WorldWideScience

Sample records for multi-objective optimization approach

  1. Multi-objective optimization approach for air traffic flow management

    Directory of Open Access Journals (Sweden)

    Fadil Rabie

    2017-01-01

    The decision-making stage was then performed with the aid of data clustering techniques to reduce the sizeof the Pareto-optimal set and obtain a smaller representation of the multi-objective design space, there by making it easier for the decision-maker to find satisfactory and meaningful trade-offs, and to select a preferred final design solution.

  2. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn

    2009-01-01

    Multi-objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the exergetic, economic and environmental aspects have been considered, simultaneously. The thermodynamic modeling has been implemented comprehensively while economic analysis conducted in accordance with the total revenue requirement (TRR) method. The results for the single objective thermoeconomic optimization have been compared with the previous studies in optimization of CGAM problem. In multi-objective optimization of the CGAM problem, the three objective functions including the exergetic efficiency, total levelized cost rate of the system product and the cost rate of environmental impact have been considered. The environmental impact objective function has been defined and expressed in cost terms. This objective has been integrated with the thermoeconomic objective to form a new unique objective function known as a thermoenvironomic objective function. The thermoenvironomic objective has been minimized while the exergetic objective has been maximized. One of the most suitable optimization techniques developed using a particular class of search algorithms known as multi-objective evolutionary algorithms (MOEAs) has been considered here. This approach which is developed based on the genetic algorithm has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of decision-making has been presented and a final optimal solution has been introduced. The sensitivity of the solutions to the interest rate and the fuel cost has been studied

  3. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    Science.gov (United States)

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  4. Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach

    International Nuclear Information System (INIS)

    Wei, F.; Wu, Q.H.; Jing, Z.X.; Chen, J.J.; Zhou, X.X.

    2016-01-01

    This paper proposes a comprehensive framework including a multi-objective interval optimization model and evidential reasoning (ER) approach to solve the unit sizing problem of small-scale integrated energy systems, with uncertain wind and solar energies integrated. In the multi-objective interval optimization model, interval variables are introduced to tackle the uncertainties of the optimization problem. Aiming at simultaneously considering the cost and risk of a business investment, the average and deviation of life cycle cost (LCC) of the integrated energy system are formulated. In order to solve the problem, a novel multi-objective optimization algorithm, MGSOACC (multi-objective group search optimizer with adaptive covariance matrix and chaotic search), is developed, employing adaptive covariance matrix to make the search strategy adaptive and applying chaotic search to maintain the diversity of group. Furthermore, ER approach is applied to deal with multiple interests of an investor at the business decision making stage and to determine the final unit sizing solution from the Pareto-optimal solutions. This paper reports on the simulation results obtained using a small-scale direct district heating system (DH) and a small-scale district heating and cooling system (DHC) optimized by the proposed framework. The results demonstrate the superiority of the multi-objective interval optimization model and ER approach in tackling the unit sizing problem of integrated energy systems considering the integration of uncertian wind and solar energies. - Highlights: • Cost and risk of investment in small-scale integrated energy systems are considered. • A multi-objective interval optimization model is presented. • A novel multi-objective optimization algorithm (MGSOACC) is proposed. • The evidential reasoning (ER) approach is used to obtain the final optimal solution. • The MGSOACC and ER can tackle the unit sizing problem efficiently.

  5. Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification.

    Science.gov (United States)

    Zhang, Yong; Gong, Dun-Wei; Cheng, Jian

    2017-01-01

    Feature selection is an important data-preprocessing technique in classification problems such as bioinformatics and signal processing. Generally, there are some situations where a user is interested in not only maximizing the classification performance but also minimizing the cost that may be associated with features. This kind of problem is called cost-based feature selection. However, most existing feature selection approaches treat this task as a single-objective optimization problem. This paper presents the first study of multi-objective particle swarm optimization (PSO) for cost-based feature selection problems. The task of this paper is to generate a Pareto front of nondominated solutions, that is, feature subsets, to meet different requirements of decision-makers in real-world applications. In order to enhance the search capability of the proposed algorithm, a probability-based encoding technology and an effective hybrid operator, together with the ideas of the crowding distance, the external archive, and the Pareto domination relationship, are applied to PSO. The proposed PSO-based multi-objective feature selection algorithm is compared with several multi-objective feature selection algorithms on five benchmark datasets. Experimental results show that the proposed algorithm can automatically evolve a set of nondominated solutions, and it is a highly competitive feature selection method for solving cost-based feature selection problems.

  6. Non-convex multi-objective optimization

    CERN Document Server

    Pardalos, Panos M; Žilinskas, Julius

    2017-01-01

    Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in...

  7. Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

    Science.gov (United States)

    Kowalczuk, Zdzisław; Białaszewski, Tomasz

    2018-01-01

    A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.

  8. Parametric analysis of energy quality management for district in China using multi-objective optimization approach

    International Nuclear Information System (INIS)

    Lu, Hai; Yu, Zitao; Alanne, Kari; Xu, Xu; Fan, Liwu; Yu, Han; Zhang, Liang; Martinac, Ivo

    2014-01-01

    Highlights: • A time-effective multi-objective design optimization scheme is proposed. • The scheme aims at exploring suitable 3E energy system for the specific case. • A realistic case located in China is used for the analysis. • Parametric study is investigated to test the effects of different parameters. - Abstract: Due to the increasing energy demands and global warming, energy quality management (EQM) for districts has been getting importance over the last few decades. The evaluation of the optimum energy systems for specific districts is an essential part of EQM. This paper presents a deep analysis of the optimum energy systems for a district sited in China. A multi-objective optimization approach based on Genetic Algorithm (GA) is proposed for the analysis. The optimization process aims to search for the suitable 3E (minimum economic cost and environmental burden as well as maximum efficiency) energy systems. Here, life cycle CO 2 equivalent (LCCO 2 ), life cycle cost (LCC) and exergy efficiency (EE) are set as optimization objectives. Then, the optimum energy systems for the Chinese case are presented. The final work is to investigate the effects of different energy parameters. The results show the optimum energy systems might vary significantly depending on some parameters

  9. A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Zhaoyu Zhai

    2018-06-01

    Full Text Available As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS as a Multi-Agent System (MAS. Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP. In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.

  10. Environment-Aware Production Schedulingfor Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach.

    Science.gov (United States)

    Zhang, Rui

    2017-12-25

    The traditional way of scheduling production processes often focuses on profit-driven goals (such as cycle time or material cost) while tending to overlook the negative impacts of manufacturing activities on the environment in the form of carbon emissions and other undesirable by-products. To bridge the gap, this paper investigates an environment-aware production scheduling problem that arises from a typical paint shop in the automobile manufacturing industry. In the studied problem, an objective function is defined to minimize the emission of chemical pollutants caused by the cleaning of painting devices which must be performed each time before a color change occurs. Meanwhile, minimization of due date violations in the downstream assembly shop is also considered because the two shops are interrelated and connected by a limited-capacity buffer. First, we have developed a mixed-integer programming formulation to describe this bi-objective optimization problem. Then, to solve problems of practical size, we have proposed a novel multi-objective particle swarm optimization (MOPSO) algorithm characterized by problem-specific improvement strategies. A branch-and-bound algorithm is designed for accurately assessing the most promising solutions. Finally, extensive computational experiments have shown that the proposed MOPSO is able to match the solution quality of an exact solver on small instances and outperform two state-of-the-art multi-objective optimizers in literature on large instances with up to 200 cars.

  11. Multi-objective optimization approach for cost management during product design at the conceptual phase

    Science.gov (United States)

    Durga Prasad, K. G.; Venkata Subbaiah, K.; Narayana Rao, K.

    2014-03-01

    The effective cost management during the conceptual design phase of a product is essential to develop a product with minimum cost and desired quality. The integration of the methodologies of quality function deployment (QFD), value engineering (VE) and target costing (TC) could be applied to the continuous improvement of any product during product development. To optimize customer satisfaction and total cost of a product, a mathematical model is established in this paper. This model integrates QFD, VE and TC under multi-objective optimization frame work. A case study on domestic refrigerator is presented to show the performance of the proposed model. Goal programming is adopted to attain the goals of maximum customer satisfaction and minimum cost of the product.

  12. A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization

    International Nuclear Information System (INIS)

    Zhang, Enze; Wu, Yifei; Chen, Qingwei

    2014-01-01

    This paper proposes a practical approach, combining bare-bones particle swarm optimization and sensitivity-based clustering for solving multi-objective reliability redundancy allocation problems (RAPs). A two-stage process is performed to identify promising solutions. Specifically, a new bare-bones multi-objective particle swarm optimization algorithm (BBMOPSO) is developed and applied in the first stage to identify a Pareto-optimal set. This algorithm mainly differs from other multi-objective particle swarm optimization algorithms in the parameter-free particle updating strategy, which is especially suitable for handling the complexity and nonlinearity of RAPs. Moreover, by utilizing an approach based on the adaptive grid to update the global particle leaders, a mutation operator to improve the exploration ability and an effective constraint handling strategy, the integrated BBMOPSO algorithm can generate excellent approximation of the true Pareto-optimal front for RAPs. This is followed by a data clustering technique based on difference sensitivity in the second stage to prune the obtained Pareto-optimal set and obtain a small, workable sized set of promising solutions for system implementation. Two illustrative examples are presented to show the feasibility and effectiveness of the proposed approach

  13. A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-01-01

    Full Text Available A hybrid power system uses many wind turbine generators (WTG and solar photovoltaics (PV in isolated small areas. However, the output power of these renewable sources is not constant and can diverge quickly, which has a serious effect on system frequency and the continuity of demand supply. In order to solve this problem, this paper presents a new frequency control scheme for a hybrid power system to ensure supplying a high-quality power in isolated areas. The proposed power system consists of a WTG, PV, aqua-electrolyzer (AE, fuel cell (FC, battery energy storage system (BESS, flywheel (FW and diesel engine generator (DEG. Furthermore, plug-in hybrid electric vehicles (EVs are implemented at the customer side. A full-order observer is utilized to estimate the supply error. Then, the estimated supply error is considered in a frequency domain. The high-frequency component is reduced by BESS and FW; while the low-frequency component of supply error is mitigated using FC, EV and DEG. Two PI controllers are implemented in the proposed system to control the system frequency and reduce the supply error. The epsilon multi-objective genetic algorithm ( ε -MOGA is applied to optimize the controllers’ parameters. The performance of the proposed control scheme is compared with that of recent well-established techniques, such as a PID controller tuned by the quasi-oppositional harmony search algorithm (QOHSA. The effectiveness and robustness of the hybrid power system are investigated under various operating conditions.

  14. Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction

    International Nuclear Information System (INIS)

    Dong, Feifei; Liu, Yong; Su, Han; Zou, Rui; Guo, Huaicheng

    2015-01-01

    Water quality management and load reduction are subject to inherent uncertainties in watershed systems and competing decision objectives. Therefore, optimal decision-making modeling in watershed load reduction is suffering due to the following challenges: (a) it is difficult to obtain absolutely “optimal” solutions, and (b) decision schemes may be vulnerable to failure. The probability that solutions are feasible under uncertainties is defined as reliability. A reliability-oriented multi-objective (ROMO) decision-making approach was proposed in this study for optimal decision making with stochastic parameters and multiple decision reliability objectives. Lake Dianchi, one of the three most eutrophic lakes in China, was examined as a case study for optimal watershed nutrient load reduction to restore lake water quality. This study aimed to maximize reliability levels from considerations of cost and load reductions. The Pareto solutions of the ROMO optimization model were generated with the multi-objective evolutionary algorithm, demonstrating schemes representing different biases towards reliability. The Pareto fronts of six maximum allowable emission (MAE) scenarios were obtained, which indicated that decisions may be unreliable under unpractical load reduction requirements. A decision scheme identification process was conducted using the back propagation neural network (BPNN) method to provide a shortcut for identifying schemes at specific reliability levels for decision makers. The model results indicated that the ROMO approach can offer decision makers great insights into reliability tradeoffs and can thus help them to avoid ineffective decisions. - Highlights: • Reliability-oriented multi-objective (ROMO) optimal decision approach was proposed. • The approach can avoid specifying reliability levels prior to optimization modeling. • Multiple reliability objectives can be systematically balanced using Pareto fronts. • Neural network model was used to

  15. Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Feifei [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Liu, Yong, E-mail: yongliu@pku.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Institute of Water Sciences, Peking University, Beijing 100871 (China); Su, Han [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Zou, Rui [Tetra Tech, Inc., 10306 Eaton Place, Ste 340, Fairfax, VA 22030 (United States); Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034 (China); Guo, Huaicheng [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China)

    2015-05-15

    Water quality management and load reduction are subject to inherent uncertainties in watershed systems and competing decision objectives. Therefore, optimal decision-making modeling in watershed load reduction is suffering due to the following challenges: (a) it is difficult to obtain absolutely “optimal” solutions, and (b) decision schemes may be vulnerable to failure. The probability that solutions are feasible under uncertainties is defined as reliability. A reliability-oriented multi-objective (ROMO) decision-making approach was proposed in this study for optimal decision making with stochastic parameters and multiple decision reliability objectives. Lake Dianchi, one of the three most eutrophic lakes in China, was examined as a case study for optimal watershed nutrient load reduction to restore lake water quality. This study aimed to maximize reliability levels from considerations of cost and load reductions. The Pareto solutions of the ROMO optimization model were generated with the multi-objective evolutionary algorithm, demonstrating schemes representing different biases towards reliability. The Pareto fronts of six maximum allowable emission (MAE) scenarios were obtained, which indicated that decisions may be unreliable under unpractical load reduction requirements. A decision scheme identification process was conducted using the back propagation neural network (BPNN) method to provide a shortcut for identifying schemes at specific reliability levels for decision makers. The model results indicated that the ROMO approach can offer decision makers great insights into reliability tradeoffs and can thus help them to avoid ineffective decisions. - Highlights: • Reliability-oriented multi-objective (ROMO) optimal decision approach was proposed. • The approach can avoid specifying reliability levels prior to optimization modeling. • Multiple reliability objectives can be systematically balanced using Pareto fronts. • Neural network model was used to

  16. An Evolutionary Multi-objective Approach for Speed Tuning Optimization with Energy Saving in Railway Management

    OpenAIRE

    Chevrier , Rémy

    2010-01-01

    International audience; An approach for speed tuning in railway management is presented for optimizing both travel duration and energy saving. This approach is based on a state-of-the-art evolutionary algorithm with Pareto approach. This algorithm provides a set of diversified non-dominated solutions to the decision-maker. A case study on Gonesse connection (France) is also reported and analyzed.

  17. A two-stage approach for multi-objective decision making with applications to system reliability optimization

    International Nuclear Information System (INIS)

    Li Zhaojun; Liao Haitao; Coit, David W.

    2009-01-01

    This paper proposes a two-stage approach for solving multi-objective system reliability optimization problems. In this approach, a Pareto optimal solution set is initially identified at the first stage by applying a multiple objective evolutionary algorithm (MOEA). Quite often there are a large number of Pareto optimal solutions, and it is difficult, if not impossible, to effectively choose the representative solutions for the overall problem. To overcome this challenge, an integrated multiple objective selection optimization (MOSO) method is utilized at the second stage. Specifically, a self-organizing map (SOM), with the capability of preserving the topology of the data, is applied first to classify those Pareto optimal solutions into several clusters with similar properties. Then, within each cluster, the data envelopment analysis (DEA) is performed, by comparing the relative efficiency of those solutions, to determine the final representative solutions for the overall problem. Through this sequential solution identification and pruning process, the final recommended solutions to the multi-objective system reliability optimization problem can be easily determined in a more systematic and meaningful way.

  18. An approach for multi-objective optimization of vehicle suspension system

    Science.gov (United States)

    Koulocheris, D.; Papaioannou, G.; Christodoulou, D.

    2017-10-01

    In this paper, a half car model of with nonlinear suspension systems is selected in order to study the vertical vibrations and optimize its suspension system with respect to ride comfort and road holding. A road bump was used as road profile. At first, the optimization problem is solved with the use of Genetic Algorithms with respect to 6 optimization targets. Then the k - ɛ optimization method was implemented to locate one optimum solution. Furthermore, an alternative approach is presented in this work: the previous optimization targets are separated in main and supplementary ones, depending on their importance in the analysis. The supplementary targets are not crucial to the optimization but they could enhance the main objectives. Thus, the problem was solved again using Genetic Algorithms with respect to the 3 main targets of the optimization. Having obtained the Pareto set of solutions, the k - ɛ optimality method was implemented for the 3 main targets and the supplementary ones, evaluated by the simulation of the vehicle model. The results of both cases are presented and discussed in terms of convergence of the optimization and computational time. The optimum solutions acquired from both cases are compared based on performance metrics as well.

  19. Efficiency and cost optimization of a regenerative Organic Rankine Cycle power plant through the multi-objective approach

    International Nuclear Information System (INIS)

    Gimelli, A.; Luongo, A.; Muccillo, M.

    2017-01-01

    Highlights: • Multi-objective optimization method for ORC design has been addressed. • Trade-off between electric efficiency and overall heat exchangers area is evaluated. • The heat exchangers area was used as objective function to minimize the plant cost. • MDM was considered as organic working fluid for the thermodynamic cycle. • Electric efficiency: 14.1–18.9%. Overall heat exchangers area: 446–1079 m 2 . - Abstract: Multi-objective optimization could be, in the industrial sector, a fundamental strategic approach for defining the target design specifications and operating parameters of new competitive products for the market, especially in renewable energy and energy savings fields. Vector optimization mostly enabled the determination of a set of optimal solutions characterized by different costs, sizes, efficiencies and other key features. The designer can subsequently select the solution with the best compromise between the objective functions for the specific application and constraints. In this paper, a multi-objective optimization problem addressing an Organic Rankine Cycle system is solved with consideration for the electric efficiency and overall heat exchangers area as quantities that should be optimized. In fact, considering that the overall capital cost of the ORC system is dominated by the cost of the heat exchangers rather than that of the pump and turbine, this area is related to the cost of the plant and so it was used to indirectly optimize the economic system performance. For this reason, although cost data have not been used, the heat exchangers area was used as a second objective function to minimize the plant cost. Pareto optimal solutions highlighted a trade-off between the two conflicting objective functions. Octamethyltrisiloxane (MDM) was considered organic working fluid, while the following input parameters were used as decision variables: minimum and maximum pressure of the thermodynamic cycle; superheating and subcooling

  20. Optimal design of permanent magnet flux switching generator for wind applications via artificial neural network and multi-objective particle swarm optimization hybrid approach

    International Nuclear Information System (INIS)

    Meo, Santolo; Zohoori, Alireza; Vahedi, Abolfazl

    2016-01-01

    Highlights: • A new optimal design of flux switching permanent magnet generator is developed. • A prototype is employed to validate numerical data used for optimization. • A novel hybrid multi-objective particle swarm optimization approach is proposed. • Optimization targets are weight, cost, voltage and its total harmonic distortion. • The hybrid approach preference is proved compared with other optimization methods. - Abstract: In this paper a new hybrid approach obtained combining a multi-objective particle swarm optimization and artificial neural network is proposed for the design optimization of a direct-drive permanent magnet flux switching generators for low power wind applications. The targets of the proposed multi-objective optimization are to reduce the costs and weight of the machine while maximizing the amplitude of the induced voltage as well as minimizing its total harmonic distortion. The permanent magnet width, the stator and rotor tooth width, the rotor teeth number and stator pole number of the machine define the search space for the optimization problem. Four supervised artificial neural networks are designed for modeling the complex relationships among the weight, the cost, the amplitude and the total harmonic distortion of the output voltage respect to the quantities of the search space. Finite element analysis is adopted to generate training dataset for the artificial neural networks. Finite element analysis based model is verified by experimental results with a 1.5 kW permanent magnet flux switching generator prototype suitable for renewable energy applications, having 6/19 stator poles/rotor teeth. Finally the effectiveness of the proposed hybrid procedure is compared with the results given by conventional multi-objective optimization algorithms. The obtained results show the soundness of the proposed multi objective optimization technique and its feasibility to be adopted as suitable methodology for optimal design of permanent

  1. Two-stage discrete-continuous multi-objective load optimization: An industrial consumer utility approach to demand response

    International Nuclear Information System (INIS)

    Abdulaal, Ahmed; Moghaddass, Ramin; Asfour, Shihab

    2017-01-01

    Highlights: •Two-stage model links discrete-optimization to real-time system dynamics operation. •The solutions obtained are non-dominated Pareto optimal solutions. •Computationally efficient GA solver through customized chromosome coding. •Modest to considerable savings are achieved depending on the consumer’s preference. -- Abstract: In the wake of today’s highly dynamic and competitive energy markets, optimal dispatching of energy sources requires effective demand responsiveness. Suppliers have adopted a dynamic pricing strategy in efforts to control the downstream demand. This method however requires consumer awareness, flexibility, and timely responsiveness. While residential activities are more flexible and schedulable, larger commercial consumers remain an obstacle due to the impacts on industrial performance. This paper combines methods from quadratic, stochastic, and evolutionary programming with multi-objective optimization and continuous simulation, to propose a two-stage discrete-continuous multi-objective load optimization (DiCoMoLoOp) autonomous approach for industrial consumer demand response (DR). Stage 1 defines discrete-event load shifting targets. Accordingly, controllable loads are continuously optimized in stage 2 while considering the consumer’s utility. Utility functions, which measure the loads’ time value to the consumer, are derived and weights are assigned through an analytical hierarchy process (AHP). The method is demonstrated for an industrial building model using real data. The proposed method integrates with building energy management system and solves in real-time with autonomous and instantaneous load shifting in the hour-ahead energy price (HAP) market. The simulation shows the occasional existence of multiple load management options on the Pareto frontier. Finally, the computed savings, based on the simulation analysis with real consumption, climate, and price data, ranged from modest to considerable amounts

  2. A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser

    Science.gov (United States)

    Zheng, Y.; Chen, J.

    2017-09-01

    A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.

  3. Fuzzy Multi-objective Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    Amna Rehmat

    2007-07-01

    Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.

  4. Multi-objective optimization of inverse planning for accurate radiotherapy

    International Nuclear Information System (INIS)

    Cao Ruifen; Pei Xi; Cheng Mengyun; Li Gui; Hu Liqin; Wu Yican; Jing Jia; Li Guoli

    2011-01-01

    The multi-objective optimization of inverse planning based on the Pareto solution set, according to the multi-objective character of inverse planning in accurate radiotherapy, was studied in this paper. Firstly, the clinical requirements of a treatment plan were transformed into a multi-objective optimization problem with multiple constraints. Then, the fast and elitist multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) was introduced to optimize the problem. A clinical example was tested using this method. The results show that an obtained set of non-dominated solutions were uniformly distributed and the corresponding dose distribution of each solution not only approached the expected dose distribution, but also met the dose-volume constraints. It was indicated that the clinical requirements were better satisfied using the method and the planner could select the optimal treatment plan from the non-dominated solution set. (authors)

  5. A multi-objective optimization approach for the selection of working fluids of geothermal facilities: Economic, environmental and social aspects.

    Science.gov (United States)

    Martínez-Gomez, Juan; Peña-Lamas, Javier; Martín, Mariano; Ponce-Ortega, José María

    2017-12-01

    The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Fabrizio Ascione

    2015-08-01

    Full Text Available According to the increasing worldwide attention to energy and the environmental performance of the building sector, building energy demand should be minimized by considering all energy uses. In this regard, the development of building components characterized by proper values of thermal transmittance, thermal capacity, and radiative properties is a key strategy to reduce the annual energy need for the microclimatic control. However, the design of the thermal characteristics of the building envelope is an arduous task, especially in temperate climates where the energy demands for space heating and cooling are balanced. This study presents a novel methodology for optimizing the thermo-physical properties of the building envelope and its coatings, in terms of thermal resistance, capacity, and radiative characteristics of exposed surfaces. A multi-objective approach is adopted in order to optimize energy performance and thermal comfort. The optimization problem is solved by means of a Genetic Algorithm implemented in MATLAB®, which is coupled with EnergyPlus for performing dynamic energy simulations. For demonstration, the methodology is applied to a residential building for two different Mediterranean climates: Naples and Istanbul. The results show that for Naples, because of the higher incidence of cooling demand, cool external coatings imply significant energy savings, whereas the insulation of walls should be high but not excessive (no more than 13–14 cm. The importance of high-reflective coating is clear also in colder Mediterranean climates, like Istanbul, although the optimal thicknesses of thermal insulation are higher (around 16–18 cm. In both climates, the thermal envelope should have a significant mass, obtainable by adopting dense and/or thick masonry layers. Globally, a careful design of the thermal envelope is always necessary in order to achieve high-efficiency buildings.

  7. Multi-objective optimal power flow with FACTS devices

    International Nuclear Information System (INIS)

    Basu, M.

    2011-01-01

    This paper presents multi-objective differential evolution to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). The proposed approach has been examined and tested on the modified IEEE 30-bus and 57-bus test systems. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, strength pareto evolutionary algorithm 2 and pareto differential evolution.

  8. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  9. Optimal design and management of chlorination in drinking water networks: a multi-objective approach using Genetic Algorithms and the Pareto optimality concept

    Science.gov (United States)

    Nouiri, Issam

    2017-11-01

    This paper presents the development of multi-objective Genetic Algorithms to optimize chlorination design and management in drinking water networks (DWN). Three objectives have been considered: the improvement of the chlorination uniformity (healthy objective), the minimization of chlorine booster stations number, and the injected chlorine mass (economic objectives). The problem has been dissociated in medium and short terms ones. The proposed methodology was tested on hypothetical and real DWN. Results proved the ability of the developed optimization tool to identify relationships between the healthy and economic objectives as Pareto fronts. The proposed approach was efficient in computing solutions ensuring better chlorination uniformity while requiring the weakest injected chlorine mass when compared to other approaches. For the real DWN studied, chlorination optimization has been crowned by great improvement of free-chlorine-dosing uniformity and by a meaningful chlorine mass reduction, in comparison with the conventional chlorination.

  10. A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies

    International Nuclear Information System (INIS)

    Karmellos, M.; Kiprakis, A.; Mavrotas, G.

    2015-01-01

    Highlights: • We provide a model for prioritization of energy efficiency measures in buildings. • We examine the case of a new building and one under renovation. • Objective functions are total primary energy consumption and total investment cost. • We provide a software tool that solves this multi-objective optimization problem. • Primary energy consumption and investment cost are inversely proportional. - Abstract: Buildings are responsible for some 40% of the total final energy consumption in the European Union and about 40% of the world’s primary energy consumption. Hence, the reduction of primary energy consumption is important for the overall energy chain. The scope of the current work is to assess the energy efficiency measures in the residential and small commercial sector and to develop a methodology and a software tool for their optimal prioritization. The criteria used for the prioritization of energy efficiency measures in this article are the primary energy consumption and the initial investment cost. The developed methodology used is generic and could be implemented in the case of a new building or retrofitting an existing building. A multi-objective mixed-integer non-linear problem (MINLP) needs to be solved and the weighted sum method is used. Moreover, the novelty of this work is that a software tool has been developed using ‘Matlab®’ which is generic, very simple and time efficient and can be used by a Decision Maker (DM). Two case studies have been developed, one for a new building and one for retrofitting an existing one, in two cities with different climate characteristics. The building was placed in Edinburgh in the UK and Athens in Greece and the analysis showed that the primary energy consumption and the initial investment cost are inversely proportional

  11. A Multi-Objective Learning to re-Rank Approach to Optimize Online Marketplaces for Multiple Stakeholders

    OpenAIRE

    Nguyen, Phong; Dines, John; Krasnodebski, Jan

    2017-01-01

    Multi-objective recommender systems address the difficult task of recommending items that are relevant to multiple, possibly conflicting, criteria. However these systems are most often designed to address the objective of one single stakeholder, typically, in online commerce, the consumers whose input and purchasing decisions ultimately determine the success of the recommendation systems. In this work, we address the multi-objective, multi-stakeholder, recommendation problem involving one or ...

  12. Conflicting Multi-Objective Compatible Optimization Control

    OpenAIRE

    Xu, Lihong; Hu, Qingsong; Hu, Haigen; Goodman, Erik

    2010-01-01

    Based on ideas developed in addressing practical greenhouse environmental control, we propose a new multi-objective compatible control method. Several detailed algorithms are proposed to meet the requirements of different kinds of problem: 1) A two-layer MOCC framework is presented for problems with a precise model; 2) To deal with situations

  13. Recent advances in evolutionary multi-objective optimization

    CERN Document Server

    Datta, Rituparna; Gupta, Abhishek

    2017-01-01

    This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include:< optimization in dynamic environments, multi-objective bilevel programming, handling high ...

  14. A Taguchi PCA fuzzy-based approach for the multi-objective extended optimization of a miniature optical engine

    International Nuclear Information System (INIS)

    Fan Yichin; Tzeng Yihfong; Li Sixiang

    2008-01-01

    The paper proposes a hybrid approach, integrating a combination of Taguchi methods, principal component analysis (PCA) and fuzzy theory for the extended optimization of multiple quality characteristics in optimization experiments of non-image optics; a miniature light emitting diode pocket-sized projection display system is demonstrated in this research as an optimization sample. Traditionally, the performance of projector optics can be evaluated by modulation transfer function and its optimization method is DLS (damped least square). Comparatively, light efficiency and uniformity play a part in non-image optics where the optimized method is based on the concept of non-sequential rays; for example, in the optical engine of a projector, which demands better light efficiency and uniformity. The DLS method is occasionally employed in the optimization of non-image optics such as optical engines, but it is sometimes sensitive to the number of rays employed and some over-optimization problems. In this research we propose as an alternative method to optimize in an extended way the optical engine of a miniature projector. Control factors were checked and then repeatedly examined before the experiments started. In the experiment, optimization works through an L18 orthogonal array. Finally, this proposed optimization work shows good success for the optimization of non-image optical engines because this method is less sensitive to the number of non-sequential rays. Compared with the initial design, the optimized parameter design is able to improve the luminous flux by 11.46 dB, the illumination uniformity by 3.14 and the packing size by 1.125 dB

  15. Analytic hierarchy process-based approach for selecting a Pareto-optimal solution of a multi-objective, multi-site supply-chain planning problem

    Science.gov (United States)

    Ayadi, Omar; Felfel, Houssem; Masmoudi, Faouzi

    2017-07-01

    The current manufacturing environment has changed from traditional single-plant to multi-site supply chain where multiple plants are serving customer demands. In this article, a tactical multi-objective, multi-period, multi-product, multi-site supply-chain planning problem is proposed. A corresponding optimization model aiming to simultaneously minimize the total cost, maximize product quality and maximize the customer satisfaction demand level is developed. The proposed solution approach yields to a front of Pareto-optimal solutions that represents the trade-offs among the different objectives. Subsequently, the analytic hierarchy process method is applied to select the best Pareto-optimal solution according to the preferences of the decision maker. The robustness of the solutions and the proposed approach are discussed based on a sensitivity analysis and an application to a real case from the textile and apparel industry.

  16. Multi-objective three stage design optimization for island microgrids

    International Nuclear Information System (INIS)

    Sachs, Julia; Sawodny, Oliver

    2016-01-01

    Highlights: • An enhanced multi-objective three stage design optimization for microgrids is given. • Use of an optimal control problem for the calculation of the optimal operation. • The inclusion of a detailed battery model with CC/CV charging control. • The determination of a representative profile with optimized number of days. • The proposed method finds its direct application in a design tool for microgids. - Abstract: Hybrid off-grid energy systems enable a cost efficient and reliable energy supply to rural areas around the world. The main potential for a low cost operation and uninterrupted power supply lies in the optimal sizing and operation of such microgrids. In particular, sudden variations in load demand or in the power supply from renewables underline the need for an optimally sized system. This paper presents an efficient multi-objective model based optimization approach for the optimal sizing of all components and the determination of the best power electronic layout. The presented method is divided into three optimization problems to minimize economic and environmental objectives. This design optimization includes detailed components models and an optimized energy dispatch strategy which enables the optimal design of the energy system with respect to an adequate control for the specific configuration. To significantly reduce the computation time without loss of accuracy, the presented method contains the determination of a representative load profile using a k-means clustering method. The k-means algorithm itself is embedded in an optimization problem for the calculation of the optimal number of clusters. The benefits in term of reduced computation time, inclusion of optimal energy dispatch and optimization of power electronic architecture, of the presented optimization method are illustrated using a case study.

  17. Improved multi-objective clustering algorithm using particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Congcong Gong

    Full Text Available Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  18. Improved multi-objective clustering algorithm using particle swarm optimization.

    Science.gov (United States)

    Gong, Congcong; Chen, Haisong; He, Weixiong; Zhang, Zhanliang

    2017-01-01

    Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO) is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  19. Multi-objective genetic optimization of linear construction projects

    Directory of Open Access Journals (Sweden)

    Fatma A. Agrama

    2012-08-01

    Full Text Available In the real world, the majority cases of optimization problems, met by engineers, are composed of several conflicting objectives. This paper presents an approach for a multi-objective optimization model for scheduling linear construction projects. Linear construction projects have many identical units wherein activities repeat from one unit to another. Highway, pipeline, and tunnels are good examples that exhibit repetitive characteristics. These projects represent a large portion of the construction industry. The present model enables construction planners to generate optimal/near-optimal construction plans that minimize project duration, total work interruptions, and total number of crews. Each of these plans identifies, from a set of feasible alternatives, optimal crew synchronization for each activity and activity interruptions at each unit. This model satisfies the following aspects: (1 it is based on the line of balance technique; (2 it considers non-serial typical activities networks with finish–start relationship and both lag or overlap time between activities is allowed; (3 it utilizes a multi-objective genetic algorithms approach; (4 it is developed as a spreadsheet template that is easy to use. Details of the model with visual charts are presented. An application example is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing the scheduling of linear construction projects.

  20. Enhanced Multi-Objective Energy Optimization by a Signaling Method

    OpenAIRE

    Soares, João; Borges, Nuno; Vale, Zita; Oliveira, P.B.

    2016-01-01

    In this paper three metaheuristics are used to solve a smart grid multi-objective energy management problem with conflictive design: how to maximize profits and minimize carbon dioxide (CO2) emissions, and the results compared. The metaheuristics implemented are: weighted particle swarm optimization (W-PSO), multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGA-II). The performance of these methods with the use of multi-dimensi...

  1. Multi-Objective Optimization of Managed Aquifer Recharge.

    Science.gov (United States)

    Fatkhutdinov, Aybulat; Stefan, Catalin

    2018-04-27

    This study demonstrates the utilization of a multi-objective hybrid global/local optimization algorithm for solving managed aquifer recharge (MAR) design problems, in which the decision variables included spatial arrangement of water injection and abstraction wells and time-variant rates of pumping and injection. The objective of the optimization was to maximize the efficiency of the MAR scheme, which includes both quantitative and qualitative aspects. The case study used to demonstrate the capabilities of the proposed approach is based on a published report on designing a real MAR site with defined aquifer properties, chemical groundwater characteristics as well as quality and volumes of injected water. The demonstration problems include steady-state and transient scenarios. The steady-state scenario demonstrates optimization of spatial arrangement of multiple injection and recovery wells, whereas the transient scenario was developed with the purpose of finding optimal regimes of water injection and recovery at a single location. Both problems were defined as multi-objective problems. The scenarios were simulated by applying coupled numerical groundwater flow and solute transport models: MODFLOW-2005 and MT3D-USGS. The applied optimization method was a combination of global - the Non-Dominated Sorting Genetic Algorithm (NSGA-2), and local - the Nelder-Mead Downhill Simplex search algorithms. The analysis of the resulting Pareto optimal solutions led to the discovery of valuable patterns and dependencies between the decision variables, model properties and problem objectives. Additionally, the performance of the traditional global and the hybrid optimization schemes were compared. This article is protected by copyright. All rights reserved.

  2. Grey relational and neural network approach for multi-objective optimization in small scale resistance spot welding of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei [Huazhong University of Science and Technology, Wuhan (China)

    2016-06-15

    The prediction and optimization of weld quality characteristics in small scale resistance spot welding of TC2 titanium alloy were investigated. Grey relational analysis, neural network and genetic algorithm were applied separately. Quality characteristics were selected as nugget diameter, failure load, failure displacement and failure energy. Welding parameters to be optimized were set as electrode force, welding current and welding time. Grey relational analysis was conducted for a rough estimation of the optimum welding parameters. Results showed that welding current played a key role in weld quality improvement. Different back propagation neural network architectures were then arranged to predict multiple quality characteristics. Interaction effects of welding parameters were analyzed with the proposed neural network. Failure load was found more sensitive to the change of welding parameters than nugget diameter. Optimum welding parameters were determined by genetic algorithm. The predicted responses showed good agreement with confirmation experiments.

  3. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.

    Science.gov (United States)

    Elhossini, Ahmed; Areibi, Shawki; Dony, Robert

    2010-01-01

    This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.

  4. Multi-objective optimization in computer networks using metaheuristics

    CERN Document Server

    Donoso, Yezid

    2007-01-01

    Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design and to provide for these kinds of applications as well as for those resources necessary for functionality. Multi-Objective Optimization in Computer Networks Using Metaheuristics provides a solution to the multi-objective problem in routing computer networks. It analyzes layer 3 (IP), layer 2 (MPLS), and layer 1 (GMPLS and wireless functions). In particular, it assesses basic optimization concepts, as well as several techniques and algorithms for the search of minimals; examines the basic multi-objective optimization concepts and the way to solve them through traditional techniques and through several metaheuristics; and demonstrates how to analytically model the compu...

  5. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  6. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  7. A hybrid multi-objective evolutionary algorithm approach for ...

    Indian Academy of Sciences (India)

    V K MANUPATI

    for handling sequence- and machine-dependent set-up times ... algorithm has been compared to that of multi-objective particle swarm optimization (MOPSO) and conventional ..... position and cognitive learning factor are considered for.

  8. A multi-objective approach to solid waste management.

    Science.gov (United States)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.

  9. A multi-objective approach to solid waste management

    International Nuclear Information System (INIS)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).

  10. Ensemble based multi-objective production optimization of smart wells

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Jansen, J.D.

    2012-01-01

    In a recent study two hierarchical multi-objective methods were suggested to include short-term targets in life-cycle production optimization. However this previous study has two limitations: 1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access

  11. Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm

    Science.gov (United States)

    2009-03-10

    xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences

  12. Multi-objective optimal operation of smart reconfigurable distribution grids

    Directory of Open Access Journals (Sweden)

    Abdollah Kavousi-Fard

    2016-02-01

    Full Text Available Reconfiguration is a valuable technique that can support the distribution grid from different aspects such as operation cost and loss reduction, reliability improvement, and voltage stability enhancement. An intelligent and efficient optimization framework, however, is required to reach the desired efficiency through the reconfiguration strategy. This paper proposes a new multi-objective optimization model to make use of the reconfiguration strategy for minimizing the power losses, improving the voltage profile, and enhancing the load balance in distribution grids. The proposed model employs the min-max fuzzy approach to find the most satisfying solution from a set of nondominated solutions in the problem space. Due to the high complexity and the discrete nature of the proposed model, a new optimization method based on harmony search (HS algorithm is further proposed. Moreover, a new modification method is suggested to increase the harmony memory diversity in the improvisation stage and increase the convergence ability of the algorithm. The feasibility and satisfying performance of the proposed model are examined on the IEEE 32-bus distribution system.

  13. Determination of Pareto frontier in multi-objective maintenance optimization

    International Nuclear Information System (INIS)

    Certa, Antonella; Galante, Giacomo; Lupo, Toni; Passannanti, Gianfranco

    2011-01-01

    The objective of a maintenance policy generally is the global maintenance cost minimization that involves not only the direct costs for both the maintenance actions and the spare parts, but also those ones due to the system stop for preventive maintenance and the downtime for failure. For some operating systems, the failure event can be dangerous so that they are asked to operate assuring a very high reliability level between two consecutive fixed stops. The present paper attempts to individuate the set of elements on which performing maintenance actions so that the system can assure the required reliability level until the next fixed stop for maintenance, minimizing both the global maintenance cost and the total maintenance time. In order to solve the previous constrained multi-objective optimization problem, an effective approach is proposed to obtain the best solutions (that is the Pareto optimal frontier) among which the decision maker will choose the more suitable one. As well known, describing the whole Pareto optimal frontier generally is a troublesome task. The paper proposes an algorithm able to rapidly overcome this problem and its effectiveness is shown by an application to a case study regarding a complex series-parallel system.

  14. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  15. Automatic Multi-Level Thresholding Segmentation Based on Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    L. DJEROU,

    2012-01-01

    Full Text Available In this paper, we present a new multi-level image thresholding technique, called Automatic Threshold based on Multi-objective Optimization "ATMO" that combines the flexibility of multi-objective fitness functions with the power of a Binary Particle Swarm Optimization algorithm "BPSO", for searching the "optimum" number of the thresholds and simultaneously the optimal thresholds of three criteria: the between-class variances criterion, the minimum error criterion and the entropy criterion. Some examples of test images are presented to compare our segmentation method, based on the multi-objective optimization approach with Otsu’s, Kapur’s and Kittler’s methods. Our experimental results show that the thresholding method based on multi-objective optimization is more efficient than the classical Otsu’s, Kapur’s and Kittler’s methods.

  16. Multi Objective Optimization Using Genetic Algorithm of a Pneumatic Connector

    Science.gov (United States)

    Salaam, HA; Taha, Zahari; Ya, TMYS Tuan

    2018-03-01

    The concept of sustainability was first introduced by Dr Harlem Brutland in the 1980’s promoting the need to preserve today’s natural environment for the sake of future generations. Based on this concept, John Elkington proposed an approach to measure sustainability known as Triple Bottom Line (TBL). There are three evaluation criteria’s involved in the TBL approach; namely economics, environmental integrity and social equity. In manufacturing industry the manufacturing costs measure the economic sustainability of a company in a long term. Environmental integrity is a measure of the impact of manufacturing activities on the environment. Social equity is complicated to evaluate; but when the focus is at the production floor level, the production operator health can be considered. In this paper, the TBL approach is applied in the manufacturing of a pneumatic nipple hose. The evaluation criteria used are manufacturing costs, environmental impact, ergonomics impact and also energy used for manufacturing. This study involves multi objective optimization by using genetic algorithm of several possible alternatives for material used in the manufacturing of the pneumatic nipple.

  17. Multi-objective optimization under uncertainty for sheet metal forming

    Directory of Open Access Journals (Sweden)

    Lafon Pascal

    2016-01-01

    Full Text Available Aleatory uncertainties in material properties, blank thickness and friction condition are inherent and irreducible variabilities in sheet metal forming. Optimal design configurations, which are obtained by conventional design optimization methods, are not always able to meet the desired targets due to the effect of uncertainties. This paper proposes a multi-objective robust design optimization that aims to tackle this problem. Results obtained on a U shape draw bending benchmark show that spring-back effect can be controlled by optimizing process parameters.

  18. Pareto-Optimal Multi-objective Inversion of Geophysical Data

    Science.gov (United States)

    Schnaidt, Sebastian; Conway, Dennis; Krieger, Lars; Heinson, Graham

    2018-01-01

    In the process of modelling geophysical properties, jointly inverting different data sets can greatly improve model results, provided that the data sets are compatible, i.e., sensitive to similar features. Such a joint inversion requires a relationship between the different data sets, which can either be analytic or structural. Classically, the joint problem is expressed as a scalar objective function that combines the misfit functions of multiple data sets and a joint term which accounts for the assumed connection between the data sets. This approach suffers from two major disadvantages: first, it can be difficult to assess the compatibility of the data sets and second, the aggregation of misfit terms introduces a weighting of the data sets. We present a pareto-optimal multi-objective joint inversion approach based on an existing genetic algorithm. The algorithm treats each data set as a separate objective, avoiding forced weighting and generating curves of the trade-off between the different objectives. These curves are analysed by their shape and evolution to evaluate data set compatibility. Furthermore, the statistical analysis of the generated solution population provides valuable estimates of model uncertainty.

  19. Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control

    Science.gov (United States)

    Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.

    2015-01-01

    The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.

  20. Multi-objective optimization using genetic algorithms: A tutorial

    International Nuclear Information System (INIS)

    Konak, Abdullah; Coit, David W.; Smith, Alice E.

    2006-01-01

    Multi-objective formulations are realistic models for many complex engineering optimization problems. In many real-life problems, objectives under consideration conflict with each other, and optimizing a particular solution with respect to a single objective can result in unacceptable results with respect to the other objectives. A reasonable solution to a multi-objective problem is to investigate a set of solutions, each of which satisfies the objectives at an acceptable level without being dominated by any other solution. In this paper, an overview and tutorial is presented describing genetic algorithms (GA) developed specifically for problems with multiple objectives. They differ primarily from traditional GA by using specialized fitness functions and introducing methods to promote solution diversity

  1. Multi-objective optimization design method of radiation shielding

    International Nuclear Information System (INIS)

    Yang Shouhai; Wang Weijin; Lu Daogang; Chen Yixue

    2012-01-01

    Due to the shielding design goals of diversification and uncertain process of many factors, it is necessary to develop an optimization design method of intelligent shielding by which the shielding scheme selection will be achieved automatically and the uncertainties of human impact will be reduced. For economical feasibility to achieve a radiation shielding design for automation, the multi-objective genetic algorithm optimization of screening code which combines the genetic algorithm and discrete-ordinate method was developed to minimize the costs, size, weight, and so on. This work has some practical significance for gaining the optimization design of shielding. (authors)

  2. Multi-objective optimization of GENIE Earth system models.

    Science.gov (United States)

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  3. Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks

    DEFF Research Database (Denmark)

    Bode, Felix; Binning, Philip John; Nowak, Wolfgang

    Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability...... and optimality of any suggested monitoring location or monitoring network. The goal of this project is to develop and establish a concept to assess, design, and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: (1) a high...... be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, wrapped up within the framework of formal multi-objective optimization. In order to gain insight into the flow and transport physics...

