WorldWideScience

Sample records for multi-objective optimisation method

  1. Benchmarks for dynamic multi-objective optimisation

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available When algorithms solve dynamic multi-objective optimisation problems (DMOOPs), benchmark functions should be used to determine whether the algorithm can overcome specific difficulties that can occur in real-world problems. However, for dynamic multi...

  2. Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation

    CSIR Research Space (South Africa)

    Greeff, M

    2008-06-01

    Full Text Available Many optimisation problems are multi-objective and change dynamically. Many methods use a weighted average approach to the multiple objectives. This paper introduces the usage of the vector evaluated particle swarm optimiser (VEPSO) to solve dynamic...

  3. Issues with performance measures for dynamic multi-objective optimisation

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), Mexico, 20-23 June 2013 Issues with Performance Measures for Dynamic Multi-objective Optimisation Mard´e Helbig CSIR: Meraka Institute Brummeria, South Africa...

  4. Multi-objective evolutionary optimisation for product design and manufacturing

    CERN Document Server

    2011-01-01

    Presents state-of-the-art research in the area of multi-objective evolutionary optimisation for integrated product design and manufacturing Provides a comprehensive review of the literature Gives in-depth descriptions of recently developed innovative and novel methodologies, algorithms and systems in the area of modelling, simulation and optimisation

  5. Analysing the performance of dynamic multi-objective optimisation algorithms

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available and the goal of the algorithm is to track a set of tradeoff solutions over time. Analysing the performance of a dynamic multi-objective optimisation algorithm (DMOA) is not a trivial task. For each environment (before a change occurs) the DMOA has to find a set...

  6. Combining simulation and multi-objective optimisation for equipment quantity optimisation in container terminals

    OpenAIRE

    Lin, Zhougeng

    2013-01-01

    This thesis proposes a combination framework to integrate simulation and multi-objective optimisation (MOO) for container terminal equipment optimisation. It addresses how the strengths of simulation and multi-objective optimisation can be integrated to find high quality solutions for multiple objectives with low computational cost. Three structures for the combination framework are proposed respectively: pre-MOO structure, integrated MOO structure and post-MOO structure. The applications of ...

  7. Geometrical exploration of a flux-optimised sodium receiver through multi-objective optimisation

    Science.gov (United States)

    Asselineau, Charles-Alexis; Corsi, Clothilde; Coventry, Joe; Pye, John

    2017-06-01

    A stochastic multi-objective optimisation method is used to determine receiver geometries with maximum second law efficiency, minimal average temperature and minimal surface area. The method is able to identify a set of Pareto optimal candidates that show advantageous geometrical features, mainly in being able to maximise the intercepted flux within the geometrical boundaries set. Receivers with first law thermal efficiencies ranging from 87% to 91% are also evaluated using the second law of thermodynamics and found to have similar efficiencies of over 60%, highlighting the influence that the geometry can play in the maximisation of the work output of receivers by influencing the distribution of the flux from the concentrator.

  8. MULTI-OBJECTIVE OPTIMISATION OF LASER CUTTING USING CUCKOO SEARCH ALGORITHM

    Directory of Open Access Journals (Sweden)

    M. MADIĆ

    2015-03-01

    Full Text Available Determining of optimal laser cutting conditions for improving cut quality characteristics is of great importance in process planning. This paper presents multi-objective optimisation of the CO2 laser cutting process considering three cut quality characteristics such as surface roughness, heat affected zone (HAZ and kerf width. It combines an experimental design by using Taguchi’s method, modelling the relationships between the laser cutting factors (laser power, cutting speed, assist gas pressure and focus position and cut quality characteristics by artificial neural networks (ANNs, formulation of the multiobjective optimisation problem using weighting sum method, and solving it by the novel meta-heuristic cuckoo search algorithm (CSA. The objective is to obtain optimal cutting conditions dependent on the importance order of the cut quality characteristics for each of four different case studies presented in this paper. The case studies considered in this study are: minimisation of cut quality characteristics with equal priority, minimisation of cut quality characteristics with priority given to surface roughness, minimisation of cut quality characteristics with priority given to HAZ, and minimisation of cut quality characteristics with priority given to kerf width. The results indicate that the applied CSA for solving the multi-objective optimisation problem is effective, and that the proposed approach can be used for selecting the optimal laser cutting factors for specific production requirements.

  9. Reduction environmental effects of civil aircraft through multi-objective flight plan optimisation

    International Nuclear Information System (INIS)

    Lee, D S; Gonzalez, L F; Walker, R; Periaux, J; Onate, E

    2010-01-01

    With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO 2 ) and nitrogen oxides (NO x ) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO 2 ) and NO x using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NO x with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NO x with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NO x and CO 2 (minimum mission fuel weight).

  10. Multi-objective optimisation in carbon monoxide gas management at TRONOX KXN Sands

    Directory of Open Access Journals (Sweden)

    Stadler, Johan

    2014-08-01

    Full Text Available Carbon monoxide (CO is a by-product of the ilmenite smelting process from which titania slag and pig iron are produced. Prior to this project, the CO at Tronox KZN Sands in South Africa was burnt to get rid of it, producing carbon dioxide (CO2. At this plant, unprocessed materials are pre-heated using methane gas from an external supplier. The price of methane gas has increased significantly; and so this research considers the possibility of recycling CO gas and using it as an energy source to reduce methane gas demand. It is not possible to eliminate the methane gas consumption completely due to the energy demand fluctuation, and sub-plants have been assigned either CO gas or methane gas over time. Switching the gas supply between CO and methane gas involves production downtime to purge supply lines. Minimising the loss of production time while maximising the use of CO arose as a multi-objective optimisation problem (MOP with seven decision variables, and computer simulation was used to evaluate scenarios. We applied computer simulation and the multi-objective optimisation cross-entropy method (MOO CEM to find good solutions while evaluating the minimum number of scenarios. The proposals in this paper, which are in the process of being implemented, could save the company operational expenditure while reducing the carbon footprint of the smelter.

  11. Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach

    International Nuclear Information System (INIS)

    Nixon, J.D.

    2016-01-01

    This paper presents a method for optimising the design parameters of an anaerobic digestion (AD) system by using first-order kinetics and multi-objective non-linear goal programming. A model is outlined that determines the ideal operating tank temperature and hydraulic retention time, based on objectives for minimising levelised cost of electricity, and maximising energy potential and feedstock mass reduction. The model is demonstrated for a continuously stirred tank reactor processing food waste in two case study locations. These locations are used to investigate the influence of different environmental and economic climates on optimal conditions. A sensitivity analysis is performed to further examine the variation in optimal results for different financial assumptions and objective weightings. The results identify the conditions for the preferred tank temperature to be in the psychrophilic, mesophilic or thermophilic range. For a tank temperature of 35 °C, ideal hydraulic retention times, in terms of achieving a minimum levelised electricity cost, were found to range from 29.9 to 33 days. Whilst there is a need for more detailed information on rate constants for use in first-order models, multi-objective optimisation modelling is considered to be a promising option for AD design. - Highlights: • Nonlinear goal programming is used to optimise anaerobic digestion systems. • Multiple objectives are set including minimising the levelised cost of electricity. • A model is developed and applied to case studies for the UK and India. • Optimal decisions are made for tank temperature and retention time. • A sensitivity analysis is carried out to investigate different model objectives.

  12. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    Science.gov (United States)

    Trianni, Vito; López-Ibáñez, Manuel

    2015-01-01

    The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  13. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    Directory of Open Access Journals (Sweden)

    Vito Trianni

    Full Text Available The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled. However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  14. Energy thermal management in commercial bread-baking using a multi-objective optimisation framework

    International Nuclear Information System (INIS)

    Khatir, Zinedine; Taherkhani, A.R.; Paton, Joe; Thompson, Harvey; Kapur, Nik; Toropov, Vassili

    2015-01-01

    In response to increasing energy costs and legislative requirements energy efficient high-speed air impingement jet baking systems are now being developed. In this paper, a multi-objective optimisation framework for oven designs is presented which uses experimentally verified heat transfer correlations and high fidelity Computational Fluid Dynamics (CFD) analyses to identify optimal combinations of design features which maximise desirable characteristics such as temperature uniformity in the oven and overall energy efficiency of baking. A surrogate-assisted multi-objective optimisation framework is proposed and used to explore a range of practical oven designs, providing information on overall temperature uniformity within the oven together with ensuing energy usage and potential savings. - Highlights: • A multi-objective optimisation framework to design commercial ovens is presented. • High fidelity CFD embeds experimentally calibrated heat transfer inputs. • The optimum oven design minimises specific energy and bake time. • The Pareto front outlining the surrogate-assisted optimisation framework is built. • Optimisation of industrial bread-baking ovens reveals an energy saving of 637.6 GWh

  15. Methodology implementation for multi objective optimisation for nuclear fleet evolution scenarios

    International Nuclear Information System (INIS)

    Freynet, David

    2016-01-01

    The issue of the evolution French nuclear fleet can be considered through the study of nuclear transition scenarios. These studies are of paramount importance as their results can greatly affect the decision making process, given that they take into account industrial concerns, investments, time, and nuclear system complexity. Such studies can be performed with the COSI code (developed at the CEA/DEN), which enables the calculation of matter inventories and fluxes across the fuel cycle (nuclear reactors and associated facilities), especially when coupled with the CESAR depletion code. The studies today performed with COSI require the definition of the various scenarios' input parameters, in order to fulfil different objectives such as minimising natural uranium consumption, waste production and so on. These parameters concern the quantities and the scheduling of spent fuel destined for reprocessing, and the number, the type and the commissioning dates of deployed reactors.This work aims to develop, validate and apply an optimisation methodology coupled with COSI, in order to determine optimal nuclear transition scenarios for a multi-objective platform. Firstly, this methodology is based on the acceleration of scenario evaluation, enabling the use of optimisation methods in a reasonable time-frame. With this goal in mind, artificial neural network irradiation surrogate models are created with the URANIE platform (developed at the CEA/DEN) and are implemented within COSI. The next step in this work is to use, adapt and compare different optimisation methods, such as URANIE's genetic algorithm and particle swarm methods, in order to define a methodology suited to this type of study. This methodology development is based on an incremental approach which progressively adds objectives, constraints and decision variables to the optimisation problem definition. The variables added, which are related to reactor deployment and spent fuel reprocessing strategies, are chosen

  16. Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    Science.gov (United States)

    Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian

    2016-05-01

    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

  17. Multi-objective optimisation for spacecraft design for demise and survivability

    OpenAIRE

    Trisolini, Mirko; Colombo, Camilla; Lewis, Hugh

    2017-01-01

    The paper presents the development of a multi-objective optimisation framework to study the effects that preliminary design choices have on the demisability and the survivability of a spacecraft. Building a spacecraft such that most of it will demise during the re-entry through design-for-demise strategies may lead to design that are more vulnerable to space debris impacts, thus compromising the reliability of the mission. The two models developed to analyse the demisability and the survivabi...

  18. Multi-objective optimisation with stochastic discrete-event simulation in retail banking: a case study

    Directory of Open Access Journals (Sweden)

    E Scholtz

    2012-12-01

    Full Text Available The cash management of an autoteller machine (ATM is a multi-objective optimisation problem which aims to maximise the service level provided to customers at minimum cost. This paper focus on improved cash management in a section of the South African retail banking industry, for which a decision support system (DSS was developed. This DSS integrates four Operations Research (OR methods: the vehicle routing problem (VRP, the continuous review policy for inventory management, the knapsack problem and stochastic, discrete-event simulation. The DSS was applied to an ATM network in the Eastern Cape, South Africa, to investigate 90 different scenarios. Results show that the application of a formal vehicle routing method consistently yields higher service levels at lower cost when compared to two other routing approaches, in conjunction with selected ATM reorder levels and a knapsack-based notes dispensing algorithm. It is concluded that the use of vehicle routing methods is especially beneficial when the bank has substantial control over transportation cost.

  19. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    Science.gov (United States)

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Enhanced Multi-Objective Energy Optimization by a Signaling Method

    OpenAIRE

    Soares, João; Borges, Nuno; Vale, Zita; Oliveira, P.B.

    2016-01-01

    In this paper three metaheuristics are used to solve a smart grid multi-objective energy management problem with conflictive design: how to maximize profits and minimize carbon dioxide (CO2) emissions, and the results compared. The metaheuristics implemented are: weighted particle swarm optimization (W-PSO), multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGA-II). The performance of these methods with the use of multi-dimensi...

  1. Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps

    International Nuclear Information System (INIS)

    Molyneaux, A.; Leyland, G.; Favrat, D.

    2010-01-01

    Concern for the environment has been steadily growing in recent years, and it is becoming more common to include environmental impact and pollution costs in the design problem along with construction, investment and operating costs. To economically respond to the global environmental problems ahead, progress must be made both on more sustainable technologies and on the design methodology, which needs to adopt a more holistic approach. Heat pumps and, in particular systems integrating heat pumps and cogeneration units, offer a significant potential for greenhouse gas reduction. This paper illustrates the application of a multi-objective and multi-modal evolutionary algorithm to facilitate the design and planning of a district heating network based on a combination of centralized and decentralized heat pumps combined with on-site cogeneration. Comparisons are made with an earlier study based on a single objective environomic optimisation of the same overall model.

  2. Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms

    Science.gov (United States)

    Zhong, Shuya; Pantelous, Athanasios A.; Beer, Michael; Zhou, Jian

    2018-05-01

    Offshore wind farm is an emerging source of renewable energy, which has been shown to have tremendous potential in recent years. In this blooming area, a key challenge is that the preventive maintenance of offshore turbines should be scheduled reasonably to satisfy the power supply without failure. In this direction, two significant goals should be considered simultaneously as a trade-off. One is to maximise the system reliability and the other is to minimise the maintenance related cost. Thus, a non-linear multi-objective programming model is proposed including two newly defined objectives with thirteen families of constraints suitable for the preventive maintenance of offshore wind farms. In order to solve our model effectively, the nondominated sorting genetic algorithm II, especially for the multi-objective optimisation is utilised and Pareto-optimal solutions of schedules can be obtained to offer adequate support to decision-makers. Finally, an example is given to illustrate the performances of the devised model and algorithm, and explore the relationships of the two targets with the help of a contrast model.

  3. Multi-objective Design Method for Hybrid Active Power Filter

    Science.gov (United States)

    Yu, Jingrong; Deng, Limin; Liu, Maoyun; Qiu, Zhifeng

    2017-10-01

    In this paper, a multi-objective optimal design for transformerless hybrid active power filter (HAPF) is proposed. The interactions between the active and passive circuits is analyzed, and by taking the interactions into consideration, a three-dimensional objective problem comprising of performance, efficiency and cost of HAPF system is formulated. To deal with the multiple constraints and the strong coupling characteristics of the optimization model, a novel constraint processing mechanism based on distance measurement and adaptive penalty function is presented. In order to improve the diversity of optimal solution and the local searching ability of the particle swarm optimization (PSO) algorithm, a chaotic mutation operator based on multistage neighborhood is proposed. The simulation results show that the optimums near the ordinate origin of the three-dimension space make better tradeoff among the performance, efficiency and cost of HAPF, and the experimental results of transformerless HAPF verify the effectiveness of the method for multi-objective optimization and design.

  4. Multi-objective optimization design method of radiation shielding

    International Nuclear Information System (INIS)

    Yang Shouhai; Wang Weijin; Lu Daogang; Chen Yixue

    2012-01-01

    Due to the shielding design goals of diversification and uncertain process of many factors, it is necessary to develop an optimization design method of intelligent shielding by which the shielding scheme selection will be achieved automatically and the uncertainties of human impact will be reduced. For economical feasibility to achieve a radiation shielding design for automation, the multi-objective genetic algorithm optimization of screening code which combines the genetic algorithm and discrete-ordinate method was developed to minimize the costs, size, weight, and so on. This work has some practical significance for gaining the optimization design of shielding. (authors)

  5. Multi-Objective Nonlinear Model Predictive Control: Lexicographic Method

    OpenAIRE

    Zheng, Tao; Wu, Gang; Liu, Guang-Hong; Ling, Qing

    2010-01-01

    In this chapter, to avoid the disadvantages of weight coefficients in multi-objective dynamic optimization, lexicographic (completely stratified) and partially stratified frameworks of multi-objective controller are proposed. The lexicographic framework is absolutely prioritydriven and the partially stratified framework is a modification of it, they both can solve the multi-objective control problem with the concept of priority for objective’s relative importance, while the latter one is mo...

  6. Application of the multi-objective cross-entropy method to the vehicle routing problem with soft time windows

    Directory of Open Access Journals (Sweden)

    C Hauman

    2014-06-01

    Full Text Available The vehicle routing problem with time windows is a widely studied problem with many real-world applications. The problem considered here entails the construction of routes that a number of identical vehicles travel to service different nodes within a certain time window. New benchmark problems with multi-objective features were recently suggested in the literature and the multi-objective optimisation cross-entropy method is applied to these problems to investigate the feasibility of the method and to determine and propose reference solutions for the benchmark problems. The application of the cross-entropy method to the multi-objective vehicle routing problem with soft time windows is investigated. The objectives that are evaluated include the minimisation of the total distance travelled, the number of vehicles and/or routes, the total waiting time and delay time of the vehicles and the makespan of a route.

  7. A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design

    International Nuclear Information System (INIS)

    García Kerdan, Iván; Raslan, Rokia; Ruyssevelt, Paul; Morillón Gálvez, David

    2017-01-01

    This study presents a comparison of the optimisation of building energy retrofit strategies from two different perspectives: an energy/economic-based analysis and an exergy/exergoeconomic-based analysis. A recently retrofitted community centre is used as a case study. ExRET-Opt, a novel building energy/exergy simulation tool with multi-objective optimisation capabilities based on NSGA-II is used to run both analysis. The first analysis, based on the 1st Law only, simultaneously optimises building energy use and design's Net Present Value (NPV). The second analysis, based on the 1st and the 2nd Laws, simultaneously optimises exergy destructions and the exergoeconomic cost-benefit index. Occupant thermal comfort is considered as a common objective function for both approaches. The aim is to assess the difference between the methods and calculate the performance among main indicators, considering the same decision variables and constraints. Outputs show that the inclusion of exergy/exergoeconomics as objective functions into the optimisation procedure has resulted in similar 1st Law and thermal comfort outputs, while providing solutions with less environmental impact under similar capital investments. This outputs demonstrate how the 1st Law is only a necessary calculation while the utilisation of the 1st and 2nd Laws becomes a sufficient condition for the analysis and design of low carbon buildings. - Highlights: • The study compares an energy-based and an exergy-based building design optimisation. • Occupant thermal comfort is considered as a common objective function. • A comparison of thermodynamic outputs is made against the actual retrofit design. • Under similar constraints, second law optimisation presents better overall results. • Exergoeconomic optimisation solutions improves building exergy efficiency to double.

  8. An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings

    International Nuclear Information System (INIS)

    García Kerdan, Iván; Raslan, Rokia; Ruyssevelt, Paul

    2016-01-01

    While the building sector has a significant thermodynamic improvement potential, exergy analysis has been shown to provide new insight for the optimisation of building energy systems. This paper presents an exergy-based multi-objective optimisation tool that aims to assess the impact of a diverse range of retrofit measures with a focus on non-domestic buildings. EnergyPlus was used as a dynamic calculation engine for first law analysis, while a Python add-on was developed to link dynamic exergy analysis and a Genetic Algorithm optimisation process with the aforementioned software. Two UK archetype case studies (an office and a primary school) were used to test the feasibility of the proposed framework. Different measures combinations based on retrofitting the envelope insulation levels and the application of different HVAC configurations were assessed. The objective functions in this study are annual energy use, occupants' thermal comfort, and total building exergy destructions. A large range of optimal solutions was achieved highlighting the framework capabilities. The model achieved improvements of 53% in annual energy use, 51% of exergy destructions and 66% of thermal comfort for the school building, and 50%, 33%, and 80% for the office building. This approach can be extended by using exergoeconomic optimisation. - Highlights: • Integration of dynamic exergy analysis into a retrofit-oriented simulation tool. • Two UK non-domestic building archetypes are used as case studies. • The model delivers non-dominated solutions based on energy, exergy and comfort. • Exergy destructions of ERMs are optimised using GA algorithms. • Strengths and limitations of the proposed exergy-based framework are discussed.

  9. Development of an energy module for the multi-objective optimisation of complex distillation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, Alhassan Salami

    2010-06-04

    Reduction of energy consumption has increasingly come into sharp focus in the chemical process industry. This is of great value not only for existing plant but also for the development of new processes. Therefore, the challenge for process design engineers to develop an integrated chemical process that simultaneously satisfies economic and environmental objectives has increased considerably. Particularly, multi-objective optimization in the chemical industry has become increasingly popular during the last decade. The main problem lies, in selecting the alternative best design during decision making with multiple and often conflicting objectives. This thesis work presents a methodology for the multi-objective optimization of process design alternatives under economic and environmental objectives and also to establish the linkage between exergy and the environment. Four distillation units design alternatives with increasing level of heat integration were considered. Each design is analysed from exergy, potential environmental impact (PEI) and economic point of view. A non-dominated solution known as the ''Pareto optimal solution'' is generated for decision making. The thermodynamic efficiency indicates where exergy losses occur. The demand for industrial process heat by means of solar energy has generated much interest because it offers an innovative way to reduce operating cost and improve clean renewable electric power. Concentrated Solar Thermal Power (CSP) can provide solution to global energy problems within a relatively short time and is capable of contributing to carbon dioxide reduction, which is an important step towards zero emissions in the process industries. This work provides an overview of a simulation model to evaluate the environmental and economic performance of two case studies of solar thermal power plants. A methodology is presented to integrate solar thermal power plant into industrial processes and this is then compared with an existing

  10. Development of an energy module for the multi-objective optimisation of complex distillation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, Alhassan Salami

    2010-06-04

    Reduction of energy consumption has increasingly come into sharp focus in the chemical process industry. This is of great value not only for existing plant but also for the development of new processes. Therefore, the challenge for process design engineers to develop an integrated chemical process that simultaneously satisfies economic and environmental objectives has increased considerably. Particularly, multi-objective optimization in the chemical industry has become increasingly popular during the last decade. The main problem lies, in selecting the alternative best design during decision making with multiple and often conflicting objectives. This thesis work presents a methodology for the multi-objective optimization of process design alternatives under economic and environmental objectives and also to establish the linkage between exergy and the environment. Four distillation units design alternatives with increasing level of heat integration were considered. Each design is analysed from exergy, potential environmental impact (PEI) and economic point of view. A non-dominated solution known as the ''Pareto optimal solution'' is generated for decision making. The thermodynamic efficiency indicates where exergy losses occur. The demand for industrial process heat by means of solar energy has generated much interest because it offers an innovative way to reduce operating cost and improve clean renewable electric power. Concentrated Solar Thermal Power (CSP) can provide solution to global energy problems within a relatively short time and is capable of contributing to carbon dioxide reduction, which is an important step towards zero emissions in the process industries. This work provides an overview of a simulation model to evaluate the environmental and economic performance of two case studies of solar thermal power plants. A methodology is presented to integrate solar thermal power plant into industrial processes and this is then compared with

  11. A policy-based multi-objective optimisation framework for residential distributed energy system design★

    Directory of Open Access Journals (Sweden)

    Wouters Carmen

    2017-01-01

    Full Text Available Distributed energy systems (DES are increasingly being introduced as solutions to alleviate conventional energy system challenges related to energy security, climate change and increasing demands. From a technological and economic perspective, distributed energy resources are already becoming viable. The question still remains as to how these technologies and practices can be “best” selected, sized and integrated within consumer areas. To aid decision-makers and enable widespread DES adoption, a strategic superstructure design framework is therefore still required that ensures balancing of multiple stakeholder interests and fits in with liberalised energy system objectives of competition, security of supply and sustainability. Such a design framework is presented in this work. An optimisation-based approach for the design of neighbourhood-based DES is developed that enables meeting their yearly electricity, heating and cooling needs by appropriately selecting, sizing and locating technologies and energy interactions. A pool of poly-generation and storage technologies is hereto considered combined with local energy sharing between participating prosumers through thermal pipeline design and microgrid operation, and, a bi-directional connection with the central distribution grid. A superstructure mixed-integer linear programming approach (MILP is proposed to trade off three minimisation objectives in the design process: total annualised cost, annual CO2 emissions and electrical system unavailability, aligned with the three central energy system objectives. The developed model is applied on a small South Australian neighbourhood. The approach enables identifying “knee-point” neighbourhood energy system designs through Pareto trade-offs between objectives and serves to inform decision-makers about the impact of policy objectives on DES development strategies.

  12. Modelling formation of disinfection by-products in water distribution: Optimisation using a multi-objective evolutionary algorithm

    KAUST Repository

    Radhakrishnan, Mohanasundar; Pathirana, Assela; Ghebremichael, Kebreab A.; Amy, Gary L.

    2012-01-01

    Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.

  13. Modelling formation of disinfection by-products in water distribution: Optimisation using a multi-objective evolutionary algorithm

    KAUST Repository

    Radhakrishnan, Mohanasundar

    2012-05-01

    Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.

  14. Multi-objective congestion management by modified augmented ε-constraint method

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima

    2011-01-01

    Congestion management is a vital part of power system operations in recent deregulated electricity markets. However, after relieving congestion, power systems may be operated with a reduced voltage or transient stability margin because of hitting security limits or increasing the contribution of risky participants. Therefore, power system stability margins should be considered within the congestion management framework. The multi-objective congestion management provides not only more security but also more flexibility than single-objective methods. In this paper, a multi-objective congestion management framework is presented while simultaneously optimizing the competing objective functions of congestion management cost, voltage security, and dynamic security. The proposed multi-objective framework, called modified augmented ε-constraint method, is based on the augmented ε-constraint technique hybridized by the weighting method. The proposed framework generates candidate solutions for the multi-objective problem including only efficient Pareto surface enhancing the competitiveness and economic effectiveness of the power market. Besides, the relative importance of the objective functions is explicitly modeled in the proposed framework. Results of testing the proposed multi-objective congestion management method on the New-England test system are presented and compared with those of the previous single objective and multi-objective techniques in detail. These comparisons confirm the efficiency of the developed method. (author)

  15. PRODUCT LIFECYCLE OPTIMISATION OF CAR CLIMATE CONTROLS USING ANALYTICAL HIERARCHICAL PROCESS (AHP ANALYSIS AND A MULTI-OBJECTIVE GROUPING GENETIC ALGORITHM (MOGGA

    Directory of Open Access Journals (Sweden)

    MICHAEL J. LEE

    2016-01-01

    Full Text Available A product’s lifecycle performance (e.g. assembly, outsourcing, maintenance and recycling can often be improved through modularity. However, modularisation under different and often conflicting lifecycle objectives is a complex problem that will ultimately require trade-offs. This paper presents a novel multi-objective modularity optimisation framework; the application of which is illustrated through the modularisation of a car climate control system. Central to the framework is a specially designed multi-objective grouping genetic algorithm (MOGGA that is able to generate a whole range of alternative product modularisations. Scenario analysis, using the principles of the analytical hierarchical process (AHP, is then carried out to explore the solution set and choose a suitable modular architecture that optimises the product lifecycle according to the company’s strategic vision.

  16. Fast and fuzzy multi-objective radiotherapy treatment plan generation for head and neck cancer patients with the lexicographic reference point method (LRPM)

    Science.gov (United States)

    van Haveren, Rens; Ogryczak, Włodzimierz; Verduijn, Gerda M.; Keijzer, Marleen; Heijmen, Ben J. M.; Breedveld, Sebastiaan

    2017-06-01

    Previously, we have proposed Erasmus-iCycle, an algorithm for fully automated IMRT plan generation based on prioritised (lexicographic) multi-objective optimisation with the 2-phase ɛ-constraint (2pɛc) method. For each patient, the output of Erasmus-iCycle is a clinically favourable, Pareto optimal plan. The 2pɛc method uses a list of objective functions that are consecutively optimised, following a strict, user-defined prioritisation. The novel lexicographic reference point method (LRPM) is capable of solving multi-objective problems in a single optimisation, using a fuzzy prioritisation of the objectives. Trade-offs are made globally, aiming for large favourable gains for lower prioritised objectives at the cost of only slight degradations for higher prioritised objectives, or vice versa. In this study, the LRPM is validated for 15 head and neck cancer patients receiving bilateral neck irradiation. The generated plans using the LRPM are compared with the plans resulting from the 2pɛc method. Both methods were capable of automatically generating clinically relevant treatment plans for all patients. For some patients, the LRPM allowed large favourable gains in some treatment plan objectives at the cost of only small degradations for the others. Moreover, because of the applied single optimisation instead of multiple optimisations, the LRPM reduced the average computation time from 209.2 to 9.5 min, a speed-up factor of 22 relative to the 2pɛc method.

  17. Convex Coverage Set Methods for Multi-Objective Collaborative Decision Making

    NARCIS (Netherlands)

    Roijers, D.M.; Lomuscio, A.; Scerri, P.; Bazzan, A.; Huhns, M.

    2014-01-01

    My research is aimed at finding efficient coordination methods for multi-objective collaborative multi-agent decision theoretic planning. Key to coordinating efficiently in these settings is exploiting loose couplings between agents. We proposed two algorithms for the case in which the agents need

  18. Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem

    Science.gov (United States)

    Omagari, Hiroki; Higashino, Shin-Ichiro

    2018-04-01

    In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.

  19. Multi-objective optimization of Stirling engine using Finite Physical Dimensions Thermodynamics (FPDT) method

    International Nuclear Information System (INIS)

    Li, Ruijie; Grosu, Lavinia; Queiros-Conde, Diogo

    2016-01-01

    Highlights: • A gamma Stirling engine has been optimized using FPDT method by multi-objective criteria. • Genetic algorithm and decision making methods were used to get Pareto frontier and optimum points. • It shows: total thermal conductance, hot temperature, stroke and diameter ratios can be improved. - Abstract: In this paper, a solar energy powered gamma type SE has been optimized using Finite Physical Dimensions Thermodynamics (FPDT) method by multi-objective criteria. Genetic algorithm was used to get the Pareto frontier, and optimum points were obtained using the decision making methods of LINMAP and TOPSIS. The optimization results have been compared with those obtained using the ecological method. It was shown that the multi-objective optimization in this paper has a better balance among the optimizing criteria (maximum mechanical power, maximum thermal efficiency and minimum entropy generation flow). The effects of the hot source temperature and the total thermal conductance of the engine on the Pareto frontier have been also studied. This sensibility study shows that an increase in the hot reservoir temperature can increase the output mechanical power, the thermal efficiency of the engine, but also the entropy generation rate. In addition to this, an increase of the total thermal conductance of the engine can strongly increase the output mechanical power and only slightly increase the thermal efficiency. These results allow us to improve the engine performance after some modifications as geometrical dimensions (diameter, stroke, heat exchange surface, etc.) and physical parameters (temperature, thermal conductivity).

  20. Investigation on multi-objective performance optimization algorithm application of fan based on response surface method and entropy method

    Science.gov (United States)

    Zhang, Li; Wu, Kexin; Liu, Yang

    2017-12-01

    A multi-objective performance optimization method is proposed, and the problem that single structural parameters of small fan balance the optimization between the static characteristics and the aerodynamic noise is solved. In this method, three structural parameters are selected as the optimization variables. Besides, the static pressure efficiency and the aerodynamic noise of the fan are regarded as the multi-objective performance. Furthermore, the response surface method and the entropy method are used to establish the optimization function between the optimization variables and the multi-objective performances. Finally, the optimized model is found when the optimization function reaches its maximum value. Experimental data shows that the optimized model not only enhances the static characteristics of the fan but also obviously reduces the noise. The results of the study will provide some reference for the optimization of multi-objective performance of other types of rotating machinery.

  1. Application of Multi-Objective Human Learning Optimization Method to Solve AC/DC Multi-Objective Optimal Power Flow Problem

    Science.gov (United States)

    Cao, Jia; Yan, Zheng; He, Guangyu

    2016-06-01

    This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.

  2. State-of-the-Art Multi-Objective Optimisation of Manufacturing Processes Based on Thermo-Mechanical Simulations

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    During the last couple of decades the possibility of modelling multi-physics phenomena has increased dramatically, thus making simulation of very complex manufacturing processes possible and in some fields even an everyday event. A consequence of this has been improved products with respect...... competition between manufacturers of products in combination with the possibility of doing these highly complex simulations. Thus, there is a crucial need for combining advanced simulation tools for manufacturing processes with systematic optimisation algorithms which are capable of searching for single....... These limitations eventually determine what is in fact possible today and hence define what the “state-of-the-art” is. So, seen from that perspective the very definition of the state-of-the-art itself in the field of optimisation of manufacturing processes constitutes an important discussion. Moreover, in the major...

  3. The multi-objective decision making methods based on MULTIMOORA and MOOSRA for the laptop selection problem

    Science.gov (United States)

    Aytaç Adalı, Esra; Tuş Işık, Ayşegül

    2017-06-01

    A decision making process requires the values of conflicting objectives for alternatives and the selection of the best alternative according to the needs of decision makers. Multi-objective optimization methods may provide solution for this selection. In this paper it is aimed to present the laptop selection problem based on MOORA plus full multiplicative form (MULTIMOORA) and multi-objective optimization on the basis of simple ratio analysis (MOOSRA) which are relatively new multi-objective optimization methods. The novelty of this paper is solving this problem with the MULTIMOORA and MOOSRA methods for the first time.

  4. Dual-mode nested search method for categorical uncertain multi-objective optimization

    Science.gov (United States)

    Tang, Long; Wang, Hu

    2016-10-01

    Categorical multi-objective optimization is an important issue involved in many matching design problems. Non-numerical variables and their uncertainty are the major challenges of such optimizations. Therefore, this article proposes a dual-mode nested search (DMNS) method. In the outer layer, kriging metamodels are established using standard regular simplex mapping (SRSM) from categorical candidates to numerical values. Assisted by the metamodels, a k-cluster-based intelligent sampling strategy is developed to search Pareto frontier points. The inner layer uses an interval number method to model the uncertainty of categorical candidates. To improve the efficiency, a multi-feature convergent optimization via most-promising-area stochastic search (MFCOMPASS) is proposed to determine the bounds of objectives. Finally, typical numerical examples are employed to demonstrate the effectiveness of the proposed DMNS method.

  5. Shape optimization of high power centrifugal compressor using multi-objective optimal method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea [School of Mechanical Engineering, Sungkyunkwan University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.

  6. Shape optimization of high power centrifugal compressor using multi-objective optimal method

    International Nuclear Information System (INIS)

    Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea

    2015-01-01

    In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively

  7. Multi-objective decision-making under uncertainty: Fuzzy logic methods

    Science.gov (United States)

    Hardy, Terry L.

    1995-01-01

    Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.

  8. Multi-objective optimization of Stirling engine using non-ideal adiabatic method

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Ahmadi, Mohammad H.

    2014-01-01

    Highlights: • A multi-objective optimization is carried out for a Stirling engine. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. • The results are compared with the previous works for checking the model improvement. • A proper improvement is observed using TOPSIS when comparing with the others. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great numbers of studies are conducted on Stirling engines and non-ideal adiabatic method is one of them. In the present study, the efficiency and the power loss due to pressure drop into the heat exchangers are optimized for a Stirling system using non-ideal adiabatic analysis and the second-version Non-dominated Sorting Genetic Algorithm. The optimized answers are chosen from the results using three decision-making methods. The applied methods were compared at last and the best results were obtained for the technique for order preference by similarity to ideal solution decision making method

  9. Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods

    Science.gov (United States)

    Gong, W.; Duan, Q.; Huo, X.

    2017-12-01

    Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.

  10. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation

    Directory of Open Access Journals (Sweden)

    Dongmei Huang

    2017-09-01

    Full Text Available Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  11. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.

    Science.gov (United States)

    Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi

    2017-09-21

    Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  12. Multi-objective genetic algorithm based innovative wind farm layout optimization method

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Hua; He, Bang; Wang, Pengcheng; Jin, Kai

    2015-01-01

    Highlights: • Innovative optimization procedures for both regular and irregular shape wind farm. • Using real wind condition and commercial wind turbine parameters. • Using multiple-objective genetic algorithm optimization method. • Optimize the selection of different wind turbine types and their hub heights. - Abstract: Layout optimization has become one of the critical approaches to increase power output and decrease total cost of a wind farm. Previous researches have applied intelligent algorithms to optimizing the wind farm layout. However, those wind conditions used in most of previous research are simplified and not accurate enough to match the real world wind conditions. In this paper, the authors propose an innovative optimization method based on multi-objective genetic algorithm, and test it with real wind condition and commercial wind turbine parameters. Four case studies are conducted to investigate the number of wind turbines needed in the given wind farm. Different cost models are also considered in the case studies. The results clearly demonstrate that the new method is able to optimize the layout of a given wind farm with real commercial data and wind conditions in both regular and irregular shapes, and achieve a better result by selecting different type and hub height wind turbines.

  13. A Multi-objective PMU Placement Method Considering Observability and Measurement Redundancy using ABC Algorithm

    Directory of Open Access Journals (Sweden)

    KULANTHAISAMY, A.

    2014-05-01

    Full Text Available This paper presents a Multi- objective Optimal Placement of Phasor Measurement Units (MOPP method in large electric transmission systems. It is proposed for minimizing the number of Phasor Measurement Units (PMUs for complete system observability and maximizing the measurement redundancy of the system, simultaneously. The measurement redundancy means that number of times a bus is able to monitor more than once by PMUs set. A higher level of measurement redundancy can maximize the total system observability and it is desirable for a reliable power system state estimation. Therefore, simultaneous optimization of the two conflicting objectives are performed using a binary coded Artificial Bee Colony (ABC algorithm. The complete observability of the power system is first prepared and then, single line loss contingency condition is considered to the main model. The efficiency of the proposed method is validated on IEEE 14, 30, 57 and 118 bus test systems. The valuable approach of ABC algorithm is demonstrated in finding the optimal number of PMUs and their locations by comparing the performance with earlier works.

  14. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation.

    Science.gov (United States)

    Liu, Xiaofeng; Bai, Fang; Ouyang, Sisheng; Wang, Xicheng; Li, Honglin; Jiang, Hualiang

    2009-03-31

    Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105-112). Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 A to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 +/- 0.18 seconds per molecule) renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms other four multiple conformer generators in the case of

  15. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation

    Directory of Open Access Journals (Sweden)

    Li Honglin

    2009-03-01

    Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms

  16. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    Science.gov (United States)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  17. Accelerating solving the dynamic multi-objective nework design problem using response surface methods

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel C.J.; Viti, F.; Immers, B.; Tampere, C.

    2011-01-01

    Multi objective optimization of externalities of traffic solving a network design problem in which Dynamic Traffic Management measures are used, is time consuming while heuristics are needed and solving the lower level requires solving the dynamic user equilibrium problem. Use of response surface

  18. A multi objective optimization of gear cutting in WEDM of Inconel 718 using TOPSIS method

    Directory of Open Access Journals (Sweden)

    K.D. Mohapatra

    2017-07-01

    Full Text Available The present paper deals with the experimental analysis and multi objective optimization of gear cutting process of Inconel 718 using WEDM. The objective of the present work is to optimize the parameters in order to maximize the material removal rate and minimize the kerf in a gear cutting process to get the optimum value. The MRR and kerf play a major role in optimizing the parameters in WEDM process. The experiment is carried out in the wire EDM machine using brass wire as the electrode, Inconel 718 as the work-piece material and distilled water as the dielectric. The design array is created by using Design of Experiment in a Taguchi L16 orthogonal array repeated once. The gear has a base diameter of 20 mm, addendum diameter of 22.5 mm and a pressure angle of 20º with 16 numbers of teeth. The machining operation is carried out by taking 3 input parameters at 4 different levels each. The output parameters such as Material Removal rate and Kerf width were obtained and optimized using TOPSIS method to know the optimum setting. Microstructural analysis of both material and wire were studied to know the various defects during the machining operation. Various plots were obtained to know the effects of the process parameters in WEDM. A regression model was also obtained to validate the statistical model values with the experimental. ANOVA table and Response table were carried out to know the significant parameters and rank respectively in the Wire EDM process. Surface roughness, Addendum and Tooth width of gears were also found out at the optimum settings. The optimum setting of the gear obtained can be used to produce high quality gears and can also be applied for future findings.

  19. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    Science.gov (United States)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  20. Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power

    Institute of Scientific and Technical Information of China (English)

    Feng Zhao; Chenghui Zhang; Bo Sun

    2016-01-01

    This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power(CCHP) with storage systems.Initially,the initiative optimization operation strategy of CCHP system in the cooling season,the heating season and the transition season was formulated.The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency,minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy.Furthermore,the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm.Ultimately,the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution(TOPSIS) method.A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method.The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method.The CCHP system has achieved better energy efficiency,environmental protection and economic benefits.

  1. Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

    Directory of Open Access Journals (Sweden)

    Xiaozhang Qu

    2016-07-01

    Full Text Available A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction,the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

  2. An Integrated Method for Interval Multi-Objective Planning of a Water Resource System in the Eastern Part of Handan

    Directory of Open Access Journals (Sweden)

    Meiqin Suo

    2017-07-01

    Full Text Available In this study, an integrated solving method is proposed for interval multi-objective planning. The proposed method is based on fuzzy linear programming and an interactive two-step method. It cannot only provide objectively optimal values for multiple objectives at the same time, but also effectively offer a globally optimal interval solution. Meanwhile, the degree of satisfaction related to different objective functions would be obtained. Then, the integrated solving method for interval multi-objective planning is applied to a case study of planning multi-water resources joint scheduling under uncertainty in the eastern part of Handan, China. The solutions obtained are useful for decision makers in easing the contradiction between supply of multi-water resources and demand from different water users. Moreover, it can provide the optimal comprehensive benefits of economy, society, and the environment.

  3. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  4. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking.

    Science.gov (United States)

    Wang, Hongrui; Liu, Hongwei; Cai, Leixin; Wang, Caixia; Lv, Qiang

    2017-07-10

    In this study, we extended the replica exchange Monte Carlo (REMC) sampling method to protein-small molecule docking conformational prediction using RosettaLigand. In contrast to the traditional Monte Carlo (MC) and REMC sampling methods, these methods use multi-objective optimization Pareto front information to facilitate the selection of replicas for exchange. The Pareto front information generated to select lower energy conformations as representative conformation structure replicas can facilitate the convergence of the available conformational space, including available near-native structures. Furthermore, our approach directly provides min-min scenario Pareto optimal solutions, as well as a hybrid of the min-min and max-min scenario Pareto optimal solutions with lower energy conformations for use as structure templates in the REMC sampling method. These methods were validated based on a thorough analysis of a benchmark data set containing 16 benchmark test cases. An in-depth comparison between MC, REMC, multi-objective optimization-REMC (MO-REMC), and hybrid MO-REMC (HMO-REMC) sampling methods was performed to illustrate the differences between the four conformational search strategies. Our findings demonstrate that the MO-REMC and HMO-REMC conformational sampling methods are powerful approaches for obtaining protein-small molecule docking conformational predictions based on the binding energy of complexes in RosettaLigand.

  5. A Study on a Multi-Objective Optimization Method Based on Neuro-Response Surface Method (NRSM

    Directory of Open Access Journals (Sweden)

    Lee Jae-Chul

    2016-01-01

    Full Text Available The geometry of systems including the marine engineering problems needs to be optimized in the initial design stage. However, the performance analysis using commercial code is generally time-consuming. To solve this problem, many engineers perform the optimization process using the response surface method (RSM to predict the system performance, but RSM presents some prediction errors for nonlinear systems. The major objective of this research is to establish an optimal design framework. The framework is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the response surface is generated using the artificial neural network (ANN which is considered as NRSM. The optimization process is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II. Through case study of a derrick structure, we have confirmed the proposed framework applicability. In the future, we will try to apply the constructed framework to multi-objective optimization problems.

