Carlo chemical 'painting' technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis, we match an N-body simulation to the data from the Apache Point Observatory Galactic Evolution Experiment survey. We assume that the thick disc has a constant scaleheight and has completed its formation at an early epoch, after which time radial mixing of its stars has taken place. Under these assumptions, we find that the initial radial metallicity gradient of the thick disc progenitor should not be negative, but either flat or even positive, to explain the current negative vertical metallicity gradient of the thick disc. Our study suggests that the thick disc was built-up in an inside-out and upside-down fashion, and older, smaller and thicker populations are more metal poor. In this case, star-forming discs at different epochs of the thick disc formation are allowed to have different radial metallicity gradients, including a negative one, which helps to explain a variety of slopes observed in high-redshift disc galaxies. This scenario helps to explain the positive slope of the metallicity-rotation velocity relation observed for the Galactic thick disc. On the other hand, radial mixing flattens the slope of an existing gradient.

  7. Mathematical modelling of digit specification by a sonic hedgehog gradient

    Woolley, Thomas E.

    2013-11-26

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  8. Variability study of Si nanowire FETs with different junction gradients

    Jun-Sik Yoon

    2016-01-01

    Full Text Available Random dopant fluctuation effects of gate-all-around Si nanowire field-effect transistors (FETs are investigated in terms of different diameters and junction gradients. The nanowire FETs with smaller diameters or shorter junction gradients increase relative variations of the drain currents and the mismatch of the drain currents between source-drain and drain-source bias change in the saturation regime. Smaller diameters decreased current drivability critically compared to standard deviations of the drain currents, thus inducing greater relative variations of the drain currents. Shorter junction gradients form high potential barriers in the source-side lightly-doped extension regions at on-state, which determines the magnitude of the drain currents and fluctuates the drain currents greatly under thermionic-emission mechanism. On the other hand, longer junction gradients affect lateral field to fluctuate the drain currents greatly. These physical phenomena coincide with correlations of the variations between drain currents and electrical parameters such as threshold voltages and parasitic resistances. The nanowire FETs with relatively-larger diameters and longer junction gradients without degrading short channel characteristics are suggested to minimize the relative variations and the mismatch of the drain currents.

  9. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  10. Coastal microbial mat diversity along a natural salinity gradient.

    Henk Bolhuis

    Full Text Available The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to the dunes resulting in gradients of environmental factors perpendicular to the beach. These gradients are due to the input of seawater at the low water mark and of freshwater from upwelling groundwater at the dunes and rainfall. The result is a natural and dynamic salinity gradient depending on the tide, rainfall and wind. We studied the microbial community composition in thirty three samples taken every ten meters along this natural salinity gradient by using denaturing gradient gel electrophoresis (DGGE of rRNA gene fragments. We looked at representatives from each Domain of life (Bacteria, Archaea and Eukarya and with a particular emphasis on Cyanobacteria. Analysis of the DGGE fingerprints together with pigment composition revealed three distinct microbial mat communities, a marine community dominated by diatoms as primary producers, an intermediate brackish community dominated by Cyanobacteria as primary producers and a freshwater community with Cyanobacteria and freshwater green algae.

  11. Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts

    Axente, Emanuel; Sima, Felix; Elena Sima, Livia; Serban, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Erginer, Merve; Toksoy Oner, Ebru; Eroglu, Mehmet S; Petrescu, Stefana M

    2014-01-01

    There is increased interest in smart bioactive materials to control tissue regeneration for the engineering of cell instructive scaffolds. We introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as a new method for the fabrication of organic thin films with a compositional gradient. Synchronized C-MAPLE of levan and oxidized levan was employed to assemble a two-compound biopolymer film structure. The gradient of the film composition was validated by fluorescence microscopy. In this study, we investigated the cell response induced by the compositional gradient using imaging of early osteoblast attachment and analysis of signalling phosphoprotein expression. Cells attached along the gradient in direct proportion to oxidized levan concentration. During this process distinct areas of the binary gradient have been shown to modulate the osteoblasts’ extracellular signal-regulated kinase signalling with different propensity. The proposed fabrication method results in the preparation of a new bioactive material, which could control the cell signalling response. This approach can be extended to screen new bioactive interfaces for tissue regeneration. (papers)