  4. Multi-Objective Optimization in Physical Synthesis of Integrated Circuits

    CERN Document Server

    A Papa, David

    2013-01-01

    This book introduces techniques that advance the capabilities and strength of modern software tools for physical synthesis, with the ultimate goal to improve the quality of leading-edge semiconductor products.  It provides a comprehensive introduction to physical synthesis and takes the reader methodically from first principles through state-of-the-art optimizations used in cutting edge industrial tools. It explains how to integrate chip optimizations in novel ways to create powerful circuit transformations that help satisfy performance requirements. Broadens the scope of physical synthesis optimization to include accurate transformations operating between the global and local scales; Integrates groups of related transformations to break circular dependencies and increase the number of circuit elements that can be jointly optimized to escape local minima;  Derives several multi-objective optimizations from first observations through complete algorithms and experiments; Describes integrated optimization te...

  5. An Evolutionary Approach for Bilevel Multi-objective Problems

    Science.gov (United States)

    Deb, Kalyanmoy; Sinha, Ankur

    Evolutionary multi-objective optimization (EMO) algorithms have been extensively applied to find multiple near Pareto-optimal solutions over the past 15 years or so. However, EMO algorithms for solving bilevel multi-objective optimization problems have not received adequate attention yet. These problems appear in many applications in practice and involve two levels, each comprising of multiple conflicting objectives. These problems require every feasible upper-level solution to satisfy optimality of a lower-level optimization problem, thereby making them difficult to solve. In this paper, we discuss a recently proposed bilevel EMO procedure and show its working principle on a couple of test problems and on a business decision-making problem. This paper should motivate other EMO researchers to engage more into this important optimization task of practical importance.

  6. Multi-objective evacuation routing optimization for toxic cloud releases

    International Nuclear Information System (INIS)

    Gai, Wen-mei; Deng, Yun-feng; Jiang, Zhong-an; Li, Jing; Du, Yan

    2017-01-01

    This paper develops a model for assessing the risks associated with the evacuation process in response to potential chemical accidents, based on which a multi-objective evacuation routing model for toxic cloud releases is proposed taking into account that the travel speed on each arc will be affected by disaster extension. The objectives of the evacuation routing model are to minimize travel time and individual evacuation risk along a path respectively. Two heuristic algorithms are proposed to solve the multi-objective evacuation routing model. Simulation results show the effectiveness and feasibility of the model and algorithms presented in this paper. And, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency route selection in other cases (fires, nuclear accidents). - Highlights: • A model for assessing and visualizing the risks is developed. • A multi-objective evacuation routing model is proposed for toxic cloud releases. • A modified Dijkstra algorithm is designed to obtain an solution of the model. • Two heuristic algorithms have been developed as the optimization tool.

  7. Investigating multi-objective fluence and beam orientation IMRT optimization

    Science.gov (United States)

    Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan

    2017-07-01

    Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters

  8. A scalable coevolutionary multi-objective particle swarm optimizer

    Directory of Open Access Journals (Sweden)

    Xiangwei Zheng

    2010-11-01

    Full Text Available Multi-Objective Particle Swarm Optimizers (MOPSOs are easily trapped in local optima, cost more function evaluations and suffer from the curse of dimensionality. A scalable cooperative coevolution and ?-dominance based MOPSO (CEPSO is proposed to address these issues. In CEPSO, Multi-objective Optimization Problems (MOPs are decomposed in terms of their decision variables and are optimized by cooperative coevolutionary subswarms, and a uniform distribution mutation operator is adopted to avoid premature convergence. All subswarms share an external archive based on ?-dominance, which is also used as a leader set. Collaborators are selected from the archive and used to construct context vectors in order to evaluate particles in a subswarm. CEPSO is tested on several classical MOP benchmark functions and experimental results show that CEPSO can readily escape from local optima and optimize both low and high dimensional problems, but the number of function evaluations only increases linearly with respect to the number of decision variables. Therefore, CEPSO is competitive in solving various MOPs.

  9. Multi-objective group scheduling optimization integrated with preventive maintenance

    Science.gov (United States)

    Liao, Wenzhu; Zhang, Xiufang; Jiang, Min

    2017-11-01

    This article proposes a single-machine-based integration model to meet the requirements of production scheduling and preventive maintenance in group production. To describe the production for identical/similar and different jobs, this integrated model considers the learning and forgetting effects. Based on machine degradation, the deterioration effect is also considered. Moreover, perfect maintenance and minimal repair are adopted in this integrated model. The multi-objective of minimizing total completion time and maintenance cost is taken to meet the dual requirements of delivery date and cost. Finally, a genetic algorithm is developed to solve this optimization model, and the computation results demonstrate that this integrated model is effective and reliable.

  10. Multi-objective optimization in quantum parameter estimation

    Science.gov (United States)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  11. Effective multi-objective optimization of Stirling engine systems

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2016-01-01

    Highlights: • Multi-objective optimization of three recent Stirling engine models. • Use of efficient crossover and mutation operators for real coded Genetic Algorithm. • Demonstrated supremacy of the strategy over the conventionally used algorithm. • Improvements of up to 29% in comparison to literature results. - Abstract: In this article we demonstrate the supremacy of the Non-dominated Sorting Genetic Algorithm-II with Simulated Binary Crossover and Polynomial Mutation operators for the multi-objective optimization of Stirling engine systems by providing three examples, viz., (i) finite time thermodynamic model, (ii) Stirling engine thermal model with associated irreversibility and (iii) polytropic finite speed based thermodynamics. The finite time thermodynamic model involves seven decision variables and consists of three objectives: output power, thermal efficiency and rate of entropy generation. In comparison to literature, it was observed that the used strategy provides a better Pareto front and leads to improvements of up to 29%. The performance is also evaluated on a Stirling engine thermal model which considers the associated irreversibility of the cycle and consists of three objectives involving eleven decision variables. The supremacy of the suggested strategy is also demonstrated on the experimentally validated polytropic finite speed thermodynamics based Stirling engine model for optimization involving two objectives and ten decision variables.

  12. Constrained multi-objective optimization of storage ring lattices

    Science.gov (United States)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  13. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    International Nuclear Information System (INIS)

    Zhou, Z; Folkert, M; Wang, J

    2016-01-01

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  14. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z; Folkert, M; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  15. PARETO OPTIMAL SOLUTIONS FOR MULTI-OBJECTIVE GENERALIZED ASSIGNMENT PROBLEM

    Directory of Open Access Journals (Sweden)

    S. Prakash

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The Multi-Objective Generalized Assignment Problem (MGAP with two objectives, where one objective is linear and the other one is non-linear, has been considered, with the constraints that a job is assigned to only one worker – though he may be assigned more than one job, depending upon the time available to him. An algorithm is proposed to find the set of Pareto optimal solutions of the problem, determining assignments of jobs to workers with two objectives without setting priorities for them. The two objectives are to minimise the total cost of the assignment and to reduce the time taken to complete all the jobs.

    AFRIKAANSE OPSOMMING: ‘n Multi-doelwit veralgemeende toekenningsprobleem (“multi-objective generalised assignment problem – MGAP” met twee doelwitte, waar die een lineêr en die ander nielineêr is nie, word bestudeer, met die randvoorwaarde dat ‘n taak slegs toegedeel word aan een werker – alhoewel meer as een taak aan hom toegedeel kan word sou die tyd beskikbaar wees. ‘n Algoritme word voorgestel om die stel Pareto-optimale oplossings te vind wat die taaktoedelings aan werkers onderhewig aan die twee doelwitte doen sonder dat prioriteite toegeken word. Die twee doelwitte is om die totale koste van die opdrag te minimiseer en om die tyd te verminder om al die take te voltooi.

  16. Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, Hassan; Moradinasab, Nazanin; Gerami, Ali

    2017-07-01

    Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.

  17. Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    International Nuclear Information System (INIS)

    Jafarzadeh, Hassan; Moradinasab, Nazanin; Gerami, Ali

    2017-01-01

    Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.

  18. Multi-objective optimization of riparian buffer networks; valuing present and future benefits

    Science.gov (United States)

    Multi-objective optimization has emerged as a popular approach to support water resources planning and management. This approach provides decision-makers with a suite of management options which are generated based on metrics that represent different social, economic, and environ...

  19. Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Kangji Li

    2017-02-01

    Full Text Available Numerous conflicting criteria exist in building design optimization, such as energy consumption, greenhouse gas emission and indoor thermal performance. Different simulation-based optimization strategies and various optimization algorithms have been developed. A few of them are analyzed and compared in solving building design problems. This paper presents an efficient optimization framework to facilitate optimization designs with the aid of commercial simulation software and MATLAB. The performances of three optimization strategies, including the proposed approach, GenOpt method and artificial neural network (ANN method, are investigated using a case study of a simple building energy model. Results show that the proposed optimization framework has competitive performances compared with the GenOpt method. Further, in another practical case, four popular multi-objective algorithms, e.g., the non-dominated sorting genetic algorithm (NSGA-II, multi-objective particle swarm optimization (MOPSO, the multi-objective genetic algorithm (MOGA and multi-objective differential evolution (MODE, are realized using the propose optimization framework and compared with three criteria. Results indicate that MODE achieves close-to-optimal solutions with the best diversity and execution time. An uncompetitive result is achieved by the MOPSO in this case study.

  20. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    Science.gov (United States)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  1. Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization

    International Nuclear Information System (INIS)

    Zhang, Enze; Chen, Qingwei

    2016-01-01

    Most of the existing works addressing reliability redundancy allocation problems are based on the assumption of fixed reliabilities of components. In real-life situations, however, the reliabilities of individual components may be imprecise, most often given as intervals, under different operating or environmental conditions. This paper deals with reliability redundancy allocation problems modeled in an interval environment. An interval multi-objective optimization problem is formulated from the original crisp one, where system reliability and cost are simultaneously considered. To render the multi-objective particle swarm optimization (MOPSO) algorithm capable of dealing with interval multi-objective optimization problems, a dominance relation for interval-valued functions is defined with the help of our newly proposed order relations of interval-valued numbers. Then, the crowding distance is extended to the multi-objective interval-valued case. Finally, the effectiveness of the proposed approach has been demonstrated through two numerical examples and a case study of supervisory control and data acquisition (SCADA) system in water resource management. - Highlights: • We model the reliability redundancy allocation problem in an interval environment. • We apply the particle swarm optimization directly on the interval values. • A dominance relation for interval-valued multi-objective functions is defined. • The crowding distance metric is extended to handle imprecise objective functions.

  2. Image de-noising based on mathematical morphology and multi-objective particle swarm optimization

    Science.gov (United States)

    Dou, Liyun; Xu, Dan; Chen, Hao; Liu, Yicheng

    2017-07-01

    To overcome the problem of image de-noising, an efficient image de-noising approach based on mathematical morphology and multi-objective particle swarm optimization (MOPSO) is proposed in this paper. Firstly, constructing a series and parallel compound morphology filter based on open-close (OC) operation and selecting a structural element with different sizes try best to eliminate all noise in a series link. Then, combining multi-objective particle swarm optimization (MOPSO) to solve the parameters setting of multiple structural element. Simulation result shows that our algorithm can achieve a superior performance compared with some traditional de-noising algorithm.

  3. Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems

    International Nuclear Information System (INIS)

    Cao, Dingzhou; Murat, Alper; Chinnam, Ratna Babu

    2013-01-01

    This paper proposes a decomposition-based approach to exactly solve the multi-objective Redundancy Allocation Problem for series-parallel systems. Redundancy allocation problem is a form of reliability optimization and has been the subject of many prior studies. The majority of these earlier studies treat redundancy allocation problem as a single objective problem maximizing the system reliability or minimizing the cost given certain constraints. The few studies that treated redundancy allocation problem as a multi-objective optimization problem relied on meta-heuristic solution approaches. However, meta-heuristic approaches have significant limitations: they do not guarantee that Pareto points are optimal and, more importantly, they may not identify all the Pareto-optimal points. In this paper, we treat redundancy allocation problem as a multi-objective problem, as is typical in practice. We decompose the original problem into several multi-objective sub-problems, efficiently and exactly solve sub-problems, and then systematically combine the solutions. The decomposition-based approach can efficiently generate all the Pareto-optimal solutions for redundancy allocation problems. Experimental results demonstrate the effectiveness and efficiency of the proposed method over meta-heuristic methods on a numerical example taken from the literature.

  4. Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach

    International Nuclear Information System (INIS)

    Bose, Probir Kumar; Deb, Madhujit; Banerjee, Rahul; Majumder, Arindam

    2013-01-01

    Environmental issues and rapid exhaustion of fossil fuels are the major concerns over the past two decades to search for alternative fuels. Among various alternatives hydrogen is a long-term renewable and least polluting fuel. Its clean burning capability helps to meet the stern emission norms. Full substitution of diesel with hydrogen may not be convenient for the time being but employing of hydrogen in a diesel engine in dual fuel mode is possible. In this experimental investigation a TMI (timed manifold injection) system has been developed using ECU (electronic control unit) with varying injection strategy to deliver hydrogen on to the intake manifold. Through adopting this technique in the existing diesel engine a momentous improvement in performance and combustion parameters has been observed. The study also attempts to explain the application of the fuzzy logic based Taguchi analysis to optimize the performance parameters i.e. BSEC (Brake specific energy consumption), Vol. Eff. (Volumetric efficiency) and BTHE (brake thermal efficiency) for the different hydrogen injection strategies. - Highlights: • A timed manifold injection system has been developed which enhances the BTHE by 31.74% at full load conditions. • Use of hydrogen-diesel dual fuel of BSEC was reduced by a maximum of 68.98% at full load condition compared to diesel. • Τhe Vol. Eff. reduced by 73.14% in dual fuel mode as compared to 77.23% at full load condition with base diesel. • A fuzzy based Taguchi's parameter design technique has been involved in multi objective optimization for prediction. • Predicted optimum combination improved BTHE and Vol. Eff. by 24.04% and 72.87% respectively and reduced BSEC by 59.03%

  5. Multi-objective optimization of the reactor coolant system

    International Nuclear Information System (INIS)

    Chen Lei; Yan Changqi; Wang Jianjun

    2014-01-01

    Background: Weight and size are important criteria in evaluating the performance of a nuclear power plant. It is of great theoretical value and engineering significance to reduce the weight and volume of the components for a nuclear power plant by the optimization methodology. Purpose: In order to provide a new method for the optimization of nuclear power plant multi-objective, the concept of the non-dominated solution was introduced. Methods: Based on the parameters of Qinshan I nuclear power plant, the mathematical models of the reactor core, the reactor vessel, the main pipe, the pressurizer and the steam generator were built and verified. The sensitivity analyses were carried out to study the influences of the design variables on the objectives. A modified non-dominated sorting genetic algorithm was proposed and employed to optimize the weight and the volume of the reactor coolant system. Results: The results show that the component mathematical models are reliable, the modified non-dominated sorting generic algorithm is effective, and the reactor inlet temperature is the most important variable which influences the distribution of the non-dominated solutions. Conclusion: The optimization results could provide a reference to the design of such reactor coolant system. (authors)

  6. Design for Sustainability of Industrial Symbiosis based on Emergy and Multi-objective Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2016-01-01

    approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable...... performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied...

  7. Localized probability of improvement for kriging based multi-objective optimization

    Science.gov (United States)

    Li, Yinjiang; Xiao, Song; Barba, Paolo Di; Rotaru, Mihai; Sykulski, Jan K.

    2017-12-01

    The paper introduces a new approach to kriging based multi-objective optimization by utilizing a local probability of improvement as the infill sampling criterion and the nearest neighbor check to ensure diversification and uniform distribution of Pareto fronts. The proposed method is computationally fast and linearly scalable to higher dimensions.

  8. Multi-objective evolutionary emergency response optimization for major accidents

    International Nuclear Information System (INIS)

    Georgiadou, Paraskevi S.; Papazoglou, Ioannis A.; Kiranoudis, Chris T.; Markatos, Nikolaos C.

    2010-01-01

    Emergency response planning in case of a major accident (hazardous material event, nuclear accident) is very important for the protection of the public and workers' safety and health. In this context, several protective actions can be performed, such as, evacuation of an area; protection of the population in buildings; and use of personal protective equipment. The best solution is not unique when multiple criteria are taken into consideration (e.g. health consequences, social disruption, economic cost). This paper presents a methodology for multi-objective optimization of emergency response planning in case of a major accident. The emergency policy with regards to protective actions to be implemented is optimized. An evolutionary algorithm has been used as the optimization tool. Case studies demonstrating the methodology and its application in emergency response decision-making in case of accidents related to hazardous materials installations are presented. However, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency response procedures in other cases (nuclear accidents, transportation of hazardous materials) or for land-use planning issues.

  9. Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks

    Science.gov (United States)

    Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.

    2010-12-01

    One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Amlashi, Emad Hadaddi; Amidpour, Majid

    2009-01-01

    Thermodynamic and thermoeconomic optimization of a vertical ground source heat pump system has been studied. A model based on the energy and exergy analysis is presented here. An economic model of the system is developed according to the Total Revenue Requirement (TRR) method. The objective functions based on the thermodynamic and thermoeconomic analysis are developed. The proposed vertical ground source heat pump system including eight decision variables is considered for optimization. An artificial intelligence technique known as evolutionary algorithm (EA) has been utilized as an optimization method. This approach has been applied to minimize either the total levelized cost of the system product or the exergy destruction of the system. Three levels of optimization including thermodynamic single objective, thermoeconomic single objective and multi-objective optimizations are performed. In Multi-objective optimization, both thermodynamic and thermoeconomic objectives are considered, simultaneously. In the case of multi-objective optimization, an example of decision-making process for selection of the final solution from available optimal points on Pareto frontier is presented. The results obtained using the various optimization approaches are compared and discussed. Further, the sensitivity of optimized systems to the interest rate, to the annual number of operating hours and to the electricity cost are studied in detail.

  11. Multi-objective optimal strategy for generating and bidding in the power market

    International Nuclear Information System (INIS)

    Peng Chunhua; Sun Huijuan; Guo Jianfeng; Liu Gang

    2012-01-01

    Highlights: ► A new benefit/risk/emission comprehensive generation optimization model is established. ► A hybrid multi-objective differential evolution optimization algorithm is designed. ► Fuzzy set theory and entropy weighting method are employed to extract the general best solution. ► The proposed approach of generating and bidding is efficient for maximizing profit and minimizing both risk and emissions. - Abstract: Based on the coordinated interaction between units output and electricity market prices, the benefit/risk/emission comprehensive generation optimization model with objectives of maximal profit and minimal bidding risk and emissions is established. A hybrid multi-objective differential evolution optimization algorithm, which successfully integrates Pareto non-dominated sorting with differential evolution algorithm and improves individual crowding distance mechanism and mutation strategy to avoid premature and unevenly search, is designed to achieve Pareto optimal set of this model. Moreover, fuzzy set theory and entropy weighting method are employed to extract one of the Pareto optimal solutions as the general best solution. Several optimization runs have been carried out on different cases of generation bidding and scheduling. The results confirm the potential and effectiveness of the proposed approach in solving the multi-objective optimization problem of generation bidding and scheduling. In addition, the comparison with the classical optimization algorithms demonstrates the superiorities of the proposed algorithm such as integrality of Pareto front, well-distributed Pareto-optimal solutions, high search speed.

  12. Optimal allocation of SVC and TCSC using quasi-oppositional chemical reaction optimization for solving multi-objective ORPD problem

    Directory of Open Access Journals (Sweden)

    Susanta Dutta

    2018-05-01

    Full Text Available This paper presents an efficient quasi-oppositional chemical reaction optimization (QOCRO technique to find the feasible optimal solution of the multi objective optimal reactive power dispatch (RPD problem with flexible AC transmission system (FACTS device. The quasi-oppositional based learning (QOBL is incorporated in conventional chemical reaction optimization (CRO, to improve the solution quality and the convergence speed. To check the superiority of the proposed method, it is applied on IEEE 14-bus and 30-bus systems and the simulation results of the proposed approach are compared to those reported in the literature. The computational results reveal that the proposed algorithm has excellent convergence characteristics and is superior to other multi objective optimization algorithms. Keywords: Quasi-oppositional chemical reaction optimization (QOCRO, Reactive power dispatch (RPD, TCSC, SVC, Multi-objective optimization

  13. Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mengjun Ming

    2017-05-01

    Full Text Available Due to the scarcity of conventional energy resources and the greenhouse effect, renewable energies have gained more attention. This paper proposes methods for multi-objective optimal design of hybrid renewable energy system (HRES in both isolated-island and grid-connected modes. In each mode, the optimal design aims to find suitable configurations of photovoltaic (PV panels, wind turbines, batteries and diesel generators in HRES such that the system cost and the fuel emission are minimized, and the system reliability/renewable ability (corresponding to different modes is maximized. To effectively solve this multi-objective problem (MOP, the multi-objective evolutionary algorithm based on decomposition (MOEA/D using localized penalty-based boundary intersection (LPBI method is proposed. The algorithm denoted as MOEA/D-LPBI is demonstrated to outperform its competitors on the HRES model as well as a set of benchmarks. Moreover, it effectively obtains a good approximation of Pareto optimal HRES configurations. By further considering a decision maker’s preference, the most satisfied configuration of the HRES can be identified.

  14. Multi-Objective Bidding Strategy for Genco Using Non-Dominated Sorting Particle Swarm Optimization

    Science.gov (United States)

    Saksinchai, Apinat; Boonchuay, Chanwit; Ongsakul, Weerakorn

    2010-06-01

    This paper proposes a multi-objective bidding strategy for a generation company (GenCo) in uniform price spot market using non-dominated sorting particle swarm optimization (NSPSO). Instead of using a tradeoff technique, NSPSO is introduced to solve the multi-objective strategic bidding problem considering expected profit maximization and risk (profit variation) minimization. Monte Carlo simulation is employed to simulate rivals' bidding behavior. Test results indicate that the proposed approach can provide the efficient non-dominated solution front effectively. In addition, it can be used as a decision making tool for a GenCo compromising between expected profit and price risk in spot market.

  15. MONSS: A multi-objective nonlinear simplex search approach

    Science.gov (United States)

    Zapotecas-Martínez, Saúl; Coello Coello, Carlos A.

    2016-01-01

    This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.

  16. A linear bi-level multi-objective program for optimal allocation of water resources.

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    Full Text Available This paper presents a simple bi-level multi-objective linear program (BLMOLP with a hierarchical structure consisting of reservoir managers and several water use sectors under a multi-objective framework for the optimal allocation of limited water resources. Being the upper level decision makers (i.e., leader in the hierarchy, the reservoir managers control the water allocation system and tend to create a balance among the competing water users thereby maximizing the total benefits to the society. On the other hand, the competing water use sectors, being the lower level decision makers (i.e., followers in the hierarchy, aim only to maximize individual sectoral benefits. This multi-objective bi-level optimization problem can be solved using the simultaneous compromise constraint (SICCON technique which creates a compromise between upper and lower level decision makers (DMs, and transforms the multi-objective function into a single decision-making problem. The bi-level model developed in this study has been applied to the Swat River basin in Pakistan for the optimal allocation of water resources among competing water demand sectors and different scenarios have been developed. The application of the model in this study shows that the SICCON is a simple, applicable and feasible approach to solve the BLMOLP problem. Finally, the comparisons of the model results show that the optimization model is practical and efficient when it is applied to different conditions with priorities assigned to various water users.

  17. Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Duan, Chen; Wang, Xinggang; Shu, Shuiming; Jing, Changwei; Chang, Huawei

    2014-01-01

    Highlights: • An improved thermodynamic model taking into account irreversibility parameter was developed. • A multi-objective optimization method for designing Stirling engine was investigated. • Multi-objective particle swarm optimization algorithm was adopted in the area of Stirling engine for the first time. - Abstract: In the recent years, the interest in Stirling engine has remarkably increased due to its ability to use any heat source from outside including solar energy, fossil fuels and biomass. A large number of studies have been done on Stirling cycle analysis. In the present study, a mathematical model based on thermodynamic analysis of Stirling engine considering regenerative losses and internal irreversibilities has been developed. Power output, thermal efficiency and the cycle irreversibility parameter of Stirling engine are optimized simultaneously using Particle Swarm Optimization (PSO) algorithm, which is more effective than traditional genetic algorithms. In this optimization problem, some important parameters of Stirling engine are considered as decision variables, such as temperatures of the working fluid both in the high temperature isothermal process and in the low temperature isothermal process, dead volume ratios of each heat exchanger, volumes of each working spaces, effectiveness of the regenerator, and the system charge pressure. The Pareto optimal frontier is obtained and the final design solution has been selected by Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP). Results show that the proposed multi-objective optimization approach can significantly outperform traditional single objective approaches

  18. Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm

    International Nuclear Information System (INIS)

    Cheung, Brian C.; Carriveau, Rupp; Ting, David S.K.

    2014-01-01

    This paper presents the findings from a multi-objective genetic algorithm optimization study on the design parameters of an underwater compressed air energy storage system (UWCAES). A 4 MWh UWCAES system was numerically simulated and its energy, exergy, and exergoeconomics were analysed. Optimal system configurations were determined that maximized the UWCAES system round-trip efficiency and operating profit, and minimized the cost rate of exergy destruction and capital expenditures. The optimal solutions obtained from the multi-objective optimization model formed a Pareto-optimal front, and a single preferred solution was selected using the pseudo-weight vector multi-criteria decision making approach. A sensitivity analysis was performed on interest rates to gauge its impact on preferred system designs. Results showed similar preferred system designs for all interest rates in the studied range. The round-trip efficiency and operating profit of the preferred system designs were approximately 68.5% and $53.5/cycle, respectively. The cost rate of the system increased with interest rates. - Highlights: • UWCAES system configurations were developed using multi-objective optimization. • System was optimized for energy efficiency, exergy, and exergoeconomics • Pareto-optimal solution surfaces were developed at different interest rates. • Similar preferred system configurations were found at all interest rates studied

  19. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp

    2009-04-15

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.

  20. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    International Nuclear Information System (INIS)

    Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji

    2009-01-01

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets

  1. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multi-objective optimization in systematic conservation planning and the representation of genetic variability among populations.

    Science.gov (United States)

    Schlottfeldt, S; Walter, M E M T; Carvalho, A C P L F; Soares, T N; Telles, M P C; Loyola, R D; Diniz-Filho, J A F

    2015-06-18

    Biodiversity crises have led scientists to develop strategies for achieving conservation goals. The underlying principle of these strategies lies in systematic conservation planning (SCP), in which there are at least 2 conflicting objectives, making it a good candidate for multi-objective optimization. Although SCP is typically applied at the species level (or hierarchically higher), it can be used at lower hierarchical levels, such as using alleles as basic units for analysis, for conservation genetics. Here, we propose a method of SCP using a multi-objective approach. We used non-dominated sorting genetic algorithm II in order to identify the smallest set of local populations of Dipteryx alata (baru) (a Brazilian Cerrado species) for conservation, representing the known genetic diversity and using allele frequency information associated with heterozygosity and Hardy-Weinberg equilibrium. We worked in 3 variations for the problem. First, we reproduced a previous experiment, but using a multi-objective approach. We found that the smallest set of populations needed to represent all alleles under study was 7, corroborating the results of the previous study, but with more distinct solutions. In the 2nd and 3rd variations, we performed simultaneous optimization of 4 and 5 objectives, respectively. We found similar but refined results for 7 populations, and a larger portfolio considering intra-specific diversity and persistence with populations ranging from 8-22. This is the first study to apply multi-objective algorithms to an SCP problem using alleles at the population level as basic units for analysis.

  3. A new multi objective optimization model for designing a green supply chain network under uncertainty

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Saffar

    2015-01-01

    Full Text Available Recently, researchers have focused on how to minimize the negative effects of industrial activities on environment. Consequently, they work on mathematical models, which minimize the environmental issues as well as optimizing the costs. In the field of supply chain network design, most managers consider economic and environmental issues, simultaneously. This paper introduces a bi-objective supply chain network design, which uses fuzzy programming to obtain the capability of resisting uncertain conditions. The design considers production, recovery, and distribution centers. The advantage of using this model includes the optimal facilities, locating them and assigning the optimal facilities to them. It also chooses the type and the number of technologies, which must be bought. The fuzzy programming converts the multi objective model to an auxiliary crisp model by Jimenez approach and solves it with ε-constraint. For solving large size problems, the Multi Objective Differential Evolutionary algorithm (MODE is applied.

  4. Multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge

    Directory of Open Access Journals (Sweden)

    Z. Du

    2016-05-01

    Full Text Available Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element analysis (FEA and experiment tests are performed to verify the modeling method. Finally, a multi-objective optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.

  5. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

    International Nuclear Information System (INIS)

    Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene

    2016-01-01

    Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

  6. An Improved Multi-Objective Artificial Bee Colony Optimization Algorithm with Regulation Operators

    Directory of Open Access Journals (Sweden)

    Jiuyuan Huo

    2017-02-01

    Full Text Available To achieve effective and accurate optimization for multi-objective optimization problems, a multi-objective artificial bee colony algorithm with regulation operators (RMOABC inspired by the intelligent foraging behavior of honey bees was proposed in this paper. The proposed algorithm utilizes the Pareto dominance theory and takes advantage of adaptive grid and regulation operator mechanisms. The adaptive grid technique is used to adaptively assess the Pareto front maintained in an external archive and the regulation operator is used to balance the weights of the local search and the global search in the evolution of the algorithm. The performance of RMOABC was evaluated in comparison with other nature inspired algorithms includes NSGA-II and MOEA/D. The experiments results demonstrated that the RMOABC approach has better accuracy and minimal execution time.

  7. Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model

    Directory of Open Access Journals (Sweden)

    Yongpeng Shen

    2016-02-01

    Full Text Available Auxiliary power units (APUs are widely used for electric power generation in various types of electric vehicles, improvements in fuel economy and emissions of these vehicles directly depend on the operating point of the APUs. In order to balance the conflicting goals of fuel consumption and emissions reduction in the process of operating point choice, the APU operating point optimization problem is formulated as a constrained multi-objective optimization problem (CMOP firstly. The four competing objectives of this CMOP are fuel-electricity conversion cost, hydrocarbon (HC emissions, carbon monoxide (CO emissions and nitric oxide (NO x emissions. Then, the multi-objective particle swarm optimization (MOPSO algorithm and weighted metric decision making method are employed to solve the APU operating point multi-objective optimization model. Finally, bench experiments under New European driving cycle (NEDC, Federal test procedure (FTP and high way fuel economy test (HWFET driving cycles show that, compared with the results of the traditional fuel consumption single-objective optimization approach, the proposed multi-objective optimization approach shows significant improvements in emissions performance, at the expense of a slight drop in fuel efficiency.

  8. Multi-Objective Optimization of the Hedging Model for reservoir Operation Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    sadegh sadeghitabas

    2015-12-01

    Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.

  9. New approach for solving intuitionistic fuzzy multi-objective ...

    Indian Academy of Sciences (India)

    SANKAR KUMAR ROY

    2018-02-07

    Feb 7, 2018 ... Transportation problem; multi-objective decision making; intuitionistic fuzzy programming; interval programming ... MOTP under multi-choice environment using utility func- ... theory is an intuitionistic fuzzy set (IFS), which was.

  10. Considering Decision Variable Diversity in Multi-Objective Optimization: Application in Hydrologic Model Calibration

    Science.gov (United States)

    Sahraei, S.; Asadzadeh, M.

    2017-12-01

    Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.

  11. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

    Energy Technology Data Exchange (ETDEWEB)

    Kudryashov, Nikolay A.; Shilnikov, Kirill E. [National Research Nuclear University MEPhI, Department of Applied Mathematics, Moscow (Russian Federation)

    2016-06-08

    Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumor tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.

  12. Multi-objective optimization and simulation model for the design of distributed energy systems

    International Nuclear Information System (INIS)

    Falke, Tobias; Krengel, Stefan; Meinerzhagen, Ann-Kathrin; Schnettler, Armin

    2016-01-01

    Highlights: • Development of a model for the optimal design of district energy systems. • Multi-objective approach: integrated economic and ecological optimization. • Consideration of conventional conversion technologies, RES and district heating. • Decomposition of optimization problem to reduce computation complexity. • Approach enables the investigation of districts with more than 150 buildings. - Abstract: In this paper, a multi-objective optimization model for the investment planning and operation management of distributed heat and electricity supply systems is presented. Different energy efficiency measures and supply options are taken into account, including various distributed heat and power generation units, storage systems and energy-saving renovation measures. Furthermore, district heating networks are considered as an alternative to conventional, individual heat supply for each building. The optimization problem is decomposed into three subproblems to reduce the computational complexity. This enables a high level of detail in the optimization and simultaneously the comprehensive investigation of districts with more than 100 buildings. These capabilities distinguish the model from previous approaches in this field of research. The developed model is applied to a district in a medium-sized town in Germany in order to analyze the effects of different efficiency measures regarding total costs and emissions of CO 2 equivalents. Based on the Pareto efficient solutions, technologies and efficiency measures that can contribute most efficiently to reduce greenhouse gas emissions are identified.

  13. Multi-objective compared to single-objective optimization with application to model validation and uncertainty quantification

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Riegert, R.; Krosche, M.; Stekolschikov, K. [Scandpower Petroleum Technology GmbH, Hamburg (Germany); Fahimuddin, A. [Technische Univ. Braunschweig (Germany)

    2007-09-13

    History Matching in Reservoir Simulation, well location and production optimization etc. is generally a multi-objective optimization problem. The problem statement of history matching for a realistic field case includes many field and well measurements in time and type, e.g. pressure measurements, fluid rates, events such as water and gas break-throughs, etc. Uncertainty parameters modified as part of the history matching process have varying impact on the improvement of the match criteria. Competing match criteria often reduce the likelihood of finding an acceptable history match. It is an engineering challenge in manual history matching processes to identify competing objectives and to implement the changes required in the simulation model. In production optimization or scenario optimization the focus on one key optimization criterion such as NPV limits the identification of alternatives and potential opportunities, since multiple objectives are summarized in a predefined global objective formulation. Previous works primarily focus on a specific optimization method. Few works actually concentrate on the objective formulation and multi-objective optimization schemes have not yet been applied to reservoir simulations. This paper presents a multi-objective optimization approach applicable to reservoir simulation. It addresses the problem of multi-objective criteria in a history matching study and presents analysis techniques identifying competing match criteria. A Pareto-Optimizer is discussed and the implementation of that multi-objective optimization scheme is applied to a case study. Results are compared to a single-objective optimization method. (orig.)

  14. Multi-Objective Climb Path Optimization for Aircraft/Engine Integration Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Aristeidis Antonakis

    2017-04-01

    Full Text Available In this article, a new multi-objective approach to the aircraft climb path optimization problem, based on the Particle Swarm Optimization algorithm, is introduced to be used for aircraft–engine integration studies. This considers a combination of a simulation with a traditional Energy approach, which incorporates, among others, the use of a proposed path-tracking scheme for guidance in the Altitude–Mach plane. The adoption of population-based solver serves to simplify case setup, allowing for direct interfaces between the optimizer and aircraft/engine performance codes. A two-level optimization scheme is employed and is shown to improve search performance compared to the basic PSO algorithm. The effectiveness of the proposed methodology is demonstrated in a hypothetic engine upgrade scenario for the F-4 aircraft considering the replacement of the aircraft’s J79 engine with the EJ200; a clear advantage of the EJ200-equipped configuration is unveiled, resulting, on average, in 15% faster climbs with 20% less fuel.

  15. Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints

    Directory of Open Access Journals (Sweden)

    Massimiliano Kaucic

    2015-09-01

    Full Text Available In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi- and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis.

  16. Adaptive multi-objective Optimization scheme for cognitive radio resource management

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2014-01-01

    configuration by exploiting optimization and machine learning techniques. In this paper, we propose an Adaptive Multi-objective Optimization Scheme (AMOS) for cognitive radio resource management to improve spectrum operation and network performance

  17. Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm

    OpenAIRE

    Sanjay Kr. Singh; D. Boolchandani; S.G. Modani; Nitish Katal

    2014-01-01

    This study focuses on multi-objective optimization of the PID controllers for optimal speed control for an isolated steam turbine. In complex operations, optimal tuning plays an imperative role in maintaining the product quality and process safety. This study focuses on the comparison of the optimal PID tuning using Multi-objective Genetic Algorithm (NSGA-II) against normal genetic algorithm and Ziegler Nichols methods for the speed control of an isolated steam turbine. Isolated steam turbine...

  18. A procedure for multi-objective optimization of tire design parameters

    OpenAIRE

    Nikola Korunović; Miloš Madić; Miroslav Trajanović; Miroslav Radovanović

    2015-01-01

    The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zo...

  19. Multi-objective optimization of circular magnetic abrasive polishing of SUS304 and Cu materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, NhatTan; Yin, ShaoHui; Chen, FengJun; Yin, HanFeng [Hunan University, Changsha (China); Pham, VanThoan [Hanoi University, Hanoi (Viet Nam); Tran, TrongNhan [Industrial University of Ho Chi Minh City, HCM City (Viet Nam)

    2016-06-15

    In this paper, a Multi-objective particle swarm optimization algorithm (MOPSOA) is applied to optimize surface roughness of workpiece after circular magnetic abrasive polishing. The most important parameters of polishing model, namely current, gap between pole and workpiece, spindle speed and polishing time, were considered in this approach. The objective functions of the MOPSOA depend on the quality of surface roughness of polishing materials with both simultaneous surfaces (Ra1, Ra2), which are determined by means of experimental approach with the aid of circular magnetic field. Finally, the effectiveness of the approach is compared between the optimal results with the experimental data. The results show that the new proposed polishing optimization method is more feasible.

  20. Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems

    International Nuclear Information System (INIS)

    Chen, Gonggui; Liu, Lilan; Song, Peizhu; Du, Yangwei

    2014-01-01

    Highlights: • New method for MOORPD problem using MOCIPSO and MOIPSO approaches. • Constrain-prior Pareto-dominance method is proposed to meet the constraints. • The limits of the apparent power flow of transmission line are considered. • MOORPD model is built up for MOORPD problem. • The achieved results by MOCIPSO and MOIPSO approaches are better than MOPSO method. - Abstract: Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and

  1. Integrated production planning and control: A multi-objective optimization model

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2013-09-01

    Full Text Available Purpose: Production planning and control has crucial impact on the production and business activities of enterprise. Enterprise Resource Planning (ERP is the most popular resources planning and management system, however there are some shortcomings and deficiencies in the production planning and control because its core component is still the Material Requirements Planning (MRP. For the defects of ERP system, many local improvement and optimization schemes have been proposed, and improve the feasibility and practicality of the plan in some extent, but study considering the whole planning system optimization in the multiple performance management objectives and achieving better application performance is less. The purpose of this paper is to propose a multi-objective production planning optimization model Based on the point of view of the integration of production planning and control, in order to achieve optimization and control of enterprise manufacturing management. Design/methodology/approach: On the analysis of ERP planning system’s defects and disadvantages, and related research and literature, a multi-objective production planning optimization model is proposed, in addition to net demand and capacity, multiple performance management objectives, such as on-time delivery, production balance, inventory, overtime production, are considered incorporating into the examination scope of the model, so that the manufacturing process could be management and controlled Optimally between multiple objectives. The validity and practicability of the model will be verified by the instance in the last part of the paper. Findings: The main finding is that production planning management of manufacturing enterprise considers not only the capacity and materials, but also a variety of performance management objectives in the production process, and building a multi-objective optimization model can effectively optimize the management and control of enterprise

  2. A modified teaching–learning based optimization for multi-objective optimal power flow problem

    International Nuclear Information System (INIS)

    Shabanpour-Haghighi, Amin; Seifi, Ali Reza; Niknam, Taher

    2014-01-01

    Highlights: • A new modified teaching–learning based algorithm is proposed. • A self-adaptive wavelet mutation strategy is used to enhance the performance. • To avoid reaching a large repository size, a fuzzy clustering technique is used. • An efficiently smart population selection is utilized. • Simulations show the superiority of this algorithm compared with other ones. - Abstract: In this paper, a modified teaching–learning based optimization algorithm is analyzed to solve the multi-objective optimal power flow problem considering the total fuel cost and total emission of the units. The modified phase of the optimization algorithm utilizes a self-adapting wavelet mutation strategy. Moreover, a fuzzy clustering technique is proposed to avoid extremely large repository size besides a smart population selection for the next iteration. These techniques make the algorithm searching a larger space to find the optimal solutions while speed of the convergence remains good. The IEEE 30-Bus and 57-Bus systems are used to illustrate performance of the proposed algorithm and results are compared with those in literatures. It is verified that the proposed approach has better performance over other techniques

  3. Pareto Optimal Solutions for Network Defense Strategy Selection Simulator in Multi-Objective Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.

  4. Designing optimal degradation tests via multi-objective genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Cipollone, Maurizio

    2003-01-01

    The experimental determination of the failure time probability distribution of highly reliable components, such as those used in nuclear and aerospace applications, is intrinsically difficult due to the lack, or scarce significance, of failure data which can be collected during the relatively short test periods. A possibility to overcome this difficulty is to resort to the so-called degradation tests, in which measurements of components' degradation are used to infer the failure time distribution. To design such tests, parameters like the number of tests to be run, their frequency and duration, must be set so as to obtain an accurate estimate of the distribution statistics, under the existing limitations of budget. The optimisation problem which results is a non-linear one. In this work, we propose a method, based on multi-objective genetic algorithms for determining the values of the test parameters which optimise both the accuracy in the estimate of the failure time distribution percentiles and the testing costs. The method has been validated on a degradation model of literature

  5. Feature Selection using Multi-objective Genetic Algorith m: A Hybrid Approach

    OpenAIRE

    Ahuja, Jyoti; GJUST - Guru Jambheshwar University of Sciecne and Technology; Ratnoo, Saroj Dahiya; GJUST - Guru Jambheshwar University of Sciecne and Technology

    2015-01-01

    Feature selection is an important pre-processing task for building accurate and comprehensible classification models. Several researchers have applied filter, wrapper or hybrid approaches using genetic algorithms which are good candidates for optimization problems that involve large search spaces like in the case of feature selection. Moreover, feature selection is an inherently multi-objective problem with many competing objectives involving size, predictive power and redundancy of the featu...

  6. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol.

    Science.gov (United States)

    Xu, Gongxian; Liu, Ying; Gao, Qunwang

    2016-02-10

    This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Fuzzy multi-objective approach for optimal selection of suppliers and transportation decisions in an eco-efficient closed loop supply chain network

    DEFF Research Database (Denmark)

    Govindan, Kannan; Darbari, Jyoti Dhingra; Agarwal, Vernika

    2017-01-01

    into the decision making process by selecting environmentally responsible suppliers to procure components based on sustainable criteria, choosing appropriate recovery options for end-of-use (EOU) inkjet printers, and planning an efficient transportation network design for reducing the carbon emission...... activities. A weighted fuzzy mathematical programming approach is utilised for generating a fuzzy, properly efficient solution as the desired compromised solution for the CLSC network problem configuration. The relevance of the model is justified using a real data set derived from a case study of the firm...... with higher sustainable performance and vehicles with lesser emission rate could substantially enhance firm's sustainable image and result in higher profits in the future....

  8. Optimization of externalities using DTM measures: a Pareto optimal multi objective optimization using the evolutionary algorithm SPEA2+

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel; Allkim, T.P.; van Arem, Bart

    2010-01-01

    Multi objective optimization of externalities of traffic is performed solving a network design problem in which Dynamic Traffic Management measures are used. The resulting Pareto optimal set is determined by employing the SPEA2+ evolutionary algorithm.

  9. Study on hybrid multi-objective optimization algorithm for inverse treatment planning of radiation therapy

    International Nuclear Information System (INIS)

    Li Guoli; Song Gang; Wu Yican

    2007-01-01

    Inverse treatment planning for radiation therapy is a multi-objective optimization process. The hybrid multi-objective optimization algorithm is studied by combining the simulated annealing(SA) and genetic algorithm(GA). Test functions are used to analyze the efficiency of algorithms. The hybrid multi-objective optimization SA algorithm, which displacement is based on the evolutionary strategy of GA: crossover and mutation, is implemented in inverse planning of external beam radiation therapy by using two kinds of objective functions, namely the average dose distribution based and the hybrid dose-volume constraints based objective functions. The test calculations demonstrate that excellent converge speed can be achieved. (authors)

  10. Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.

    Science.gov (United States)

    Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon

    2017-01-01

    In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.

  11. An experimental analysis of design choices of multi-objective ant colony optimization algorithms

    OpenAIRE

    Lopez-Ibanez, Manuel; Stutzle, Thomas

    2012-01-01

    There have been several proposals on how to apply the ant colony optimization (ACO) metaheuristic to multi-objective combinatorial optimization problems (MOCOPs). This paper proposes a new formulation of these multi-objective ant colony optimization (MOACO) algorithms. This formulation is based on adding specific algorithm components for tackling multiple objectives to the basic ACO metaheuristic. Examples of these components are how to represent multiple objectives using pheromone and heuris...