  6. A framework for inverse planning of beam-on times for 3D small animal radiotherapy using interactive multi-objective optimisation

    International Nuclear Information System (INIS)

    Balvert, Marleen; Den Hertog, Dick; Van Hoof, Stefan J; Granton, Patrick V; Trani, Daniela; Hoffmann, Aswin L; Verhaegen, Frank

    2015-01-01

    Advances in precision small animal radiotherapy hardware enable the delivery of increasingly complicated dose distributions on the millimeter scale. Manual creation and evaluation of treatment plans becomes difficult or even infeasible with an increasing number of degrees of freedom for dose delivery and available image data. The goal of this work is to develop an optimisation model that determines beam-on times for a given beam configuration, and to assess the feasibility and benefits of an automated treatment planning system for small animal radiotherapy.The developed model determines a Pareto optimal solution using operator-defined weights for a multiple-objective treatment planning problem. An interactive approach allows the planner to navigate towards, and to select the Pareto optimal treatment plan that yields the most preferred trade-off of the conflicting objectives. This model was evaluated using four small animal cases based on cone-beam computed tomography images. Resulting treatment plan quality was compared to the quality of manually optimised treatment plans using dose-volume histograms and metrics.Results show that the developed framework is well capable of optimising beam-on times for 3D dose distributions and offers several advantages over manual treatment plan optimisation. For all cases but the simple flank tumour case, a similar amount of time was needed for manual and automated beam-on time optimisation. In this time frame, manual optimisation generates a single treatment plan, while the inverse planning system yields a set of Pareto optimal solutions which provides quantitative insight on the sensitivity of conflicting objectives. Treatment planning automation decreases the dependence on operator experience and allows for the use of class solutions for similar treatment scenarios. This can shorten the time required for treatment planning and therefore increase animal throughput. In addition, this can improve treatment standardisation and

  7. Design of a Fractional Order Frequency PID Controller for an Islanded Microgrid: A Multi-Objective Extremal Optimization Method

    Directory of Open Access Journals (Sweden)

    Huan Wang

    2017-10-01

    Full Text Available Fractional order proportional-integral-derivative(FOPID controllers have attracted increasing attentions recently due to their better control performance than the traditional integer-order proportional-integral-derivative (PID controllers. However, there are only few studies concerning the fractional order control of microgrids based on evolutionary algorithms. From the perspective of multi-objective optimization, this paper presents an effective FOPID based frequency controller design method called MOEO-FOPID for an islanded microgrid by using a Multi-objective extremal optimization (MOEO algorithm to minimize frequency deviation and controller output signal simultaneously in order to improve finally the efficient operation of distributed generations and energy storage devices. Its superiority to nondominated sorting genetic algorithm-II (NSGA-II based FOPID/PID controllers and other recently reported single-objective evolutionary algorithms such as Kriging-based surrogate modeling and real-coded population extremal optimization-based FOPID controllers is demonstrated by the simulation studies on a typical islanded microgrid in terms of the control performance including frequency deviation, deficit grid power, controller output signal and robustness.

  8. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems.

    Science.gov (United States)

    Yu, Hao; Solvang, Wei Deng

    2016-05-31

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  9. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems

    Directory of Open Access Journals (Sweden)

    Hao Yu

    2016-05-01

    Full Text Available Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  10. An overview of solution methods for multi-objective mixed integer linear programming programs

    DEFF Research Database (Denmark)

    Andersen, Kim Allan; Stidsen, Thomas Riis

    Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...

  11. A Multi-Objective Optimization Method to integrate Heat Pumps in Industrial Processes

    OpenAIRE

    Becker, Helen; Spinato, Giulia; Maréchal, François

    2011-01-01

    Aim of process integration methods is to increase the efficiency of industrial processes by using pinch analysis combined with process design methods. In this context, appropriate integrated utilities offer promising opportunities to reduce energy consumption, operating costs and pollutants emissions. Energy integration methods are able to integrate any type of predefined utility, but so far there is no systematic approach to generate potential utilities models based on their technology limit...

  12. Design of New Test Function Model Based on Multi-objective Optimization Method

    Directory of Open Access Journals (Sweden)

    Zhaoxia Shang

    2017-01-01

    Full Text Available Space partitioning method, as a new algorism, has been applied to planning and decision-making of investment portfolio more and more often. But currently there are so few testing function for this algorism, which has greatly restrained its further development and application. An innovative test function model is designed in this paper and is used to test the algorism. It is proved that for evaluation of space partitioning method in certain applications, this test function has fairly obvious advantage.

  13. A Multi-Objective Method to Align Human Resource Allocation with University Strategy

    Science.gov (United States)

    Bouillard, Philippe

    2016-01-01

    Universities are currently under considerable pressure to reach their stakeholders' expectations. Management tools that use strategic plans, key performance indicators and quality assurance methods are increasingly deployed. This paper aims to demonstrate how resource allocation can be aligned with institutional strategic plans with a very simple…

  14. Multi-objective Optimization Strategies Using Adjoint Method and Game Theory in Aerodynamics

    Science.gov (United States)

    Tang, Zhili

    2006-08-01

    There are currently three different game strategies originated in economics: (1) Cooperative games (Pareto front), (2) Competitive games (Nash game) and (3) Hierarchical games (Stackelberg game). Each game achieves different equilibria with different performance, and their players play different roles in the games. Here, we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multi-criteria aerodynamic optimization problems. The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments. We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method. The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front. Non-dominated Pareto front solutions are obtained, however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  15. Multi-objective optimization strategies using adjoint method and game theory in aerodynamics

    Institute of Scientific and Technical Information of China (English)

    Zhili Tang

    2006-01-01

    There are currently three different game strategies originated in economics:(1) Cooperative games (Pareto front),(2)Competitive games (Nash game) and (3)Hierarchical games (Stackelberg game).Each game achieves different equilibria with different performance,and their players play different roles in the games.Here,we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multicriteria aerodynamic optimization problems.The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments.We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method.The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front.Non-dominated Pareto front solutions are obtained,however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  16. Optimisation of technical specifications using probabilistic methods

    International Nuclear Information System (INIS)

    Ericsson, G.; Knochenhauer, M.; Hultqvist, G.

    1986-01-01

    During the last few years the development of methods for modifying and optimising nuclear power plant Technical Specifications (TS) for plant operations has received increased attention. Probalistic methods in general, and the plant and system models of probabilistic safety assessment (PSA) in particular, seem to provide the most forceful tools for optimisation. This paper first gives some general comments on optimisation, identifying important parameters and then gives a description of recent Swedish experiences from the use of nuclear power plant PSA models and results for TS optimisation

  17. Application of Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA Method for Bank Branch Location Selection

    Directory of Open Access Journals (Sweden)

    Ali Gorener

    2013-04-01

    Full Text Available Location selection problem in banking is an important issue for the commercial success in competitive environment. There is a strategic fit between the location selection decision and overall performance of a new branch. Providing physical service in requested location as well as alternative distribution channels to meet profitable client needs is the current problematic to achieve the competitive advantage over the rivalry in financial system. In this paper, an integrated model has been developed to support in the decision of branch location selection for a new bank branch. Analytic Hierarchy Process (AHP technique has been conducted to prioritize of evaluation criteria, and multi-objective optimization on the basis of ratio analysis (MOORA method has been applied to rank location alternatives of bank branch.   

  18. NON-CONVENTIONAL MACHINING PROCESSES SELECTION USING MULTI-OBJECTIVE OPTIMIZATION ON THE BASIS OF RATIO ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    MILOŠ MADIĆ

    2015-11-01

    Full Text Available The role of non-conventional machining processes (NCMPs in today’s manufacturing environment has been well acknowledged. For effective utilization of the capabilities and advantages of different NCMPs, selection of the most appropriate NCMP for a given machining application requires consideration of different conflicting criteria. The right choice of the NCMP is critical to the success and competitiveness of the company. As the NCMP selection problem involves consideration of different conflicting criteria, of different relative importance, the multi-criteria decision making (MCDM methods are very useful in systematical selection of the most appropriate NCMP. This paper presents the application of a recent MCDM method, i.e., the multi-objective optimization on the basis of ratio analysis (MOORA method to solve NCMP selection which has been defined considering different performance criteria of four most widely used NCMPs. In order to determine the relative significance of considered quality criteria a pair-wise comparison matrix of the analytic hierarchy process was used. The results obtained using the MOORA method showed perfect correlation with those obtained by the technique for order preference by similarity to ideal solution (TOPSIS method which proves the applicability and potentiality of this MCDM method for solving complex NCMP selection problems.

  19. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa [Universiti Teknologi MARA (UiTM), Selangor (Malaysia)

    2012-08-15

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application.

  20. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    International Nuclear Information System (INIS)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa

    2012-01-01

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application

  1. Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER

    Directory of Open Access Journals (Sweden)

    Jiaxin Lu

    2017-10-01

    Full Text Available Implementation of hybrid energy system (HES is generally considered as a promising way to satisfy the electrification requirements for remote areas. In the present study, a novel decision making methodology is proposed to identify the best compromise configuration of HES from a set of feasible combinations obtained from HOMER. For this purpose, a multi-objective function, which comprises four crucial and representative indices, is formulated by applying the weighted sum method. The entropy weight method is employed as a quantitative methodology for weighting factors calculation to enhance the objectivity of decision-making. Moreover, the optimal design of a stand-alone PV/wind/battery/diesel HES in Yongxing Island, China, is conducted as a case study to validate the effectiveness of the proposed method. Both the simulation and optimization results indicate that, the optimization method is able to identify the best trade-off configuration among system reliability, economy, practicability and environmental sustainability. Several useful conclusions are given by analyzing the operation of the best configuration.

  2. Public involvement in multi-objective water level regulation development projects-evaluating the applicability of public involvement methods

    International Nuclear Information System (INIS)

    Vaentaenen, Ari; Marttunen, Mika

    2005-01-01

    Public involvement is a process that involves the public in the decision making of an organization, for example a municipality or a corporation. It has developed into a widely accepted and recommended policy in environment altering projects. The EU Water Framework Directive (WFD) took force in 2000 and stresses the importance of public involvement in composing river basin management plans. Therefore, the need to develop public involvement methods for different situations and circumstances is evident. This paper describes how various public involvement methods have been applied in a development project involving the most heavily regulated lake in Finland. The objective of the project was to assess the positive and negative impacts of regulation and to find possibilities for alleviating the adverse impacts on recreational use and the aquatic ecosystem. An exceptional effort was made towards public involvement, which was closely connected to planning and decision making. The applied methods were (1) steering group work, (2) survey, (3) dialogue, (4) theme interviews, (5) public meeting and (6) workshops. The information gathered using these methods was utilized in different stages of the project, e.g., in identifying the regulation impacts, comparing alternatives and compiling the recommendations for regulation development. After describing our case and the results from the applied public involvement methods, we will discuss our experiences and the feedback from the public. We will also critically evaluate our own success in coping with public involvement challenges. In addition to that, we present general recommendations for dealing with these problematic issues based on our experiences, which provide new insights for applying various public involvement methods in multi-objective decision making projects

  3. SU-E-T-628: A Cloud Computing Based Multi-Objective Optimization Method for Inverse Treatment Planning.

    Science.gov (United States)

    Na, Y; Suh, T; Xing, L

    2012-06-01

    Multi-objective (MO) plan optimization entails generation of an enormous number of IMRT or VMAT plans constituting the Pareto surface, which presents a computationally challenging task. The purpose of this work is to overcome the hurdle by developing an efficient MO method using emerging cloud computing platform. As a backbone of cloud computing for optimizing inverse treatment planning, Amazon Elastic Compute Cloud with a master node (17.1 GB memory, 2 virtual cores, 420 GB instance storage, 64-bit platform) is used. The master node is able to scale seamlessly a number of working group instances, called workers, based on the user-defined setting account for MO functions in clinical setting. Each worker solved the objective function with an efficient sparse decomposition method. The workers are automatically terminated if there are finished tasks. The optimized plans are archived to the master node to generate the Pareto solution set. Three clinical cases have been planned using the developed MO IMRT and VMAT planning tools to demonstrate the advantages of the proposed method. The target dose coverage and critical structure sparing of plans are comparable obtained using the cloud computing platform are identical to that obtained using desktop PC (Intel Xeon® CPU 2.33GHz, 8GB memory). It is found that the MO planning speeds up the processing of obtaining the Pareto set substantially for both types of plans. The speedup scales approximately linearly with the number of nodes used for computing. With the use of N nodes, the computational time is reduced by the fitting model, 0.2+2.3/N, with r̂2>0.99, on average of the cases making real-time MO planning possible. A cloud computing infrastructure is developed for MO optimization. The algorithm substantially improves the speed of inverse plan optimization. The platform is valuable for both MO planning and future off- or on-line adaptive re-planning. © 2012 American Association of Physicists in Medicine.

  4. Multi-physics and multi-objective design of heterogeneous SFR core: development of an optimization method under uncertainty

    International Nuclear Information System (INIS)

    Ammar, Karim

    2014-01-01

    detailed. By providing first images of innovative SFR core, this thesis presents methods and tools to reduce the uncertainties on some performance while optimizing them. These gains are achieved through the use of multi-Objective optimization algorithms. These methods provide all possible compromise between the different optimization criteria, such as the balance between economic performance and safety. (author) [fr

  5. Evaluation of scalarization methods and NSGA-II/SPEA2 genetic algorithms for multi-objective optimization of green supply chain design

    NARCIS (Netherlands)

    C. van der Plas (Corne); T. Tervonen (Tommi); R. Dekker (Rommert)

    2012-01-01

    textabstractThis paper considers supply chain design in green logistics. We formulate the choice of an environmentally conscious chain design as a multi-objective optimization (MOO) problem and approximate the Pareto front using the weighted sum and epsilon constraint scalarization methods as well

  6. Contribution to the evaluation and to the improvement of multi-objective optimization methods: application to the optimization of nuclear fuel reloading pattern

    International Nuclear Information System (INIS)

    Collette, Y.

    2002-01-01

    In this thesis, we study the general problem of the selection of a multi-objective optimization method, then we study the improvement so as to efficiently solve a problem. The pertinent selection of a method presume the existence of a methodology: we have built tools to perform evaluation of performances and we propose an original method dedicated to the classification of know optimization methods. Our step has been applied to the elaboration of new methods for solving a very difficult problem: the nuclear core reload pattern optimization. First, we looked for a non usual approach of performances measurement: we have 'measured' the behavior of a method. To reach this goal, we have introduced several metrics. We have proposed to evaluate the 'aesthetic' of a distribution of solutions by defining two new metrics: a 'spacing metric' and a metric that allow us to measure the size of the biggest hole in the distribution of solutions. Then, we studied the convergence of multi-objective optimization methods by using some metrics defined in scientific literature and by proposing some more metrics: the 'Pareto ratio' which computes a ratio of solution production. Lastly, we have defined new metrics intended to better apprehend the behavior of optimization methods: the 'speed metric', which allows to compute the speed profile and a 'distribution metric' which allows to compute statistical distribution of solutions along the Pareto frontier. Next, we have studied transformations of a multi-objective problem and defined news methods: the modified Tchebychev method, or the penalized weighted sum of objective functions. We have elaborated new techniques to choose the initial point. These techniques allow to produce new initial points closer and closer to the Pareto frontier and, thanks to the 'proximal optimality concept', allowing dramatic improvements in the convergence of a multi-objective optimization method. Lastly, we have defined new vectorial multi-objective optimization

  7. Dynamic multi-objective optimisation using PSO

    CSIR Research Space (South Africa)

    Greeff, M

    2010-01-01

    Full Text Available there is a significant difference in the performance of one algorithm compared to another algorithm, statistical tests are used as explained in Section 4.3. 4.3 Statistical Analysis To determine whether there is a difference in performance with respect... This section discusses the results that were obtained from the experiments, with regards to the performance of the variations of VEPSO and the effect of 10 Marde´ Greeff and Andries P. Engelbrecht Table 1. p-values of Statistical Tests Function Kruskal...

  8. Non-convex multi-objective optimization

    CERN Document Server

    Pardalos, Panos M; Žilinskas, Julius

    2017-01-01

    Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in...

  9. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method.

    Science.gov (United States)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method

    Science.gov (United States)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability.

  11. Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method

    International Nuclear Information System (INIS)

    Han, Huai-Zhi; Li, Bing-Xi; Wu, Hao; Shao, Wei

    2015-01-01

    Integrated a fully developing three-dimensional heat transfer and flow model, a multi-objective optimization aims to fulfill the geometric design for double-tube heat exchangers with inner corrugated tube is investigated in this work with RSM. Dimensionless corrugation pitch (p/D), dimensionless corrugation height (H/D), dimensionless corrugation radius (r/D) and Reynolds number (Re) are considered as four design parameters. Considering the process parameters, the characteristic numbers involving heat transfer characteristic, resistance characteristic and overall heat transfer performance calculated by CFD, and are served as objective functions to the RSM (Nu c , f c , Nu c /Nu s , f c /f s and h in this paper). The results of optimal designs are a set of multiple optimum solutions, called 'Pareto optimal solutions'. It reveals the identical tendency of Nu c /Nu s and f c /f s reflecting the conflict between them that means augmenting the heat transfer performance with various design parameters in the optimal situation inevitably sacrificed the increase of flow resistance. According to the Pareto optimal curves, the optimum designing parameters of double pipe heat exchanger with inner corrugated tube under the constrains of Nu c /Nu s ≥1.2 are found to be P/D = 0.82, H/D = 0.22, r/D = 0.23, Re = 26,263, corresponding to the maximum value of η = 1.12. (authors)

  12. Multi-Objective Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using the Non-Dominated Sorting Genetic Algorithm II and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2014-02-01

    Full Text Available A multi-objective optimization method for the structural design of horizontal-axis wind turbine (HAWT blades is presented. The main goal is to minimize the weight and cost of the blade which uses glass fiber reinforced plastic (GFRP coupled with carbon fiber reinforced plastic (CFRP materials. The number and the location of layers in the spar cap, the width of the spar cap and the position of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining FEM analysis and a multi-objective evolutionary algorithm under ultimate (extreme flap-wise load and edge-wise load conditions. The best solutions are described and the comparison of the obtained results with the original design is performed to prove the efficiency and applicability of the method.

  13. Rotor Design of IPMSM Traction Motor Based on Multi- Objective Optimization using BFGS Method and Train Motion Equations

    Directory of Open Access Journals (Sweden)

    S. Ahmadi

    2015-09-01

    Full Text Available In this paper a multiobjective optimal design method of interior permanent magnet synchronous motor ( IPMSM for traction applications so as to maximize average torque and to minimize torque ripple has been presented. Based on train motion equations and physical properties of train, desired specifications such as steady state speed, rated output power, acceleration time and rated speed of traction motor are related to each other. By considering the same output power, steady state speed, rated voltage, rated current and different acceleration time for a specified train, multiobjective optimal design has been performed by Broyden–Fletcher–Goldfarb–Shanno (BFGS method and finite element method (FEM has been chosen as an analysis tool. BFGS method is one of Quasi Newton methods and is counted in classic approaches. Classic optimization methods are appropriate when FEM is applied as an analysis tool and objective function isn’t expressed in closed form in terms of optimization variables.

  14. Multi-objective optimization of an arch dam shape under static loads using an evolutionary game method

    Science.gov (United States)

    Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang

    2018-06-01

    This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.

  15. Implementation of the - Constraint Method in Special Class of Multi-objective Fuzzy Bi-Level Nonlinear Problems

    Directory of Open Access Journals (Sweden)

    Azza Hassan Amer

    2017-12-01

    Full Text Available Geometric programming problem is a powerful tool for solving some special type nonlinear programming problems. In the last few years we have seen a very rapid development on solving multiobjective geometric programming problem. A few mathematical programming methods namely fuzzy programming, goal programming and weighting methods have been applied in the recent past to find the compromise solution. In this paper, -constraint method has been applied in bi-level multiobjective geometric programming problem to find the Pareto optimal solution at each level. The equivalent mathematical programming problems are formulated to find their corresponding value of the objective function based on the duality theorem at eash level. Here, we have developed a new algorithm for fuzzy programming technique to solve bi-level multiobjective geometric programming problems to find an optimal compromise solution. Finally the solution procedure of the fuzzy technique is illustrated by a numerical example

  16. Energy Route Multi-Objective Optimization of Wireless Power Transfer Network: An Improved Cross-Entropy Method

    Directory of Open Access Journals (Sweden)

    Lijuan Xiang

    2017-06-01

    Full Text Available This paper identifies the Wireless Power Transfer Network (WPTN as an ideal model for long-distance Wireless Power Transfer (WPT in a certain region with multiple electrical equipment. The schematic circuit and design of each power node and the process of power transmission between the two power nodes are elaborated. The Improved Cross-Entropy (ICE method is proposed as an algorithm to solve for optimal energy route. Non-dominated sorting is introduced for optimization. A demonstration of the optimization result of a 30-nodes WPTN system based on the proposed algorithm proves ICE method to be efficacious and efficiency.

  17. Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology

    International Nuclear Information System (INIS)

    Mohamed, Mohamed Ackiel; Manurung, Yupiter HP; Berhan, Mohamed Nor

    2015-01-01

    This study presents the effect of the governing parameters in friction stir welding (FSW) on the mechanical properties and weld quality of a 6mm thick 6061 T651 Aluminum alloy butt joint. The main FSW parameters, the rotational and traverse speed were optimized based on multiple mechanical properties and quality features, which focus on the tensile strength, hardness and the weld quality class using the multi-objective Taguchi method (MTM). Multi signal to noise ratio (MSNR) was employed to determine the optimum welding parameters for MTM while further analysis concerning the significant level determination was accomplished via the well-established analysis of variance (ANOVA). Furthermore, the first order model for predicting the mechanical properties and weld quality class is derived by applying response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can effectively estimate the mechanical properties and weld quality class which can be used to enhance the welding performance in FSW or other applications.

  18. Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mohamed Ackiel [University Kuala Lumpur Malaysia France Institute, Bandar Baru Bangi (Malaysia); Manurung, Yupiter HP; Berhan, Mohamed Nor [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-06-15

    This study presents the effect of the governing parameters in friction stir welding (FSW) on the mechanical properties and weld quality of a 6mm thick 6061 T651 Aluminum alloy butt joint. The main FSW parameters, the rotational and traverse speed were optimized based on multiple mechanical properties and quality features, which focus on the tensile strength, hardness and the weld quality class using the multi-objective Taguchi method (MTM). Multi signal to noise ratio (MSNR) was employed to determine the optimum welding parameters for MTM while further analysis concerning the significant level determination was accomplished via the well-established analysis of variance (ANOVA). Furthermore, the first order model for predicting the mechanical properties and weld quality class is derived by applying response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can effectively estimate the mechanical properties and weld quality class which can be used to enhance the welding performance in FSW or other applications.

  19. Multi-Objective Optimization of Friction Stir Welding of Aluminium Alloy Using Grey Relation Analysis with Entropy Measurement Method

    Directory of Open Access Journals (Sweden)

    SAURABH KUMAR GUPTA

    2015-01-01

    Full Text Available The present research focus on optimization of Friction Stir Welding (FSW process parameters for joining of AA6061 aluminium alloy using hybrid approach. The FSW process parameters considered are tool rotational speed, welding speed and axial force. The quality characteristics considered are tensile strength (TS and percentage of tensile elongation (TE. Taguchi based experimental design L9 orthogonal array is used for determining the experimental results. The value of weights corresponding to each quality characteristic is determined by using the entropy measurement method so that their importance can be properly explained. Analysis of Variance (ANOVA is used to determine the contribution of FSW process parameters. The confirmation tests also have been done for verifying the results.

  20. Methods for Optimisation of the Laser Cutting Process

    DEFF Research Database (Denmark)

    Dragsted, Birgitte

    This thesis deals with the adaptation and implementation of various optimisation methods, in the field of experimental design, for the laser cutting process. The problem in optimising the laser cutting process has been defined and a structure for at Decision Support System (DSS......) for the optimisation of the laser cutting process has been suggested. The DSS consists of a database with the currently used and old parameter settings. Also one of the optimisation methods has been implemented in the DSS in order to facilitate the optimisation procedure for the laser operator. The Simplex Method has...... been adapted in two versions. A qualitative one, that by comparing the laser cut items optimise the process and a quantitative one that uses a weighted quality response in order to achieve a satisfactory quality and after that maximises the cutting speed thus increasing the productivity of the process...

  1. Multi-objective Transmission Planning Paper

    DEFF Research Database (Denmark)

    Xu, Zhao; Dong, Zhao Yang; Wong, Kit Po

    2009-01-01

    This paper describes a transmission expansion planning method based on multi-objective optimization (MOOP). The method starts with constructing a candidate pool of feasible expansion plans, followed by selection of the best candidates through MOOP, of which multiple objectives are tackled...

  2. Multi-modal distribution crossover method based on two crossing segments bounded by selected parents applied to multi-objective design optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ariyarit, Atthaphon; Kanazaki, Masahiro [Tokyo Metropolitan University, Tokyo (Japan)

    2015-04-15

    This paper discusses airfoil design optimization using a genetic algorithm (GA) with multi-modal distribution crossover (MMDX). The proposed crossover method creates four segments from four parents, of which two segments are bounded by selected parents and two segments are bounded by one parent and another segment. After these segments are defined, four offsprings are generated. This study applied the proposed optimization to a real-world, multi-objective airfoil design problem using class-shape function transformation parameterization, which is an airfoil representation that uses polynomial function, to investigate the effectiveness of this algorithm. The results are compared with the results of the blend crossover (BLX) and unimodal normal distribution crossover (UNDX) algorithms. The objective of these airfoil design problems is to successfully find the optimal design. The outcome of using this algorithm is superior to that of the BLX and UNDX crossover methods because the proposed method can maintain higher diversity than the BLX and UNDX methods. This advantage is desirable for real-world problems.

  3. Multi-modal distribution crossover method based on two crossing segments bounded by selected parents applied to multi-objective design optimization

    International Nuclear Information System (INIS)

    Ariyarit, Atthaphon; Kanazaki, Masahiro

    2015-01-01

    This paper discusses airfoil design optimization using a genetic algorithm (GA) with multi-modal distribution crossover (MMDX). The proposed crossover method creates four segments from four parents, of which two segments are bounded by selected parents and two segments are bounded by one parent and another segment. After these segments are defined, four offsprings are generated. This study applied the proposed optimization to a real-world, multi-objective airfoil design problem using class-shape function transformation parameterization, which is an airfoil representation that uses polynomial function, to investigate the effectiveness of this algorithm. The results are compared with the results of the blend crossover (BLX) and unimodal normal distribution crossover (UNDX) algorithms. The objective of these airfoil design problems is to successfully find the optimal design. The outcome of using this algorithm is superior to that of the BLX and UNDX crossover methods because the proposed method can maintain higher diversity than the BLX and UNDX methods. This advantage is desirable for real-world problems.

  4. Conflicting Multi-Objective Compatible Optimization Control

    OpenAIRE

    Xu, Lihong; Hu, Qingsong; Hu, Haigen; Goodman, Erik

    2010-01-01

    Based on ideas developed in addressing practical greenhouse environmental control, we propose a new multi-objective compatible control method. Several detailed algorithms are proposed to meet the requirements of different kinds of problem: 1) A two-layer MOCC framework is presented for problems with a precise model; 2) To deal with situations

  5. Optimization design of a gating system for sand casting aluminium A356 using a Taguchi method and multi-objective culture-based QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Wen-Jong Chen

    2016-04-01

    Full Text Available This article combined Taguchi method and analysis of variance with the culture-based quantum-behaved particle swarm optimization to determine the optimal models of gating system for aluminium (Al A356 sand casting part. First, the Taguchi method and analysis of variance were, respectively, applied to establish an L27(38 orthogonal array and determine significant process parameters, including riser diameter, pouring temperature, pouring speed, riser position and gating diameter. Subsequently, a response surface methodology was used to construct a second-order regression model, including filling time, solidification time and oxide ratio. Finally, the culture-based quantum-behaved particle swarm optimization was used to determine the multi-objective Pareto optimal solutions and identify corresponding process conditions. The results showed that the proposed method, compared with initial casting model, enabled reducing the filling time, solidification time and oxide ratio by 68.14%, 50.56% and 20.20%, respectively. A confirmation experiment was verified to be able to effectively reduce the defect of casting and improve the casting quality.

  6. An efficient optimisation method in groundwater resource ...

    African Journals Online (AJOL)

    DRINIE

    2003-10-04

    Oct 4, 2003 ... theories developed in the field of stochastic subsurface hydrology. In reality, many ... Recently, some researchers have applied the multi-stage ... Then a robust solution of the optimisation problem given by Eqs. (1) to (3) is as ...

  7. Designing optimal degradation tests via multi-objective genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Cipollone, Maurizio

    2003-01-01

    The experimental determination of the failure time probability distribution of highly reliable components, such as those used in nuclear and aerospace applications, is intrinsically difficult due to the lack, or scarce significance, of failure data which can be collected during the relatively short test periods. A possibility to overcome this difficulty is to resort to the so-called degradation tests, in which measurements of components' degradation are used to infer the failure time distribution. To design such tests, parameters like the number of tests to be run, their frequency and duration, must be set so as to obtain an accurate estimate of the distribution statistics, under the existing limitations of budget. The optimisation problem which results is a non-linear one. In this work, we propose a method, based on multi-objective genetic algorithms for determining the values of the test parameters which optimise both the accuracy in the estimate of the failure time distribution percentiles and the testing costs. The method has been validated on a degradation model of literature

  8. Robust multi-objective calibration strategies – possibilities for improving flood forecasting

    Directory of Open Access Journals (Sweden)

    G. H. Schmitz

    2012-10-01

    Full Text Available Process-oriented rainfall-runoff models are designed to approximate the complex hydrologic processes within a specific catchment and in particular to simulate the discharge at the catchment outlet. Most of these models exhibit a high degree of complexity and require the determination of various parameters by calibration. Recently, automatic calibration methods became popular in order to identify parameter vectors with high corresponding model performance. The model performance is often assessed by a purpose-oriented objective function. Practical experience suggests that in many situations one single objective function cannot adequately describe the model's ability to represent any aspect of the catchment's behaviour. This is regardless of whether the objective is aggregated of several criteria that measure different (possibly opposite aspects of the system behaviour. One strategy to circumvent this problem is to define multiple objective functions and to apply a multi-objective optimisation algorithm to identify the set of Pareto optimal or non-dominated solutions. Nonetheless, there is a major disadvantage of automatic calibration procedures that understand the problem of model calibration just as the solution of an optimisation problem: due to the complex-shaped response surface, the estimated solution of the optimisation problem can result in different near-optimum parameter vectors that can lead to a very different performance on the validation data. Bárdossy and Singh (2008 studied this problem for single-objective calibration problems using the example of hydrological models and proposed a geometrical sampling approach called Robust Parameter Estimation (ROPE. This approach applies the concept of data depth in order to overcome the shortcomings of automatic calibration procedures and find a set of robust parameter vectors. Recent studies confirmed the effectivity of this method. However, all ROPE approaches published so far just identify

  9. Fuzzy Multi-objective Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    Amna Rehmat

    2007-07-01

    Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.

  10. Milk bottom-up proteomics: method optimisation.

    Directory of Open Access Journals (Sweden)

    Delphine eVincent

    2016-01-01

    Full Text Available Milk is a complex fluid whose proteome displays a diverse set of proteins of high abundance such as caseins and medium to low abundance whey proteins such as ß-lactoglobulin, lactoferrin, immunoglobulins, glycoproteins, peptide hormones and enzymes. A sample preparation method that enables high reproducibility and throughput is key in reliably identifying proteins present or proteins responding to conditions such as a diet, health or genetics. Using skim milk samples from Jersey and Holstein-Friesian cows, we compared three extraction procedures which have not previously been applied to samples of cows’ milk. Method A (urea involved a simple dilution of the milk in a urea-based buffer, method B (TCA/acetone involved a trichloroacetic acid (TCA/acetone precipitation and method C (methanol/chloroform involved a tri-phasic partition method in chloroform/methanol solution. Protein assays, SDS-PAGE profiling, and trypsin digestion followed by nanoHPLC-electrospray ionisation-tandem mass spectrometry (nLC-ESI-MS/MS analyses were performed to assess their efficiency. Replicates were used at each analytical step (extraction, digestion, injection to assess reproducibility. Mass spectrometry (MS data are available via ProteomeXchange with identifier PXD002529. Overall 186 unique accessions, major and minor proteins, were identified with a combination of methods. Method C (methanol/chloroform yielded the best resolved SDS-patterns and highest protein recovery rates, method A (urea yielded the greatest number of accessions, and, of the three procedures, method B (TCA/acetone was the least compatible of all with a wide range of downstream analytical procedures. Our results also highlighted breed differences between the proteins in milk of Jersey and Holstein-Friesian cows.

  11. Multi-objective optimization of inverse planning for accurate radiotherapy

    International Nuclear Information System (INIS)

    Cao Ruifen; Pei Xi; Cheng Mengyun; Li Gui; Hu Liqin; Wu Yican; Jing Jia; Li Guoli

    2011-01-01

    The multi-objective optimization of inverse planning based on the Pareto solution set, according to the multi-objective character of inverse planning in accurate radiotherapy, was studied in this paper. Firstly, the clinical requirements of a treatment plan were transformed into a multi-objective optimization problem with multiple constraints. Then, the fast and elitist multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) was introduced to optimize the problem. A clinical example was tested using this method. The results show that an obtained set of non-dominated solutions were uniformly distributed and the corresponding dose distribution of each solution not only approached the expected dose distribution, but also met the dose-volume constraints. It was indicated that the clinical requirements were better satisfied using the method and the planner could select the optimal treatment plan from the non-dominated solution set. (authors)

  12. Method for optimising the energy of pumps

    NARCIS (Netherlands)

    Skovmose Kallesøe, Carsten; De Persis, Claudio

    2011-01-01

    The method involves determining whether pumps (pu1, pu5) are directly assigned to loads (v1, v3) as pilot pumps (pu2, pu3) and hydraulically connected upstream of the pilot pumps. The upstream pumps are controlled with variable speed for energy optimization. Energy optimization circuits are selected

  13. Multi-objective optimisation with stochastic discrete-event simulation ...

    African Journals Online (AJOL)

    at costs negotiated between the banking group and a CIT company. The cost structure ... Costs associated with covering the distances between these ATMs ...... [5] Daganzo CF, 2005, Logistics systems analysis, Springer, New York (NY).

  14. Approximating multi-objective scheduling problems

    NARCIS (Netherlands)

    Dabia, S.; Talbi, El-Ghazali; Woensel, van T.; Kok, de A.G.

    2013-01-01

    In many practical situations, decisions are multi-objective by nature. In this paper, we propose a generic approach to deal with multi-objective scheduling problems (MOSPs). The aim is to determine the set of Pareto solutions that represent the interactions between the different objectives. Due to

  15. Optimisation of test and maintenance based on probabilistic methods

    International Nuclear Information System (INIS)

    Cepin, M.

    2001-01-01

    This paper presents a method, which based on models and results of probabilistic safety assessment, minimises the nuclear power plant risk by optimisation of arrangement of safety equipment outages. The test and maintenance activities of the safety equipment are timely arranged, so the classical static fault tree models are extended with the time requirements to be capable to model real plant states. A house event matrix is used, which enables modelling of the equipment arrangements through the discrete points of time. The result of the method is determination of such configuration of equipment outages, which result in the minimal risk. Minimal risk is represented by system unavailability. (authors)

  16. Satellite Vibration Testing: Angle optimisation method to Reduce Overtesting

    Science.gov (United States)

    Knight, Charly; Remedia, Marcello; Aglietti, Guglielmo S.; Richardson, Guy

    2018-06-01

    Spacecraft overtesting is a long running problem, and the main focus of most attempts to reduce it has been to adjust the base vibration input (i.e. notching). Instead this paper examines testing alternatives for secondary structures (equipment) coupled to the main structure (satellite) when they are tested separately. Even if the vibration source is applied along one of the orthogonal axes at the base of the coupled system (satellite plus equipment), the dynamics of the system and potentially the interface configuration mean the vibration at the interface may not occur all along one axis much less the corresponding orthogonal axis of the base excitation. This paper proposes an alternative testing methodology in which the testing of a piece of equipment occurs at an offset angle. This Angle Optimisation method may have multiple tests but each with an altered input direction allowing for the best match between all specified equipment system responses with coupled system tests. An optimisation process that compares the calculated equipment RMS values for a range of inputs with the maximum coupled system RMS values, and is used to find the optimal testing configuration for the given parameters. A case study was performed to find the best testing angles to match the acceleration responses of the centre of mass and sum of interface forces for all three axes, as well as the von Mises stress for an element by a fastening point. The angle optimisation method resulted in RMS values and PSD responses that were much closer to the coupled system when compared with traditional testing. The optimum testing configuration resulted in an overall average error significantly smaller than the traditional method. Crucially, this case study shows that the optimum test campaign could be a single equipment level test opposed to the traditional three orthogonal direction tests.

  17. A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Maheri, Alireza

    2014-01-01

    Reliability of a hybrid renewable energy system (HRES) strongly depends on various uncertainties affecting the amount of power produced by the system. In the design of systems subject to uncertainties, both deterministic and nondeterministic design approaches can be adopted. In a deterministic design approach, the designer considers the presence of uncertainties and incorporates them indirectly into the design by applying safety factors. It is assumed that, by employing suitable safety factors and considering worst-case-scenarios, reliable systems can be designed. In fact, the multi-objective optimisation problem with two objectives of reliability and cost is reduced to a single-objective optimisation problem with the objective of cost only. In this paper the competence of deterministic design methods in size optimisation of reliable standalone wind–PV–battery, wind–PV–diesel and wind–PV–battery–diesel configurations is examined. For each configuration, first, using different values of safety factors, the optimal size of the system components which minimises the system cost is found deterministically. Then, for each case, using a Monte Carlo simulation, the effect of safety factors on the reliability and the cost are investigated. In performing reliability analysis, several reliability measures, namely, unmet load, blackout durations (total, maximum and average) and mean time between failures are considered. It is shown that the traditional methods of considering the effect of uncertainties in deterministic designs such as design for an autonomy period and employing safety factors have either little or unpredictable impact on the actual reliability of the designed wind–PV–battery configuration. In the case of wind–PV–diesel and wind–PV–battery–diesel configurations it is shown that, while using a high-enough margin of safety in sizing diesel generator leads to reliable systems, the optimum value for this margin of safety leading to a

  18. Multi-objective engineering design using preferences

    Science.gov (United States)

    Sanchis, J.; Martinez, M.; Blasco, X.

    2008-03-01

    System design is a complex task when design parameters have to satisy a number of specifications and objectives which often conflict with those of others. This challenging problem is called multi-objective optimization (MOO). The most common approximation consists in optimizing a single cost index with a weighted sum of objectives. However, once weights are chosen the solution does not guarantee the best compromise among specifications, because there is an infinite number of solutions. A new approach can be stated, based on the designer's experience regarding the required specifications and the associated problems. This valuable information can be translated into preferences for design objectives, and will lead the search process to the best solution in terms of these preferences. This article presents a new method, which enumerates these a priori objective preferences. As a result, a single objective is built automatically and no weight selection need be performed. Problems occuring because of the multimodal nature of the generated single cost index are managed with genetic algorithms (GAs).

  19. Ensemble based multi-objective production optimization of smart wells

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Jansen, J.D.

    2012-01-01

    In a recent study two hierarchical multi-objective methods were suggested to include short-term targets in life-cycle production optimization. However this previous study has two limitations: 1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access

  20. Optimisation-Based Solution Methods for Set Partitioning Models

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel

    The scheduling of crew, i.e. the construction of work schedules for crew members, is often not a trivial task, but a complex puzzle. The task is complicated by rules, restrictions, and preferences. Therefore, manual solutions as well as solutions from standard software packages are not always su......_cient with respect to solution quality and solution time. Enhancement of the overall solution quality as well as the solution time can be of vital importance to many organisations. The _elds of operations research and mathematical optimisation deal with mathematical modelling of di_cult scheduling problems (among...... other topics). The _elds also deal with the development of sophisticated solution methods for these mathematical models. This thesis describes the set partitioning model which has been widely used for modelling crew scheduling problems. Integer properties for the set partitioning model are shown...

  1. Multi-Objective Weather Routing of Sailing Vessels

    Directory of Open Access Journals (Sweden)

    Życzkowski Marcin

    2017-12-01

    Full Text Available The paper presents a multi-objective deterministic method of weather routing for sailing vessels. Depending on a particular purpose of sailboat weather routing, the presented method makes it possible to customize the criteria and constraints so as to fit a particular user’s needs. Apart from a typical shortest time criterion, safety and comfort can also be taken into account. Additionally, the method supports dynamic weather data: in its present version short-term, mid-term and long-term term weather forecasts are used during optimization process. In the paper the multi-objective optimization problem is first defined and analysed. Following this, the proposed method solving this problem is described in detail. The method has been implemented as an online SailAssistance application. Some representative examples solutions are presented, emphasizing the effects of applying different criteria or different values of customized parameters.

  2. An interval-parameter mixed integer multi-objective programming for environment-oriented evacuation management

    Science.gov (United States)

    Wu, C. Z.; Huang, G. H.; Yan, X. P.; Cai, Y. P.; Li, Y. P.

    2010-05-01

    Large crowds are increasingly common at political, social, economic, cultural and sports events in urban areas. This has led to attention on the management of evacuations under such situations. In this study, we optimise an approximation method for vehicle allocation and route planning in case of an evacuation. This method, based on an interval-parameter multi-objective optimisation model, has potential for use in a flexible decision support system for evacuation management. The modeling solutions are obtained by sequentially solving two sub-models corresponding to lower- and upper-bounds for the desired objective function value. The interval solutions are feasible and stable in the given decision space, and this may reduce the negative effects of uncertainty, thereby improving decision makers' estimates under different conditions. The resulting model can be used for a systematic analysis of the complex relationships among evacuation time, cost and environmental considerations. The results of a case study used to validate the proposed model show that the model does generate useful solutions for planning evacuation management and practices. Furthermore, these results are useful for evacuation planners, not only in making vehicle allocation decisions but also for providing insight into the tradeoffs among evacuation time, environmental considerations and economic objectives.

  3. Optimisation of Oil Production in Two – Phase Flow Reservoir Using Simultaneous Method and Interior Point Optimiser

    DEFF Research Database (Denmark)

    Lerch, Dariusz Michal; Völcker, Carsten; Capolei, Andrea

    2012-01-01

    in the reservoir. A promising decrease of these remained resources can be provided by smart wells applying water injections to sustain satisfactory pressure level in the reservoir throughout the whole process of oil production. Basically to enhance secondary recovery of the remaining oil after drilling, water...... is injected at the injection wells of the down-hole pipes. This sustains the pressure in the reservoir and drives oil towards production wells. There are however, many factors contributing to the poor conventional secondary recovery methods e.g. strong surface tension, heterogeneity of the porous rock...... fields, or closed loop optimisation, can be used for optimising the reservoir performance in terms of net present value of oil recovery or another economic objective. In order to solve an optimal control problem we use a direct collocation method where we translate a continuous problem into a discrete...

  4. Efficient solution of a multi objective fuzzy transportation problem

    Science.gov (United States)

    Vidhya, V.; Ganesan, K.

    2018-04-01

    In this paper we present a methodology for the solution of multi-objective fuzzy transportation problem when all the cost and time coefficients are trapezoidal fuzzy numbers and the supply and demand are crisp numbers. Using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method all efficient solutions are obtained. The proposed method is illustrated with an example.

  5. Improved multi-objective clustering algorithm using particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Congcong Gong

    Full Text Available Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  6. Improved multi-objective clustering algorithm using particle swarm optimization.

    Science.gov (United States)

    Gong, Congcong; Chen, Haisong; He, Weixiong; Zhang, Zhanliang

    2017-01-01

    Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO) is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  7. Multi-objective optimization using genetic algorithms: A tutorial

    International Nuclear Information System (INIS)

    Konak, Abdullah; Coit, David W.; Smith, Alice E.

    2006-01-01

    Multi-objective formulations are realistic models for many complex engineering optimization problems. In many real-life problems, objectives under consideration conflict with each other, and optimizing a particular solution with respect to a single objective can result in unacceptable results with respect to the other objectives. A reasonable solution to a multi-objective problem is to investigate a set of solutions, each of which satisfies the objectives at an acceptable level without being dominated by any other solution. In this paper, an overview and tutorial is presented describing genetic algorithms (GA) developed specifically for problems with multiple objectives. They differ primarily from traditional GA by using specialized fitness functions and introducing methods to promote solution diversity

  8. Metal Removal Process Optimisation using Taguchi Method - Simplex Algorithm (TM-SA) with Case Study Applications

    OpenAIRE

    Ajibade, Oluwaseyi A.; Agunsoye, Johnson O.; Oke, Sunday A.