  12. Conditioning the full-waveform inversion gradient to welcome anisotropy

    Alkhalifah, Tariq Ali

    2015-04-23

    Multiparameter full-waveform inversion (FWI) suffers from complex nonlinearity in the objective function, compounded by the eventual trade-off between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which small scattering-angles of the gradient update are initially muted out. The model update hierarchical filtering strategy include applying varying degrees of filtering to the different anisotropic parameter updates, a feature not easily accessible to simple data decimation. Using FWI and reflection-based FWI, when the modeled data are obtained with the single-scattering theory, allows access to additional low model wavenumber components. Combining such access to wavenumbers with scattering-angle filters applied to the individual parameter gradients allows for multiple strategies to avoid complex FWI nonlinearity as well as the parameter trade-off.

  13. Accelerating deep neural network training with inconsistent stochastic gradient descent.

    Wang, Linnan; Yang, Yi; Min, Renqiang; Chakradhar, Srimat

    2017-09-01

    Stochastic Gradient Descent (SGD) updates Convolutional Neural Network (CNN) with a noisy gradient computed from a random batch, and each batch evenly updates the network once in an epoch. This model applies the same training effort to each batch, but it overlooks the fact that the gradient variance, induced by Sampling Bias and Intrinsic Image Difference, renders different training dynamics on batches. In this paper, we develop a new training strategy for SGD, referred to as Inconsistent Stochastic Gradient Descent (ISGD) to address this problem. The core concept of ISGD is the inconsistent training, which dynamically adjusts the training effort w.r.t the loss. ISGD models the training as a stochastic process that gradually reduces down the mean of batch's loss, and it utilizes a dynamic upper control limit to identify a large loss batch on the fly. ISGD stays on the identified batch to accelerate the training with additional gradient updates, and it also has a constraint to penalize drastic parameter changes. ISGD is straightforward, computationally efficient and without requiring auxiliary memories. A series of empirical evaluations on real world datasets and networks demonstrate the promising performance of inconsistent training. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Color Gradients Within Globular Clusters: Restricted Numerical Simulation

    Young-Jong Sohn

    1997-06-01

    Full Text Available The results of a restricted numerical simulation for the color gradients within globular clusters have been presented. The standard luminosity function of M3 and Salpeter's initial mass functions were used to generate model clusters as a fundamental population. Color gradients with the sample clusters for both King and power law cusp models of surface brightness distributions are discussed in the case of using the standard luminosity function. The dependence of color gradients on several parameters for the simulations with Salpeter's initial mass functions, such as slope of initial mass functions, cluster ages, metallicities, concentration parameters of King model, and slopes of power law, are also discussed. No significant radial color gradients are shown to the sample clusters which are regenerated by a random number generation technique with various parameters in both of King and power law cusp models of surface brightness distributions. Dynamical mass segregation and stellar evolution of horizontal branch stars and blue stragglers should be included for the general case of model simulations to show the observed radial color gradients within globular clusters.

  15. Regularized image denoising based on spectral gradient optimization

    Lukić, Tibor; Lindblad, Joakim; Sladoje, Nataša

    2011-01-01

    Image restoration methods, such as denoising, deblurring, inpainting, etc, are often based on the minimization of an appropriately defined energy function. We consider energy functions for image denoising which combine a quadratic data-fidelity term and a regularization term, where the properties of the latter are determined by a used potential function. Many potential functions are suggested for different purposes in the literature. We compare the denoising performance achieved by ten different potential functions. Several methods for efficient minimization of regularized energy functions exist. Most are only applicable to particular choices of potential functions, however. To enable a comparison of all the observed potential functions, we propose to minimize the objective function using a spectral gradient approach; spectral gradient methods put very weak restrictions on the used potential function. We present and evaluate the performance of one spectral conjugate gradient and one cyclic spectral gradient algorithm, and conclude from experiments that both are well suited for the task. We compare the performance with three total variation-based state-of-the-art methods for image denoising. From the empirical evaluation, we conclude that denoising using the Huber potential (for images degraded by higher levels of noise; signal-to-noise ratio below 10 dB) and the Geman and McClure potential (for less noisy images), in combination with the spectral conjugate gradient minimization algorithm, shows the overall best performance

  16. Spectral edge: gradient-preserving spectral mapping for image fusion.

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  17. Strain gradient drives shear banding in metallic glasses

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  18. Geomorphic controls on elevational gradients of species richness.