  12. Multi-objective superstructure-free synthesis and optimization of thermal power plants

    International Nuclear Information System (INIS)

    Wang, Ligang; Lampe, Matthias; Voll, Philip; Yang, Yongping; Bardow, André

    2016-01-01

    The merits of superstructure-free synthesis are demonstrated for bi-objective design of thermal power plants. The design of thermal power plants is complex and thus best solved by optimization. Common optimization methods require specification of a superstructure which becomes a tedious and error-prone task for complex systems. Superstructure specification is avoided by the presented superstructure-free approach, which is shown to successfully solve the design task yielding a high-quality Pareto front of promising structural alternatives. The economic objective function avoids introducing infinite numbers of units (e.g., turbine, reheater and feedwater preheater) as favored by pure thermodynamic optimization. The number of feasible solutions found per number of mutation tries is still high even after many generations but declines after introducing highly-nonlinear cost functions leading to challenging MINLP problems. The identified Pareto-optimal solutions tend to employ more units than found in modern power plants indicating the need for cost functions to reflect current industrial practice. In summary, the multi-objective superstructure-free synthesis framework is a robust approach for very complex problems in the synthesis of thermal power plants. - Highlights: • A generalized multi-objective superstructure-free synthesis framework for thermal power plants is presented. • The superstructure-free synthesis framework is comprehensively evaluated by complex bi-objective synthesis problems. • The proposed framework is effective to explore the structural design space even for complex problems.

  13. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    Science.gov (United States)

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.

  14. MULTI-OBJECTIVE ONLINE OPTIMIZATION OF BEAM LIFETIME AT APS

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng

    2017-06-25

    In this paper, online optimization of beam lifetime at the APS (Advanced Photon Source) storage ring is presented. A general genetic algorithm (GA) is developed and employed for some online optimizations in the APS storage ring. Sextupole magnets in 40 sectors of the APS storage ring are employed as variables for the online nonlinear beam dynamics optimization. The algorithm employs several optimization objectives and is designed to run with topup mode or beam current decay mode. Up to 50\\% improvement of beam lifetime is demonstrated, without affecting the transverse beam sizes and other relevant parameters. In some cases, the top-up injection efficiency is also improved.

  15. Multi-Objective Optimization of Start-up Strategy for Pumped Storage Units

    Directory of Open Access Journals (Sweden)

    Jinjiao Hou

    2018-05-01

    Full Text Available This paper proposes a multi-objective optimization method for the start-up strategy of pumped storage units (PSU for the first time. In the multi-objective optimization method, the speed rise time and the overshoot during the process of the start-up are taken as the objectives. A precise simulation platform is built for simulating the transient process of start-up, and for calculating the objectives based on the process. The Multi-objective Particle Swarm Optimization algorithm (MOPSO is adopted to optimize the widely applied start-up strategies based on one-stage direct guide vane control (DGVC, and two-stage DGVC. Based on the Pareto Front obtained, a multi-objective decision-making method based on the relative objective proximity is used to sort the solutions in the Pareto Front. Start-up strategy optimization for a PSU of a pumped storage power station in Jiangxi Province in China is conducted in experiments. The results show that: (1 compared with the single objective optimization, the proposed multi-objective optimization of start-up strategy not only greatly shortens the speed rise time and the speed overshoot, but also makes the speed curve quickly stabilize; (2 multi-objective optimization of strategy based on two-stage DGVC achieves better solution for a quick and smooth start-up of PSU than that of the strategy based on one-stage DGVC.

  16. A probabilistic multi objective CLSC model with Genetic algorithm-ε_Constraint approach

    Directory of Open Access Journals (Sweden)

    Alireza TaheriMoghadam

    2014-05-01

    Full Text Available In this paper an uncertain multi objective closed-loop supply chain is developed. The first objective function is maximizing the total profit. The second objective function is minimizing the use of row materials. In the other word, the second objective function is maximizing the amount of remanufacturing and recycling. Genetic algorithm is used for optimization and for finding the pareto optimal line, Epsilon-constraint method is used. Finally a numerical example is solved with proposed approach and performance of the model is evaluated in different sizes. The results show that this approach is effective and useful for managerial decisions.

  17. Well Field Management Using Multi-Objective Optimization

    DEFF Research Database (Denmark)

    Hansen, Annette Kirstine; Hendricks Franssen, H. J.; Bauer-Gottwein, Peter

    2013-01-01

    with infiltration basins, injection wells and abstraction wells. The two management objectives are to minimize the amount of water needed for infiltration and to minimize the risk of getting contaminated water into the drinking water wells. The management is subject to a daily demand fulfilment constraint. Two...... different optimization methods are tested. Constant scheduling where decision variables are held constant during the time of optimization, and sequential scheduling where the optimization is performed stepwise for daily time steps. The latter is developed to work in a real-time situation. Case study...

  18. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  19. Introduction to WMOST v3 and Multi-Objective Optimization

    Science.gov (United States)

    Version 3 of EPA’s Watershed Management Optimization Support Tool (WMOST) will be released in early 2018 (https://www.epa.gov/exposure-assessment-models/wmost). WMOST is designed to facilitate integrated water management among communities, utilities, watershed organization...

  20. Multi-objective parametric optimization of powder mixed electro ...

    Indian Academy of Sciences (India)

    Multiple linear regression models have ... surface optimization scheme to select the parameters in powder mixed EDM process. Keskin ... Genetic algorithm (GA) is a subclass of population based stochastic search procedure which is.

  1. Interactive Preference Learning of Utility Functions for Multi-Objective Optimization

    OpenAIRE

    Dewancker, Ian; McCourt, Michael; Ainsworth, Samuel

    2016-01-01

    Real-world engineering systems are typically compared and contrasted using multiple metrics. For practical machine learning systems, performance tuning is often more nuanced than minimizing a single expected loss objective, and it may be more realistically discussed as a multi-objective optimization problem. We propose a novel generative model for scalar-valued utility functions to capture human preferences in a multi-objective optimization setting. We also outline an interactive active learn...

  2. Multi-objective optimal dispatch of distributed energy resources

    Science.gov (United States)

    Longe, Ayomide

    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.

  3. Multi-Objective Optimization of Grillages Applying the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Darius Mačiūnas

    2012-01-01

    Full Text Available The article analyzes the optimization of grillage-type foundations seeking for the least possible reactive forces in the poles for a given number of poles and for the least possible bending moments of absolute values in the connecting beams of the grillage. Therefore, we suggest using a compromise objective function (to be minimized that consists of the maximum reactive force arising in all poles and the maximum bending moment of the absolute value in connecting beams; both components include the given weights. The variables of task design are pole positions under connecting beams. The optimization task is solved applying the algorithm containing all the initial data of the problem. Reactive forces and bending moments are calculated using an original program (finite element method is applied. This program is integrated into the optimization algorithm using the “black-box” principle. The “black-box” finite element program sends back the corresponding value of the objective function. Numerical experiments revealed the optimal quantity of points to compute bending moments. The obtained results show a certain ratio of weights in the objective function where the contribution of reactive forces and bending moments to the objective function are equivalent. This solution can serve as a pilot project for more detailed design.Article in Lithuanian

  4. Multi-objective parametric optimization of powder mixed electro ...

    Indian Academy of Sciences (India)

    Researchers are now focusing on employment of artificial intelligence (AI) techniques viz. ANN, GA, fuzzy logic, etc. for the process modelling and optimization of manufacturing processes which are expected to overcome some of the limitations of conventional process mod- elling techniques. Fenggou & Dayong (2004) ...

  5. Research on connection structure of aluminumbody bus using multi-objective topology optimization

    Science.gov (United States)

    Peng, Q.; Ni, X.; Han, F.; Rhaman, K.; Ulianov, C.; Fang, X.

    2018-01-01

    For connecting Aluminum Alloy bus body aluminum components often occur the problem of failure, a new aluminum alloy connection structure is designed based on multi-objective topology optimization method. Determining the shape of the outer contour of the connection structure with topography optimization, establishing a topology optimization model of connections based on SIMP density interpolation method, going on multi-objective topology optimization, and improving the design of the connecting piece according to the optimization results. The results show that the quality of the aluminum alloy connector after topology optimization is reduced by 18%, and the first six natural frequencies are improved and the strength performance and stiffness performance are obviously improved.

  6. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  7. Multi-objective/loading optimization for rotating composite flexbeams

    Science.gov (United States)

    Hamilton, Brian K.; Peters, James R.

    1989-01-01

    With the evolution of advanced composites, the feasibility of designing bearingless rotor systems for high speed, demanding maneuver envelopes, and high aircraft gross weights has become a reality. These systems eliminate the need for hinges and heavily loaded bearings by incorporating a composite flexbeam structure which accommodates flapping, lead-lag, and feathering motions by bending and twisting while reacting full blade centrifugal force. The flight characteristics of a bearingless rotor system are largely dependent on hub design, and the principal element in this type of system is the composite flexbeam. As in any hub design, trade off studies must be performed in order to optimize performance, dynamics (stability), handling qualities, and stresses. However, since the flexbeam structure is the primary component which will determine the balance of these characteristics, its design and fabrication are not straightforward. It was concluded that: pitchcase and snubber damper representations are required in the flexbeam model for proper sizing resulting from dynamic requirements; optimization is necessary for flexbeam design, since it reduces the design iteration time and results in an improved design; and inclusion of multiple flight conditions and their corresponding fatigue allowables is necessary for the optimization procedure.

  8. A spatial multi-objective optimization model for sustainable urban wastewater system layout planning.

    Science.gov (United States)

    Dong, X; Zeng, S; Chen, J

    2012-01-01

    Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.

  9. Multi-objective thermodynamic optimization of combined Brayton and inverse Brayton cycles using genetic algorithms

    International Nuclear Information System (INIS)

    Besarati, S.M.; Atashkari, K.; Jamali, A.; Hajiloo, A.; Nariman-zadeh, N.

    2010-01-01

    This paper presents a simultaneous optimization study of two outputs performance of a previously proposed combined Brayton and inverse Brayton cycles. It has been carried out by varying the upper cycle pressure ratio, the expansion pressure of the bottom cycle and using variable, above atmospheric, bottom cycle inlet pressure. Multi-objective genetic algorithms are used for Pareto approach optimization of the cycle outputs. The two important conflicting thermodynamic objectives that have been considered in this work are net specific work (w s ) and thermal efficiency (η th ). It is shown that some interesting features among optimal objective functions and decision variables involved in the Baryton and inverse Brayton cycles can be discovered consequently.

  10. A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2014-01-01

    Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.

  11. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2016-01-01

    Highlights: • Finite time exergoeconomic multi objective optimization of a Brayton cycle. • Comparing the exergoeconomic and the ecological function optimization results. • Inserting the cost of fluid streams concept into finite-time thermodynamics. • Exergoeconomic sensitivity analysis of a regenerative Brayton cycle. • Suggesting the cycle performance curve drawing and utilization. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power maximization and then exergoeconomic optimization using finite-time thermodynamic concept and finite-size components. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is used deploying time variations. The decision variables for the optimum state (of multi objective exergoeconomic optimization) are compared to the maximum power state. One can see that the multi objective exergoeconomic optimization results in a better performance than that obtained with the maximum power state. The results demonstrate that system performance at optimum point of multi objective optimization yields 71% of the maximum power, but only with exergy destruction as 24% of the amount that is produced at the maximum power state and 67% lower total cost rate than that of the maximum power state. In order to assess the impact of the variation of the decision variables on the objective functions, sensitivity analysis is conducted. Finally, the cycle performance curve drawing according to exergoeconomic multi objective optimization results and its utilization, are suggested.

  12. Multi-objective optimization of die geometry in ingot forging

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels

    2014-01-01

    The soundness of an ingot after hot forging with different V-shaped lower dies is evaluated using finite element simulations.Two different modelling approaches that make use of uncoupled ductile damage and coupled ductile damage based on porousplasticity are employed. It is shown that the two...

  13. A procedure for multi-objective optimization of tire design parameters

    Directory of Open Access Journals (Sweden)

    Nikola Korunović

    2015-04-01

    Full Text Available The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zones inside the tire. It consists of four main stages: pre-analysis, design of experiment, mathematical modeling and multi-objective optimization. Advantage of the proposed procedure is reflected in the fact that multi-objective optimization is based on the Pareto concept, which enables design engineers to obtain a complete set of optimization solutions and choose a suitable tire design. Furthermore, modeling of the relationships between tire design parameters and objective functions based on multiple regression analysis minimizes computational and modeling effort. The adequacy of the proposed tire design multi-objective optimization procedure has been validated by performing experimental trials based on finite element method.

  14. Design of a centrifugal compressor impeller using multi-objective optimization algorithm

    International Nuclear Information System (INIS)

    Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong; Choi, Jae Ho

    2009-01-01

    This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with ε-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.

  15. Design of a centrifugal compressor impeller using multi-objective optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong [Inha University, Incheon (Korea, Republic of); Choi, Jae Ho [Samsung Techwin Co., Ltd., Changwon (Korea, Republic of)

    2009-07-01

    This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with {epsilon}-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.

  16. A multi-objective chaotic particle swarm optimization for environmental/economic dispatch

    International Nuclear Information System (INIS)

    Cai Jiejin; Ma Xiaoqian; Li Qiong; Li Lixiang; Peng Haipeng

    2009-01-01

    A multi-objective chaotic particle swarm optimization (MOCPSO) method has been developed to solve the environmental/economic dipatch (EED) problems considering both economic and environmental issues. The proposed MOCPSO method has been applied in two test power systems. Compared with the conventional multi-objective particle swarm optimization (MOPSO) method, for the compromising minimum fuel cost and emission case, the fuel cost and pollutant emission obtained from MOCPSO method can be reduced about 50.08 $/h and 2.95 kg/h, respectively, in test system 1, about 0.02 $/h and 1.11 kg/h, respectively, in test system 2. The MOCPSO method also results in higher quality solutions for the minimum fuel cost case and the minimum emission case in both of the test power systems. Hence, MOCPSO method can result in great environmental and economic effects. For EED problems, the MOCPSO method is more feasible and more effective alternative approach than the conventional MOPSO method.

  17. Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Lee, K Y

    2009-01-01

    In this paper the state-of-the-art extended particle swarm optimization (PSO) methods for solving multi-objective optimization problems are represented. We emphasize in those, the co-evolution technique of the parallel vector evaluated PSO (VEPSO), analysed and applied in a multi-objective problem...

  18. A multi-objective optimization for brush monofilament tufting process design

    Directory of Open Access Journals (Sweden)

    Ali Salmasnia

    2018-01-01

    Full Text Available This paper addresses the optimization of monofilament tufting process as the most important and the main stage of toothbrush production in sanitary industries. In order to minimize both process time and depreciation costs, and ultimately increase the production efficiency in such an industrial unit, we propose a metaheuristic based optimization approach to solve it. The Traveling Salesman Problem (TSP is used to formulate the proposed problem. Then by using multi-objective evolutionary algorithms, NSGA-II and MOPSO, we seek to obtain the best solution and objective functions described above. Extensive computational experiments on three different kinds of toothbrush handles are performed and the results demonstrate the applicability and appropriate performance of algorithms. The comparison metrics like spacing, number of Pareto solutions, time, mean distance from the ideal solution and diversity are used to evaluate the quality of solutions. Moreover a sensitivity analysis is done for investigation of the performance in various setting of parameters.

  19. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    Science.gov (United States)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Optimal power system generation scheduling by multi-objective genetic algorithms with preferences

    International Nuclear Information System (INIS)

    Zio, E.; Baraldi, P.; Pedroni, N.

    2009-01-01

    Power system generation scheduling is an important issue both from the economical and environmental safety viewpoints. The scheduling involves decisions with regards to the units start-up and shut-down times and to the assignment of the load demands to the committed generating units for minimizing the system operation costs and the emission of atmospheric pollutants. As many other real-world engineering problems, power system generation scheduling involves multiple, conflicting optimization criteria for which there exists no single best solution with respect to all criteria considered. Multi-objective optimization algorithms, based on the principle of Pareto optimality, can then be designed to search for the set of nondominated scheduling solutions from which the decision-maker (DM) must a posteriori choose the preferred alternative. On the other hand, often, information is available a priori regarding the preference values of the DM with respect to the objectives. When possible, it is important to exploit this information during the search so as to focus it on the region of preference of the Pareto-optimal set. In this paper, ways are explored to use this preference information for driving a multi-objective genetic algorithm towards the preferential region of the Pareto-optimal front. Two methods are considered: the first one extends the concept of Pareto dominance by biasing the chromosome replacement step of the algorithm by means of numerical weights that express the DM' s preferences; the second one drives the search algorithm by changing the shape of the dominance region according to linear trade-off functions specified by the DM. The effectiveness of the proposed approaches is first compared on a case study of literature. Then, a nonlinear, constrained, two-objective power generation scheduling problem is effectively tackled

  1. Multi-objective optimization and exergetic-sustainability of an irreversible nano scale Braysson cycle operating with Ma

    Directory of Open Access Journals (Sweden)

    Mohammad H. Ahmadi

    2016-06-01

    Full Text Available Nano technology is developed in this decade and changes the way of life. Moreover, developing nano technology has effect on the performance of the materials and consequently improves the efficiency and robustness of them. So, nano scale thermal cycles will be probably engaged in the near future. In this paper, a nano scale irreversible Braysson cycle is studied thermodynamically for optimizing the performance of the Braysson cycle. In the aforementioned cycle an ideal Maxwell–Boltzmann gas is used as a working fluid. Furthermore, three different plans are used for optimizing with multi-objectives; though, the outputs of the abovementioned plans are assessed autonomously. Throughout the first plan, with the purpose of maximizing the ecological coefficient of performance and energy efficiency of the system, multi-objective optimization algorithms are used. Furthermore, in the second plan, two objective functions containing the ecological coefficient of performance and the dimensionless Maximum available work are maximized synchronously by utilizing multi-objective optimization approach. Finally, throughout the third plan, three objective functions involving the dimensionless Maximum available work, the ecological coefficient of performance and energy efficiency of the system are maximized synchronously by utilizing multi-objective optimization approach. The multi-objective evolutionary approach based on the non-dominated sorting genetic algorithm approach is used in this research. Making a decision is performed by three different decision makers comprising linear programming approaches for multidimensional analysis of preference and an approach for order of preference by comparison with ideal answer and Bellman–Zadeh. Lastly, analysis of error is employed to determine deviation of the outcomes gained from each plan.

  2. Application of evolutionary algorithms for multi-objective optimization in VLSI and embedded systems

    CERN Document Server

    2015-01-01

    This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO, and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing, and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation, and operators like crossover, mutation, etc. can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field ...

  3. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Hamidreza; Najafi, Behzad [K. N. Toosi University of Technology, Department of Mechanical Engineering, Tehran (Iran)

    2010-06-15

    In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project's limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB. (orig.)

  4. Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery

    International Nuclear Information System (INIS)

    Long, Rui; Li, Baode; Liu, Zhichun; Liu, Wei

    2015-01-01

    An optimization analysis of a continuous TREC (thermally regenerative electrochemical cycle) was conducted with maximum power output and exergy efficiency as the objective functions simultaneously. For comparison, the power output, exergy efficiency, and thermal efficiency under the corresponding single-objective optimization schematics were also calculated. Under different optimization methods it was observed that the power output and the thermal efficiency increase with increasing inlet temperature of the heat source, whereas the exergy efficiency increases with increasing inlet temperature, reaches a maximum value, and then decreases. Results revealed that the optimal power output under the multi-objective optimization turned out to be slightly less than that obtained under the single-objective optimization for power output. However, the exergy and thermal efficiencies were much greater. Furthermore, the thermal exergy and exergy efficiency by single-objective optimization for energy efficiency shows no dominant advantage than that obtained under multi-objective optimization, comparing with the increase amplitude of the power output. This suggests that the multi-objective optimization could coordinate well both the power output and the exergy efficiency of the TREC system, and may serve as a more promising guide for operating and designing TREC systems. - Highlights: • An optimal analysis of a continuous TREC is conducted based on multi-objective optimization. • Performance under corresponding single-objective optimizations has also been calculated and compared. • Power under multi-objective optimization is slightly less than the maximum power. • Exergy and thermal efficiencies are much larger than that under the single-objective optimization.

  5. Multi-objective genetic algorithm based innovative wind farm layout optimization method

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Hua; He, Bang; Wang, Pengcheng; Jin, Kai

    2015-01-01

    Highlights: • Innovative optimization procedures for both regular and irregular shape wind farm. • Using real wind condition and commercial wind turbine parameters. • Using multiple-objective genetic algorithm optimization method. • Optimize the selection of different wind turbine types and their hub heights. - Abstract: Layout optimization has become one of the critical approaches to increase power output and decrease total cost of a wind farm. Previous researches have applied intelligent algorithms to optimizing the wind farm layout. However, those wind conditions used in most of previous research are simplified and not accurate enough to match the real world wind conditions. In this paper, the authors propose an innovative optimization method based on multi-objective genetic algorithm, and test it with real wind condition and commercial wind turbine parameters. Four case studies are conducted to investigate the number of wind turbines needed in the given wind farm. Different cost models are also considered in the case studies. The results clearly demonstrate that the new method is able to optimize the layout of a given wind farm with real commercial data and wind conditions in both regular and irregular shapes, and achieve a better result by selecting different type and hub height wind turbines.

  6. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    Science.gov (United States)

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).

  7. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  8. Multi-objective random search algorithm for simultaneously optimizing wind farm layout and number of turbines

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong; Xu, Chang

    2016-01-01

    A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximi...

  9. Multi-objective optimization of a cascade refrigeration system: Exergetic, economic, environmental, and inherent safety analysis

    International Nuclear Information System (INIS)

    Eini, Saeed; Shahhosseini, Hamidreza; Delgarm, Navid; Lee, Moonyong; Bahadori, Alireza

    2016-01-01

    Highlights: • A multi-objective optimization is performed for a cascade refrigeration cycle. • The optimization problem considers inherently safe design as well as 3E analysis. • As a measure of inherent safety level a quantitative risk analysis is utilized. • A CO 2 /NH 3 cascade refrigeration system is compared with a CO 2 /C 3 H 8 system. - Abstract: Inherently safer design is the new approach to maximize the overall safety of a process plant. This approach suggests some risk reduction strategies to be implemented in the early stages of design. In this paper a multi-objective optimization was performed considering economic, exergetic, and environmental aspects besides evaluation of the inherent safety level of a cascade refrigeration system. The capital costs, the processing costs, and the social cost due to CO 2 emission were considered to be included in the economic objective function. Exergetic efficiency of the plant was considered as the second objective function. As a measure of inherent safety level, Quantitative Risk Assessment (QRA) was performed to calculate total risk level of the cascade as the third objective function. Two cases (ammonia and propane) were considered to be compared as the refrigerant of the high temperature circuit. The achieved optimum solutions from the multi–objective optimization process were given as Pareto frontier. The ultimate optimal solution from available solutions on the Pareto optimal curve was selected using Decision-Makings approaches. NSGA-II algorithm was used to obtain Pareto optimal frontiers. Also, three decision-making approaches (TOPSIS, LINMAP, and Shannon’s entropy methods) were utilized to select the final optimum point. Considering continuous material release from the major equipment in the plant, flash and jet fire scenarios were considered for the CO 2 /C 3 H 8 cycle and toxic hazards were considered for the CO 2 /NH 3 cycle. The results showed no significant differences between CO 2 /NH 3 and

  10. Shape optimization of high power centrifugal compressor using multi-objective optimal method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea [School of Mechanical Engineering, Sungkyunkwan University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.

  11. Shape optimization of high power centrifugal compressor using multi-objective optimal method

    International Nuclear Information System (INIS)

    Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea

    2015-01-01

    In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively

  12. Multi-objective optimization of HVAC system with an evolutionary computation algorithm

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Tang, Fan; Xu, Guanglin

    2011-01-01

    A data-mining approach for the optimization of a HVAC (heating, ventilation, and air conditioning) system is presented. A predictive model of the HVAC system is derived by data-mining algorithms, using a dataset collected from an experiment conducted at a research facility. To minimize the energy while maintaining the corresponding IAQ (indoor air quality) within a user-defined range, a multi-objective optimization model is developed. The solutions of this model are set points of the control system derived with an evolutionary computation algorithm. The controllable input variables - supply air temperature and supply air duct static pressure set points - are generated to reduce the energy use. The results produced by the evolutionary computation algorithm show that the control strategy saves energy by optimizing operations of an HVAC system. -- Highlights: → A data-mining approach for the optimization of a heating, ventilation, and air conditioning (HVAC) system is presented. → The data used in the project has been collected from an experiment conducted at an energy research facility. → The approach presented in the paper leads to accomplishing significant energy savings without compromising the indoor air quality. → The energy savings are accomplished by computing set points for the supply air temperature and the supply air duct static pressure.

  13. Multi-objective Optimization of Pulsed Gas Metal Arc Welding Process Using Neuro NSGA-II

    Science.gov (United States)

    Pal, Kamal; Pal, Surjya K.

    2018-05-01

    Weld quality is a critical issue in fabrication industries where products are custom-designed. Multi-objective optimization results number of solutions in the pareto-optimal front. Mathematical regression model based optimization methods are often found to be inadequate for highly non-linear arc welding processes. Thus, various global evolutionary approaches like artificial neural network, genetic algorithm (GA) have been developed. The present work attempts with elitist non-dominated sorting GA (NSGA-II) for optimization of pulsed gas metal arc welding process using back propagation neural network (BPNN) based weld quality feature models. The primary objective to maintain butt joint weld quality is the maximization of tensile strength with minimum plate distortion. BPNN has been used to compute the fitness of each solution after adequate training, whereas NSGA-II algorithm generates the optimum solutions for two conflicting objectives. Welding experiments have been conducted on low carbon steel using response surface methodology. The pareto-optimal front with three ranked solutions after 20th generations was considered as the best without further improvement. The joint strength as well as transverse shrinkage was found to be drastically improved over the design of experimental results as per validated pareto-optimal solutions obtained.

  14. An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Rafał Dreżewski

    2017-08-01

    Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.

  15. Fuzzy preference based interactive fuzzy physical programming and its application in multi-objective optimization

    International Nuclear Information System (INIS)

    Zhang, Xu; Huang, Hong Zhong; Yu, Lanfeng

    2006-01-01

    Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer

  16. A fuzzy multi-objective optimization model for sustainable reverse logistics network design

    DEFF Research Database (Denmark)

    Govindan, Kannan; Paam, Parichehr; Abtahi, Amir Reza

    2016-01-01

    Decreasing the environmental impact, increasing the degree of social responsibility, and considering the economic motivations of organizations are three significant features in designing a reverse logistics network under sustainability respects. Developing a model, which can simultaneously consider...... a multi-echelon multi-period multi-objective model for a sustainable reverse logistics network. To reflect all aspects of sustainability, we try to minimize the present value of costs, as well as environmental impacts, and optimize the social responsibility as objective functions of the model. In order...... these environmental, social, and economic aspects and their indicators, is an important problem for both researchers and practitioners. In this paper, we try to address this comprehensive approach by using indicators for measurement of aforementioned aspects and by applying fuzzy mathematical programming to design...

  17. Aerodynamic multi-objective integrated optimization based on principal component analysis

    Directory of Open Access Journals (Sweden)

    Jiangtao HUANG

    2017-08-01

    Full Text Available Based on improved multi-objective particle swarm optimization (MOPSO algorithm with principal component analysis (PCA methodology, an efficient high-dimension multi-objective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency, the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil, and the proposed method is integrated into aircraft multi-disciplinary design (AMDEsign platform, which contains aerodynamics, stealth and structure weight analysis and optimization module. Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.

  18. Application of Multi-Objective Human Learning Optimization Method to Solve AC/DC Multi-Objective Optimal Power Flow Problem

    Science.gov (United States)

    Cao, Jia; Yan, Zheng; He, Guangyu

    2016-06-01

    This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.

  19. Distributed Generation Planning using Peer Enhanced Multi-objective Teaching-Learning based Optimization in Distribution Networks

    Science.gov (United States)

    Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth

    2017-04-01

    In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.

  20. Multi-objective trajectory optimization of Space Manoeuvre Vehicle using adaptive differential evolution and modified game theory

    Science.gov (United States)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios; Chai, Senchun

    2017-07-01

    Highly constrained trajectory optimization for Space Manoeuvre Vehicles (SMV) is a challenging problem. In practice, this problem becomes more difficult when multiple mission requirements are taken into account. Because of the nonlinearity in the dynamic model and even the objectives, it is usually hard for designers to generate a compromised trajectory without violating strict path and box constraints. In this paper, a new multi-objective SMV optimal control model is formulated and parameterized using combined shooting-collocation technique. A modified game theory approach, coupled with an adaptive differential evolution algorithm, is designed in order to generate the pareto front of the multi-objective trajectory optimization problem. In addition, to improve the quality of obtained solutions, a control logic is embedded in the framework of the proposed approach. Several existing multi-objective evolutionary algorithms are studied and compared with the proposed method. Simulation results indicate that without driving the solution out of the feasible region, the proposed method can perform better in terms of convergence ability and convergence speed than its counterparts. Moreover, the quality of the pareto set generated using the proposed method is higher than other multi-objective evolutionary algorithms, which means the newly proposed algorithm is more attractive for solving multi-criteria SMV trajectory planning problem.

  1. A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures

    Directory of Open Access Journals (Sweden)

    Silvio Rodrigues

    2016-03-01

    Full Text Available Current offshore wind farms (OWFs design processes are based on a sequential approach which does not guarantee system optimality because it oversimplifies the problem by discarding important interdependencies between design aspects. This article presents a framework to integrate, automate and optimize the design of OWF layouts and the respective electrical infrastructures. The proposed framework optimizes simultaneously different goals (e.g., annual energy delivered and investment cost which leads to efficient trade-offs during the design phase, e.g., reduction of wake losses vs collection system length. Furthermore, the proposed framework is independent of economic assumptions, meaning that no a priori values such as the interest rate or energy price, are needed. The proposed framework was applied to the Dutch Borssele areas I and II. A wide range of OWF layouts were obtained through the optimization framework. OWFs with similar energy production and investment cost as layouts designed with standard sequential strategies were obtained through the framework, meaning that the proposed framework has the capability to create different OWF layouts that would have been missed by the designers. In conclusion, the proposed multi-objective optimization framework represents a mind shift in design tools for OWFs which allows cost savings in the design and operation phases.

  2. A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty

    Science.gov (United States)

    Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin

    2015-06-01

    The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.

  3. An improved fast and elitist multi-objective genetic algorithm-ANSGA-II for multi-objective optimization of inverse radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Cao Ruifen; Li Guoli; Song Gang; Zhao Pan; Lin Hui; Wu Aidong; Huang Chenyu; Wu Yican

    2007-01-01

    Objective: To provide a fast and effective multi-objective optimization algorithm for inverse radiotherapy treatment planning system. Methods: Non-dominated Sorting Genetic Algorithm-NSGA-II is a representative of multi-objective evolutionary optimization algorithms and excels the others. The paper produces ANSGA-II that makes use of advantage of NSGA-II, and uses adaptive crossover and mutation to improve its flexibility; according the character of inverse radiotherapy treatment planning, the paper uses the pre-known knowledge to generate individuals of every generation in the course of optimization, which enhances the convergent speed and improves efficiency. Results: The example of optimizing average dose of a sheet of CT, including PTV, OAR, NT, proves the algorithm could find satisfied solutions in several minutes. Conclusions: The algorithm could provide clinic inverse radiotherapy treatment planning system with selection of optimization algorithms. (authors)

  4. Interactive Approach for Multi-Level Multi-Objective Fractional Programming Problems with Fuzzy Parameters

    Directory of Open Access Journals (Sweden)

    M.S. Osman

    2018-03-01

    Full Text Available In this paper, an interactive approach for solving multi-level multi-objective fractional programming (ML-MOFP problems with fuzzy parameters is presented. The proposed interactive approach makes an extended work of Shi and Xia (1997. In the first phase, the numerical crisp model of the ML-MOFP problem has been developed at a confidence level without changing the fuzzy gist of the problem. Then, the linear model for the ML-MOFP problem is formulated. In the second phase, the interactive approach simplifies the linear multi-level multi-objective model by converting it into separate multi-objective programming problems. Also, each separate multi-objective programming problem of the linear model is solved by the ∊-constraint method and the concept of satisfactoriness. Finally, illustrative examples and comparisons with the previous approaches are utilized to evince the feasibility of the proposed approach.

  5. Low emittance lattice optimization using a multi-objective evolutionary algorithm

    International Nuclear Information System (INIS)

    Gao Weiwei; Wang Lin; Li Weimin; He Duohui

    2011-01-01

    A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)

  6. Multi-objective optimization with estimation of distribution algorithm in a noisy environment.

    Science.gov (United States)

    Shim, Vui Ann; Tan, Kay Chen; Chia, Jun Yong; Al Mamun, Abdullah

    2013-01-01

    Many real-world optimization problems are subjected to uncertainties that may be characterized by the presence of noise in the objective functions. The estimation of distribution algorithm (EDA), which models the global distribution of the population for searching tasks, is one of the evolutionary computation techniques that deals with noisy information. This paper studies the potential of EDAs; particularly an EDA based on restricted Boltzmann machines that handles multi-objective optimization problems in a noisy environment. Noise is introduced to the objective functions in the form of a Gaussian distribution. In order to reduce the detrimental effect of noise, a likelihood correction feature is proposed to tune the marginal probability distribution of each decision variable. The EDA is subsequently hybridized with a particle swarm optimization algorithm in a discrete domain to improve its search ability. The effectiveness of the proposed algorithm is examined via eight benchmark instances with different characteristics and shapes of the Pareto optimal front. The scalability, hybridization, and computational time are rigorously studied. Comparative studies show that the proposed approach outperforms other state of the art algorithms.

  7. Ensemble-based hierarchical multi-objective production optimization of smart wells

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Van den Hof, P.M.J.; Jansen, J.D.

    2014-01-01

    In an earlier study two hierarchical multi-objective methods were suggested to include short-term targets in life-cycle production optimization. However this earlier study has two limitations: 1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access

  8. Analysis of Various Multi-Objective Optimization Evolutionary Algorithms for Monte Carlo Treatment Planning System

    CERN Document Server

    Tydrichova, Magdalena

    2017-01-01

    In this project, various available multi-objective optimization evolutionary algorithms were compared considering their performance and distribution of solutions. The main goal was to select the most suitable algorithms for applications in cancer hadron therapy planning. For our purposes, a complex testing and analysis software was developed. Also, many conclusions and hypothesis have been done for the further research.

  9. Design of homo-organic acid producing strains using multi-objective optimization

    DEFF Research Database (Denmark)

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk

    2015-01-01

    Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic ...

  10. Optimization of Combined Thermal and Electrical Behavior of Power Converters Using Multi-Objective Genetic Algorithms

    NARCIS (Netherlands)

    Malyna, D.V.; Duarte, J.L.; Hendrix, M.A.M.; Horck, van F.B.M.

    2007-01-01

    A practical example of power electronic converter synthesis is presented, where a multi-objective genetic algorithm, namely non-dominated sorting genetic algorithm (NSGA-II) is used. The optimization algorithm takes an experimentally-derived thermal model for the converter into account. Experimental

  11. A Multi-objective Optimization Application in Friction Stir Welding: Considering Thermo-mechanical Aspects

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2010-01-01

    speed and traverse welding speed have been sought in order to achieve the goals mentioned above using an evolutionary multi-objective optimization (MOO) algorithm, i.e. non-dominated sorting genetic algorithm (NSGA-II), integrated with a transient, 2-dimensional sequentially coupled thermomechanical...

  12. Multi-objective optimization of a joule cycle for re-liquefaction of the Liquefied Natural Gas

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Babaelahi, M.

    2011-01-01

    Highlights: → A typical LNG boil off gas re-liquefaction plant system is optimized. → Objective functions based on thermodynamic and thermoeconomic analysis are obtained. → The cost of the system product and the exergetic efficiency are optimized, simultaneously. → A decision-making process for selection of the final optimal design is introduced. → Results obtained using various optimization scenarios are compared and discussed. - Abstract: A LNG re-liquefaction plant is optimized with a multi-objective approach which simultaneously considers exergetic and exergoeconomic objectives. In this regard, optimization is performed in order to maximize the exergetic efficiency of plant and minimize the unit cost of the system product (refrigeration effect), simultaneously. Thermodynamic modeling is performed based on energy and exergy analyses, while an exergoeconomic model based on the total revenue requirement (TRR) are developed. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms namely NSGA-II. This approach which is based on the Genetic Algorithm is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained and a final optimal solution is selected in a decision-making process. An example of decision-making process for selection of the final solution from the available optimal points of the Pareto frontier is presented here. The feature of selected final optimal system is compared with corresponding features of the base case and exergoeconomic single-objective optimized systems and discussed.

  13. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    International Nuclear Information System (INIS)

    Pang, X.; Rybarcyk, L.J.

    2014-01-01

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster

  14. Grey Relational Analyses for Multi-Objective Optimization of Turning S45C Carbon Steel

    International Nuclear Information System (INIS)

    Shah, A.H.A.; Azmi, A.I.; Khalil, A.N.M.

    2016-01-01

    The optimization of performance characteristics in turning process can be achieved through selection of proper machining parameters. It is well known that many researchers have successfully reported the optimization of single performance characteristic. Nevertheless, the multi-objective optimization can be difficult and challenging to be studied due to its complexity in analysis. This is because an improvement of one performance characteristic may lead to degradation of other performance characteristic. As a result, the study of multi-objective optimization in CNC turning of S45C carbon steel has been attempted in this paper through Taguchi and Grey Relational Analysis (GRA) method. Through this methodology, the multiple performance characteristics, namely; surface roughness, material removal rate (MRR), tool wear, and power consumption; can be optimized simultaneously. It appears from the experimental results that the multiple performance characteristics in CNC turning was achieved and improved through the methodology employed. (paper)

  15. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    Energy Technology Data Exchange (ETDEWEB)

    Pang, X., E-mail: xpang@lanl.gov; Rybarcyk, L.J.

    2014-03-21

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster.

  16. Multi-Objective Two-Dimensional Truss Optimization by using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Harun Alrasyid

    2011-05-01

    Full Text Available During last three decade, many mathematical programming methods have been develop for solving optimization problems. However, no single method has been found to be entirely efficient and robust for the wide range of engineering optimization problems. Most design application in civil engineering involve selecting values for a set of design variables that best describe the behavior and performance of the particular problem while satisfying the requirements and specifications imposed by codes of practice. The introduction of Genetic Algorithm (GA into the field of structural optimization has opened new avenues for research because they have been successful applied while traditional methods have failed. GAs is efficient and broadly applicable global search procedure based on stochastic approach which relies on “survival of the fittest” strategy. GAs are search algorithms that are based on the concepts of natural selection and natural genetics. On this research Multi-objective sizing and configuration optimization of the two-dimensional truss has been conducted using a genetic algorithm. Some preliminary runs of the GA were conducted to determine the best combinations of GA parameters such as population size and probability of mutation so as to get better scaling for rest of the runs. Comparing the results from sizing and sizing– configuration optimization, can obtained a significant reduction in the weight and deflection. Sizing–configuration optimization produces lighter weight and small displacement than sizing optimization. The results were obtained by using a GA with relative ease (computationally and these results are very competitive compared to those obtained from other methods of truss optimization.

  17. A novel approach for optimum allocation of FACTS devices using multi-objective function

    International Nuclear Information System (INIS)

    Gitizadeh, M.; Kalantar, M.

    2009-01-01

    This paper presents a novel approach to find optimum type, location, and capacity of flexible alternating current transmission systems (FACTS) devices in a power system using a multi-objective optimization function. Thyristor controlled series compensator (TCSC) and static var compensator (SVC) are utilized to achieve these objectives: active power loss reduction, new introduced FACTS devices cost reduction, increase the robustness of the security margin against voltage collapse, and voltage deviation reduction. The operational and controlling constraints as well as load constraints are considered in the optimum allocation procedure. Here, a goal attainment method based on simulated annealing is used to approach the global optimum. In addition, the estimated annual load profile has been utilized to the optimum siting and sizing of FACTS devices to approach a practical solution. The standard IEEE 14-bus test system is used to validate the performance and effectiveness of the proposed method

  18. Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2014-10-01

    Full Text Available A comprehensive thermodynamic study is conducted of a diesel based Combined Heat and Power (CHP system, based on a diesel engine and an Organic Rankine Cycle (ORC. Present research covers both energy and exergy analyses along with a multi-objective optimization. In order to determine the irreversibilities in each component of the CHP system and assess the system performance, a complete parametric study is performed to investigate the effects of major design parameters and operating conditions on the system’s performance. The main contribution of the current research study is to conduct both exergy and multi-objective optimization of a system using different working fluid for low-grade heat recovery. In order to conduct the evolutionary based optimization, two objective functions are considered in the optimization; namely the system exergy efficiency, and the total cost rate of the system, which is a combination of the cost associated with environmental impact and the purchase cost of each component. Therefore, in the optimization approach, the overall cycle exergy efficiency is maximized satisfying several constraints while the total cost rate of the system is minimized. To provide a better understanding of the system under study, the Pareto frontier is shown for multi-objective optimization and also an equation is derived to fit the optimized point. In addition, a closed form relationship between exergy efficiency and total cost rate is derived.

  19. Multi-Objective Optimization of Squeeze Casting Process using Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Patel G.C.M.

    2016-09-01

    Full Text Available The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.. It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA, particle swarm optimization (PSO and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.

  20. Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs

    Directory of Open Access Journals (Sweden)

    Jiajun Liu

    2017-10-01

    Full Text Available Energy storage systems (ESS play an important role in the performance of mining vehicles. A hybrid ESS combining both batteries (BTs and supercapacitors (SCs is one of the most promising solutions. As a case study, this paper discusses the optimal hybrid ESS sizing and energy management strategy (EMS of 14-ton underground load-haul-dump vehicles (LHDs. Three novel contributions are added to the relevant literature. First, a multi-objective optimization is formulated regarding energy consumption and the total cost of a hybrid ESS, which are the key factors of LHDs, and a battery capacity degradation model is used. During the process, dynamic programming (DP-based EMS is employed to obtain the optimal energy consumption and hybrid ESS power profiles. Second, a 10-year life cycle cost model of a hybrid ESS for LHDs is established to calculate the total cost, including capital cost, operating cost, and replacement cost. According to the optimization results, three solutions chosen from the Pareto front are compared comprehensively, and the optimal one is selected. Finally, the optimal and battery-only options are compared quantitatively using the same objectives, and the hybrid ESS is found to be a more economical and efficient option.

  1. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Science.gov (United States)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  2. A Global Multi-Objective Optimization Tool for Design of Mechatronic Components using Generalized Differential Evolution

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Nørgård, Christian; Roemer, Daniel Beck

    2016-01-01

    This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri-objectiv......This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri...... different optimization control parameter settings and it is concluded that GDE3 is a reliable optimization tool that can assist mechatronic engineers in the design and decision making process....

  3. Intersection signal control multi-objective optimization based on genetic algorithm

    OpenAIRE

    Zhanhong Zhou; Ming Cai

    2014-01-01

    A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at ...

  4. MULTI-OBJECTIVE OPTIMAL NUMBER AND LOCATION FOR STEEL OUTRIGGER-BELT TRUSS SYSTEM

    OpenAIRE

    MEHDI BABAEI

    2017-01-01

    During the past two decades, outrigger-belt truss system has been investigated and used in design of tall buildings. Most of the studies focused on the optimization of the system for minimum displacement and some of them proposed the best locations. In this study, however, multi-objective optimization of tall steel frames with belt trusses is investigated to minimize displacement and weight of the structure. For this purpose, structures with 20, 30, 40, and 50 stories are considered as ...

  5. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  6. Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Qin Hui [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou Jianzhong, E-mail: jz.zhou@hust.edu.c [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Youlin; Wang Ying; Zhang Yongchuan [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-04-15

    A new multi-objective optimization method based on differential evolution with adaptive Cauchy mutation (MODE-ACM) is presented to solve short-term multi-objective optimal hydro-thermal scheduling (MOOHS) problem. Besides fuel cost, the pollutant gas emission is also optimized as an objective. The water transport delay between connected reservoirs and the effect of valve-point loading of thermal units are also taken into account in the presented problem formulation. The proposed algorithm adopts an elitist archive to retain non-dominated solutions obtained during the evolutionary process. It modifies the DE's operators to make it suit for multi-objective optimization (MOO) problems and improve its performance. Furthermore, to avoid premature convergence, an adaptive Cauchy mutation is proposed to preserve the diversity of population. An effective constraints handling method is utilized to handle the complex equality and inequality constraints. The effectiveness of the proposed algorithm is tested on a hydro-thermal system consisting of four cascaded hydro plants and three thermal units. The results obtained by MODE-ACM are compared with several previous studies. It is found that the results obtained by MODE-ACM are superior in terms of fuel cost as well as emission output, consuming a shorter time. Thus it can be a viable alternative to generate optimal trade-offs for short-term MOOHS problem.

  7. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling

    DEFF Research Database (Denmark)

    Soares, Joao; Vale, Zita; Canizes, Bruno

    2013-01-01

    This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle-To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming...... to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow...

  8. Multi objective genetic algorithm to optimize the local heat treatment of a hardenable aluminum alloy

    Science.gov (United States)

    Piccininni, A.; Palumbo, G.; Franco, A. Lo; Sorgente, D.; Tricarico, L.; Russello, G.