    2018-01-01

    In the metal removal process industry, the current practice to optimise cutting parameters adoptsa conventional method. It is based on trial and error, in which the machine operator uses experience,coupled with handbook guidelines to determine optimal parametric values of choice. This method is notaccurate, is time-consuming and costly. Therefore, there is a need for a method that is scientific, costeffectiveand precise. Keeping this in mind, a different direction for process optimisation is ...

  9. Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mengjun Ming

    2017-05-01

    Full Text Available Due to the scarcity of conventional energy resources and the greenhouse effect, renewable energies have gained more attention. This paper proposes methods for multi-objective optimal design of hybrid renewable energy system (HRES in both isolated-island and grid-connected modes. In each mode, the optimal design aims to find suitable configurations of photovoltaic (PV panels, wind turbines, batteries and diesel generators in HRES such that the system cost and the fuel emission are minimized, and the system reliability/renewable ability (corresponding to different modes is maximized. To effectively solve this multi-objective problem (MOP, the multi-objective evolutionary algorithm based on decomposition (MOEA/D using localized penalty-based boundary intersection (LPBI method is proposed. The algorithm denoted as MOEA/D-LPBI is demonstrated to outperform its competitors on the HRES model as well as a set of benchmarks. Moreover, it effectively obtains a good approximation of Pareto optimal HRES configurations. By further considering a decision maker’s preference, the most satisfied configuration of the HRES can be identified.

  10. A study of certain Monte Carlo search and optimisation methods

    International Nuclear Information System (INIS)

    Budd, C.

    1984-11-01

    Studies are described which might lead to the development of a search and optimisation facility for the Monte Carlo criticality code MONK. The facility envisaged could be used to maximise a function of k-effective with respect to certain parameters of the system or, alternatively, to find the system (in a given range of systems) for which that function takes a given value. (UK)

  11. EFFICIENT MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR JOB SHOP SCHEDULING

    Institute of Scientific and Technical Information of China (English)

    Lei Deming; Wu Zhiming

    2005-01-01

    A new representation method is first presented based on priority rules. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority rule. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed,in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling.

  12. Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method.

    Science.gov (United States)

    Jampala, Preethi; Tadikamalla, Satish; Preethi, M; Ramanujam, Swathy; Uppuluri, Kiran Babu

    2017-05-01

    Application of multiple response optimizations using desirability function in the production of microbial metabolites improves economy and efficiency. Concurrent production of cellulase and xylanase in Trichoderma reesei NCIM 1186 using an agricultural weed, Prosopis juliflora pods, was studied. The main aim of the study was to optimize significant medium nutrient parameters for maximization of cellulase and xylanase by multi-objective optimization strategy using biomass. Process parameters such as the nutrient concentrations (pods, sucrose, and yeast extract) and pH were investigated to improve cellulase and xylanase activities by one factor at a time approach, single response optimization and multi-objective optimization. At the corresponding optimized process parameters in single response optimization, the maximum cellulase activity observed was 3055.65 U/L where xylanase highest activity was 422.16 U/L. Similarly, the maximum xylanase activity, 444.94 U/L, was observed with the highest cellulase activity of 2804.40 U/L. The multi-objective optimization finds a tradeoff between the two objectives and optimal activity values in between the single-objective optima were achieved, 3033.74 and 439.13 U/L for cellulase and xylanase, respectively.

  13. Multi-objective optimization under uncertainty for sheet metal forming

    Directory of Open Access Journals (Sweden)

    Lafon Pascal

    2016-01-01

    Full Text Available Aleatory uncertainties in material properties, blank thickness and friction condition are inherent and irreducible variabilities in sheet metal forming. Optimal design configurations, which are obtained by conventional design optimization methods, are not always able to meet the desired targets due to the effect of uncertainties. This paper proposes a multi-objective robust design optimization that aims to tackle this problem. Results obtained on a U shape draw bending benchmark show that spring-back effect can be controlled by optimizing process parameters.

  14. Automatic Multi-Level Thresholding Segmentation Based on Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    L. DJEROU,

    2012-01-01

    Full Text Available In this paper, we present a new multi-level image thresholding technique, called Automatic Threshold based on Multi-objective Optimization "ATMO" that combines the flexibility of multi-objective fitness functions with the power of a Binary Particle Swarm Optimization algorithm "BPSO", for searching the "optimum" number of the thresholds and simultaneously the optimal thresholds of three criteria: the between-class variances criterion, the minimum error criterion and the entropy criterion. Some examples of test images are presented to compare our segmentation method, based on the multi-objective optimization approach with Otsu’s, Kapur’s and Kittler’s methods. Our experimental results show that the thresholding method based on multi-objective optimization is more efficient than the classical Otsu’s, Kapur’s and Kittler’s methods.

  15. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  16. A multi-objective fuzzy mathematical approach for sustainable reverse supply chain configuration

    Directory of Open Access Journals (Sweden)

    Jyoti D. Darbari

    2017-03-01

    Full Text Available Background: Designing and implementation of reverse logistics (RL network which meets the sustainability targets have been a matter of emerging concern for the electronics companies in India. Objectives: The present study developed a two-phase model for configuration of sustainable RL network design for an Indian manufacturing company to manage its end-of-life and endof-use electronic products. The notable feature of the model was the evaluation of facilities under financial, environmental and social considerations and integration of the facility selection decisions with the network design. Method: In the first phase, an integrated Analytical Hierarchical Process Complex Proportional Assessment methodology was used for the evaluation of the alternative locations in terms of their degree of utility, which in turn was based on the three dimensions of sustainability. In the second phase, the RL network was configured as a bi-objective programming problem, and fuzzy optimisation approach was utilised for obtaining a properly efficient solution to the problem. Results: The compromised solution attained by the proposed fuzzy model demonstrated that the cost differential for choosing recovery facilities with better environmental and social performance was not significant; therefore, Indian manufacturers must not compromise on the sustainability aspects for facility location decisions. Conclusion: The results reaffirmed that the bi-objective fuzzy decision-making model can serve as a decision tool for the Indian manufacturers in designing a sustainable RL network. The multi-objective optimisation model captured a reasonable trade-off between the fuzzy goals of minimising the cost of the RL network and maximising the sustainable performance of the facilities chosen.

  17. Water distribution systems design optimisation using metaheuristics ...

    African Journals Online (AJOL)

    The topic of multi-objective water distribution systems (WDS) design optimisation using metaheuristics is investigated, comparing numerous modern metaheuristics, including several multi-objective evolutionary algorithms, an estimation of distribution algorithm and a recent hyperheuristic named AMALGAM (an evolutionary ...

  18. Joint Conditional Random Field Filter for Multi-Object Tracking

    Directory of Open Access Journals (Sweden)

    Luo Ronghua

    2011-03-01

    Full Text Available Object tracking can improve the performance of mobile robot especially in populated dynamic environments. A novel joint conditional random field Filter (JCRFF based on conditional random field with hierarchical structure is proposed for multi-object tracking by abstracting the data associations between objects and measurements to be a sequence of labels. Since the conditional random field makes no assumptions about the dependency structure between the observations and it allows non-local dependencies between the state and the observations, the proposed method can not only fuse multiple cues including shape information and motion information to improve the stability of tracking, but also integrate moving object detection and object tracking quite well. At the same time, implementation of multi-object tracking based on JCRFF with measurements from the laser range finder on a mobile robot is studied. Experimental results with the mobile robot developed in our lab show that the proposed method has higher precision and better stability than joint probabilities data association filter (JPDAF.

  19. Optimising Job-Shop Functions Utilising the Score-Function Method

    DEFF Research Database (Denmark)

    Nielsen, Erland Hejn

    2000-01-01

    During the last 1-2 decades, simulation optimisation of discrete event dynamic systems (DEDS) has made considerable theoretical progress with respect to computational efficiency. The score-function (SF) method and the infinitesimal perturbation analysis (IPA) are two candidates belonging to this ......During the last 1-2 decades, simulation optimisation of discrete event dynamic systems (DEDS) has made considerable theoretical progress with respect to computational efficiency. The score-function (SF) method and the infinitesimal perturbation analysis (IPA) are two candidates belonging...... of a Job-Shop can be handled by the SF method....

  20. Analysis of optimisation method for a two-stroke piston ring using the Finite Element Method and the Simulated Annealing Method

    Science.gov (United States)

    Kaliszewski, M.; Mazuro, P.

    2016-09-01

    Simulated Annealing Method of optimisation for the sealing piston ring geometry is tested. The aim of optimisation is to develop ring geometry which would exert demanded pressure on a cylinder just while being bended to fit the cylinder. Method of FEM analysis of an arbitrary piston ring geometry is applied in an ANSYS software. The demanded pressure function (basing on formulae presented by A. Iskra) as well as objective function are introduced. Geometry definition constructed by polynomials in radial coordinate system is delivered and discussed. Possible application of Simulated Annealing Method in a piston ring optimisation task is proposed and visualised. Difficulties leading to possible lack of convergence of optimisation are presented. An example of an unsuccessful optimisation performed in APDL is discussed. Possible line of further optimisation improvement is proposed.

  1. MONSS: A multi-objective nonlinear simplex search approach

    Science.gov (United States)

    Zapotecas-Martínez, Saúl; Coello Coello, Carlos A.

    2016-01-01

    This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.

  2. Connected Component Model for Multi-Object Tracking.

    Science.gov (United States)

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  3. Optimisation and validation of methods to assess single nucleotide polymorphisms (SNPs) in archival histological material

    DEFF Research Database (Denmark)

    Andreassen, C N; Sørensen, Flemming Brandt; Overgaard

    2004-01-01

    only archival specimens are available. This study was conducted to validate protocols optimised for assessment of SNPs based on paraffin embedded, formalin fixed tissue samples.PATIENTS AND METHODS: In 137 breast cancer patients, three TGFB1 SNPs were assessed based on archival histological specimens...... precipitation).RESULTS: Assessment of SNPs based on archival histological material is encumbered by a number of obstacles and pitfalls. However, these can be widely overcome by careful optimisation of the methods used for sample selection, DNA extraction and PCR. Within 130 samples that fulfil the criteria...

  4. Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm

    OpenAIRE

    Sanjay Kr. Singh; D. Boolchandani; S.G. Modani; Nitish Katal

    2014-01-01

    This study focuses on multi-objective optimization of the PID controllers for optimal speed control for an isolated steam turbine. In complex operations, optimal tuning plays an imperative role in maintaining the product quality and process safety. This study focuses on the comparison of the optimal PID tuning using Multi-objective Genetic Algorithm (NSGA-II) against normal genetic algorithm and Ziegler Nichols methods for the speed control of an isolated steam turbine. Isolated steam turbine...

  5. EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.

    Science.gov (United States)

    Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos

    2015-01-01

    Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.

  6. Patient and staff dose optimisation in nuclear medicine diagnosis methods

    International Nuclear Information System (INIS)

    Marta Wasilewska-Radwanska; Katarzyna Natkaniec

    2007-01-01

    , control of detector uniformity. The test for rotating gamma camera additionally demands controlling precision of rotation and image system resolution. The radioisotope and chemical purity of the radiopharmaceuticals are controlled, too. The process of 99m Tc elution efficacity from 99 Mo-generator is tested and the contents of 99 Mo radioisotope in eluate is measured. The radioisotope diagnosis of brain, heart, thyroid, stomach, liver, kidney and bones as well as lymphoscintigraphy are performed. The procedure used for patient and staff's dose optimisation consists of: 1) control dose measurement performed with dosemeter on the tissue-like phantom including selected radiopharmaceutical of the same radioactivity as the one which will be applied to patient, 2) calculation of the patient dose rate, 3) calculation of the staff dose based on the results of personnel dosemeters (films or TLD), 4) preparation of the Quality Assurance instruction for the staff responsible for patient's safety. Independently of the patient and staff dose optimisation, the Quality Control of gamma camera equipments e.g. SPECT X-Ring Nucline (MEDISO) is checked for uniformity of the image from a radiopharmaceutical sample and center of rotation according to the producer's manual instruction. In addition, special lectures and courses for staff are organized several times per year to ensure a Continuous Professional Development (CPD) in the field of Quality Assurance and Quality Control.

  7. Multi-Objective Optimization of Start-up Strategy for Pumped Storage Units

    Directory of Open Access Journals (Sweden)

    Jinjiao Hou

    2018-05-01

    Full Text Available This paper proposes a multi-objective optimization method for the start-up strategy of pumped storage units (PSU for the first time. In the multi-objective optimization method, the speed rise time and the overshoot during the process of the start-up are taken as the objectives. A precise simulation platform is built for simulating the transient process of start-up, and for calculating the objectives based on the process. The Multi-objective Particle Swarm Optimization algorithm (MOPSO is adopted to optimize the widely applied start-up strategies based on one-stage direct guide vane control (DGVC, and two-stage DGVC. Based on the Pareto Front obtained, a multi-objective decision-making method based on the relative objective proximity is used to sort the solutions in the Pareto Front. Start-up strategy optimization for a PSU of a pumped storage power station in Jiangxi Province in China is conducted in experiments. The results show that: (1 compared with the single objective optimization, the proposed multi-objective optimization of start-up strategy not only greatly shortens the speed rise time and the speed overshoot, but also makes the speed curve quickly stabilize; (2 multi-objective optimization of strategy based on two-stage DGVC achieves better solution for a quick and smooth start-up of PSU than that of the strategy based on one-stage DGVC.

  8. Interactive Approach for Multi-Level Multi-Objective Fractional Programming Problems with Fuzzy Parameters

    Directory of Open Access Journals (Sweden)

    M.S. Osman

    2018-03-01

    Full Text Available In this paper, an interactive approach for solving multi-level multi-objective fractional programming (ML-MOFP problems with fuzzy parameters is presented. The proposed interactive approach makes an extended work of Shi and Xia (1997. In the first phase, the numerical crisp model of the ML-MOFP problem has been developed at a confidence level without changing the fuzzy gist of the problem. Then, the linear model for the ML-MOFP problem is formulated. In the second phase, the interactive approach simplifies the linear multi-level multi-objective model by converting it into separate multi-objective programming problems. Also, each separate multi-objective programming problem of the linear model is solved by the ∊-constraint method and the concept of satisfactoriness. Finally, illustrative examples and comparisons with the previous approaches are utilized to evince the feasibility of the proposed approach.

  9. Multi-objective three stage design optimization for island microgrids

    International Nuclear Information System (INIS)

    Sachs, Julia; Sawodny, Oliver

    2016-01-01

    Highlights: • An enhanced multi-objective three stage design optimization for microgrids is given. • Use of an optimal control problem for the calculation of the optimal operation. • The inclusion of a detailed battery model with CC/CV charging control. • The determination of a representative profile with optimized number of days. • The proposed method finds its direct application in a design tool for microgids. - Abstract: Hybrid off-grid energy systems enable a cost efficient and reliable energy supply to rural areas around the world. The main potential for a low cost operation and uninterrupted power supply lies in the optimal sizing and operation of such microgrids. In particular, sudden variations in load demand or in the power supply from renewables underline the need for an optimally sized system. This paper presents an efficient multi-objective model based optimization approach for the optimal sizing of all components and the determination of the best power electronic layout. The presented method is divided into three optimization problems to minimize economic and environmental objectives. This design optimization includes detailed components models and an optimized energy dispatch strategy which enables the optimal design of the energy system with respect to an adequate control for the specific configuration. To significantly reduce the computation time without loss of accuracy, the presented method contains the determination of a representative load profile using a k-means clustering method. The k-means algorithm itself is embedded in an optimization problem for the calculation of the optimal number of clusters. The benefits in term of reduced computation time, inclusion of optimal energy dispatch and optimization of power electronic architecture, of the presented optimization method are illustrated using a case study.

  10. Convex hull ranking algorithm for multi-objective evolutionary algorithms

    NARCIS (Netherlands)

    Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.

    2012-01-01

    Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity

  11. Integration of Monte-Carlo ray tracing with a stochastic optimisation method: application to the design of solar receiver geometry.

    Science.gov (United States)

    Asselineau, Charles-Alexis; Zapata, Jose; Pye, John

    2015-06-01

    A stochastic optimisation method adapted to illumination and radiative heat transfer problems involving Monte-Carlo ray-tracing is presented. A solar receiver shape optimisation case study illustrates the advantages of the method and its potential: efficient receivers are identified using a moderate computational cost.

  12. Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks

    DEFF Research Database (Denmark)

    Bode, Felix; Binning, Philip John; Nowak, Wolfgang

    Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability...... and optimality of any suggested monitoring location or monitoring network. The goal of this project is to develop and establish a concept to assess, design, and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: (1) a high...... be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, wrapped up within the framework of formal multi-objective optimization. In order to gain insight into the flow and transport physics...

  13. Multi-Objective Optimization in Physical Synthesis of Integrated Circuits

    CERN Document Server

    A Papa, David

    2013-01-01

    This book introduces techniques that advance the capabilities and strength of modern software tools for physical synthesis, with the ultimate goal to improve the quality of leading-edge semiconductor products.  It provides a comprehensive introduction to physical synthesis and takes the reader methodically from first principles through state-of-the-art optimizations used in cutting edge industrial tools. It explains how to integrate chip optimizations in novel ways to create powerful circuit transformations that help satisfy performance requirements. Broadens the scope of physical synthesis optimization to include accurate transformations operating between the global and local scales; Integrates groups of related transformations to break circular dependencies and increase the number of circuit elements that can be jointly optimized to escape local minima;  Derives several multi-objective optimizations from first observations through complete algorithms and experiments; Describes integrated optimization te...

  14. Reference voltage calculation method based on zero-sequence component optimisation for a regional compensation DVR

    Science.gov (United States)

    Jian, Le; Cao, Wang; Jintao, Yang; Yinge, Wang

    2018-04-01

    This paper describes the design of a dynamic voltage restorer (DVR) that can simultaneously protect several sensitive loads from voltage sags in a region of an MV distribution network. A novel reference voltage calculation method based on zero-sequence voltage optimisation is proposed for this DVR to optimise cost-effectiveness in compensation of voltage sags with different characteristics in an ungrounded neutral system. Based on a detailed analysis of the characteristics of voltage sags caused by different types of faults and the effect of the wiring mode of the transformer on these characteristics, the optimisation target of the reference voltage calculation is presented with several constraints. The reference voltages under all types of voltage sags are calculated by optimising the zero-sequence component, which can reduce the degree of swell in the phase-to-ground voltage after compensation to the maximum extent and can improve the symmetry degree of the output voltages of the DVR, thereby effectively increasing the compensation ability. The validity and effectiveness of the proposed method are verified by simulation and experimental results.

  15. Multi objective decision making in hybrid energy system design

    Science.gov (United States)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component

  16. Multi-Objective Optimization of Managed Aquifer Recharge.

    Science.gov (United States)

    Fatkhutdinov, Aybulat; Stefan, Catalin

    2018-04-27

    This study demonstrates the utilization of a multi-objective hybrid global/local optimization algorithm for solving managed aquifer recharge (MAR) design problems, in which the decision variables included spatial arrangement of water injection and abstraction wells and time-variant rates of pumping and injection. The objective of the optimization was to maximize the efficiency of the MAR scheme, which includes both quantitative and qualitative aspects. The case study used to demonstrate the capabilities of the proposed approach is based on a published report on designing a real MAR site with defined aquifer properties, chemical groundwater characteristics as well as quality and volumes of injected water. The demonstration problems include steady-state and transient scenarios. The steady-state scenario demonstrates optimization of spatial arrangement of multiple injection and recovery wells, whereas the transient scenario was developed with the purpose of finding optimal regimes of water injection and recovery at a single location. Both problems were defined as multi-objective problems. The scenarios were simulated by applying coupled numerical groundwater flow and solute transport models: MODFLOW-2005 and MT3D-USGS. The applied optimization method was a combination of global - the Non-Dominated Sorting Genetic Algorithm (NSGA-2), and local - the Nelder-Mead Downhill Simplex search algorithms. The analysis of the resulting Pareto optimal solutions led to the discovery of valuable patterns and dependencies between the decision variables, model properties and problem objectives. Additionally, the performance of the traditional global and the hybrid optimization schemes were compared. This article is protected by copyright. All rights reserved.

  17. Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Lee, K Y

    2009-01-01

    In this paper the state-of-the-art extended particle swarm optimization (PSO) methods for solving multi-objective optimization problems are represented. We emphasize in those, the co-evolution technique of the parallel vector evaluated PSO (VEPSO), analysed and applied in a multi-objective problem...

  18. Comparative Study of Evolutionary Multi-objective Optimization Algorithms for a Non-linear Greenhouse Climate Control Problem

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...

  19. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  20. A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch

    International Nuclear Information System (INIS)

    Niknam, Taher; Azizipanah-Abarghooee, Rasoul; Roosta, Alireza; Amiri, Babak

    2012-01-01

    Combined heat and power units are playing an ever increasing role in conventional power stations due to advantages such as reduced emissions and operational cost savings. This paper investigates a more practical formulation of the complex non-convex, non-smooth and non-linear multi-objective dynamic economic emission dispatch that incorporates combined heat and power units. Integrating these types of units, and their power ramp constraints, require an efficient tool to cope with the joint characteristics of power and heat. Unlike previous approaches, the spinning reserve requirements of this system are clearly formulated in the problem. In this way, a new multi-objective optimisation based on an enhanced firefly algorithm is proposed to achieve a set of non-dominated (Pareto-optimal) solutions. A new tuning parameter based on a chaotic mechanism and novel self adaptive probabilistic mutation strategies are used to improve the overall performance of the algorithm. The numerical results demonstrate how the proposed framework was applied in real time studies. -- Highlights: ► Investigate a practical formulation of the DEED (Dynamic Economic Emission Dispatch). ► Consider combined heat and power units. ► Consider power ramp constraints. ► Consider the system spinning reserve requirements. ► Present a new multi-objective optimization firefly.

  1. A hybrid multi-objective evolutionary algorithm approach for ...

    Indian Academy of Sciences (India)

    V K MANUPATI

    for handling sequence- and machine-dependent set-up times ... algorithm has been compared to that of multi-objective particle swarm optimization (MOPSO) and conventional ..... position and cognitive learning factor are considered for.

  2. Multi-objective convex programming problem arising in multivariate ...

    African Journals Online (AJOL)

    user

    Multi-objective convex programming problem arising in ... However, although the consideration of multiple objectives may seem a novel concept, virtually any nontrivial ..... Solving multiobjective programming problems by discrete optimization.

  3. New approach for solving intuitionistic fuzzy multi-objective ...

    Indian Academy of Sciences (India)

    SANKAR KUMAR ROY

    2018-02-07

    Feb 7, 2018 ... Transportation problem; multi-objective decision making; intuitionistic fuzzy programming; interval programming ... MOTP under multi-choice environment using utility func- ... theory is an intuitionistic fuzzy set (IFS), which was.

  4. Scalable and practical multi-objective distribution network expansion planning

    NARCIS (Netherlands)

    Luong, N.H.; Grond, M.O.W.; Poutré, La J.A.; Bosman, P.A.N.

    2015-01-01

    We formulate the distribution network expansion planning (DNEP) problem as a multi-objective optimization (MOO) problem with different objectives that distribution network operators (DNOs) would typically like to consider during decision making processes for expanding their networks. Objectives are

  5. Multi-Objective Parameter Selection for Classifers

    Directory of Open Access Journals (Sweden)

    Christoph Mussel

    2012-01-01

    Full Text Available Setting the free parameters of classifiers to different values can have a profound impact on their performance. For some methods, specialized tuning algorithms have been developed. These approaches mostly tune parameters according to a single criterion, such as the cross-validation error. However, it is sometimes desirable to obtain parameter values that optimize several concurrent - often conflicting - criteria. The TunePareto package provides a general and highly customizable framework to select optimal parameters for classifiers according to multiple objectives. Several strategies for sampling andoptimizing parameters are supplied. The algorithm determines a set of Pareto-optimal parameter configuration and leaves the ultimate decision on the weighting of objectives to the researcher. Decision support is provided by novel visualization techniques.

  6. A pilot investigation to optimise methods for a future satiety preload study

    OpenAIRE

    Hobden, Mark R.; Guérin-Deremaux, Laetitia; Commane, Daniel M.; Rowland, Ian; Gibson, Glenn R.; Kennedy, Orla B.

    2017-01-01

    Background Preload studies are used to investigate the satiating effects of foods and food ingredients. However, the design of preload studies is complex, with many methodological considerations influencing appetite responses. The aim of this pilot investigation was to determine acceptability, and optimise methods, for a future satiety preload study. Specifically, we investigated the effects of altering (i) energy intake at a standardised breakfast (gender-specific or non-gender specific), an...

  7. Research on connection structure of aluminumbody bus using multi-objective topology optimization

    Science.gov (United States)

    Peng, Q.; Ni, X.; Han, F.; Rhaman, K.; Ulianov, C.; Fang, X.

    2018-01-01

    For connecting Aluminum Alloy bus body aluminum components often occur the problem of failure, a new aluminum alloy connection structure is designed based on multi-objective topology optimization method. Determining the shape of the outer contour of the connection structure with topography optimization, establishing a topology optimization model of connections based on SIMP density interpolation method, going on multi-objective topology optimization, and improving the design of the connecting piece according to the optimization results. The results show that the quality of the aluminum alloy connector after topology optimization is reduced by 18%, and the first six natural frequencies are improved and the strength performance and stiffness performance are obviously improved.

  8. A procedure for multi-objective optimization of tire design parameters

    Directory of Open Access Journals (Sweden)

    Nikola Korunović

    2015-04-01

    Full Text Available The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zones inside the tire. It consists of four main stages: pre-analysis, design of experiment, mathematical modeling and multi-objective optimization. Advantage of the proposed procedure is reflected in the fact that multi-objective optimization is based on the Pareto concept, which enables design engineers to obtain a complete set of optimization solutions and choose a suitable tire design. Furthermore, modeling of the relationships between tire design parameters and objective functions based on multiple regression analysis minimizes computational and modeling effort. The adequacy of the proposed tire design multi-objective optimization procedure has been validated by performing experimental trials based on finite element method.

  9. Multi-objective optimization of the reactor coolant system

    International Nuclear Information System (INIS)

    Chen Lei; Yan Changqi; Wang Jianjun

    2014-01-01

    Background: Weight and size are important criteria in evaluating the performance of a nuclear power plant. It is of great theoretical value and engineering significance to reduce the weight and volume of the components for a nuclear power plant by the optimization methodology. Purpose: In order to provide a new method for the optimization of nuclear power plant multi-objective, the concept of the non-dominated solution was introduced. Methods: Based on the parameters of Qinshan I nuclear power plant, the mathematical models of the reactor core, the reactor vessel, the main pipe, the pressurizer and the steam generator were built and verified. The sensitivity analyses were carried out to study the influences of the design variables on the objectives. A modified non-dominated sorting genetic algorithm was proposed and employed to optimize the weight and the volume of the reactor coolant system. Results: The results show that the component mathematical models are reliable, the modified non-dominated sorting generic algorithm is effective, and the reactor inlet temperature is the most important variable which influences the distribution of the non-dominated solutions. Conclusion: The optimization results could provide a reference to the design of such reactor coolant system. (authors)

  10. Multi-objective optimal operation of smart reconfigurable distribution grids

    Directory of Open Access Journals (Sweden)

    Abdollah Kavousi-Fard

    2016-02-01

    Full Text Available Reconfiguration is a valuable technique that can support the distribution grid from different aspects such as operation cost and loss reduction, reliability improvement, and voltage stability enhancement. An intelligent and efficient optimization framework, however, is required to reach the desired efficiency through the reconfiguration strategy. This paper proposes a new multi-objective optimization model to make use of the reconfiguration strategy for minimizing the power losses, improving the voltage profile, and enhancing the load balance in distribution grids. The proposed model employs the min-max fuzzy approach to find the most satisfying solution from a set of nondominated solutions in the problem space. Due to the high complexity and the discrete nature of the proposed model, a new optimization method based on harmony search (HS algorithm is further proposed. Moreover, a new modification method is suggested to increase the harmony memory diversity in the improvisation stage and increase the convergence ability of the algorithm. The feasibility and satisfying performance of the proposed model are examined on the IEEE 32-bus distribution system.

  11. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    Science.gov (United States)

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Multi-objective design of PV-wind-diesel-hydrogen-battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L. [Department of Electrical Engineering, University of Zaragoza, Calle Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-12-15

    This paper presents, for the first time, a triple multi-objective design of isolated hybrid systems minimizing, simultaneously, the total cost throughout the useful life of the installation, pollutant emissions (CO{sub 2}) and unmet load. For this task, a multi-objective evolutionary algorithm (MOEA) and a genetic algorithm (GA) have been used in order to find the best combination of components of the hybrid system and control strategies. As an example of application, a complex PV-wind-diesel-hydrogen-battery system has been designed, obtaining a set of possible solutions (Pareto Set). The results achieved demonstrate the practical utility of the developed design method. (author)

  13. Fuzzy preference based interactive fuzzy physical programming and its application in multi-objective optimization

    International Nuclear Information System (INIS)

    Zhang, Xu; Huang, Hong Zhong; Yu, Lanfeng

    2006-01-01

    Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer

  14. Artificial Intelligence Mechanisms on Interactive Modified Simplex Method with Desirability Function for Optimising Surface Lapping Process

    Directory of Open Access Journals (Sweden)

    Pongchanun Luangpaiboon

    2014-01-01

    Full Text Available A study has been made to optimise the influential parameters of surface lapping process. Lapping time, lapping speed, downward pressure, and charging pressure were chosen from the preliminary studies as parameters to determine process performances in terms of material removal, lap width, and clamp force. The desirability functions of the-nominal-the-best were used to compromise multiple responses into the overall desirability function level or D response. The conventional modified simplex or Nelder-Mead simplex method and the interactive desirability function are performed to optimise online the parameter levels in order to maximise the D response. In order to determine the lapping process parameters effectively, this research then applies two powerful artificial intelligence optimisation mechanisms from harmony search and firefly algorithms. The recommended condition of (lapping time, lapping speed, downward pressure, and charging pressure at (33, 35, 6.0, and 5.0 has been verified by performing confirmation experiments. It showed that the D response level increased to 0.96. When compared with the current operating condition, there is a decrease of the material removal and lap width with the improved process performance indices of 2.01 and 1.14, respectively. Similarly, there is an increase of the clamp force with the improved process performance index of 1.58.

  15. An improved Lobatto discrete variable representation by a phase optimisation and variable mapping method

    International Nuclear Information System (INIS)

    Yu, Dequan; Cong, Shu-Lin; Sun, Zhigang

    2015-01-01

    Highlights: • An optimised finite element discrete variable representation method is proposed. • The method is tested by solving one and two dimensional Schrödinger equations. • The method is quite efficient in solving the molecular Schrödinger equation. • It is very easy to generalise the method to multidimensional problems. - Abstract: The Lobatto discrete variable representation (LDVR) proposed by Manoloupolos and Wyatt (1988) has unique features but has not been generally applied in the field of chemical dynamics. Instead, it has popular application in solving atomic physics problems, in combining with the finite element method (FE-DVR), due to its inherent abilities for treating the Coulomb singularity in spherical coordinates. In this work, an efficient phase optimisation and variable mapping procedure is proposed to improve the grid efficiency of the LDVR/FE-DVR method, which makes it not only be competing with the popular DVR methods, such as the Sinc-DVR, but also keep its advantages for treating with the Coulomb singularity. The method is illustrated by calculations for one-dimensional Coulomb potential, and the vibrational states of one-dimensional Morse potential, two-dimensional Morse potential and two-dimensional Henon–Heiles potential, which prove the efficiency of the proposed scheme and promise more general applications of the LDVR/FE-DVR method

  16. An improved Lobatto discrete variable representation by a phase optimisation and variable mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dequan [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); Cong, Shu-Lin, E-mail: shlcong@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Sun, Zhigang, E-mail: zsun@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026 (China)

    2015-09-08

    Highlights: • An optimised finite element discrete variable representation method is proposed. • The method is tested by solving one and two dimensional Schrödinger equations. • The method is quite efficient in solving the molecular Schrödinger equation. • It is very easy to generalise the method to multidimensional problems. - Abstract: The Lobatto discrete variable representation (LDVR) proposed by Manoloupolos and Wyatt (1988) has unique features but has not been generally applied in the field of chemical dynamics. Instead, it has popular application in solving atomic physics problems, in combining with the finite element method (FE-DVR), due to its inherent abilities for treating the Coulomb singularity in spherical coordinates. In this work, an efficient phase optimisation and variable mapping procedure is proposed to improve the grid efficiency of the LDVR/FE-DVR method, which makes it not only be competing with the popular DVR methods, such as the Sinc-DVR, but also keep its advantages for treating with the Coulomb singularity. The method is illustrated by calculations for one-dimensional Coulomb potential, and the vibrational states of one-dimensional Morse potential, two-dimensional Morse potential and two-dimensional Henon–Heiles potential, which prove the efficiency of the proposed scheme and promise more general applications of the LDVR/FE-DVR method.

  17. The multi-objective Spanish National Forest Inventory

    International Nuclear Information System (INIS)

    Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.

    2017-01-01

    Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  18. The multi-objective Spanish National Forest Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.

    2017-11-01

    Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  19. The multi-objective Spanish National Forest Inventory

    Directory of Open Access Journals (Sweden)

    Iciar Alberdi

    2017-10-01

    Full Text Available Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra  in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  20. Multi-objective optimization in computer networks using metaheuristics

    CERN Document Server

    Donoso, Yezid

    2007-01-01

    Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design and to provide for these kinds of applications as well as for those resources necessary for functionality. Multi-Objective Optimization in Computer Networks Using Metaheuristics provides a solution to the multi-objective problem in routing computer networks. It analyzes layer 3 (IP), layer 2 (MPLS), and layer 1 (GMPLS and wireless functions). In particular, it assesses basic optimization concepts, as well as several techniques and algorithms for the search of minimals; examines the basic multi-objective optimization concepts and the way to solve them through traditional techniques and through several metaheuristics; and demonstrates how to analytically model the compu...

  1. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters

    Directory of Open Access Journals (Sweden)

    Fonseca Carlos M

    2010-10-01

    Full Text Available Abstract Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the

  2. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  3. Ensemble-based hierarchical multi-objective production optimization of smart wells

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Van den Hof, P.M.J.; Jansen, J.D.

    2014-01-01

    In an earlier study two hierarchical multi-objective methods were suggested to include short-term targets in life-cycle production optimization. However this earlier study has two limitations: 1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access

  4. Aerodynamic multi-objective integrated optimization based on principal component analysis

    Directory of Open Access Journals (Sweden)

    Jiangtao HUANG

    2017-08-01

    Full Text Available Based on improved multi-objective particle swarm optimization (MOPSO algorithm with principal component analysis (PCA methodology, an efficient high-dimension multi-objective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency, the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil, and the proposed method is integrated into aircraft multi-disciplinary design (AMDEsign platform, which contains aerodynamics, stealth and structure weight analysis and optimization module. Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.

  5. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach

    Science.gov (United States)

    Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza

    2017-08-01

    Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.

  6. Localized probability of improvement for kriging based multi-objective optimization

    Science.gov (United States)

    Li, Yinjiang; Xiao, Song; Barba, Paolo Di; Rotaru, Mihai; Sykulski, Jan K.

    2017-12-01

    The paper introduces a new approach to kriging based multi-objective optimization by utilizing a local probability of improvement as the infill sampling criterion and the nearest neighbor check to ensure diversification and uniform distribution of Pareto fronts. The proposed method is computationally fast and linearly scalable to higher dimensions.

  7. MOPSO-based multi-objective TSO planning considering uncertainties

    DEFF Research Database (Denmark)

    Wang, Qi; Zhang, Chunyu; Ding, Yi

    2014-01-01

    factors, i.e. load growth, generation capacity and line faults, and aims to enhance the transmission system via the multi-objective TSO planning (MOTP) approach. The proposed MOTP approach optimizes three objectives simultaneously, namely the probabilistic available transfer capability (PATC), investment...... cost and power outage cost. A two-phase MOPSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity ofPareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach...

  8. Multiple utility constrained multi-objective programs using Bayesian theory

    Science.gov (United States)

    Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed

    2018-03-01

    A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.

  9. Multi-objective optimal power flow with FACTS devices

    International Nuclear Information System (INIS)

    Basu, M.

    2011-01-01

    This paper presents multi-objective differential evolution to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). The proposed approach has been examined and tested on the modified IEEE 30-bus and 57-bus test systems. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, strength pareto evolutionary algorithm 2 and pareto differential evolution.

  10. Adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique algorithm for tackling binary imbalanced datasets in biomedical data classification.

    Science.gov (United States)

    Li, Jinyan; Fong, Simon; Sung, Yunsick; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L

    2016-01-01

    An imbalanced dataset is defined as a training dataset that has imbalanced proportions of data in both interesting and uninteresting classes. Often in biomedical applications, samples from the stimulating class are rare in a population, such as medical anomalies, positive clinical tests, and particular diseases. Although the target samples in the primitive dataset are small in number, the induction of a classification model over such training data leads to poor prediction performance due to insufficient training from the minority class. In this paper, we use a novel class-balancing method named adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique (ASCB_DmSMOTE) to solve this imbalanced dataset problem, which is common in biomedical applications. The proposed method combines under-sampling and over-sampling into a swarm optimisation algorithm. It adaptively selects suitable parameters for the rebalancing algorithm to find the best solution. Compared with the other versions of the SMOTE algorithm, significant improvements, which include higher accuracy and credibility, are observed with ASCB_DmSMOTE. Our proposed method tactfully combines two rebalancing techniques together. It reasonably re-allocates the majority class in the details and dynamically optimises the two parameters of SMOTE to synthesise a reasonable scale of minority class for each clustered sub-imbalanced dataset. The proposed methods ultimately overcome other conventional methods and attains higher credibility with even greater accuracy of the classification model.

  11. Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Kangji Li

    2017-02-01

    Full Text Available Numerous conflicting criteria exist in building design optimization, such as energy consumption, greenhouse gas emission and indoor thermal performance. Different simulation-based optimization strategies and various optimization algorithms have been developed. A few of them are analyzed and compared in solving building design problems. This paper presents an efficient optimization framework to facilitate optimization designs with the aid of commercial simulation software and MATLAB. The performances of three optimization strategies, including the proposed approach, GenOpt method and artificial neural network (ANN method, are investigated using a case study of a simple building energy model. Results show that the proposed optimization framework has competitive performances compared with the GenOpt method. Further, in another practical case, four popular multi-objective algorithms, e.g., the non-dominated sorting genetic algorithm (NSGA-II, multi-objective particle swarm optimization (MOPSO, the multi-objective genetic algorithm (MOGA and multi-objective differential evolution (MODE, are realized using the propose optimization framework and compared with three criteria. Results indicate that MODE achieves close-to-optimal solutions with the best diversity and execution time. An uncompetitive result is achieved by the MOPSO in this case study.

  12. An improved fast and elitist multi-objective genetic algorithm-ANSGA-II for multi-objective optimization of inverse radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Cao Ruifen; Li Guoli; Song Gang; Zhao Pan; Lin Hui; Wu Aidong; Huang Chenyu; Wu Yican

    2007-01-01

    Objective: To provide a fast and effective multi-objective optimization algorithm for inverse radiotherapy treatment planning system. Methods: Non-dominated Sorting Genetic Algorithm-NSGA-II is a representative of multi-objective evolutionary optimization algorithms and excels the others. The paper produces ANSGA-II that makes use of advantage of NSGA-II, and uses adaptive crossover and mutation to improve its flexibility; according the character of inverse radiotherapy treatment planning, the paper uses the pre-known knowledge to generate individuals of every generation in the course of optimization, which enhances the convergent speed and improves efficiency. Results: The example of optimizing average dose of a sheet of CT, including PTV, OAR, NT, proves the algorithm could find satisfied solutions in several minutes. Conclusions: The algorithm could provide clinic inverse radiotherapy treatment planning system with selection of optimization algorithms. (authors)

  13. Optimisation of a double-centrifugation method for preparation of canine platelet-rich plasma.

    Science.gov (United States)

    Shin, Hyeok-Soo; Woo, Heung-Myong; Kang, Byung-Jae

    2017-06-26

    Platelet-rich plasma (PRP) has been expected for regenerative medicine because of its growth factors. However, there is considerable variability in the recovery and yield of platelets and the concentration of growth factors in PRP preparations. The aim of this study was to identify optimal relative centrifugal force and spin time for the preparation of PRP from canine blood using a double-centrifugation tube method. Whole blood samples were collected in citrate blood collection tubes from 12 healthy beagles. For the first centrifugation step, 10 different run conditions were compared to determine which condition produced optimal recovery of platelets. Once the optimal condition was identified, platelet-containing plasma prepared using that condition was subjected to a second centrifugation to pellet platelets. For the second centrifugation, 12 different run conditions were compared to identify the centrifugal force and spin time to produce maximal pellet recovery and concentration increase. Growth factor levels were estimated by using ELISA to measure platelet-derived growth factor-BB (PDGF-BB) concentrations in optimised CaCl 2 -activated platelet fractions. The highest platelet recovery rate and yield were obtained by first centrifuging whole blood at 1000 g for 5 min and then centrifuging the recovered platelet-enriched plasma at 1500 g for 15 min. This protocol recovered 80% of platelets from whole blood and increased platelet concentration six-fold and produced the highest concentration of PDGF-BB in activated fractions. We have described an optimised double-centrifugation tube method for the preparation of PRP from canine blood. This optimised method does not require particularly expensive equipment or high technical ability and can readily be carried out in a veterinary clinical setting.

  14. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp

    2009-04-15

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.

  15. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    International Nuclear Information System (INIS)

    Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji

    2009-01-01

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets

  16. Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Qin Hui [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou Jianzhong, E-mail: jz.zhou@hust.edu.c [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Youlin; Wang Ying; Zhang Yongchuan [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-04-15

    A new multi-objective optimization method based on differential evolution with adaptive Cauchy mutation (MODE-ACM) is presented to solve short-term multi-objective optimal hydro-thermal scheduling (MOOHS) problem. Besides fuel cost, the pollutant gas emission is also optimized as an objective. The water transport delay between connected reservoirs and the effect of valve-point loading of thermal units are also taken into account in the presented problem formulation. The proposed algorithm adopts an elitist archive to retain non-dominated solutions obtained during the evolutionary process. It modifies the DE's operators to make it suit for multi-objective optimization (MOO) problems and improve its performance. Furthermore, to avoid premature convergence, an adaptive Cauchy mutation is proposed to preserve the diversity of population. An effective constraints handling method is utilized to handle the complex equality and inequality constraints. The effectiveness of the proposed algorithm is tested on a hydro-thermal system consisting of four cascaded hydro plants and three thermal units. The results obtained by MODE-ACM are compared with several previous studies. It is found that the results obtained by MODE-ACM are superior in terms of fuel cost as well as emission output, consuming a shorter time. Thus it can be a viable alternative to generate optimal trade-offs for short-term MOOHS problem.

  17. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  18. Evolving intelligent vehicle control using multi-objective NEAT

    NARCIS (Netherlands)

    Willigen, W.H. van; Haasdijk, E.; Kester, L.J.H.M.

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective algorithm based on NEAT and SPEA2 that evolves controllers for such

  19. Multi-objective optimization approach for air traffic flow management

    Directory of Open Access Journals (Sweden)

    Fadil Rabie

    2017-01-01

    The decision-making stage was then performed with the aid of data clustering techniques to reduce the sizeof the Pareto-optimal set and obtain a smaller representation of the multi-objective design space, there by making it easier for the decision-maker to find satisfactory and meaningful trade-offs, and to select a preferred final design solution.

  20. A multi-objective decision framework for lifecycle investment

    NARCIS (Netherlands)

    Timmermans, S.H.J.T.; Schumacher, J.M.; Ponds, E.H.M.

    2017-01-01

    In this paper we propose a multi-objective decision framework for lifecycle investment choice. Instead of optimizing individual strategies with respect to a single-valued objective, we suggest evaluation of classes of strategies in terms of the quality of the tradeoffs that they provide. The

  1. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  2. Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm

    Science.gov (United States)

    2009-03-10

    xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences

  3. Multi-Objective Constraint Satisfaction for Mobile Robot Area Defense

    Science.gov (United States)

    2010-03-01

    David A. Van Veldhuizen . Evo- lutionary Algorithms for Solving Multi-Objective Problems. Springer, New York, NY, 2nd edition, 2007. [9] Dean, Thomas...J.I. van Hemert, E. Marchiori, and A. G. Steenbeek. “Solving Binary Constraint Satisfaction Problems using Evolutionary Algorithms with an Adaptive

  4. Computing Convex Coverage Sets for Faster Multi-Objective Coordination

    NARCIS (Netherlands)

    Roijers, D.M.; Whiteson, S.; Oliehoek, F.A.