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-02-16

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.

  19. Investigation of Ionospheric Spatial Gradients for Gagan Error Correction

    Chandra, K. Ravi

    In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.

  20. Gradient coil system for nuclear magnetic resonance apparatus

    Frese, G.; Siebold, H.

    1984-01-01

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry

  1. Precision bounds for gradient magnetometry with atomic ensembles

    Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza

    2018-05-01

    We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.

  2. The pressure gradient in the human respiratory tract

    Chovancová Michaela

    2014-03-01

    Full Text Available Respiratory airways cause resistance to air flow during inhalation and exhalation. The pressure gradient is necessary to transport the air from the mount (or nose to pulmonary alveoli. The knowledge of pressure gradient (i.e. respiratory airways resistance is also needed to solve the question of aerosol deposition in the human respiratory tract. The obtained data will be used as boundary conditions for CFD simulations of aerosol transport. Understanding of aerosol transport in the human lungs can help us to determine the health hazard of harmful particles. On the other hand it can be used to set the conditions for transport of medication to the desirable place. This article deals with the description of the mathematical equations defining the pressure gradient and resistance in the bronchial three and describes the geometry used in the calculation.

  3. A magnetic gradient induced force in NMR restricted diffusion experiments

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-01-01

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested

  4. Electrohydromechanical analysis based on conductivity gradient in microchannel

    Jiang Hongyuan; Ren Yukun; Ao Hongrui; Ramos, Antonio

    2008-01-01

    Fluid manipulation is very important in any lab-on-a-chip system. This paper analyses phenomena which use the alternating current (AC) electric field to deflect and manipulate coflowing streams of two different electrolytes (with conductivity gradient) within a microfluidic channel. The basic theory of the electrohydrodynamics and simulation of the analytical model are used to explain the phenomena. The velocity induced for different voltages and conductivity gradient are computed. The results show that when the AC electrical signal is applied on the electrodes, the fluid with higher conductivity occupies a larger region of the channel and the interface of the two fluids is deflected. It will provide some basic reference for people who want to do more study in the control of different fluids with conductivity gradient in a microfluidic channel. (classical areas of phenomenology)

  5. A hybrid optimization method for biplanar transverse gradient coil design

    Qi Feng; Tang Xin; Jin Zhe; Jiang Zhongde; Shen Yifei; Meng Bin; Zu Donglin; Wang Weimin

    2007-01-01

    The optimization of transverse gradient coils is one of the fundamental problems in designing magnetic resonance imaging gradient systems. A new approach is presented in this paper to optimize the transverse gradient coils' performance. First, in the traditional spherical harmonic target field method, high order coefficients, which are commonly ignored, are used in the first stage of the optimization process to give better homogeneity. Then, some cosine terms are introduced into the series expansion of stream function. These new terms provide simulated annealing optimization with new freedoms. Comparison between the traditional method and the optimized method shows that the inhomogeneity in the region of interest can be reduced from 5.03% to 1.39%, the coil efficiency increased from 3.83 to 6.31 mT m -1 A -1 and the minimum distance of these discrete coils raised from 1.54 to 3.16 mm

  6. Thermal gradients caused by the CANDU moderator circulation

    Mohindra, V.K.; Vartolomei, M.A.; Scharfenberg, R.