    2018-05-01

    The continuous research for lightweight components for transport applications to reduce the harmful emissions drives the attention to the light alloys as in the case of Aluminium (Al) alloys, capable to combine low density with high values of the strength-to-weight ratio. Such advantages are partially counterbalanced by the poor formability at room temperature. A viable solution is to adopt a localized heat treatment by laser of the blank before the forming process to obtain a tailored distribution of material properties so that the blank can be formed at room temperature by means of conventional press machines. Such an approach has been extensively investigated for age hardenable alloys, but in the present work the attention is focused on the 5000 series; in particular, the optimization of the deep drawing process of the alloy AA5754 H32 is proposed through a numerical/experimental approach. A preliminary investigation was necessary to correctly tune the laser parameters (focus length, spot dimension) to effectively obtain the annealed state. Optimal process parameters were then obtained coupling a 2D FE model with an optimization platform managed by a multi-objective genetic algorithm. The optimal solution (i.e. able to maximize the LDR) in terms of blankholder force and extent of the annealed region was thus evaluated and validated through experimental trials. A good matching between experimental and numerical results was found. The optimal solution allowed to obtain an LDR of the locally heat treated blank larger than the one of the material either in the wrought condition (H32) either in the annealed condition (H111).

  9. Multi-objective genetic algorithm optimization of 2D- and 3D-Pareto fronts for vibrational quantum processes

    International Nuclear Information System (INIS)

    Gollub, C; De Vivie-Riedle, R

    2009-01-01

    A multi-objective genetic algorithm is applied to optimize picosecond laser fields, driving vibrational quantum processes. Our examples are state-to-state transitions and unitary transformations. The approach allows features of the shaped laser fields and of the excitation mechanisms to be controlled simultaneously with the quantum yield. Within the parameter range accessible to the experiment, we focus on short pulse durations and low pulse energies to optimize preferably robust laser fields. Multidimensional Pareto fronts for these conflicting objectives could be constructed. Comparison with previous work showed that the solutions from Pareto optimizations and from optimal control theory match very well.

  10. Multi-objective optimization problems concepts and self-adaptive parameters with mathematical and engineering applications

    CERN Document Server

    Lobato, Fran Sérgio

    2017-01-01

    This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.

  11. Multi objective optimization of horizontal axis tidal current turbines, using Meta heuristics algorithms

    International Nuclear Information System (INIS)

    Tahani, Mojtaba; Babayan, Narek; Astaraei, Fatemeh Razi; Moghadam, Ali

    2015-01-01

    Highlights: • The performance of four different Meta heuristic optimization algorithms was studied. • Power coefficient and produced torque on stationary blade were selected as objective functions. • Chord and twist distributions were selected as decision variables. • All optimization algorithms were combined with blade element momentum theory. • The best Pareto front was obtained by multi objective flower pollination algorithm for HATCTs. - Abstract: The performance of horizontal axis tidal current turbines (HATCT) strongly depends on their geometry. According to this fact, the optimum performance will be achieved by optimized geometry. In this research study, the multi objective optimization of the HATCT is carried out by using four different multi objective optimization algorithms and their performance is evaluated in combination with blade element momentum theory (BEM). The second version of non-dominated sorting genetic algorithm (NSGA-II), multi objective particle swarm optimization algorithm (MOPSO), multi objective cuckoo search algorithm (MOCS) and multi objective flower pollination algorithm (MOFPA) are the selected algorithms. The power coefficient and the produced torque on stationary blade are selected as objective functions and chord and twist distributions along the blade span are selected as decision variables. These algorithms are combined with the blade element momentum (BEM) theory for the purpose of achieving the best Pareto front. The obtained Pareto fronts are compared with each other. Different sets of experiments are carried out by considering different numbers of iterations, population size and tip speed ratios. The Pareto fronts which are achieved by MOFPA and NSGA-II have better quality in comparison to MOCS and MOPSO, but on the other hand a detail comparison between the first fronts of MOFPA and NSGA-II indicated that MOFPA algorithm can obtain the best Pareto front and can maximize the power coefficient up to 4.3% and the

  12. Multi-objective optimization of Stirling engine using Finite Physical Dimensions Thermodynamics (FPDT) method

    International Nuclear Information System (INIS)

    Li, Ruijie; Grosu, Lavinia; Queiros-Conde, Diogo

    2016-01-01

    Highlights: • A gamma Stirling engine has been optimized using FPDT method by multi-objective criteria. • Genetic algorithm and decision making methods were used to get Pareto frontier and optimum points. • It shows: total thermal conductance, hot temperature, stroke and diameter ratios can be improved. - Abstract: In this paper, a solar energy powered gamma type SE has been optimized using Finite Physical Dimensions Thermodynamics (FPDT) method by multi-objective criteria. Genetic algorithm was used to get the Pareto frontier, and optimum points were obtained using the decision making methods of LINMAP and TOPSIS. The optimization results have been compared with those obtained using the ecological method. It was shown that the multi-objective optimization in this paper has a better balance among the optimizing criteria (maximum mechanical power, maximum thermal efficiency and minimum entropy generation flow). The effects of the hot source temperature and the total thermal conductance of the engine on the Pareto frontier have been also studied. This sensibility study shows that an increase in the hot reservoir temperature can increase the output mechanical power, the thermal efficiency of the engine, but also the entropy generation rate. In addition to this, an increase of the total thermal conductance of the engine can strongly increase the output mechanical power and only slightly increase the thermal efficiency. These results allow us to improve the engine performance after some modifications as geometrical dimensions (diameter, stroke, heat exchange surface, etc.) and physical parameters (temperature, thermal conductivity).

  13. Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-07-01

    Full Text Available Carbon Dioxide Removal Assembly (CDRA is one of the most important systems in the Environmental Control and Life Support System (ECLSS for a manned spacecraft. With the development of adsorbent and CDRA technology, solid amine is increasingly paid attention due to its obvious advantages. However, a manned spacecraft is launched far from the Earth, and its resources and energy are restricted seriously. These limitations increase the design difficulty of solid amine CDRA. The purpose of this paper is to seek optimal design parameters for the solid amine CDRA. Based on a preliminary structure of solid amine CDRA, its heat and mass transfer models are built to reflect some features of the special solid amine adsorbent, Polyethylenepolyamine adsorbent. A multi-objective optimization for the design of solid amine CDRA is discussed further in this paper. In this study, the cabin CO2 concentration, system power consumption and entropy production are chosen as the optimization objectives. The optimization variables consist of adsorption cycle time, solid amine loading mass, adsorption bed length, power consumption and system entropy production. The Improved Non-dominated Sorting Genetic Algorithm (NSGA-II is used to solve this multi-objective optimization and to obtain optimal solution set. A design example of solid amine CDRA in a manned space station is used to show the optimal procedure. The optimal combinations of design parameters can be located on the Pareto Optimal Front (POF. Finally, Design 971 is selected as the best combination of design parameters. The optimal results indicate that the multi-objective optimization plays a significant role in the design of solid amine CDRA. The final optimal design parameters for the solid amine CDRA can guarantee the cabin CO2 concentration within the specified range, and also satisfy the requirements of lightweight and minimum energy consumption.

  14. Multi-objective optimization for generating a weighted multi-model ensemble

    Science.gov (United States)

    Lee, H.

    2017-12-01

    Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic

  15. Multi-objective and multi-criteria optimization for power generation expansion planning with CO2 mitigation in Thailand

    Directory of Open Access Journals (Sweden)

    Kamphol Promjiraprawat

    2013-06-01

    Full Text Available In power generation expansion planning, electric utilities have encountered the major challenge of environmental awareness whilst being concerned with budgetary burdens. The approach for selecting generating technologies should depend on economic and environmental constraint as well as externalities. Thus, the multi-objective optimization becomes a more attractive approach. This paper presents a hybrid framework of multi-objective optimization and multi-criteria decision making to solve power generation expansion planning problems in Thailand. In this paper, CO2 emissions and external cost are modeled as a multi-objective optimization problem. Then the analytic hierarchy process is utilized to determine thecompromised solution. For carbon capture and storage technology, CO2 emissions can be mitigated by 74.7% from the least cost plan and leads to the reduction of the external cost of around 500 billion US dollars over the planning horizon. Results indicate that the proposed approach provides optimum cost-related CO2 mitigation plan as well as external cost.

  16. Multi-objective PSO based optimal placement of solar power DG in radial distribution system

    Directory of Open Access Journals (Sweden)

    Mahesh Kumar

    2017-06-01

    Full Text Available Ever increasing trend of electricity demand, fossil fuel depletion and environmental issues request the integration of renewable energy into the distribution system. The optimal planning of renewable distributed generation (DG is much essential for ensuring maximum benefits. Hence, this paper proposes the optimal placement of probabilistic based solar power DG into the distribution system. The two objective functions such as power loss reduction and voltage stability index improvement are optimized. The power balance and voltage limits are kept as constraints of the problem. The non-sorting pare to-front based multi-objective particle swarm optimization (MOPSO technique is proposed on standard IEEE 33 radial distribution test system.

  17. Enhancing State-of-the-art Multi-objective Optimization Algorithms by Applying Domain Specific Operators

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    optimization problems where the environment does not change dynamically. For that reason, the requirement for convergence in static optimization problems is not as timecritical as for dynamic optimization problems. Most MOEAs use generic variables and operators that scale to static multi-objective optimization...... problem. The domain specific operators only encode existing knowledge about the environment. A comprehensive comparative study is provided to evaluate the results of applying the CONTROLEUM-GA compared to NSGAII, e-NSGAII and e- MOEA. Experimental results demonstrate clear improvements in convergence time...

  18. A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning

    Science.gov (United States)

    Basdekas, L.; Stewart, N.; Triana, E.

    2013-12-01

    Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU

  19. Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem

    Science.gov (United States)

    Omagari, Hiroki; Higashino, Shin-Ichiro

    2018-04-01

    In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.

  20. Multi-objective optimization of linear multi-state multiple sliding window system

    International Nuclear Information System (INIS)

    Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory

    2012-01-01

    This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.

  1. Portfolio optimization using fundamental indicators based on multi-objective EA

    CERN Document Server

    Silva, Antonio Daniel; Horta, Nuno

    2016-01-01

    This work presents a new approach to portfolio composition in the stock market. It incorporates a fundamental approach using financial ratios and technical indicators with a Multi-Objective Evolutionary Algorithms to choose the portfolio composition with two objectives the return and the risk. Two different chromosomes are used for representing different investment models with real constraints equivalents to the ones faced by managers of mutual funds, hedge funds, and pension funds. To validate the present solution two case studies are presented for the SP&500 for the period June 2010 until end of 2012. The simulations demonstrates that stock selection based on financial ratios is a combination that can be used to choose the best companies in operational terms, obtaining returns above the market average with low variances in their returns. In this case the optimizer found stocks with high return on investment in a conjunction with high rate of growth of the net income and a high profit margin. To obtain s...

  2. Economic planning for electric energy systems: a multi objective linearized approach for solution

    International Nuclear Information System (INIS)

    Mata Medeiros Branco, T. da.

    1986-01-01

    The economic planning problem associated to the expansion and operation of electrical power systems is considered in this study, represented for a vectorial objective function in which the minimization of resources involved and maximization of attended demand constitute goals to be satisfied. Supposing all the variables involved with linear characteristic and considering the conflict existing among the objectives to be achieved, in order to find a solution, a multi objective linearized approach is proposed. This approximation utilizes the compromise programming technique and linear programming methods. Generation and transmission are simultaneously considered into the optimization process in which associated losses and the capacity of each line are included. Illustrated examples are also presented with results discussed. (author)

  3. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Yan, Zhequan; Wang, Man; Li, Maoqing; Dai, Yiping

    2013-01-01

    Highlights: • Multi-objective optimization of an ORC is conducted to obtain optimum performance. • NSGA-II is employed to solve this multi-objective optimization problem. • The effects of parameters on the exergy efficiency and capital cost are examined. - Abstract: Organic Rankine cycle (ORC) can effectively recover low grade waste heat due to its excellent thermodynamic performance. Based on the examinations of the effects of key thermodynamic parameters on the exergy efficiency and overall capital cost, multi-objective optimization of the ORC with R134a as working fluid is conducted to achieve the system optimization design from both thermodynamic and economic aspects using Non-dominated sorting genetic algorithm-II (NSGA-II). The exergy efficiency and overall capital cost are selected as two objective functions to maximize the exergy efficiency and minimize the overall capital cost under the given waste heat conditions. Turbine inlet pressure, turbine inlet temperature, pinch temperature difference, approach temperature difference and condenser temperature difference are selected as the decision variables owing to their significant effects on the exergy efficiency and overall capital cost. A Pareto frontier obtained shows that an increase in the exergy efficiency can increase the overall capital cost of the ORC system. The optimum design solution with their corresponding decision variables is selected from the Pareto frontier. The optimum exergy efficiency and overall capital cost are 13.98% and 129.28 × 10 4 USD, respectively, under the given waste heat conditions

  4. Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies

    International Nuclear Information System (INIS)

    Safari, Jalal

    2012-01-01

    This paper proposes a variant of the Non-dominated Sorting Genetic Algorithm (NSGA-II) to solve a novel mathematical model for multi-objective redundancy allocation problems (MORAP). Most researchers about redundancy allocation problem (RAP) have focused on single objective optimization, while there has been some limited research which addresses multi-objective optimization. Also all mathematical multi-objective models of general RAP assume that the type of redundancy strategy for each subsystem is predetermined and known a priori. In general, active redundancy has traditionally received greater attention; however, in practice both active and cold-standby redundancies may be used within a particular system design. The choice of redundancy strategy then becomes an additional decision variable. Thus, the proposed model and solution method are to select the best redundancy strategy, type of components, and levels of redundancy for each subsystem that maximizes the system reliability and minimize total system cost under system-level constraints. This problem belongs to the NP-hard class. This paper presents a second-generation Multiple-Objective Evolutionary Algorithm (MOEA), named NSGA-II to find the best solution for the given problem. The proposed algorithm demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker (DM) with a complete picture of the optimal solution space. After finding the Pareto front, a procedure is used to select the best solution from the Pareto front. Finally, the advantages of the presented multi-objective model and of the proposed algorithm are illustrated by solving test problems taken from the literature and the robustness of the proposed NSGA-II is discussed.

  5. A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Szöllös, A.; Šístek, Jakub

    2010-01-01

    Roč. 41, 7-8 (2010), s. 1031-1057 ISSN 0965-9978 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : multi-objective optimization * micro-genetic algorithm * diversity * Pareto archive Subject RIV: BA - General Mathematics Impact factor: 1.004, year: 2010 http://www.sciencedirect.com/science/article/pii/S0965997810000451

  6. Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory

    OpenAIRE

    M. Amiri; M. Zandieh; A. Alimi

    2012-01-01

    Mutual fund is one of the most popular techniques for many people to invest their funds where a professional fund manager invests people's funds based on some special predefined objectives; therefore, performance evaluation of mutual funds is an important problem. This paper proposes a multi-objective portfolio optimization to offer asset allocation. The proposed model clusters mutual funds with two methods based on six characteristics including rate of return, variance, semivariance, turnove...

  7. A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Szöllös, A.; Šístek, Jakub

    2010-01-01

    Roč. 41, 7-8 (2010), s. 1031-1057 ISSN 0965-9978 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : multi-objective optimization * micro- genetic algorithm * diversity * Pareto archive Subject RIV: BA - General Mathematics Impact factor: 1.004, year: 2010 http://www.sciencedirect.com/science/article/pii/S0965997810000451

  8. Multi-objective room acoustic optimization of timber folded plate structure

    DEFF Research Database (Denmark)

    Skov, Rasmus; Parigi, Dario; Damkilde, Lars

    2017-01-01

    This paper investigates the application of multi-objective optimization in the design of timber folded plate structures in the scope of the architectural design process. Considering contrasting objectives of structural displacement, early decay time (EDT), clarity (C50) and sound strength (G......), the methodology applied in two benchmarks tests, encompasses both structural and acoustic performance when determining folding characteristics and directionality of surfaces in a timber folded plate structure....

  9. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    International Nuclear Information System (INIS)

    Bellary, Sayed Ahmed Imran; Samad, Abdus; Husain, Afzal

    2014-01-01

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  10. Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles

    International Nuclear Information System (INIS)

    Xu, Liangfei; Mueller, Clemens David; Li, Jianqiu; Ouyang, Minggao; Hu, Zunyan

    2015-01-01

    Highlights: • A non-linear model regarding fuel economy and system durability of FCEV. • A two-step algorithm for a quasi-optimal solution to a multi-objective problem. • Optimal parameters for DP algorithm considering accuracy and calculating time. • Influences of FC power and battery capacity on system performance. - Abstract: A typical topology of a proton electrolyte membrane (PEM) fuel cell electric vehicle contains at least two power sources, a fuel cell system (FCS) and a lithium battery package. The FCS provides stationary power, and the battery delivers dynamic power. In this paper, we report on the multi-objective optimization problem of powertrain parameters for a pre-defined driving cycle regarding fuel economy and system durability. We introduce the dynamic model for the FCEV. We take into consideration equations not only for fuel economy but also for system durability. In addition, we define a multi-objective optimization problem, and find a quasi-optimal solution using a two-loop framework. In the inside loop, for each group of powertrain parameters, a global optimal energy management strategy based on dynamic programming (DP) is exploited. We optimize coefficients for the DP algorithm to reduce calculating time as well as to maintain accuracy. For the outside loop, we compare the results of all the groups with each other, and choose the Pareto optimal solution based on a compromise of fuel economy and system durability. Simulation results show that for a “China city bus typical cycle,” a battery capacity of 150 Ah and an FCS maximal net output power of 40 kW are optimal for the fuel economy and system durability of a fuel cell city bus.

  11. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    Energy Technology Data Exchange (ETDEWEB)

    Bellary, Sayed Ahmed Imran; Samad, Abdus [Indian Institute of Technology Madras, Chennai (India); Husain, Afzal [Sultan Qaboos University, Al-Khoudh (Oman)

    2014-12-15

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  12. Quantitative Trait Loci Mapping Problem: An Extinction-Based Multi-Objective Evolutionary Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Nicholas S. Flann

    2013-09-01

    Full Text Available The Quantitative Trait Loci (QTL mapping problem aims to identify regions in the genome that are linked to phenotypic features of the developed organism that vary in degree. It is a principle step in determining targets for further genetic analysis and is key in decoding the role of specific genes that control quantitative traits within species. Applications include identifying genetic causes of disease, optimization of cross-breeding for desired traits and understanding trait diversity in populations. In this paper a new multi-objective evolutionary algorithm (MOEA method is introduced and is shown to increase the accuracy of QTL mapping identification for both independent and epistatic loci interactions. The MOEA method optimizes over the space of possible partial least squares (PLS regression QTL models and considers the conflicting objectives of model simplicity versus model accuracy. By optimizing for minimal model complexity, MOEA has the advantage of solving the over-fitting problem of conventional PLS models. The effectiveness of the method is confirmed by comparing the new method with Bayesian Interval Mapping approaches over a series of test cases where the optimal solutions are known. This approach can be applied to many problems that arise in analysis of genomic data sets where the number of features far exceeds the number of observations and where features can be highly correlated.

  13. A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems

    NARCIS (Netherlands)

    Hamdy, M.; Nguyen, A.T. (Anh Tuan); Hensen, J.L.M.

    2016-01-01

    Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently. Many multi-objective optimization algorithms have been developed; however few of them are tested in solving building design

  14. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization

    Science.gov (United States)

    Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong

    2018-05-01

    A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.

  15. Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization.

    Science.gov (United States)

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.

  16. Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2017-01-01

    Highlights: • Efficient multi-objective optimization algorithm F-YYPO demonstrated. • Three Stirling engine applications with a total of eight cases. • Improvements in the objective function values of up to 30%. • Superior to the popularly used gamultiobj of MATLAB. • F-YYPO has extremely low time complexity. - Abstract: In this work, we demonstrate the performance of Front-based Yin-Yang-Pair Optimization (F-YYPO) to solve multi-objective problems related to Stirling engine systems. The performance of F-YYPO is compared with that of (i) a recently proposed multi-objective optimization algorithm (Multi-Objective Grey Wolf Optimizer) and (ii) an algorithm popularly employed in literature due to its easy accessibility (MATLAB’s inbuilt multi-objective Genetic Algorithm function: gamultiobj). We consider three Stirling engine based optimization problems: (i) the solar-dish Stirling engine system which considers objectives of output power, thermal efficiency and rate of entropy generation; (ii) Stirling engine thermal model which considers the associated irreversibility of the cycle with objectives of output power, thermal efficiency and pressure drop; and finally (iii) an experimentally validated polytropic finite speed thermodynamics based Stirling engine model also with objectives of output power and pressure drop. We observe F-YYPO to be significantly more effective as compared to its competitors in solving the problems, while requiring only a fraction of the computational time required by the other algorithms.

  17. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.

    2017-07-01

    The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world

  18. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    Directory of Open Access Journals (Sweden)

    Muhammad Hashim

    2017-05-01

    Full Text Available Purpose:  The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM. Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM with fuzzy coefficients constructed in present research should be helpful for

  19. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    International Nuclear Information System (INIS)

    Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.

    2017-01-01

    The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world

  20. Polar vessel hullform design based on the multi-objective optimization NSGA II

    Directory of Open Access Journals (Sweden)

    DUAN Fei

    2017-12-01

    Full Text Available [Objectives] With the increasing exploitation of the Arctic abundant oil and gas resources, a large number of ships which meet the polar navigational requirements are needed.[Methods] In this paper, the fast elitist Non-Dominated Sorting Genetic Algorithm (NSGA Ⅱ is applied to the hull optimization, and the multi-objective optimization method of polar vessel design is proposed. With the optimization goal of resistance and icebreaking resistance, filtering hull forms through the standard of polar vessel displacement and EEDI, fast ship hull optimization that satisfy the ice-ship dead weight and EEDI requirements has been achieved. Taking a 65 000 t shuttle tanker as an example, full parametric modeling method is adopted, the hull optimization of three different bow forms is conducted through the polar vessel multi-objective optimization method.[Results] The ship hull after optimization can satisfy the IA class navigation require, where the resistance in calm water decreases up to 12.94%, and the minimum propulsion power in ice field has a 27.36% reduction.[Conclusions] The feasibility and validity of the NSGA Ⅱ applying in polar vessel design is verified.

  1. Multi-Objective Optimization Control for the Aerospace Dual-Active Bridge Power Converter

    Directory of Open Access Journals (Sweden)

    Tao Lei

    2018-05-01

    Full Text Available With the development of More Electrical Aircraft (MEA, the electrification of secondary power systems in aircraft is becoming more and more common. As the key power conversion device, the dual active bridge (DAB converter is the power interface for the energy storage system with the high voltage direct current (HVDC bus in aircraft electrical power systems. In this paper, a DAB DC-DC converter is designed to meet aviation requirements. The extended dual phase shifted control strategy is adopted, and a multi-objective genetic algorithm is applied to optimize its operating performance. Considering the three indicators of inductance current root mean square root (RMS value, negative reverse power and direct current (DC bias component of the current for the high frequency transformer as the optimization objectives, the DAB converter’s optimization model is derived to achieve soft switching as the main constraint condition. Optimized methods of controlling quantity for the DAB based on the evolution and genetic algorithm is used to solve the model, and a number of optimal control parameters are obtained under different load conditions. The results of digital, hard-in-loop simulation and hardware prototype experiments show that the three performance indexes are all suppressed greatly, and the optimization method proposed in this paper is reasonable. The work of this paper provides a theoretical basis and researching method for the multi-objective optimization of the power converter in the aircraft electrical power system.

  2. A multi-objective particle swarm optimization for production-distribution planning in supply chain network

    Directory of Open Access Journals (Sweden)

    Alireza Pourrousta

    2012-04-01

    Full Text Available Integrated supply chain includes different components of order, production and distribution and it plays an important role on reducing the cost of manufacturing system. In this paper, an integrated supply chain in a form of multi-objective decision-making problem is presented. The proposed model of this paper considers different parameters with uncertainty using trapezoid numbers. We first implement a ranking method to covert the fuzzy model into a crisp one and using multi-objective particle swarm optimization, we solve the resulted model. The results are compared with the performance of NSGA-II for some randomly generated problems and the preliminary results indicate that the proposed model of the paper performs better than the alternative method.

  3. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    Science.gov (United States)

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  4. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    Directory of Open Access Journals (Sweden)

    Sonia Yassa

    2013-01-01

    Full Text Available We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  5. Multi objective multi refinery optimization with environmental and catastrophic failure effects objectives

    Science.gov (United States)

    Khogeer, Ahmed Sirag

    2005-11-01

    Petroleum refining is a capital-intensive business. With stringent environmental regulations on the processing industry and declining refining margins, political instability, increased risk of war and terrorist attacks in which refineries and fuel transportation grids may be targeted, higher pressures are exerted on refiners to optimize performance and find the best combination of feed and processes to produce salable products that meet stricter product specifications, while at the same time meeting refinery supply commitments and of course making profit. This is done through multi objective optimization. For corporate refining companies and at the national level, Intea-Refinery and Inter-Refinery optimization is the second step in optimizing the operation of the whole refining chain as a single system. Most refinery-wide optimization methods do not cover multiple objectives such as minimizing environmental impact, avoiding catastrophic failures, or enhancing product spec upgrade effects. This work starts by carrying out a refinery-wide, single objective optimization, and then moves to multi objective-single refinery optimization. The last step is multi objective-multi refinery optimization, the objectives of which are analysis of the effects of economic, environmental, product spec, strategic, and catastrophic failure. Simulation runs were carried out using both MATLAB and ASPEN PIMS utilizing nonlinear techniques to solve the optimization problem. The results addressed the need to debottleneck some refineries or transportation media in order to meet the demand for essential products under partial or total failure scenarios. They also addressed how importing some high spec products can help recover some of the losses and what is needed in order to accomplish this. In addition, the results showed nonlinear relations among local and global objectives for some refineries. The results demonstrate that refineries can have a local multi objective optimum that does not

  6. Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm.

    Science.gov (United States)

    Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li

    2017-03-01

    The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.

  7. Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g

    Directory of Open Access Journals (Sweden)

    Guozheng Li

    2018-03-01

    Full Text Available The integration of renewable energies into combined cooling, heating, and power (CCHP systems has become increasingly popular in recent years. However, the optimization of renewable energies integrated CCHP (RECCHP systems (i.e., optimal component configurations is far from being well addressed, especially in isolated mode. This study aims to fill this research gap. A multi-objective optimization model characterizing the system reliability, system cost, and environmental sustainability is constructed. In this model, the objectives include minimization of annual total cost (ATC, carbon dioxide emission (CDE, and loss of energy supply probability (LESP. The decision variables representing the configuration of the RECCHP system include the number of photovoltaic (PV panels and wind turbines (WTs, the tilt angle of PV panels, the height of WTs, the maximum fuel consumption, and the capacity of battery and heat storage tanks (HSTs. The multi-objective model is solved by a multi-objective evolutionary algorithm, namely, the preference-inspired coevolutionary algorithm (PICEA-g, resulting in a set of Pareto optimal (trade-off solutions. Then, a decision-making process is demonstrated, selecting a preferred solution amongst those trade-off solutions by further considering the decision-maker preferences. Furthermore, on the optimization of the RECCHP system, operational strategies (i.e., following electric load, FEL, and following thermal load, FTL are considered, respectively. Experimental results show that the FEL and FTL strategies lead to different optimal configurations. In general, the FTL is recommended in summer and winter, while the FEL is more suitable for spring and autumn. Compared with traditional energy systems, RECCHP has better economic and environmental advantages.

  8. Investigation on multi-objective performance optimization algorithm application of fan based on response surface method and entropy method

    Science.gov (United States)

    Zhang, Li; Wu, Kexin; Liu, Yang

    2017-12-01

    A multi-objective performance optimization method is proposed, and the problem that single structural parameters of small fan balance the optimization between the static characteristics and the aerodynamic noise is solved. In this method, three structural parameters are selected as the optimization variables. Besides, the static pressure efficiency and the aerodynamic noise of the fan are regarded as the multi-objective performance. Furthermore, the response surface method and the entropy method are used to establish the optimization function between the optimization variables and the multi-objective performances. Finally, the optimized model is found when the optimization function reaches its maximum value. Experimental data shows that the optimized model not only enhances the static characteristics of the fan but also obviously reduces the noise. The results of the study will provide some reference for the optimization of multi-objective performance of other types of rotating machinery.

  9. Multi-objective Design Optimization of a Parallel Schönflies-motion Robot

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Hjørnet, Preben

    2016-01-01

    . The dynamic performance is concerned mainly the capability of force transmission in the parallel kinematic chain, for which transmission indices are defined. The Pareto-front is obtained to investigate the influence of the design variables to the robot performance. Dynamic characteristics for three Pareto......This paper introduces a parallel Schoenflies-motion robot with rectangular workspace, which is suitable for pick-and-place operations. A multi-objective optimization problem is formulated to optimize the robot's geometric parameters with consideration of kinematic and dynamic performances...

  10. Evolution strategies and multi-objective optimization of permanent magnet motor

    DEFF Research Database (Denmark)

    Andersen, Søren Bøgh; Santos, Ilmar

    2012-01-01

    When designing a permanent magnet motor, several geometry and material parameters are to be defined. This is not an easy task, as material properties and magnetic fields are highly non-linear and the design of a motor is therefore often an iterative process. From an engineering point of view, we...... of evolution strategies, ES to effectively design and optimize parameters of permanent magnet motors. Single as well as multi-objective optimization procedures are carried out. A modified way of creating the strategy parameters for the ES algorithm is also proposed and has together with the standard ES...

  11. Energy quality management for building clusters and districts (BCDs) through multi-objective optimization

    International Nuclear Information System (INIS)

    Lu, Hai; Alanne, Kari; Martinac, Ivo

    2014-01-01

    Highlights: • Energy quality management is applied from individual building to district. • A novel time-effective multi-objective design optimization scheme is proposed. • The scheme searches for exergy efficient and environmental solution for districts. • System reliability is considered and addressed in this paper. - Abstract: Renewable energy systems entail a significant potential to meet the energy requirements of building clusters and districts (BCDs) provided that local energy sources are exploited efficiently. Besides improving the energy efficiency by reducing energy consumption and improving the match between energy supply and demand, energy quality issues have become a key topic of interest. Energy quality management is a technique that aims at optimally utilizing the exergy content of various renewable energy sources. In addition to minimizing life-cycle CO 2 emissions related to exergy losses of an energy system, issues such as system reliability should be addressed. The present work contributes to the research by proposing a novel multi-objective design optimization scheme that minimizes the global warming potential during the life-cycle and maximizes the exergy performance, while the maximum allowable level of the loss of power supply probability (LPSP) is predefined by the user as a constraint. The optimization makes use of Genetic Algorithm (GA). Finally, a case study is presented, where the above methodology has been applied to an office BCD located in Norway. The proposed optimization scheme is proven to be efficient in finding the optimal design and can be easily enlarged to encompass more relevant objective functions

  12. Multi-objective optimization of GPU3 Stirling engine using third order analysis

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Hashemabadi, Seyyed Hasan; Salimi, Morteza

    2014-01-01

    Highlights: • A third-order analysis is carried out for optimization of Stirling engine. • The triple-optimization is done on a GPU3 Stirling engine. • A multi-objective optimization is carried out for a Stirling engine. • The results are compared with an experimental previous work for checking the model improvement. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. - Abstract: Stirling engine is an external combustion engine that uses any external heat source to generate mechanical power which operates at closed cycles. These engines are good choices for using in power generation systems; because these engines present a reasonable theoretical efficiency which can be closer to the Carnot efficiency, comparing with other reciprocating thermal engines. Hence, many studies have been conducted on Stirling engines and the third order thermodynamic analysis is one of them. In this study, multi-objective optimization with four decision variables including the temperature of heat source, stroke, mean effective pressure, and the engine frequency were applied in order to increase the efficiency and output power and reduce the pressure drop. Three decision-making procedures were applied to optimize the answers from the results. At last, the applied methods were compared with the results obtained of one experimental work and a good agreement was observed

  13. Multi-objective optimization of coal-fired power plants using differential evolution

    International Nuclear Information System (INIS)

    Wang, Ligang; Yang, Yongping; Dong, Changqing; Morosuk, Tatiana; Tsatsaronis, George

    2014-01-01

    Highlights: • Multi-objective optimization of large-scale coal-fired power plants using differential evolution. • A newly-proposed algorithm for searching the fronts of decision space in a single run. • A reduction of cost of electricity by 2–4% with an optimal efficiency increase up to 2% points. • The uncertainty comes mainly from temperature- and reheat-related cost factors of steam generator. • An exergoeconomic analysis and comparison between optimal designs and one real industrial design. - Abstract: The design trade-offs between thermodynamics and economics for thermal systems can be studied with the aid of multi-objective optimization techniques. The investment costs usually increase with increasing thermodynamic performance of a system. In this paper, an enhanced differential evolution with diversity-preserving and density-adjusting mechanisms, and a newly-proposed algorithm for searching the decision space frontier in a single run were used, to conduct the multi-objective optimization of large-scale, supercritical coal-fired plants. The uncertainties associated with cost functions were discussed by analyzing the sensitivity of the decision space frontier to some significant parameters involved in cost functions. Comparisons made with the aid of an exergoeconomic analysis between the cost minimum designs and a real industrial design demonstrated how the plant improvement was achieved. It is concluded that the cost of electricity could be reduced by a 2–4%, whereas the efficiency could be increased by up to two percentage points. The largest uncertainty is introduced by the temperature-related and reheat-related cost coefficients of the steam generator. More reliable data on the price prediction of future advanced materials should be used to obtain more accurate fronts of the objective space

  14. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach

    Science.gov (United States)

    Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza

    2017-08-01

    Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.

  15. Loading pattern optimization by multi-objective simulated annealing with screening technique

    International Nuclear Information System (INIS)

    Tong, K. P.; Hyun, C. L.; Hyung, K. J.; Chang, H. K.

    2006-01-01

    This paper presents a new multi-objective function which is made up of the main objective term as well as penalty terms related to the constraints. All the terms are represented in the same functional form and the coefficient of each term is normalized so that each term has equal weighting in the subsequent simulated annealing optimization calculations. The screening technique introduced in the previous work is also adopted in order to save computer time in 3-D neutronics evaluation of trial loading patterns. For numerical test of the new multi-objective function in the loading pattern optimization, the optimum loading patterns for the initial and the cycle 7 reload PWR core of Yonggwang Unit 4 are calculated by the simulated annealing algorithm with screening technique. A total of 10 optimum loading patterns are obtained for the initial core through 10 independent simulated annealing optimization runs. For the cycle 7 reload core one optimum loading pattern has been obtained from a single simulated annealing optimization run. More SA optimization runs will be conducted to optimum loading patterns for the cycle 7 reload core and results will be presented in the further work. (authors)

  16. Multi objective optimization of line pack management of gas pipeline system

    International Nuclear Information System (INIS)

    Chebouba, A

    2015-01-01

    This paper addresses the Line Pack Management of the ''GZ1 Hassi R'mell-Arzew'' gas pipeline. For a gas pipeline system, the decision-making on the gas line pack management scenarios usually involves a delicate balance between minimization of the fuel consumption in the compression stations and maximizing gas line pack. In order to select an acceptable Line Pack Management of Gas Pipeline scenario from these two angles for ''GZ1 Hassi R'mell- Arzew'' gas pipeline, the idea of multi-objective decision-making has been introduced. The first step in developing this approach is the derivation of a numerical method to analyze the flow through the pipeline under transient isothermal conditions. In this paper, the solver NSGA-II of the modeFRONTIER, coupled with a matlab program was used for solving the multi-objective problem

  17. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.

    Science.gov (United States)

    Kurek, Wojciech; Ostfeld, Avi

    2013-01-30

    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    Science.gov (United States)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  19. Seeking urbanization security and sustainability: Multi-objective optimization of rainwater harvesting systems in China

    Science.gov (United States)

    Li, Yi; Ye, Quanliang; Liu, An; Meng, Fangang; Zhang, Wenlong; Xiong, Wei; Wang, Peifang; Wang, Chao

    2017-07-01

    Urban rainwater management need to achieve an optimal compromise among water resource augmentation, water loggings alleviation, economic investment and pollutants reduction. Rainwater harvesting (RWH) systems, such as green rooftops, porous pavements, and green lands, have been successfully implemented as viable approaches to alleviate water-logging disasters and water scarcity problems caused by rapid urbanization. However, there is limited guidance to determine the construction areas of RWH systems, especially for stormwater runoff control due to increasing extreme precipitation. This study firstly developed a multi-objective model to optimize the construction areas of green rooftops, porous pavements and green lands, considering the trade-offs among 24 h-interval RWH volume, stormwater runoff volume control ratio (R), economic cost, and rainfall runoff pollutant reduction. Pareto fronts of RWH system areas for 31 provinces of China were obtained through nondominated sorting genetic algorithm. On the national level, the control strategies for the construction rate (the ratio between the area of single RWH system and the total areas of RWH systems) of green rooftops (ηGR), porous pavements (ηPP) and green lands (ηGL) were 12%, 26% and 62%, and the corresponding RWH volume and total suspended solids reduction was 14.84 billion m3 and 228.19 kilotons, respectively. Optimal ηGR , ηPP and ηGL in different regions varied from 1 to 33%, 6 to 54%, and 30 to 89%, respectively. Particularly, green lands were the most important RWH system in 25 provinces with ηGL more than 50%, ηGR mainly less than 15%, and ηPP mainly between 10 and 30%. Results also indicated whether considering the objective MaxR made a non-significant difference for RWH system areas whereas exerted a great influence on the result of stormwater runoff control. Maximum daily rainfall under control increased, exceeding 200% after the construction of the optimal RWH system compared with that before

  20. An effective docking strategy for virtual screening based on multi-objective optimization algorithm

    Directory of Open Access Journals (Sweden)

    Kang Ling

    2009-02-01

    Full Text Available Abstract Background Development of a fast and accurate scoring function in virtual screening remains a hot issue in current computer-aided drug research. Different scoring functions focus on diverse aspects of ligand binding, and no single scoring can satisfy the peculiarities of each target system. Therefore, the idea of a consensus score strategy was put forward. Integrating several scoring functions, consensus score re-assesses the docked conformations using a primary scoring function. However, it is not really robust and efficient from the perspective of optimization. Furthermore, to date, the majority of available methods are still based on single objective optimization design. Results In this paper, two multi-objective optimization methods, called MOSFOM, were developed for virtual screening, which simultaneously consider both the energy score and the contact score. Results suggest that MOSFOM can effectively enhance enrichment and performance compared with a single score. For three different kinds of binding sites, MOSFOM displays an excellent ability to differentiate active compounds through energy and shape complementarity. EFMOGA performed particularly well in the top 2% of database for all three cases, whereas MOEA_Nrg and MOEA_Cnt performed better than the corresponding individual scoring functions if the appropriate type of binding site was selected. Conclusion The multi-objective optimization method was successfully applied in virtual screening with two different scoring functions that can yield reasonable binding poses and can furthermore, be ranked with the potentially compromised conformations of each compound, abandoning those conformations that can not satisfy overall objective functions.

  1. Probing optimal measurement configuration for optical scatterometry by the multi-objective genetic algorithm

    Science.gov (United States)

    Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2018-04-01

    Measurement configuration optimization (MCO) is a ubiquitous and important issue in optical scatterometry, whose aim is to probe the optimal combination of measurement conditions, such as wavelength, incidence angle, azimuthal angle, and/or polarization directions, to achieve a higher measurement precision for a given measuring instrument. In this paper, the MCO problem is investigated and formulated as a multi-objective optimization problem, which is then solved by the multi-objective genetic algorithm (MOGA). The case study on the Mueller matrix scatterometry for the measurement of a Si grating verifies the feasibility of the MOGA in handling the MCO problem in optical scatterometry by making a comparison with the Monte Carlo simulations. Experiments performed at the achieved optimal measurement configuration also show good agreement between the measured and calculated best-fit Mueller matrix spectra. The proposed MCO method based on MOGA is expected to provide a more general and practical means to solve the MCO problem in the state-of-the-art optical scatterometry.

  2. Multi-Objective Distribution Network Operation Based on Distributed Generation Optimal Placement Using New Antlion Optimizer Considering Reliability

    Directory of Open Access Journals (Sweden)

    KHANBABAZADEH Javad

    2016-10-01

    Full Text Available Distribution network designers and operators are trying to deliver electrical energy with high reliability and quality to their subscribers. Due to high losses in the distribution systems, using distributed generation can improves reliability, reduces losses and improves voltage profile of distribution network. Therefore, the choice of the location of these resources and also determining the amount of their generated power to maximize the benefits of this type of resource is an important issue which is discussed from different points of view today. In this paper, a new multi-objective optimal location and sizing of distributed generation resources is performed to maximize its benefits on the 33 bus distribution test network considering reliability and using a new Antlion Optimizer (ALO. The benefits for DG are considered as system losses reduction, system reliability improvement and benefits from the sale electricity and voltage profile improvement. For each of the mentioned benefits, the ALO algorithm is used to optimize the location and sizing of distributed generation resources. In order to verify the proposed approach, the obtained results have been analyzed and compared with the results of particle swarm optimization (PSO algorithm. The results show that the ALO has shown better performance in optimization problem solution versus PSO.

  3. Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm

    International Nuclear Information System (INIS)

    Wang, Zhe; Li, Yanzhong

    2015-01-01

    Highlights: • The first application of IMOCS for plate-fin heat exchanger design. • Irreversibility degrees of heat transfer and fluid friction are minimized. • Trade-off of efficiency, total cost and pumping power is achieved. • Both EGM and EDM methods have been compared in the optimization of PFHE. • This study has superiority over other single-objective optimization design. - Abstract: This paper introduces and applies an improved multi-objective cuckoo search (IMOCS) algorithm, a novel met-heuristic optimization algorithm based on cuckoo breeding behavior, for the multi-objective optimization design of plate-fin heat exchangers (PFHEs). A modified irreversibility degree of the PFHE is separated into heat transfer and fluid friction irreversibility degrees which are adopted as two initial objective functions to be minimized simultaneously for narrowing the search scope of the design. The maximization efficiency, minimization of pumping power, and total annual cost are considered final objective functions. Results obtained from a two dimensional normalized Pareto-optimal frontier clearly demonstrate the trade-off between heat transfer and fluid friction irreversibility. Moreover, a three dimensional Pareto-optimal frontier reveals a relationship between efficiency, total annual cost, and pumping power in the PFHE design. Three examples presented here further demonstrate that the presented method is able to obtain optimum solutions with higher accuracy, lower irreversibility, and fewer iterations as compared to the previous methods and single-objective design approaches

  4. Multi-Objective Design Optimization of an Over-Constrained Flexure-Based Amplifier

    Directory of Open Access Journals (Sweden)

    Yuan Ni

    2015-07-01

    Full Text Available The optimizing design for enhancement of the micro performance of manipulator based on analytical models is investigated in this paper. By utilizing the established uncanonical linear homogeneous equations, the quasi-static analytical model of the micro-manipulator is built, and the theoretical calculation results are tested by FEA simulations. To provide a theoretical basis for a micro-manipulator being used in high-precision engineering applications, this paper investigates the modal property based on the analytical model. Based on the finite element method, with multipoint constraint equations, the model is built and the results have a good match with the simulation. The following parametric influences studied show that the influences of other objectives on one objective are complicated.  Consequently, the multi-objective optimization by the derived analytical models is carried out to find out the optimal solutions of the manipulator. Besides the inner relationships among these design objectives during the optimization process are discussed.

  5. Intersection signal control multi-objective optimization based on genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhanhong Zhou

    2014-04-01

    Full Text Available A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at an intersection. The optimization method combined the Paramics microscopic traffic simulation software, Comprehensive Modal Emissions Model (CMEM, and genetic algorithm. An intersection in Haizhu District, Guangzhou, was taken for a case study. The result of the case study shows the optimal timing scheme obtained from this method is better than the Webster timing scheme.

  6. Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Myeong Jin Ko

    2015-04-01

    Full Text Available To secure a stable energy supply and bring renewable energy to buildings within a reasonable cost range, a hybrid energy system (HES that integrates both fossil fuel energy systems (FFESs and new and renewable energy systems (NRESs needs to be designed and applied. This paper presents a methodology to optimize a HES consisting of three types of NRESs and six types of FFESs while simultaneously minimizing life cycle cost (LCC, maximizing penetration of renewable energy and minimizing annual greenhouse gas (GHG emissions. An elitist non-dominated sorting genetic algorithm is utilized for multi-objective optimization. As an example, we have designed the optimal configuration and sizing for a HES in an elementary school. The evolution of Pareto-optimal solutions according to the variation in the economic, technical and environmental objective functions through generations is discussed. The pair wise trade-offs among the three objectives are also examined.

  7. Multi-Objective Optimization for Smart House Applied Real Time Pricing Systems

    Directory of Open Access Journals (Sweden)

    Yasuaki Miyazato

    2016-12-01

    Full Text Available A smart house generally has a Photovoltaic panel (PV, a Heat Pump (HP, a Solar Collector (SC and a fixed battery. Since the fixed battery can buy and store inexpensive electricity during the night, the electricity bill can be reduced. However, a large capacity fixed battery is very expensive. Therefore, there is a need to determine the economic capacity of fixed battery. Furthermore, surplus electric power can be sold using a buyback program. By this program, PV can be effectively utilized and contribute to the reduction of the electricity bill. With this in mind, this research proposes a multi-objective optimization, the purpose of which is electric demand control and reduction of the electricity bill in the smart house. In this optimal problem, the Pareto optimal solutions are searched depending on the fixed battery capacity. Additionally, it is shown that consumers can choose what suits them by comparing the Pareto optimal solutions.