    2015-01-01

    In this article, we propose new algorithms for multi-objective coordination graphs (MO-CoGs). Key to the efficiency of these algorithms is that they compute a convex coverage set (CCS) instead of a Pareto coverage set (PCS). Not only is a CCS a sufficient solution set for a large class of problems,

  5. Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems

    International Nuclear Information System (INIS)

    Cao, Dingzhou; Murat, Alper; Chinnam, Ratna Babu

    2013-01-01

    This paper proposes a decomposition-based approach to exactly solve the multi-objective Redundancy Allocation Problem for series-parallel systems. Redundancy allocation problem is a form of reliability optimization and has been the subject of many prior studies. The majority of these earlier studies treat redundancy allocation problem as a single objective problem maximizing the system reliability or minimizing the cost given certain constraints. The few studies that treated redundancy allocation problem as a multi-objective optimization problem relied on meta-heuristic solution approaches. However, meta-heuristic approaches have significant limitations: they do not guarantee that Pareto points are optimal and, more importantly, they may not identify all the Pareto-optimal points. In this paper, we treat redundancy allocation problem as a multi-objective problem, as is typical in practice. We decompose the original problem into several multi-objective sub-problems, efficiently and exactly solve sub-problems, and then systematically combine the solutions. The decomposition-based approach can efficiently generate all the Pareto-optimal solutions for redundancy allocation problems. Experimental results demonstrate the effectiveness and efficiency of the proposed method over meta-heuristic methods on a numerical example taken from the literature.

  6. Radiation dose to children in diagnostic radiology. Measurements and methods for clinical optimisation studies

    International Nuclear Information System (INIS)

    Almen, A.J.

    1995-09-01

    A method for estimating mean absorbed dose to different organs and tissues was developed for paediatric patients undergoing X-ray investigations. The absorbed dose distribution in water was measured for the specific X-ray beam used. Clinical images were studied to determine X-ray beam positions and field sizes. Size and position of organs in the patient were estimated using ORNL phantoms and complementary clinical information. Conversion factors between the mean absorbed dose to various organs and entrance surface dose for five different body sizes were calculated. Direct measurements on patients estimating entrance surface dose and energy imparted for common X-ray investigations were performed. The examination technique for a number of paediatric X-ray investigations used in 19 Swedish hospitals was studied. For a simulated pelvis investigation of a 1-year old child the entrance surface dose was measured and image quality was estimated using a contrast-detail phantom. Mean absorbed doses to organs and tissues in urography, lung, pelvis, thoracic spine, lumbar spine and scoliosis investigations was calculated. Calculations of effective dose were supplemented with risk calculations for special organs e g the female breast. The work shows that the examination technique in paediatric radiology is not yet optimised, and that the non-optimised procedures contribute to a considerable variation in radiation dose. In order to optimise paediatric radiology there is a need for more standardised methods in patient dosimetry. It is especially important to relate measured quantities to the size of the patient, using e g the patient weight and length. 91 refs, 17 figs, 8 tabs

  7. Radiation dose to children in diagnostic radiology. Measurements and methods for clinical optimisation studies

    Energy Technology Data Exchange (ETDEWEB)

    Almen, A J

    1995-09-01

    A method for estimating mean absorbed dose to different organs and tissues was developed for paediatric patients undergoing X-ray investigations. The absorbed dose distribution in water was measured for the specific X-ray beam used. Clinical images were studied to determine X-ray beam positions and field sizes. Size and position of organs in the patient were estimated using ORNL phantoms and complementary clinical information. Conversion factors between the mean absorbed dose to various organs and entrance surface dose for five different body sizes were calculated. Direct measurements on patients estimating entrance surface dose and energy imparted for common X-ray investigations were performed. The examination technique for a number of paediatric X-ray investigations used in 19 Swedish hospitals was studied. For a simulated pelvis investigation of a 1-year old child the entrance surface dose was measured and image quality was estimated using a contrast-detail phantom. Mean absorbed doses to organs and tissues in urography, lung, pelvis, thoracic spine, lumbar spine and scoliosis investigations was calculated. Calculations of effective dose were supplemented with risk calculations for special organs e g the female breast. The work shows that the examination technique in paediatric radiology is not yet optimised, and that the non-optimised procedures contribute to a considerable variation in radiation dose. In order to optimise paediatric radiology there is a need for more standardised methods in patient dosimetry. It is especially important to relate measured quantities to the size of the patient, using e g the patient weight and length. 91 refs, 17 figs, 8 tabs.

  8. Multi-objective optimization in systematic conservation planning and the representation of genetic variability among populations.

    Science.gov (United States)

    Schlottfeldt, S; Walter, M E M T; Carvalho, A C P L F; Soares, T N; Telles, M P C; Loyola, R D; Diniz-Filho, J A F

    2015-06-18

    Biodiversity crises have led scientists to develop strategies for achieving conservation goals. The underlying principle of these strategies lies in systematic conservation planning (SCP), in which there are at least 2 conflicting objectives, making it a good candidate for multi-objective optimization. Although SCP is typically applied at the species level (or hierarchically higher), it can be used at lower hierarchical levels, such as using alleles as basic units for analysis, for conservation genetics. Here, we propose a method of SCP using a multi-objective approach. We used non-dominated sorting genetic algorithm II in order to identify the smallest set of local populations of Dipteryx alata (baru) (a Brazilian Cerrado species) for conservation, representing the known genetic diversity and using allele frequency information associated with heterozygosity and Hardy-Weinberg equilibrium. We worked in 3 variations for the problem. First, we reproduced a previous experiment, but using a multi-objective approach. We found that the smallest set of populations needed to represent all alleles under study was 7, corroborating the results of the previous study, but with more distinct solutions. In the 2nd and 3rd variations, we performed simultaneous optimization of 4 and 5 objectives, respectively. We found similar but refined results for 7 populations, and a larger portfolio considering intra-specific diversity and persistence with populations ranging from 8-22. This is the first study to apply multi-objective algorithms to an SCP problem using alleles at the population level as basic units for analysis.

  9. Study on multi-objective flexible job-shop scheduling problem considering energy consumption

    Directory of Open Access Journals (Sweden)

    Zengqiang Jiang

    2014-06-01

    Full Text Available Purpose: Build a multi-objective Flexible Job-shop Scheduling Problem(FJSP optimization model, in which the makespan, processing cost, energy consumption and cost-weighted processing quality are considered, then Design a Modified Non-dominated Sorting Genetic Algorithm (NSGA-II based on blood variation for above scheduling model.Design/methodology/approach: A multi-objective optimization theory based on Pareto optimal method is used in carrying out the optimization model. NSGA-II is used to solve the model.Findings: By analyzing the research status and insufficiency of multi-objective FJSP, Find that the difference in scheduling will also have an effect on energy consumption in machining process and environmental emissions. Therefore, job-shop scheduling requires not only guaranteeing the processing quality, time and cost, but also optimizing operation plan of machines and minimizing energy consumption.Originality/value: A multi-objective FJSP optimization model is put forward, in which the makespan, processing cost, energy consumption and cost-weighted processing quality are considered. According to above model, Blood-Variation-based NSGA-II (BVNSGA-II is designed. In which, the chromosome mutation rate is determined after calculating the blood relationship between two cross chromosomes, crossover and mutation strategy of NSGA-II is optimized and the prematurity of population is overcome. Finally, the performance of the proposed model and algorithm is evaluated through a case study, and the results proved the efficiency and feasibility of the proposed model and algorithm.

  10. The Worst-Case Weighted Multi-Objective Game with an Application to Supply Chain Competitions.

    Science.gov (United States)

    Qu, Shaojian; Ji, Ying

    2016-01-01

    In this paper, we propose a worst-case weighted approach to the multi-objective n-person non-zero sum game model where each player has more than one competing objective. Our "worst-case weighted multi-objective game" model supposes that each player has a set of weights to its objectives and wishes to minimize its maximum weighted sum objectives where the maximization is with respect to the set of weights. This new model gives rise to a new Pareto Nash equilibrium concept, which we call "robust-weighted Nash equilibrium". We prove that the robust-weighted Nash equilibria are guaranteed to exist even when the weight sets are unbounded. For the worst-case weighted multi-objective game with the weight sets of players all given as polytope, we show that a robust-weighted Nash equilibrium can be obtained by solving a mathematical program with equilibrium constraints (MPEC). For an application, we illustrate the usefulness of the worst-case weighted multi-objective game to a supply chain risk management problem under demand uncertainty. By the comparison with the existed weighted approach, we show that our method is more robust and can be more efficiently used for the real-world applications.

  11. The Worst-Case Weighted Multi-Objective Game with an Application to Supply Chain Competitions.

    Directory of Open Access Journals (Sweden)

    Shaojian Qu

    Full Text Available In this paper, we propose a worst-case weighted approach to the multi-objective n-person non-zero sum game model where each player has more than one competing objective. Our "worst-case weighted multi-objective game" model supposes that each player has a set of weights to its objectives and wishes to minimize its maximum weighted sum objectives where the maximization is with respect to the set of weights. This new model gives rise to a new Pareto Nash equilibrium concept, which we call "robust-weighted Nash equilibrium". We prove that the robust-weighted Nash equilibria are guaranteed to exist even when the weight sets are unbounded. For the worst-case weighted multi-objective game with the weight sets of players all given as polytope, we show that a robust-weighted Nash equilibrium can be obtained by solving a mathematical program with equilibrium constraints (MPEC. For an application, we illustrate the usefulness of the worst-case weighted multi-objective game to a supply chain risk management problem under demand uncertainty. By the comparison with the existed weighted approach, we show that our method is more robust and can be more efficiently used for the real-world applications.

  12. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    International Nuclear Information System (INIS)

    Zhou, Z; Folkert, M; Wang, J

    2016-01-01

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  13. Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Lvjiang Yin

    2016-12-01

    Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.

  14. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z; Folkert, M; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  15. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    International Nuclear Information System (INIS)

    Pang, X.; Rybarcyk, L.J.

    2014-01-01

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster

  16. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    Energy Technology Data Exchange (ETDEWEB)

    Pang, X., E-mail: xpang@lanl.gov; Rybarcyk, L.J.

    2014-03-21

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster.

  17. Multiobjective optimisation of energy systems and building envelope retrofit in a residential community

    International Nuclear Information System (INIS)

    Wu, Raphael; Mavromatidis, Georgios; Orehounig, Kristina; Carmeliet, Jan

    2017-01-01

    Highlights: • Simultaneous optimisation of building envelope retrofit and energy systems. • Retrofit and energy systems change interact and should be considered simultaneously. • Case study quantifies cost-GHG emission tradeoffs for different retrofit options. - Abstract: In this paper, a method for a multi-objective and simultaneous optimisation of building energy systems and retrofit is presented. Tailored to be suitable for the diverse range of existing buildings in terms of age, size, and use, it combines dynamic energy demand simulation to explore individual retrofit scenarios with an energy hub optimisation. Implemented as an epsilon-constrained mixed integer linear program (MILP), the optimisation matches envelope retrofit with renewable and high efficiency energy supply technologies such as biomass boilers, heat pumps, photovoltaic and solar thermal panels to minimise life cycle cost and greenhouse gas (GHG) emissions. Due to its multi-objective, integrated assessment of building transformation options and its ability to capture both individual building characteristics and trends within a neighbourhood, this method is aimed to provide developers, neighbourhood and town policy makers with the necessary information to make adequate decisions. Our method is deployed in a case study of typical residential buildings in the Swiss village of Zernez, simulating energy demands in EnergyPlus and solving the optimisation problem with CPLEX. Although common trade-offs in energy system and retrofit choice can be observed, optimisation results suggest that the diversity in building age and size leads to optimal strategies for retrofitting and building system solutions, which are specific to different categories. With this method, GHG emissions of the entire community can be reduced by up to 76% at a cost increase of 3% compared to the current emission levels, if an optimised solution is selected for each building category.

  18. A multi-objective programming model for assessment the GHG emissions in MSW management

    International Nuclear Information System (INIS)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-01-01

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH 4 generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application

  19. A multi-objective programming model for assessment the GHG emissions in MSW management

    Energy Technology Data Exchange (ETDEWEB)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr [National Technical University of Athens, Iroon Polytechniou 9, Zografou, Athens, 15780 (Greece); Skoulaxinou, Sotiria [EPEM SA, 141 B Acharnon Str., Athens, 10446 (Greece); Gakis, Nikos [FACETS SA, Agiou Isidorou Str., Athens, 11471 (Greece); Katsouros, Vassilis [Athena Research and Innovation Center, Artemidos 6 and Epidavrou Str., Maroussi, 15125 (Greece); Georgopoulou, Elena [National Observatory of Athens, Thisio, Athens, 11810 (Greece)

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the

  20. Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery

    International Nuclear Information System (INIS)

    Long, Rui; Li, Baode; Liu, Zhichun; Liu, Wei

    2015-01-01

    An optimization analysis of a continuous TREC (thermally regenerative electrochemical cycle) was conducted with maximum power output and exergy efficiency as the objective functions simultaneously. For comparison, the power output, exergy efficiency, and thermal efficiency under the corresponding single-objective optimization schematics were also calculated. Under different optimization methods it was observed that the power output and the thermal efficiency increase with increasing inlet temperature of the heat source, whereas the exergy efficiency increases with increasing inlet temperature, reaches a maximum value, and then decreases. Results revealed that the optimal power output under the multi-objective optimization turned out to be slightly less than that obtained under the single-objective optimization for power output. However, the exergy and thermal efficiencies were much greater. Furthermore, the thermal exergy and exergy efficiency by single-objective optimization for energy efficiency shows no dominant advantage than that obtained under multi-objective optimization, comparing with the increase amplitude of the power output. This suggests that the multi-objective optimization could coordinate well both the power output and the exergy efficiency of the TREC system, and may serve as a more promising guide for operating and designing TREC systems. - Highlights: • An optimal analysis of a continuous TREC is conducted based on multi-objective optimization. • Performance under corresponding single-objective optimizations has also been calculated and compared. • Power under multi-objective optimization is slightly less than the maximum power. • Exergy and thermal efficiencies are much larger than that under the single-objective optimization.

  1. Study on the evolutionary optimisation of the topology of network control systems

    Science.gov (United States)

    Zhou, Zude; Chen, Benyuan; Wang, Hong; Fan, Zhun

    2010-08-01

    Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology optimisation theory and methods of the network control system based on switched Ethernet in an industrial context. Factors that affect the real-time performance of the industrial control network are presented in detail, and optimisation criteria with their internal relations are analysed. After the definition of performance parameters, the normalised indices for the evaluation of the topology optimisation are proposed. The topology optimisation problem is formulated as a multi-objective optimisation problem and the evolutionary algorithm is applied to solve it. Special communication characteristics of the industrial control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative relation method and the objective function combination method, for reducing the computational cost of the algorithm, are given. Simulation tests show that the performance of the proposed algorithm is preferable and superior compared to other algorithms. The final solution greatly improves the following indices: traffic localisation, traffic balance and utilisation rate balance of switches. In addition, a new performance index with its estimation process is proposed.

  2. Recent advances in evolutionary multi-objective optimization

    CERN Document Server

    Datta, Rituparna; Gupta, Abhishek

    2017-01-01

    This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include:< optimization in dynamic environments, multi-objective bilevel programming, handling high ...

  3. An Evolutionary Approach for Bilevel Multi-objective Problems

    Science.gov (United States)

    Deb, Kalyanmoy; Sinha, Ankur

    Evolutionary multi-objective optimization (EMO) algorithms have been extensively applied to find multiple near Pareto-optimal solutions over the past 15 years or so. However, EMO algorithms for solving bilevel multi-objective optimization problems have not received adequate attention yet. These problems appear in many applications in practice and involve two levels, each comprising of multiple conflicting objectives. These problems require every feasible upper-level solution to satisfy optimality of a lower-level optimization problem, thereby making them difficult to solve. In this paper, we discuss a recently proposed bilevel EMO procedure and show its working principle on a couple of test problems and on a business decision-making problem. This paper should motivate other EMO researchers to engage more into this important optimization task of practical importance.

  4. A Bayesian alternative for multi-objective ecohydrological model specification

    Science.gov (United States)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior

  5. Multi-objective Search-based Mobile Testing

    OpenAIRE

    Mao, K.

    2017-01-01

    Despite the tremendous popularity of mobile applications, mobile testing still relies heavily on manual testing. This thesis presents mobile test automation approaches based on multi-objective search. We introduce three approaches: Sapienz (for native Android app testing), Octopuz (for hybrid/web JavaScript app testing) and Polariz (for using crowdsourcing to support search-based mobile testing). These three approaches represent the primary scientific and technical contributions of the thesis...

  6. Analyses of guide update approaches for vector evaluated particle swarm optimisation on dynamic multi-objective optimisation problems

    CSIR Research Space (South Africa)

    Helbig, M

    2012-06-01

    Full Text Available not indicate whether Pareto-dominance is used to update guides. Therefore, it is assumed that the original version of VEPSO updates the local and global guides according to the particles? fitness with regards to only one objective, i.e. the objective... that were used to study the influence of guide update approaches on the performance of DVEPSO. Five benchmark functions were used of various DMOO Types, namely DIMP2 [10], FDA3Camara [11], dMOP2 [12], dMOP3 [12] and HE2 [13]. Various types of DMOOPs...

  7. Valuing hydrological alteration in Multi-Objective reservoir management

    Science.gov (United States)

    Bizzi, S.; Pianosi, F.; Soncini-Sessa, R.

    2012-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation for agricultural production, and flood risk mitigation. Advances in multi-objectives (MO) optimization techniques and ever growing computing power make it possible to design reservoir operating policies that represent Pareto-optimal tradeoffs between the multiple interests analysed. These progresses if on one hand are likely to enhance performances of commonly targeted objectives (such as hydropower production or water supply), on the other risk to strongly penalize all the interests not directly (i.e. mathematically) optimized within the MO algorithm. Alteration of hydrological regime, although is a well established cause of ecological degradation and its evaluation and rehabilitation are commonly required by recent legislation (as the Water Framework Directive in Europe), is rarely embedded as an objective in MO planning of optimal releases from reservoirs. Moreover, even when it is explicitly considered, the criteria adopted for its evaluation are doubted and not commonly trusted, undermining the possibility of real implementation of environmentally friendly policies. The main challenges in defining and assessing hydrological alterations are: how to define a reference state (referencing); how to define criteria upon which to build mathematical indicators of alteration (measuring); and finally how to aggregate the indicators in a single evaluation index that can be embedded in a MO optimization problem (valuing). This paper aims to address these issues by: i) discussing benefits and constrains of different approaches to referencing, measuring and valuing hydrological alteration; ii) testing two alternative indices of hydrological alteration in the context of MO problems, one based on the established framework of Indices of Hydrological Alteration (IHA, Richter et al., 1996), and a novel satisfying the

  8. Multi-objective evacuation routing optimization for toxic cloud releases

    International Nuclear Information System (INIS)

    Gai, Wen-mei; Deng, Yun-feng; Jiang, Zhong-an; Li, Jing; Du, Yan

    2017-01-01

    This paper develops a model for assessing the risks associated with the evacuation process in response to potential chemical accidents, based on which a multi-objective evacuation routing model for toxic cloud releases is proposed taking into account that the travel speed on each arc will be affected by disaster extension. The objectives of the evacuation routing model are to minimize travel time and individual evacuation risk along a path respectively. Two heuristic algorithms are proposed to solve the multi-objective evacuation routing model. Simulation results show the effectiveness and feasibility of the model and algorithms presented in this paper. And, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency route selection in other cases (fires, nuclear accidents). - Highlights: • A model for assessing and visualizing the risks is developed. • A multi-objective evacuation routing model is proposed for toxic cloud releases. • A modified Dijkstra algorithm is designed to obtain an solution of the model. • Two heuristic algorithms have been developed as the optimization tool.

  9. Intersection signal control multi-objective optimization based on genetic algorithm

    OpenAIRE

    Zhanhong Zhou; Ming Cai

    2014-01-01

    A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at ...

  10. A Hybrid Method for the Modelling and Optimisation of Constrained Search Problems

    Directory of Open Access Journals (Sweden)

    Sitek Pawel

    2014-08-01

    Full Text Available The paper presents a concept and the outline of the implementation of a hybrid approach to modelling and solving constrained problems. Two environments of mathematical programming (in particular, integer programming and declarative programming (in particular, constraint logic programming were integrated. The strengths of integer programming and constraint logic programming, in which constraints are treated in a different way and different methods are implemented, were combined to use the strengths of both. The hybrid method is not worse than either of its components used independently. The proposed approach is particularly important for the decision models with an objective function and many discrete decision variables added up in multiple constraints. To validate the proposed approach, two illustrative examples are presented and solved. The first example is the authors’ original model of cost optimisation in the supply chain with multimodal transportation. The second one is the two-echelon variant of the well-known capacitated vehicle routing problem.

  11. Computer Based Optimisation Rutines

    DEFF Research Database (Denmark)

    Dragsted, Birgitte; Olsen, Flemmming Ove

    1996-01-01

    In this paper the need for optimisation methods for the laser cutting process has been identified as three different situations. Demands on the optimisation methods for these situations are presented, and one method for each situation is suggested. The adaptation and implementation of the methods...

  12. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Pindoriya, N.M.; Singh, S.N. [Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Singh, S.K. [Indian Institute of Management Lucknow, Lucknow 226013 (India)

    2010-10-15

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  13. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    International Nuclear Information System (INIS)

    Pindoriya, N.M.; Singh, S.N.; Singh, S.K.

    2010-01-01

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  14. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

    Energy Technology Data Exchange (ETDEWEB)

    Kudryashov, Nikolay A.; Shilnikov, Kirill E. [National Research Nuclear University MEPhI, Department of Applied Mathematics, Moscow (Russian Federation)

    2016-06-08

    Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumor tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.

  15. Optimisation for offshore wind farm cable connection layout using adaptive particle swarm optimisation minimum spanning tree method

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Zhe

    2016-01-01

    operational requirement and this constraint should be considered during the MST formulation process. Hence, traditional MST algorithm cannot ensure a minimal cable investment layout. In this paper, a new method to optimize the offshore wind farm cable connection layout is presented. The algorithm...... with the optimized cable connection layout. The proposed method is compared with the MST and Dynamic MST (DMST) methods and simulation results show the effectiveness of the proposed method....

  16. Structural optimisation of a high speed Organic Rankine Cycle generator using a genetic algorithm and a finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Palko, S. [Machines Division, ABB industry Oy, Helsinki (Finland)

    1997-12-31

    The aim in this work is to design a 250 kW high speed asynchronous generator using a genetic algorithm and a finite element method for Organic Rankine Cycle. The characteristics of the induction motors are evaluated using two-dimensional finite element method (FEM) The movement of the rotor and the non-linearity of the iron is included. In numerical field problems it is possible to find several local extreme for an optimisation problem, and therefore the algorithm has to be capable of determining relevant changes, and to avoid trapping to a local minimum. In this work the electromagnetic (EM) losses at the rated point are minimised. The optimisation includes the air gap region. Parallel computing is applied to speed up optimisation. (orig.) 2 refs.

  17. A hybrid multi-objective cultural algorithm for short-term environmental/economic hydrothermal scheduling

    International Nuclear Information System (INIS)

    Lu Youlin; Zhou Jianzhong; Qin Hui; Wang Ying; Zhang Yongchuan

    2011-01-01

    Research highlights: → Multi-objective optimization model of short-term environmental/economic hydrothermal scheduling. → A hybrid multi-objective cultural algorithm (HMOCA) is presented. → New heuristic constraint handling methods are proposed. → Better quality solutions by reducing fuel cost and emission effects simultaneously are obtained. -- Abstract: The short-term environmental/economic hydrothermal scheduling (SEEHS) with the consideration of multiple objectives is a complicated non-linear constrained optimization problem with non-smooth and non-convex characteristics. In this paper, a multi-objective optimization model of SEEHS is proposed to consider the minimal of fuel cost and emission effects synthetically, and the transmission loss, the water transport delays between connected reservoirs as well as the valve-point effects of thermal plants are taken into consideration to formulate the problem precisely. Meanwhile, a hybrid multi-objective cultural algorithm (HMOCA) is presented to deal with SEEHS problem by optimizing both two objectives simultaneously. The proposed method integrated differential evolution (DE) algorithm into the framework of cultural algorithm model to implement the evolution of population space, and two knowledge structures in belief space are redefined according to the characteristics of DE and SEEHS problem to avoid premature convergence effectively. Moreover, in order to deal with the complicated constraints effectively, new heuristic constraint handling methods without any penalty factor settings are proposed in this paper. The feasibility and effectiveness of the proposed HMOCA method are demonstrated by two case studies of a hydrothermal power system. The simulation results reveal that, compared with other methods established recently, HMOCA can get better quality solutions by reducing fuel cost and emission effects simultaneously.

  18. A multi-objective particle swarm optimization for production-distribution planning in supply chain network

    Directory of Open Access Journals (Sweden)

    Alireza Pourrousta

    2012-04-01

    Full Text Available Integrated supply chain includes different components of order, production and distribution and it plays an important role on reducing the cost of manufacturing system. In this paper, an integrated supply chain in a form of multi-objective decision-making problem is presented. The proposed model of this paper considers different parameters with uncertainty using trapezoid numbers. We first implement a ranking method to covert the fuzzy model into a crisp one and using multi-objective particle swarm optimization, we solve the resulted model. The results are compared with the performance of NSGA-II for some randomly generated problems and the preliminary results indicate that the proposed model of the paper performs better than the alternative method.

  19. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Science.gov (United States)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  20. Computing the Pareto-Nash equilibrium set in finite multi-objective mixed-strategy games

    Directory of Open Access Journals (Sweden)

    Victoria Lozan

    2013-10-01

    Full Text Available The Pareto-Nash equilibrium set (PNES is described as intersection of graphs of efficient response mappings. The problem of PNES computing in finite multi-objective mixed-strategy games (Pareto-Nash games is considered. A method for PNES computing is studied. Mathematics Subject Classification 2010: 91A05, 91A06, 91A10, 91A43, 91A44.

  1. Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory

    OpenAIRE

    M. Amiri; M. Zandieh; A. Alimi

    2012-01-01

    Mutual fund is one of the most popular techniques for many people to invest their funds where a professional fund manager invests people's funds based on some special predefined objectives; therefore, performance evaluation of mutual funds is an important problem. This paper proposes a multi-objective portfolio optimization to offer asset allocation. The proposed model clusters mutual funds with two methods based on six characteristics including rate of return, variance, semivariance, turnove...

  2. Application of Three Existing Stope Boundary Optimisation Methods in an Operating Underground Mine

    Science.gov (United States)

    Erdogan, Gamze; Yavuz, Mahmut

    2017-12-01

    The underground mine planning and design optimisation process have received little attention because of complexity and variability of problems in underground mines. Although a number of optimisation studies and software tools are available and some of them, in special, have been implemented effectively to determine the ultimate-pit limits in an open pit mine, there is still a lack of studies for optimisation of ultimate stope boundaries in underground mines. The proposed approaches for this purpose aim at maximizing the economic profit by selecting the best possible layout under operational, technical and physical constraints. In this paper, the existing three heuristic techniques including Floating Stope Algorithm, Maximum Value Algorithm and Mineable Shape Optimiser (MSO) are examined for optimisation of stope layout in a case study. Each technique is assessed in terms of applicability, algorithm capabilities and limitations considering the underground mine planning challenges. Finally, the results are evaluated and compared.

  3. Short-term economic environmental hydrothermal scheduling using improved multi-objective gravitational search algorithm

    International Nuclear Information System (INIS)

    Li, Chunlong; Zhou, Jianzhong; Lu, Peng; Wang, Chao

    2015-01-01

    Highlights: • Improved multi-objective gravitational search algorithm. • An elite archive set is proposed to guide evolutionary process. • Neighborhood searching mechanism to improve local search ability. • Adopt chaotic mutation for avoiding premature convergence. • Propose feasible space method to handle hydro plant constrains. - Abstract: With growing concerns about energy and environment, short-term economic environmental hydrothermal scheduling (SEEHS) plays a more and more important role in power system. Because of the two objectives and various constraints, SEEHS is a complex multi-objective optimization problem (MOOP). In order to solve the problem, we propose an improved multi-objective gravitational search algorithm (IMOGSA) in this paper. In IMOGSA, the mass of the agent is redefined by multiple objectives to make it suitable for MOOP. An elite archive set is proposed to keep Pareto optimal solutions and guide evolutionary process. For balancing exploration and exploitation, a neighborhood searching mechanism is presented to cooperate with chaotic mutation. Moreover, a novel method based on feasible space is proposed to handle hydro plant constraints during SEEHS, and a violation adjustment method is adopted to handle power balance constraint. For verifying its effectiveness, the proposed IMOGSA is applied to a hydrothermal system in two different case studies. The simulation results show that IMOGSA has a competitive performance in SEEHS when compared with other established algorithms

  4. Multi-Objective Optimization of the Hedging Model for reservoir Operation Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    sadegh sadeghitabas

    2015-12-01

    Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.

  5. Multi-objective group scheduling optimization integrated with preventive maintenance

    Science.gov (United States)

    Liao, Wenzhu; Zhang, Xiufang; Jiang, Min

    2017-11-01

    This article proposes a single-machine-based integration model to meet the requirements of production scheduling and preventive maintenance in group production. To describe the production for identical/similar and different jobs, this integrated model considers the learning and forgetting effects. Based on machine degradation, the deterioration effect is also considered. Moreover, perfect maintenance and minimal repair are adopted in this integrated model. The multi-objective of minimizing total completion time and maintenance cost is taken to meet the dual requirements of delivery date and cost. Finally, a genetic algorithm is developed to solve this optimization model, and the computation results demonstrate that this integrated model is effective and reliable.

  6. Multi-objective optimization in quantum parameter estimation

    Science.gov (United States)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  7. Multi-objective optimization of GENIE Earth system models.

    Science.gov (United States)

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  8. Multi objective optimization of line pack management of gas pipeline system

    International Nuclear Information System (INIS)

    Chebouba, A

    2015-01-01

    This paper addresses the Line Pack Management of the ''GZ1 Hassi R'mell-Arzew'' gas pipeline. For a gas pipeline system, the decision-making on the gas line pack management scenarios usually involves a delicate balance between minimization of the fuel consumption in the compression stations and maximizing gas line pack. In order to select an acceptable Line Pack Management of Gas Pipeline scenario from these two angles for ''GZ1 Hassi R'mell- Arzew'' gas pipeline, the idea of multi-objective decision-making has been introduced. The first step in developing this approach is the derivation of a numerical method to analyze the flow through the pipeline under transient isothermal conditions. In this paper, the solver NSGA-II of the modeFRONTIER, coupled with a matlab program was used for solving the multi-objective problem

  9. Grey Relational Analyses for Multi-Objective Optimization of Turning S45C Carbon Steel

    International Nuclear Information System (INIS)

    Shah, A.H.A.; Azmi, A.I.; Khalil, A.N.M.

    2016-01-01

    The optimization of performance characteristics in turning process can be achieved through selection of proper machining parameters. It is well known that many researchers have successfully reported the optimization of single performance characteristic. Nevertheless, the multi-objective optimization can be difficult and challenging to be studied due to its complexity in analysis. This is because an improvement of one performance characteristic may lead to degradation of other performance characteristic. As a result, the study of multi-objective optimization in CNC turning of S45C carbon steel has been attempted in this paper through Taguchi and Grey Relational Analysis (GRA) method. Through this methodology, the multiple performance characteristics, namely; surface roughness, material removal rate (MRR), tool wear, and power consumption; can be optimized simultaneously. It appears from the experimental results that the multiple performance characteristics in CNC turning was achieved and improved through the methodology employed. (paper)

  10. Multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge

    Directory of Open Access Journals (Sweden)

    Z. Du

    2016-05-01

    Full Text Available Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element analysis (FEA and experiment tests are performed to verify the modeling method. Finally, a multi-objective optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.

  11. "Slit Mask Design for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph"

    Science.gov (United States)

    Williams, Darius; Marshall, Jennifer L.; Schmidt, Luke M.; Prochaska, Travis; DePoy, Darren L.

    2018-01-01

    The Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS) is currently in development for the Giant Magellan Telescope (GMT). GMACS will employ slit masks with a usable diameter of approximately 0.450 m for the purpose of multi-slit spectroscopy. Of significant importance are the design constraints and parameters of the multi-object slit masks themselves as well as the means for mapping astronomical targets to physical mask locations. Analytical methods are utilized to quantify deformation effects on a potential slit mask due to thermal expansion and vignetting of target light cones. Finite element analysis (FEA) is utilized to simulate mask flexure in changing gravity vectors. The alpha version of the mask creation program for GMACS, GMACS Mask Simulator (GMS), a derivative of the OSMOS Mask Simulator (OMS), is introduced.

  12. Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Amlashi, Emad Hadaddi; Amidpour, Majid

    2009-01-01

    Thermodynamic and thermoeconomic optimization of a vertical ground source heat pump system has been studied. A model based on the energy and exergy analysis is presented here. An economic model of the system is developed according to the Total Revenue Requirement (TRR) method. The objective functions based on the thermodynamic and thermoeconomic analysis are developed. The proposed vertical ground source heat pump system including eight decision variables is considered for optimization. An artificial intelligence technique known as evolutionary algorithm (EA) has been utilized as an optimization method. This approach has been applied to minimize either the total levelized cost of the system product or the exergy destruction of the system. Three levels of optimization including thermodynamic single objective, thermoeconomic single objective and multi-objective optimizations are performed. In Multi-objective optimization, both thermodynamic and thermoeconomic objectives are considered, simultaneously. In the case of multi-objective optimization, an example of decision-making process for selection of the final solution from available optimal points on Pareto frontier is presented. The results obtained using the various optimization approaches are compared and discussed. Further, the sensitivity of optimized systems to the interest rate, to the annual number of operating hours and to the electricity cost are studied in detail.

  13. Multi-objective optimal strategy for generating and bidding in the power market

    International Nuclear Information System (INIS)

    Peng Chunhua; Sun Huijuan; Guo Jianfeng; Liu Gang

    2012-01-01

    Highlights: ► A new benefit/risk/emission comprehensive generation optimization model is established. ► A hybrid multi-objective differential evolution optimization algorithm is designed. ► Fuzzy set theory and entropy weighting method are employed to extract the general best solution. ► The proposed approach of generating and bidding is efficient for maximizing profit and minimizing both risk and emissions. - Abstract: Based on the coordinated interaction between units output and electricity market prices, the benefit/risk/emission comprehensive generation optimization model with objectives of maximal profit and minimal bidding risk and emissions is established. A hybrid multi-objective differential evolution optimization algorithm, which successfully integrates Pareto non-dominated sorting with differential evolution algorithm and improves individual crowding distance mechanism and mutation strategy to avoid premature and unevenly search, is designed to achieve Pareto optimal set of this model. Moreover, fuzzy set theory and entropy weighting method are employed to extract one of the Pareto optimal solutions as the general best solution. Several optimization runs have been carried out on different cases of generation bidding and scheduling. The results confirm the potential and effectiveness of the proposed approach in solving the multi-objective optimization problem of generation bidding and scheduling. In addition, the comparison with the classical optimization algorithms demonstrates the superiorities of the proposed algorithm such as integrality of Pareto front, well-distributed Pareto-optimal solutions, high search speed.

  14. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  16. Multi-objective genetic optimization of linear construction projects

    Directory of Open Access Journals (Sweden)

    Fatma A. Agrama

    2012-08-01

    Full Text Available In the real world, the majority cases of optimization problems, met by engineers, are composed of several conflicting objectives. This paper presents an approach for a multi-objective optimization model for scheduling linear construction projects. Linear construction projects have many identical units wherein activities repeat from one unit to another. Highway, pipeline, and tunnels are good examples that exhibit repetitive characteristics. These projects represent a large portion of the construction industry. The present model enables construction planners to generate optimal/near-optimal construction plans that minimize project duration, total work interruptions, and total number of crews. Each of these plans identifies, from a set of feasible alternatives, optimal crew synchronization for each activity and activity interruptions at each unit. This model satisfies the following aspects: (1 it is based on the line of balance technique; (2 it considers non-serial typical activities networks with finish–start relationship and both lag or overlap time between activities is allowed; (3 it utilizes a multi-objective genetic algorithms approach; (4 it is developed as a spreadsheet template that is easy to use. Details of the model with visual charts are presented. An application example is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing the scheduling of linear construction projects.

  17. PARETO OPTIMAL SOLUTIONS FOR MULTI-OBJECTIVE GENERALIZED ASSIGNMENT PROBLEM

    Directory of Open Access Journals (Sweden)

    S. Prakash

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The Multi-Objective Generalized Assignment Problem (MGAP with two objectives, where one objective is linear and the other one is non-linear, has been considered, with the constraints that a job is assigned to only one worker – though he may be assigned more than one job, depending upon the time available to him. An algorithm is proposed to find the set of Pareto optimal solutions of the problem, determining assignments of jobs to workers with two objectives without setting priorities for them. The two objectives are to minimise the total cost of the assignment and to reduce the time taken to complete all the jobs.

    AFRIKAANSE OPSOMMING: ‘n Multi-doelwit veralgemeende toekenningsprobleem (“multi-objective generalised assignment problem – MGAP” met twee doelwitte, waar die een lineêr en die ander nielineêr is nie, word bestudeer, met die randvoorwaarde dat ‘n taak slegs toegedeel word aan een werker – alhoewel meer as een taak aan hom toegedeel kan word sou die tyd beskikbaar wees. ‘n Algoritme word voorgestel om die stel Pareto-optimale oplossings te vind wat die taaktoedelings aan werkers onderhewig aan die twee doelwitte doen sonder dat prioriteite toegeken word. Die twee doelwitte is om die totale koste van die opdrag te minimiseer en om die tyd te verminder om al die take te voltooi.

  18. A multi-objective approach to solid waste management.

    Science.gov (United States)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.

  19. A multi-objective approach to solid waste management

    International Nuclear Information System (INIS)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).

  20. Effective multi-objective optimization of Stirling engine systems

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2016-01-01

    Highlights: • Multi-objective optimization of three recent Stirling engine models. • Use of efficient crossover and mutation operators for real coded Genetic Algorithm. • Demonstrated supremacy of the strategy over the conventionally used algorithm. • Improvements of up to 29% in comparison to literature results. - Abstract: In this article we demonstrate the supremacy of the Non-dominated Sorting Genetic Algorithm-II with Simulated Binary Crossover and Polynomial Mutation operators for the multi-objective optimization of Stirling engine systems by providing three examples, viz., (i) finite time thermodynamic model, (ii) Stirling engine thermal model with associated irreversibility and (iii) polytropic finite speed based thermodynamics. The finite time thermodynamic model involves seven decision variables and consists of three objectives: output power, thermal efficiency and rate of entropy generation. In comparison to literature, it was observed that the used strategy provides a better Pareto front and leads to improvements of up to 29%. The performance is also evaluated on a Stirling engine thermal model which considers the associated irreversibility of the cycle and consists of three objectives involving eleven decision variables. The supremacy of the suggested strategy is also demonstrated on the experimentally validated polytropic finite speed thermodynamics based Stirling engine model for optimization involving two objectives and ten decision variables.

  1. A scalable coevolutionary multi-objective particle swarm optimizer

    Directory of Open Access Journals (Sweden)

    Xiangwei Zheng

    2010-11-01

    Full Text Available Multi-Objective Particle Swarm Optimizers (MOPSOs are easily trapped in local optima, cost more function evaluations and suffer from the curse of dimensionality. A scalable cooperative coevolution and ?-dominance based MOPSO (CEPSO is proposed to address these issues. In CEPSO, Multi-objective Optimization Problems (MOPs are decomposed in terms of their decision variables and are optimized by cooperative coevolutionary subswarms, and a uniform distribution mutation operator is adopted to avoid premature convergence. All subswarms share an external archive based on ?-dominance, which is also used as a leader set. Collaborators are selected from the archive and used to construct context vectors in order to evaluate particles in a subswarm. CEPSO is tested on several classical MOP benchmark functions and experimental results show that CEPSO can readily escape from local optima and optimize both low and high dimensional problems, but the number of function evaluations only increases linearly with respect to the number of decision variables. Therefore, CEPSO is competitive in solving various MOPs.

  2. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol.

    Science.gov (United States)

    Xu, Gongxian; Liu, Ying; Gao, Qunwang

    2016-02-10

    This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies

    International Nuclear Information System (INIS)

    Safari, Jalal

    2012-01-01

    This paper proposes a variant of the Non-dominated Sorting Genetic Algorithm (NSGA-II) to solve a novel mathematical model for multi-objective redundancy allocation problems (MORAP). Most researchers about redundancy allocation problem (RAP) have focused on single objective optimization, while there has been some limited research which addresses multi-objective optimization. Also all mathematical multi-objective models of general RAP assume that the type of redundancy strategy for each subsystem is predetermined and known a priori. In general, active redundancy has traditionally received greater attention; however, in practice both active and cold-standby redundancies may be used within a particular system design. The choice of redundancy strategy then becomes an additional decision variable. Thus, the proposed model and solution method are to select the best redundancy strategy, type of components, and levels of redundancy for each subsystem that maximizes the system reliability and minimize total system cost under system-level constraints. This problem belongs to the NP-hard class. This paper presents a second-generation Multiple-Objective Evolutionary Algorithm (MOEA), named NSGA-II to find the best solution for the given problem. The proposed algorithm demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker (DM) with a complete picture of the optimal solution space. After finding the Pareto front, a procedure is used to select the best solution from the Pareto front. Finally, the advantages of the presented multi-objective model and of the proposed algorithm are illustrated by solving test problems taken from the literature and the robustness of the proposed NSGA-II is discussed.

  4. Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm.

    Science.gov (United States)

    Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li

    2017-03-01

    The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.

  5. Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties

    International Nuclear Information System (INIS)

    Wang, Bo; Wang, Shuming; Zhou, Xianzhong; Watada, Junzo

    2016-01-01

    Recent years have witnessed the ever increasing renewable penetration in power generation systems, which entails modern unit commitment problems with modelling and computation burdens. This study aims to simulate the impacts of manifold uncertainties on system operation with emission concerns. First, probability theory and fuzzy set theory are applied to jointly represent the uncertainties such as wind generation, load fluctuation and unit outage that interleaved in unit commitment problems. Second, a Value-at-Risk-based multi-objective approach is developed as a bridge of existing stochastic and robust unit commitment optimizations, which not only captures the inherent conflict between operation cost and supply reliability, but also provides easy-to-adjust robustness against worst-case scenarios. Third, a multi-objective algorithm that integrates fuzzy simulation and particle swarm optimization is developed to achieve approximate Pareto-optimal solutions. The research effectiveness is exemplified by two case studies: The comparison between test systems with and without generation uncertainty demonstrates that this study is practicable and can suggest operational insights of generation mix systems. The sensitivity analysis on Value-at-Risk proves that our method can achieve adequate tradeoff between performance optimality and robustness, thus help system operators in making informed decisions. Finally, the model and algorithm comparisons also justify the superiority of this research. - Highlights: • Probability theory and fuzzy set theory are used to describe different uncertainties. • A Value-at-Risk-based multi-objective unit commitment model is proposed. • An improved multi-objective particle swarm optimization algorithm is developed. • The model achieves adequate trade-off between performance optimality and robustness. • The algorithm can obtain convergent and diversified Pareto fronts.

  6. Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Duan, Chen; Wang, Xinggang; Shu, Shuiming; Jing, Changwei; Chang, Huawei

    2014-01-01

    Highlights: • An improved thermodynamic model taking into account irreversibility parameter was developed. • A multi-objective optimization method for designing Stirling engine was investigated. • Multi-objective particle swarm optimization algorithm was adopted in the area of Stirling engine for the first time. - Abstract: In the recent years, the interest in Stirling engine has remarkably increased due to its ability to use any heat source from outside including solar energy, fossil fuels and biomass. A large number of studies have been done on Stirling cycle analysis. In the present study, a mathematical model based on thermodynamic analysis of Stirling engine considering regenerative losses and internal irreversibilities has been developed. Power output, thermal efficiency and the cycle irreversibility parameter of Stirling engine are optimized simultaneously using Particle Swarm Optimization (PSO) algorithm, which is more effective than traditional genetic algorithms. In this optimization problem, some important parameters of Stirling engine are considered as decision variables, such as temperatures of the working fluid both in the high temperature isothermal process and in the low temperature isothermal process, dead volume ratios of each heat exchanger, volumes of each working spaces, effectiveness of the regenerator, and the system charge pressure. The Pareto optimal frontier is obtained and the final design solution has been selected by Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP). Results show that the proposed multi-objective optimization approach can significantly outperform traditional single objective approaches

  7. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Science.gov (United States)

    Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.