    2008-01-01

    The heavy water moderator circulation system of a CANDU reactor, maintains calandria moderator temperature at power-dependent design values. The temperature differentials between the moderator and the cooler heavy water entering the calandria generate thermal gradients in the reflector and moderator. The resultant small changes in thermal neutron population are detected by the out-of-core ion chambers as small, continuous fluctuations of the Log Rate signals. The impact of the thermal gradients on the frequency of the High Log Rate fluctuations and their amplitude is relatively more pronounced for Bruce A as compared to Bruce B reactors. The root cause of the Log Rate fluctuations was investigated using Bruce Power operating plant information data and the results of the investigation support the interpretation based on the thermal gradient phenomenon. (author)

  7. Gradient networks on uncorrelated random scale-free networks

    Pan Guijun; Yan Xiaoqing; Huang Zhongbing; Ma Weichuan

    2011-01-01

    Uncorrelated random scale-free (URSF) networks are useful null models for checking the effects of scale-free topology on network-based dynamical processes. Here, we present a comparative study of the jamming level of gradient networks based on URSF networks and Erdos-Renyi (ER) random networks. We find that the URSF networks are less congested than ER random networks for the average degree (k)>k c (k c ∼ 2 denotes a critical connectivity). In addition, by investigating the topological properties of the two kinds of gradient networks, we discuss the relations between the topological structure and the transport efficiency of the gradient networks. These findings show that the uncorrelated scale-free structure might allow more efficient transport than the random structure.

  8. On Scalable Deep Learning and Parallelizing Gradient Descent

    AUTHOR|(CDS)2129036; Möckel, Rico; Baranowski, Zbigniew; Canali, Luca

    Speeding up gradient based methods has been a subject of interest over the past years with many practical applications, especially with respect to Deep Learning. Despite the fact that many optimizations have been done on a hardware level, the convergence rate of very large models remains problematic. Therefore, data parallel methods next to mini-batch parallelism have been suggested to further decrease the training time of parameterized models using gradient based methods. Nevertheless, asynchronous optimization was considered too unstable for practical purposes due to a lacking understanding of the underlying mechanisms. Recently, a theoretical contribution has been made which defines asynchronous optimization in terms of (implicit) momentum due to the presence of a queuing model of gradients based on past parameterizations. This thesis mainly builds upon this work to construct a better understanding why asynchronous optimization shows proportionally more divergent behavior when the number of parallel worker...

  9. Dynamic load-balancing-extended gradient mechanism: Graphic representation

    Muniz, Francisco J., E-mail: muniz@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Load-balancing methods are quite well described in the open literature (hundreds of articles can be found about this subject). In particularly, about the Dynamic Load-balancing mechanism Extended Gradient (EG), several articles of the author are available. Even though, there are some overlap, each one of them is focused on a particular aspect of the mechanism, in a complementary way. In this article, a graphic representation of the Extended Gradient mechanism is done: this representation way had not yet been explored. However, for an in-depth knowledge of the Extended Gradient mechanism, at least, some other articles should to be read. In the CDTN, Clusters are used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  10. Migration of inclusions in solids in stress gradients

    Olander, D.R.

    1980-01-01

    A theoretical method of assessing the influence of stress and temperature gradients on the motion of inclusions in solids is developed. In nonuniform stress fields, the stress distribution on the surface of the cavity must be calculated and transformed to a potential gradient for driving a surface atom flux. The bubble migration velocity is the first Legendre coefficient of the surface flux. Higher order components represent distortion. The stress gradient effect appears only in small-magnitude terms in the surface chemical potential, specifically in the stress effect on the solid atomic volume and in the elastic energy density. The migration velocities of spherical and faceted bubbles in solids are computed and the extent of distortion of a spherical bubble is estimated. The role of vacancy exchange with the bulk solid on the migration velocity is assessed. (author)

  11. Mammalian cortical astrocytes align themselves in a physiological voltage gradient.

    Borgens, R B; Shi, R; Mohr, T J; Jaeger, C B

    1994-07-01

    Astrocytes obtained from primary cultures of newborn rat cerebral cortex show a marked structural rearrangement to weak (50-500 mV/mm) applied voltage gradients. Astrocytes reorient their processes so that the cells are aligned perpendicular to the voltage gradient. At field strengths of 100 mV/mm or greater, this realignment occurs in over 90% of the cell population. Furthermore, these magnitudes of electric fields completely eliminate any parallel alignments originally observed prior to application of the voltage. Realignment usually occurs by a withdrawal, followed by an extension, of cell processes. These responses occur at voltage gradients within the physiological range that naturally exist across the neural tube during early development. We suggest the possibility that architectural arrangements of developing glia and, subsequently, neurons may be regulated by endogenous transepithelial potentials that exist across embryonic neuroepithelium.