  8. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes.

    Science.gov (United States)

    Uen, Tinn-Shuan; Chang, Fi-John; Zhou, Yanlai; Tsai, Wen-Ping

    2018-08-15

    This study proposed a holistic three-fold scheme that synergistically optimizes the benefits of the Water-Food-Energy (WFE) Nexus by integrating the short/long-term joint operation of a multi-objective reservoir with irrigation ponds in response to urbanization. The three-fold scheme was implemented step by step: (1) optimizing short-term (daily scale) reservoir operation for maximizing hydropower output and final reservoir storage during typhoon seasons; (2) simulating long-term (ten-day scale) water shortage rates in consideration of the availability of irrigation ponds for both agricultural and public sectors during non-typhoon seasons; and (3) promoting the synergistic benefits of the WFE Nexus in a year-round perspective by integrating the short-term optimization and long-term simulation of reservoir operations. The pivotal Shihmen Reservoir and 745 irrigation ponds located in Taoyuan City of Taiwan together with the surrounding urban areas formed the study case. The results indicated that the optimal short-term reservoir operation obtained from the non-dominated sorting genetic algorithm II (NSGA-II) could largely increase hydropower output but just slightly affected water supply. The simulation results of the reservoir coupled with irrigation ponds indicated that such joint operation could significantly reduce agricultural and public water shortage rates by 22.2% and 23.7% in average, respectively, as compared to those of reservoir operation excluding irrigation ponds. The results of year-round short/long-term joint operation showed that water shortage rates could be reduced by 10% at most, the food production rate could be increased by up to 47%, and the hydropower benefit could increase up to 9.33 million USD per year, respectively, in a wet year. Consequently, the proposed methodology could be a viable approach to promoting the synergistic benefits of the WFE Nexus, and the results provided unique insights for stakeholders and policymakers to pursue

  9. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    Science.gov (United States)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  10. Multi-objective Optimization of Process Parameters in Friction Stir Welding

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    The objective of this paper is to investigate optimum process parameters in Friction Stir Welding (FSW) to minimize residual stresses in the work piece and maximize production efficiency meanwhile satisfying process specific constraints as well. More specifically, the choices of tool rotational...... speed and traverse welding speed have been sought in order to achieve the goals mentioned above using an evolutionary multi-objective optimization (MOO) algorithm, i.e. non-dominated sorting genetic algorithm (NSGA-II), integrated with a transient, 2- dimensional sequentially coupled thermo...

  11. The System of Simulation and Multi-objective Optimization for the Roller Kiln

    Science.gov (United States)

    Huang, He; Chen, Xishen; Li, Wugang; Li, Zhuoqiu

    It is somewhat a difficult researching problem, to get the building parameters of the ceramic roller kiln simulation model. A system integrated of evolutionary algorithms (PSO, DE and DEPSO) and computational fluid dynamics (CFD), is proposed to solve the problem. And the temperature field uniformity and the environment disruption are studied in this paper. With the help of the efficient parallel calculation, the ceramic roller kiln temperature field uniformity and the NOx emissions field have been researched in the system at the same time. A multi-objective optimization example of the industrial roller kiln proves that the system is of excellent parameter exploration capability.

  12. Application of Bayesian Decision Theory Based on Prior Information in the Multi-Objective Optimization Problem

    Directory of Open Access Journals (Sweden)

    Xia Lei

    2010-12-01

    Full Text Available General multi-objective optimization methods are hard to obtain prior information, how to utilize prior information has been a challenge. This paper analyzes the characteristics of Bayesian decision-making based on maximum entropy principle and prior information, especially in case that how to effectively improve decision-making reliability in deficiency of reference samples. The paper exhibits effectiveness of the proposed method using the real application of multi-frequency offset estimation in distributed multiple-input multiple-output system. The simulation results demonstrate Bayesian decision-making based on prior information has better global searching capability when sampling data is deficient.

  13. Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization

    International Nuclear Information System (INIS)

    Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen

    2014-01-01

    A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)

  14. Constrained multi-objective optimization of radial expanders in organic Rankine cycles by firefly algorithm

    International Nuclear Information System (INIS)

    Bahadormanesh, Nikrouz; Rahat, Shayan; Yarali, Milad

    2017-01-01

    Highlights: • A multi-objective optimization for radial expander in Organic Rankine Cycles is implemented. • By using firefly algorithm, Pareto front based on the size of turbine and thermal efficiency is produced. • Tension and vibration constrains have a significant effect on optimum design points. - Abstract: Organic Rankine Cycles are viable energy conversion systems in sustainable energy systems due to their compatibility with low-temperature heat sources. In the present study, one dimensional model of radial expanders in conjunction with a thermodynamic model of organic Rankine cycles is prepared. After verification, by defining thermal efficiency of the cycle and size parameter of a radial turbine as the objective functions, a multi-objective optimization was conducted regarding tension and vibration constraints for 4 different organic working fluids (R22, R245fa, R236fa and N-Pentane). In addition to mass flow rate, evaporator temperature, maximum pressure of cycle and turbo-machinery design parameters are selected as the decision variables. Regarding Pareto fronts, by a little increase in size of radial expanders, it is feasible to reach high efficiency. Moreover, by assessing the distribution of decision variables, the variables that play a major role in trending between the objective functions are found. Effects of mechanical and vibration constrains on optimum decision variables are investigated. The results of optimization can be considered as an initial values for design of radial turbines for Organic Rankine Cycles.

  15. Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2017-01-01

    Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the multi-objective aerodynamic and structural optimization of horizontal-axis wind turbine (HAWT blades. In order to minimize the cost of energy (COE and improve the overall performance of the blades, materials of carbon fiber reinforced plastic (CFRP combined with glass fiber reinforced plastic (GFRP are applied. The maximum annual energy production (AEP, the minimum blade mass and the minimum blade cost are taken as three objectives. Main aerodynamic and structural characteristics of the blades are employed as design variables. Various design requirements including strain, deflection, vibration and buckling limits are taken into account as constraints. To evaluate the aerodynamic performances and the structural behaviors, the blade element momentum (BEM theory and the finite element method (FEM are applied in the procedure. Moreover, the non-dominated sorting genetic algorithm (NSGA II, which constitutes the core of the procedure, is adapted for the multi-objective optimization of the blades. To prove the efficiency and reliability of the procedure, a commercial 1.5 MW HAWT blade is used as a case study, and a set of trade-off solutions is obtained. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.

  16. Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory

    Directory of Open Access Journals (Sweden)

    M. Amiri

    2012-10-01

    Full Text Available Mutual fund is one of the most popular techniques for many people to invest their funds where a professional fund manager invests people's funds based on some special predefined objectives; therefore, performance evaluation of mutual funds is an important problem. This paper proposes a multi-objective portfolio optimization to offer asset allocation. The proposed model clusters mutual funds with two methods based on six characteristics including rate of return, variance, semivariance, turnover rate, Treynor index and Sharpe index. Semivariance is used as a downside risk measure. The proposed model of this paper uses fuzzy variables for return rate and semivariance. A multi-objective fuzzy mean-semivariance portfolio optimization model is implemented and fuzzy programming technique is adopted to solve the resulted problem. The proposed model of this paper has gathered the information of mutual fund traded on Nasdaq from 2007 to 2009 and Pareto optimal solutions are obtained considering different weights for objective functions. The results of asset allocation, rate of return and risk of each cluster are also determined and they are compared with the results of two clustering methods.

  17. Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm

    International Nuclear Information System (INIS)

    Ahmadi, Pouria; Rosen, Marc A.; Dincer, Ibrahim

    2012-01-01

    A comprehensive thermodynamic modeling and optimization is reported of a polygeneration energy system for the simultaneous production of heating, cooling, electricity and hot water from a common energy source. This polygeneration system is composed of four major parts: gas turbine (GT) cycle, Rankine cycle, absorption cooling cycle and domestic hot water heater. A multi-objective optimization method based on an evolutionary algorithm is applied to determine the best design parameters for the system. The two objective functions utilized in the analysis are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized by using an evolutionary algorithm. To provide a deeper insight, the Pareto frontier is shown for multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. Finally, a sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO 2 emission and exergy efficiency.

  18. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking.

    Science.gov (United States)

    Wang, Hongrui; Liu, Hongwei; Cai, Leixin; Wang, Caixia; Lv, Qiang

    2017-07-10

    In this study, we extended the replica exchange Monte Carlo (REMC) sampling method to protein-small molecule docking conformational prediction using RosettaLigand. In contrast to the traditional Monte Carlo (MC) and REMC sampling methods, these methods use multi-objective optimization Pareto front information to facilitate the selection of replicas for exchange. The Pareto front information generated to select lower energy conformations as representative conformation structure replicas can facilitate the convergence of the available conformational space, including available near-native structures. Furthermore, our approach directly provides min-min scenario Pareto optimal solutions, as well as a hybrid of the min-min and max-min scenario Pareto optimal solutions with lower energy conformations for use as structure templates in the REMC sampling method. These methods were validated based on a thorough analysis of a benchmark data set containing 16 benchmark test cases. An in-depth comparison between MC, REMC, multi-objective optimization-REMC (MO-REMC), and hybrid MO-REMC (HMO-REMC) sampling methods was performed to illustrate the differences between the four conformational search strategies. Our findings demonstrate that the MO-REMC and HMO-REMC conformational sampling methods are powerful approaches for obtaining protein-small molecule docking conformational predictions based on the binding energy of complexes in RosettaLigand.

  19. A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory

    Science.gov (United States)

    Raei, Ehsan; Nikoo, Mohammad Reza; Pourshahabi, Shokoufeh

    2017-08-01

    In the present study, a BIOPLUME III simulation model is coupled with a non-dominating sorting genetic algorithm (NSGA-II)-based model for optimal design of in situ groundwater bioremediation system, considering preferences of stakeholders. Ministry of Energy (MOE), Department of Environment (DOE), and National Disaster Management Organization (NDMO) are three stakeholders in the groundwater bioremediation problem in Iran. Based on the preferences of these stakeholders, the multi-objective optimization model tries to minimize: (1) cost; (2) sum of contaminant concentrations that violate standard; (3) contaminant plume fragmentation. The NSGA-II multi-objective optimization method gives Pareto-optimal solutions. A compromised solution is determined using fallback bargaining with impasse to achieve a consensus among the stakeholders. In this study, two different approaches are investigated and compared based on two different domains for locations of injection and extraction wells. At the first approach, a limited number of predefined locations is considered according to previous similar studies. At the second approach, all possible points in study area are investigated to find optimal locations, arrangement, and flow rate of injection and extraction wells. Involvement of the stakeholders, investigating all possible points instead of a limited number of locations for wells, and minimizing the contaminant plume fragmentation during bioremediation are new innovations in this research. Besides, the simulation period is divided into smaller time intervals for more efficient optimization. Image processing toolbox in MATLAB® software is utilized for calculation of the third objective function. In comparison with previous studies, cost is reduced using the proposed methodology. Dispersion of the contaminant plume is reduced in both presented approaches using the third objective function. Considering all possible points in the study area for determining the optimal locations

  20. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design

    International Nuclear Information System (INIS)

    Toffolo, A.; Lazzaretto, A.

    2002-01-01

    Thermoeconomic analyses in thermal system design are always focused on the economic objective. However, knowledge of only the economic minimum may not be sufficient in the decision making process, since solutions with a higher thermodynamic efficiency, in spite of small increases in total costs, may result in much more interesting designs due to changes in energy market prices or in energy policies. This paper suggests how to perform a multi-objective optimization in order to find solutions that simultaneously satisfy exergetic and economic objectives. This corresponds to a search for the set of Pareto optimal solutions with respect to the two competing objectives. The optimization process is carried out by an evolutionary algorithm, that features a new diversity preserving mechanism using as a test case the well-known CGAM problem. (author)

  1. Swarm intelligence for multi-objective optimization of synthesis gas production

    Science.gov (United States)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  2. Dual-mode nested search method for categorical uncertain multi-objective optimization

    Science.gov (United States)

    Tang, Long; Wang, Hu

    2016-10-01

    Categorical multi-objective optimization is an important issue involved in many matching design problems. Non-numerical variables and their uncertainty are the major challenges of such optimizations. Therefore, this article proposes a dual-mode nested search (DMNS) method. In the outer layer, kriging metamodels are established using standard regular simplex mapping (SRSM) from categorical candidates to numerical values. Assisted by the metamodels, a k-cluster-based intelligent sampling strategy is developed to search Pareto frontier points. The inner layer uses an interval number method to model the uncertainty of categorical candidates. To improve the efficiency, a multi-feature convergent optimization via most-promising-area stochastic search (MFCOMPASS) is proposed to determine the bounds of objectives. Finally, typical numerical examples are employed to demonstrate the effectiveness of the proposed DMNS method.

  3. Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm

    Science.gov (United States)

    Annavarapu, Chandra Sekhara Rao; Dara, Suresh; Banka, Haider

    2016-01-01

    Cancer investigations in microarray data play a major role in cancer analysis and the treatment. Cancer microarray data consists of complex gene expressed patterns of cancer. In this article, a Multi-Objective Binary Particle Swarm Optimization (MOBPSO) algorithm is proposed for analyzing cancer gene expression data. Due to its high dimensionality, a fast heuristic based pre-processing technique is employed to reduce some of the crude domain features from the initial feature set. Since these pre-processed and reduced features are still high dimensional, the proposed MOBPSO algorithm is used for finding further feature subsets. The objective functions are suitably modeled by optimizing two conflicting objectives i.e., cardinality of feature subsets and distinctive capability of those selected subsets. As these two objective functions are conflicting in nature, they are more suitable for multi-objective modeling. The experiments are carried out on benchmark gene expression datasets, i.e., Colon, Lymphoma and Leukaemia available in literature. The performance of the selected feature subsets with their classification accuracy and validated using 10 fold cross validation techniques. A detailed comparative study is also made to show the betterment or competitiveness of the proposed algorithm. PMID:27822174

  4. Identification of mutated driver pathways in cancer using a multi-objective optimization model.

    Science.gov (United States)

    Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng

    2016-05-01

    New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Xuanhu He

    2015-03-01

    Full Text Available Optimal power flow (OPF objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.

  6. A sustainable manufacturing system design: A fuzzy multi-objective optimization model.

    Science.gov (United States)

    Nujoom, Reda; Mohammed, Ahmed; Wang, Qian

    2017-08-10

    In the past decade, there has been a growing concern about the environmental protection in public society as governments almost all over the world have initiated certain rules and regulations to promote energy saving and minimize the production of carbon dioxide (CO 2 ) emissions in many manufacturing industries. The development of sustainable manufacturing systems is considered as one of the effective solutions to minimize the environmental impact. Lean approach is also considered as a proper method for achieving sustainability as it can reduce manufacturing wastes and increase the system efficiency and productivity. However, the lean approach does not include environmental waste of such as energy consumption and CO 2 emissions when designing a lean manufacturing system. This paper addresses these issues by evaluating a sustainable manufacturing system design considering a measurement of energy consumption and CO 2 emissions using different sources of energy (oil as direct energy source to generate thermal energy and oil or solar as indirect energy source to generate electricity). To this aim, a multi-objective mathematical model is developed incorporating the economic and ecological constraints aimed for minimization of the total cost, energy consumption, and CO 2 emissions for a manufacturing system design. For the real world scenario, the uncertainty in a number of input parameters was handled through the development of a fuzzy multi-objective model. The study also addresses decision-making in the number of machines, the number of air-conditioning units, and the number of bulbs involved in each process of a manufacturing system in conjunction with a quantity of material flow for processed products. A real case study was used for examining the validation and applicability of the developed sustainable manufacturing system model using the fuzzy multi-objective approach.

  7. Multi-objective optimization for integrated hydro–photovoltaic power system

    International Nuclear Information System (INIS)

    Li, Fang-Fang; Qiu, Jun

    2016-01-01

    Highlights: • A model optimizing both quality and quantity of hydro/PV power was proposed. • The dimension was reduced by decoupling hydropower and PV power in time scales. • Reservoir operations have been optimized for different typical hydrological years. • Hydropower was proved to be an ideal compensating resource for PV power in nature. - Abstract: The most striking feature of the solar energy is its intermittency and instability resulting from environmental influence. Hydropower can be an ideal choice to compensate photovoltaic (PV) power since it is easy to adjust and responds rapidly with low cost. This study proposed a long-term multi-objective optimization model for integrated hydro/PV power system considering the smoothness of power output process and the total amount of annual power generation of the system simultaneously. The PV power output is firstly calculated by hourly solar radiation and temperature data, which is then taken as the boundary condition for reservoir optimization. For hydropower, due to its great adjustable capability, a month is taken as the time step to balance the simulation cost. The problem dimension is thus reduced by decoupling hydropower and PV power in time scales. The modified version of Non-dominated Sorting Genetic Algorithm (NSGA-II) is adopted to optimize the multi-objective problem. The proposed model was applied to the Longyangxia hydro/PV hybrid power system in Qinghai province of China, which is supposed to be the largest hydro/PV hydropower station in the world. The results verified that the hydropower is an ideal compensation resource for the PV power in nature, especially in wet years, when the solar radiation decreases due to rainfalls while the water resource is abundant to be allocated. The power generation potential is provided for different hydrologic years, which can be taken to evaluate the actual operations. The proposed methodology is general in that it can be used for other hydro/PV power systems

  8. Optimal Waste Load Allocation Using Multi-Objective Optimization and Multi-Criteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    L. Saberi

    2016-10-01

    Full Text Available Introduction: Increasing demand for water, depletion of resources of acceptable quality, and excessive water pollution due to agricultural and industrial developments has caused intensive social and environmental problems all over the world. Given the environmental importance of rivers, complexity and extent of pollution factors and physical, chemical and biological processes in these systems, optimal waste-load allocation in river systems has been given considerable attention in the literature in the past decades. The overall objective of planning and quality management of river systems is to develop and implement a coordinated set of strategies and policies to reduce or allocate of pollution entering the rivers so that the water quality matches by proposing environmental standards with an acceptable reliability. In such matters, often there are several different decision makers with different utilities which lead to conflicts. Methods/Materials: In this research, a conflict resolution framework for optimal waste load allocation in river systems is proposed, considering the total treatment cost and the Biological Oxygen Demand (BOD violation characteristics. There are two decision-makers inclusive waste load discharges coalition and environmentalists who have conflicting objectives. This framework consists of an embedded river water quality simulator, which simulates the transport process including reaction kinetics. The trade-off curve between objectives is obtained using the Multi-objective Particle Swarm Optimization Algorithm which these objectives are minimization of the total cost of treatment and penalties that must be paid by discharges and a violation of water quality standards considering BOD parameter which is controlled by environmentalists. Thus, the basic policy of river’s water quality management is formulated in such a way that the decision-makers are ensured their benefits will be provided as far as possible. By using MOPSO

  9. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    Science.gov (United States)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  10. Optimal Allocation of Generalized Power Sources in Distribution Network Based on Multi-Objective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Li Ran

    2017-01-01

    Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.

  11. A risk-based multi-objective model for optimal placement of sensors in water distribution system

    Science.gov (United States)

    Naserizade, Sareh S.; Nikoo, Mohammad Reza; Montaseri, Hossein

    2018-02-01

    In this study, a new stochastic model based on Conditional Value at Risk (CVaR) and multi-objective optimization methods is developed for optimal placement of sensors in water distribution system (WDS). This model determines minimization of risk which is caused by simultaneous multi-point contamination injection in WDS using CVaR approach. The CVaR considers uncertainties of contamination injection in the form of probability distribution function and calculates low-probability extreme events. In this approach, extreme losses occur at tail of the losses distribution function. Four-objective optimization model based on NSGA-II algorithm is developed to minimize losses of contamination injection (through CVaR of affected population and detection time) and also minimize the two other main criteria of optimal placement of sensors including probability of undetected events and cost. Finally, to determine the best solution, Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), as a subgroup of Multi Criteria Decision Making (MCDM) approach, is utilized to rank the alternatives on the trade-off curve among objective functions. Also, sensitivity analysis is done to investigate the importance of each criterion on PROMETHEE results considering three relative weighting scenarios. The effectiveness of the proposed methodology is examined through applying it to Lamerd WDS in the southwestern part of Iran. The PROMETHEE suggests 6 sensors with suitable distribution that approximately cover all regions of WDS. Optimal values related to CVaR of affected population and detection time as well as probability of undetected events for the best optimal solution are equal to 17,055 persons, 31 mins and 0.045%, respectively. The obtained results of the proposed methodology in Lamerd WDS show applicability of CVaR-based multi-objective simulation-optimization model for incorporating the main uncertainties of contamination injection in order to evaluate extreme value

  12. The Combined Multi-objective Optimization Design for a Light Guide Rod

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Fung, Rong-Fong; Shih, Chun-Yao; Chien, Hong-Yao

    2013-01-01

    The light guide rod (LGR) has been popularly used for the vehicles, and the automobile lamp industries need mass production to match this trend. This paper aims to develop a systemic way to find the best parameters' combination for the LGR, and the parameters are usually restricted to some levels and random values. In this paper, the LGR example with two optical performances of illuminance flux and uniformity is to be optimized by use of the real-coded genetic algorithm (RGA) and grey relational analysis (GRA). The illuminance flux and uniformity of the best parameters' combination are obtained and compared with the initial set. Comparisons with Taguchi-Grey can improve 5% of gain and comparisons with Pareto genetic algorithm (PaGA) can improve 1.7% of gain. The combined multi-objective optimization can saving 7% time and it is found that the new proposed method has positive gains in performances.

  13. Multi-objective optimization of a series–parallel system using GPSIA

    International Nuclear Information System (INIS)

    Okafor, Ekene Gabriel; Sun Youchao

    2012-01-01

    The optimal solution of a multi-objective optimization problem (MOP) corresponds to a Pareto set that is characterized by a tradeoff between objectives. Genetic Pareto Set Identification Algorithm (GPSIA) proposed for reliability-redundant MOPs is a hybrid technique which combines genetic and heuristic principles to generate non-dominated solutions. Series–parallel system with active redundancy is studied in this paper. Reliability and cost were the research objective functions subject to cost and weight constraints. The results reveal an evenly distributed non-dominated front. The distances between successive Pareto points were used to evaluate the general performance of the method. Plots were also used to show the computational results for the type of system studied and the robustness of the technique is discussed in comparison with NSGA-II and SPEA-2.

  14. Improving package structure of object-oriented software using multi-objective optimization and weighted class connections

    Directory of Open Access Journals (Sweden)

    Amarjeet

    2017-07-01

    Full Text Available The software maintenance activities performed without following the original design decisions about the package structure usually deteriorate the quality of software modularization, leading to decay of the quality of the system. One of the main reasons for such structural deterioration is inappropriate grouping of source code classes in software packages. To improve such grouping/modular-structure, previous researchers formulated the software remodularization problem as an optimization problem and solved it using search-based meta-heuristic techniques. These optimization approaches aimed at improving the quality metrics values of the structure without considering the original package design decisions, often resulting into a totally new software modularization. The entirely changed software modularization becomes costly to realize as well as difficult to understand for the developers/maintainers. To alleviate this issue, we propose a multi-objective optimization approach to improve the modularization quality of an object-oriented system with minimum possible movement of classes between existing packages of original software modularization. The optimization is performed using NSGA-II, a widely-accepted multi-objective evolutionary algorithm. In order to ensure minimum modification of original package structure, a new approach of computing class relations using weighted strengths has been proposed here. The weights of relations among different classes are computed on the basis of the original package structure. A new objective function has been formulated using these weighted class relations. This objective function drives the optimization process toward better modularization quality simultaneously ensuring preservation of original structure. To evaluate the results of the proposed approach, a series of experiments are conducted over four real-worlds and two random software applications. The experimental results clearly indicate the effectiveness

  15. Adaptive multi-objective Optimization scheme for cognitive radio resource management

    KAUST Repository

    Alqerm, Ismail

    2014-12-01

    Cognitive Radio is an intelligent Software Defined Radio that is capable to alter its transmission parameters according to predefined objectives and wireless environment conditions. Cognitive engine is the actuator that performs radio parameters configuration by exploiting optimization and machine learning techniques. In this paper, we propose an Adaptive Multi-objective Optimization Scheme (AMOS) for cognitive radio resource management to improve spectrum operation and network performance. The optimization relies on adapting radio transmission parameters to environment conditions using constrained optimization modeling called fitness functions in an iterative manner. These functions include minimizing power consumption, Bit Error Rate, delay and interference. On the other hand, maximizing throughput and spectral efficiency. Cross-layer optimization is exploited to access environmental parameters from all TCP/IP stack layers. AMOS uses adaptive Genetic Algorithm in terms of its parameters and objective weights as the vehicle of optimization. The proposed scheme has demonstrated quick response and efficiency in three different scenarios compared to other schemes. In addition, it shows its capability to optimize the performance of TCP/IP layers as whole not only the physical layer.

  16. A Cognitive Skill Classification Based on Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Directory of Open Access Journals (Sweden)

    Moh. Aries Syufagi

    2013-09-01

    Full Text Available Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player’s ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG. CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ for optimizing the cognitive skill input classification of the player. CSG is using teacher’s data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective XE "multi objective"  target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments employ 33 respondent players demonstrates that 61% of players have high trial and error, 21% have high carefully, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players’ ability. CSG will help balance the emotions of players, so players do not get bored and frustrated. 

  17. Implementing of the multi-objective particle swarm optimizer and fuzzy decision-maker in exergetic, exergoeconomic and environmental optimization of a benchmark cogeneration system

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Babaie, Meisam; Farmani, Mohammad Reza

    2011-01-01

    Multi-objective optimization for design of a benchmark cogeneration system namely as the CGAM cogeneration system is performed. In optimization approach, Exergetic, Exergoeconomic and Environmental objectives are considered, simultaneously. In this regard, the set of Pareto optimal solutions known as the Pareto frontier is obtained using the MOPSO (multi-objective particle swarm optimizer). The exergetic efficiency as an exergetic objective is maximized while the unit cost of the system product and the cost of the environmental impact respectively as exergoeconomic and environmental objectives are minimized. Economic model which is utilized in the exergoeconomic analysis is built based on both simple model (used in original researches of the CGAM system) and the comprehensive modeling namely as TTR (total revenue requirement) method (used in sophisticated exergoeconomic analysis). Finally, a final optimal solution from optimal set of the Pareto frontier is selected using a fuzzy decision-making process based on the Bellman-Zadeh approach and results are compared with corresponding results obtained in a traditional decision-making process. Further, results are compared with the corresponding performance of the base case CGAM system and optimal designs of previous works and discussed. -- Highlights: → A multi-objective optimization approach has been implemented in optimization of a benchmark cogeneration system. → Objective functions based on the environmental impact evaluation, thermodynamic and economic analysis are obtained and optimized. → Particle swarm optimizer implemented and its robustness is compared with NSGA-II. → A final optimal configuration is found using various decision-making approaches. → Results compared with previous works in the field.

  18. A multi-objective genetic approach to domestic load scheduling in an energy management system

    International Nuclear Information System (INIS)

    Soares, Ana; Antunes, Carlos Henggeler; Oliveira, Carlos; Gomes, Álvaro

    2014-01-01

    In this paper a multi-objective genetic algorithm is used to solve a multi-objective model to optimize the time allocation of domestic loads within a planning period of 36 h, in a smart grid context. The management of controllable domestic loads is aimed at minimizing the electricity bill and the end-user’s dissatisfaction concerning two different aspects: the preferred time slots for load operation and the risk of interruption of the energy supply. The genetic algorithm is similar to the Elitist NSGA-II (Nondominated Sorting Genetic Algorithm II), in which some changes have been introduced to adapt it to the physical characteristics of the load scheduling problem and improve usability of results. The mathematical model explicitly considers economical, technical, quality of service and comfort aspects. Illustrative results are presented and the characteristics of different solutions are analyzed. - Highlights: • A genetic algorithm similar to the NSGA-II is used to solve a multi-objective model. • The optimized time allocation of domestic loads in a smart grid context is achieved. • A variable preference profile for the operation of the managed loads is included. • A safety margin is used to account for the quality of the energy services provided. • A non-dominated front with the solutions in the two-objective space is obtained

  19. Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization

    International Nuclear Information System (INIS)

    Daróczy, László; Janiga, Gábor; Thévenin, Dominique

    2014-01-01

    A two-dimensional cross-flow tube bank heat exchanger arrangement problem with internal laminar flow is considered in this work. The objective is to optimize the arrangement of tubes and find the most favorable geometries, in order to simultaneously maximize the rate of heat exchange while obtaining a minimum pressure loss. A systematic study was performed involving a large number of simulations. The global optimization method NSGA-II was retained. A fully automatized in-house optimization environment was used to solve the problem, including mesh generation and CFD (computational fluid dynamics) simulations. The optimization was performed in parallel on a Linux cluster with a very good speed-up. The main purpose of this article is to illustrate and analyze a heat exchanger arrangement problem in its most general form and to provide a fundamental understanding of the structure of the Pareto front and optimal geometries. The considered conditions are particularly suited for low-power applications, as found in a growing number of practical systems in an effort toward increasing energy efficiency. For such a detailed analysis with more than 140 000 CFD-based evaluations, a design-of-experiment study involving a response surface would not be sufficient. Instead, all evaluations rely on a direct solution using a CFD solver. - Highlights: • Cross-flow tube bank heat exchanger arrangement problem. • A fully automatized multi-objective optimization based on genetic algorithm. • A systematic study involving a large number of CFD (computational fluid dynamics) simulations

  20. Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods

    Science.gov (United States)

    Gong, W.; Duan, Q.; Huo, X.

    2017-12-01

    Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.

  1. Impact of fuel cell power plants on multi-objective optimal operation management of distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, T. [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Zeinoddini-Meymand, H. [Islamic Azad University, Kerman Branch, Kerman (Iran, Islamic Republic of)

    2012-06-15

    This paper presents an interactive fuzzy satisfying method based on hybrid modified honey bee mating optimization and differential evolution (MHBMO-DE) to solve the multi-objective optimal operation management (MOOM) problem, which can be affected by fuel cell power plants (FCPPs). The objective functions are to minimize total electrical energy losses, total electrical energy cost, total pollutant emission produced by sources, and deviation of bus voltages. A new interactive fuzzy satisfying method is presented to solve the multi-objective problem by assuming that the decision-maker (DM) has fuzzy goals for each of the objective functions. Through the interaction with the DM, the fuzzy goals of the DM are quantified by eliciting the corresponding membership functions. Then, by considering the current solution, the DM acts on this solution by updating the reference membership values until the satisfying solution for the DM can be obtained. The MOOM problem is modeled as a mixed integer nonlinear programming problem. Evolutionary methods are used to solve this problem because of their independence from type of the objective function and constraints. Recently researchers have presented a new evolutionary method called honey bee mating optimization (HBMO) algorithm. Original HBMO often converges to local optima, in order to overcome this shortcoming, we propose a new method that improves the mating process and also, combines the modified HBMO with DE algorithm. Numerical results for a distribution test system have been presented to illustrate the performance and applicability of the proposed method. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. A fuzzy approach to the generation expansion planning problem in a multi-objective environment

    International Nuclear Information System (INIS)

    Abass, S. A.; Massoud, E. M. A.; Abass, S. A.)

    2007-01-01

    In many power system problems, the use of optimization techniques has proved inductive to reducing the costs and losses of the system. A fuzzy multi-objective decision is used for solving power system problems. One of the most important issues in the field of power system engineering is the generation expansion planning problem. In this paper, we use the concepts of membership functions to define a fuzzy decision model for generating an optimal solution for this problem. Solutions obtained by the fuzzy decision theory are always efficient and constitute the best compromise. (author)

  3. An Efficient Multi-objective Approach for Designing of Communication Interfaces in Smart Grids

    DEFF Research Database (Denmark)

    Ghasemkhani, Amir; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2016-01-01

    The next generation of power systems require to use smart grid technologies due to their unique features like high speed, reliable and secure data communications to monitor, control and protect system effectively. Hence, one of the main requirements of achieving a smart grid is optimal designing...... of telecommunication systems. In this study, a novel dynamic Multi-Objective Shortest Path (MOSP) algorithm is presented to design a spanning graph of a communication infrastructure using high speed Optimal Power Ground Wire (OPGW) cables and Phasor Measurement Units (PMUs). Applicability of the proposed model...

  4. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    International Nuclear Information System (INIS)

    Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang

    2014-01-01

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  5. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  6. A multi-objective approach for developing national energy efficiency plans

    International Nuclear Information System (INIS)

    Haydt, Gustavo; Leal, Vítor; Dias, Luís

    2014-01-01

    This paper proposes a new approach to deal with the problem of building national energy efficiency (EE) plans, considering multiple objectives instead of only energy savings. The objectives considered are minimizing the influence of energy use on climate change, minimizing the financial risk from the investment, maximizing the security of energy supply, minimizing investment costs, minimizing the impacts of building new power plants and transmission infrastructures, and maximizing the local air quality. These were identified through literature review and interaction with real decision makers. A database of measures is established, from which millions of potential EE plans can be built by combining measures and their respective degree of implementation. Finally, a hybrid multi-objective and multi-criteria decision analysis (MCDA) model is proposed to search and select the EE plans that best match the decision makers’ preferences. An illustration of the working mode and the type of results obtained from this novel hybrid model is provided through an application to Portugal. For each of five decision perspectives a wide range of potential best plans were identified. These wide ranges show the relevance of introducing multi-objective analysis in a comprehensive search space as a tool to inform decisions about national EE plans. - Highlights: • A multiple objective approach to aid the choice of national energy efficiency plans. • A hybrid multi-objective MCDA model is proposed to search among the possible plans. • The model identified relevant plans according to five different idealized DMs. • The approach is tested with Portugal

  7. High Fidelity Multi-Objective Design Optimization of a Downscaled Cusped Field Thruster

    Directory of Open Access Journals (Sweden)

    Thomas Fahey

    2017-11-01

    Full Text Available The Cusped Field Thruster (CFT concept has demonstrated significantly improved performance over the Hall Effect Thruster and the Gridded Ion Thruster; however, little is understood about the complexities of the interactions and interdependencies of the geometrical, magnetic and ion beam properties of the thruster. This study applies an advanced design methodology combining a modified power distribution calculation and evolutionary algorithms assisted by surrogate modeling to a multi-objective design optimization for the performance optimization and characterization of the CFT. Optimization is performed for maximization of performance defined by five design parameters (i.e., anode voltage, anode current, mass flow rate, and magnet radii, simultaneously aiming to maximize three objectives; that is, thrust, efficiency and specific impulse. Statistical methods based on global sensitivity analysis are employed to assess the optimization results in conjunction with surrogate models to identify key design factors with respect to the three design objectives and additional performance measures. The research indicates that the anode current and the Outer Magnet Radius have the greatest effect on the performance parameters. An optimal value for the anode current is determined, and a trend towards maximizing anode potential and mass flow rate is observed.

  8. Multi objective optimization model for minimizing production cost and environmental impact in CNC turning process

    Science.gov (United States)

    Widhiarso, Wahyu; Rosyidi, Cucuk Nur

    2018-02-01

    Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.

  9. The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils

    Science.gov (United States)

    Miller, M.; Slew, K. Lee; Matida, E.

    2016-09-01

    With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.

  10. Multi-objective optimization of cellular scanning strategy in selective laser melting

    DEFF Research Database (Denmark)

    Ahrari, Ali; Deb, Kalyanmoy; Mohanty, Sankhya

    2017-01-01

    The scanning strategy for selective laser melting - an additive manufacturing process - determines the temperature fields during the manufacturing process, which in turn affects residual stresses and distortions, two of the main sources of process-induced defects. The goal of this study is to dev......The scanning strategy for selective laser melting - an additive manufacturing process - determines the temperature fields during the manufacturing process, which in turn affects residual stresses and distortions, two of the main sources of process-induced defects. The goal of this study......, the problem is a combination of combinatorial and choice optimization, which makes the problem difficult to solve. On a process simulation domain consisting of 32 cells, our multi-objective evolutionary method is able to find a set of trade-off solutions for the defined conflicting objectives, which cannot...

  11. Multi-Objective Optimization for Equipment Capacity in Off-Grid Smart House

    Directory of Open Access Journals (Sweden)

    Yasuaki Miyazato

    2017-01-01

    Full Text Available Recently, the off-grid smart house has been attracting attention in Japan for considering global warming. Moreover, the selling price of surplus power from the renewable energy system by Feed-In Tariff (FIT has declined. Therefore, this paper proposes an off-grid smart house with the introduced Photovoltaic (PV system, Solar Collector (SC system, Hot Water Heat Pump (HWHP, fixed battery and Electric Vehicle (EV. In this research, a multi-objective optimization problem is considered to minimize the introduced capacity and shortage of the power supply in the smart house. It can perform the electric power procurement from the EV charging station for the compensation of a shortage of power supply. From the simulation results, it is shown that the shortage of the power supply can be reduced by the compensation of the EV power. Furthermore, considering the uncertainty for PV output power, reliable simulation results can be obtained.

  12. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition

    Directory of Open Access Journals (Sweden)

    Vito Janko

    2017-12-01

    Full Text Available The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  13. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition.

    Science.gov (United States)

    Janko, Vito; Luštrek, Mitja

    2017-12-29

    The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system's energy expenditure and the system's accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  14. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition †

    Science.gov (United States)

    Janko, Vito

    2017-01-01

    The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy. PMID:29286301

  15. Dynamic population artificial bee colony algorithm for multi-objective optimal power flow

    Directory of Open Access Journals (Sweden)

    Man Ding

    2017-03-01

    Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.

  16. Intelligent multi-objective optimization for building energy and comfort management

    Directory of Open Access Journals (Sweden)

    Pervez Hameed Shaikh

    2018-04-01

    Full Text Available The rapid economic and population growth in developing countries, effective and efficient energy usage has turned out to be crucial due to the rising concern of depleting fossil fuels, of which, one-third of primary energy is consumed in buildings and expected to rise by 53% up to 2030. This roaring sector posing a challenge, due to 90% of people spend most of their time in buildings, requires enhanced well-being of indoor environment and living standards. Therefore, building operations require more energy because most of the energy is consumed to make the indoor environment comfortable. Consequently, there is the need of improved energy efficiency to decrease energy consumption in buildings. In relation to this, the primary challenge of building control systems is the energy consumption and comfort level are generally conflicting to each other. Therefore, an important problem of sustainable smart buildings is to effectively manage the energy consumption and comfort and attain the trade-off between the two. Thus, smart buildings are becoming a trend of future construction that facilitates intelligent control in buildings for the fulfillment of occupant’s comfort level. In this study, an intelligent multi-objective system has been developed with evolutionary multi-objective genetic algorithm (MOGA optimization method. The corresponding case study simulation results for the effective management of users’ comfort and energy efficiency have been carried out. The case study results show the management of energy supply for each comfort parameter and maintain high comfort index achieving balance between the energy consumption and comfort level. Keywords: Energy, Buildings, Comfort, Management, Optimization, Trade-off

  17. Multi-objective and multi-physics optimization methodology for SFR core: application to CFV concept

    International Nuclear Information System (INIS)

    Fabbris, Olivier

    2014-01-01

    Nuclear reactor core design is a highly multidisciplinary task where neutronics, thermal-hydraulics, fuel thermo-mechanics and fuel cycle are involved. The problem is moreover multi-objective (several performances) and highly dimensional (several tens of design parameters).As the reference deterministic calculation codes for core characterization require important computing resources, the classical design method is not well suited to investigate and optimize new innovative core concepts. To cope with these difficulties, a new methodology has been developed in this thesis. Our work is based on the development and validation of simplified neutronics and thermal-hydraulics calculation schemes allowing the full characterization of Sodium-cooled Fast Reactor core regarding both neutronics performances and behavior during thermal hydraulic dimensioning transients.The developed methodology uses surrogate models (or meta-models) able to replace the neutronics and thermal-hydraulics calculation chain. Advanced mathematical methods for the design of experiment, building and validation of meta-models allows substituting this calculation chain by regression models with high prediction capabilities.The methodology is applied on a very large design space to a challenging core called CFV (French acronym for low void effect core) with a large gain on the sodium void effect. Global sensitivity analysis leads to identify the significant design parameters on the core design and its behavior during unprotected transient which can lead to severe accidents. Multi-objective optimizations lead to alternative core configurations with significantly improved performances. Validation results demonstrate the relevance of the methodology at the pre-design stage of a Sodium-cooled Fast Reactor core. (author) [fr

  18. Femoral hip prosthesis design for Thais using multi-objective shape optimization

    International Nuclear Information System (INIS)

    Virulsri, Chanyaphan; Tangpornprasert, Pairat; Romtrairat, Parineak

    2015-01-01

    Highlights: • A multi-objective shape optimization was proposed to design hip prosthesis for Thais. • The prosthesis design was optimized in terms of safety of both cement and prosthesis. • The objective functions used the Soderberg fatigue strength formulations. • Safety factors of the cement and prosthesis are 1.200 and 1.109 respectively. • The newly designed prosthesis also fits well with chosen small-sized Thai femurs. - Abstract: The long-term success of Total Hip Arthroplasty (THA) depends largely on how well the prosthetic components fit the bones. The majority of cemented femoral hip prosthesis failures are due to aseptic loosening, which is possibly caused by cracking of the cement mantle. The strength of cement components is a function of cement mantles having adequate thickness. Since the size and shape of cemented femoral hip prostheses used in Thailand are based on designs for a Caucasian population, they do not properly conform to most Thai patients’ physical requirements. For these reasons, prostheses designed specifically for Thai patients must consider the longevity and functionality of both cement and prosthesis. The objective of this study was to discover a new design for femoral hip prostheses which is not only optimal and safe in terms of both cement and prosthesis, but also fits the selected Thai femur. This study used a small-sized Thai femoral model as a reference model for a new design. Biocompatible stainless steel 316L (SS316L) and polymethylmethacrylate (PMMA) were selected as raw materials for the prosthesis and bone cement respectively. A multi-objective shape optimization program, which is an interface between optimization C program named NSGA-II and a finite element program named ANSYS, was used to optimize longevity of femoral hip prostheses by varying shape parameters at assigned cross-sections of the selected geometry. Maximum walking loads of sixty-kilograms were applied to a finite element model for stress and

  19. Multi-objective optimization integrated with life cycle assessment for rainwater harvesting systems

    Science.gov (United States)

    Li, Yi; Huang, Youyi; Ye, Quanliang; Zhang, Wenlong; Meng, Fangang; Zhang, Shanxue

    2018-03-01

    The major limitation of optimization models applied previously for rainwater harvesting (RWH) systems is the systematic evaluation of environmental and human health impacts across all the lifecycle stages. This study integrated life cycle assessment (LCA) into a multi-objective optimization model to optimize the construction areas of green rooftops, porous pavements and green lands in Beijing of China, considering the trade-offs among 24 h-interval RWH volume (QR), stormwater runoff volume control ratio (R), economic cost (EC), and environmental impacts (EI). Eleven life cycle impact indicators were assessed with a functional unit of 10,000 m2 of RWH construction areas. The LCA results showed that green lands performed the smallest lifecycle impacts of all assessment indicators, in contrast, porous pavements showed the largest impact values except Abiotic Depletion Potential (ADP) elements. Based on the standardization results, ADP fossil was chosen as the representative indicator for the calculation of EI objective in multi-objective optimization model due to its largest value in all RWH systems lifecycle. The optimization results for QR, R, EC and EI were 238.80 million m3, 78.5%, 66.68 billion RMB Yuan, and 1.05E + 16 MJ, respectively. After the construction of optimal RWH system, 14.7% of annual domestic water consumption and 78.5% of maximum daily rainfall would be supplied and controlled in Beijing, respectively, which would make a great contribution to reduce the stress of water scarcity and water logging problems. Green lands have been the first choice for RWH in Beijing according to the capacity of rainwater harvesting and less environmental and human impacts. Porous pavements played a good role in water logging alleviation (R for 67.5%), however, did not show a large construction result in this study due to the huge ADP fossil across the lifecycle. Sensitivity analysis revealed the daily maximum precipitation to be key factor for the robustness of the

  20. Multi-objective optimization of Stirling engine using non-ideal adiabatic method

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Ahmadi, Mohammad H.

    2014-01-01

    Highlights: • A multi-objective optimization is carried out for a Stirling engine. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. • The results are compared with the previous works for checking the model improvement. • A proper improvement is observed using TOPSIS when comparing with the others. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great numbers of studies are conducted on Stirling engines and non-ideal adiabatic method is one of them. In the present study, the efficiency and the power loss due to pressure drop into the heat exchangers are optimized for a Stirling system using non-ideal adiabatic analysis and the second-version Non-dominated Sorting Genetic Algorithm. The optimized answers are chosen from the results using three decision-making methods. The applied methods were compared at last and the best results were obtained for the technique for order preference by similarity to ideal solution decision making method

  1. MULTI-OBJECTIVE OPTIMAL NUMBER AND LOCATION FOR STEEL OUTRIGGER-BELT TRUSS SYSTEM

    Directory of Open Access Journals (Sweden)

    MEHDI BABAEI

    2017-10-01

    Full Text Available During the past two decades, outrigger-belt truss system has been investigated and used in design of tall buildings. Most of the studies focused on the optimization of the system for minimum displacement and some of them proposed the best locations. In this study, however, multi-objective optimization of tall steel frames with belt trusses is investigated to minimize displacement and weight of the structure. For this purpose, structures with 20, 30, 40, and 50 stories are considered as models, based on the suggestions in the literature. The location and number of trusses and cross section of all structural elements are considered as design variables. After sizing of the structure for a specific topology and shape, weight and displacement of the structure are obtained and plotted in a diagram to illustrate trade-off between two objective functions. The results show the optimal Pareto-front solutions for different stories. Smooth trade-off and optimal number of trusses and their locations obtained.