  8. Culture belief based multi-objective hybrid differential evolutionary algorithm in short term hydrothermal scheduling

    International Nuclear Information System (INIS)

    Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang

    2013-01-01

    Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.

  9. Multi-objective decision-making model based on CBM for an aircraft fleet

    Science.gov (United States)

    Luo, Bin; Lin, Lin

    2018-04-01

    Modern production management patterns, in which multi-unit (e.g., a fleet of aircrafts) are managed in a holistic manner, have brought new challenges for multi-unit maintenance decision making. To schedule a good maintenance plan, not only does the individual machine maintenance have to be considered, but also the maintenance of the other individuals have to be taken into account. Since most condition-based maintenance researches for aircraft focused on solely reducing maintenance cost or maximizing the availability of single aircraft, as well as considering that seldom researches concentrated on both the two objectives: minimizing cost and maximizing the availability of a fleet (total number of available aircraft in fleet), a multi-objective decision-making model based on condition-based maintenance concentrated both on the above two objectives is established. Furthermore, in consideration of the decision maker may prefer providing the final optimal result in the form of discrete intervals instead of a set of points (non-dominated solutions) in real decision-making problem, a novel multi-objective optimization method based on support vector regression is proposed to solve the above multi-objective decision-making model. Finally, a case study regarding a fleet is conducted, with the results proving that the approach efficiently generates outcomes that meet the schedule requirements.

  10. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn

    2009-01-01

    Multi-objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the exergetic, economic and environmental aspects have been considered, simultaneously. The thermodynamic modeling has been implemented comprehensively while economic analysis conducted in accordance with the total revenue requirement (TRR) method. The results for the single objective thermoeconomic optimization have been compared with the previous studies in optimization of CGAM problem. In multi-objective optimization of the CGAM problem, the three objective functions including the exergetic efficiency, total levelized cost rate of the system product and the cost rate of environmental impact have been considered. The environmental impact objective function has been defined and expressed in cost terms. This objective has been integrated with the thermoeconomic objective to form a new unique objective function known as a thermoenvironomic objective function. The thermoenvironomic objective has been minimized while the exergetic objective has been maximized. One of the most suitable optimization techniques developed using a particular class of search algorithms known as multi-objective evolutionary algorithms (MOEAs) has been considered here. This approach which is developed based on the genetic algorithm has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of decision-making has been presented and a final optimal solution has been introduced. The sensitivity of the solutions to the interest rate and the fuel cost has been studied

  11. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    Science.gov (United States)

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  12. Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification.

    Science.gov (United States)

    Zhang, Yong; Gong, Dun-Wei; Cheng, Jian

    2017-01-01

    Feature selection is an important data-preprocessing technique in classification problems such as bioinformatics and signal processing. Generally, there are some situations where a user is interested in not only maximizing the classification performance but also minimizing the cost that may be associated with features. This kind of problem is called cost-based feature selection. However, most existing feature selection approaches treat this task as a single-objective optimization problem. This paper presents the first study of multi-objective particle swarm optimization (PSO) for cost-based feature selection problems. The task of this paper is to generate a Pareto front of nondominated solutions, that is, feature subsets, to meet different requirements of decision-makers in real-world applications. In order to enhance the search capability of the proposed algorithm, a probability-based encoding technology and an effective hybrid operator, together with the ideas of the crowding distance, the external archive, and the Pareto domination relationship, are applied to PSO. The proposed PSO-based multi-objective feature selection algorithm is compared with several multi-objective feature selection algorithms on five benchmark datasets. Experimental results show that the proposed algorithm can automatically evolve a set of nondominated solutions, and it is a highly competitive feature selection method for solving cost-based feature selection problems.

  13. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Directory of Open Access Journals (Sweden)

    Marko Budinich

    Full Text Available Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA and multi-objective flux variability analysis (MO-FVA. Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity that take place at the ecosystem scale.

  14. Multi-objective demand side scheduling considering the operational safety of appliances

    International Nuclear Information System (INIS)

    Du, Y.F.; Jiang, L.; Li, Y.Z.; Counsell, J.; Smith, J.S.

    2016-01-01

    Highlights: • Operational safety of appliances is introduced in multi-objective scheduling. • Relationships between operational safety and other objectives are investigated. • Adopted Pareto approach is compared with Weigh and Constraint approaches. • Decision making of Pareto approach is proposed for final appliances’ scheduling. - Abstract: The safe operation of appliances is of great concern to users. The safety risk increases when the appliances are in operation during periods when users are not at home or when they are asleep. In this paper, multi-objective demand side scheduling is investigated with consideration to the appliances’ operational safety together with the electricity cost and the operational delay. The formulation of appliances’ operational safety is proposed based on users’ at-home status and awake status. Then the relationships between the operational safety and the other two objectives are investigated through the approach of finding the Pareto-optimal front. Moreover, this approach is compared with the Weigh and Constraint approaches. As the Pareto-optimal front consists of a set of optimal solutions, this paper proposes a method to make the final scheduling decision based on the relationships among the multiple objectives. Simulation results demonstrate that the operational safety is improved with the sacrifice of the electricity cost and the operational delay, and that the approach of finding the Pareto-optimal front is effective in presenting comprehensive optimal solutions of the multi-objective demand side scheduling.

  15. Multi-objective compared to single-objective optimization with application to model validation and uncertainty quantification

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Riegert, R.; Krosche, M.; Stekolschikov, K. [Scandpower Petroleum Technology GmbH, Hamburg (Germany); Fahimuddin, A. [Technische Univ. Braunschweig (Germany)

    2007-09-13

    History Matching in Reservoir Simulation, well location and production optimization etc. is generally a multi-objective optimization problem. The problem statement of history matching for a realistic field case includes many field and well measurements in time and type, e.g. pressure measurements, fluid rates, events such as water and gas break-throughs, etc. Uncertainty parameters modified as part of the history matching process have varying impact on the improvement of the match criteria. Competing match criteria often reduce the likelihood of finding an acceptable history match. It is an engineering challenge in manual history matching processes to identify competing objectives and to implement the changes required in the simulation model. In production optimization or scenario optimization the focus on one key optimization criterion such as NPV limits the identification of alternatives and potential opportunities, since multiple objectives are summarized in a predefined global objective formulation. Previous works primarily focus on a specific optimization method. Few works actually concentrate on the objective formulation and multi-objective optimization schemes have not yet been applied to reservoir simulations. This paper presents a multi-objective optimization approach applicable to reservoir simulation. It addresses the problem of multi-objective criteria in a history matching study and presents analysis techniques identifying competing match criteria. A Pareto-Optimizer is discussed and the implementation of that multi-objective optimization scheme is applied to a case study. Results are compared to a single-objective optimization method. (orig.)

  16. Optimisation Of Process Parameters In High Energy Mixing As A Method Of Cohesive Powder Flowability Improvement

    Directory of Open Access Journals (Sweden)

    Leś Karolina

    2015-12-01

    Full Text Available Flowability of fine, highly cohesive calcium carbonate powder was improved using high energy mixing (dry coating method consisting in coating of CaCO3 particles with a small amount of Aerosil nanoparticles in a planetary ball mill. As measures of flowability the angle of repose and compressibility index were used. As process variables the mixing speed, mixing time, and the amount of Aerosil and amount of isopropanol were chosen. To obtain optimal values of the process variables, a Response Surface Methodology (RSM based on Central Composite Rotatable Design (CCRD was applied. To match the RSM requirements it was necessary to perform a total of 31 experimental tests needed to complete mathematical model equations. The equations that are second-order response functions representing the angle of repose and compressibility index were expressed as functions of all the process variables. Predicted values of the responses were found to be in a good agreement with experimental values. The models were presented as 3-D response surface plots from which the optimal values of the process variables could be correctly assigned. The proposed, mechanochemical method of powder treatment coupled with response surface methodology is a new, effective approach to flowability of cohesive powder improvement and powder processing optimisation.

  17. Optimised method to estimate octanol water distribution coefficient (logD) in a high throughput format.

    Science.gov (United States)

    Low, Ying Wei Ivan; Blasco, Francesca; Vachaspati, Prakash

    2016-09-20

    Lipophilicity is one of the molecular properties assessed in early drug discovery. Direct measurement of the octanol-water distribution coefficient (logD) requires an analytical method with a large dynamic range or multistep dilutions, as the analyte's concentrations span across several orders of magnitude. In addition, water/buffer and octanol phases which have very different polarity could lead to matrix effects and affect the LC-MS response, leading to erroneous logD values. Most compound libraries use DMSO stocks as it greatly reduces the sample requirement but the presence of DMSO has been shown to underestimate the lipophilicity of the analyte. The present work describes the development of an optimised shake flask logD method using deepwell 96 well plate that addresses the issues related to matrix effects, DMSO concentration and incubation conditions and is also amenable to high throughput. Our results indicate that the equilibrium can be achieved within 30min by flipping the plate on its side while even 0.5% of DMSO is not tolerated in the assay. This study uses the matched matrix concept to minimise the errors in analysing the two phases namely buffer and octanol in LC-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems

    International Nuclear Information System (INIS)

    Chen, Gonggui; Liu, Lilan; Song, Peizhu; Du, Yangwei

    2014-01-01

    Highlights: • New method for MOORPD problem using MOCIPSO and MOIPSO approaches. • Constrain-prior Pareto-dominance method is proposed to meet the constraints. • The limits of the apparent power flow of transmission line are considered. • MOORPD model is built up for MOORPD problem. • The achieved results by MOCIPSO and MOIPSO approaches are better than MOPSO method. - Abstract: Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and

  19. Optimal Optimisation in Chemometrics

    NARCIS (Netherlands)

    Hageman, J.A.

    2004-01-01

    The use of global optimisation methods is not straightforward, especially for the more difficult optimisation problems. Solutions have to be found for items such as the evaluation function, representation, step function and meta-parameters, before any useful results can be obtained. This thesis aims

  20. Multi-objective ant algorithm for wireless sensor network positioning

    International Nuclear Information System (INIS)

    Fidanova, S.; Shindarov, M.; Marinov, P.

    2013-01-01

    It is impossible to imagine our modern life without telecommunications. Wireless networks are a part of telecommunications. Wireless sensor networks (WSN) consist of spatially distributed sensors, which communicate in wireless way. This network monitors physical or environmental conditions. The objective is the full coverage of the monitoring region and less energy consumption of the network. The most appropriate approach to solve the problem is metaheuristics. In this paper the full coverage of the area is treated as a constrain. The objectives which are optimized are a minimal number of sensors and energy (lifetime) of the network. We apply multi-objective Ant Colony Optimization to solve this important telecommunication problem. We chose MAX-MIN Ant System approach, because it is proven to converge to the global optima

  1. COSMOS: Carnegie Observatories System for MultiObject Spectroscopy

    Science.gov (United States)

    Oemler, A.; Clardy, K.; Kelson, D.; Walth, G.; Villanueva, E.

    2017-05-01

    COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.

  2. Evaluation of cephalogram using multi-objective frequency processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Sakae; Takizawa, Tsutomu; Osako, Miho; Kaneda, Takashi; Kasai, Kazutaka [Nihon Univ., Chiba (Japan). School of Dentistry at Matsudo

    2002-12-01

    A diagnosis with cephalogram is important for orthodontic treatment. Recently, computed radiography (CR) has been performed to the cephalogram. However, evaluation of multi-objective frequency processing (MFP) for cephalograms has been received little attention. The purpose of this study was to evaluate the cephalogram using MFP CR. At first, 450 lateral cephalograms were made, from 50 orthodontic patients, with 9 possible spatial frequency parameter combinations and a contrast scale held fixed in images processing. For each film, the clarity of radiographic images were estimated and scored with respect to landmark identification (total 26 points, 20 points of hard tissue and 6 points of soft tissue). A specific combination of spatial frequency scales (multi-frequency balance types (MRB) F-type, multi-frequency enhancement (MRE) 8) was proved to be adequate to achieve the optimal image quality in the cephalogram. (author)

  3. Evaluation of cephalogram using multi-objective frequency processing

    International Nuclear Information System (INIS)

    Hagiwara, Sakae; Takizawa, Tsutomu; Osako, Miho; Kaneda, Takashi; Kasai, Kazutaka

    2002-01-01

    A diagnosis with cephalogram is important for orthodontic treatment. Recently, computed radiography (CR) has been performed to the cephalogram. However, evaluation of multi-objective frequency processing (MFP) for cephalograms has been received little attention. The purpose of this study was to evaluate the cephalogram using MFP CR. At first, 450 lateral cephalograms were made, from 50 orthodontic patients, with 9 possible spatial frequency parameter combinations and a contrast scale held fixed in images processing. For each film, the clarity of radiographic images were estimated and scored with respect to landmark identification (total 26 points, 20 points of hard tissue and 6 points of soft tissue). A specific combination of spatial frequency scales (multi-frequency balance types (MRB) F-type, multi-frequency enhancement (MRE) 8) was proved to be adequate to achieve the optimal image quality in the cephalogram. (author)

  4. Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf

    of evolutionary computation, a choice was made to use multi-objective algorithms for the purpose of aiding in automatic controller design. More specifically, the choice was made to use the Non-dominated Sorting Genetic Algorithm II (NSGAII), which is one of the most potent algorithms currently in use...... for automatic controller design. However, because the field of evolutionary computation is relatively unknown in the field of control engineering, this thesis also includes a comprehensive introduction to the basic field of evolutionary computation as well as a description of how the field has previously been......In order to design the controllers of tomorrow, a need has risen for tools that can aid in the design of these. A desire to use evolutionary computation as a tool to achieve that goal is what gave inspiration for the work contained in this thesis. After having studied the foundations...

  5. Investigating multi-objective fluence and beam orientation IMRT optimization

    Science.gov (United States)

    Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan

    2017-07-01

    Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters

  6. Multidisciplinary Design Optimisation (MDO) Methods: Their Synergy with Computer Technology in the Design Process

    Science.gov (United States)

    Sobieszczanski-Sobieski, Jaroslaw

    1999-01-01

    The paper identifies speed, agility, human interface, generation of sensitivity information, task decomposition, and data transmission (including storage) as important attributes for a computer environment to have in order to support engineering design effectively. It is argued that when examined in terms of these attributes the presently available environment can be shown to be inadequate. A radical improvement is needed, and it may be achieved by combining new methods that have recently emerged from multidisciplinary design optimisation (MDO) with massively parallel processing computer technology. The caveat is that, for successful use of that technology in engineering computing, new paradigms for computing will have to be developed - specifically, innovative algorithms that are intrinsically parallel so that their performance scales up linearly with the number of processors. It may be speculated that the idea of simulating a complex behaviour by interaction of a large number of very simple models may be an inspiration for the above algorithms; the cellular automata are an example. Because of the long lead time needed to develop and mature new paradigms, development should begin now, even though the widespread availability of massively parallel processing is still a few years away.

  7. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.

    Science.gov (United States)

    Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A

    2018-03-12

    Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Development, optimisation, and application of ICP-SFMS methods for the measurement of isotope ratios

    International Nuclear Information System (INIS)

    Stuerup, S.

    2000-07-01

    The measurement of isotopic composition and isotope ratios in biological and environmental samples requires sensitive, precise, and accurate analytical techniques. The analytical techniques used are traditionally based on mass spectrometry, among these techniques is the ICP-SFMS technique, which became commercially available in the mid 1990s. This technique is characterised by high sensitivity, low background, and the ability to separate analyte signals from spectral interferences. These features are beneficial for the measurement of isotope ratios and enable the measurement of isotope ratios of elements, which it has not previously been possible to measure due to either spectral interferences or poor sensitivity. The overall purpose of the project was to investigate the potential of the single detector ICP-SFMS technique for the measurement of isotope ratios in biological and environmental samples. One part of the work has focused on the fundamental aspects of the ICP-SFMS technique with special emphasize on the features important to the measurement of isotope ratios, while another part has focused on the development, optimisation and application of specific methods for the measurement of isotope ratios of elements of nutritional interest and radionuclides. The fundamental aspects of the ICP-SFMS technique were investigated theoretically and experimentally by the measurement of isotope ratios applying different experimental conditions. It was demonstrated that isotope ratios could be measured reliably using ICP-SFMS by educated choice of acquisition parameters, scanning mode, mass discrimination correction, and by eliminating the influence of detector dead time. Applying the knowledge gained through the fundamental study, ICP-SFMS methods for the measurement of isotope ratios of calcium, zinc, molybdenum and iron in human samples and a method for the measurement of plutonium isotope ratios and ultratrace levels of plutonium and neptunium in environmental samples

  9. Optimisation of a direct plating method for the detection and enumeration of Alicyclobacillus acidoterrestris spores.

    Science.gov (United States)

    Henczka, Marek; Djas, Małgorzata; Filipek, Katarzyna

    2013-01-01

    A direct plating method for the detection and enumeration of Alicyclobacillus acidoterrestris spores has been optimised. The results of the application of four types of growth media (BAT agar, YSG agar, K agar and SK agar) regarding the recovery and enumeration of A. acidoterrestris spores were compared. The influence of the type of applied growth medium, heat shock conditions, incubation temperature, incubation time, plating technique and the presence of apple juice in the sample on the accuracy of the detection and enumeration of A. acidoterrestris spores was investigated. Among the investigated media, YSG agar was the most sensitive medium, and its application resulted in the highest recovery of A. acidoterrestris spores, while K agar and BAT agar were the least suitable media. The effect of the heat shock time on the recovery of spores was negligible. When there was a low concentration of spores in a sample, the membrane filtration method was superior to the spread plating method. The obtained results show that heat shock carried out at 80°C for 10 min and plating samples in combination with membrane filtration on YSG agar, followed by incubation at 46°C for 3 days provided the optimal conditions for the detection and enumeration of A. acidoterrestris spores. Application of the presented method allows highly efficient, fast and sensitive identification and enumeration of A. acidoterrestris spores in food products. This methodology will be useful for the fruit juice industry for identifying products contaminated with A. acidoterrestris spores, and its practical application may prevent economic losses for manufacturers. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  11. Block level energy planning for domestic lighting - a multi-objective fuzzy linear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Jana, C. [Indian Inst. of Social Welfare and Business Management, Kolkata (India); Chattopadhyay, R.N. [Indian Inst. of Technology, Kharagpur (India). Rural Development Centre

    2004-09-01

    Creating provisions for domestic lighting is important for rural development. Its significance in rural economy is unquestionable since some activities, like literacy, education and manufacture of craft items and other cottage products are largely dependent on domestic lighting facilities for their progress and prosperity. Thus, in rural energy planning, domestic lighting remains a key sector for allocation of investments. For rational allocation, decision makers need alternative strategies for identifying adequate and proper investment structure corresponding to appropriate sources and precise devices. The present study aims at designing a model of energy utilisation by developing a decision support frame for an optimised solution to the problem, taking into consideration four sources and six devices suitable for the study area, namely Narayangarh Block of Midnapore District in India. Since the data available from rural and unorganised sectors are often ill-defined and subjective in nature, many coefficients are fuzzy numbers, and hence several constraints appear to be fuzzy expressions. In this study, the energy allocation model is initiated with three separate objectives for optimisation, namely minimising the total cost, minimising the use of non-local sources of energy and maximising the overall efficiency of the system. Since each of the above objective-based solutions has relevance to the needs of the society and economy, it is necessary to build a model that makes a compromise among the three individual solutions. This multi-objective fuzzy linear programming (MOFLP) model, solved in a compromising decision support frame, seems to be a more rational alternative than single objective linear programming model in rural energy planning. (author)

  12. Application of Bayesian Decision Theory Based on Prior Information in the Multi-Objective Optimization Problem

    Directory of Open Access Journals (Sweden)

    Xia Lei

    2010-12-01

    Full Text Available General multi-objective optimization methods are hard to obtain prior information, how to utilize prior information has been a challenge. This paper analyzes the characteristics of Bayesian decision-making based on maximum entropy principle and prior information, especially in case that how to effectively improve decision-making reliability in deficiency of reference samples. The paper exhibits effectiveness of the proposed method using the real application of multi-frequency offset estimation in distributed multiple-input multiple-output system. The simulation results demonstrate Bayesian decision-making based on prior information has better global searching capability when sampling data is deficient.

  13. A multi-objective chaotic particle swarm optimization for environmental/economic dispatch

    International Nuclear Information System (INIS)

    Cai Jiejin; Ma Xiaoqian; Li Qiong; Li Lixiang; Peng Haipeng

    2009-01-01

    A multi-objective chaotic particle swarm optimization (MOCPSO) method has been developed to solve the environmental/economic dipatch (EED) problems considering both economic and environmental issues. The proposed MOCPSO method has been applied in two test power systems. Compared with the conventional multi-objective particle swarm optimization (MOPSO) method, for the compromising minimum fuel cost and emission case, the fuel cost and pollutant emission obtained from MOCPSO method can be reduced about 50.08 $/h and 2.95 kg/h, respectively, in test system 1, about 0.02 $/h and 1.11 kg/h, respectively, in test system 2. The MOCPSO method also results in higher quality solutions for the minimum fuel cost case and the minimum emission case in both of the test power systems. Hence, MOCPSO method can result in great environmental and economic effects. For EED problems, the MOCPSO method is more feasible and more effective alternative approach than the conventional MOPSO method.

  14. Optimal allocation of SVC and TCSC using quasi-oppositional chemical reaction optimization for solving multi-objective ORPD problem

    Directory of Open Access Journals (Sweden)

    Susanta Dutta

    2018-05-01

    Full Text Available This paper presents an efficient quasi-oppositional chemical reaction optimization (QOCRO technique to find the feasible optimal solution of the multi objective optimal reactive power dispatch (RPD problem with flexible AC transmission system (FACTS device. The quasi-oppositional based learning (QOBL is incorporated in conventional chemical reaction optimization (CRO, to improve the solution quality and the convergence speed. To check the superiority of the proposed method, it is applied on IEEE 14-bus and 30-bus systems and the simulation results of the proposed approach are compared to those reported in the literature. The computational results reveal that the proposed algorithm has excellent convergence characteristics and is superior to other multi objective optimization algorithms. Keywords: Quasi-oppositional chemical reaction optimization (QOCRO, Reactive power dispatch (RPD, TCSC, SVC, Multi-objective optimization

  15. A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser

    Science.gov (United States)

    Zheng, Y.; Chen, J.

    2017-09-01

    A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.

  16. A method to derive fixed budget results from expected optimisation times

    DEFF Research Database (Denmark)

    Doerr, Benjamin; Jansen, Thomas; Witt, Carsten

    2013-01-01

    At last year's GECCO a novel perspective for theoretical performance analysis of evolutionary algorithms and other randomised search heuristics was introduced that concentrates on the expected function value after a pre-defined number of steps, called budget. This is significantly different from...... the common perspective where the expected optimisation time is analysed. While there is a huge body of work and a large collection of tools for the analysis of the expected optimisation time the new fixed budget perspective introduces new analytical challenges. Here it is shown how results on the expected...... optimisation time that are strengthened by deviation bounds can be systematically turned into fixed budget results. We demonstrate our approach by considering the (1+1) EA on LeadingOnes and significantly improving previous results. We prove that deviating from the expected time by an additive term of ω(n3...

  17. ℓ0 -based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation

    Science.gov (United States)

    Xu, Xia; Shi, Zhenwei; Pan, Bin

    2018-07-01

    Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their abundance fractions. Sparse unmixing is actually ℓ0 problem which is NP-h ard, and a relaxation is often used. In this paper, we attempt to deal with ℓ0 problem directly via a multi-objective based method, which is a non-convex manner. The characteristics of hyperspectral images are integrated into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing method (SMoSU). In order to solve the ℓ0 norm optimization problem, the spectral library is encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the evolution process. However, a multi-objective method usually produces a number of non-dominated solutions, while sparse unmixing requires a single solution. How to make the final decision for sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data, we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This regularization item is able to enforce the individual divergence in the evolution process of SMoSU. In this way, the diversity and convergence of population is further balanced, which is beneficial to the concentration of individuals. In the experiments part, three synthetic datasets and one real-world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing algorithms are compared.

  18. Multi-objective generation scheduling with hybrid energy resources

    Science.gov (United States)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  19. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization

    Science.gov (United States)

    Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong

    2018-05-01

    A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.

  20. Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints

    Directory of Open Access Journals (Sweden)

    Massimiliano Kaucic

    2015-09-01

    Full Text Available In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi- and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis.

  1. Availability allocation to repairable systems with genetic algorithms: a multi-objective formulation

    International Nuclear Information System (INIS)

    Elegbede, Charles; Adjallah, Kondo

    2003-01-01

    This paper describes a methodology based on genetic algorithms (GA) and experiments plan to optimize the availability and the cost of reparable parallel-series systems. It is a NP-hard problem of multi-objective combinatorial optimization, modeled with continuous and discrete variables. By using the weighting technique, the problem is transformed into a single-objective optimization problem whose constraints are then relaxed by the exterior penalty technique. We then propose a search of solution through GA, whose parameters are adjusted using experiments plan technique. A numerical example is used to assess the method

  2. A probabilistic multi objective CLSC model with Genetic algorithm-ε_Constraint approach

    Directory of Open Access Journals (Sweden)

    Alireza TaheriMoghadam

    2014-05-01

    Full Text Available In this paper an uncertain multi objective closed-loop supply chain is developed. The first objective function is maximizing the total profit. The second objective function is minimizing the use of row materials. In the other word, the second objective function is maximizing the amount of remanufacturing and recycling. Genetic algorithm is used for optimization and for finding the pareto optimal line, Epsilon-constraint method is used. Finally a numerical example is solved with proposed approach and performance of the model is evaluated in different sizes. The results show that this approach is effective and useful for managerial decisions.

  3. A Multi-Objective Demand Side Management Considering ENS Cost in Smart Grids

    DEFF Research Database (Denmark)

    Yousefi Khanghah, Babak; Ghassemzadeh, Saeid; Hosseini, Seyed Hossein

    2017-01-01

    In this paper a new method is presented to achieve economic exploitation and proper usage of network capacity by exerting controlling actions over flexible loads and energy storage (ES) equipment. Multi-objective planning for demand response programs (DRP) and battery management policies is carried...... out by considering energy not supplied (ENS). In order to achieve an optimal scheduling, charge/discharge control for batteries, demand response programs and dispatch of controllable distributed generations (DGs) are also considered. Then, the balanced cost and benefits of participants are evaluated...

  4. DMD-based multi-object spectrograph on Galileo telescope

    Science.gov (United States)

    Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Bon, William; Riva, Marco; Nicastro, Luciano; Molinari, Emilio; Di Marcantonio, Paolo; Zerbi, Filippo; Valenziano, Luca

    2013-03-01

    Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014.

  5. Multi-objective evolutionary emergency response optimization for major accidents

    International Nuclear Information System (INIS)

    Georgiadou, Paraskevi S.; Papazoglou, Ioannis A.; Kiranoudis, Chris T.; Markatos, Nikolaos C.

    2010-01-01

    Emergency response planning in case of a major accident (hazardous material event, nuclear accident) is very important for the protection of the public and workers' safety and health. In this context, several protective actions can be performed, such as, evacuation of an area; protection of the population in buildings; and use of personal protective equipment. The best solution is not unique when multiple criteria are taken into consideration (e.g. health consequences, social disruption, economic cost). This paper presents a methodology for multi-objective optimization of emergency response planning in case of a major accident. The emergency policy with regards to protective actions to be implemented is optimized. An evolutionary algorithm has been used as the optimization tool. Case studies demonstrating the methodology and its application in emergency response decision-making in case of accidents related to hazardous materials installations are presented. However, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency response procedures in other cases (nuclear accidents, transportation of hazardous materials) or for land-use planning issues.

  6. Determination of Pareto frontier in multi-objective maintenance optimization

    International Nuclear Information System (INIS)

    Certa, Antonella; Galante, Giacomo; Lupo, Toni; Passannanti, Gianfranco

    2011-01-01

    The objective of a maintenance policy generally is the global maintenance cost minimization that involves not only the direct costs for both the maintenance actions and the spare parts, but also those ones due to the system stop for preventive maintenance and the downtime for failure. For some operating systems, the failure event can be dangerous so that they are asked to operate assuring a very high reliability level between two consecutive fixed stops. The present paper attempts to individuate the set of elements on which performing maintenance actions so that the system can assure the required reliability level until the next fixed stop for maintenance, minimizing both the global maintenance cost and the total maintenance time. In order to solve the previous constrained multi-objective optimization problem, an effective approach is proposed to obtain the best solutions (that is the Pareto optimal frontier) among which the decision maker will choose the more suitable one. As well known, describing the whole Pareto optimal frontier generally is a troublesome task. The paper proposes an algorithm able to rapidly overcome this problem and its effectiveness is shown by an application to a case study regarding a complex series-parallel system.

  7. EMIR, the GTC NIR multi-object imager-spectrograph

    Science.gov (United States)

    Garzón, F.; Abreu, D.; Barrera, S.; Becerril, S.; Cairós, L. M.; Díaz, J. J.; Fragoso, A. B.; Gago, F.; Grange, R.; González, C.; López, P.; Patrón, J.; Pérez, J.; Rasilla, J. L.; Redondo, P.; Restrepo, R.; Saavedra, P.; Sánchez, V.; Tenegi, F.; Vallbé, M.

    2007-06-01

    EMIR, currently entering into its fabrication and AIV phase, will be one of the first common user instruments for the GTC, the 10 meter telescope under construction by GRANTECAN at the Roque de los Muchachos Observatory (Canary Islands, Spain). EMIR is being built by a Consortium of Spanish and French institutes led by the Instituto de Astrofísica de Canarias (IAC). EMIR is designed to realize one of the central goals of 10m class telescopes, allowing observers to obtain spectra for large numbers of faint sources in a time-efficient manner. EMIR is primarily designed to be operated as a MOS in the K band, but offers a wide range of observing modes, including imaging and spectroscopy, both long slit and multi-object, in the wavelength range 0.9 to 2.5 μm. It is equipped with two innovative subsystems: a robotic reconfigurable multi-slit mask and dispersive elements formed by the combination of high quality diffraction grating and conventional prisms, both at the heart of the instrument. The present status of development, expected performances, schedule and plans for scientific exploitation are described and discussed. The development and fabrication of EMIR is funded by GRANTECAN and the Plan Nacional de Astronomía y Astrofísica (National Plan for Astronomy and Astrophysics, Spain).

  8. Multi Objective Optimization Using Genetic Algorithm of a Pneumatic Connector

    Science.gov (United States)

    Salaam, HA; Taha, Zahari; Ya, TMYS Tuan

    2018-03-01

    The concept of sustainability was first introduced by Dr Harlem Brutland in the 1980’s promoting the need to preserve today’s natural environment for the sake of future generations. Based on this concept, John Elkington proposed an approach to measure sustainability known as Triple Bottom Line (TBL). There are three evaluation criteria’s involved in the TBL approach; namely economics, environmental integrity and social equity. In manufacturing industry the manufacturing costs measure the economic sustainability of a company in a long term. Environmental integrity is a measure of the impact of manufacturing activities on the environment. Social equity is complicated to evaluate; but when the focus is at the production floor level, the production operator health can be considered. In this paper, the TBL approach is applied in the manufacturing of a pneumatic nipple hose. The evaluation criteria used are manufacturing costs, environmental impact, ergonomics impact and also energy used for manufacturing. This study involves multi objective optimization by using genetic algorithm of several possible alternatives for material used in the manufacturing of the pneumatic nipple.

  9. Constrained multi-objective optimization of storage ring lattices

    Science.gov (United States)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  10. Towards lexicographic multi-objective linear programming using grossone methodology

    Science.gov (United States)

    Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D.

    2016-10-01

    Lexicographic Multi-Objective Linear Programming (LMOLP) problems can be solved in two ways: preemptive and nonpreemptive. The preemptive approach requires the solution of a series of LP problems, with changing constraints (each time the next objective is added, a new constraint appears). The nonpreemptive approach is based on a scalarization of the multiple objectives into a single-objective linear function by a weighted combination of the given objectives. It requires the specification of a set of weights, which is not straightforward and can be time consuming. In this work we present both mathematical and software ingredients necessary to solve LMOLP problems using a recently introduced computational methodology (allowing one to work numerically with infinities and infinitesimals) based on the concept of grossone. The ultimate goal of such an attempt is an implementation of a simplex-like algorithm, able to solve the original LMOLP problem by solving only one single-objective problem and without the need to specify finite weights. The expected advantages are therefore obvious.

  11. Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks

    Science.gov (United States)

    Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.

    2010-12-01

    One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Pareto-Optimal Multi-objective Inversion of Geophysical Data

    Science.gov (United States)

    Schnaidt, Sebastian; Conway, Dennis; Krieger, Lars; Heinson, Graham

    2018-01-01

    In the process of modelling geophysical properties, jointly inverting different data sets can greatly improve model results, provided that the data sets are compatible, i.e., sensitive to similar features. Such a joint inversion requires a relationship between the different data sets, which can either be analytic or structural. Classically, the joint problem is expressed as a scalar objective function that combines the misfit functions of multiple data sets and a joint term which accounts for the assumed connection between the data sets. This approach suffers from two major disadvantages: first, it can be difficult to assess the compatibility of the data sets and second, the aggregation of misfit terms introduces a weighting of the data sets. We present a pareto-optimal multi-objective joint inversion approach based on an existing genetic algorithm. The algorithm treats each data set as a separate objective, avoiding forced weighting and generating curves of the trade-off between the different objectives. These curves are analysed by their shape and evolution to evaluate data set compatibility. Furthermore, the statistical analysis of the generated solution population provides valuable estimates of model uncertainty.

  13. Optimisation of the Laser Cutting Process

    DEFF Research Database (Denmark)

    Dragsted, Birgitte; Olsen, Flemmming Ove

    1996-01-01

    The problem in optimising the laser cutting process is outlined. Basic optimisation criteria and principles for adapting an optimisation method, the simplex method, are presented. The results of implementing a response function in the optimisation are discussed with respect to the quality as well...

  14. Suitability of monitoring methods for the optimisation of Radiological Protection in the case of internal exposure through inhalation

    International Nuclear Information System (INIS)

    Degrange, J.P.; Gibert, B.; Basire, D.

    2000-01-01

    The radiological protection system recommended by the International Commission for Radiological Protection (ICRP) for justified practices relied pn the limitation and optimisation principles. The monitoring of internal exposure is most often based on the periodic assessment of individual exposure in order to essentially insure the simple compliance with the annual dose limits. Optimisation of protection implies a realistic, sensitive and analytical assessment of individual and collective exposures in order to allow the indentification of the main sources of exposure (main sources of contamination, most exposed operators, work activities contributing the most to the exposure) and the selection of the optimal protection options. Therefore the monitoring methods must allow the realistic assessment of individual dose levels far lower than annual limits together with measurements as frequent as possible. The aim of this presentation is to discuss the ability of various monitoring methods (collective and individual air sampling, in vivo and in vitro bioassays) to fulfil those needs. This discussion is illustrated by the particular case of the internal exposure to natural uranium compounds through inhalation. Firstly, the sensitivity and the degree to which each monitoring method is realistic are quantified and discussed on the basis of the application of the new ICRP dosimetric model, and their analytical capability for the optimisation of radiological protection is then indicated. Secondly, a case study is presented which shows the capability of individual air sampling techniques to analyse the exposure of the workers and the inadequacy of static air sampling to accurately estimate the exposures when contamination varies significantly over time and space in the workstations. As far as exposure to natural uranium compounds through inhalation is concerned, the study for assessing the sensitivity, analytic ability and accuracy of the different measuring systems shows that

  15. Optimisation of production from an oil-reservoir using augmented Lagrangian methods

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, Daniel Christopher

    2007-07-01

    This work studies the use of augmented Lagrangian methods for water flooding production optimisation from an oil reservoir. Commonly, water flooding is used as a means to enhance oil recovery, and due to heterogeneous rock properties, water will flow with different velocities throughout the reservoir. Due to this, water breakthrough can occur when great regions of the reservoir are still unflooded so that much of the oil may become 'trapped' in the reservoir. To avoid or reduce this problem, one can control the production so that the oil recovery rate is maximised, or alternatively the net present value (NPV) of the reservoir is maximised. We have considered water flooding, using smart wells. Smart wells with down-hole valves gives us the possibility to control the injection/production at each of the valve openings along the well, so that it is possible to control the flowregime. One can control the injection/production at all valve openings, and the setting of the valves may be changed during the production period, which gives us a great deal of control over the production and we want to control the injection/ production so that the profit obtained from the reservoir is maximised. The problem is regarded as an optimal control problem, and it is formulated as an augmented Lagrangian saddle point problem. We develop a method for optimal control based on solving the Karush-Kuhn-Tucker conditions for the augmented Lagrangian functional, a method, which to my knowledge has not been presented in the literature before. The advantage of this method is that we do not need to solve the forward problem for each new estimate of the control variables, which reduces the computational effort compared to other methods that requires the solution of the forward problem every time we find a new estimate of the control variables, such as the adjoint method. We test this method on several examples, where it is compared to the adjoint method. Our numerical experiments show

  16. Multi-objective ACO algorithms to minimise the makespan and the total rejection cost on BPMs with arbitrary job weights

    Science.gov (United States)

    Jia, Zhao-hong; Pei, Ming-li; Leung, Joseph Y.-T.

    2017-12-01

    In this paper, we investigate the batch-scheduling problem with rejection on parallel machines with non-identical job sizes and arbitrary job-rejected weights. If a job is rejected, the corresponding penalty has to be paid. Our objective is to minimise the makespan of the processed jobs and the total rejection cost of the rejected jobs. Based on the selected multi-objective optimisation approaches, two problems, P1 and P2, are considered. In P1, the two objectives are linearly combined into one single objective. In P2, the two objectives are simultaneously minimised and the Pareto non-dominated solution set is to be found. Based on the ant colony optimisation (ACO), two algorithms, called LACO and PACO, are proposed to address the two problems, respectively. Two different objective-oriented pheromone matrices and heuristic information are designed. Additionally, a local optimisation algorithm is adopted to improve the solution quality. Finally, simulated experiments are conducted, and the comparative results verify the effectiveness and efficiency of the proposed algorithms, especially on large-scale instances.

  17. Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM) and genetic algorithm method (GA)

    Science.gov (United States)

    Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.

  18. Polar vessel hullform design based on the multi-objective optimization NSGA II

    Directory of Open Access Journals (Sweden)

    DUAN Fei

    2017-12-01

    Full Text Available [Objectives] With the increasing exploitation of the Arctic abundant oil and gas resources, a large number of ships which meet the polar navigational requirements are needed.[Methods] In this paper, the fast elitist Non-Dominated Sorting Genetic Algorithm (NSGA Ⅱ is applied to the hull optimization, and the multi-objective optimization method of polar vessel design is proposed. With the optimization goal of resistance and icebreaking resistance, filtering hull forms through the standard of polar vessel displacement and EEDI, fast ship hull optimization that satisfy the ice-ship dead weight and EEDI requirements has been achieved. Taking a 65 000 t shuttle tanker as an example, full parametric modeling method is adopted, the hull optimization of three different bow forms is conducted through the polar vessel multi-objective optimization method.[Results] The ship hull after optimization can satisfy the IA class navigation require, where the resistance in calm water decreases up to 12.94%, and the minimum propulsion power in ice field has a 27.36% reduction.[Conclusions] The feasibility and validity of the NSGA Ⅱ applying in polar vessel design is verified.

  19. Multi-objective trajectory optimization of Space Manoeuvre Vehicle using adaptive differential evolution and modified game theory

    Science.gov (United States)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios; Chai, Senchun

    2017-07-01

    Highly constrained trajectory optimization for Space Manoeuvre Vehicles (SMV) is a challenging problem. In practice, this problem becomes more difficult when multiple mission requirements are taken into account. Because of the nonlinearity in the dynamic model and even the objectives, it is usually hard for designers to generate a compromised trajectory without violating strict path and box constraints. In this paper, a new multi-objective SMV optimal control model is formulated and parameterized using combined shooting-collocation technique. A modified game theory approach, coupled with an adaptive differential evolution algorithm, is designed in order to generate the pareto front of the multi-objective trajectory optimization problem. In addition, to improve the quality of obtained solutions, a control logic is embedded in the framework of the proposed approach. Several existing multi-objective evolutionary algorithms are studied and compared with the proposed method. Simulation results indicate that without driving the solution out of the feasible region, the proposed method can perform better in terms of convergence ability and convergence speed than its counterparts. Moreover, the quality of the pareto set generated using the proposed method is higher than other multi-objective evolutionary algorithms, which means the newly proposed algorithm is more attractive for solving multi-criteria SMV trajectory planning problem.

  20. A sustainable manufacturing system design: A fuzzy multi-objective optimization model.

    Science.gov (United States)

    Nujoom, Reda; Mohammed, Ahmed; Wang, Qian

    2017-08-10

    In the past decade, there has been a growing concern about the environmental protection in public society as governments almost all over the world have initiated certain rules and regulations to promote energy saving and minimize the production of carbon dioxide (CO 2 ) emissions in many manufacturing industries. The development of sustainable manufacturing systems is considered as one of the effective solutions to minimize the environmental impact. Lean approach is also considered as a proper method for achieving sustainability as it can reduce manufacturing wastes and increase the system efficiency and productivity. However, the lean approach does not include environmental waste of such as energy consumption and CO 2 emissions when designing a lean manufacturing system. This paper addresses these issues by evaluating a sustainable manufacturing system design considering a measurement of energy consumption and CO 2 emissions using different sources of energy (oil as direct energy source to generate thermal energy and oil or solar as indirect energy source to generate electricity). To this aim, a multi-objective mathematical model is developed incorporating the economic and ecological constraints aimed for minimization of the total cost, energy consumption, and CO 2 emissions for a manufacturing system design. For the real world scenario, the uncertainty in a number of input parameters was handled through the development of a fuzzy multi-objective model. The study also addresses decision-making in the number of machines, the number of air-conditioning units, and the number of bulbs involved in each process of a manufacturing system in conjunction with a quantity of material flow for processed products. A real case study was used for examining the validation and applicability of the developed sustainable manufacturing system model using the fuzzy multi-objective approach.

  1. Multi-objective genetic algorithm for solving N-version program design problem

    International Nuclear Information System (INIS)

    Yamachi, Hidemi; Tsujimura, Yasuhiro; Kambayashi, Yasushi; Yamamoto, Hisashi

    2006-01-01

    N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently. We formulate the optimal design problem of NVP as a bi-objective 0-1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process. The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost

  2. Multi-objective genetic algorithm for solving N-version program design problem

    Energy Technology Data Exchange (ETDEWEB)

    Yamachi, Hidemi [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan) and Department of Production and Information Systems Engineering, Tokyo Metropolitan Institute of Technology, Hino, Tokyo 191-0065 (Japan)]. E-mail: yamachi@nit.ac.jp; Tsujimura, Yasuhiro [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan)]. E-mail: tujimr@nit.ac.jp; Kambayashi, Yasushi [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan)]. E-mail: yasushi@nit.ac.jp; Yamamoto, Hisashi [Department of Production and Information Systems Engineering, Tokyo Metropolitan Institute of Technology, Hino, Tokyo 191-0065 (Japan)]. E-mail: yamamoto@cc.tmit.ac.jp

    2006-09-15

    N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently. We formulate the optimal design problem of NVP as a bi-objective 0-1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process. The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost.