  12. Dynamic load-balancing-extended gradient mechanism: Graphic representation

    Muniz, Francisco J.

    2017-01-01

    Load-balancing methods are quite well described in the open literature (hundreds of articles can be found about this subject). In particularly, about the Dynamic Load-balancing mechanism Extended Gradient (EG), several articles of the author are available. Even though, there are some overlap, each one of them is focused on a particular aspect of the mechanism, in a complementary way. In this article, a graphic representation of the Extended Gradient mechanism is done: this representation way had not yet been explored. However, for an in-depth knowledge of the Extended Gradient mechanism, at least, some other articles should to be read. In the CDTN, Clusters are used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  13. Improving the performance of IPMCs with a gradient in thickness

    Zhao, Yang; Xu, Bing; Zheng, Gaofeng; Zheng, Jianyi; Qiu, Xiaochun; Zhuang, Mingfeng; Sun, Daoheng

    2013-01-01

    An ionic polymer metal composite (IPMC) is a kind of electro-active polymer. Due to the properties of low driving voltage, large deformation, flexibility and lightness, it is becoming one of the more popular from a diversity of smart materials. In this study, a novel structure of Nafion ® film is proposed to improve the performance of an IPMC. IPMC samples with a gradient structure in thickness are fabricated and their performance is investigated to confirm the validity of the gradient structure. The deformation displacement and the blocking force are compared under AC and DC voltage by experiments. The results indicate that the structure of gradient in thickness would improve the performance both in deformation displacement and blocking force. (paper)

  14. Analyses of Lattice Traffic Flow Model on a Gradient Highway

    Gupta Arvind Kumar; Redhu Poonam; Sharma Sapna

    2014-01-01

    The optimal current difference lattice hydrodynamic model is extended to investigate the traffic flow dynamics on a unidirectional single lane gradient highway. The effect of slope on uphill/downhill highway is examined through linear stability analysis and shown that the slope significantly affects the stability region on the phase diagram. Using nonlinear stability analysis, the Burgers, Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations are derived in stable, metastable and unstable region, respectively. The effect of reaction coefficient is examined and concluded that it plays an important role in suppressing the traffic jams on a gradient highway. The theoretical findings have been verified through numerical simulation which confirm that the slope on a gradient highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the optimal current difference effect in the new lattice model. (nuclear physics)

  15. Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients

    Donald M. McEligot

    2014-07-01

    Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.

  16. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  17. Gradient index metamaterials realized by drilling hole arrays

    Mei Zhonglei; Cui Tiejun; Bai Jing

    2010-01-01

    Gradient index metamaterials have wide applications in the microwave and optical fields. Based on the quasi-static theory, such materials at the microwave band have been realized by drilling hole arrays on ordinary dielectric materials. As applications of the gradient index metamaterials, novel devices including a 45 0 dielectric wave-bending structure, a 16 0 wave-steering lens and a microwave focusing lens are designed and fabricated. Field mapping measurements validate the proposed gradient index metamaterials and the device designs. The method can be directly and easily extended to the design of cloaks, various lenses, beam shifters and beam-steering devices. It can also be applied in the optical band as long as quasi-static conditions are satisfied. The method and the devices may find applications in integrated circuit systems.

  18. Shaping the landscape: Metabolic regulation of S1P gradients

    Olivera, Ana; Allende, Maria Laura; Proia, Richard L.

    2012-01-01

    Sphingosine-1-phosphate (S1P) is a lipid that functions as a metabolic intermediate and a cellular signaling molecule. These roles are integrated when compartments with differing extracellular S1P concentrations are formed that serve to regulate functions within the immune and vascular systems, as well as during pathologic conditions. Gradients of S1P concentration are achieved by the organization of cells with specialized expression of S1P metabolic pathways within tissues. S1P concentration gradients underpin the ability of S1P signaling to regulate in vivo physiology. This review will discuss the mechanisms that are necessary for the formation and maintenance of S1P gradients, with the aim of understanding how a simple lipid controls complex physiology. PMID:22735358

  19. Dispersion of acoustic surface waves by velocity gradients

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  20. Experiments with conjugate gradient algorithms for homotopy curve tracking

    Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.

    1991-01-01

    There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.