  2. Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit

    Science.gov (United States)

    Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.

    2017-11-01

    In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.

  3. System design and improvement of an emergency department using Simulation-Based Multi-Objective Optimization

    International Nuclear Information System (INIS)

    Uriarte, A Goienetxea; Zúñiga, E Ruiz; Moris, M Urenda; Ng, A H C

    2015-01-01

    Discrete Event Simulation (DES) is nowadays widely used to support decision makers in system analysis and improvement. However, the use of simulation for improving stochastic logistic processes is not common among healthcare providers. The process of improving healthcare systems involves the necessity to deal with trade-off optimal solutions that take into consideration a multiple number of variables and objectives. Complementing DES with Multi-Objective Optimization (SMO) creates a superior base for finding these solutions and in consequence, facilitates the decision-making process. This paper presents how SMO has been applied for system improvement analysis in a Swedish Emergency Department (ED). A significant number of input variables, constraints and objectives were considered when defining the optimization problem. As a result of the project, the decision makers were provided with a range of optimal solutions which reduces considerably the length of stay and waiting times for the ED patients. SMO has proved to be an appropriate technique to support healthcare system design and improvement processes. A key factor for the success of this project has been the involvement and engagement of the stakeholders during the whole process. (paper)

  4. Design of AC-DC Grid Connected Converter using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Piasecki Szymon

    2014-05-01

    Full Text Available Power electronic circuits, in particular AC-DC converters are complex systems, many different parameters and objectives have to be taken into account during the design process. Implementation of Multi-Objective Optimization (MOO seems to be attractive idea, which used as designer supporting tool gives possibility for better analysis of the designed system. This paper presents a short introduction to the MOO applied in the field of power electronics. Short introduction to the subject is given in section I. Then, optimization process and its elements are briefly described in section II. Design procedure with proposed optimization parameters and performance indices for AC-DC Grid Connected Converter (GCC interfacing distributed systems is introduced in section III. Some preliminary optimization results, achieved on the basis of analytical and simulation study, are shown at each stage of designing process. Described optimization parameters and performance indices are part of developed global optimization method dedicated for ACDC GCC introduced in section IV. Described optimization method is under development and only short introduction and basic assumptions are presented. In section V laboratory prototype of high efficient and compact 14 kVA AC-DC converter is introduced. The converter is elaborated based on performed designing and optimization procedure with the use of silicon carbide (SiC power semiconductors. Finally, the paper is summarized and concluded in section VI. In presented work theoretical research are conducted in parallel with laboratory prototyping e.g. all theoretical ideas are verified in laboratory using modern DSP microcontrollers and prototypes of the ACDC GCC.

  5. Contribution to the evaluation and to the improvement of multi-objective optimization methods: application to the optimization of nuclear fuel reloading pattern

    International Nuclear Information System (INIS)

    Collette, Y.

    2002-01-01

    In this thesis, we study the general problem of the selection of a multi-objective optimization method, then we study the improvement so as to efficiently solve a problem. The pertinent selection of a method presume the existence of a methodology: we have built tools to perform evaluation of performances and we propose an original method dedicated to the classification of know optimization methods. Our step has been applied to the elaboration of new methods for solving a very difficult problem: the nuclear core reload pattern optimization. First, we looked for a non usual approach of performances measurement: we have 'measured' the behavior of a method. To reach this goal, we have introduced several metrics. We have proposed to evaluate the 'aesthetic' of a distribution of solutions by defining two new metrics: a 'spacing metric' and a metric that allow us to measure the size of the biggest hole in the distribution of solutions. Then, we studied the convergence of multi-objective optimization methods by using some metrics defined in scientific literature and by proposing some more metrics: the 'Pareto ratio' which computes a ratio of solution production. Lastly, we have defined new metrics intended to better apprehend the behavior of optimization methods: the 'speed metric', which allows to compute the speed profile and a 'distribution metric' which allows to compute statistical distribution of solutions along the Pareto frontier. Next, we have studied transformations of a multi-objective problem and defined news methods: the modified Tchebychev method, or the penalized weighted sum of objective functions. We have elaborated new techniques to choose the initial point. These techniques allow to produce new initial points closer and closer to the Pareto frontier and, thanks to the 'proximal optimality concept', allowing dramatic improvements in the convergence of a multi-objective optimization method. Lastly, we have defined new vectorial multi-objective optimization

  6. Coastal aquifer management based on surrogate models and multi-objective optimization

    Science.gov (United States)

    Mantoglou, A.; Kourakos, G.

    2011-12-01

    The demand for fresh water in coastal areas and islands can be very high, especially in summer months, due to increased local needs and tourism. In order to satisfy demand, a combined management plan is proposed which involves: i) desalinization (if needed) of pumped water to a potable level using reverse osmosis and ii) injection of biologically treated waste water into the aquifer. The management plan is formulated into a multiobjective optimization framework, where simultaneous minimization of economic and environmental costs is desired; subject to a constraint to satisfy demand. The method requires modeling tools, which are able to predict the salinity levels of the aquifer in response to different alternative management scenarios. Variable density models can simulate the interaction between fresh and saltwater; however, they are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNN)]. The surrogate models are trained adaptively during optimization based on a Genetic Algorithm. In the crossover step of the genetic algorithm, each pair of parents generates a pool of offspring. All offspring are evaluated based on the fast surrogate model. Then only the most promising offspring are evaluated based on the exact numerical model. This eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. Three new criteria for selecting the most promising offspring were proposed, which improve the Pareto set and maintain the diversity of the optimum solutions. The method has important advancements compared to previous methods, e.g. alleviation of propagation of errors due to surrogate model approximations. The method is applied to a real coastal aquifer in the island of Santorini which is a very touristy island with high water demands. The results show that the algorithm

  7. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Science.gov (United States)

    Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.

  8. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Directory of Open Access Journals (Sweden)

    Marko Budinich

    Full Text Available Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA and multi-objective flux variability analysis (MO-FVA. Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity that take place at the ecosystem scale.

  9. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    Science.gov (United States)

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  10. Multi objective optimization of foam-filled circular tubes for quasi-static and dynamic responses

    Directory of Open Access Journals (Sweden)

    Fauzan Djamaluddin

    Full Text Available AbstractFuel consumption and safety are currently key aspects in automobile design. The foam-filled thin-walled aluminium tube represents a potentially effective material for use in the automotive industry, due to its energy absorption capability and light weight. Multi-objective crashworthiness design optimization for foam-filled double cylindrical tubes is presented in this paper. The double structures are impacted by a rigid wall simulating quasi-static and dynamic loadings. The optimal parameters under consideration are the minimum peak crushing force and maximum specific energy absorption, using the non-dominated sorting genetic algorithm-II (NSGA-II technique. Radial basis functions (RBF and D-Optimal are adopted to determine the more complex crashworthiness functional objectives. The comparison is performed by finite element analysis of the impact crashworthiness characteristics in tubes under static and dynamic loads. Finally, the optimum crashworthiness performance of empty and foam-filled double tubes is investigated and compared to the traditional single foam-filled tube. The results indicate that the foam-filled double aluminium circular tube can be recommended for crashworthy structures.

  11. Multi-Objective Optimization of a Turbofan for an Advanced, Single-Aisle Transport

    Science.gov (United States)

    Berton, Jeffrey J.; Guynn, Mark D.

    2012-01-01

    Considerable interest surrounds the design of the next generation of single-aisle commercial transports in the Boeing 737 and Airbus A320 class. Aircraft designers will depend on advanced, next-generation turbofan engines to power these airplanes. The focus of this study is to apply single- and multi-objective optimization algorithms to the conceptual design of ultrahigh bypass turbofan engines for this class of aircraft, using NASA s Subsonic Fixed Wing Project metrics as multidisciplinary objectives for optimization. The independent design variables investigated include three continuous variables: sea level static thrust, wing reference area, and aerodynamic design point fan pressure ratio, and four discrete variables: overall pressure ratio, fan drive system architecture (i.e., direct- or gear-driven), bypass nozzle architecture (i.e., fixed- or variable geometry), and the high- and low-pressure compressor work split. Ramp weight, fuel burn, noise, and emissions are the parameters treated as dependent objective functions. These optimized solutions provide insight to the ultrahigh bypass engine design process and provide information to NASA program management to help guide its technology development efforts.

  12. The Ordered Capacitated Multi-Objective Location-Allocation Problem for Fire Stations Using Spatial Optimization

    Directory of Open Access Journals (Sweden)

    Samira Bolouri

    2018-01-01

    Full Text Available Determining the positions of facilities, and allocating demands to them, is a vitally important problem. Location-allocation problems are optimization NP-hard procedures. This article evaluates the ordered capacitated multi-objective location-allocation problem for fire stations, using simulated annealing and a genetic algorithm, with goals such as minimizing the distance and time as well as maximizing the coverage. After tuning the parameters of the algorithms using sensitivity analysis, they were used separately to process data for Region 11, Tehran. The results showed that the genetic algorithm was more efficient than simulated annealing, and therefore, the genetic algorithm was used in later steps. Next, we increased the number of stations. Results showed that the model can successfully provide seven optimal locations and allocate high demands (280,000 to stations in a discrete space in a GIS, assuming that the stations’ capacities are known. Following this, we used a weighting program so that in each repetition, we could allot weights to each target randomly. Finally, by repeating the model over 10 independent executions, a set of solutions with the least sum and the highest number of non-dominated solutions was selected from among many non-dominated solutions as the best set of optimal solutions.

  13. An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for Multi-Robot Path Planning

    Directory of Open Access Journals (Sweden)

    Nizar Hadi Abbas

    2016-07-01

    Full Text Available This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In order to evaluate the proposed algorithm in term of finding the best solution, six benchmark test functions are used to make a comparison between AMOPSO and the standard MOPSO. The results show that the AMOPSO has a better ability to get away from local optimums with a quickest convergence than the MOPSO. The simulation results using Matlab 2014a, indicate that this methodology is extremely valuable for every robot in multi-robot framework to discover its own particular proper pa‌th from the start to the destination position with minimum distance and time.

  14. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  15. A Case Study: Optimal Stage Gauge NetworkUsing Multi Objective Genetic Algorithm

    Science.gov (United States)

    Joo, H. J.; Han, D.; Jung, J.; Kim, H. S.

    2017-12-01

    Recently, the possibility of occurrence of localized strong heavy rainfall due to climate change is increasing and flood damage is also increasing trend in Korea. Therefore we need more precise hydrologic analysis for preparing alternatives or measures for flood reduction by considering climate conditions which we have difficulty in the prediction. To do this, obtaining reliable hydrologic data, for an example, stage data, is very important. However, the existing stage gauge stations are scattered around the country, making it difficult to maintain them in a stable manner, and subsequently hard to acquire the hydrologic data that could be used for reflecting the localized hydrologic characteristics. In order to overcome such restrictions, this paper not only aims to establish a plan to acquire the water stage data in a constant and proper manner by using limited manpower and costs, but also establishes the fundamental technology for acquiring the water level observation data or the stage data. For that, this paper identifies the current status of the stage gauge stations installed in the Chung-Ju dam in Han river, Korea and extract the factors related to the division and characteristics of basins. Then, the obtained factors are used to develop the representative unit hydrograph that shows the characteristics of flow. After that, the data are converted into the probability density function and the stations at individual basins are selected by using the entropy theory. In last step, we establish the optimized stage gauge network by the location of the stage station and grade using the Multi Objective Genetic Algorithm(MOGA) technique that takes into account for the combinations of the number of the stations. It is expected that this paper can help establish an optimal observational network of stage guages as it can be applied usefully not only for protecting against floods in a stable manner, but also for acquiring the hydrologic data in an efficient manner. Keywords

  16. A multi-objective approach to improve SWAT model calibration in alpine catchments

    Science.gov (United States)

    Tuo, Ye; Marcolini, Giorgia; Disse, Markus; Chiogna, Gabriele

    2018-04-01

    Multi-objective hydrological model calibration can represent a valuable solution to reduce model equifinality and parameter uncertainty. The Soil and Water Assessment Tool (SWAT) model is widely applied to investigate water quality and water management issues in alpine catchments. However, the model calibration is generally based on discharge records only, and most of the previous studies have defined a unique set of snow parameters for an entire basin. Only a few studies have considered snow observations to validate model results or have taken into account the possible variability of snow parameters for different subbasins. This work presents and compares three possible calibration approaches. The first two procedures are single-objective calibration procedures, for which all parameters of the SWAT model were calibrated according to river discharge alone. Procedures I and II differ from each other by the assumption used to define snow parameters: The first approach assigned a unique set of snow parameters to the entire basin, whereas the second approach assigned different subbasin-specific sets of snow parameters to each subbasin. The third procedure is a multi-objective calibration, in which we considered snow water equivalent (SWE) information at two different spatial scales (i.e. subbasin and elevation band), in addition to discharge measurements. We tested these approaches in the Upper Adige river basin where a dense network of snow depth measurement stations is available. Only the set of parameters obtained with this multi-objective procedure provided an acceptable prediction of both river discharge and SWE. These findings offer the large community of SWAT users a strategy to improve SWAT modeling in alpine catchments.

  17. Multi-Objective Optimization of Experiments Using Curvature and Fisher Information Matrix

    Directory of Open Access Journals (Sweden)

    Erica Manesso

    2017-11-01

    Full Text Available The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental data. In this regard, experimental conditions have a strong influence on parameter identifiability and should therefore be optimized to give the maximum information for parameter estimation. Existing model-based design of experiment (MBDOE methods commonly rely on the Fisher information matrix (FIM for defining a metric of data informativeness. When the model behavior is highly nonlinear, FIM-based criteria may lead to suboptimal designs, as the FIM only accounts for the linear variation in the model outputs with respect to the parameters. In this work, we developed a multi-objective optimization (MOO MBDOE, for which the model nonlinearity was taken into consideration through the use of curvature. The proposed MOO MBDOE involved maximizing data informativeness using a FIM-based metric and at the same time minimizing the model curvature. We demonstrated the advantages of the MOO MBDOE over existing FIM-based and other curvature-based MBDOEs in an application to the kinetic modeling of fed-batch fermentation of baker’s yeast.

  18. Multi-Objective Optimization for Pure Permanent-Magnet Undulator Magnets Ordering Using Modified Simulated Annealing

    CERN Document Server

    Chen Nian; Li, Ge

    2004-01-01

    Undulator field errors influence the electron beam trajectories and lower the radiation quality. Angular deflection of electron beam is determined by first field integral, orbital displacement of electron beam is determined by second field integral and radiation quality can be evaluated by rms field error or phase error. Appropriate ordering of magnets can greatly reduce the errors. We apply a modified simulated annealing algorithm to this multi-objective optimization problem, taking first field integral, second field integral and rms field error as objective functions. Undulator with small field errors can be designed by this method within a reasonable calculation time even for the case of hundreds of magnets (first field integral reduced to 10-6T·m, second integral to 10-6T·m2 and rms field error to 0.01%). Thus, the field correction after assembling of undulator will be greatly simplified. This paper gives the optimizing process in detail and puts forward a new method to quickly calculate the rms field e...

  19. Multi-objective optimization of aircraft design for emission and cost reductions

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2014-02-01

    Full Text Available Pollutant gases emitted from the civil jet are doing more and more harm to the environment with the rapid development of the global commercial aviation transport. Low environmental impact has become a new requirement for aircraft design. In this paper, estimation method for emission in aircraft conceptual design stage is improved based on the International Civil Aviation Organization (ICAO aircraft engine emissions databank and the polynomial curve fitting methods. The greenhouse gas emission (CO2 equivalent per seat per kilometer is proposed to measure the emissions. An approximate sensitive analysis and a multi-objective optimization of aircraft design for tradeoff between greenhouse effect and direct operating cost (DOC are performed with five geometry variables of wing configuration and two flight operational parameters. The results indicate that reducing the cruise altitude and Mach number may result in a decrease of the greenhouse effect but an increase of DOC. And the two flight operational parameters have more effects on the emissions than the wing configuration. The Pareto-optimal front shows that a decrease of 29.8% in DOC is attained at the expense of an increase of 10.8% in greenhouse gases.

  20. Multi-objective optimization of p-xylene oxidation process using an improved self-adaptive differential evolution algorithm

    Institute of Scientific and Technical Information of China (English)

    Lili Tao; Bin Xu; Zhihua Hu; Weimin Zhong

    2017-01-01

    The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [1]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta-neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob-lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application of ISADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.

  1. Multi-objective optimization of two alkali catalyzed processes for biodiesel from waste cooking oil

    International Nuclear Information System (INIS)

    Patle, Dipesh S.; Sharma, Shivom; Ahmad, Z.; Rangaiah, G.P.

    2014-01-01

    Highlights: • Biodiesel processes use waste cooking oil and are close to industrial practice. • Detailed constituents of waste cooking oil and detailed kinetics are used. • Two complete processes are optimized for economic and environmental objectives. • Obtained trade-offs provide deeper understanding and alternative optimal solutions. - Abstract: In view of the finite availability and environmental concerns of fossil fuels, biodiesel is one of the promising fuel alternatives. This study considers waste cooking palm oil with 6% free fatty acids (FFA) as feed-stock, which facilitates its better utilization and promotes sustainability. Two biodiesel production processes (both involving esterification catalyzed by sulfuric acid and trans-esterification catalyzed by sodium hydroxide) are compared for economic and environmental objectives. Firstly, these processes are simulated, considering detailed constituents of palm oil and also detailed kinetics for both esterification and trans-esterification, in Aspen Plus simulator. Subsequently, both the processes are optimized considering profit, heat duty and organic waste as objectives, and using an Excel-based multi-objective optimization (EMOO) program for the elitist non-dominated sorting genetic algorithm-II (NSGA-II). The results show that the profit improves with the increase in heat duty, and that the profit increase is accompanied by larger amount of organic waste. Process 1 having three trans-esterification reactors produces significantly lower organic waste (by 32%), requires lower heat duty (by 39%) and slightly more profitable (by 1.6%) compared to Process 2 having a single trans-esterification reactor and also a different separation sequence. Overall, the obtained quantitative trade-offs between objectives enable better decision making about the process design for biodiesel production from waste cooking oil

  2. A multi objective optimization of gear cutting in WEDM of Inconel 718 using TOPSIS method

    Directory of Open Access Journals (Sweden)

    K.D. Mohapatra

    2017-07-01

    Full Text Available The present paper deals with the experimental analysis and multi objective optimization of gear cutting process of Inconel 718 using WEDM. The objective of the present work is to optimize the parameters in order to maximize the material removal rate and minimize the kerf in a gear cutting process to get the optimum value. The MRR and kerf play a major role in optimizing the parameters in WEDM process. The experiment is carried out in the wire EDM machine using brass wire as the electrode, Inconel 718 as the work-piece material and distilled water as the dielectric. The design array is created by using Design of Experiment in a Taguchi L16 orthogonal array repeated once. The gear has a base diameter of 20 mm, addendum diameter of 22.5 mm and a pressure angle of 20º with 16 numbers of teeth. The machining operation is carried out by taking 3 input parameters at 4 different levels each. The output parameters such as Material Removal rate and Kerf width were obtained and optimized using TOPSIS method to know the optimum setting. Microstructural analysis of both material and wire were studied to know the various defects during the machining operation. Various plots were obtained to know the effects of the process parameters in WEDM. A regression model was also obtained to validate the statistical model values with the experimental. ANOVA table and Response table were carried out to know the significant parameters and rank respectively in the Wire EDM process. Surface roughness, Addendum and Tooth width of gears were also found out at the optimum settings. The optimum setting of the gear obtained can be used to produce high quality gears and can also be applied for future findings.

  3. Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power

    Institute of Scientific and Technical Information of China (English)

    Feng Zhao; Chenghui Zhang; Bo Sun

    2016-01-01

    This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power(CCHP) with storage systems.Initially,the initiative optimization operation strategy of CCHP system in the cooling season,the heating season and the transition season was formulated.The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency,minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy.Furthermore,the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm.Ultimately,the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution(TOPSIS) method.A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method.The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method.The CCHP system has achieved better energy efficiency,environmental protection and economic benefits.

  4. Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

    Directory of Open Access Journals (Sweden)

    Xiaozhang Qu

    2016-07-01

    Full Text Available A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction,the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

  5. Retrofitting of heat exchanger networks involving streams with variable heat capacity: Application of single and multi-objective optimization

    International Nuclear Information System (INIS)

    Sreepathi, Bhargava Krishna; Rangaiah, G.P.

    2015-01-01

    Heat exchanger network (HEN) retrofitting improves the energy efficiency of the current process by reducing external utilities. In this work, HEN retrofitting involving streams having variable heat capacity is studied. For this, enthalpy values of a stream are fitted to a continuous cubic polynomial instead of a stepwise approach employed in the previous studies [1,2]. The former methodology is closer to reality as enthalpy or heat capacity changes gradually instead of step changes. Using the polynomial fitting formulation, single objective optimization (SOO) and multi-objective optimization (MOO) of a HEN retrofit problem are investigated. The results obtained show an improvement in the utility savings, and MOO provides many Pareto-optimal solutions to choose from. Also, Pareto-optimal solutions involving area addition in existing heat exchangers only (but no new exchangers and no structural modifications) are found and provided for comparison with those involving new exchangers and structural modifications as well. - Highlights: • HEN retrofitting involving streams with variable heat capacities is studied. • A continuous approach to handle variable heat capacity is proposed and tested. • Better and practical solutions are obtained for HEN retrofitting in process plants. • Pareto-optimal solutions provide many alternate choices for HEN retrofitting

  6. Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China

    Directory of Open Access Journals (Sweden)

    Xiaoya Ma

    2015-11-01

    Full Text Available As the main feature of land use planning, land use allocation (LUA optimization is an important means of creating a balance between the land-use supply and demand in a region and promoting the sustainable utilization of land resources. In essence, LUA optimization is a multi-objective optimization problem under the land use supply and demand constraints in a region. In order to obtain a better sustainable multi-objective LUA optimization solution, the present study proposes a LUA model based on the multi-objective artificial immune optimization algorithm (MOAIM-LUA model. The main achievements of the present study are as follows: (a the land-use supply and demand factors are analyzed and the constraint conditions of LUA optimization problems are constructed based on the analysis framework of the balance between the land use supply and demand; (b the optimization objectives of LUA optimization problems are defined and modeled using ecosystem service value theory and land rent and price theory; and (c a multi-objective optimization algorithm is designed for solving multi-objective LUA optimization problems based on the novel immune clonal algorithm (NICA. On the basis of the aforementioned achievements, MOAIM-LUA was applied to a real case study of land-use planning in Anlu County, China. Compared to the current land use situation in Anlu County, optimized LUA solutions offer improvements in the social and ecological objective areas. Compared to the existing models, such as the non-dominated sorting genetic algorithm-II, experimental results demonstrate that the model designed in the present study can obtain better non-dominated solution sets and is superior in terms of algorithm stability.

  7. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    Science.gov (United States)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  8. Exergoeconomic analysis and multi-objective optimization of an ejector refrigeration cycle powered by an internal combustion (HCCI) engine

    International Nuclear Information System (INIS)

    Sadeghi, Mohsen; Mahmoudi, S.M.S.; Khoshbakhti Saray, R.

    2015-01-01

    Highlights: • Ejector refrigeration systems powered by HCCI engine is proposed. • A new two-dimensional model is developed for the ejector. • Multi-objective optimization is performed for the proposed system. • Pareto frontier is plotted for multi-objective optimization. - Abstract: Ejector refrigeration systems powered by low-grade heat sources have been an attractive research subject for a lot of researchers. In the present work the waste heat from exhaust gases of a HCCI (homogeneous charge compression ignition) engine is utilized to drive the ejector refrigeration system. Considering the frictional effects on the ejector wall, a new two-dimensional model is developed for the ejector. Energy, exergy and exergoeconomic analysis performed for the proposed system using the MATLAB software. In addition, considering the exergy efficiency and the product unit cost of the system as objective functions, a multi-objective optimization is performed for the system to find the optimum design variables including the generator, condenser and evaporator temperatures. The product unit cost is minimized while the exergy efficiency is maximized using the genetic algorithm. The optimization results are obtained as a set of optimal points and the Pareto frontier is plotted for multi-objective optimization. The results of the optimization show that ejector refrigeration cycle is operating at optimum state based on exergy efficiency and product unit cost when generator, condenser and evaporator work at 94.54 °C, 33.44 °C and 0.03 °C, respectively

  9. Multi-objective design optimization of the transverse gaseous jet in supersonic flows

    Science.gov (United States)

    Huang, Wei; Yang, Jun; Yan, Li

    2014-01-01

    The mixing process between the injectant and the supersonic crossflow is one of the important issues for the design of the scramjet engine, and the efficiency mixing has a great impact on the improvement of the combustion efficiency. A hovering vortex is formed between the separation region and the barrel shock wave, and this may be induced by the large negative density gradient. The separation region provides a good mixing area for the injectant and the subsonic boundary layer. In the current study, the transverse injection flow field with a freestream Mach number of 3.5 has been optimized by the non-dominated sorting genetic algorithm (NSGA II) coupled with the Kriging surrogate model; and the variance analysis method and the extreme difference analysis method have been employed to evaluate the values of the objective functions. The obtained results show that the jet-to-crossflow pressure ratio is the most important design variable for the transverse injection flow field, and the injectant molecular weight and the slot width should be considered for the mixing process between the injectant and the supersonic crossflow. There exists an optimal penetration height for the mixing efficiency, and its value is about 14.3 mm in the range considered in the current study. The larger penetration height provides a larger total pressure loss, and there must be a tradeoff between these two objection functions. In addition, this study demonstrates that the multi-objective design optimization method with the data mining technique can be used efficiently to explore the relationship between the design variables and the objective functions.

  10. A Risk-Based Multi-Objective Optimization Concept for Early-Warning Monitoring Networks

    Science.gov (United States)

    Bode, F.; Loschko, M.; Nowak, W.

    2014-12-01

    Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources which cannot be eliminated, especially in urban regions. As matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs.In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations and the early warning time and to minimize the installation and operating costs of the monitoring network. A qualitative risk ranking is used to prioritize the known risk sources for monitoring. The unknown risk sources can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well.We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks which are valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrade) to also cover moderate, tolerable and unknown risk sources. Monitoring networks which are valid for the remaining risk also cover all other risk sources but the early-warning time suffers.The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. To avoid numerical dispersion during the transport simulations we use the

  11. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based Model Selection.

    Directory of Open Access Journals (Sweden)

    Mark N Read

    2016-09-01

    Full Text Available The advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics. However, determining which motility model best reflects in vivo motility is non-trivial: 3D motility is an intricate process requiring several metrics to characterize. This complicates model selection and parameterization, which must be performed against several metrics simultaneously. Here we evaluate Brownian motion, Lévy walk and several correlated random walks (CRWs against the motility dynamics of neutrophils and lymph node T cells under inflammatory conditions by simultaneously considering cellular translational and turn speeds, and meandering indices. Heterogeneous cells exhibiting a continuum of inherent translational speeds and directionalities comprise both datasets, a feature significantly improving capture of in vivo motility when simulated as a CRW. Furthermore, translational and turn speeds are inversely correlated, and the corresponding CRW simulation again improves capture of our in vivo data, albeit to a lesser extent. In contrast, Brownian motion poorly reflects our data. Lévy walk is competitive in capturing some aspects of neutrophil motility, but T cell directional persistence only, therein highlighting the importance of evaluating models against several motility metrics simultaneously. This we achieve through novel application of multi-objective optimization, wherein each model is independently implemented and then parameterized to identify optimal trade-offs in performance against each metric. The resultant Pareto

  12. Multi-objective optimization design and experimental investigation of centrifugal fan performance

    Science.gov (United States)

    Zhang, Lei; Wang, Songling; Hu, Chenxing; Zhang, Qian

    2013-11-01

    Current studies of fan performance optimization mainly focus on two aspects: one is to improve the blade profile, and another is only to consider the influence of single impeller structural parameter on fan performance. However, there are few studies on the comprehensive effect of the key parameters such as blade number, exit stagger angle of blade and the impeller outlet width on the fan performance. The G4-73 backward centrifugal fan widely used in power plants is selected as the research object. Based on orthogonal design and BP neural network, a model for predicting the centrifugal fan performance parameters is established, and the maximum relative errors of the total pressure and efficiency are 0.974% and 0.333%, respectively. Multi-objective optimization of total pressure and efficiency of the fan is conducted with genetic algorithm, and the optimum combination of impeller structural parameters is proposed. The optimized parameters of blade number, exit stagger angle of blade and the impeller outlet width are seperately 14, 43.9°, and 21 cm. The experiments on centrifugal fan performance and noise are conducted before and after the installation of the new impeller. The experimental results show that with the new impeller, the total pressure of fan increases significantly in total range of the flow rate, and the fan efficiency is improved when the relative flow is above 75%, also the high efficiency area is broadened. Additionally, in 65% -100% relative flow, the fan noise is reduced. Under the design operating condition, total pressure and efficiency of the fan are improved by 6.91% and 0.5%, respectively. This research sheds light on the considering of comprehensive effect of impeller structrual parameters on fan performance, and a new impeller can be designed to satisfy the engineering demand such as energy-saving, noise reduction or solving air pressure insufficiency for power plants.

  13. Evolutionary multi-objective optimization for software development teams building: a way of obtaining quality in the final product

    Directory of Open Access Journals (Sweden)

    Yasnalla Rivero Peña

    2015-03-01

    Full Text Available (Received: 2015/01/29 - Accepted: 2015/03/25In this research a mathematical model to approach the process of creating software development teams as a discrete multi-objective problem is proposed. The objectives considered are the level of competition and the level of utilization of professionals in the team. Given the complexity of the problem search space, the application of an approximate optimization method is proposed. Specifically, the genetic algorithm NSGA-II based on the concept of Pareto dominance was selected. This method was applied in six different scenarios in order to analyze the quality of the obtained solutions. In general we can say that the method is efficient and gets solutions (assignments of high quality.

  14. Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power

    Directory of Open Access Journals (Sweden)

    Fang-Fang Li

    2015-07-01

    Full Text Available To maximize annual power generation and to improve firm power are important but competing goals for hydropower stations. The firm power output is decisive for the installed capacity in design, and represents the reliability of the power generation when the power plant is put into operation. To improve the firm power, the whole generation process needs to be as stable as possible, while the maximization of power generation requires a rapid rise of the water level at the beginning of the storage period. Taking the minimal power output as the firm power, both the total amount and the reliability of the hydropower generation are considered simultaneously in this study. A multi-objective model to improve the comprehensive benefits of hydropower stations are established, which is optimized by Non-dominated Sorting Genetic Algorithm-II (NSGA-II. The Three Gorges Cascade Hydropower System (TGCHS is taken as the study case, and the Pareto Fronts in different search spaces are obtained. The results not only prove the effectiveness of the proposed method, but also provide operational references for the TGCHS, indicating that there is room of improvement for both the annual power generation and the firm power.

  15. Multi-objective optimization algorithms for mixed model assembly line balancing problem with parallel workstations

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2016-12-01

    Full Text Available This paper deals with mixed model assembly line (MMAL balancing problem of type-I. In MMALs several products are made on an assembly line while the similarity of these products is so high. As a result, it is possible to assemble several types of products simultaneously without any additional setup times. The problem has some particular features such as parallel workstations and precedence constraints in dynamic periods in which each period also effects on its next period. The research intends to reduce the number of workstations and maximize the workload smoothness between workstations. Dynamic periods are used to determine all variables in different periods to achieve efficient solutions. A non-dominated sorting genetic algorithm (NSGA-II and multi-objective particle swarm optimization (MOPSO are used to solve the problem. The proposed model is validated with GAMS software for small size problem and the performance of the foregoing algorithms is compared with each other based on some comparison metrics. The NSGA-II outperforms MOPSO with respect to some comparison metrics used in this paper, but in other metrics MOPSO is better than NSGA-II. Finally, conclusion and future research is provided.

  16. A Cognitive Skill Classification Based On Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Directory of Open Access Journals (Sweden)

    Moh. Aries Syufagi

    2011-12-01

    Full Text Available Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player’s ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG. CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ for optimizing the cognitive skill input classification of the player. CSG is using teacher’s data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments using 33 respondent players demonstrates that 61% of players have high trial and error cognitive skill, 21% have high carefully cognitive skill, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players’ ability. CSG will help balance the emotions of players, so players do not get bored and frustrated. Players have a high interest to finish the game if the player is emotionally stable. Interests in the players strongly support the procedural learning in a serious game.

  17. Multi-objective Optimization of Departure Procedures at Gimpo International Airport

    Science.gov (United States)

    Kim, Junghyun; Lim, Dongwook; Monteiro, Dylan Jonathan; Kirby, Michelle; Mavris, Dimitri

    2018-04-01

    Most aviation communities have increasing concerns about the environmental impacts, which are directly linked to health issues for local residents near the airport. In this study, the environmental impact of different departure procedures using the Aviation Environmental Design Tool (AEDT) was analyzed. First, actual operational data were compiled at Gimpo International Airport (March 20, 2017) from an open source. Two modifications were made in the AEDT to model the operational circumstances better and the preliminary AEDT simulations were performed according to the acquired operational procedures. Simulated noise results showed good agreements with noise measurement data at specific locations. Second, a multi-objective optimization of departure procedures was performed for the Boeing 737-800. Four design variables were selected and AEDT was linked to a variety of advanced design methods. The results showed that takeoff thrust had the greatest influence and it was found that fuel burn and noise had an inverse relationship. Two points representing each fuel burn and noise optimum on the Pareto front were parsed and run in AEDT to compare with the baseline. The results showed that the noise optimum case reduced Sound Exposure Level 80-dB noise exposure area by approximately 5% while the fuel burn optimum case reduced total fuel burn by 1% relative to the baseline for aircraft-level analysis.

  18. Prediction and optimization of fuel cell performance using a multi-objective genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Marques Hobold, Gustavo [Laboratory of Energy Conversion Engineering and Technology, Federal University of Santa Catarina (Brazil); Washington University in St. Louis, MO 63130 (United States); Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, MO 63130 (United States)

    2013-07-01

    The attention that is currently being given to the emission of pollutant gases in the atmosphere has made the fuel cell (FC), an energy conversion device that cleanly converts chemical energy into electrical energy, a good alternative to other technologies that still use carbon-based fuels. The temperature plays an important role on the efficiency of an FC as it influences directly the humidity of the membrane, the reversible thermodynamic potential and the partial pressure of water; therefore the thermal control of the fuel cell is the focus of this paper. We present models for both high and low temperature fuel cells based on the solid-oxide fuel cell (SOFC) and the polymer electrolyte membrane fuel cell (PEMFC). A thermodynamic analysis is performed on the cells and the methods of controlling their temperature are discussed. The cell parameters are optimized for both high and low temperatures using a Java-based multi-objective genetic algorithm, which makes use of the logic of the biological theory of evolution to classify individual parameters based on a fitness function in order to maximize the power of the fuel cell. Applications to high and low temperature fuel cells are discussed.

  19. QoS Routing in Ad-Hoc Networks Using GA and Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Admir Barolli

    2011-01-01

    Full Text Available Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing.

  20. Global shape optimization of airfoil using multi-objective genetic algorithm

    International Nuclear Information System (INIS)

    Lee, Ju Hee; Lee, Sang Hwan; Park, Kyoung Woo

    2005-01-01

    The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model

  1. Global shape optimization of airfoil using multi-objective genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Hee; Lee, Sang Hwan [Hanyang Univ., Seoul (Korea, Republic of); Park, Kyoung Woo [Hoseo Univ., Asan (Korea, Republic of)

    2005-10-01

    The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model.

  2. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    Directory of Open Access Journals (Sweden)

    Jesper G. Andreasen

    2016-04-01

    Full Text Available For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ∘ C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35 mole . The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.

  3. Irrigation water allocation optimization using multi-objective evolutionary algorithm (MOEA) - a review

    Science.gov (United States)

    Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian

    2018-03-01

    This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.

  4. Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach

    International Nuclear Information System (INIS)

    Nixon, J.D.

    2016-01-01

    This paper presents a method for optimising the design parameters of an anaerobic digestion (AD) system by using first-order kinetics and multi-objective non-linear goal programming. A model is outlined that determines the ideal operating tank temperature and hydraulic retention time, based on objectives for minimising levelised cost of electricity, and maximising energy potential and feedstock mass reduction. The model is demonstrated for a continuously stirred tank reactor processing food waste in two case study locations. These locations are used to investigate the influence of different environmental and economic climates on optimal conditions. A sensitivity analysis is performed to further examine the variation in optimal results for different financial assumptions and objective weightings. The results identify the conditions for the preferred tank temperature to be in the psychrophilic, mesophilic or thermophilic range. For a tank temperature of 35 °C, ideal hydraulic retention times, in terms of achieving a minimum levelised electricity cost, were found to range from 29.9 to 33 days. Whilst there is a need for more detailed information on rate constants for use in first-order models, multi-objective optimisation modelling is considered to be a promising option for AD design. - Highlights: • Nonlinear goal programming is used to optimise anaerobic digestion systems. • Multiple objectives are set including minimising the levelised cost of electricity. • A model is developed and applied to case studies for the UK and India. • Optimal decisions are made for tank temperature and retention time. • A sensitivity analysis is carried out to investigate different model objectives.

  5. Multi-Objective Trajectory Optimization of a Hypersonic Reconnaissance Vehicle with Temperature Constraints

    Science.gov (United States)

    2014-12-26

    geocentric gravitational constant ν basis functions ω angular velocity of the Earth Φ fuel-air ratio φ longitude φ optimal control terminal cost (Mayer) xxvi...incorporate sensor parameters. The current methodologies are also numerically inefficient. A trajectory optimization approach , or a general optimal...control software approach , that is computationally ef- ficient and versatile, while based on a robust mathematical foundation, would provide significant

  6. Development of a multi-objective PBIL evolutionary algorithm applied to a nuclear reactor core reload optimization problem

    International Nuclear Information System (INIS)

    Machado, Marcelo D.; Dchirru, Roberto

    2005-01-01

    The nuclear reactor core reload optimization problem consists in finding a pattern of partially burned-up and fresh fuels that optimizes the plant's next operation cycle. This optimization problem has been traditionally solved using an expert's knowledge, but recently artificial intelligence techniques have also been applied successfully. The artificial intelligence optimization techniques generally have a single objective. However, most real-world engineering problems, including nuclear core reload optimization, have more than one objective (multi-objective) and these objectives are usually conflicting. The aim of this work is to develop a tool to solve multi-objective problems based on the Population-Based Incremental Learning (PBIL) algorithm. The new tool is applied to solve the Angra 1 PWR core reload optimization problem with the purpose of creating a Pareto surface, so that a pattern selected from this surface can be applied for the plant's next operation cycle. (author)

  7. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Lahanas, M; Baltas, D; Zamboglou, N

    2003-01-01

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives

  8. Multi-objective Operation Chart Optimization for Aquatic Species Habitat Conservation of Cascaded Hydropower System on Yuan River, Southwestern China

    Science.gov (United States)

    Wen, X.; Lei, X.; Fang, G.; Huang, X.

    2017-12-01

    Extensive cascading hydropower exploitation in southwestern China has been the subject of debate and conflict in recent years. Introducing limited ecological curves, a novel approach for derivation of hydropower-ecological joint operation chart of cascaded hydropower system was proposed, aiming to optimize the general hydropower and ecological benefits, and to alleviate the ecological deterioration in specific flood/dry conditions. The physical habitat simulation model is proposed initially to simulate the relationship between streamflow and physical habitat of target fish species and to determine the optimal ecological flow range of representative reach. The ecological—hydropower joint optimization model is established to produce the multi-objective operation chart of cascaded hydropower system. Finally, the limited ecological guiding curves were generated and added into the operation chart. The JS-MDS cascaded hydropower system on the Yuan River in southwestern China is employed as the research area. As the result, the proposed guiding curves could increase the hydropower production amount by 1.72% and 5.99% and optimize ecological conservation degree by 0.27% and 1.13% for JS and MDS Reservoir, respectively. Meanwhile, the ecological deterioration rate also sees a decrease from 6.11% to 1.11% for JS Reservoir and 26.67% to 3.89% for MDS Reservoir.

  9. Multi-objective optimization for an automated and simultaneous phase and baseline correction of NMR spectral data

    Science.gov (United States)

    Sawall, Mathias; von Harbou, Erik; Moog, Annekathrin; Behrens, Richard; Schröder, Henning; Simoneau, Joël; Steimers, Ellen; Neymeyr, Klaus

    2018-04-01

    Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Magnetic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline correction step. Especially if series of high-resolution spectra are considered, then automated and computationally fast preprocessing routines are desirable. A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated form without manual input, which distinguishes this work from other approaches. The underlying multi-objective optimization or Pareto optimization provides improved results compared to consecutively applied correction steps. The optimization process uses an objective function which applies strong penalty constraints and weaker regularization conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction uses a modified Whittaker smoother. The functionality of the new method is demonstrated for experimental NMR spectra. The results are verified against gravimetric data. The method is compared to alternative preprocessing tools. Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.

  10. Multi-objective optimization of generalized reliability design problems using feature models-A concept for early design stages

    International Nuclear Information System (INIS)

    Limbourg, Philipp; Kochs, Hans-Dieter

    2008-01-01

    Reliability optimization problems such as the redundancy allocation problem (RAP) have been of considerable interest in the past. However, due to the restrictions of the design space formulation, they may not be applicable in all practical design problems. A method with high modelling freedom for rapid design screening is desirable, especially in early design stages. This work presents a novel approach to reliability optimization. Feature modelling, a specification method originating from software engineering, is applied for the fast specification and enumeration of complex design spaces. It is shown how feature models can not only describe arbitrary RAPs but also much more complex design problems. The design screening is accomplished by a multi-objective evolutionary algorithm for probabilistic objectives. Comparing averages or medians may hide the true characteristics of this distributions. Therefore the algorithm uses solely the probability of a system dominating another to achieve the Pareto optimal set. We illustrate the approach by specifying a RAP and a more complex design space and screening them with the evolutionary algorithm

  11. A new multi-objective optimization model for preventive maintenance and replacement scheduling of multi-component systems

    Science.gov (United States)

    Moghaddam, Kamran S.; Usher, John S.

    2011-07-01

    In this article, a new multi-objective optimization model is developed to determine the optimal preventive maintenance and replacement schedules in a repairable and maintainable multi-component system. In this model, the planning horizon is divided into discrete and equally-sized periods in which three possible actions must be planned for each component, namely maintenance, replacement, or do nothing. The objective is to determine a plan of actions for each component in the system while minimizing the total cost and maximizing overall system reliability simultaneously over the planning horizon. Because of the complexity, combinatorial and highly nonlinear structure of the mathematical model, two metaheuristic solution methods, generational genetic algorithm, and a simulated annealing are applied to tackle the problem. The Pareto optimal solutions that provide good tradeoffs between the total cost and the overall reliability of the system can be obtained by the solution approach. Such a modeling approach should be useful for maintenance planners and engineers tasked with the problem of developing recommended maintenance plans for complex systems of components.

  12. Mission-profile based multi-objective optimization of power electronics converter for wind turbines

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh; Teodorescu, Remus; Kerekes, Tamas

    2017-01-01

    -objective optimization approach for designing power converter is presented. The objective is to minimize the energy loss for a given load profile as against the conventional approach of minimizing power loss at specific loading conditions. The proposed approach is illustrated by designing a grid-side power converter...

  13. An Architectural Style for Optimizing System Qualities in Adaptive Embedded Systems using Multi-Objective Optimization

    NARCIS (Netherlands)

    de Roo, Arjan; Sözer, Hasan; Aksit, Mehmet

    Customers of today's complex embedded systems demand the optimization of multiple system qualities under varying operational conditions. To be able to influence the system qualities, the system must have parameters that can be adapted. Constraints may be defined on the value of these parameters.

  14. An integrated approach to engineering curricula improvement with multi-objective decision modeling and linear programming

    Science.gov (United States)

    Shea, John E.

    The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum

  15. A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures

    NARCIS (Netherlands)

    Fragoso Rodrigues, S.M.; Restrepo, C.; Katsouris, G.; Teixeira Pinto, R.; Soleimanzadeh, M.; Bosman, P; Bauer, P.

    2016-01-01

    Current offshore wind farms (OWFs) design processes are based on a sequential approach which does not guarantee system optimality because it oversimplifies the problem by discarding important interdependencies between design aspects. This article presents a framework to integrate, automate and

  16. A multi-objective optimization framework for offshore wind farm layouts and electric infrastructures

    NARCIS (Netherlands)

    S. Rodrigues (Silvio); C. Restrepo (Carlos); G. Katsouris (George); R. Teixeira Pinto (Rodrigo); M. Soleimanzadeh (Maryam); P.A.N. Bosman (Peter); P. Bauer (Pavol)

    2016-01-01

    textabstractCurrent offshore wind farms (OWFs) design processes are based on a sequential approach which does not guarantee system optimality because it oversimplifies the problem by discarding important interdependencies between design aspects. This article presents a framework to integrate,

  17. Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization

    Science.gov (United States)

    Aksoy, T.; Špiclin, Ž.; Pernuš, F.; Unal, G.