  3. An effective docking strategy for virtual screening based on multi-objective optimization algorithm

    Directory of Open Access Journals (Sweden)

    Kang Ling

    2009-02-01

    Full Text Available Abstract Background Development of a fast and accurate scoring function in virtual screening remains a hot issue in current computer-aided drug research. Different scoring functions focus on diverse aspects of ligand binding, and no single scoring can satisfy the peculiarities of each target system. Therefore, the idea of a consensus score strategy was put forward. Integrating several scoring functions, consensus score re-assesses the docked conformations using a primary scoring function. However, it is not really robust and efficient from the perspective of optimization. Furthermore, to date, the majority of available methods are still based on single objective optimization design. Results In this paper, two multi-objective optimization methods, called MOSFOM, were developed for virtual screening, which simultaneously consider both the energy score and the contact score. Results suggest that MOSFOM can effectively enhance enrichment and performance compared with a single score. For three different kinds of binding sites, MOSFOM displays an excellent ability to differentiate active compounds through energy and shape complementarity. EFMOGA performed particularly well in the top 2% of database for all three cases, whereas MOEA_Nrg and MOEA_Cnt performed better than the corresponding individual scoring functions if the appropriate type of binding site was selected. Conclusion The multi-objective optimization method was successfully applied in virtual screening with two different scoring functions that can yield reasonable binding poses and can furthermore, be ranked with the potentially compromised conformations of each compound, abandoning those conformations that can not satisfy overall objective functions.

  4. Searching for the Pareto frontier in multi-objective protein design.

    Science.gov (United States)

    Nanda, Vikas; Belure, Sandeep V; Shir, Ofer M

    2017-08-01

    The goal of protein engineering and design is to identify sequences that adopt three-dimensional structures of desired function. Often, this is treated as a single-objective optimization problem, identifying the sequence-structure solution with the lowest computed free energy of folding. However, many design problems are multi-state, multi-specificity, or otherwise require concurrent optimization of multiple objectives. There may be tradeoffs among objectives, where improving one feature requires compromising another. The challenge lies in determining solutions that are part of the Pareto optimal set-designs where no further improvement can be achieved in any of the objectives without degrading one of the others. Pareto optimality problems are found in all areas of study, from economics to engineering to biology, and computational methods have been developed specifically to identify the Pareto frontier. We review progress in multi-objective protein design, the development of Pareto optimization methods, and present a specific case study using multi-objective optimization methods to model the tradeoff between three parameters, stability, specificity, and complexity, of a set of interacting synthetic collagen peptides.

  5. Multi-objective scheduling of electric vehicles in smart distribution system

    International Nuclear Information System (INIS)

    Zakariazadeh, Alireza; Jadid, Shahram; Siano, Pierluigi

    2014-01-01

    Highlights: • Environmental/economic operational scheduling of electric vehicles. • The Vehicle to Grid capability and the actual patterns of drivers are considered. • A novel conceptual model for an electric vehicle management system is proposed. - Abstract: When preparing for the widespread adoption of Electric Vehicles (EVs), an important issue is to use a proper EVs’ charging/discharging scheduling model that is able to simultaneously consider economic and environmental goals as well as technical constraints of distribution networks. This paper proposes a multi-objective operational scheduling method for charging/discharging of EVs in a smart distribution system. The proposed multi-objective framework, based on augmented ε-constraint method, aims at minimizing the total operational costs and emissions. The Vehicle to Grid (V2G) capability as well as the actual patterns of drivers are considered in order to generate the Pareto-optimal solutions. The Benders decomposition technique is used in order to solve the proposed optimization model and to convert the large scale mixed integer nonlinear problem into mixed-integer linear programming and nonlinear programming problems. The effectiveness of the proposed resources scheduling approach is tested on a 33-bus distribution test system over a 24-h period. The results show that the proposed EVs’ charging/discharging method can reduce both of operation cost and air pollutant emissions

  6. Multi-Objective Optimization Control for the Aerospace Dual-Active Bridge Power Converter

    Directory of Open Access Journals (Sweden)

    Tao Lei

    2018-05-01

    Full Text Available With the development of More Electrical Aircraft (MEA, the electrification of secondary power systems in aircraft is becoming more and more common. As the key power conversion device, the dual active bridge (DAB converter is the power interface for the energy storage system with the high voltage direct current (HVDC bus in aircraft electrical power systems. In this paper, a DAB DC-DC converter is designed to meet aviation requirements. The extended dual phase shifted control strategy is adopted, and a multi-objective genetic algorithm is applied to optimize its operating performance. Considering the three indicators of inductance current root mean square root (RMS value, negative reverse power and direct current (DC bias component of the current for the high frequency transformer as the optimization objectives, the DAB converter’s optimization model is derived to achieve soft switching as the main constraint condition. Optimized methods of controlling quantity for the DAB based on the evolution and genetic algorithm is used to solve the model, and a number of optimal control parameters are obtained under different load conditions. The results of digital, hard-in-loop simulation and hardware prototype experiments show that the three performance indexes are all suppressed greatly, and the optimization method proposed in this paper is reasonable. The work of this paper provides a theoretical basis and researching method for the multi-objective optimization of the power converter in the aircraft electrical power system.

  7. Point efficiency of the notion in multi objective programming

    International Nuclear Information System (INIS)

    Kampempe, B.J.D.; Manya, N.L.

    2010-01-01

    The approaches to the problem of multi-objective linear programming stochastic (PLMS) which have been proposed so far in the literature are not really satisfactory (9,11), so we want, in this article, to approach the problem of PLMS using the concept of efficiency point. It is also necessary to define what is meant by efficiency point in the context of PLMS. This is precisely the purpose of this article. In fact, it seeks to provide specific definitions of effective solutions that are not only mathematically consistent, but also have significance to a decision maker faced with such a decision problem. As a result, we have to use the concept of dominance in the time of PLMS, in the context where one has ordinal preference but no utility functions. In this paper, we propose to further explore the concepts of dominance and efficiency point. Indeed, the whole point P effective solutions are usually very broad and as we shall see, it can be identical to X. Accordingly, we will try to relax the definition of dominance relation >p in order to obtain other types of dominance point less demanding and generating subsets may be more effective especially interesting for a decision maker. We shall have to distinguish two other families of dominance relations point : the dominance and dominance scenario test, and within sets of efficient solutions proposed by these last two relations, we will focus on subsets of efficient solutions called sponsored and unanimous. We will study the properties of these various relationships and the possible links between the different effective resulting sets in order to find them and to calculate them explicitly. Finally we will establish some connections between different notions of efficiency and timely concept of Pareto-efficient solution on the deterministic case (PLMD)

  8. Latest Results from the Multi-Object Keck Exoplanet Tracker

    Science.gov (United States)

    Van Eyken, Julian C.; Ge, J.; Wan, X.; Zhao, B.; Hariharan, A.; Mahadevan, S.; DeWitt, C.; Guo, P.; Cohen, R.; Fleming, S. W.; Crepp, J.; Warner, C.; Kane, S.; Leger, F.; Pan, K.

    2006-12-01

    The W. M. Keck Exoplanet Tracker is a precision Doppler radial velocity instrument based on dispersed fixed-delay interferometry (DFDI) which takes advantage of the new technique to allow multi-object RV surveying. Installed at the 2.5m Sloan telescope at Apache Point Observatory, the combination of Michelson interferometer and medium resolution spectrograph allows design for simultaneous Doppler measurements of up to 60 targets, while maintaining high instrument throughput. Using a single-object prototype of the instrument at the Kitt Peak National Observatory 2.1m telescope, we previously discovered a 0.49MJup planet, HD 102195b (ET-1), orbiting with a 4.11d period, and other interesting targets are being followed up. From recent trial observations, the Keck Exoplanet Tracker now yields 59 usable simultaneous fringing stellar spectra, of a quality sufficient to attempt to detect short period hot-Jupiter type planets. Recent engineering improvements reduced errors by a factor of 2, and typical photon limits for stellar data are now at the 30m/s level for magnitude V 10.5 (depending on spectral type and v sin i), with a best value of 6.9m/s at V=7.6. Preliminary RMS precisions from solar data (daytime sky) are around 10m/s over a few days, with some spectra reaching close to their photon limit of 6-7m/s on the short term ( 1 hour). A number of targets showing interesting RV variability are currently being followed up independently. Additional engineering work is planned which should make for further significant gains in Doppler precision. Here we present the latest results and updates from the most recent engineering and observing runs with the Keck ET.

  9. Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking.

    Science.gov (United States)

    Bae, Seung-Hwan; Yoon, Kuk-Jin

    2018-03-01

    Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.

  10. Solving multi-objective job shop problem using nature-based algorithms: new Pareto approximation features

    Directory of Open Access Journals (Sweden)

    Jarosław Rudy

    2015-01-01

    Full Text Available In this paper the job shop scheduling problem (JSP with minimizing two criteria simultaneously is considered. JSP is frequently used model in real world applications of combinatorial optimization. Multi-objective job shop problems (MOJSP were rarely studied. We implement and compare two multi-agent nature-based methods, namely ant colony optimization (ACO and genetic algorithm (GA for MOJSP. Both of those methods employ certain technique, taken from the multi-criteria decision analysis in order to establish ranking of solutions. ACO and GA differ in a method of keeping information about previously found solutions and their quality, which affects the course of the search. In result, new features of Pareto approximations provided by said algorithms are observed: aside from the slight superiority of the ACO method the Pareto frontier approximations provided by both methods are disjoint sets. Thus, both methods can be used to search mutually exclusive areas of the Pareto frontier.

  11. Multi objective multi refinery optimization with environmental and catastrophic failure effects objectives

    Science.gov (United States)

    Khogeer, Ahmed Sirag

    2005-11-01

    Petroleum refining is a capital-intensive business. With stringent environmental regulations on the processing industry and declining refining margins, political instability, increased risk of war and terrorist attacks in which refineries and fuel transportation grids may be targeted, higher pressures are exerted on refiners to optimize performance and find the best combination of feed and processes to produce salable products that meet stricter product specifications, while at the same time meeting refinery supply commitments and of course making profit. This is done through multi objective optimization. For corporate refining companies and at the national level, Intea-Refinery and Inter-Refinery optimization is the second step in optimizing the operation of the whole refining chain as a single system. Most refinery-wide optimization methods do not cover multiple objectives such as minimizing environmental impact, avoiding catastrophic failures, or enhancing product spec upgrade effects. This work starts by carrying out a refinery-wide, single objective optimization, and then moves to multi objective-single refinery optimization. The last step is multi objective-multi refinery optimization, the objectives of which are analysis of the effects of economic, environmental, product spec, strategic, and catastrophic failure. Simulation runs were carried out using both MATLAB and ASPEN PIMS utilizing nonlinear techniques to solve the optimization problem. The results addressed the need to debottleneck some refineries or transportation media in order to meet the demand for essential products under partial or total failure scenarios. They also addressed how importing some high spec products can help recover some of the losses and what is needed in order to accomplish this. In addition, the results showed nonlinear relations among local and global objectives for some refineries. The results demonstrate that refineries can have a local multi objective optimum that does not

  12. Real-time optimisation of the Hoa Binh reservoir, Vietnam

    DEFF Research Database (Denmark)

    Richaud, Bertrand; Madsen, Henrik; Rosbjerg, Dan

    2011-01-01

    -time optimisation. First, the simulation-optimisation framework is applied for optimising reservoir operating rules. Secondly, real-time and forecast information is used for on-line optimisation that focuses on short-term goals, such as flood control or hydropower generation, without compromising the deviation...... in the downstream part of the Red River, and at the same time to increase hydropower generation and to save water for the dry season. The real-time optimisation procedure further improves the efficiency of the reservoir operation and enhances the flexibility for the decision-making. Finally, the quality......Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real...

  13. Pareto Optimal Solutions for Network Defense Strategy Selection Simulator in Multi-Objective Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.

  14. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    Science.gov (United States)

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).

  15. Multi-objective optimization of GPU3 Stirling engine using third order analysis

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Hashemabadi, Seyyed Hasan; Salimi, Morteza

    2014-01-01

    Highlights: • A third-order analysis is carried out for optimization of Stirling engine. • The triple-optimization is done on a GPU3 Stirling engine. • A multi-objective optimization is carried out for a Stirling engine. • The results are compared with an experimental previous work for checking the model improvement. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. - Abstract: Stirling engine is an external combustion engine that uses any external heat source to generate mechanical power which operates at closed cycles. These engines are good choices for using in power generation systems; because these engines present a reasonable theoretical efficiency which can be closer to the Carnot efficiency, comparing with other reciprocating thermal engines. Hence, many studies have been conducted on Stirling engines and the third order thermodynamic analysis is one of them. In this study, multi-objective optimization with four decision variables including the temperature of heat source, stroke, mean effective pressure, and the engine frequency were applied in order to increase the efficiency and output power and reduce the pressure drop. Three decision-making procedures were applied to optimize the answers from the results. At last, the applied methods were compared with the results obtained of one experimental work and a good agreement was observed

  16. Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory

    Directory of Open Access Journals (Sweden)

    M. Amiri

    2012-10-01

    Full Text Available Mutual fund is one of the most popular techniques for many people to invest their funds where a professional fund manager invests people's funds based on some special predefined objectives; therefore, performance evaluation of mutual funds is an important problem. This paper proposes a multi-objective portfolio optimization to offer asset allocation. The proposed model clusters mutual funds with two methods based on six characteristics including rate of return, variance, semivariance, turnover rate, Treynor index and Sharpe index. Semivariance is used as a downside risk measure. The proposed model of this paper uses fuzzy variables for return rate and semivariance. A multi-objective fuzzy mean-semivariance portfolio optimization model is implemented and fuzzy programming technique is adopted to solve the resulted problem. The proposed model of this paper has gathered the information of mutual fund traded on Nasdaq from 2007 to 2009 and Pareto optimal solutions are obtained considering different weights for objective functions. The results of asset allocation, rate of return and risk of each cluster are also determined and they are compared with the results of two clustering methods.

  17. An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Xuanhu He

    2015-03-01

    Full Text Available Optimal power flow (OPF objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.

  18. A pilot investigation to optimise methods for a future satiety preload study.

    Science.gov (United States)

    Hobden, Mark R; Guérin-Deremaux, Laetitia; Commane, Daniel M; Rowland, Ian; Gibson, Glenn R; Kennedy, Orla B

    2017-01-01

    Preload studies are used to investigate the satiating effects of foods and food ingredients. However, the design of preload studies is complex, with many methodological considerations influencing appetite responses. The aim of this pilot investigation was to determine acceptability, and optimise methods, for a future satiety preload study. Specifically, we investigated the effects of altering (i) energy intake at a standardised breakfast (gender-specific or non-gender specific), and (ii) the duration between mid-morning preload and ad libitum lunch meal, on morning appetite scores and energy intake at lunch. Participants attended a single study visit. Female participants consumed a 214-kcal breakfast ( n  = 10) or 266-kcal breakfast ( n  = 10), equivalent to 10% of recommended daily energy intakes for females and males, respectively. Male participants ( n  = 20) consumed a 266-kcal breakfast. All participants received a 250-ml orange juice preload 2 h after breakfast. The impact of different study timings was evaluated in male participants, with 10 males following one protocol (protocol 1) and 10 males following another (protocol 2). The duration between preload and ad libitum lunch meal was 2 h (protocol 1) or 2.5 h (protocol 2), with the ad libitum lunch meal provided at 12.00 or 13.00, respectively. All female participants followed protocol 2. Visual analogue scale (VAS) questionnaires were used to assess appetite responses and food/drink palatability. Correlation between male and female appetite scores was higher with the provision of a gender-specific breakfast, compared to non-gender-specific breakfast (Pearson correlation of 0.747 and 0.479, respectively). No differences in subjective appetite or ad libitum energy intake were found between protocols 1 and 2. VAS mean ratings of liking, enjoyment, and palatability were all > 66 out of 100 mm for breakfast, preload, and lunch meals. The findings of this pilot study confirm the acceptability

  19. Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    Science.gov (United States)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-01-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.

  20. Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model

    Directory of Open Access Journals (Sweden)

    Yongpeng Shen

    2016-02-01

    Full Text Available Auxiliary power units (APUs are widely used for electric power generation in various types of electric vehicles, improvements in fuel economy and emissions of these vehicles directly depend on the operating point of the APUs. In order to balance the conflicting goals of fuel consumption and emissions reduction in the process of operating point choice, the APU operating point optimization problem is formulated as a constrained multi-objective optimization problem (CMOP firstly. The four competing objectives of this CMOP are fuel-electricity conversion cost, hydrocarbon (HC emissions, carbon monoxide (CO emissions and nitric oxide (NO x emissions. Then, the multi-objective particle swarm optimization (MOPSO algorithm and weighted metric decision making method are employed to solve the APU operating point multi-objective optimization model. Finally, bench experiments under New European driving cycle (NEDC, Federal test procedure (FTP and high way fuel economy test (HWFET driving cycles show that, compared with the results of the traditional fuel consumption single-objective optimization approach, the proposed multi-objective optimization approach shows significant improvements in emissions performance, at the expense of a slight drop in fuel efficiency.

  1. Intersection signal control multi-objective optimization based on genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhanhong Zhou

    2014-04-01

    Full Text Available A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at an intersection. The optimization method combined the Paramics microscopic traffic simulation software, Comprehensive Modal Emissions Model (CMEM, and genetic algorithm. An intersection in Haizhu District, Guangzhou, was taken for a case study. The result of the case study shows the optimal timing scheme obtained from this method is better than the Webster timing scheme.

  2. A systematic procedure to optimise dose and image quality for the measurement of inter-vertebral angles from lateral spinal projections using Cobb and superimposition methods.

    Science.gov (United States)

    Al Qaroot, Bashar; Hogg, Peter; Twiste, Martin; Howard, David

    2014-01-01

    Patients with vertebral column deformations are exposed to high risks associated with ionising radiation exposure. Risks are further increased due to the serial X-ray images that are needed to measure and asses their spinal deformation using Cobb or superimposition methods. Therefore, optimising such X-ray practice, via reducing dose whilst maintaining image quality, is a necessity. With a specific focus on lateral thoraco-lumbar images for Cobb and superimposition measurements, this paper outlines a systematic procedure to the optimisation of X-ray practice. Optimisation was conducted based on suitable image quality from minimal dose. Image quality was appraised using a visual-analogue-rating-scale, and Monte-Carlo modelling was used for dose estimation. The optimised X-ray practice was identified by imaging healthy normal-weight male adult living human volunteers. The optimised practice consisted of: anode towards the head, broad focus, no OID or grid, 80 kVp, 32 mAs and 130 cm SID. Images of suitable quality for laterally assessing spinal conditions using Cobb or superimposition measurements were produced from an effective dose of 0.05 mSv, which is 83% less than the average effective dose used in the UK for lateral thoracic/lumbar exposures. This optimisation procedure can be adopted and use for optimisation of other radiographic techniques.

  3. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    Science.gov (United States)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization

    International Nuclear Information System (INIS)

    Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen

    2014-01-01

    A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)

  5. Stability of multi-objective bi-level linear programming problems under fuzziness

    Directory of Open Access Journals (Sweden)

    Abo-Sinna Mahmoud A.

    2013-01-01

    Full Text Available This paper deals with multi-objective bi-level linear programming problems under fuzzy environment. In the proposed method, tentative solutions are obtained and evaluated by using the partial information on preference of the decision-makers at each level. The existing results concerning the qualitative analysis of some basic notions in parametric linear programming problems are reformulated to study the stability of multi-objective bi-level linear programming problems. An algorithm for obtaining any subset of the parametric space, which has the same corresponding Pareto optimal solution, is presented. Also, this paper established the model for the supply-demand interaction in the age of electronic commerce (EC. First of all, the study uses the individual objectives of both parties as the foundation of the supply-demand interaction. Subsequently, it divides the interaction, in the age of electronic commerce, into the following two classifications: (i Market transactions, with the primary focus on the supply demand relationship in the marketplace; and (ii Information service, with the primary focus on the provider and the user of information service. By applying the bi-level programming technique of interaction process, the study will develop an analytical process to explain how supply-demand interaction achieves a compromise or why the process fails. Finally, a numerical example of information service is provided for the sake of illustration.

  6. Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2017-01-01

    Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the multi-objective aerodynamic and structural optimization of horizontal-axis wind turbine (HAWT blades. In order to minimize the cost of energy (COE and improve the overall performance of the blades, materials of carbon fiber reinforced plastic (CFRP combined with glass fiber reinforced plastic (GFRP are applied. The maximum annual energy production (AEP, the minimum blade mass and the minimum blade cost are taken as three objectives. Main aerodynamic and structural characteristics of the blades are employed as design variables. Various design requirements including strain, deflection, vibration and buckling limits are taken into account as constraints. To evaluate the aerodynamic performances and the structural behaviors, the blade element momentum (BEM theory and the finite element method (FEM are applied in the procedure. Moreover, the non-dominated sorting genetic algorithm (NSGA II, which constitutes the core of the procedure, is adapted for the multi-objective optimization of the blades. To prove the efficiency and reliability of the procedure, a commercial 1.5 MW HAWT blade is used as a case study, and a set of trade-off solutions is obtained. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.

  7. Optimum analysis of pavement maintenance using multi-objective genetic algorithms

    Directory of Open Access Journals (Sweden)

    Amr A. Elhadidy

    2015-04-01

    Full Text Available Road network expansion in Egypt is considered as a vital issue for the development of the country. This is done while upgrading current road networks to increase the safety and efficiency. A pavement management system (PMS is a set of tools or methods that assist decision makers in finding optimum strategies for providing and maintaining pavements in a serviceable condition over a given period of time. A multi-objective optimization problem for pavement maintenance and rehabilitation strategies on network level is discussed in this paper. A two-objective optimization model considers minimum action costs and maximum condition for used road network. In the proposed approach, Markov-chain models are used for predicting the performance of road pavement and to calculate the expected decline at different periods of time. A genetic-algorithm-based procedure is developed for solving the multi-objective optimization problem. The model searched for the optimum maintenance actions at adequate time to be implemented on an appropriate pavement. Based on the computing results, the Pareto optimal solutions of the two-objective optimization functions are obtained. From the optimal solutions represented by cost and condition, a decision maker can easily obtain the information of the maintenance and rehabilitation planning with minimum action costs and maximum condition. The developed model has been implemented on a network of roads and showed its ability to derive the optimal solution.

  8. Multi-Objective Dynamic Economic Dispatch of Microgrid Systems Including Vehicle-to-Grid

    Directory of Open Access Journals (Sweden)

    Haitao Liu

    2015-05-01

    Full Text Available Based on the characteristics of electric vehicles (EVs, this paper establishes the load models of EVs under the autonomous charging mode and the coordinated charging and discharging mode. Integrating the EVs into a microgrid system which includes wind turbines (WTs, photovoltaic arrays (PVs, diesel engines (DEs, fuel cells (FCs and a storage battery (BS, this paper establishes multi-objective economic dispatch models of a microgrid, including the lowest operating cost, the least carbon dioxide emissions, and the lowest pollutant treatment cost. After converting the multi-objective functions to a single objective function by using the judgment matrix method, we analyze the dynamic economic dispatch of the microgrid system including vehicle-to-grid (V2G with an improved particle swarm optimization algorithm under different operation control strategies. With the example system, the proposed models and strategies are verified and analyzed. Simulation results show that the microgrid system with EVs under the coordinated charging and discharging mode has better operation economics than the autonomous charging mode. Meanwhile, the greater the load fluctuation is, the higher the operating cost of the microgrid system is.

  9. An inexact multi-objective programming approach for strategic environmental assessment on regional development plan

    Institute of Scientific and Technical Information of China (English)

    WANG Jihua; GUO Huaicheng; LIU Lei; HAO Mingjia; ZHANG Ming; LU Xiaojian; XING Kexia

    2004-01-01

    This paper presents the development of an inexact multi-objective programming (IMOP) model and its application to the strategic environmental assessment (SEA) for the regional development plan for the Hunnan New Zone (HNZ) in Shenyang City, China. Inexact programming and multi-objective programming methods are employed to effectively account for extensive uncertainties in the study system and to reflect various interests from different stakeholders, respectively. In the case study, balancing-economy-and-environment scenario and focusing-industry-development scenario are analyzed by the interactive solution process for addressing the preferences from local authorities and compromises among different objectives. Through interpreting the model solutions under both scenarios, analysis of industrial structure, waste water treatment plant(WWTP) expansion, water consumption and pollution generation and treatment are undertaken for providing a solid base to justify and evaluate the HNZ regional development plan. The study results show that the developed IMOP-SEA framework is feasible and applicable in carrying comprehensive environmental impact assessments for development plan in a more effective and efficient manner.

  10. Multi-objective superstructure-free synthesis and optimization of thermal power plants

    International Nuclear Information System (INIS)

    Wang, Ligang; Lampe, Matthias; Voll, Philip; Yang, Yongping; Bardow, André

    2016-01-01

    The merits of superstructure-free synthesis are demonstrated for bi-objective design of thermal power plants. The design of thermal power plants is complex and thus best solved by optimization. Common optimization methods require specification of a superstructure which becomes a tedious and error-prone task for complex systems. Superstructure specification is avoided by the presented superstructure-free approach, which is shown to successfully solve the design task yielding a high-quality Pareto front of promising structural alternatives. The economic objective function avoids introducing infinite numbers of units (e.g., turbine, reheater and feedwater preheater) as favored by pure thermodynamic optimization. The number of feasible solutions found per number of mutation tries is still high even after many generations but declines after introducing highly-nonlinear cost functions leading to challenging MINLP problems. The identified Pareto-optimal solutions tend to employ more units than found in modern power plants indicating the need for cost functions to reflect current industrial practice. In summary, the multi-objective superstructure-free synthesis framework is a robust approach for very complex problems in the synthesis of thermal power plants. - Highlights: • A generalized multi-objective superstructure-free synthesis framework for thermal power plants is presented. • The superstructure-free synthesis framework is comprehensively evaluated by complex bi-objective synthesis problems. • The proposed framework is effective to explore the structural design space even for complex problems.

  11. A framework for multi-object tracking over distributed wireless camera networks

    Science.gov (United States)

    Gau, Victor; Hwang, Jenq-Neng

    2010-07-01

    In this paper, we propose a unified framework targeting at two important issues in a distributed wireless camera network, i.e., object tracking and network communication, to achieve reliable multi-object tracking over distributed wireless camera networks. In the object tracking part, we propose a fully automated approach for tracking of multiple objects across multiple cameras with overlapping and non-overlapping field of views without initial training. To effectively exchange the tracking information among the distributed cameras, we proposed an idle probability based broadcasting method, iPro, which adaptively adjusts the broadcast probability to improve the broadcast effectiveness in a dense saturated camera network. Experimental results for the multi-object tracking demonstrate the promising performance of our approach on real video sequences for cameras with overlapping and non-overlapping views. The modeling and ns-2 simulation results show that iPro almost approaches the theoretical performance upper bound if cameras are within each other's transmission range. In more general scenarios, e.g., in case of hidden node problems, the simulation results show that iPro significantly outperforms standard IEEE 802.11, especially when the number of competing nodes increases.

  12. Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm

    International Nuclear Information System (INIS)

    Ahmadi, Pouria; Rosen, Marc A.; Dincer, Ibrahim

    2012-01-01

    A comprehensive thermodynamic modeling and optimization is reported of a polygeneration energy system for the simultaneous production of heating, cooling, electricity and hot water from a common energy source. This polygeneration system is composed of four major parts: gas turbine (GT) cycle, Rankine cycle, absorption cooling cycle and domestic hot water heater. A multi-objective optimization method based on an evolutionary algorithm is applied to determine the best design parameters for the system. The two objective functions utilized in the analysis are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized by using an evolutionary algorithm. To provide a deeper insight, the Pareto frontier is shown for multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. Finally, a sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO 2 emission and exergy efficiency.

  13. Probing optimal measurement configuration for optical scatterometry by the multi-objective genetic algorithm

    Science.gov (United States)

    Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2018-04-01

    Measurement configuration optimization (MCO) is a ubiquitous and important issue in optical scatterometry, whose aim is to probe the optimal combination of measurement conditions, such as wavelength, incidence angle, azimuthal angle, and/or polarization directions, to achieve a higher measurement precision for a given measuring instrument. In this paper, the MCO problem is investigated and formulated as a multi-objective optimization problem, which is then solved by the multi-objective genetic algorithm (MOGA). The case study on the Mueller matrix scatterometry for the measurement of a Si grating verifies the feasibility of the MOGA in handling the MCO problem in optical scatterometry by making a comparison with the Monte Carlo simulations. Experiments performed at the achieved optimal measurement configuration also show good agreement between the measured and calculated best-fit Mueller matrix spectra. The proposed MCO method based on MOGA is expected to provide a more general and practical means to solve the MCO problem in the state-of-the-art optical scatterometry.

  14. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    Science.gov (United States)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the

  15. Distribution Network Expansion Planning Based on Multi-objective PSO Algorithm

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Wu, Qiuwei

    2013-01-01

    This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO...... algorithm was proposed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified...

  16. Swarm intelligence for multi-objective optimization of synthesis gas production

    Science.gov (United States)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  17. Impact of fuel cell power plants on multi-objective optimal operation management of distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, T. [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Zeinoddini-Meymand, H. [Islamic Azad University, Kerman Branch, Kerman (Iran, Islamic Republic of)

    2012-06-15

    This paper presents an interactive fuzzy satisfying method based on hybrid modified honey bee mating optimization and differential evolution (MHBMO-DE) to solve the multi-objective optimal operation management (MOOM) problem, which can be affected by fuel cell power plants (FCPPs). The objective functions are to minimize total electrical energy losses, total electrical energy cost, total pollutant emission produced by sources, and deviation of bus voltages. A new interactive fuzzy satisfying method is presented to solve the multi-objective problem by assuming that the decision-maker (DM) has fuzzy goals for each of the objective functions. Through the interaction with the DM, the fuzzy goals of the DM are quantified by eliciting the corresponding membership functions. Then, by considering the current solution, the DM acts on this solution by updating the reference membership values until the satisfying solution for the DM can be obtained. The MOOM problem is modeled as a mixed integer nonlinear programming problem. Evolutionary methods are used to solve this problem because of their independence from type of the objective function and constraints. Recently researchers have presented a new evolutionary method called honey bee mating optimization (HBMO) algorithm. Original HBMO often converges to local optima, in order to overcome this shortcoming, we propose a new method that improves the mating process and also, combines the modified HBMO with DE algorithm. Numerical results for a distribution test system have been presented to illustrate the performance and applicability of the proposed method. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Optimising social information by game theory and ant colony method to enhance routing protocol in opportunistic networks

    Directory of Open Access Journals (Sweden)

    Chander Prabha

    2016-09-01

    Full Text Available The data loss and disconnection of nodes are frequent in the opportunistic networks. The social information plays an important role in reducing the data loss because it depends on the connectivity of nodes. The appropriate selection of next hop based on social information is critical for improving the performance of routing in opportunistic networks. The frequent disconnection problem is overcome by optimising the social information with Ant Colony Optimization method which depends on the topology of opportunistic network. The proposed protocol is examined thoroughly via analysis and simulation in order to assess their performance in comparison with other social based routing protocols in opportunistic network under various parameters settings.

  19. A method for the calculation of collision strengths for complex atomic structures based on Slater parameter optimisation

    International Nuclear Information System (INIS)

    Fawcett, B.C.; Mason, H.E.

    1989-02-01

    This report presents details of a new method to enable the computation of collision strengths for complex ions which is adapted from long established optimisation techniques previously applied to the calculation of atomic structures and oscillator strengths. The procedure involves the adjustment of Slater parameters so that they determine improved energy levels and eigenvectors. They provide a basis for collision strength calculations in ions where ab initio computations break down or result in reducible errors. This application is demonstrated through modifications of the DISTORTED WAVE collision code and SUPERSTRUCTURE atomic-structure code which interface via a transformation code JAJOM which processes their output. (author)

  20. Environmental/economic dispatch problem of power system by using an enhanced multi-objective differential evolution algorithm

    International Nuclear Information System (INIS)

    Lu Youlin; Zhou Jianzhong; Qin Hui; Wang Ying; Zhang Yongchuan

    2011-01-01

    An enhanced multi-objective differential evolution algorithm (EMODE) is proposed in this paper to solve environmental/economic dispatch (EED) problem by considering the minimal of fuel cost and emission effects synthetically. In the proposed algorithm, an elitist archive technique is adopted to retain the non-dominated solutions obtained during the evolutionary process, and the operators of DE are modified according to the characteristics of multi-objective optimization problems. Moreover, in order to avoid premature convergence, a local random search (LRS) operator is integrated with the proposed method to improve the convergence performance. In view of the difficulties of handling the complicated constraints of EED problem, a new heuristic constraints handling method without any penalty factor settings is presented. The feasibility and effectiveness of the proposed EMODE method is demonstrated for a test power system. Compared with other methods, EMODE can get higher quality solutions by reducing the fuel cost and the emission effects synthetically.

  1. Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data

    Science.gov (United States)

    Gibbons, T. J.; Öztürk, E.; Sims, N. D.

    2018-01-01

    Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.

  2. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition

    Directory of Open Access Journals (Sweden)

    Vito Janko

    2017-12-01

    Full Text Available The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  3. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition.

    Science.gov (United States)

    Janko, Vito; Luštrek, Mitja

    2017-12-29

    The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system's energy expenditure and the system's accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  4. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition †

    Science.gov (United States)

    Janko, Vito

    2017-01-01

    The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy. PMID:29286301

  5. A novel approach for optimum allocation of FACTS devices using multi-objective function

    International Nuclear Information System (INIS)

    Gitizadeh, M.; Kalantar, M.

    2009-01-01

    This paper presents a novel approach to find optimum type, location, and capacity of flexible alternating current transmission systems (FACTS) devices in a power system using a multi-objective optimization function. Thyristor controlled series compensator (TCSC) and static var compensator (SVC) are utilized to achieve these objectives: active power loss reduction, new introduced FACTS devices cost reduction, increase the robustness of the security margin against voltage collapse, and voltage deviation reduction. The operational and controlling constraints as well as load constraints are considered in the optimum allocation procedure. Here, a goal attainment method based on simulated annealing is used to approach the global optimum. In addition, the estimated annual load profile has been utilized to the optimum siting and sizing of FACTS devices to approach a practical solution. The standard IEEE 14-bus test system is used to validate the performance and effectiveness of the proposed method

  6. Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Directory of Open Access Journals (Sweden)

    Kaveh Khalili-Damghani

    2017-07-01

    Full Text Available In this paper a multi-period multi-product multi-objective aggregate production planning (APP model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method.

  7. Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Min-Yin Liu

    2017-05-01

    Full Text Available Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz measured by electroencephalography (EEG mostly during non-rapid eye movement (NREM stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1 the lack of common benchmark databases, and (2 the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA, the Strength Pareto Evolutionary Algorithm (SPEA2, to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT, and two Hilbert-Huang transform (HHT based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737.

  8. A review of patient dose and optimisation methods in adult and paediatric CT scanning

    International Nuclear Information System (INIS)

    Dougeni, E.; Faulkner, K.; Panayiotakis, G.

    2012-01-01

    Highlights: ► CT scanning frequency has grown with the development of new clinical applications. ► Up to 32-fold dose variation was observed for similar type of procedures. ► Scanning parameters should be optimised for patient size and clinical indication. ► Cancer risks knowledge amongst physicians of certain specialties was poor. ► A significant number of non-indicated CT scans could be eliminated. - Abstract: An increasing number of publications and international reports on computed tomography (CT) have addressed important issues on optimised imaging practice and patient dose. This is partially due to recent technological developments as well as to the striking rise in the number of CT scans being requested. CT imaging has extended its role to newer applications, such as cardiac CT, CT colonography, angiography and urology. The proportion of paediatric patients undergoing CT scans has also increased. The published scientific literature was reviewed to collect information regarding effective dose levels during the most common CT examinations in adults and paediatrics. Large dose variations were observed (up to 32-fold) with some individual sites exceeding the recommended dose reference levels, indicating a large potential to reduce dose. Current estimates on radiation-related cancer risks are alarming. CT doses account for about 70% of collective dose in the UK and are amongst the highest in diagnostic radiology, however the majority of physicians underestimate the risk, demonstrating a decreased level of awareness. Exposure parameters are not always adjusted appropriately to the clinical question or to patient size, especially for children. Dose reduction techniques, such as tube-current modulation, low-tube voltage protocols, prospective echocardiography-triggered coronary angiography and iterative reconstruction algorithms can substantially decrease doses. An overview of optimisation studies is provided. The justification principle is discussed along

  9. Modelling, analysis and optimisation of energy systems on offshore platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van

    of oil and gas facilities, (ii) the means to reduce their performance losses, and (iii) the systematic design of future plants. This work builds upon a combination of modelling tools, performance evaluation methods and multi-objective optimisation routines to reproduce the behaviour of five offshore......Nowadays, the offshore production of oil and gas requires on-site processing, which includes operations such as separation, compression and purification. The offshore system undergoes variations of the petroleum production rates over the field life – it is therefore operated far from its nominal...... with the combustion, pressure-change and cooling operations, but these processes are ranked differently depending on the plant layout and on the field production stage. The most promising improvements consist of introducing a multi-level production manifold, avoiding anti-surge gas recirculation, installing a waste...

  10. Simulation optimisation

    International Nuclear Information System (INIS)

    Anon

    2010-01-01

    Over the past decade there has been a significant advance in flotation circuit optimisation through performance benchmarking using metallurgical modelling and steady-state computer simulation. This benchmarking includes traditional measures, such as grade and recovery, as well as new flotation measures, such as ore floatability, bubble surface area flux and froth recovery. To further this optimisation, Outotec has released its HSC Chemistry software with simulation modules. The flotation model developed by the AMIRA P9 Project, of which Outotec is a sponsor, is regarded by industry as the most suitable flotation model to use for circuit optimisation. This model incorporates ore floatability with flotation cell pulp and froth parameters, residence time, entrainment and water recovery. Outotec's HSC Sim enables you to simulate mineral processes in different levels, from comminution circuits with sizes and no composition, through to flotation processes with minerals by size by floatability components, to full processes with true particles with MLA data.

  11. Multi-Objective Design Optimization of an Over-Constrained Flexure-Based Amplifier

    Directory of Open Access Journals (Sweden)

    Yuan Ni

    2015-07-01

    Full Text Available The optimizing design for enhancement of the micro performance of manipulator based on analytical models is investigated in this paper. By utilizing the established uncanonical linear homogeneous equations, the quasi-static analytical model of the micro-manipulator is built, and the theoretical calculation results are tested by FEA simulations. To provide a theoretical basis for a micro-manipulator being used in high-precision engineering applications, this paper investigates the modal property based on the analytical model. Based on the finite element method, with multipoint constraint equations, the model is built and the results have a good match with the simulation. The following parametric influences studied show that the influences of other objectives on one objective are complicated.  Consequently, the multi-objective optimization by the derived analytical models is carried out to find out the optimal solutions of the manipulator. Besides the inner relationships among these design objectives during the optimization process are discussed.

  12. Multi-objective optimization of cellular scanning strategy in selective laser melting

    DEFF Research Database (Denmark)

    Ahrari, Ali; Deb, Kalyanmoy; Mohanty, Sankhya

    2017-01-01

    The scanning strategy for selective laser melting - an additive manufacturing process - determines the temperature fields during the manufacturing process, which in turn affects residual stresses and distortions, two of the main sources of process-induced defects. The goal of this study is to dev......The scanning strategy for selective laser melting - an additive manufacturing process - determines the temperature fields during the manufacturing process, which in turn affects residual stresses and distortions, two of the main sources of process-induced defects. The goal of this study......, the problem is a combination of combinatorial and choice optimization, which makes the problem difficult to solve. On a process simulation domain consisting of 32 cells, our multi-objective evolutionary method is able to find a set of trade-off solutions for the defined conflicting objectives, which cannot...

  13. The Combined Multi-objective Optimization Design for a Light Guide Rod

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Fung, Rong-Fong; Shih, Chun-Yao; Chien, Hong-Yao

    2013-01-01

    The light guide rod (LGR) has been popularly used for the vehicles, and the automobile lamp industries need mass production to match this trend. This paper aims to develop a systemic way to find the best parameters' combination for the LGR, and the parameters are usually restricted to some levels and random values. In this paper, the LGR example with two optical performances of illuminance flux and uniformity is to be optimized by use of the real-coded genetic algorithm (RGA) and grey relational analysis (GRA). The illuminance flux and uniformity of the best parameters' combination are obtained and compared with the initial set. Comparisons with Taguchi-Grey can improve 5% of gain and comparisons with Pareto genetic algorithm (PaGA) can improve 1.7% of gain. The combined multi-objective optimization can saving 7% time and it is found that the new proposed method has positive gains in performances.

  14. Energy resource allocation using multi-objective goal programming: the case of Lebanon

    International Nuclear Information System (INIS)

    Mezher, T.; Chedid, R.; Zahabi, W.

    1998-01-01

    The traditional energy-resources allocation problem is concerned with the allocation of limited resources among the end-uses such that the overall return is maximized. In the past, several techniques have been used to deal with such a problem. In this paper, the energy allocation process is looked at from two points of view: economy and environment. The economic objectives include costs, efficiency, energy conservation, and employment generation. The environmental objectives consider environmental friendliness factors. The objective functions are first quantified and then transformed into mathematical language to obtain a multi-objective allocation model based upon pre-emptive goal programming techniques. The proposed method allows decision-makers to encourage or discourage specific energy resources for the various household end-uses. The case of Lebanon is examined to illustrate the usefulness of the proposed technique. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Robust Multi-Objective PQ Scheduling for Electric Vehicles in Flexible Unbalanced Distribution Grids

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Soroudi, Alireza; Marinelli, Mattia

    2017-01-01

    With increased penetration of distributed energy resources and electric vehicles (EVs), different EV management strategies can be used for mitigating adverse effects and supporting the distribution grid. This paper proposes a robust multi-objective methodology for determining the optimal day...... demand response programs. The method is tested on a real Danish unbalanced distribution grid with 35% EV penetration to demonstrate the effectiveness of the proposed approach. It is shown that the proposed formulation guarantees an optimal EV cost as long as the price uncertainties are lower than....... The robust formulation effectively considers the errors in the electricity price forecast and its influence on the EV schedule. Moreover, the impact of EV reactive power support on objective values and technical parameters is analysed both when EVs are the only flexible resources and when linked with other...

  16. Multi-objective optimization of a series–parallel system using GPSIA

    International Nuclear Information System (INIS)

    Okafor, Ekene Gabriel; Sun Youchao

    2012-01-01

    The optimal solution of a multi-objective optimization problem (MOP) corresponds to a Pareto set that is characterized by a tradeoff between objectives. Genetic Pareto Set Identification Algorithm (GPSIA) proposed for reliability-redundant MOPs is a hybrid technique which combines genetic and heuristic principles to generate non-dominated solutions. Series–parallel system with active redundancy is studied in this paper. Reliability and cost were the research objective functions subject to cost and weight constraints. The results reveal an evenly distributed non-dominated front. The distances between successive Pareto points were used to evaluate the general performance of the method. Plots were also used to show the computational results for the type of system studied and the robustness of the technique is discussed in comparison with NSGA-II and SPEA-2.

  17. Economic planning for electric energy systems: a multi objective linearized approach for solution

    International Nuclear Information System (INIS)

    Mata Medeiros Branco, T. da.

    1986-01-01

    The economic planning problem associated to the expansion and operation of electrical power systems is considered in this study, represented for a vectorial objective function in which the minimization of resources involved and maximization of attended demand constitute goals to be satisfied. Supposing all the variables involved with linear characteristic and considering the conflict existing among the objectives to be achieved, in order to find a solution, a multi objective linearized approach is proposed. This approximation utilizes the compromise programming technique and linear programming methods. Generation and transmission are simultaneously considered into the optimization process in which associated losses and the capacity of each line are included. Illustrated examples are also presented with results discussed. (author)

  18. Multi-objective flexible job shop scheduling problem using variable neighborhood evolutionary algorithm

    Science.gov (United States)

    Wang, Chun; Ji, Zhicheng; Wang, Yan

    2017-07-01

    In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.

  19. Multi-objective optimization of circular magnetic abrasive polishing of SUS304 and Cu materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, NhatTan; Yin, ShaoHui; Chen, FengJun; Yin, HanFeng [Hunan University, Changsha (China); Pham, VanThoan [Hanoi University, Hanoi (Viet Nam); Tran, TrongNhan [Industrial University of Ho Chi Minh City, HCM City (Viet Nam)

    2016-06-15

    In this paper, a Multi-objective particle swarm optimization algorithm (MOPSOA) is applied to optimize surface roughness of workpiece after circular magnetic abrasive polishing. The most important parameters of polishing model, namely current, gap between pole and workpiece, spindle speed and polishing time, were considered in this approach. The objective functions of the MOPSOA depend on the quality of surface roughness of polishing materials with both simultaneous surfaces (Ra1, Ra2), which are determined by means of experimental approach with the aid of circular magnetic field. Finally, the effectiveness of the approach is compared between the optimal results with the experimental data. The results show that the new proposed polishing optimization method is more feasible.

  20. Prioritization of buffer areas with multi objective analysis: application in the Basin Creek St. Helena

    International Nuclear Information System (INIS)

    Zuluaga, Julian; Carvajal, Luis Fernando

    2006-01-01

    This paper shows a Multi objective Analysis (AMO-ELECTRE 111) with Geographical Information System (GIS) to establish priorities of buffer zones on the drainage network of the Santa Elena Creek, Medellin middle-east zone. 38 alternatives (small catchment) are evaluated with seven criteria, from field work, and maps. The criteria are: susceptibility to mass sliding, surface and lineal erosion, conflict by land use, and state of the waterways network in respect to hydrology, geology and human impact. The ELECTERE III method allows establishing priorities of buffer zones for each catchment; the indifference, acceptance, veto, and credibility threshold values, as well as those for criteria weighting factors are very important. The results show that the north zone of the catchment, commune 8, in particular La Castro creek, is most affected. The sensibility analysis shows that the obtained solution is robust, and that the anthropic and geologic criteria are paramount

  1. Developing a Novel Multi-objective Programming Model for Personnel Assignment Problem

    Directory of Open Access Journals (Sweden)

    Mehdi Seifbarghy

    2014-05-01

    Full Text Available The assignment of personnel to the right positions in order to increase organization's performance is one of the most crucial tasks in human resource management. In this paper, personnel assignment problem is formulated as a multi-objective binary integer programming model in which skills, level of satisfaction and training cost of personnel are considered simultaneously in productive company. The purpose of this model is to obtain the best matching between candidates and positions. In this model, a set of methods such as a group analytic hierarchy process (GAHP, Shannon entropy, coefficient of variation (CV and fuzzy logic are used to calculate the weights of evaluation criteria, weights of position and coefficient of objective functions. This proposed model can rationalize the subjective judgments of decision makers with mathematic models.

  2. Dynamic population artificial bee colony algorithm for multi-objective optimal power flow

    Directory of Open Access Journals (Sweden)

    Man Ding

    2017-03-01

    Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.

  3. Sustainable and Resilient Garment Supply Chain Network Design with Fuzzy Multi-Objectives under Uncertainty

    Directory of Open Access Journals (Sweden)

    Sonia Irshad Mari

    2016-10-01

    Full Text Available Researchers and practitioners are taking more interest in developing sustainable garment supply chains in recent times. On the other hand, the supply chain manager drops sustainability objectives while coping with unexpected natural and man-made disruption risks. Hence, supply chain managers are now trying to develop sustainable supply chains that are simultaneously resilient enough to cope with disruption risks. Owing to the importance of the considered issue, this study proposed a network optimization model for a sustainable and resilient supply chain network by considering sustainability via embodied carbon footprints and carbon emissions and resilience by considering resilience index. In this paper, initially, a possibilistic fuzzy multi-objective sustainable and resilient supply chain network model is developed for the garment industry considering economic, sustainable, and resilience objectives. Secondly, a possibilistic fuzzy linguistic weight-based interactive solution method is proposed. Finally, a numerical case example is presented to show the applicability of the proposed model and solution methodology.

  4. Multi Camera Multi Object Tracking using Block Search over Epipolar Geometry

    Directory of Open Access Journals (Sweden)

    Saman Sargolzaei

    2000-01-01

    Full Text Available We present strategy for multi-objects tracking in multi camera environment for the surveillance and security application where tracking multitude subjects are of utmost importance in a crowded scene. Our technique assumes partially overlapped multi-camera setup where cameras share common view from different angle to assess positions and activities of subjects under suspicion. To establish spatial correspondence between camera views we employ an epipolar geometry technique. We propose an overlapped block search method to find the interested pattern (target in new frames. Color pattern update scheme has been considered to further optimize the efficiency of the object tracking when object pattern changes due to object motion in the field of views of the cameras. Evaluation of our approach is presented with the results on PETS2007 dataset..

  5. Multi-Objective Motion Control Optimization for the Bridge Crane System

    Directory of Open Access Journals (Sweden)

    Renxin Xiao

    2018-03-01

    Full Text Available A novel control algorithm combining the linear quadratic regulator (LQR control and trajectory planning (TP is proposed for the control of an underactuated crane system, targeting position adjustment and swing suppression. The TP is employed to control the swing angle within certain constraints, and the LQR is applied to achieve anti-disturbance. In order to improve the accuracy of the position control, a differential-integral control loop is applied. The weighted LQR matrices representing priorities of the state variables for the bridge crane motion are searched by the multi-objective genetic algorithm (MOGA. The stability proof is provided in order to validate the effectiveness of the proposed algorithm. Numerous simulation and experimental validations justify the feasibility of the proposed method.

  6. Multi-objective and multi-physics optimization methodology for SFR core: application to CFV concept

    International Nuclear Information System (INIS)

    Fabbris, Olivier

    2014-01-01

    Nuclear reactor core design is a highly multidisciplinary task where neutronics, thermal-hydraulics, fuel thermo-mechanics and fuel cycle are involved. The problem is moreover multi-objective (several performances) and highly dimensional (several tens of design parameters).As the reference deterministic calculation codes for core characterization require important computing resources, the classical design method is not well suited to investigate and optimize new innovative core concepts. To cope with these difficulties, a new methodology has been developed in this thesis. Our work is based on the development and validation of simplified neutronics and thermal-hydraulics calculation schemes allowing the full characterization of Sodium-cooled Fast Reactor core regarding both neutronics performances and behavior during thermal hydraulic dimensioning transients.The developed methodology uses surrogate models (or meta-models) able to replace the neutronics and thermal-hydraulics calculation chain. Advanced mathematical methods for the design of experiment, building and validation of meta-models allows substituting this calculation chain by regression models with high prediction capabilities.The methodology is applied on a very large design space to a challenging core called CFV (French acronym for low void effect core) with a large gain on the sodium void effect. Global sensitivity analysis leads to identify the significant design parameters on the core design and its behavior during unprotected transient which can lead to severe accidents. Multi-objective optimizations lead to alternative core configurations with significantly improved performances. Validation results demonstrate the relevance of the methodology at the pre-design stage of a Sodium-cooled Fast Reactor core. (author) [fr

  7. Beam position optimisation for IMRT

    International Nuclear Information System (INIS)

    Holloway, L.; Hoban, P.

    2001-01-01

    Full text: The introduction of IMRT has not generally resulted in the use of optimised beam positions because to find the global solution of the problem a time consuming stochastic optimisation method must be used. Although a deterministic method may not achieve the global minimum it should achieve a superior dose distribution compared to no optimisation. This study aimed to develop and test such a method. The beam optimisation method developed relies on an iterative process to achieve the desired number of beams from a large initial number of beams. The number of beams is reduced in a 'weeding-out' process based on the total fluence which each beam delivers. The process is gradual, with only three beams removed each time (following a small number of iterations), ensuring that the reduction in beams does not dramatically affect the fluence maps of those remaining. A comparison was made between the dose distributions achieved when the beams positions were optimised in this fashion and when the beams positions were evenly distributed. The method has been shown to work quite effectively and efficiently. The Figure shows a comparison in dose distribution with optimised and non optimised beam positions for 5 beams. It can be clearly seen that there is an improvement in the dose distribution delivered to the tumour and a reduction in the dose to the critical structure with beam position optimisation. A method for beam position optimisation for use in IMRT optimisations has been developed. This method although not necessarily achieving the global minimum in beam position still achieves quite a dramatic improvement compared with no beam position optimisation and is very efficiently achieved. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  8. Multi-objective calibration of a reservoir model: aggregation and non-dominated sorting approaches

    Science.gov (United States)

    Huang, Y.

    2012-12-01

    Numerical reservoir models can be helpful tools for water resource management. These models are generally calibrated against historical measurement data made in reservoirs. In this study, two methods are proposed for the multi-objective calibration of such models: aggregation and non-dominated sorting methods. Both methods use a hybrid genetic algorithm as an optimization engine and are different in fitness assignment. In the aggregation method, a weighted sum of scaled simulation errors is designed as an overall objective function to measure the fitness of solutions (i.e. parameter values). The contribution of this study to the aggregation method is the correlation analysis and its implication to the choice of weight factors. In the non-dominated sorting method, a novel method based on non-dominated sorting and the method of minimal distance is used to calculate the dummy fitness of solutions. The proposed methods are illustrated using a water quality model that was set up to simulate the water quality of Pepacton Reservoir, which is located to the north of New York City and is used for water supply of city. The study also compares the aggregation and the non-dominated sorting methods. The purpose of this comparison is not to evaluate the pros and cons between the two methods but to determine whether the parameter values, objective function values (simulation errors) and simulated results obtained are significantly different with each other. The final results (objective function values) from the two methods are good compromise between all objective functions, and none of these results are the worst for any objective function. The calibrated model provides an overall good performance and the simulated results with the calibrated parameter values match the observed data better than the un-calibrated parameters, which supports and justifies the use of multi-objective calibration. The results achieved in this study can be very useful for the calibration of water

  9. Exploring the trade-off between competing objectives for electricity energy retailers through a novel multi-objective framework

    International Nuclear Information System (INIS)

    Charwand, Mansour; Ahmadi, Abdollah; Siano, Pierluigi; Dargahi, Vahid; Sarno, Debora

    2015-01-01

    Highlights: • Proposing a new stochastic multi-objective framework for an electricity retailer. • Proposing a MIP model for an electricity retailer problem. • Employing ε-constraint method to generate Pareto solution. - Abstract: Energy retailer is the intermediary between Generation Companies and consumers. In the medium time horizon, in order to gain market share, he has to minimize his selling price while looking at the profit, which is dependent on the revenues from selling and the costs to buy energy from forward contracts and participation in the market pool. In this paper, the two competing objectives are engaged proposing a new multi-objective framework in which a ε-constraint mathematical technique is used to produce the Pareto front (set of optimal solutions). The stochasticity of energy prices in the market and customer load demand are coped with the Lattice Monte Carlo Simulation (LMCS) and the method of the roulette wheel, which allow the stochastic multi-objective problem to be turned into a set of deterministic equivalents. The method performance is tested into some case studies

  10. Multi-objective optimization in the presence of practical constraints using non-dominated sorting hybrid cuckoo search algorithm

    Directory of Open Access Journals (Sweden)

    M. Balasubbareddy

    2015-12-01

    Full Text Available A novel optimization algorithm is proposed to solve single and multi-objective optimization problems with generation fuel cost, emission, and total power losses as objectives. The proposed method is a hybridization of the conventional cuckoo search algorithm and arithmetic crossover operations. Thus, the non-linear, non-convex objective function can be solved under practical constraints. The effectiveness of the proposed algorithm is analyzed for various cases to illustrate the effect of practical constraints on the objectives' optimization. Two and three objective multi-objective optimization problems are formulated and solved using the proposed non-dominated sorting-based hybrid cuckoo search algorithm. The effectiveness of the proposed method in confining the Pareto front solutions in the solution region is analyzed. The results for single and multi-objective optimization problems are physically interpreted on standard test functions as well as the IEEE-30 bus test system with supporting numerical and graphical results and also validated against existing methods.

  11. SU-F-R-46: Predicting Distant Failure in Lung SBRT Using Multi-Objective Radiomics Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z; Folkert, M; Iyengar, P; Zhang, Y; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To predict distant failure in lung stereotactic body radiation therapy (SBRT) in early stage non-small cell lung cancer (NSCLC) by using a new multi-objective radiomics model. Methods: Currently, most available radiomics models use the overall accuracy as the objective function. However, due to data imbalance, a single object may not reflect the performance of a predictive model. Therefore, we developed a multi-objective radiomics model which considers both sensitivity and specificity as the objective functions simultaneously. The new model is used to predict distant failure in lung SBRT using 52 patients treated at our institute. Quantitative imaging features of PET and CT as well as clinical parameters are utilized to build the predictive model. Image features include intensity features (9), textural features (12) and geometric features (8). Clinical parameters for each patient include demographic parameters (4), tumor characteristics (8), treatment faction schemes (4) and pretreatment medicines (6). The modelling procedure consists of two steps: extracting features from segmented tumors in PET and CT; and selecting features and training model parameters based on multi-objective. Support Vector Machine (SVM) is used as the predictive model, while a nondominated sorting-based multi-objective evolutionary computation algorithm II (NSGA-II) is used for solving the multi-objective optimization. Results: The accuracy for PET, clinical, CT, PET+clinical, PET+CT, CT+clinical, PET+CT+clinical are 71.15%, 84.62%, 84.62%, 85.54%, 82.69%, 84.62%, 86.54%, respectively. The sensitivities for the above seven combinations are 41.76%, 58.33%, 50.00%, 50.00%, 41.67%, 41.67%, 58.33%, while the specificities are 80.00%, 92.50%, 90.00%, 97.50%, 92.50%, 97.50%, 97.50%. Conclusion: A new multi-objective radiomics model for predicting distant failure in NSCLC treated with SBRT was developed. The experimental results show that the best performance can be obtained by combining

  12. Intelligent multi-objective optimization for building energy and comfort management

    Directory of Open Access Journals (Sweden)

    Pervez Hameed Shaikh

    2018-04-01

    Full Text Available The rapid economic and population growth in developing countries, effective and efficient energy usage has turned out to be crucial due to the rising concern of depleting fossil fuels, of which, one-third of primary energy is consumed in buildings and expected to rise by 53% up to 2030. This roaring sector posing a challenge, due to 90% of people spend most of their time in buildings, requires enhanced well-being of indoor environment and living standards. Therefore, building operations require more energy because most of the energy is consumed to make the indoor environment comfortable. Consequently, there is the need of improved energy efficiency to decrease energy consumption in buildings. In relation to this, the primary challenge of building control systems is the energy consumption and comfort level are generally conflicting to each other. Therefore, an important problem of sustainable smart buildings is to effectively manage the energy consumption and comfort and attain the trade-off between the two. Thus, smart buildings are becoming a trend of future construction that facilitates intelligent control in buildings for the fulfillment of occupant’s comfort level. In this study, an intelligent multi-objective system has been developed with evolutionary multi-objective genetic algorithm (MOGA optimization method. The corresponding case study simulation results for the effective management of users’ comfort and energy efficiency have been carried out. The case study results show the management of energy supply for each comfort parameter and maintain high comfort index achieving balance between the energy consumption and comfort level. Keywords: Energy, Buildings, Comfort, Management, Optimization, Trade-off

  13. Multi-Objective Planning Techniques in Distribution Networks: A Composite Review

    Directory of Open Access Journals (Sweden)

    Syed Ali Abbas Kazmi

    2017-02-01

    Full Text Available Distribution networks (DNWs are facing numerous challenges, notably growing load demands, environmental concerns, operational constraints and expansion limitations with the current infrastructure. These challenges serve as a motivation factor for various distribution network planning (DP strategies, such as timely addressing load growth aiming at prominent objectives such as reliability, power quality, economic viability, system stability and deferring costly reinforcements. The continuous transformation of passive to active distribution networks (ADN needs to consider choices, primarily distributed generation (DG, network topology change, installation of new protection devices and key enablers as planning options in addition to traditional grid reinforcements. Since modern DP (MDP in deregulated market environments includes multiple stakeholders, primarily owners, regulators, operators and consumers, one solution fit for all planning scenarios may not satisfy all these stakeholders. Hence, this paper presents a review of several planning techniques (PTs based on mult-objective optimizations (MOOs in DNWs, aiming at better trade-off solutions among conflicting objectives and satisfying multiple stakeholders. The PTs in the paper spread across four distinct planning classifications including DG units as an alternative to costly reinforcements, capacitors and power electronic devices for ensuring power quality aspects, grid reinforcements, expansions, and upgrades as a separate category and network topology alteration and reconfiguration as a viable planning option. Several research works associated with multi-objective planning techniques (MOPT have been reviewed with relevant models, methods and achieved objectives, abiding with system constraints. The paper also provides a composite review of current research accounts and interdependence of associated components in the respective classifications. The potential future planning areas, aiming at

  14. Optimal power system generation scheduling by multi-objective genetic algorithms with preferences

    International Nuclear Information System (INIS)

    Zio, E.; Baraldi, P.; Pedroni, N.

    2009-01-01

    Power system generation scheduling is an important issue both from the economical and environmental safety viewpoints. The scheduling involves decisions with regards to the units start-up and shut-down times and to the assignment of the load demands to the committed generating units for minimizing the system operation costs and the emission of atmospheric pollutants. As many other real-world engineering problems, power system generation scheduling involves multiple, conflicting optimization criteria for which there exists no single best solution with respect to all criteria considered. Multi-objective optimization algorithms, based on the principle of Pareto optimality, can then be designed to search for the set of nondominated scheduling solutions from which the decision-maker (DM) must a posteriori choose the preferred alternative. On the other hand, often, information is available a priori regarding the preference values of the DM with respect to the objectives. When possible, it is important to exploit this information during the search so as to focus it on the region of preference of the Pareto-optimal set. In this paper, ways are explored to use this preference information for driving a multi-objective genetic algorithm towards the preferential region of the Pareto-optimal front. Two methods are considered: the first one extends the concept of Pareto dominance by biasing the chromosome replacement step of the algorithm by means of numerical weights that express the DM' s preferences; the second one drives the search algorithm by changing the shape of the dominance region according to linear trade-off functions specified by the DM. The effectiveness of the proposed approaches is first compared on a case study of literature. Then, a nonlinear, constrained, two-objective power generation scheduling problem is effectively tackled

  15. Optimisation des trajectoires verticales par la methode de la recherche de l'harmonie =

    Science.gov (United States)

    Ruby, Margaux

    Face au rechauffement climatique, les besoins de trouver des solutions pour reduire les emissions de CO2 sont urgentes. L'optimisation des trajectoires est un des moyens pour reduire la consommation de carburant lors d'un vol. Afin de determiner la trajectoire optimale de l'avion, differents algorithmes ont ete developpes. Le but de ces algorithmes est de reduire au maximum le cout total d'un vol d'un avion qui est directement lie a la consommation de carburant et au temps de vol. Un autre parametre, nomme l'indice de cout est considere dans la definition du cout de vol. La consommation de carburant est fournie via des donnees de performances pour chaque phase de vol. Dans le cas de ce memoire, les phases d'un vol complet, soit, une phase de montee, une phase de croisiere et une phase de descente, sont etudies. Des " marches de montee " etaient definies comme des montees de 2 000ft lors de la phase de croisiere sont egalement etudiees. L'algorithme developpe lors de ce memoire est un metaheuristique, nomme la recherche de l'harmonie, qui, concilie deux types de recherches : la recherche locale et la recherche basee sur une population. Cet algorithme se base sur l'observation des musiciens lors d'un concert, ou plus exactement sur la capacite de la musique a trouver sa meilleure harmonie, soit, en termes d'optimisation, le plus bas cout. Differentes donnees d'entrees comme le poids de l'avion, la destination, la vitesse de l'avion initiale et le nombre d'iterations doivent etre, entre autre, fournies a l'algorithme pour qu'il soit capable de determiner la solution optimale qui est definie comme : [Vitesse de montee, Altitude, Vitesse de croisiere, Vitesse de descente]. L'algorithme a ete developpe a l'aide du logiciel MATLAB et teste pour plusieurs destinations et plusieurs poids pour un seul type d'avion. Pour la validation, les resultats obtenus par cet algorithme ont ete compares dans un premier temps aux resultats obtenus suite a une recherche exhaustive qui a

  16. Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Xi JIN; Jie ZHANG; Jin-liang GAO; Wen-yan WU

    2008-01-01

    Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Aigorithm-Ⅱ (NSGA-Ⅱ) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-Ⅱ into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by introduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated; this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.

  17. Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade

    Directory of Open Access Journals (Sweden)

    Prashant J. Patil

    2016-09-01

    Full Text Available Close tolerance and good surface finish are achieved by means of grinding process. This study was carried out for multi-objective optimization of MQL grinding process parameters. Water based Al2O3 and CuO nanofluids of various concentrations are used as lubricant for MQL system. Grinding experiments were carried out on instrumented surface grinding machine. For experimentation purpose Taguchi's method was used. Important process parameters that affect the G ratio and surface finish in MQL grinding are depth of cut, type of lubricant, feed rate, grinding wheel speed, coolant flow rate, and nanoparticle size. Grinding performance was calculated by the measurement G ratio and surface finish. For improvement of grinding process a multi-objective process parameter optimization is performed by use of Taguchi based grey relational analysis. To identify most significant factor of process analysis of variance (ANOVA has been used.

  18. Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains

    International Nuclear Information System (INIS)

    Cambero, Claudia; Sowlati, Taraneh

    2016-01-01

    Highlights: • Quantified social benefits of forest- based biomass supply chain. • Developed multi-objective optimization model. • Incorporated social benefits into multi-objective model. • Solved the model using the AUGMECON method. • Applied the model to a case study in Canada. - Abstract: Utilization of forest and wood residues to produce bioenergy and biofuels could generate additional revenue streams for forestry companies, reduce their environmental impacts and generate new development opportunities for forest-dependent communities. Further development of forest-based biorefineries entails addressing complexities and challenges related to biomass procurement, logistics, technologies, and sustainability. Numerous optimization models have been proposed for the economic and environmental design of biomass-to-bioenergy or biofuel supply chains. A few of them also maximized the job creation potential of the supply chain through the use of employment multipliers. The use of a total job creation indicator as the social optimization objective implies that all new jobs generate the same level of social benefit. In this paper, we quantify the potential social benefit of new forest-based biorefinery supply chains considering different impacts of new jobs based on their type and location. This social benefit is incorporated into a multi-objective mixed integer linear programming model that maximizes the social benefit, net present value and greenhouse gas emission saving potential of a forest-based biorefinery supply chain. The applicability of the model is illustrated through a case study in the interior region of British Columbia, Canada where different utilization paths for available forest and wood residues are investigated. The multi-objective optimization model is solved using a Pareto-generating method. The analysis of the generated set of Pareto-optimal solutions show a trade-off between the net present value of the supply chain and the other two

  19. Study on hybrid multi-objective optimization algorithm for inverse treatment planning of radiation therapy

    International Nuclear Information System (INIS)

    Li Guoli; Song Gang; Wu Yican

    2007-01-01

    Inverse treatment planning for radiation therapy is a multi-objective optimization process. The hybrid multi-objective optimization algorithm is studied by combining the simulated annealing(SA) and genetic algorithm(GA). Test functions are used to analyze the efficiency of algorithms. The hybrid multi-objective optimization SA algorithm, which displacement is based on the evolutionary strategy of GA: crossover and mutation, is implemented in inverse planning of external beam radiation therapy by using two kinds of objective functions, namely the average dose distribution based and the hybrid dose-volume constraints based objective functions. The test calculations demonstrate that excellent converge speed can be achieved. (authors)

  20. Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events

    Directory of Open Access Journals (Sweden)

    R. Moussa

    2009-04-01

    Full Text Available A conceptual lumped rainfall-runoff flood event model was developed and applied on the Gardon catchment located in Southern France and various single-objective and multi-objective functions were used for its calibration. The model was calibrated on 15 events and validated on 14 others. The results of both the calibration and validation phases are compared on the basis of their performance with regards to six criteria, three global criteria and three relative criteria representing volume, peakflow, and the root mean square error. The first type of criteria gives more weight to large events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent on the type of criteria used. Significant trade-offs are observed between the different objectives: no unique set of parameters is able to satisfy all objectives simultaneously. Instead, the solution to the calibration problem is given by a set of Pareto optimal solutions. From this set of optimal solutions, a balanced aggregated objective function is proposed, as a compromise between up to three objective functions. The single-objective and multi-objective calibration strategies are compared both in terms of parameter variation bounds and simulation quality. The results of this study indicate that two well chosen and non-redundant objective functions are sufficient to calibrate the model and that the use of three objective functions does not necessarily yield different results. The problems of non-uniqueness in model calibration, and the choice of the adequate objective functions for flood event models, emphasise the importance of the modeller's intervention. The recent advances in automatic optimisation techniques do not minimise the user's responsibility, who has to choose multiple criteria based on the aims of the study, his appreciation on the errors induced by data and model structure and his knowledge of the

  1. Best Compromise Solutions for Stochastic Multi-Objective ...

    African Journals Online (AJOL)

    Nafiisah

    fuzzy logic theory is applied to each objective function to obtain a fuzzy .... PG1 ≤ PG1max) by using a Monte-Carlo method in which m instantiates of PG2 to PGn ... The probability is then computed by using P(PG1min ≤ PG1 ≤ PG1max) = m.

  2. Multi-objective optimization of bioethanol production during cold enzyme starch hydrolysis in very high gravity cassava mash.

    Science.gov (United States)

    Yingling, Bao; Li, Chen; Honglin, Wang; Xiwen, Yu; Zongcheng, Yan

    2011-09-01

    Cold enzymatic hydrolysis conditions for bioethanol production were optimized using multi-objective optimization. Response surface methodology was used to optimize the effects of α-amylase, glucoamylase, liquefaction temperature and liquefaction time on S. cerevisiae biomass, ethanol concentration and starch utilization ratio. The optimum hydrolysis conditions were: 224 IU/g(starch) α-amylase, 694 IU/g(starch) glucoamylase, 77°C and 104 min for biomass; 264 IU/g(starch) α-amylase, 392 IU/g(starch) glucoamylase, 60°C and 85 min for ethanol concentration; 214 IU/g(starch) α-amylase, 398 IU/g(starch) glucoamylase, 79°C and 117 min for starch utilization ratio. The hydrolysis conditions were subsequently evaluated by multi-objectives optimization utilizing the weighted coefficient methods. The Pareto solutions for biomass (3.655-4.380×10(8)cells/ml), ethanol concentration (15.96-18.25 wt.%) and starch utilization ratio (92.50-94.64%) were obtained. The optimized conditions were shown to be feasible and reliable through verification tests. This kind of multi-objective optimization is of potential importance in industrial bioethanol production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  4. Development of an optimised 1:1 physiotherapy intervention post first-time lumbar discectomy: a mixed-methods study

    Science.gov (United States)

    Rushton, A; White, L; Heap, A; Heneghan, N; Goodwin, P

    2016-01-01

    Objectives To develop an optimised 1:1 physiotherapy intervention that reflects best practice, with flexibility to tailor management to individual patients, thereby ensuring patient-centred practice. Design Mixed-methods combining evidence synthesis, expert review and focus groups. Setting Secondary care involving 5 UK specialist spinal centres. Participants A purposive panel of clinical experts from the 5 spinal centres, comprising spinal surgeons, inpatient and outpatient physiotherapists, provided expert review of the draft intervention. Purposive samples of patients (n=10) and physiotherapists (n=10) (inpatient/outpatient physiotherapists managing patients with lumbar discectomy) were invited to participate in the focus groups at 1 spinal centre. Methods A draft intervention developed from 2 systematic reviews; a survey of current practice and research related to stratified care was circulated to the panel of clinical experts. Lead physiotherapists collaborated with physiotherapy and surgeon colleagues to provide feedback that informed the intervention presented at 2 focus groups investigating acceptability to patients and physiotherapists. The focus groups were facilitated by an experienced facilitator, recorded in written and tape-recorded forms by an observer. Tape recordings were transcribed verbatim. Data analysis, conducted by 2 independent researchers, employed an iterative and constant comparative process of (1) initial descriptive coding to identify categories and subsequent themes, and (2) deeper, interpretive coding and thematic analysis enabling concepts to emerge and overarching pattern codes to be identified. Results The intervention reflected best available evidence and provided flexibility to ensure patient-centred care. The intervention comprised up to 8 sessions of 1:1 physiotherapy over 8 weeks, starting 4 weeks postsurgery. The intervention was acceptable to patients and physiotherapists. Conclusions A rigorous process informed an

  5. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method. Optimisation, characterisation and rheology.

    Science.gov (United States)

    Tredwin, Christopher J; Young, Anne M; Georgiou, George; Shin, Song-Hee; Kim, Hae-Won; Knowles, Jonathan C

    2013-02-01

    Currently, most titanium implant coatings are made using hydroxyapatite and a plasma spraying technique. There are however limitations associated with plasma spraying processes including poor adherence, high porosity and cost. An alternative method utilising the sol-gel technique offers many potential advantages but is currently lacking research data for this application. It was the objective of this study to characterise and optimise the production of Hydroxyapatite (HA), fluorhydroxyapatite (FHA) and fluorapatite (FA) using a sol-gel technique and assess the rheological properties of these materials. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethylphosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the sol-gel derived FHA and FA. Optimisation of the chemistry and subsequent characterisation of the sol-gel derived materials was carried out using X-ray Diffraction (XRD) and Differential Thermal Analysis (DTA). Rheology of the sol-gels was investigated using a viscometer and contact angle measurement. A protocol was established that allowed synthesis of HA, FHA and FA that were at least 99% phase pure. The more fluoride incorporated into the apatite structure; the lower the crystallisation temperature, the smaller the unit cell size (changes in the a-axis), the higher the viscosity and contact angle of the sol-gel derived apatite. A technique has been developed for the production of HA, FHA and FA by the sol-gel technique. Increasing fluoride substitution in the apatite structure alters the potential coating properties. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. A Survey of Multi-Objective Sequential Decision-Making

    OpenAIRE

    Roijers, D.M.; Vamplew, P.; Whiteson, S.; Dazeley, R.

    2013-01-01

    Sequential decision-making problems with multiple objectives arise naturally in practice and pose unique challenges for research in decision-theoretic planning and learning, which has largely focused on single-objective settings. This article surveys algorithms designed for sequential decision-making problems with multiple objectives. Though there is a growing body of literature on this subject, little of it makes explicit under what circumstances special methods are needed to solve multi-obj...

  7. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.

    Science.gov (United States)

    Elhossini, Ahmed; Areibi, Shawki; Dony, Robert

    2010-01-01

    This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.

  8. Irrigation water allocation optimization using multi-objective evolutionary algorithm (MOEA) - a review

    Science.gov (United States)

    Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian

    2018-03-01

    This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.

  9. Fuzzy Multi Objective Linear Programming Problem with Imprecise Aspiration Level and Parameters

    Directory of Open Access Journals (Sweden)

    Zahra Shahraki

    2015-07-01

    Full Text Available This paper considers the multi-objective linear programming problems with fuzzygoal for each of the objective functions and constraints. Most existing works deal withlinear membership functions for fuzzy goals. In this paper, exponential membershipfunction is used.

  10. Adaptive multi-objective Optimization scheme for cognitive radio resource management

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2014-01-01

    configuration by exploiting optimization and machine learning techniques. In this paper, we propose an Adaptive Multi-objective Optimization Scheme (AMOS) for cognitive radio resource management to improve spectrum operation and network performance

  11. Coastal aquifer management based on surrogate models and multi-objective optimization

    Science.gov (United States)

    Mantoglou, A.; Kourakos, G.

    2011-12-01

    The demand for fresh water in coastal areas and islands can be very high, especially in summer months, due to increased local needs and tourism. In order to satisfy demand, a combined management plan is proposed which involves: i) desalinization (if needed) of pumped water to a potable level using reverse osmosis and ii) injection of biologically treated waste water into the aquifer. The management plan is formulated into a multiobjective optimization framework, where simultaneous minimization of economic and environmental costs is desired; subject to a constraint to satisfy demand. The method requires modeling tools, which are able to predict the salinity levels of the aquifer in response to different alternative management scenarios. Variable density models can simulate the interaction between fresh and saltwater; however, they are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNN)]. The surrogate models are trained adaptively during optimization based on a Genetic Algorithm. In the crossover step of the genetic algorithm, each pair of parents generates a pool of offspring. All offspring are evaluated based on the fast surrogate model. Then only the most promising offspring are evaluated based on the exact numerical model. This eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. Three new criteria for selecting the most promising offspring were proposed, which improve the Pareto set and maintain the diversity of the optimum solutions. The method has important advancements compared to previous methods, e.g. alleviation of propagation of errors due to surrogate model approximations. The method is applied to a real coastal aquifer in the island of Santorini which is a very touristy island with high water demands. The results show that the algorithm

  12. Multi-objective efficiency enhancement using workload spreading in an operational data center

    International Nuclear Information System (INIS)

    Habibi Khalaj, Ali; Scherer, Thomas; Siriwardana, Jayantha; Halgamuge, Saman K.

    2015-01-01

    Highlights: • Development of the heat-flow reduced order model (HFROM) for the IBM ZRL data center. • Verification of the developed HFROM with the experimentally verified CFD model. • Multi-objective efficiency enhancement of the HFROM using particle swarm optimization. • Improving the COP of the data center’s cooling system by about 17%. • Increasing the total allocated workload of the servers by about 10%. - Abstract: The cooling systems of rapidly growing Data Centers (DCs) consume a considerable amount of energy, which is one of the main concerns in designing and operating DCs. The main source of thermal inefficiency in a typical air-cooled DC is hot air recirculation from outlets of servers into their inlets, causing hot spots and leading to performance reduction of the cooling system. In this study, a thermally aware workload spreading method is proposed for reducing the hot spots while the total allocated server workload is increased. The core of this methodology lies in developing an appropriate thermal DC model for the optimization process. Given the fact that utilizing a high-fidelity thermal model of a DC is highly time consuming in the optimization process, a three dimensional reduced order model of a real DC is developed in this study. This model, whose boundary conditions are determined based on measurement data of an operational DC, is developed based on the potential flow theory updated with the Rankine vortex to account for buoyancy and air recirculation effects inside the DC. Before evaluating the proposed method, this model is verified with a computational fluid dynamic (CFD) model simulated with the same boundary conditions. The efficient load spreading method is achieved by applying a multi-objective particle swarm optimization (MOPSO) algorithm whose objectives are to minimize the hot spot occurrences and to maximize the total workload allocated to servers. In this case study, by applying the proposed method, the Coefficient of

  13. Well Field Management Using Multi-Objective Optimization

    DEFF Research Database (Denmark)

    Hansen, Annette Kirstine; Hendricks Franssen, H. J.; Bauer-Gottwein, Peter

    2013-01-01

    with infiltration basins, injection wells and abstraction wells. The two management objectives are to minimize the amount of water needed for infiltration and to minimize the risk of getting contaminated water into the drinking water wells. The management is subject to a daily demand fulfilment constraint. Two...... different optimization methods are tested. Constant scheduling where decision variables are held constant during the time of optimization, and sequential scheduling where the optimization is performed stepwise for daily time steps. The latter is developed to work in a real-time situation. Case study...

  14. Interactive Preference Learning of Utility Functions for Multi-Objective Optimization

    OpenAIRE

    Dewancker, Ian; McCourt, Michael; Ainsworth, Samuel

    2016-01-01

    Real-world engineering systems are typically compared and contrasted using multiple metrics. For practical machine learning systems, performance tuning is often more nuanced than minimizing a single expected loss objective, and it may be more realistically discussed as a multi-objective optimization problem. We propose a novel generative model for scalar-valued utility functions to capture human preferences in a multi-objective optimization setting. We also outline an interactive active learn...

  15. A procedure for multi-objective optimization of tire design parameters

    OpenAIRE

    Nikola Korunović; Miloš Madić; Miroslav Trajanović; Miroslav Radovanović

    2015-01-01

    The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zo...

  16. An experimental analysis of design choices of multi-objective ant colony optimization algorithms

    OpenAIRE

    Lopez-Ibanez, Manuel; Stutzle, Thomas

    2012-01-01

    There have been several proposals on how to apply the ant colony optimization (ACO) metaheuristic to multi-objective combinatorial optimization problems (MOCOPs). This paper proposes a new formulation of these multi-objective ant colony optimization (MOACO) algorithms. This formulation is based on adding specific algorithm components for tackling multiple objectives to the basic ACO metaheuristic. Examples of these components are how to represent multiple objectives using pheromone and heuris...

  17. Multi-objective possibilistic model for portfolio selection with transaction cost

    Science.gov (United States)

    Jana, P.; Roy, T. K.; Mazumder, S. K.

    2009-06-01

    In this paper, we introduce the possibilistic mean value and variance of continuous distribution, rather than probability distributions. We propose a multi-objective Portfolio based model and added another entropy objective function to generate a well diversified asset portfolio within optimal asset allocation. For quantifying any potential return and risk, portfolio liquidity is taken into account and a multi-objective non-linear programming model for portfolio rebalancing with transaction cost is proposed. The models are illustrated with numerical examples.

  18. Quantitative Trait Loci Mapping Problem: An Extinction-Based Multi-Objective Evolutionary Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Nicholas S. Flann

    2013-09-01

    Full Text Available The Quantitative Trait Loci (QTL mapping problem aims to identify regions in the genome that are linked to phenotypic features of the developed organism that vary in degree. It is a principle step in determining targets for further genetic analysis and is key in decoding the role of specific genes that control quantitative traits within species. Applications include identifying genetic causes of disease, optimization of cross-breeding for desired traits and understanding trait diversity in populations. In this paper a new multi-objective evolutionary algorithm (MOEA method is introduced and is shown to increase the accuracy of QTL mapping identification for both independent and epistatic loci interactions. The MOEA method optimizes over the space of possible partial least squares (PLS regression QTL models and considers the conflicting objectives of model simplicity versus model accuracy. By optimizing for minimal model complexity, MOEA has the advantage of solving the over-fitting problem of conventional PLS models. The effectiveness of the method is confirmed by comparing the new method with Bayesian Interval Mapping approaches over a series of test cases where the optimal solutions are known. This approach can be applied to many problems that arise in analysis of genomic data sets where the number of features far exceeds the number of observations and where features can be highly correlated.

  19. Multi-Objective Optimization of Grillages Applying the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Darius Mačiūnas

    2012-01-01

    Full Text Available The article analyzes the optimization of grillage-type foundations seeking for the least possible reactive forces in the poles for a given number of poles and for the least possible bending moments of absolute values in the connecting beams of the grillage. Therefore, we suggest using a compromise objective function (to be minimized that consists of the maximum reactive force arising in all poles and the maximum bending moment of the absolute value in connecting beams; both components include the given weights. The variables of task design are pole positions under connecting beams. The optimization task is solved applying the algorithm containing all the initial data of the problem. Reactive forces and bending moments are calculated using an original program (finite element method is applied. This program is integrated into the optimization algorithm using the “black-box” principle. The “black-box” finite element program sends back the corresponding value of the objective function. Numerical experiments revealed the optimal quantity of points to compute bending moments. The obtained results show a certain ratio of weights in the objective function where the contribution of reactive forces and bending moments to the objective function are equivalent. This solution can serve as a pilot project for more detailed design.Article in Lithuanian

  20. Multi-Objective Fuzzy Linear Programming In Agricultural Production Planning

    Directory of Open Access Journals (Sweden)

    H.M.I.U. Herath

    2015-08-01

    Full Text Available Abstract Modern agriculture is characterized by a series of conflicting optimization criteria that obstruct the decision-making process in the planning of agricultural production. Such criteria are usually net profit total cost total production etc. At the same time the decision making process in the agricultural production planning is often conducted with data that accidentally occur in nature or that are fuzzy not deterministic. Such data are the yields of various crops the prices of products and raw materials demand for the product the available quantities of production factors such as water labor etc. In this paper a fuzzy multi-criteria mathematical programming model is presented. This model is applied in a region of 10 districts in Sri Lanka where paddy is cultivated under irrigated and rain fed water in the two main seasons called Yala and Maha and the optimal production plan is achieved. This study was undertaken to find out the optimal allocation of land for paddy to get a better yield while satisfying the two conflicting objectives profit maximizing and cost minimizing subjected to the utilizing of water constraint and the demand constraint. Only the availability of land constraint is considered as a crisp in nature while objectives and other constraints are treated as fuzzy. It is observed that the MOFLP is an effective method to handle more than a single objective occurs in an uncertain vague environment.

  1. A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm

    Science.gov (United States)

    Chae, Han Gil

    Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the

  2. Strategies and Methods for Optimisation of Protection against Internal Exposures of Workers from Industrial Natural Sources (SMOPIE)

    International Nuclear Information System (INIS)

    Van der Steen, J.; Timmermans, C.W.M.; Van Weers, A.W.; Degrange, J.P.; Lefaure, C.; Shaw, P.V.

    2004-01-01

    The report provides summaries on the Work Packages 1 and 2 (see Annex 1 and 2 below) and describes the work carried out in Work Packages 3, 4 and 5. In addition it provides a summary of the main achievements of the project. The objective of Work Package 3 was to try to categorise exposure situations described in the case studies in terms of a limited number of exposure parameters relevant to the implementation of ALARA. It became clear that the characterisation criteria considered for the many different exposure situations in the industrial cases led to an important practical conclusion, namely that the preferred choice of the air sampling method (i.e. to implement ALARA) will be the same in all the industries considered. The aim of work package 4 (Review and evaluation of monitoring strategies and methods) was to review the technical capabilities and limitations of different forms of internal radiation monitoring. This included a consideration of monitoring strategies, methods and equipment, as appropriate. The review considered which types of monitoring (if any) are the most effective in terms of contributing to the optimisation of internal exposures (from inhalation) and whether further developments are needed, especially in relation to existing monitoring equipment. One of the main conclusions is: personal air sampling (PAS) is the best method for assessing occupational doses from inhalation of aerosols. The first step in any monitoring strategy should be an assessment of worker doses using this technique. The Appendices 1-4 of Annex 3 provide the detailed supporting material for Work Package 4. Work Package 5 provides recommended strategies, methods and tools for optimisation of internal exposures in industrial work activities involving natural radionuclides. It is based on the case studies as described in Work Package 2 and the analysis of these studies in Work Package 3. It also takes into account the assessment of monitoring strategies, methods and tools

  3. Multi-objective Analysis for a Sequencing Planning of Mixed-model Assembly Line

    Science.gov (United States)

    Shimizu, Yoshiaki; Waki, Toshiya; Yoo, Jae Kyu

    Diversified customer demands are raising importance of just-in-time and agile manufacturing much more than before. Accordingly, introduction of mixed-model assembly lines becomes popular to realize the small-lot-multi-kinds production. Since it produces various kinds on the same assembly line, a rational management is of special importance. With this point of view, this study focuses on a sequencing problem of mixed-model assembly line including a paint line as its preceding process. By taking into account the paint line together, reducing work-in-process (WIP) inventory between these heterogeneous lines becomes a major concern of the sequencing problem besides improving production efficiency. Finally, we have formulated the sequencing problem as a bi-objective optimization problem to prevent various line stoppages, and to reduce the volume of WIP inventory simultaneously. Then we have proposed a practical method for the multi-objective analysis. For this purpose, we applied the weighting method to derive the Pareto front. Actually, the resulting problem is solved by a meta-heuristic method like SA (Simulated Annealing). Through numerical experiments, we verified the validity of the proposed approach, and discussed the significance of trade-off analysis between the conflicting objectives.

  4. From Single- to Multi-Objective Auto-Tuning of Programs: Advantages and Implications

    Directory of Open Access Journals (Sweden)

    Juan Durillo

    2014-01-01

    Full Text Available Automatic tuning (auto-tuning of software has emerged in recent years as a promising method that tries to automatically adapt the behaviour of a program to attain different performance objectives on a given computing system. This method is gaining momentum due to the increasing complexity of modern multicore-based hardware architectures. Many solutions to auto-tuning have been explored ranging from simple random search to more sophisticate methods like machine learning or evolutionary search. To this day, it is still unclear whether these approaches are general enough to encompass all the complexities of the problem (e.g. search space, parameters influencing the search space, input data sensitivity, etc., or which approach is best suited for a given problem. Furthermore, the growing interest in auto-tuning a program for several objectives is increasing this confusion even further. The goal of this paper is to formally describe the problem addressed by auto-tuning programs and review existing solutions highlighting the advantages and drawbacks of different techniques for single-objective as well as multi-objective auto-tuning approaches.

  5. Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object Adaptive Optics on a Multi-GPU System

    KAUST Repository

    Charara, Ali; Ltaief, Hatem; Gratadour, Damien; Keyes, David E.; Sevin, Arnaud; Abdelfattah, Ahmad; Gendron, Eric; Morel, Carine; Vidal, Fabrice

    2014-01-01

    called MOSAIC has been proposed to perform multi-object spectroscopy using the Multi-Object Adaptive Optics (MOAO) technique. The core implementation of the simulation lies in the intensive computation of a tomographic reconstruct or (TR), which is used

  6. Multi-Objective Optimization of Squeeze Casting Process using Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Patel G.C.M.

    2016-09-01

    Full Text Available The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.. It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA, particle swarm optimization (PSO and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.