    2017-12-01

    Registration of 3D pre-interventional to 2D intra-interventional medical images has an increasingly important role in surgical planning, navigation and treatment, because it enables the physician to co-locate depth information given by pre-interventional 3D images with the live information in intra-interventional 2D images such as x-ray. Most tasks during image-guided interventions are carried out under a monoplane x-ray, which is a highly ill-posed problem for state-of-the-art 3D to 2D registration methods. To address the problem of rigid 3D-2D monoplane registration we propose a novel multi-objective stratified parameter optimization, wherein a small set of high-magnitude intensity gradients are matched between the 3D and 2D images. The stratified parameter optimization matches rotation templates to depth templates, first sampled from projected 3D gradients and second from the 2D image gradients, so as to recover 3D rigid-body rotations and out-of-plane translation. The objective for matching was the gradient magnitude correlation coefficient, which is invariant to in-plane translation. The in-plane translations are then found by locating the maximum of the gradient phase correlation between the best matching pair of rotation and depth templates. On twenty pairs of 3D and 2D images of ten patients undergoing cerebral endovascular image-guided intervention the 3D to monoplane 2D registration experiments were setup with a rather high range of initial mean target registration error from 0 to 100 mm. The proposed method effectively reduced the registration error to below 2 mm, which was further refined by a fast iterative method and resulted in a high final registration accuracy (0.40 mm) and high success rate (> 96%). Taking into account a fast execution time below 10 s, the observed performance of the proposed method shows a high potential for application into clinical image-guidance systems.

  18. Using Multi-Objective Optimization to Explore Robust Policies in the Colorado River Basin

    Science.gov (United States)

    Alexander, E.; Kasprzyk, J. R.; Zagona, E. A.; Prairie, J. R.; Jerla, C.; Butler, A.

    2017-12-01

    The long term reliability of water deliveries in the Colorado River Basin has degraded due to the imbalance of growing demand and dwindling supply. The Colorado River meanders 1,450 miles across a watershed that covers seven US states and Mexico and is an important cultural, economic, and natural resource for nearly 40 million people. Its complex operating policy is based on the "Law of the River," which has evolved since the Colorado River Compact in 1922. Recent (2007) refinements to address shortage reductions and coordinated operations of Lakes Powell and Mead were negotiated with stakeholders in which thousands of scenarios were explored to identify operating guidelines that could ultimately be agreed on. This study explores a different approach to searching for robust operating policies to inform the policy making process. The Colorado River Simulation System (CRSS), a long-term water management simulation model implemented in RiverWare, is combined with the Borg multi-objective evolutionary algorithm (MOEA) to solve an eight objective problem formulation. Basin-wide performance metrics are closely tied to system health through incorporating critical reservoir pool elevations, duration, frequency and quantity of shortage reductions in the objective set. For example, an objective to minimize the frequency that Lake Powell falls below the minimum power pool elevation of 3,490 feet for Glen Canyon Dam protects a vital economic and renewable energy source for the southwestern US. The decision variables correspond to operating tiers in Lakes Powell and Mead that drive the implementation of various shortage and release policies, thus affecting system performance. The result will be a set of non-dominated solutions that can be compared with respect to their trade-offs based on the various objectives. These could inform policy making processes by eliminating dominated solutions and revealing robust solutions that could remain hidden under conventional analysis.

  19. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa [Universiti Teknologi MARA (UiTM), Selangor (Malaysia)

    2012-08-15

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application.

  20. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    International Nuclear Information System (INIS)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa

    2012-01-01

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application

  1. A multi-objective robust optimization model for logistics planning in the earthquake response phase

    NARCIS (Netherlands)

    Najafi, M.; Eshghi, K.; Dullaert, W.E.H.

    2013-01-01

    Usually, resources are short in supply when earthquakes occur. In such emergency situations, disaster relief organizations must use these scarce resources efficiently to achieve the best possible emergency relief. This paper therefore proposes a multi-objective, multi-mode, multi-commodity, and

  2. Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant

    International Nuclear Information System (INIS)

    Liu, Xingrang; Bansal, R.C.

    2014-01-01

    Highlights: • A coal fired power plant boiler combustion process model based on real data. • We propose multi-objective optimization with CFD to optimize boiler combustion. • The proposed method uses software CORBA C++ and ANSYS Fluent 14.5 with AI. • It optimizes heat flux transfers and maintains temperature to avoid ash melt. - Abstract: The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the

  3. Multi-objective optimization of bioethanol production during cold enzyme starch hydrolysis in very high gravity cassava mash.

    Science.gov (United States)

    Yingling, Bao; Li, Chen; Honglin, Wang; Xiwen, Yu; Zongcheng, Yan

    2011-09-01

    Cold enzymatic hydrolysis conditions for bioethanol production were optimized using multi-objective optimization. Response surface methodology was used to optimize the effects of α-amylase, glucoamylase, liquefaction temperature and liquefaction time on S. cerevisiae biomass, ethanol concentration and starch utilization ratio. The optimum hydrolysis conditions were: 224 IU/g(starch) α-amylase, 694 IU/g(starch) glucoamylase, 77°C and 104 min for biomass; 264 IU/g(starch) α-amylase, 392 IU/g(starch) glucoamylase, 60°C and 85 min for ethanol concentration; 214 IU/g(starch) α-amylase, 398 IU/g(starch) glucoamylase, 79°C and 117 min for starch utilization ratio. The hydrolysis conditions were subsequently evaluated by multi-objectives optimization utilizing the weighted coefficient methods. The Pareto solutions for biomass (3.655-4.380×10(8)cells/ml), ethanol concentration (15.96-18.25 wt.%) and starch utilization ratio (92.50-94.64%) were obtained. The optimized conditions were shown to be feasible and reliable through verification tests. This kind of multi-objective optimization is of potential importance in industrial bioethanol production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Multi-objective synthesis of work and heat exchange networks: Optimal balance between economic and environmental performance

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Jiménez, Laureano; Caballero, José A.

    2017-01-01

    Highlights: • New multi-objective optimization model for the simultaneous WHEN synthesis. • A multistage superstructure allows power and thermal integration of process streams. • Simultaneous minimization of environmental impacts and total annualized cost. • Alternative set of Pareto solutions is presented to support decision-makers. - Abstract: Sustainable and efficient energy use is crucial for lessening carbon dioxide emissions in industrial plants. This paper introduces a new multi-objective optimization model for the synthesis of work and heat exchange networks (WHENs), aiming to obtain the optimal balance between economic and environmental performance. The proposed multistage superstructure allows power and thermal integration of process gaseous streams, through the simultaneous minimization of total annualized cost (TAC) and environmental impacts (EI). The latter objective is determined by environmental indicators that follow the life cycle assessment (LCA) principles. The WHEN superstructure is optimized as a multi-objective mixed-integer nonlinear programming (moMINLP) model and solved with the GAMS software. Results show a decrease of ∼79% in the heat transfer area and ∼32% in the capital cost between the solutions found for single problem optimizations. These results represent a diminution of ∼23.5% in the TAC, while EI is increased in ∼99.2%. As these solutions can be impractical for economic or environmental reasons, we present a set of alternative Pareto-optimal solutions to support decision-makers towards the implementation of more environment-friendly and cost-effective WHENs.

  5. Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm

    Science.gov (United States)

    Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong

    2014-03-01

    A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.

  6. Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN) coating cermet tools

    OpenAIRE

    Ouahid Keblouti; Lakhdar Boulanouar; Mohamed Walid Azizi; Mohamed Athmane Yallese

    2017-01-01

    The present work concerns an experimental study of turning with coated cermet tools with TiCN-TiN coating layer of AISI 52100 bearing steel. The main objectives are firstly focused on the effect of cutting parameters and coating material on the performances of cutting tools. Secondly, to perform a Multi-objective optimization for minimizing surface roughness (Ra) and maximizing material removal rate by desirability approach. A mathematical model was developed based on the Response Surface Met...

  7. Multi-objective optimization in the presence of practical constraints using non-dominated sorting hybrid cuckoo search algorithm

    Directory of Open Access Journals (Sweden)

    M. Balasubbareddy

    2015-12-01

    Full Text Available A novel optimization algorithm is proposed to solve single and multi-objective optimization problems with generation fuel cost, emission, and total power losses as objectives. The proposed method is a hybridization of the conventional cuckoo search algorithm and arithmetic crossover operations. Thus, the non-linear, non-convex objective function can be solved under practical constraints. The effectiveness of the proposed algorithm is analyzed for various cases to illustrate the effect of practical constraints on the objectives' optimization. Two and three objective multi-objective optimization problems are formulated and solved using the proposed non-dominated sorting-based hybrid cuckoo search algorithm. The effectiveness of the proposed method in confining the Pareto front solutions in the solution region is analyzed. The results for single and multi-objective optimization problems are physically interpreted on standard test functions as well as the IEEE-30 bus test system with supporting numerical and graphical results and also validated against existing methods.

  8. A practical multi-objective PSO algorithm for optimal operation management of distribution network with regard to fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher; Meymand, Hamed Zeinoddini; Mojarrad, Hasan Doagou [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of)

    2011-05-15

    In this paper a novel Multi-objective fuzzy self adaptive hybrid particle swarm optimization (MFSAHPSO) evolutionary algorithm to solve the Multi-objective optimal operation management (MOOM) is presented. The purposes of the MOOM problem are to decrease the total electrical energy losses, the total electrical energy cost and the total pollutant emission produced by fuel cells and substation bus. Conventional algorithms used to solve the multi-objective optimization problems convert the multiple objectives into a single objective, using a vector of the user-predefined weights. In this conversion several deficiencies can be detected. For instance, the optimal solution of the algorithms depends greatly on the values of the weights and also some of the information may be lost in the conversion process and so this strategy is not expected to provide a robust solution. This paper presents a new MFSAHPSO algorithm for the MOOM problem. The proposed algorithm maintains a finite-sized repository of non-dominated solutions which gets iteratively updated in the presence of new solutions. Since the objective functions are not the same, a fuzzy clustering technique is used to control the size of the repository, within the limits. The proposed algorithm is tested on a distribution test feeder and the results demonstrate the capabilities of the proposed approach, to generate true and well-distributed Pareto-optimal non-dominated solutions of the MOOM problem. (author)

  9. Differential evolution-based multi-objective optimization for the definition of a health indicator for fault diagnostics and prognostics

    Science.gov (United States)

    Baraldi, P.; Bonfanti, G.; Zio, E.

    2018-03-01

    The identification of the current degradation state of an industrial component and the prediction of its future evolution is a fundamental step for the development of condition-based and predictive maintenance approaches. The objective of the present work is to propose a general method for extracting a health indicator to measure the amount of component degradation from a set of signals measured during operation. The proposed method is based on the combined use of feature extraction techniques, such as Empirical Mode Decomposition and Auto-Associative Kernel Regression, and a multi-objective Binary Differential Evolution (BDE) algorithm for selecting the subset of features optimal for the definition of the health indicator. The objectives of the optimization are desired characteristics of the health indicator, such as monotonicity, trendability and prognosability. A case study is considered, concerning the prediction of the remaining useful life of turbofan engines. The obtained results confirm that the method is capable of extracting health indicators suitable for accurate prognostics.

  10. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms.

    Science.gov (United States)

    Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam

    2016-03-01

    A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.

  11. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Larsen, Ulrik

    2013-01-01

    This paper aims at finding the optimal design of MW-size organic Rankine cycles by employing the multi-objective optimization with the genetic algorithm as the optimizer. We consider three objective functions: thermal efficiency, total volume of the system and net present value. The optimization...... for acetone. Other promising working fluids are cyclohexane, hexane and isohexane. The present methodology can be utilized in waste heat recovery applications where a compromise between performance, compactness and economic revenue is required. © 2013 Elsevier Ltd. All rights reserved....

  12. Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains

    International Nuclear Information System (INIS)

    Cambero, Claudia; Sowlati, Taraneh

    2016-01-01

    Highlights: • Quantified social benefits of forest- based biomass supply chain. • Developed multi-objective optimization model. • Incorporated social benefits into multi-objective model. • Solved the model using the AUGMECON method. • Applied the model to a case study in Canada. - Abstract: Utilization of forest and wood residues to produce bioenergy and biofuels could generate additional revenue streams for forestry companies, reduce their environmental impacts and generate new development opportunities for forest-dependent communities. Further development of forest-based biorefineries entails addressing complexities and challenges related to biomass procurement, logistics, technologies, and sustainability. Numerous optimization models have been proposed for the economic and environmental design of biomass-to-bioenergy or biofuel supply chains. A few of them also maximized the job creation potential of the supply chain through the use of employment multipliers. The use of a total job creation indicator as the social optimization objective implies that all new jobs generate the same level of social benefit. In this paper, we quantify the potential social benefit of new forest-based biorefinery supply chains considering different impacts of new jobs based on their type and location. This social benefit is incorporated into a multi-objective mixed integer linear programming model that maximizes the social benefit, net present value and greenhouse gas emission saving potential of a forest-based biorefinery supply chain. The applicability of the model is illustrated through a case study in the interior region of British Columbia, Canada where different utilization paths for available forest and wood residues are investigated. The multi-objective optimization model is solved using a Pareto-generating method. The analysis of the generated set of Pareto-optimal solutions show a trade-off between the net present value of the supply chain and the other two

  13. Multi-Objective Optimal Design of a Building Envelope and Structural System Using Cyber-Physical Modeling in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Michael L. Whiteman

    2018-03-01

    Full Text Available This paper explores the use of a cyber-physical systems (CPS “loop-in-the-model” approach to optimally design the envelope and structural system of low-rise buildings subject to wind loads. Both the components and cladding (C&C and the main wind force resisting system (MWFRS are considered through multi-objective optimization. The CPS approach combines the physical accuracy of wind tunnel testing and efficiency of numerical optimization algorithms to obtain an optimal design. The approach is autonomous: experiments are executed in a boundary layer wind tunnel (BLWT, sensor feedback is monitored and analyzed by a computer, and optimization algorithms dictate physical changes to the structural model in the BLWT through actuators. To explore a CPS approach to multi-objective optimization, a low-rise building with a parapet wall of variable height is considered. In the BLWT, servo-motors are used to adjust the parapet to a particular height. Parapet walls alter the location of the roof corner vortices, reducing suction loads on the windward facing roof corners and edges, a C&C design load. At the same time, parapet walls increase the surface area of the building, leading to an increase in demand on the MWFRS. A combination of non-stochastic and stochastic optimization algorithms were implemented to minimize the magnitude of suction and positive pressures on the roof of a low-rise building model, followed by stochastic multi-objective optimization to simultaneously minimize the magnitude of suction pressures and base shear. Experiments were conducted at the University of Florida Experimental Facility (UFEF of the National Science Foundation’s (NSF Natural Hazard Engineering Research Infrastructure (NHERI program.

  14. Multi-objective calibration of a reservoir model: aggregation and non-dominated sorting approaches

    Science.gov (United States)

    Huang, Y.

    2012-12-01

    Numerical reservoir models can be helpful tools for water resource management. These models are generally calibrated against historical measurement data made in reservoirs. In this study, two methods are proposed for the multi-objective calibration of such models: aggregation and non-dominated sorting methods. Both methods use a hybrid genetic algorithm as an optimization engine and are different in fitness assignment. In the aggregation method, a weighted sum of scaled simulation errors is designed as an overall objective function to measure the fitness of solutions (i.e. parameter values). The contribution of this study to the aggregation method is the correlation analysis and its implication to the choice of weight factors. In the non-dominated sorting method, a novel method based on non-dominated sorting and the method of minimal distance is used to calculate the dummy fitness of solutions. The proposed methods are illustrated using a water quality model that was set up to simulate the water quality of Pepacton Reservoir, which is located to the north of New York City and is used for water supply of city. The study also compares the aggregation and the non-dominated sorting methods. The purpose of this comparison is not to evaluate the pros and cons between the two methods but to determine whether the parameter values, objective function values (simulation errors) and simulated results obtained are significantly different with each other. The final results (objective function values) from the two methods are good compromise between all objective functions, and none of these results are the worst for any objective function. The calibrated model provides an overall good performance and the simulated results with the calibrated parameter values match the observed data better than the un-calibrated parameters, which supports and justifies the use of multi-objective calibration. The results achieved in this study can be very useful for the calibration of water

  15. Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Xi JIN; Jie ZHANG; Jin-liang GAO; Wen-yan WU

    2008-01-01

    Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Aigorithm-Ⅱ (NSGA-Ⅱ) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-Ⅱ into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by introduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated; this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.

  16. A guide to multi-objective optimization for ecological problems with an application to cackling goose management

    Science.gov (United States)

    Williams, Perry J.; Kendall, William L.

    2017-01-01

    Choices in ecological research and management are the result of balancing multiple, often competing, objectives. Multi-objective optimization (MOO) is a formal decision-theoretic framework for solving multiple objective problems. MOO is used extensively in other fields including engineering, economics, and operations research. However, its application for solving ecological problems has been sparse, perhaps due to a lack of widespread understanding. Thus, our objective was to provide an accessible primer on MOO, including a review of methods common in other fields, a review of their application in ecology, and a demonstration to an applied resource management problem.A large class of methods for solving MOO problems can be separated into two strategies: modelling preferences pre-optimization (the a priori strategy), or modelling preferences post-optimization (the a posteriori strategy). The a priori strategy requires describing preferences among objectives without knowledge of how preferences affect the resulting decision. In the a posteriori strategy, the decision maker simultaneously considers a set of solutions (the Pareto optimal set) and makes a choice based on the trade-offs observed in the set. We describe several methods for modelling preferences pre-optimization, including: the bounded objective function method, the lexicographic method, and the weighted-sum method. We discuss modelling preferences post-optimization through examination of the Pareto optimal set. We applied each MOO strategy to the natural resource management problem of selecting a population target for cackling goose (Branta hutchinsii minima) abundance. Cackling geese provide food security to Native Alaskan subsistence hunters in the goose's nesting area, but depredate crops on private agricultural fields in wintering areas. We developed objective functions to represent the competing objectives related to the cackling goose population target and identified an optimal solution

  17. A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm

    Science.gov (United States)

    Chae, Han Gil

    constraints, and there has been no clear explanation for constraint handling in SPEA so far. In this thesis work, it is proposed that through a slight modification of the notion of dominance, it is possible to make SPEA manage constraints successfully. In light of the notion of possibility, a concept of solution that ensures a certain confidence level is proposed and implemented in a new evolutionary algorithm with a newly defined fuzzied version of the multi-objective optimization problem statement. In the new problem statement, function values and constraints are softened by possibility distributions that reflect the intuitive assessment of the expert. Multiple alternative solutions to the problem are found by the modified SPEA. Furthermore, the new method is applied to the sizing problem of a gyrodyne cofiguration which employs a tip-jet-driven rotor on top of a fixed-wing aircraft. The sizing environment includes a 6-DOF rotor trim model, a tip-jet model, a blade duct model and engine models for various concepts of air compression. However, the design problem of the gyrodyne is ill-defined, and there are only a few data available. Therefore, a large portion of the analysis involves intuitive information. The intuitive information is quantified, and sizing is performed through the possibilistic MOEA investigating the influences of the various factors. The trade-offs includes discrete variables for engine type and an optional tip burner, as well as continuous variables for rotor parameters and engine parameters.

  18. Practical solutions for multi-objective optimization: An application to system reliability design problems

    International Nuclear Information System (INIS)

    Taboada, Heidi A.; Baheranwala, Fatema; Coit, David W.; Wattanapongsakorn, Naruemon

    2007-01-01

    For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set

  19. A MULTI-OBJECTIVE APPROACH TO THE EVALUATION OF INNOVATIVE POTENTIAL OF THE TOURISM INDUSTRY ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Tat’yana Pavlovna Levchenko

    2018-02-01

    Full Text Available Speaking about innovation in the tourism industry and hotel business, in particular, it usually means events of a systemic nature, with quality novelty, aimed at achieving positive changes, stable functioning and dynamic development. Along with general economic factors that determine the uneven demand for services of hospitality, it is explained by the sharp increase in dependence of their tourism and recreational opportunities from innovative potential (IP, capability of adapting to challenging competitive environment. The article considers a multi-objective approach to the study of the innovative potential of the tourism industry organizations. Its essence lies in the fact that the choice of the structural elements from the point of view of their value and importance (in any combination cannot be established a priori, without sufficient objective analysis on some of the more important criteria for achieving the goals. A diagnostic analysis and evaluation of the innovation potential of several hotel organizations from the standpoint of a multi-purpose approach is performed.

  20. COORDINATED LOCATION, DISTRIBUTION AND INVENTORY DECISIONS IN SUPPLY CHAIN NETWORK DESIGN: A MULTI-OBJECTIVE APPROACH

    Directory of Open Access Journals (Sweden)

    G. Reza Nasiri

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This research presents an integrated multi-objective distribution model for use in simultaneous strategic and operational food supply chain (SC planning. The proposed method is adopted to allow use of a performance measurement system that includes conflicting objectives such as distribution costs, customer service level (safety stock holding, resource utilisation, and the total delivery time, with reference to multiple warehouse capacities and uncertain forecast demands. To deal with these objectives and enable the decision makers (DMs to evaluate a greater number of alternative solutions, three different approaches are implemented in the proposed solution procedure. A detailed case study derived from food industrial data is used to illustrate the preference of the proposed approach. The proposed method yields an efficient solution and an overall degree of DMs’ satisfaction with the determined objective values.

    AFRIKAANSE OPSOMMING: Die navorsing behandel ’n geïntegreerde multidoelwit distribusiemodel vir strategiese beplanning van ’n voedseltoevoerketting. Om met die model doelmatig te werk, moet ’n versameling van randvoorwaardes hanteer word om die saamgestelde optimiseringsdoelwit te bereik teen ’n agtergrond van uiteenlopende sienings.

  1. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    Science.gov (United States)

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Maximizing hosting capacity of renewable energy sources in distribution networks: A multi-objective and scenario-based approach

    International Nuclear Information System (INIS)

    Rabiee, Abbas; Mohseni-Bonab, Seyed Masoud

    2017-01-01

    Due to the development of renewable energy sources (RESs), maximization of hosting capacity (HC) of RESs has gained significant interest in the existing and future power systems. HC maximization should be performed considering various technical constraints like power flow equations, limits on the distribution feeders' voltages and currents, as well as economic constraints such as the cost of energy procurement from the upstream network and power generation by RESs. RESs are volatile and uncertain in nature. Thus, it is necessary to handle their inherent uncertainties in the HC maximization problem. Wind power is now the fastest growing RESs around the world. Hence, in this paper a stochastic multi-objective optimization model is proposed to maximize the distribution network's HC for wind power and minimize the energy procurement costs in a wind integrated power system. The following objective functions are considered: 1) Cost of the purchased energy from upstream network (to be minimized) and 2) Operation and maintenance cost of wind farms. The proposed model is examined on a standard radial 69 bus distribution feeder and a practical 152 bus distribution system. The numerical results substantiate that the proposed model is an effective tool for distribution network operators (DNOs) to consider both technical and economic aspects of distribution network's HC for RESs. - Highlights: • Hosting capacity of wind power is improved in distribution feeders. • A stochastic multi-objective optimization model is proposed. • Wind power and load uncertainties are modeled by scenario based approach. • Purchased energy cost from upstream network and O&M cost of wind farms are used.

  3. Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718

    Directory of Open Access Journals (Sweden)

    Hamid Tebassi

    2016-01-01

    Full Text Available Nickel based super alloys are excellent for several applications and mainly in structural components submitted to high temperatures owing to their high strength to weight ratio, good corrosion resistance and metallurgical stability such as in cases of jet engine and gas turbine components. The current work presents the experimental investigations of the cutting parameters effects (cutting speed, depth of cut and feed rate on the surface roughness, cutting force components, productivity and power consumption during dry conditions in straight turning using coated carbide tool. The mathematical models for output parameters have been developed using Box-Behnken design with 15 runs and Box-Cox transformation was used for improving normality. The results of the analysis have shown that the surface finish was statistically sensitive to the feed rate and cutting speed with the contribution of 43.58% and 23.85% respectively, while depth of cut had the greatest effect on the evolution of cutting force components with the contribution of 79.87% for feed force, 66.92% for radial force and 66.26% for tangential force. Multi-objective optimization procedure allowed minimizing roughness Ra, cutting forces and power consumption and maximizing material removal rate using desirability approach.

  4. Multi-objective optimization of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander

    International Nuclear Information System (INIS)

    Galindo, J.; Climent, H.; Dolz, V.; Royo-Pascual, L.

    2016-01-01

    Highlights: • A thermo-economic and sizing model of an ORC in a gasoline engine is carried out. • A multi-objective optimization method to design an ORC for vehicle WHR is presented. • A multiple attribute decision-making method is implemented to select the solution. - Abstract: This paper presents a mathematical model of a bottoming Organic Rankine Cycle coupled to a 2 l turbocharged gasoline engine to optimize the cycle from a thermo-economic and sizing point of view. These criteria were optimized with different cycle values. Therefore, a methodology to optimize the ORC coupled to Waste Heat Recovery systems in vehicle applications is presented using a multi-objective optimization algorithm. Multi-objective optimization results show that the optimum solution depend on the importance of each objective to the final solution. Considering thermo-economic criteria as the main objective, greater sizes will be required. Considering sizing criteria as the main objective, higher thermo-economic parameters will be obtained. Therefore, in order to select a single-solution from the Pareto frontier, a multiple attribute decision-making method (TOPSIS) was implemented in order to take into account the preferences of the Decision Maker. Considering the weight factors 0.5 for Specific Investment Cost (SIC), 0.3 for the area of the heat exchangers (A tot ) and 0.2 for Volume Coefficient (VC) and the boundaries of this particular application, the result is optimized with values of 0.48 m 2 (A tot ), 2515 €/kW (SIC) and 2.62 MJ/m 3 (VC). Moreover, the profitability of the project by means of the Net Present Value and the Payback has been estimated.

  5. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  6. Multi-Objective Patch Optimization with Integrated Kinematic Draping Simulation for Continuous–Discontinuous Fiber-Reinforced Composite Structures

    Directory of Open Access Journals (Sweden)

    Benedikt Fengler

    2018-03-01

    Full Text Available Discontinuous fiber-reinforced polymers (DiCoFRP in combination with local continuous fiber reinforced polymers (CoFRP provide both a high design freedom and high weight-specific mechanical properties. For the optimization of CoFRP patches on complexly shaped DiCoFRP structures, an optimization strategy is needed which considers manufacturing constraints during the optimization procedure. Therefore, a genetic algorithm is combined with a kinematic draping simulation. To determine the optimal patch position with regard to structural performance and overall material consumption, a multi-objective optimization strategy is used. The resulting Pareto front and a corresponding heat-map of the patch position are useful tools for the design engineer to choose the right amount of reinforcement. The proposed patch optimization procedure is applied to two example structures and the effect of different optimization setups is demonstrated.

  7. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    Science.gov (United States)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  8. Multi Objective Optimization of Weld Parameters of Boiler Steel Using Fuzzy Based Desirability Function

    Directory of Open Access Journals (Sweden)

    M. Satheesh

    2014-01-01

    Full Text Available The high pressure differential across the wall of pressure vessels is potentially dangerous and has caused many fatal accidents in the history of their development and operation. For this reason the structural integrity of weldments is critical to the performance of pressure vessels. In recent years much research has been conducted to the study of variations in welding parameters and consumables on the mechanical properties of pressure vessel steel weldments to optimize weld integrity and ensure pressure vessels are safe. The quality of weld is a very important working aspect for the manufacturing and construction industries. Because of high quality and reliability, Submerged Arc Welding (SAW is one of the chief metal joining processes employed in industry. This paper addresses the application of desirability function approach combined with fuzzy logic analysis to optimize the multiple quality characteristics (bead reinforcement, bead width, bead penetration and dilution of submerged arc welding process parameters of SA 516 Grade 70 steels(boiler steel. Experiments were conducted using Taguchi’s L27 orthogonal array with varying the weld parameters of welding current, arc voltage, welding speed and electrode stickout. By analyzing the response table and response graph of the fuzzy reasoning grade, optimal parameters were obtained. Solutions from this method can be useful for pressure vessel manufacturers and operators to search an optimal solution of welding condition.

  9. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles

    International Nuclear Information System (INIS)

    Hu, Zunyan; Li, Jianqiu; Xu, Liangfei; Song, Ziyou; Fang, Chuan; Ouyang, Minggao; Dou, Guowei; Kou, Gaihong

    2016-01-01

    Highlights: • Fuel economy, lithium battery size and powertrain system durability are incorporated in optimization. • A multi-objective power allocation strategy by taking battery size into consideration is proposed. • Influences of battery capacity and auxiliary power on strategy design are explored. • Battery capacity and fuel cell service life for the system life cycle cost are optimized. - Abstract: The powertrain system of a typical proton electrolyte membrane hybrid fuel cell vehicle contains a lithium battery package and a fuel cell stack. A multi-objective optimization for this powertrain system of a passenger car, taking account of fuel economy and system durability, is discussed in this paper. Based on an analysis of the optimum results obtained by dynamic programming, a soft-run strategy was proposed for real-time and multi-objective control algorithm design. The soft-run strategy was optimized by taking lithium battery size into consideration, and implemented using two real-time algorithms. When compared with the optimized dynamic programming results, the power demand-based control method proved more suitable for powertrain systems equipped with larger capacity batteries, while the state of charge based control method proved superior in other cases. On this basis, the life cycle cost was optimized by considering both lithium battery size and equivalent hydrogen consumption. The battery capacity selection proved more flexible, when powertrain systems are equipped with larger capacity batteries. Finally, the algorithm has been validated in a fuel cell city bus. It gets a good balance of fuel economy and system durability in a three months demonstration operation.

  10. a Multi Objective Model for Optimization of a Green Supply Chain Network

    Science.gov (United States)

    Paksoy, Turan; Özceylan, Eren; Weber, Gerhard-Wilhelm

    2010-06-01

    This study develops a model of a closed-loop supply chain (CLSC) network which starts with the suppliers and recycles with the decomposition centers. As a traditional network design, we consider minimizing the all transportation costs and the raw material purchasing costs. To pay attention for the green impacts, different transportation choices are presented between echelons according to their CO2 emissions. The plants can purchase different raw materials in respect of their recyclable ratios. The focuses of this paper are conducting the minimizing total CO2 emissions. Also we try to encourage the customers to use recyclable materials as an environmental performance viewpoint besides minimizing total costs. A multi objective linear programming model is developed via presenting a numerical example. We close the paper with recommendations for future researches.

  11. The Formation of Optimal Portfolio of Mutual Shares Funds using Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yandra Arkeman

    2013-09-01

    Full Text Available Investments in financial assets have become a trend in the globalization era, especially the investment in mutual fund shares. Investors who want to invest in stock mutual funds can set up an investment portfolio in order to generate a minimal risk and maximum return. In this study the authors used the Multi-Objective Genetic Algorithm Non-dominated Sorting II (MOGA NSGA-II technique with the Markowitz portfolio principle to find the best portfolio from several mutual funds. The data used are 10 company stock mutual funds with a period of 12 months, 24 months and 36 months. The genetic algorithm parameters used are crossover probability of 0.65, mutation probability of 0.05, Generation 400 and a population numbering 20 individuals. The study produced a combination of the best portfolios for the period of 24 months with a computing time of 63,289 seconds.

  12. Multi-Objective Motion Control Optimization for the Bridge Crane System

    Directory of Open Access Journals (Sweden)

    Renxin Xiao

    2018-03-01

    Full Text Available A novel control algorithm combining the linear quadratic regulator (LQR control and trajectory planning (TP is proposed for the control of an underactuated crane system, targeting position adjustment and swing suppression. The TP is employed to control the swing angle within certain constraints, and the LQR is applied to achieve anti-disturbance. In order to improve the accuracy of the position control, a differential-integral control loop is applied. The weighted LQR matrices representing priorities of the state variables for the bridge crane motion are searched by the multi-objective genetic algorithm (MOGA. The stability proof is provided in order to validate the effectiveness of the proposed algorithm. Numerous simulation and experimental validations justify the feasibility of the proposed method.

  13. Multi-objective optimization of the control strategy of electric vehicle electro-hydraulic composite braking system with genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fengjiao

    2015-03-01

    Full Text Available Optimization of the control strategy plays an important role in improving the performance of electric vehicles. In order to improve the braking stability and recover the braking energy, a multi-objective genetic algorithm is applied to optimize the key parameters in the control strategy of electric vehicle electro-hydraulic composite braking system. Various limitations are considered in the optimization process, and the optimization results are verified by a software simulation platform of electric vehicle regenerative braking system in typical brake conditions. The results show that optimization objectives achieved a good astringency, and the optimized control strategy can increase the brake energy recovery effectively under the condition of ensuring the braking stability.

  14. A multi-objective fuzzy mathematical approach for sustainable reverse supply chain configuration

    Directory of Open Access Journals (Sweden)

    Jyoti D. Darbari

    2017-03-01

    Full Text Available Background: Designing and implementation of reverse logistics (RL network which meets the sustainability targets have been a matter of emerging concern for the electronics companies in India. Objectives: The present study developed a two-phase model for configuration of sustainable RL network design for an Indian manufacturing company to manage its end-of-life and endof-use electronic products. The notable feature of the model was the evaluation of facilities under financial, environmental and social considerations and integration of the facility selection decisions with the network design. Method: In the first phase, an integrated Analytical Hierarchical Process Complex Proportional Assessment methodology was used for the evaluation of the alternative locations in terms of their degree of utility, which in turn was based on the three dimensions of sustainability. In the second phase, the RL network was configured as a bi-objective programming problem, and fuzzy optimisation approach was utilised for obtaining a properly efficient solution to the problem. Results: The compromised solution attained by the proposed fuzzy model demonstrated that the cost differential for choosing recovery facilities with better environmental and social performance was not significant; therefore, Indian manufacturers must not compromise on the sustainability aspects for facility location decisions. Conclusion: The results reaffirmed that the bi-objective fuzzy decision-making model can serve as a decision tool for the Indian manufacturers in designing a sustainable RL network. The multi-objective optimisation model captured a reasonable trade-off between the fuzzy goals of minimising the cost of the RL network and maximising the sustainable performance of the facilities chosen.

  15. A multi-objective approach to evolving platooning strategies in intelligent transportation systems

    NARCIS (Netherlands)

    Illigen, W. van; Haasdijk, E.; Kester, L.J.H.M.

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective evolutionary algorithm based on NEAT and SPEA2 that evolves highlevel

  16. A Multi-Objective Approach to Evolving Platooning Strategies in Intelligent Transportation Systems

    NARCIS (Netherlands)

    van Willigen, W; Haasdijk, E; Kester, Leon

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective evolutionary algorithm based on NEAT and SPEA2 that evolves high-level

  17. Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under risk-based strategies.

    Science.gov (United States)

    Gazijahani, Farhad Samadi; Ravadanegh, Sajad Najafi; Salehi, Javad

    2018-02-01

    The inherent volatility and unpredictable nature of renewable generations and load demand pose considerable challenges for energy exchange optimization of microgrids (MG). To address these challenges, this paper proposes a new risk-based multi-objective energy exchange optimization for networked MGs from economic and reliability standpoints under load consumption and renewable power generation uncertainties. In so doing, three various risk-based strategies are distinguished by using conditional value at risk (CVaR) approach. The proposed model is specified as a two-distinct objective function. The first function minimizes the operation and maintenance costs, cost of power transaction between upstream network and MGs as well as power loss cost, whereas the second function minimizes the energy not supplied (ENS) value. Furthermore, the stochastic scenario-based approach is incorporated into the approach in order to handle the uncertainty. Also, Kantorovich distance scenario reduction method has been implemented to reduce the computational burden. Finally, non-dominated sorting genetic algorithm (NSGAII) is applied to minimize the objective functions simultaneously and the best solution is extracted by fuzzy satisfying method with respect to risk-based strategies. To indicate the performance of the proposed model, it is performed on the modified IEEE 33-bus distribution system and the obtained results show that the presented approach can be considered as an efficient tool for optimal energy exchange optimization of MGs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Multi-objective optimization of an industrial penicillin V bioreactor train using non-dominated sorting genetic algorithm.

    Science.gov (United States)

    Lee, Fook Choon; Rangaiah, Gade Pandu; Ray, Ajay Kumar

    2007-10-15

    Bulk of the penicillin produced is used as raw material for semi-synthetic penicillin (such as amoxicillin and ampicillin) and semi-synthetic cephalosporins (such as cephalexin and cefadroxil). In the present paper, an industrial penicillin V bioreactor train is optimized for multiple objectives simultaneously. An industrial train, comprising a bank of identical bioreactors, is run semi-continuously in a synchronous fashion. The fermentation taking place in a bioreactor is modeled using a morphologically structured mechanism. For multi-objective optimization for two and three objectives, the elitist non-dominated sorting genetic algorithm (NSGA-II) is chosen. Instead of a single optimum as in the traditional optimization, a wide range of optimal design and operating conditions depicting trade-offs of key performance indicators such as batch cycle time, yield, profit and penicillin concentration, is successfully obtained. The effects of design and operating variables on the optimal solutions are discussed in detail. Copyright 2007 Wiley Periodicals, Inc.

  19. Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Steven Lecompte

    2015-04-01

    Full Text Available Organic Rankine cycles (ORCs are an established technology to convert waste heat to electricity. Although several commercial implementations exist, there is still considerable potential for thermo-economic optimization. As such, a novel framework for designing optimized ORC systems is proposed based on a multi-objective optimization scheme in combination with financial appraisal in a post-processing step. The suggested methodology provides the flexibility to quickly assess several economic scenarios and this without the need of knowing the complex design procedure. This novel way of optimizing and interpreting results is applied to a waste heat recovery case. Both the transcritical ORC and subcritical ORC are investigated and compared using the suggested optimization strategy.

  20. Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm

    Science.gov (United States)

    Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei

    2018-01-01

    In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.

  1. Multi-objective optimization design of air distribution of grate cooler by entropy generation minimization and genetic algorithm

    International Nuclear Information System (INIS)

    Shao, Wei; Cui, Zheng; Cheng, Lin

    2016-01-01

    Highlights: • A multi-objective optimization model of air distribution of grate cooler by genetic algorithm is proposed. • Pareto Front is obtained and validated by comparing with operating data. • Optimal schemes are compared and selected by engineering background. • Total power consumption after optimization decreases 61.10%. • Thickness of clinker on three grate plates is thinner. - Abstract: The cooling air distributions of grate cooler exercise a great influence on the clinker cooling efficiency and power consumption of cooling fans. A multi-objective optimization model of air distributions of grate cooler with cross-flow heat exchanger analogy is proposed in this paper. Firstly, thermodynamic and flow models of clinker cooling process is carried out. Then based on entropy generation minimization analysis, modified entropy generation numbers caused by heat transfer and pressure drop are chosen as objective functions respectively which optimized by genetic algorithm. The design variables are superficial velocities of air chambers and thicknesses of clinker layers on different grate plates. A set of Pareto optimal solutions which two objectives are optimized simultaneously is achieved. Scattered distributions of design variables resulting in the conflict between two objectives are brought out. The final optimal air distribution and thicknesses of clinker layers are selected from the Pareto optimal solutions based on power consumption of cooling fans minimization and validated by measurements. Compared with actual operating scheme, the total air volumes of optimized schemes decrease 2.4%, total power consumption of cooling fans decreases 61.1% and the outlet temperature of clinker decreases 122.9 °C which shows a remarkable energy-saving effect on energy consumption.

  2. Multi-Objective Clustering Optimization for Multi-Channel Cooperative Spectrum Sensing in Heterogeneous Green CRNs

    KAUST Repository

    Celik, Abdulkadir

    2016-06-27

    In this paper, we address energy efficient (EE) cooperative spectrum sensing policies for large scale heterogeneous cognitive radio networks (CRNs) which consist of multiple primary channels and large number of secondary users (SUs) with heterogeneous sensing and reporting channel qualities. We approach this issue from macro and micro perspectives. Macro perspective groups SUs into clusters with the objectives: 1) total energy consumption minimization; 2) total throughput maximization; and 3) inter-cluster energy and throughput fairness. We adopt and demonstrate how to solve these using the nondominated sorting genetic algorithm-II. The micro perspective, on the other hand, operates as a sub-procedure on cluster formations decided by the macro perspective. For the micro perspectives, we first propose a procedure to select the cluster head (CH) which yields: 1) the best CH which gives the minimum total multi-hop error rate and 2) the optimal routing paths from SUs to the CH. Exploiting Poisson-Binomial distribution, a novel and generalized K-out-of-N voting rule is developed for heterogeneous CRNs to allow SUs to have different local detection performances. Then, a convex optimization framework is established to minimize the intra-cluster energy cost by jointly obtaining the optimal sensing durations and thresholds of feature detectors for the proposed voting rule. Likewise, instead of a common fixed sample size test, we developed a weighted sample size test for quantized soft decision fusion to obtain a more EE regime under heterogeneity. We have shown that the combination of proposed CH selection and cooperation schemes gives a superior performance in terms of energy efficiency and robustness against reporting error wall.

  3. Multi-objective optimization of oxidative desulfurization in a sono-photochemical airlift reactor.

    Science.gov (United States)

    Behin, Jamshid; Farhadian, Negin

    2017-09-01

    Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O 3 /H 2 O 2 combination, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology.

    Science.gov (United States)

    Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Pérez-Correa, José R; López, Francisco

    2018-04-15

    Developing new distillation strategies can help the spirits industry to improve quality, safety and process efficiency. Batch stills equipped with a packed column and an internal partial condenser are an innovative experimental system, allowing a fast and flexible management of the rectification. In this study, the impact of four factors (heart-cut volume, head-cut volume, pH and cooling flow rate of the internal partial condenser during the head-cut fraction) on 18 major volatile compounds of Muscat spirits was optimized using response surface methodology and desirability function approaches. Results have shown that high rectification at the beginning of the heart-cut enhances the overall positive aroma compounds of the product, reducing off-flavor compounds. In contrast, optimum levels of heart-cut volume, head-cut volume and pH factors varied depending on the process goal. Finally, three optimal operational conditions (head off-flavors reduction, flowery terpenic enhancement and fruity ester enhancement) were evaluated by chemical and sensory analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    Science.gov (United States)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  6. Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms

    International Nuclear Information System (INIS)

    Atashkari, K.; Nariman-Zadeh, N.; Goelcue, M.; Khalkhali, A.; Jamali, A.

    2007-01-01

    The main reason for the efficiency decrease at part load conditions for four-stroke spark-ignition (SI) engines is the flow restriction at the cross-sectional area of the intake system. Traditionally, valve-timing has been designed to optimize operation at high engine-speed and wide open throttle conditions. Several investigations have demonstrated that improvements at part load conditions in engine performance can be accomplished if the valve-timing is variable. Controlling valve-timing can be used to improve the torque and power curve as well as to reduce fuel consumption and emissions. In this paper, a group method of data handling (GMDH) type neural network and evolutionary algorithms (EAs) are firstly used for modelling the effects of intake valve-timing (V t ) and engine speed (N) of a spark-ignition engine on both developed engine torque (T) and fuel consumption (Fc) using some experimentally obtained training and test data. Using such obtained polynomial neural network models, a multi-objective EA (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism are secondly used for Pareto based optimization of the variable valve-timing engine considering two conflicting objectives such as torque (T) and fuel consumption (Fc). The comparison results demonstrate the superiority of the GMDH type models over feedforward neural network models in terms of the statistical measures in the training data, testing data and the number of hidden neurons. Further, it is shown that some interesting and important relationships, as useful optimal design principles, involved in the performance of the variable valve-timing four-stroke spark-ignition engine can be discovered by the Pareto based multi-objective optimization of the polynomial models. Such important optimal principles would not have been obtained without the use of both the GMDH type neural network modelling and the multi-objective Pareto optimization approach

  7. Sensitivity Synthesis for MIMO Systems: A Multi Objective H^2 Approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1996-01-01

    A series of multi objective QTR H-infinity designproblems are considered in this paper. The problems are formulatedas a number of coupled QTR H-infinity design problems. TheseQTR H-infinity problems can be formulated as sensitivityproblems, complementary sensitivity problems, or control...... sensitivityproblems for every output (or input) in the system. It turns out thatthese multi objective QTR H-infinity design problems, based ona number of different types of sensitivity problems, can be exactlydecoupled into k\\QTR H-infinity sensitivity problems for stablesystems, where k is the number of outputs (for...... unstable systems,independent stabilization is required). Further, it is shown how to usesimilar techniques to incorporate simultaneous specifications for differentcontrol objectives such as QTR H-infinity, etc., for the sensitivities....

  8. Design of a Fractional Order Frequency PID Controller for an Islanded Microgrid: A Multi-Objective Extremal Optimization Method

    Directory of Open Access Journals (Sweden)

    Huan Wang

    2017-10-01

    Full Text Available Fractional order proportional-integral-derivative(FOPID controllers have attracted increasing attentions recently due to their better control performance than the traditional integer-order proportional-integral-derivative (PID controllers. However, there are only few studies concerning the fractional order control of microgrids based on evolutionary algorithms. From the perspective of multi-objective optimization, this paper presents an effective FOPID based frequency controller design method called MOEO-FOPID for an islanded microgrid by using a Multi-objective extremal optimization (MOEO algorithm to minimize frequency deviation and controller output signal simultaneously in order to improve finally the efficient operation of distributed generations and energy storage devices. Its superiority to nondominated sorting genetic algorithm-II (NSGA-II based FOPID/PID controllers and other recently reported single-objective evolutionary algorithms such as Kriging-based surrogate modeling and real-coded population extremal optimization-based FOPID controllers is demonstrated by the simulation studies on a typical islanded microgrid in terms of the control performance including frequency deviation, deficit grid power, controller output signal and robustness.

  9. Design, experimental investigation and multi-objective optimization of a small-scale radial compressor for heat pump applications

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, J. [Fischer Engineering Solutions AG, Birkenweg 3, CH-3360 Herzogenbuchsee (Switzerland); Favrat, D. [Ecole Polytechnique Federale de Lausanne, EPFL STI IGM LENI, Station 9, CH-1015 Lausanne (Switzerland)

    2010-01-15

    The main driver for small scale turbomachinery in domestic heat pumps is the potential for reaching higher efficiencies than volumetric compressors currently used and the potential for making the compressor oil-free, bearing a considerable advantage in the design of advanced multi-stage heat pump cycles. An appropriate turbocompressor for driving domestic heat pumps with a high temperature lift requires the ability to operate on a wide range of pressure ratios and mass flows, confronting the designer with the necessity of a compromise between range and efficiency. The present publication shows a possible way to deal with that difficulty, by coupling an appropriate modeling tool to a multi-objective optimizer. The optimizer manages to fit the compressor design into the possible specifications field while keeping the high efficiency on a wide operational range. The 1D-tool used for the compressor stage modeling has been validated by experimentally testing an initial impeller design. The excellent experimental results, the agreement with the model and the linking of the model to a multi-objective optimizer will allow to design radial compressor stages managing to fit the wide operational range of domestic heat pumps while keeping the high efficiency level. (author)

  10. Multi-objective optimal reactive power dispatch to maximize power system social welfare in the presence of generalized unified power flow controller

    Directory of Open Access Journals (Sweden)

    Suresh Chintalapudi Venkata

    2015-09-01

    Full Text Available In this paper a novel non-linear optimization problem is formulated to maximize the social welfare in restructured environment with generalized unified power flow controller (GUPFC. This paper presents a methodology to optimally allocate the reactive power by minimizing voltage deviation at load buses and total transmission power losses so as to maximize the social welfare. The conventional active power generation cost function is modified by combining costs of reactive power generated by the generators, shunt capacitors and total power losses to it. The formulated objectives are optimized individually and simultaneously as multi-objective optimization problem, while satisfying equality, in-equality, practical and device operational constraints. A new optimization method, based on two stage initialization and random distribution processes is proposed to test the effectiveness of the proposed approach on IEEE-30 bus system, and the detailed analysis is carried out.

  11. Economic emission dispatching with variations of wind power and loads using multi-objective optimization by learning automata

    International Nuclear Information System (INIS)

    Liao, H.L.; Wu, Q.H.; Li, Y.Z.; Jiang, L.

    2014-01-01

    Highlights: • Apply multi-objective optimization by learning automata to power system. • Sequentially dimensional search and state memory are incorporated. • Track dispatch under significant variations of wind power and load demand. • Good performance in terms of accuracy, distribution and computation time. - Abstract: This paper is concerned with using multi-objective optimization by learning automata (MOLA) for economic emission dispatching in the environment where wind power and loads vary. With its capabilities of sequentially dimensional search and state memory, MOLA is able to find accurate solutions while satisfying two objectives: fuel cost coupled with environmental emission and voltage stability. Its searching quality and efficiency are measured using the hypervolume indicator for investigating the quality of Pareto front, and demonstrated by tracking the dispatch solutions under significant variations of wind power and load demand. The simulation studies are carried out on the modified midwestern American electric power system and the IEEE 118-bus test system, in which wind power penetration and load variations present. Evaluated on these two power systems, MOLA is fully compared with multi-objective evolutionary algorithm based on decomposition (MOEA/D) and non-dominated sorting genetic algorithm II (NSGA-II). The simulation results have shown the superiority of MOLA over NAGA-II and MOEA/D, as it is able to obtain more accurate and widely distributed Pareto fronts. In the dynamic environment where the operation condition of both wind speed and load demand varies, MOLA outperforms the other two algorithms, with respect to the tracking ability and accuracy of the solutions

  12. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Mehran Tamjidy

    2017-05-01

    Full Text Available The development of Friction Stir Welding (FSW has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ, a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS and Shannon’s entropy.

  13. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm.

    Science.gov (United States)

    Tamjidy, Mehran; Baharudin, B T Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz

    2017-05-15

    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.

  14. Multi-objective optimization of the carbon dioxide transcritical power cycle with various configurations for engine waste heat recovery

    International Nuclear Information System (INIS)

    Tian, Hua; Chang, Liwen; Shu, Gequn; Shi, Lingfeng

    2017-01-01

    Highlights: • A systematic optimization methodology is presented for carbon dioxide power cycle. • Adding the regenerator is a significant means to improve the system performance. • A decision making based on the optimization results is conducted in depth. • Specific optimal solutions are selected from Pareto fronts for different demands. - Abstract: In this paper, a systematic multi-objective optimization methodology is presented for the carbon dioxide transcritical power cycle with various configurations used in engine waste heat recovery to generate more power efficiently and economically. The parametric optimization is performed for the maximum net power output and exergy efficiency, as well as the minimum electricity production cost by using the genetic algorithm. The comparison of the optimization results shows the thermodynamic performance can be most enhanced by simultaneously adding the preheater and regenerator based on the basic configuration, and the highest net power output and exergy efficiency are 25.89 kW and 40.95%, respectively. Meanwhile, the best economic performance corresponding to the lowest electricity production cost of 0.560$/kW·h is achieved with simply applying an additional regenerator. Moreover, a thorough decision making is conducted for a further screening of the obtained optimal solutions. A most preferred Pareto optimal solution or a representative subset of the Pareto optimal solutions is obtained according to additional subjective preferences while a referential optimal solution is also provided on the condition of no additional preference.

  15. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Sayyaadi, Hoseyn; Mohammadi, Amir H.; Barranco-Jimenez, Marco A.

    2013-01-01

    Highlights: • Thermo-economic multi-objective optimization of solar dish-Stirling engine is studied. • Application of the evolutionary algorithm is investigated. • Error analysis is done to find out the error through investigation. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great number of studies are conducted on Stirling engine and finite time thermo-economic is one of them. In the present study, the dimensionless thermo-economic objective function, thermal efficiency and dimensionless power output are optimized for a dish-Stirling system using finite time thermo-economic analysis and NSGA-II algorithm. Optimized answers are chosen from the results using three decision-making methods. Error analysis is done to find out the error through investigation

  16. An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation

    International Nuclear Information System (INIS)

    Niknam, Taher; Azizipanah-Abarghooee, Rasoul; Narimani, Mohammad Rasoul

    2012-01-01

    Highlights: ► Proposes a stochastic model for optimal energy management. ► Consider uncertainties related to the forecasted values for load demand. ► Consider uncertainties of forecasted values of output power of wind and photovoltaic units. ► Consider uncertainties of forecasted values of market price. ► Present an improved multi-objective teaching–learning-based optimization. -- Abstract: This paper proposes a stochastic model for optimal energy management with the goal of cost and emission minimization. In this model, the uncertainties related to the forecasted values for load demand, available output power of wind and photovoltaic units and market price are modeled by a scenario-based stochastic programming. In the presented method, scenarios are generated by a roulette wheel mechanism based on probability distribution functions of the input random variables. Through this method, the inherent stochastic nature of the proposed problem is released and the problem is decomposed into a deterministic problem. An improved multi-objective teaching–learning-based optimization is implemented to yield the best expected Pareto optimal front. In the proposed stochastic optimization method, a novel self adaptive probabilistic modification strategy is offered to improve the performance of the presented algorithm. Also, a set of non-dominated solutions are stored in a repository during the simulation process. Meanwhile, the size of the repository is controlled by usage of a fuzzy-based clustering technique. The best expected compromise solution stored in the repository is selected via the niching mechanism in a way that solutions are encouraged to seek the lesser explored regions. The proposed framework is applied in a typical grid-connected micro grid in order to verify its efficiency and feasibility.

  17. The development of multi-objective optimization model for excess bagasse utilization: A case study for Thailand

    International Nuclear Information System (INIS)

    Buddadee, Bancha; Wirojanagud, Wanpen; Watts, Daniel J.; Pitakaso, Rapeepan

    2008-01-01

    In this paper, a multi-objective optimization model is proposed as a tool to assist in deciding for the proper utilization scheme of excess bagasse produced in sugarcane industry. Two major scenarios for excess bagasse utilization are considered in the optimization. The first scenario is the typical situation when excess bagasse is used for the onsite electricity production. In case of the second scenario, excess bagasse is processed for the offsite ethanol production. Then the ethanol is blended with an octane rating of 91 gasoline by a portion of 10% and 90% by volume respectively and the mixture is used as alternative fuel for gasoline vehicles in Thailand. The model proposed in this paper called 'Environmental System Optimization' comprises the life cycle impact assessment of global warming potential (GWP) and the associated cost followed by the multi-objective optimization which facilitates in finding out the optimal proportion of the excess bagasse processed in each scenario. Basic mathematical expressions for indicating the GWP and cost of the entire process of excess bagasse utilization are taken into account in the model formulation and optimization. The outcome of this study is the methodology developed for decision-making concerning the excess bagasse utilization available in Thailand in view of the GWP and economic effects. A demonstration example is presented to illustrate the advantage of the methodology which may be used by the policy maker. The methodology developed is successfully performed to satisfy both environmental and economic objectives over the whole life cycle of the system. It is shown in the demonstration example that the first scenario results in positive GWP while the second scenario results in negative GWP. The combination of these two scenario results in positive or negative GWP depending on the preference of the weighting given to each objective. The results on economics of all scenarios show the satisfied outcomes

  18. Optimization of a novel carbon dioxide cogeneration system using artificial neural network and multi-objective genetic algorithm

    International Nuclear Information System (INIS)

    Jamali, Arash; Ahmadi, Pouria; Mohd Jaafar, Mohammad Nazri

    2014-01-01

    In this research study, a combined cycle based on the Brayton power cycle and the ejector expansion refrigeration cycle is proposed. The proposed cycle can provide heating, cooling and power simultaneously. One of the benefits of such a system is to be driven by low temperature heat sources and using CO 2 as working fluid. In order to enhance the understanding of the current work, a comprehensive parametric study and exergy analysis are conducted to determine the effects of the thermodynamic parameters on the system performance and the exergy destruction rate in the components. The suggested cycle can save the energy around 46% in comparison with a system producing cooling, power and hot water separately. On the other hand, to optimize a system to meet the load requirement, the surface area of the heat exchangers is determined and optimized. The results of this section can be used when a compact system is also an objective function. Along with a comprehensive parametric study and exergy analysis, a complete optimization study is carried out using a multi-objective evolutionary based genetic algorithm considering two different objective functions, heat exchangers size (to be minimized) and exergy efficiency (to be maximized). The Pareto front of the optimization problem and a correlation between exergy efficiency and total heat exchangers length is presented in order to predict the trend of optimized points. The suggested system can be a promising combined system for buildings and outland regions. - Highlights: •Energy and exergy analysis of a novel CHP system are reported. •A comprehensive parametric study is conducted to enhance the understanding of the system performance. •Apply a multi-objective optimization technique based on a code developed in the Matlab software program using an evolutionary algorithm

  19. An experimental and multi-objective optimization study of a forced draft cooling tower with different fills

    International Nuclear Information System (INIS)

    Singh, Kuljeet; Das, Ranjan

    2016-01-01

    Highlights: • Experimental and optimization study on forced draft cooling tower is done. • New correlations for splash, trickle and film type fills are proposed. • Multi-objective performance optimization study has been done using NSGA-II. • Weighted decision making criterion is proposed depending upon user priority. • Proposed generalized methodology can be implemented in industrial cooling towers. - Abstract: In the present study, a forced draft mechanical cooling tower has been experimentally investigated using trickle, film and splash fills. Various performance parameters such as range, tower characteristic ratio, effectiveness and water evaporation rate are first analyzed for each fill. Thereafter, based upon the experimental data, pertinent correlations have been developed for performance parameters by considering mass flow rates of water and air as design variables. Each of the performance parameters is considered to be an individual objective function and all objectives are then simultaneously optimized for maximizing the performance of the cooling tower using elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II). The multi-objective optimization algorithm gives a set of possible combinations of design variables, which is referred as the optimal Pareto-front, out of which a unique combination is selected based upon a decision making criterion. The proposed decision making procedure evaluates a Decision Making Score (DMS) based on assigned performance priorities for each point of the Pareto-front. Depending on DMS a unique combination of design variables is then selected for each type of fill that maximizes the tower’s performance. These optimal points and the corresponding objective function are finally compared and based upon the highest DMS value, the wire-mesh (trickle) fill is found to be the most efficient fill under the present experimental conditions. The methodology presented in this work has been made more generalized, so that it

  20. Optimizing the Regional Industrial Structure Based on the Environmental Carrying Capacity: An Inexact Fuzzy Multi-Objective Programming Model

    Directory of Open Access Journals (Sweden)

    Wenyi Wang

    2013-12-01

    Full Text Available An inexact fuzzy multi-objective programming model (IFMOP based on the environmental carrying capacity is provided for industrial structure optimization problems. In the IFMOP model, both fuzzy linear programming (FLP and inexact linear programming (ILP methods are introduced into a multi-objective programming framework. It allows uncertainties to be directly communicated into the problem solving processing, and it can effectively reflect the complexity and uncertainty of an industrial system without impractical simplification. The two objective functions utilized in the optimization study are the maximum total output value and population size, and the constraints include water environmental capacity, water resource supply, atmospheric environmental capacity and energy supply. The model is subsequently employed in a realistic case for industrial development in the Tongzhou district, Beijing, China. The results demonstrate that the model can help to analyze whether the environmental carrying capacity of Tongzhou can meet the needs of the social economic objectives in the new town plan in the two scenarios and can assist decision makers in generating stable and balanced industrial structure patterns with consideration of the resources, energy and environmental constraints to meet the maximum social economic efficiency.

  1. Multi-objective optimal planning of the stand-alone microgrid system based on different benefit subjects

    International Nuclear Information System (INIS)

    Guo, Li; Wang, Nan; Lu, Hai; Li, Xialin; Wang, Chengshan

    2016-01-01

    As an important means to realize the energetic complementarity and improve the efficiency of renewable resources, the stand-alone microgrid (SAMG) system gains attention increasingly, especially in islands and remote areas. In this paper, considering the interest conflict of the distribution company and the distributed generation owner, a new multi-objective optimal planning model is formulated for medium voltage SAMG. Besides, to avoid the power constraint of distributed generation (DG) once the over-limit voltage occurs, a novel two-step power dispatch control method including the voltage regulation strategy is proposed, in which the absorption of distributed power by energy storage system (ESS) and the reactive power adjustment though its power control system are used to regulate voltage. The goal of this paper is to search the Pareto-optimal front of the site and capacity of DG as well as the contract price between both parties, and thus can provide effective references for practical planning of SAMG. Considering the high cost of ESS, the investment analysis of ESS is also discussed in the paper. - Highlights: • A multi-objective planning model based on different benefit subjects is proposed. • A two-step power dispatch method including the voltage regulation is proposed. • The economical efficiency of the proposed model is analyzed. • The effective reference for the stand-alone microgrid planning is provided.

  2. Constructal design of a blast furnace iron-making process based on multi-objective optimization

    International Nuclear Information System (INIS)

    Liu, Xiong; Chen, Lingen; Feng, Huijun; Qin, Xiaoyong; Sun, Fengrui

    2016-01-01

    For the fixed total raw material cost and based on constructal theory and finite time thermodynamics, a BFIM (blast furnace iron-making) process is optimized by taking a complex function as optimization objective. The complex function is integrated with HM (hot metal) yield and useful energy of the BF (blast furnace). The optimal cost distribution of raw materials (namely “generalized optimal construct”) is obtained. The effects of some parameters, such as oxygen enrichment, blast temperature and pulverized coal dosage, on the optimization results are analyzed. The results show that the HM yield, useful energy and complex function are, respectively, increased by 3.13%, 2.66% and 2.90% after generalized constructal optimization. The utilization efficiencies of the BFG (blast furnace gas) and slag are 41.3% and 57.1%, respectively, which means that the utilization potentials of the BFG and slag can be further exploited. Increasing pulverized coal dosage and decreasing the agglomerate ratio can increase the complex function. The performance the BFIM process can be improved by adjusting the oxygen enrichment, blast temperature, blast dosage, pressure ratio of the Brayton cycle's air compressor and relative pressure drop of the air compressor inlet to their optimal values, respectively, which are new findings of this paper. - Highlights: • Constructal optimization of a blast furnace iron-making process is performed. • Finite time thermodynamic model of open Brayton cycle is adopted. • Weighting function is taken as optimization objective. • Optimal cost distribution of the raw materials is obtained.

  3. Multi-Objective Trajectory Optimization of a Hypersonic Reconnaissance Vehicle with Temperature Constraints

    Science.gov (United States)

    Masternak, Tadeusz J.

    This research determines temperature-constrained optimal trajectories for a scramjet-based hypersonic reconnaissance vehicle by developing an optimal control formulation and solving it using a variable order Gauss-Radau quadrature collocation method with a Non-Linear Programming (NLP) solver. The vehicle is assumed to be an air-breathing reconnaissance aircraft that has specified takeoff/landing locations, airborne refueling constraints, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom scramjet aircraft model is adapted from previous work and includes flight dynamics, aerodynamics, and thermal constraints. Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and coverage of high-value targets. To solve the optimal control formulation, a MATLAB-based package called General Pseudospectral Optimal Control Software (GPOPS-II) is used, which transcribes continuous time optimal control problems into an NLP problem. In addition, since a mission profile can have varying vehicle dynamics and en-route imposed constraints, the optimal control problem formulation can be broken up into several "phases" with differing dynamics and/or varying initial/final constraints. Optimal trajectories are developed using several different performance costs in the optimal control formulation: minimum time, minimum time with control penalties, and maximum range. The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for larger-scale operational and campaign planning and execution.

  4. Future distributed generation: An operational multi-objective optimization model for integrated small scale urban electrical, thermal and gas grids

    International Nuclear Information System (INIS)

    Lo Cascio, Ermanno; Borelli, Davide; Devia, Francesco; Schenone, Corrado

    2017-01-01

    Highlights: • Multi-objective optimization model for retrofitted and integrated natural gas pressure regulation stations. • Comparison of different incentive mechanisms for recovered energy based on the characteristics of preheating process. • Control strategies comparison: performances achieved with optimal control vs. ones obtained by thermal load tracking. - Abstract: A multi-objective optimization model for urban integrated electrical, thermal and gas grids is presented. The main system consists of a retrofitted natural gas pressure regulation station where a turbo-expander allows to recover energy from the process. Here, the natural gas must be preheated in order to avoid methane hydrates. The preheating phase could be based on fossil fuels, renewable or on a thermal mix. Depending on the system configuration, the proposed optimization model enables a proper differentiation based on how the natural gas preheating process is expected to be accomplished. This differentiation is addressed by weighting the electricity produced by the turbo-expander and linking it to proper remuneration tariffs. The effectiveness of the model has been tested on an existing plant located in the city of Genoa. Here, the thermal energy is provided by means of two redundant gas-fired boilers and a cogeneration unit. Furthermore, the whole system is thermally integrated with a district heating network. Numerical simulation results, obtained with the commercial proprietary software Honeywell UniSim Design Suite, have been compared with the optimal solutions achieved. The effectiveness of the model, in terms of economic and environmental performances, is finally quantified. For specific conditions, the model allows achieving an operational costs reduction of about 17% with the respect to thermal-load-tracking control logic.

  5. Global Optimization of Damping Ring Designs Using a Multi-Objective Evolutionary Algorithm

    CERN Document Server

    Emery, Louis

    2005-01-01

    Several damping ring designs for the International Linear Collider have been proposed recently. Some of the specifications, such as circumference and bunch train, are not fixed yet. Designers must make a choice anyway, select a geometry type (dog-bone or circular), an arc cell type (TME or FODO), and optimize linear and nonlinear part of the optics. The design process include straightforward steps (usually the linear optics), and some steps not so straightforward (when nonlinear optics optimization is affected by the linear optics). A first attempt at automating this process for the linear optics is reported. We first recognize that the optics is defined by just a few primary parameters (e.g., phase advance per cell) that determine the rest (e.g., quadrupole strength). In addition to the exact specification of circumference, equilibrium emittance and damping time there are some other quantities which could be optimized that may conflict with each other. A multiobjective genetic optimizer solves this problem b...

  6. The multi-objective genetic algorithm optimization, of a superplastic forming process, using ansys®

    Directory of Open Access Journals (Sweden)

    Grebenişan Gavril

    2017-01-01

    Full Text Available In the industrial practice, the product is intended to be flawless, with no technological difficulty in making the profile shapes. If this product results without defects, then any Finite Elements Method (FEM based simulation can support that technology. A technology engineer does not propose, very often to analyze the simulation of the design technology, but rather to try to optimize a solution that he feels feasible. Experiments used as the basis for numerical optimization analysis support their research in the field of superplastic forming. Determining the influence of input parameters on the output parameters, Determining the optimal shape of the product and the optimal initial geometry, the prediction of the cracks and possibly the fractures, the prediction of the final thickness of the sheet, these are the objectives of the research and optimization for this project. The results of the numerical simulations have been compared with the measurements made on parts and sections of the parts obtained by superplastic forming. Of course, the consistency of the results, costs, benefits, and times required to perform numerical simulations are evaluated, but they are not objectives for optimizing the superplastic forming process.

  7. Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems

    International Nuclear Information System (INIS)

    Olcan, Ceyda

    2015-01-01

    Highlights: • An analytical optimal sizing model is proposed for PV water pumping systems. • The objectives are chosen as deficiency of power supply and life-cycle costs. • The crop water requirements are estimated for a citrus tree yard in Antalya. • The optimal tilt angles are calculated for fixed, seasonal and monthly changes. • The sizing results showed the validity of the proposed analytical model. - Abstract: Stand-alone photovoltaic (PV) water pumping systems effectively use solar energy for irrigation purposes in remote areas. However the random variability and unpredictability of solar energy makes difficult the penetration of PV implementations and complicate the system design. An optimal sizing of these systems proves to be essential. This paper recommends a techno-economic optimization model to determine optimally the capacity of the components of PV water pumping system using a water storage tank. The proposed model is developed regarding the reliability and cost indicators, which are the deficiency of power supply probability and life-cycle costs, respectively. The novelty is that the proposed optimization model is analytically defined for two-objectives and it is able to find a compromise solution. The sizing of a stand-alone PV water pumping system comprises a detailed analysis of crop water requirements and optimal tilt angles. Besides the necessity of long solar radiation and temperature time series, the accurate forecasts of water supply needs have to be determined. The calculation of the optimal tilt angle for yearly, seasonally and monthly frequencies results in higher system efficiency. It is, therefore, suggested to change regularly the tilt angle in order to maximize solar energy output. The proposed optimal sizing model incorporates all these improvements and can accomplish a comprehensive optimization of PV water pumping systems. A case study is conducted considering the irrigation of citrus trees yard located in Antalya, Turkey

  8. Multi-objective shape optimization of runner blade for Kaplan turbine

    International Nuclear Information System (INIS)

    Power machines LMZ, Saint Petersburg (Russian Federation))" data-affiliation=" (OJSC Power machines LMZ, Saint Petersburg (Russian Federation))" >Semenova, A; Power machines LMZ, Saint Petersburg (Russian Federation))" data-affiliation=" (OJSC Power machines LMZ, Saint Petersburg (Russian Federation))" >Pylev, I; Chirkov, D; Lyutov, A; Chemy, S; Skorospelov, V

    2014-01-01

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads

  9. Multi-objective shape optimization of runner blade for Kaplan turbine

    Science.gov (United States)

    Semenova, A.; Chirkov, D.; Lyutov, A.; Chemy, S.; Skorospelov, V.; Pylev, I.

    2014-03-01

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads.

  10. Multi-objective design optimization and control of magnetorheological fluid brakes for automotive applications

    Science.gov (United States)

    Shamieh, Hadi; Sedaghati, Ramin

    2017-12-01

    The magnetorheological brake (MRB) is an electromechanical device that generates a retarding torque through employing magnetorheological (MR) fluids. The objective of this paper is to design, optimize and control an MRB for automotive applications considering. The dynamic range of a disk-type MRB expressing the ratio of generated toque at on and off states has been formulated as a function of the rotational speed, geometrical and material properties, and applied electrical current. Analytical magnetic circuit analysis has been conducted to derive the relation between magnetic field intensity and the applied electrical current as a function of the MRB geometrical and material properties. A multidisciplinary design optimization problem has then been formulated to identify the optimal brake geometrical parameters to maximize the dynamic range and minimize the response time and weight of the MRB under weight, size and magnetic flux density constraints. The optimization problem has been solved using combined genetic and sequential quadratic programming algorithms. Finally, the performance of the optimally designed MRB has been investigated in a quarter vehicle model. A PID controller has been designed to regulate the applied current required by the MRB in order to improve vehicle’s slipping on different road conditions.

  11. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.

    Science.gov (United States)

    Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba

    2017-11-01

    The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the

  12. Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization

    International Nuclear Information System (INIS)

    Park, Jungsoo; Song, Soonho; Lee, Kyo Seung

    2015-01-01

    Highlights: • Model-based control of dual-loop EGR system is performed. • EGR split index is developed to provide non-dimensional index for optimization. • EGR rates are calibrated using EGR split index at specific operating conditions. • Multi-objective Pareto optimization is performed to minimize NO X and BSFC. • Optimum split strategies are suggested with LP-rich dual-loop EGR at high load. - Abstract: A proposed dual-loop exhaust-gas recirculation (EGR) system that combines the features of high-pressure (HP) and low-pressure (LP) systems is considered a key technology for improving the combustion behavior of diesel engines. The fraction of HP and LP flows, known as the EGR split, for a given dual-loop EGR rate play an important role in determining the engine performance and emission characteristics. Therefore, identifying the proper EGR split is important for the engine optimization and calibration processes, which affect the EGR response and deNO X efficiencies. The objective of this research was to develop a dual-loop EGR split strategy using numerical analysis and one-dimensional (1D) cycle simulation. A control system was modeled by coupling the 1D cycle simulation and the control logic. An EGR split index was developed to investigate the HP/LP split effects on the engine performance and emissions. Using the model-based control system, a multi-objective Pareto (MOP) analysis was used to minimize the NO X formation and fuel consumption through optimized engine operating parameters. The MOP analysis was performed using a response surface model extracted from Latin hypercube sampling as a fractional factorial design of experiment. By using an LP rich dual-loop EGR, a high EGR rate was attained at low, medium, and high engine speeds, increasing the applicable load ranges compared to base conditions

  13. Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures

    International Nuclear Information System (INIS)

    Sadeghi, Mohsen; Nemati, Arash; Ghavimi, Alireza; Yari, Mortaza

    2016-01-01

    In this paper, the performance of the ORC (organic Rankine cycle) powered by geothermal water, in three different configurations, including the simple ORC, PTORC (parallel two-stage ORC) and STORC (series two-stage ORC), using zeotrpoic working fluids is investigated from the viewpoints of the energy and exergy. In addition, considering the net power output and TSP (turbine size parameter) as the two objective functions, the multi-objective optimization with the aim of maximizing the first function and minimizing the second one, is performed to determine the optimal values of decision variables including evaporators 1 and 2 pressure, the pinch point temperature difference and the superheating degree. The results show that using zeotropic mixtures as the working fluid instead of a pure fluid such as R245fa, leads to 27.76%, 24.98% and 24.79% improvement in power generation in the simple ORC, PTORC and STORC, respectively and also lower values of TSP. Moreover, it is observed that STORC has the highest amount of net power output and R407A can be selected as the most appropriate working fluid. The optimization results demonstrate that at the final optimum point achieved by Pareto frontier, the values of the objective functions are gained 877 kW and 0.08218 m, respectively. - Highlights: • Three different configurations of ORC powered by geothermal water are analyzed. • The thermodynamic performance of these systems using zeotrpoic mixtures is investigated. • Multi-objective optimization is performed to obtain optimum performance. • The Pareto-frontier is used to automatically select the most promising solutions.

  14. Multi-objective Optimization Strategies Using Adjoint Method and Game Theory in Aerodynamics

    Science.gov (United States)

    Tang, Zhili

    2006-08-01

    There are currently three different game strategies originated in economics: (1) Cooperative games (Pareto front), (2) Competitive games (Nash game) and (3) Hierarchical games (Stackelberg game). Each game achieves different equilibria with different performance, and their players play different roles in the games. Here, we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multi-criteria aerodynamic optimization problems. The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments. We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method. The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front. Non-dominated Pareto front solutions are obtained, however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  15. Q-Learning Multi-Objective Sequential Optimal Sensor Parameter Weights

    Directory of Open Access Journals (Sweden)

    Raquel Cohen

    2016-04-01

    Full Text Available The goal of our solution is to deliver trustworthy decision making analysis tools which evaluate situations and potential impacts of such decisions through acquired information and add efficiency for continuing mission operations and analyst information.We discuss the use of cooperation in modeling and simulation and show quantitative results for design choices to resource allocation. The key contribution of our paper is to combine remote sensing decision making with Nash Equilibrium for sensor parameter weighting optimization. By calculating all Nash Equilibrium possibilities per period, optimization of sensor allocation is achieved for overall higher system efficiency. Our tool provides insight into what are the most important or optimal weights for sensor parameters and can be used to efficiently tune those weights.

  16. Multi-objective optimal design of sandwich panels using a genetic algorithm

    Science.gov (United States)

    Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow

    2017-10-01

    In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.

  17. Multi-objective optimization strategies using adjoint method and game theory in aerodynamics

    Institute of Scientific and Technical Information of China (English)

    Zhili Tang

    2006-01-01

    There are currently three different game strategies originated in economics:(1) Cooperative games (Pareto front),(2)Competitive games (Nash game) and (3)Hierarchical games (Stackelberg game).Each game achieves different equilibria with different performance,and their players play different roles in the games.Here,we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multicriteria aerodynamic optimization problems.The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments.We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method.The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front.Non-dominated Pareto front solutions are obtained,however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  18. An inexact multi-objective programming approach for strategic environmental assessment on regional development plan

    Institute of Scientific and Technical Information of China (English)

    WANG Jihua; GUO Huaicheng; LIU Lei; HAO Mingjia; ZHANG Ming; LU Xiaojian; XING Kexia

    2004-01-01

    This paper presents the development of an inexact multi-objective programming (IMOP) model and its application to the strategic environmental assessment (SEA) for the regional development plan for the Hunnan New Zone (HNZ) in Shenyang City, China. Inexact programming and multi-objective programming methods are employed to effectively account for extensive uncertainties in the study system and to reflect various interests from different stakeholders, respectively. In the case study, balancing-economy-and-environment scenario and focusing-industry-development scenario are analyzed by the interactive solution process for addressing the preferences from local authorities and compromises among different objectives. Through interpreting the model solutions under both scenarios, analysis of industrial structure, waste water treatment plant(WWTP) expansion, water consumption and pollution generation and treatment are undertaken for providing a solid base to justify and evaluate the HNZ regional development plan. The study results show that the developed IMOP-SEA framework is feasible and applicable in carrying comprehensive environmental impact assessments for development plan in a more effective and efficient manner.

  19. Multi-objective optimization of the management of a waterworks using an integrated well field model

    DEFF Research Database (Denmark)

    Hansen, Annette Kirstine; Bauer-Gottwein, Peter; Rosbjerg, Dan

    2012-01-01

    of predicting the water level and the energy consumption of the individual production wells. The model has been applied to Søndersø waterworks in Denmark, where it predicts the energy consumption within 1.8% of the observed. The objectives of the optimization problem are to minimize the specific energy...... provides the decision-makers with compromise solutions between the two competing objectives. In the test case the Pareto optimal solutions are compared with an exhaustive benchmark solution. It is shown that the energy consumption can be reduced by 4% by changing the pumping configuration without violating...

  20. Multi-objective and multidisciplinary design optimization of large sports building envelopes : A case study

    NARCIS (Netherlands)

    Yang, D.; Sun, Y.; Turrin, M.; von Buelow, P.; Paul, J.C.

    2015-01-01

    Currently, in the conceptual envelope design of sports facilities, multiple engineering performance feedbacks (e.g. daylight, energy and structural performance) are expected to assist architectural design decision-making. In general, it is known as Building Performance Optimization in the conceptual

  1. Ensemble-based hierarchical multi-objective production optimization of smart wells

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Hof, P.M.J. Van den; Jansen, J.D.

    2014-01-01

    In an earlier study, two hierarchical multiobjective methods were suggested to include short-term targets in life-cycle production optimization. However, this earlier study has two limitations: (1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access

  2. A derived heuristics based multi-objective optimization procedure for micro-grid scheduling

    Science.gov (United States)

    Li, Xin; Deb, Kalyanmoy; Fang, Yanjun

    2017-06-01

    With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.

  3. Multi-objective optimization for nuclear fleet evolution scenarios using COSI - 5187

    International Nuclear Information System (INIS)

    Freynet, D.; Coquelet-Pascal, C.; Eschbach, R.; Krivtchik, G.; Merle-Lucotte, E.

    2015-01-01

    The consequences of strategic choices on material inventories and flux in the fuel cycle can be analysed with the COSI code. Indeed COSI enables to compare various fleet evolution options (e.g. new reactor systems deployment) and different nuclear materials management (e.g. plutonium multi-recycling). COSI is coupled with the CESAR depletion code. In this paper a methodology for the nuclear fleet evolution scenarios optimization using COSI is introduced. A large number of scenario calculations is needed to solve an optimization problem, which makes infeasible an optimization calculation using the COSI/CESAR version. Given that CESAR calculations represent about 95% of the COSI computation time, CESAR irradiation surrogate models carrying out with ANN regression method and cooling analytic models have been coupled with COSI. An example of optimization study is presented involving 2 discrete variables related to the number of deployed SFR to renew the French PWR fleet and 2 criteria: minimizing the natural uranium consumption and the number of produced HLW vitrified packages

  4. Multi-objective optimization to improve the product range of baking systems

    NARCIS (Netherlands)

    Hadiyanto, M.; Boom, R.M.; Straten, van G.; Boxtel, van A.J.B.; Esveld, D.C.

    2009-01-01

    The operational range of a food production system can be used to obtain a variation in certain product characteristics. The range of product characteristics that can be simultaneously realized by an optimal choice of the process conditions is inherently limited. Knowledge of this feasible product

  5. Flexible aluminum tubes and a least square multi-objective non-linear optimization scheme

    International Nuclear Information System (INIS)

    Endelt, Benny; Nielsen, Karl Brian; Olsen, Soeren

    2004-01-01

    The automotive industry currently uses rubber hoses as the media carrier between e.g. the radiator and the engine, and the basic idea is to replace the rubber hoses with flexible aluminum tubes.A good quality is defined through several quality measurements, i.e. in the current case the key objective is to produce a flexible convolution through optimization of the tool geometry, but the process should also be stable, and the process stability is evaluated through Forming Limit Diagrams. Typically the defined objectives are conflicting, i.e. the optimized configuration represents therefore a trade-off between the individual objectives, in this case flexibility versus process stability.The optimization problem is solved through iteratively minimizing the object function. A second-order least square scheme is used for the approximation of the quadratic model, and the change in the design parameters is evaluated through the trust region scheme and box constraints are introduced within the trust region framework. Furthermore, the object function is minimized by applying the non-monotone scheme, and the trust region subproblem is solved by applying the Cholesky factorization scheme.An optimal bell shaped geometry is identified and the design is verified experimentally

  6. Multi-objective Optimization of Large Wind Farm Parameters for Harmonic Instability and Resonance Conditions

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    wind farms in order to reduce the resonance probability and guarantee harmonic stability. In fact, a general multiobjective optimization procedure based on the genetic algorithm is proposed to set the poles of the wind farm in a desired location in order to minimize the number of the resonance...

  7. Informed multi-objective decision-making in environmental management using Pareto optimality

    Science.gov (United States)

    Maureen C. Kennedy; E. David Ford; Peter Singleton; Mark Finney; James K. Agee

    2008-01-01

    Effective decisionmaking in environmental management requires the consideration of multiple objectives that may conflict. Common optimization methods use weights on the multiple objectives to aggregate them into a single value, neglecting valuable insight into the relationships among the objectives in the management problem.

  8. Multi-objective optimization and grey relational analysis on configurations of organic Rankine cycle

    International Nuclear Information System (INIS)

    Wang, Y.Z.; Zhao, J.; Wang, Y.; An, Q.S.

    2017-01-01

    Highlights: • Pareto frontier is an effective way to make comprehensive comparison of ORC. • Comprehensive performance from energy and economics of basic ORC is the best. • R141b shows the best comprehensive performance from energy and economics. - Abstract: Concerning the comprehensive performance of organic Rankine cycle (ORC), comparisons and optimizations on 3 different configurations of ORC (basic, regenerative and extractive ORCs) are investigated in this paper. Medium-temperature geothermal water is used for comparing the influence of configurations, working fluids and operating parameters on different evaluation criteria. Different evaluation and optimization methods are adopted in evaluation of ORCs to obtain the one with the best comprehensive performance, such as exergoeconomic analysis, bi-objective optimization and grey relational analysis. The results reveal that the basic ORC performs the best among these 3 ORCs in terms of comprehensive thermodynamic and economic performances when using R245fa and driven by geothermal water at 150 °C. Furthermore, R141b shows the best comprehensive performance among 14 working fluids based on the Pareto frontier solutions without considering safe factors. Meanwhile, R141b is the best among all 14 working fluids with the optimal comprehensive performance when regarding all the evaluation criteria as equal by using grey relational analysis.

  9. Thermo-economic and environmental analyses based multi-objective optimization of vapor compression–absorption cascaded refrigeration system using NSGA-II technique

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Sachdeva, Gulshan; Kachhwaha, Surendra Singh; Patel, Bhavesh

    2016-01-01

    Highlights: • It addresses multi-objective optimization study on cascaded refrigeration system. • Cascaded system is a promising decarburizing and energy efficient technology. • NSGA-II technique is used for multi-objective optimization. • Total annual product cost and irreversibility rate are simultaneously optimized. - Abstract: Present work optimizes the performance of 170 kW vapor compression–absorption cascaded refrigeration system (VCACRS) based on combined thermodynamic, economic and environmental parameters using Non-dominated Sort Genetic Algorithm-II (NSGA-II) technique. Two objective functions including the total irreversibility rate (as a thermodynamic criterion) and the total product cost (as an economic criterion) of the system are considered simultaneously for multi-objective optimization of VCACRS. The capital and maintenance costs of the system components, the operational cost, and the penalty cost due to CO_2 emission are included in the total product cost of the system. Three optimized systems including a single-objective thermodynamic optimized, a single-objective economic optimized and a multi-objective optimized are analyzed and compared. The results showed that the multi-objective design considers the combined thermodynamic and total product cost criteria better than the two individual single-objective thermodynamic and total product cost optimized designs.

  10. Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine

    International Nuclear Information System (INIS)

    Yang, Fubin; Zhang, Hongguang; Song, Songsong; Bei, Chen; Wang, Hongjin; Wang, Enhua

    2015-01-01

    In this paper, the ORC (Organic Rankine cycle) technology is adopted to recover the exhaust waste heat of diesel engine. The thermodynamic, economic and optimization models of the ORC system are established, respectively. Firstly, the effects of four key parameters, including evaporation pressure, superheat degree, condensation temperature and exhaust temperature at the outlet of the evaporator on the thermodynamic performances and economic indicators of the ORC system are investigated. Subsequently, based on the established optimization model, GA (genetic algorithm) is employed to solve the Pareto solution of the thermodynamic performances and economic indicators for maximizing net power output and minimizing total investment cost under diesel engine various operating conditions using R600, R600a, R601a, R245fa, R1234yf and R1234ze as working fluids. The most suitable working fluid used in the ORC system for diesel engine waste heat recovery is screened out, and then the corresponding optimal parameter regions are analyzed. The results show that thermodynamic performance of the ORC system is improved at the expense of economic performance. Among these working fluids, R245fa is considered as the most suitable working fluid for the ORC waste heat application of the diesel engine with comprehensive consideration of thermoeconomic performances, environmental impacts and safety levels. Under the various operating conditions of the diesel engine, the optimal evaporation pressure is in the range of 1.1 MPa–2.1 MPa. In addition, the optimal superheat degree and the exhaust temperature at the outlet of the evaporator are mainly influenced by the operating conditions of the diesel engine. The optimal condensation temperature keeps a nearly constant value of 298.15 K. - Highlights: • Thermoeconomic multi-objective optimization of an ORC (Organic Rankine cycle) system is conducted. • Sensitivity analysis of the decision variables is performed. • Genetic algorithm

  11. Multi-Objective Optimization of Pulsed Power Supply for a Railgun

    Directory of Open Access Journals (Sweden)

    Mehrdad Jafarboland

    2011-07-01

    Full Text Available A novel two-objective optimization design model for pulsed power supply (PPS is proposed in this paper. The objectives are the muzzle velocity and the stored-to-kinetic energy efficiency. The design variables include the operating voltage and the trigger delay times between segments. The acceleration of the armature is constrained to lower than 106 m/s2. The optimization results for nuzzle velocity and the efficiency separately show the following: 1 The acceleration constraint has great influence on the performance; 2 wide current pulse yields high velocity but low efficiency; and 3 The operating voltage has to be increased to accelerate a heavier projectile to a certain velocity or at a certain efficiency. Pareto solution fronts for various projectile masses are found using the nondominated sorting genetic algorithm (NSGA-II under the integration environment of MATLAB software.

  12. Preliminary Design of an Autonomous Underwater Vehicle Using Multi-Objective Optimization

    Science.gov (United States)

    2014-03-01

    fuel cell PC propulsive coefficient PEMFC proton exchange membrane fuel cell PHP propulsive horsepower PO Pareto optimal PSO particle swarm...membrane fuel cell ( PEMFC ), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC) and direct and indirect methanol fuel cell (DMFC). Figure...of fuel cells in depth, I will note that PEMFCs are smaller and have a lower operating temperature compared to the other types. Those are the main

  13. Resource-Aware Load Balancing Scheme using Multi-objective Optimization in Cloud Computing

    OpenAIRE

    Kavita Rana; Vikas Zandu

    2016-01-01

    Cloud computing is a service based, on-demand, pay per use model consisting of an interconnected and virtualizes resources delivered over internet. In cloud computing, usually there are number of jobs that need to be executed with the available resources to achieve optimal performance, least possible total time for completion, shortest response time, and efficient utilization of resources etc. Hence, job scheduling is the most important concern that aims to ensure that use’s requirement are ...

  14. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani

    2011-01-01

    batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g...

  15. Pareto-optimal multi-objective design of airplane control systems

    Science.gov (United States)

    Schy, A. A.; Johnson, K. G.; Giesy, D. P.

    1980-01-01

    A constrained minimization algorithm for the computer aided design of airplane control systems to meet many requirements over a set of flight conditions is generalized using the concept of Pareto-optimization. The new algorithm yields solutions on the boundary of the achievable domain in objective space in a single run, whereas the older method required a sequence of runs to approximate such a limiting solution. However, Pareto-optimality does not guarantee a satisfactory design, since such solutions may emphasize some objectives at the expense of others. The designer must still interact with the program to obtain a well-balanced set of objectives. Using the example of a fighter lateral stability augmentation system (SAS) design over five flight conditions, several effective techniques are developed for obtaining well-balanced Pareto-optimal solutions. For comparison, one of these techniques is also used in a recently developed algorithm of Kreisselmeier and Steinhauser, which replaces the hard constraints with soft constraints, using a special penalty function. It is shown that comparable results can be obtained.

  16. Structure Optimization of Stand-Alone Renewable Power Systems Based on Multi Object Function

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Cho

    2016-08-01

    Full Text Available This paper presents a methodology for the size optimization of a stand-alone hybrid PV/wind/diesel/battery system while considering the following factors: total annual cost (TAC, loss of power supply probability (LPSP, and the fuel cost of the diesel generator required by the user. A new optimization algorithm and an object function (including a penalty method are also proposed; these assist with designing the best structure for a hybrid system satisfying the constraints. In hybrid energy system sources such as photovoltaic (PV, wind, diesel, and energy storage devices are connected as an electrical load supply. Because the power produced by PV and wind turbine sources is dependent on the variation of the resources (sun and wind and the load demand fluctuates, such a hybrid system must be able to satisfy the load requirements at any time and store the excess energy for use in deficit conditions. Therefore, reliability and cost are the two main criteria when designing a stand-alone hybrid system. Moreover, the operation of a diesel generator is important to achieve greater reliability. In this paper, TAC, LPSP, and the fuel cost of the diesel generator are considered as the objective variables and a hybrid teaching–learning-based optimization algorithm is proposed and used to choose the best structure of a stand-alone hybrid PV/wind/diesel/battery system. Simulation results from MATLAB support the effectiveness of the proposed method and confirm that it is more efficient than conventional methods.

  17. A Study on a Multi-Objective Optimization Method Based on Neuro-Response Surface Method (NRSM