  7. Multi-Objective Optimization for Pure Permanent-Magnet Undulator Magnets Ordering Using Modified Simulated Annealing

    CERN Document Server

    Chen Nian; Li, Ge

    2004-01-01

    Undulator field errors influence the electron beam trajectories and lower the radiation quality. Angular deflection of electron beam is determined by first field integral, orbital displacement of electron beam is determined by second field integral and radiation quality can be evaluated by rms field error or phase error. Appropriate ordering of magnets can greatly reduce the errors. We apply a modified simulated annealing algorithm to this multi-objective optimization problem, taking first field integral, second field integral and rms field error as objective functions. Undulator with small field errors can be designed by this method within a reasonable calculation time even for the case of hundreds of magnets (first field integral reduced to 10-6T·m, second integral to 10-6T·m2 and rms field error to 0.01%). Thus, the field correction after assembling of undulator will be greatly simplified. This paper gives the optimizing process in detail and puts forward a new method to quickly calculate the rms field e...

  8. How many plans are needed in an IMRT multi-objective plan database?

    International Nuclear Information System (INIS)

    Craft, David; Bortfeld, Thomas

    2008-01-01

    In multi-objective radiotherapy planning, we are interested in Pareto surfaces of dimensions 2 up to about 10 (for head and neck cases, the number of structures to trade off can be this large). A key question that has not been answered yet is: how many plans does it take to sufficiently represent a high-dimensional Pareto surface? In this paper, we present a method to answer this question, and we show that the number of points needed is modest: 75 plans always controlled the error to within 5%, and in all cases but one, N + 1 plans, where N is the number of objectives, was enough for <15% error. We introduce objective correlation matrices and principal component analysis (PCA) of the beamlet solutions as two methods to understand this. PCA reveals that the feasible beamlet solutions of a Pareto database lie in a narrow, small dimensional subregion of the full beamlet space, which helps explain why the number of plans needed to characterize the database is small

  9. Multi-objective optimization of aircraft design for emission and cost reductions

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2014-02-01

    Full Text Available Pollutant gases emitted from the civil jet are doing more and more harm to the environment with the rapid development of the global commercial aviation transport. Low environmental impact has become a new requirement for aircraft design. In this paper, estimation method for emission in aircraft conceptual design stage is improved based on the International Civil Aviation Organization (ICAO aircraft engine emissions databank and the polynomial curve fitting methods. The greenhouse gas emission (CO2 equivalent per seat per kilometer is proposed to measure the emissions. An approximate sensitive analysis and a multi-objective optimization of aircraft design for tradeoff between greenhouse effect and direct operating cost (DOC are performed with five geometry variables of wing configuration and two flight operational parameters. The results indicate that reducing the cruise altitude and Mach number may result in a decrease of the greenhouse effect but an increase of DOC. And the two flight operational parameters have more effects on the emissions than the wing configuration. The Pareto-optimal front shows that a decrease of 29.8% in DOC is attained at the expense of an increase of 10.8% in greenhouse gases.

  10. COORDINATED LOCATION, DISTRIBUTION AND INVENTORY DECISIONS IN SUPPLY CHAIN NETWORK DESIGN: A MULTI-OBJECTIVE APPROACH

    Directory of Open Access Journals (Sweden)

    G. Reza Nasiri

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This research presents an integrated multi-objective distribution model for use in simultaneous strategic and operational food supply chain (SC planning. The proposed method is adopted to allow use of a performance measurement system that includes conflicting objectives such as distribution costs, customer service level (safety stock holding, resource utilisation, and the total delivery time, with reference to multiple warehouse capacities and uncertain forecast demands. To deal with these objectives and enable the decision makers (DMs to evaluate a greater number of alternative solutions, three different approaches are implemented in the proposed solution procedure. A detailed case study derived from food industrial data is used to illustrate the preference of the proposed approach. The proposed method yields an efficient solution and an overall degree of DMs’ satisfaction with the determined objective values.

    AFRIKAANSE OPSOMMING: Die navorsing behandel ’n geïntegreerde multidoelwit distribusiemodel vir strategiese beplanning van ’n voedseltoevoerketting. Om met die model doelmatig te werk, moet ’n versameling van randvoorwaardes hanteer word om die saamgestelde optimiseringsdoelwit te bereik teen ’n agtergrond van uiteenlopende sienings.

  11. Multi-objective optimization of a cascade refrigeration system: Exergetic, economic, environmental, and inherent safety analysis

    International Nuclear Information System (INIS)

    Eini, Saeed; Shahhosseini, Hamidreza; Delgarm, Navid; Lee, Moonyong; Bahadori, Alireza

    2016-01-01

    Highlights: • A multi-objective optimization is performed for a cascade refrigeration cycle. • The optimization problem considers inherently safe design as well as 3E analysis. • As a measure of inherent safety level a quantitative risk analysis is utilized. • A CO 2 /NH 3 cascade refrigeration system is compared with a CO 2 /C 3 H 8 system. - Abstract: Inherently safer design is the new approach to maximize the overall safety of a process plant. This approach suggests some risk reduction strategies to be implemented in the early stages of design. In this paper a multi-objective optimization was performed considering economic, exergetic, and environmental aspects besides evaluation of the inherent safety level of a cascade refrigeration system. The capital costs, the processing costs, and the social cost due to CO 2 emission were considered to be included in the economic objective function. Exergetic efficiency of the plant was considered as the second objective function. As a measure of inherent safety level, Quantitative Risk Assessment (QRA) was performed to calculate total risk level of the cascade as the third objective function. Two cases (ammonia and propane) were considered to be compared as the refrigerant of the high temperature circuit. The achieved optimum solutions from the multi–objective optimization process were given as Pareto frontier. The ultimate optimal solution from available solutions on the Pareto optimal curve was selected using Decision-Makings approaches. NSGA-II algorithm was used to obtain Pareto optimal frontiers. Also, three decision-making approaches (TOPSIS, LINMAP, and Shannon’s entropy methods) were utilized to select the final optimum point. Considering continuous material release from the major equipment in the plant, flash and jet fire scenarios were considered for the CO 2 /C 3 H 8 cycle and toxic hazards were considered for the CO 2 /NH 3 cycle. The results showed no significant differences between CO 2 /NH 3 and

  12. Scalable multi-objective control for large scale water resources systems under uncertainty

    Science.gov (United States)

    Giuliani, Matteo; Quinn, Julianne; Herman, Jonathan; Castelletti, Andrea; Reed, Patrick

    2016-04-01

    The use of mathematical models to support the optimal management of environmental systems is rapidly expanding over the last years due to advances in scientific knowledge of the natural processes, efficiency of the optimization techniques, and availability of computational resources. However, undergoing changes in climate and society introduce additional challenges for controlling these systems, ultimately motivating the emergence of complex models to explore key causal relationships and dependencies on uncontrolled sources of variability. In this work, we contribute a novel implementation of the evolutionary multi-objective direct policy search (EMODPS) method for controlling environmental systems under uncertainty. The proposed approach combines direct policy search (DPS) with hierarchical parallelization of multi-objective evolutionary algorithms (MOEAs) and offers a threefold advantage: the DPS simulation-based optimization can be combined with any simulation model and does not add any constraint on modeled information, allowing the use of exogenous information in conditioning the decisions. Moreover, the combination of DPS and MOEAs prompts the generation or Pareto approximate set of solutions for up to 10 objectives, thus overcoming the decision biases produced by cognitive myopia, where narrow or restrictive definitions of optimality strongly limit the discovery of decision relevant alternatives. Finally, the use of large-scale MOEAs parallelization improves the ability of the designed solutions in handling the uncertainty due to severe natural variability. The proposed approach is demonstrated on a challenging water resources management problem represented by the optimal control of a network of four multipurpose water reservoirs in the Red River basin (Vietnam). As part of the medium-long term energy and food security national strategy, four large reservoirs have been constructed on the Red River tributaries, which are mainly operated for hydropower

  13. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2016-01-01

    Highlights: • Finite time exergoeconomic multi objective optimization of a Brayton cycle. • Comparing the exergoeconomic and the ecological function optimization results. • Inserting the cost of fluid streams concept into finite-time thermodynamics. • Exergoeconomic sensitivity analysis of a regenerative Brayton cycle. • Suggesting the cycle performance curve drawing and utilization. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power maximization and then exergoeconomic optimization using finite-time thermodynamic concept and finite-size components. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is used deploying time variations. The decision variables for the optimum state (of multi objective exergoeconomic optimization) are compared to the maximum power state. One can see that the multi objective exergoeconomic optimization results in a better performance than that obtained with the maximum power state. The results demonstrate that system performance at optimum point of multi objective optimization yields 71% of the maximum power, but only with exergy destruction as 24% of the amount that is produced at the maximum power state and 67% lower total cost rate than that of the maximum power state. In order to assess the impact of the variation of the decision variables on the objective functions, sensitivity analysis is conducted. Finally, the cycle performance curve drawing according to exergoeconomic multi objective optimization results and its utilization, are suggested.

  14. Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization

    International Nuclear Information System (INIS)

    Zhang, Enze; Chen, Qingwei

    2016-01-01

    Most of the existing works addressing reliability redundancy allocation problems are based on the assumption of fixed reliabilities of components. In real-life situations, however, the reliabilities of individual components may be imprecise, most often given as intervals, under different operating or environmental conditions. This paper deals with reliability redundancy allocation problems modeled in an interval environment. An interval multi-objective optimization problem is formulated from the original crisp one, where system reliability and cost are simultaneously considered. To render the multi-objective particle swarm optimization (MOPSO) algorithm capable of dealing with interval multi-objective optimization problems, a dominance relation for interval-valued functions is defined with the help of our newly proposed order relations of interval-valued numbers. Then, the crowding distance is extended to the multi-objective interval-valued case. Finally, the effectiveness of the proposed approach has been demonstrated through two numerical examples and a case study of supervisory control and data acquisition (SCADA) system in water resource management. - Highlights: • We model the reliability redundancy allocation problem in an interval environment. • We apply the particle swarm optimization directly on the interval values. • A dominance relation for interval-valued multi-objective functions is defined. • The crowding distance metric is extended to handle imprecise objective functions.

  15. Resolution of crystal structures by X-ray and neutrons powder diffraction using global optimisation methods; Resolution des structures cristallines par diffraction des rayons X et neutrons sur poudres en utilisant les methodes d'optimisation globale

    Energy Technology Data Exchange (ETDEWEB)

    Palin, L

    2005-03-15

    We have shown in this work that X-ray diffraction on powder is a powerful tool to analyze crystal structure. The purpose of this thesis is the resolution of crystal structures by X-ray and neutrons diffraction on powder using global optimisation methods. We have studied 3 different topics. The first one is the order-disorder phenomena observed in some globular organic molecular solids. The second is the opiate family of neuropeptides. These neurotransmitters regulate sensory functions including pain and control of respiration in the central nervous system. The aim of our study was to try to determine the crystal structure of Leu-enkephalin and some of its sub-fragments. The determination of the crystal structures has been done performing Monte Carlo simulations. The third one is the location of benzene in a sodium-X zeolite. The zeolite framework was already known and the benzene has been localized by simulated annealing and by the use of maximum entropy maps.

  16. Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization

    International Nuclear Information System (INIS)

    Daróczy, László; Janiga, Gábor; Thévenin, Dominique

    2014-01-01

    A two-dimensional cross-flow tube bank heat exchanger arrangement problem with internal laminar flow is considered in this work. The objective is to optimize the arrangement of tubes and find the most favorable geometries, in order to simultaneously maximize the rate of heat exchange while obtaining a minimum pressure loss. A systematic study was performed involving a large number of simulations. The global optimization method NSGA-II was retained. A fully automatized in-house optimization environment was used to solve the problem, including mesh generation and CFD (computational fluid dynamics) simulations. The optimization was performed in parallel on a Linux cluster with a very good speed-up. The main purpose of this article is to illustrate and analyze a heat exchanger arrangement problem in its most general form and to provide a fundamental understanding of the structure of the Pareto front and optimal geometries. The considered conditions are particularly suited for low-power applications, as found in a growing number of practical systems in an effort toward increasing energy efficiency. For such a detailed analysis with more than 140 000 CFD-based evaluations, a design-of-experiment study involving a response surface would not be sufficient. Instead, all evaluations rely on a direct solution using a CFD solver. - Highlights: • Cross-flow tube bank heat exchanger arrangement problem. • A fully automatized multi-objective optimization based on genetic algorithm. • A systematic study involving a large number of CFD (computational fluid dynamics) simulations

  17. Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling

    Directory of Open Access Journals (Sweden)

    Zhong-Kai Feng

    2017-01-01

    Full Text Available With the increasingly serious energy crisis and environmental pollution, the short-term economic environmental hydrothermal scheduling (SEEHTS problem is becoming more and more important in modern electrical power systems. In order to handle the SEEHTS problem efficiently, the parallel multi-objective genetic algorithm (PMOGA is proposed in the paper. Based on the Fork/Join parallel framework, PMOGA divides the whole population of individuals into several subpopulations which will evolve in different cores simultaneously. In this way, PMOGA can avoid the wastage of computational resources and increase the population diversity. Moreover, the constraint handling technique is used to handle the complex constraints in SEEHTS, and a selection strategy based on constraint violation is also employed to ensure the convergence speed and solution feasibility. The results from a hydrothermal system in different cases indicate that PMOGA can make the utmost of system resources to significantly improve the computing efficiency and solution quality. Moreover, PMOGA has competitive performance in SEEHTS when compared with several other methods reported in the previous literature, providing a new approach for the operation of hydrothermal systems.

  18. Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power

    Directory of Open Access Journals (Sweden)

    Fang-Fang Li

    2015-07-01

    Full Text Available To maximize annual power generation and to improve firm power are important but competing goals for hydropower stations. The firm power output is decisive for the installed capacity in design, and represents the reliability of the power generation when the power plant is put into operation. To improve the firm power, the whole generation process needs to be as stable as possible, while the maximization of power generation requires a rapid rise of the water level at the beginning of the storage period. Taking the minimal power output as the firm power, both the total amount and the reliability of the hydropower generation are considered simultaneously in this study. A multi-objective model to improve the comprehensive benefits of hydropower stations are established, which is optimized by Non-dominated Sorting Genetic Algorithm-II (NSGA-II. The Three Gorges Cascade Hydropower System (TGCHS is taken as the study case, and the Pareto Fronts in different search spaces are obtained. The results not only prove the effectiveness of the proposed method, but also provide operational references for the TGCHS, indicating that there is room of improvement for both the annual power generation and the firm power.

  19. Multi-Objective Optimization of Experiments Using Curvature and Fisher Information Matrix

    Directory of Open Access Journals (Sweden)

    Erica Manesso

    2017-11-01

    Full Text Available The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental data. In this regard, experimental conditions have a strong influence on parameter identifiability and should therefore be optimized to give the maximum information for parameter estimation. Existing model-based design of experiment (MBDOE methods commonly rely on the Fisher information matrix (FIM for defining a metric of data informativeness. When the model behavior is highly nonlinear, FIM-based criteria may lead to suboptimal designs, as the FIM only accounts for the linear variation in the model outputs with respect to the parameters. In this work, we developed a multi-objective optimization (MOO MBDOE, for which the model nonlinearity was taken into consideration through the use of curvature. The proposed MOO MBDOE involved maximizing data informativeness using a FIM-based metric and at the same time minimizing the model curvature. We demonstrated the advantages of the MOO MBDOE over existing FIM-based and other curvature-based MBDOEs in an application to the kinetic modeling of fed-batch fermentation of baker’s yeast.

  20. Multi-Objective Predictive Balancing Control of Battery Packs Based on Predictive Current

    Directory of Open Access Journals (Sweden)

    Wenbiao Li

    2016-04-01

    Full Text Available Various balancing topology and control methods have been proposed for the inconsistency problem of battery packs. However, these strategies only focus on a single objective, ignore the mutual interaction among various factors and are only based on the external performance of the battery pack inconsistency, such as voltage balancing and state of charge (SOC balancing. To solve these problems, multi-objective predictive balancing control (MOPBC based on predictive current is proposed in this paper, namely, in the driving process of an electric vehicle, using predictive control to predict the battery pack output current the next time. Based on this information, the impact of the battery pack temperature caused by the output current can be obtained. Then, the influence is added to the battery pack balancing control, which makes the present degradation, temperature, and SOC imbalance achieve balance automatically due to the change of the output current the next moment. According to MOPBC, the simulation model of the balancing circuit is built with four cells in Matlab/Simulink. The simulation results show that MOPBC is not only better than the other traditional balancing control strategies but also reduces the energy loss in the balancing process.

  1. High Fidelity Multi-Objective Design Optimization of a Downscaled Cusped Field Thruster

    Directory of Open Access Journals (Sweden)

    Thomas Fahey

    2017-11-01

    Full Text Available The Cusped Field Thruster (CFT concept has demonstrated significantly improved performance over the Hall Effect Thruster and the Gridded Ion Thruster; however, little is understood about the complexities of the interactions and interdependencies of the geometrical, magnetic and ion beam properties of the thruster. This study applies an advanced design methodology combining a modified power distribution calculation and evolutionary algorithms assisted by surrogate modeling to a multi-objective design optimization for the performance optimization and characterization of the CFT. Optimization is performed for maximization of performance defined by five design parameters (i.e., anode voltage, anode current, mass flow rate, and magnet radii, simultaneously aiming to maximize three objectives; that is, thrust, efficiency and specific impulse. Statistical methods based on global sensitivity analysis are employed to assess the optimization results in conjunction with surrogate models to identify key design factors with respect to the three design objectives and additional performance measures. The research indicates that the anode current and the Outer Magnet Radius have the greatest effect on the performance parameters. An optimal value for the anode current is determined, and a trend towards maximizing anode potential and mass flow rate is observed.

  2. Multi-objective Optimization of Pulsed Gas Metal Arc Welding Process Using Neuro NSGA-II

    Science.gov (United States)

    Pal, Kamal; Pal, Surjya K.

    2018-05-01

    Weld quality is a critical issue in fabrication industries where products are custom-designed. Multi-objective optimization results number of solutions in the pareto-optimal front. Mathematical regression model based optimization methods are often found to be inadequate for highly non-linear arc welding processes. Thus, various global evolutionary approaches like artificial neural network, genetic algorithm (GA) have been developed. The present work attempts with elitist non-dominated sorting GA (NSGA-II) for optimization of pulsed gas metal arc welding process using back propagation neural network (BPNN) based weld quality feature models. The primary objective to maintain butt joint weld quality is the maximization of tensile strength with minimum plate distortion. BPNN has been used to compute the fitness of each solution after adequate training, whereas NSGA-II algorithm generates the optimum solutions for two conflicting objectives. Welding experiments have been conducted on low carbon steel using response surface methodology. The pareto-optimal front with three ranked solutions after 20th generations was considered as the best without further improvement. The joint strength as well as transverse shrinkage was found to be drastically improved over the design of experimental results as per validated pareto-optimal solutions obtained.

  3. Multi-objective assessment of rural electrification in remote areas with poverty considerations

    International Nuclear Information System (INIS)

    Silva, Diego; Nakata, Toshihiko

    2009-01-01

    Rural electrification with renewable energy technologies (RETs) offers several benefits to remote areas where diesel generation is unsuitable due to fuel supply constraints. Such benefits include environmental and social aspects, which are linked to energy access and poverty reduction in less-favored areas of developing countries. In this case, multi-objective methods are suitable tools for planning in rural areas. In this study, assessment of rural electrification with renewable energy systems is conducted by means of goal programming towards fuel substitution. The approach showed that, in the Non-Interconnected Zones of Colombia, substitution of traditional biomass with an electrification scheme using renewable energy sources provides significant environmental benefits, measured as land use and avoided emissions, as well as higher employment generation rates than diesel generation schemes. Nevertheless, fuel substitution is constrained by the elevated cost of electricity compared to traditional biomass, which raises households' energy expenditures between twofold to five times higher values. The present approach, yet wide in scope, is still limited for quantifying the impact of energy access improvements on poverty reduction, as well as for the assessment of energy system's technical feasibility.

  4. Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit

    Science.gov (United States)

    Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.

    2017-11-01

    In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.

  5. Multi-objective Optimization of Departure Procedures at Gimpo International Airport

    Science.gov (United States)

    Kim, Junghyun; Lim, Dongwook; Monteiro, Dylan Jonathan; Kirby, Michelle; Mavris, Dimitri

    2018-04-01

    Most aviation communities have increasing concerns about the environmental impacts, which are directly linked to health issues for local residents near the airport. In this study, the environmental impact of different departure procedures using the Aviation Environmental Design Tool (AEDT) was analyzed. First, actual operational data were compiled at Gimpo International Airport (March 20, 2017) from an open source. Two modifications were made in the AEDT to model the operational circumstances better and the preliminary AEDT simulations were performed according to the acquired operational procedures. Simulated noise results showed good agreements with noise measurement data at specific locations. Second, a multi-objective optimization of departure procedures was performed for the Boeing 737-800. Four design variables were selected and AEDT was linked to a variety of advanced design methods. The results showed that takeoff thrust had the greatest influence and it was found that fuel burn and noise had an inverse relationship. Two points representing each fuel burn and noise optimum on the Pareto front were parsed and run in AEDT to compare with the baseline. The results showed that the noise optimum case reduced Sound Exposure Level 80-dB noise exposure area by approximately 5% while the fuel burn optimum case reduced total fuel burn by 1% relative to the baseline for aircraft-level analysis.

  6. Prediction and optimization of fuel cell performance using a multi-objective genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Marques Hobold, Gustavo [Laboratory of Energy Conversion Engineering and Technology, Federal University of Santa Catarina (Brazil); Washington University in St. Louis, MO 63130 (United States); Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, MO 63130 (United States)

    2013-07-01

    The attention that is currently being given to the emission of pollutant gases in the atmosphere has made the fuel cell (FC), an energy conversion device that cleanly converts chemical energy into electrical energy, a good alternative to other technologies that still use carbon-based fuels. The temperature plays an important role on the efficiency of an FC as it influences directly the humidity of the membrane, the reversible thermodynamic potential and the partial pressure of water; therefore the thermal control of the fuel cell is the focus of this paper. We present models for both high and low temperature fuel cells based on the solid-oxide fuel cell (SOFC) and the polymer electrolyte membrane fuel cell (PEMFC). A thermodynamic analysis is performed on the cells and the methods of controlling their temperature are discussed. The cell parameters are optimized for both high and low temperatures using a Java-based multi-objective genetic algorithm, which makes use of the logic of the biological theory of evolution to classify individual parameters based on a fitness function in order to maximize the power of the fuel cell. Applications to high and low temperature fuel cells are discussed.

  7. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    Science.gov (United States)

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  8. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    Directory of Open Access Journals (Sweden)

    Sonia Yassa

    2013-01-01

    Full Text Available We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  9. QoS Routing in Ad-Hoc Networks Using GA and Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Admir Barolli

    2011-01-01

    Full Text Available Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing.

  10. Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy

    Directory of Open Access Journals (Sweden)

    Xiuli Wu

    2018-03-01

    Full Text Available Renewable energy is an alternative to non-renewable energy to reduce the carbon footprint of manufacturing systems. Finding out how to make an alternative energy-efficient scheduling solution when renewable and non-renewable energy drives production is of great importance. In this paper, a multi-objective flexible flow shop scheduling problem that considers variable processing time due to renewable energy (MFFSP-VPTRE is studied. First, the optimization model of the MFFSP-VPTRE is formulated considering the periodicity of renewable energy and the limitations of energy storage capacity. Then, a hybrid non-dominated sorting genetic algorithm with variable local search (HNSGA-II is proposed to solve the MFFSP-VPTRE. An operation and machine-based encoding method is employed. A low-carbon scheduling algorithm is presented. Besides the crossover and mutation, a variable local search is used to improve the offspring’s Pareto set. The offspring and the parents are combined and those that dominate more are selected to continue evolving. Finally, two groups of experiments are carried out. The results show that the low-carbon scheduling algorithm can effectively reduce the carbon footprint under the premise of makespan optimization and the HNSGA-II outperforms the traditional NSGA-II and can solve the MFFSP-VPTRE effectively and efficiently.

  11. A simple method for optimising transformation of non-parametric data: an illustration by reference to cortisol assays.

    Science.gov (United States)

    Clark, James E; Osborne, Jason W; Gallagher, Peter; Watson, Stuart

    2016-07-01

    Neuroendocrine data are typically positively skewed and rarely conform to the expectations of a Gaussian distribution. This can be a problem when attempting to analyse results within the framework of the general linear model, which relies on assumptions that residuals in the data are normally distributed. One frequently used method for handling violations of this assumption is to transform variables to bring residuals into closer alignment with assumptions (as residuals are not directly manipulated). This is often attempted through ad hoc traditional transformations such as square root, log and inverse. However, Box and Cox (Box & Cox, ) observed that these are all special cases of power transformations and proposed a more flexible method of transformation for researchers to optimise alignment with assumptions. The goal of this paper is to demonstrate the benefits of the infinitely flexible Box-Cox transformation on neuroendocrine data using syntax in spss. When applied to positively skewed data typical of neuroendocrine data, the majority (~2/3) of cases were brought into strict alignment with Gaussian distribution (i.e. a non-significant Shapiro-Wilks test). Those unable to meet this challenge showed substantial improvement in distributional properties. The biggest challenge was distributions with a high ratio of kurtosis to skewness. We discuss how these cases might be handled, and we highlight some of the broader issues associated with transformation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Multi-objective optimization of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander

    International Nuclear Information System (INIS)

    Galindo, J.; Climent, H.; Dolz, V.; Royo-Pascual, L.

    2016-01-01

    Highlights: • A thermo-economic and sizing model of an ORC in a gasoline engine is carried out. • A multi-objective optimization method to design an ORC for vehicle WHR is presented. • A multiple attribute decision-making method is implemented to select the solution. - Abstract: This paper presents a mathematical model of a bottoming Organic Rankine Cycle coupled to a 2 l turbocharged gasoline engine to optimize the cycle from a thermo-economic and sizing point of view. These criteria were optimized with different cycle values. Therefore, a methodology to optimize the ORC coupled to Waste Heat Recovery systems in vehicle applications is presented using a multi-objective optimization algorithm. Multi-objective optimization results show that the optimum solution depend on the importance of each objective to the final solution. Considering thermo-economic criteria as the main objective, greater sizes will be required. Considering sizing criteria as the main objective, higher thermo-economic parameters will be obtained. Therefore, in order to select a single-solution from the Pareto frontier, a multiple attribute decision-making method (TOPSIS) was implemented in order to take into account the preferences of the Decision Maker. Considering the weight factors 0.5 for Specific Investment Cost (SIC), 0.3 for the area of the heat exchangers (A tot ) and 0.2 for Volume Coefficient (VC) and the boundaries of this particular application, the result is optimized with values of 0.48 m 2 (A tot ), 2515 €/kW (SIC) and 2.62 MJ/m 3 (VC). Moreover, the profitability of the project by means of the Net Present Value and the Payback has been estimated.

  13. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option

    International Nuclear Information System (INIS)

    Tabar, Vahid Sohrabi; Jirdehi, Mehdi Ahmadi; Hemmati, Reza

    2017-01-01

    Renewable energy resources are often known as cost-effective and lucrative resources and have been widely developed due to environmental-economic issues. Renewable energy utilization even in small scale (e.g., microgrid networks) has attracted significant attention. Energy management in microgrid can be carried out based on the generating side management or demand side management. In this paper, portable renewable energy resource are modeled and included in microgrid energy management as a demand response option. Utilizing such resources could supply the load when microgrid cannot serve the demand. This paper addresses energy management and scheduling in microgrid including thermal and electrical loads, renewable energy sources (solar and wind), CHP, conventional energy sources (boiler and micro turbine), energy storage systems (thermal and electrical ones), and portable renewable energy resource (PRER). Operational cost of microgrid and air pollution are considered as objective functions. Uncertainties related to the parameters are incorporated to make a stochastic programming. The proposed problem is expressed as a constrained, multi-objective, linear, and mixed-integer programing. Augmented Epsilon-constraint method is used to solve the problem. Final results and calculations are achieved using GAMS24.1.3/CPLEX12.5.1. Simulation results demonstrate the viability and effectiveness of the proposed method in microgrid energy management. - Highlights: • Introducing portable renewable energy resource (PRER) and considering effect of them. • Considering reserve margin and sensitivity analysis for validate robustness. • Multi objective and stochastic management with considering various loads and sources. • Using augmented Epsilon-constraint method to solve multi objective program. • Highly decreasing total cost and pollution with PRER in stochastic state.

  14. Method for a component-based economic optimisation in design of whole building renovation versus demolishing and rebuilding

    International Nuclear Information System (INIS)

    Morelli, Martin; Harrestrup, Maria; Svendsen, Svend

    2014-01-01

    Aim: This paper presents a two-fold evaluation method determining whether to renovate an existing building or to demolish it and thereafter erect a new building. Scope: The method determines a combination of energy saving measures that have been optimised in regards to the future cost for energy. Subsequently, the method evaluates the cost of undertaking the retrofit measures as compared to the cost of demolishing the existing building and thereafter erecting a new one. Several economically beneficial combinations of energy saving measures can be determined. All of them are a trade-off between investing in retrofit measures and buying renewable energy. The overall cost of the renovation considers the market value of the property, the investment in the renovation, the operational and maintenance costs. A multi-family building is used as an example to clearly illustrate the application of the method from macroeconomic and private financial perspectives. Conclusion: The example shows that the investment cost and future market value of the building are the dominant factors in deciding whether to renovate an existing building or to demolish it and thereafter erect a new building. Additionally, it is concluded in the example that multi-family buildings erected in the period 1850–1930 should be renovated. - highlights: • Development of a method for evaluation of renovation projects. • Determination of an economic optimal combination of various energy saving measures. • The method compared the renovation cost to those for demolishing and building new. • Decision was highly influence by the investment cost and buildings market value. • The results indicate that buildings should be renovated and not demolished

  15. A New Computational Technique for the Generation of Optimised Aircraft Trajectories

    Science.gov (United States)

    Chircop, Kenneth; Gardi, Alessandro; Zammit-Mangion, David; Sabatini, Roberto

    2017-12-01

    A new computational technique based on Pseudospectral Discretisation (PSD) and adaptive bisection ɛ-constraint methods is proposed to solve multi-objective aircraft trajectory optimisation problems formulated as nonlinear optimal control problems. This technique is applicable to a variety of next-generation avionics and Air Traffic Management (ATM) Decision Support Systems (DSS) for strategic and tactical replanning operations. These include the future Flight Management Systems (FMS) and the 4-Dimensional Trajectory (4DT) planning and intent negotiation/validation tools envisaged by SESAR and NextGen for a global implementation. In particular, after describing the PSD method, the adaptive bisection ɛ-constraint method is presented to allow an efficient solution of problems in which two or multiple performance indices are to be minimized simultaneously. Initial simulation case studies were performed adopting suitable aircraft dynamics models and addressing a classical vertical trajectory optimisation problem with two objectives simultaneously. Subsequently, a more advanced 4DT simulation case study is presented with a focus on representative ATM optimisation objectives in the Terminal Manoeuvring Area (TMA). The simulation results are analysed in-depth and corroborated by flight performance analysis, supporting the validity of the proposed computational techniques.

  16. Intuitionistic Fuzzy Goal Programming Technique for Solving Non-Linear Multi-objective Structural Problem

    Directory of Open Access Journals (Sweden)

    Samir Dey

    2015-07-01

    Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.

  17. Application of evolutionary algorithms for multi-objective optimization in VLSI and embedded systems

    CERN Document Server

    2015-01-01

    This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO, and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing, and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation, and operators like crossover, mutation, etc. can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field ...

  18. Use of interactive data visualization in multi-objective forest planning.

    Science.gov (United States)

    Haara, Arto; Pykäläinen, Jouni; Tolvanen, Anne; Kurttila, Mikko

    2018-03-15

    Common to multi-objective forest planning situations is that they all require comparisons, searches and evaluation among decision alternatives. Through these actions, the decision maker can learn from the information presented and thus make well-justified decisions. Interactive data visualization is an evolving approach that supports learning and decision making in multidimensional decision problems and planning processes. Data visualization contributes the formation of mental image data and this process is further boosted by allowing interaction with the data. In this study, we introduce a multi-objective forest planning decision problem framework and the corresponding characteristics of data. We utilize the framework with example planning data to illustrate and evaluate the potential of 14 interactive data visualization techniques to support multi-objective forest planning decisions. Furthermore, broader utilization possibilities of these techniques to incorporate the provisioning of ecosystem services into forest management and planning are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Design of a centrifugal compressor impeller using multi-objective optimization algorithm

    International Nuclear Information System (INIS)

    Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong; Choi, Jae Ho

    2009-01-01

    This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with ε-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.

  20. Design of a centrifugal compressor impeller using multi-objective optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong [Inha University, Incheon (Korea, Republic of); Choi, Jae Ho [Samsung Techwin Co., Ltd., Changwon (Korea, Republic of)

    2009-07-01

    This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with {epsilon}-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.

  1. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Hamidreza; Najafi, Behzad [K. N. Toosi University of Technology, Department of Mechanical Engineering, Tehran (Iran)

    2010-06-15

    In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project's limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB. (orig.)

  2. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles

    International Nuclear Information System (INIS)

    Hu, Zunyan; Li, Jianqiu; Xu, Liangfei; Song, Ziyou; Fang, Chuan; Ouyang, Minggao; Dou, Guowei; Kou, Gaihong

    2016-01-01

    Highlights: • Fuel economy, lithium battery size and powertrain system durability are incorporated in optimization. • A multi-objective power allocation strategy by taking battery size into consideration is proposed. • Influences of battery capacity and auxiliary power on strategy design are explored. • Battery capacity and fuel cell service life for the system life cycle cost are optimized. - Abstract: The powertrain system of a typical proton electrolyte membrane hybrid fuel cell vehicle contains a lithium battery package and a fuel cell stack. A multi-objective optimization for this powertrain system of a passenger car, taking account of fuel economy and system durability, is discussed in this paper. Based on an analysis of the optimum results obtained by dynamic programming, a soft-run strategy was proposed for real-time and multi-objective control algorithm design. The soft-run strategy was optimized by taking lithium battery size into consideration, and implemented using two real-time algorithms. When compared with the optimized dynamic programming results, the power demand-based control method proved more suitable for powertrain systems equipped with larger capacity batteries, while the state of charge based control method proved superior in other cases. On this basis, the life cycle cost was optimized by considering both lithium battery size and equivalent hydrogen consumption. The battery capacity selection proved more flexible, when powertrain systems are equipped with larger capacity batteries. Finally, the algorithm has been validated in a fuel cell city bus. It gets a good balance of fuel economy and system durability in a three months demonstration operation.

  3. Multi-Objective Two-Dimensional Truss Optimization by using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Harun Alrasyid

    2011-05-01

    Full Text Available During last three decade, many mathematical programming methods have been develop for solving optimization problems. However, no single method has been found to be entirely efficient and robust for the wide range of engineering optimization problems. Most design application in civil engineering involve selecting values for a set of design variables that best describe the behavior and performance of the particular problem while satisfying the requirements and specifications imposed by codes of practice. The introduction of Genetic Algorithm (GA into the field of structural optimization has opened new avenues for research because they have been successful applied while traditional methods have failed. GAs is efficient and broadly applicable global search procedure based on stochastic approach which relies on “survival of the fittest” strategy. GAs are search algorithms that are based on the concepts of natural selection and natural genetics. On this research Multi-objective sizing and configuration optimization of the two-dimensional truss has been conducted using a genetic algorithm. Some preliminary runs of the GA were conducted to determine the best combinations of GA parameters such as population size and probability of mutation so as to get better scaling for rest of the runs. Comparing the results from sizing and sizing– configuration optimization, can obtained a significant reduction in the weight and deflection. Sizing–configuration optimization produces lighter weight and small displacement than sizing optimization. The results were obtained by using a GA with relative ease (computationally and these results are very competitive compared to those obtained from other methods of truss optimization.

  4. Defining spinal instability and methods of classification to optimise care for patients with malignant spinal cord compression: A systematic review

    International Nuclear Information System (INIS)

    Sheehan, C.

    2016-01-01

    The incidence of Malignant Spinal Cord Compression (MSCC) is thought to be increasing in the UK due to an aging population and improving cancer survivorship. The impact of such a diagnosis requires emergency treatment. In 2008 the National Institute of Clinical Excellence produced guidelines on the management of MSCC which includes a recommendation to assess spinal instability. However, a lack of guidelines to assess spinal instability in oncology patients is widely acknowledged. This can result in variations in the management of care for such patients. A spinal instability assessment can influence optimum patient care (bed rest or encouraged mobilisation) and inform the best definitive treatment modality (surgery or radiotherapy) for an individual patient. The aim of this systematic review is to attempt to identify a consensus definition of spinal instability and methods by which it can be classified. - Highlights: • A lack of guidance on metastatic spinal instability results in variations of care. • Definitions and assessments for spinal instability are explored in this review. • A Spinal Instability Neoplastic Scoring (SINS) system has been identified. • SINS could potentially be adopted to optimise and standardise patient care.

  5. Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods.

    Science.gov (United States)

    Arcos-García, Álvaro; Álvarez-García, Juan A; Soria-Morillo, Luis M

    2018-03-01

    This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer Networks placed at distinct positions within the main neural network are analysed. The recognition rate of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient in terms of memory requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Optimisation of small-scale hydropower using quality assurance methods - Preliminary project; Vorprojekt: Optimierung von Kleinwasserkraftwerken durch Qualitaetssicherung. Programm Kleinwasserkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, S.; Staubli, T.

    2006-11-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary project that examined how quality assurance methods can be used in the optimisation of small-scale hydropower projects. The aim of the project, to use existing know-how, experience and synergies, is examined. Discrepancies in quality and their effects on production prices were determined in interviews. The paper describes best-practice guidelines for the quality assurance of small-scale hydro schemes. A flow chart describes the various steps that have to be taken in the project and realisation work. Information collected from planners and from interviews made with them are presented along with further information obtained from literature. The results of interviews concerning planning work, putting to tender and the construction stages of these hydro schemes are presented and commented on. Similarly, the operational phase of such power plant is also examined, including questions on operation and guarantees. The aims of the follow-up main project - the definition of a tool and guidelines for ensuring quality - are briefly reviewed.

  7. An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Rafał Dreżewski

    2017-08-01

    Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.

  8. Design for Sustainability of Industrial Symbiosis based on Emergy and Multi-objective Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2016-01-01

    approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable...... performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied...

  9. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling

    DEFF Research Database (Denmark)

    Soares, Joao; Vale, Zita; Canizes, Bruno

    2013-01-01

    This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle-To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming...... to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow...

  10. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    Science.gov (United States)

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case

  11. Multi-Objective Bidding Strategy for Genco Using Non-Dominated Sorting Particle Swarm Optimization

    Science.gov (United States)

    Saksinchai, Apinat; Boonchuay, Chanwit; Ongsakul, Weerakorn

    2010-06-01

    This paper proposes a multi-objective bidding strategy for a generation company (GenCo) in uniform price spot market using non-dominated sorting particle swarm optimization (NSPSO). Instead of using a tradeoff technique, NSPSO is introduced to solve the multi-objective strategic bidding problem considering expected profit maximization and risk (profit variation) minimization. Monte Carlo simulation is employed to simulate rivals' bidding behavior. Test results indicate that the proposed approach can provide the efficient non-dominated solution front effectively. In addition, it can be used as a decision making tool for a GenCo compromising between expected profit and price risk in spot market.

  12. Image de-noising based on mathematical morphology and multi-objective particle swarm optimization

    Science.gov (United States)

    Dou, Liyun; Xu, Dan; Chen, Hao; Liu, Yicheng

    2017-07-01

    To overcome the problem of image de-noising, an efficient image de-noising approach based on mathematical morphology and multi-objective particle swarm optimization (MOPSO) is proposed in this paper. Firstly, constructing a series and parallel compound morphology filter based on open-close (OC) operation and selecting a structural element with different sizes try best to eliminate all noise in a series link. Then, combining multi-objective particle swarm optimization (MOPSO) to solve the parameters setting of multiple structural element. Simulation result shows that our algorithm can achieve a superior performance compared with some traditional de-noising algorithm.

  13. Effect of objective function on multi-objective inverse planning of radiation therapy

    International Nuclear Information System (INIS)

    Li Guoli; Wu Yican; Song Gang; Wang Shifang

    2006-01-01

    There are two kinds of objective functions in radiotherapy inverse planning: dose distribution-based and Dose-Volume Histogram (DVH)-based functions. The treatment planning in our days is still a trial and error process because the multi-objective problem is solved by transforming it into a single objective problem using a specific set of weights for each object. This work investigates the problem of objective function setting based on Pareto multi-optimization theory, and compares the effect on multi-objective inverse planning of those two kinds of objective functions including calculation time, converge speed, etc. The basis of objective function setting on inverse planning is discussed. (authors)

  14. Optimising the Design Process of the Injection Camshaft by Critical Path Method (CPM

    Directory of Open Access Journals (Sweden)

    Olga-Ioana Amariei

    2016-10-01

    Full Text Available In the present paper a series of advantages of the CPM method are presented, focusing on the optimization of design duration of an injection camshaft, by cost criteria. The minimum duration of finalizing the design of the injection camshaft will be determined, as well as the total cost associated to this project, normally, and then under crash regime. At the end, two types of sensitivity analysis will be performed: Meeting the desire completation time and Meeting the desired budget cost

  15. Optimised method for the routine determination of Technetium-99 in environmental samples by liquid scintillation counting

    International Nuclear Information System (INIS)

    Wigley, F.; Warwick, P.E.; Croudace, I.W.; Caborn, J.; Sanchez, A.L.

    1999-01-01

    A method has been developed for the routine determination of 99 Tc in a range of environmental matrices using 99m Tc (t 1/2 =6.06 h) as an internal yield monitor. Samples are ignited stepwise to 550C and the 99 Tc is extracted from the ignited residue with 8 M nitric acid. Many contaminants are co-precipitated with Fe(OH) 3 and the Tc in the supernatant is pre-concentrated and further purified using anion exchange chromatography. Final separation of Tc from Ru is achieved by extraction of Tc into 5% tri-n-octylamine in xylene from 2 M sulphuric acid. The xylene fraction is mixed directly with a commercial liquid scintillant cocktail. The chemical yield is determined through the measurement of 99m Tc by gamma spectrometry and the 99 Tc activity is measured using liquid scintillation counting after a further two weeks to allow decay of the 99m Tc activity. Typical recoveries for this method are in the order 70-95%. The method has a detection limit of 1.7 Bq kg -1 based on a 2 h count time and a 10 g sample size. The chemical separation for 24 samples of sediment or marine biota can be completed by one analyst in a working week. A further week is required to allow the samples to decay before determination. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Multi-objective design optimization of the transverse gaseous jet in supersonic flows

    Science.gov (United States)

    Huang, Wei; Yang, Jun; Yan, Li

    2014-01-01

    The mixing process between the injectant and the supersonic crossflow is one of the important issues for the design of the scramjet engine, and the efficiency mixing has a great impact on the improvement of the combustion efficiency. A hovering vortex is formed between the separation region and the barrel shock wave, and this may be induced by the large negative density gradient. The separation region provides a good mixing area for the injectant and the subsonic boundary layer. In the current study, the transverse injection flow field with a freestream Mach number of 3.5 has been optimized by the non-dominated sorting genetic algorithm (NSGA II) coupled with the Kriging surrogate model; and the variance analysis method and the extreme difference analysis method have been employed to evaluate the values of the objective functions. The obtained results show that the jet-to-crossflow pressure ratio is the most important design variable for the transverse injection flow field, and the injectant molecular weight and the slot width should be considered for the mixing process between the injectant and the supersonic crossflow. There exists an optimal penetration height for the mixing efficiency, and its value is about 14.3 mm in the range considered in the current study. The larger penetration height provides a larger total pressure loss, and there must be a tradeoff between these two objection functions. In addition, this study demonstrates that the multi-objective design optimization method with the data mining technique can be used efficiently to explore the relationship between the design variables and the objective functions.

  17. Automatic cumulative sums contour detection of FBP-reconstructed multi-object nuclear medicine images.

    Science.gov (United States)

    Protonotarios, Nicholas E; Spyrou, George M; Kastis, George A

    2017-06-01

    The problem of determining the contours of objects in nuclear medicine images has been studied extensively in the past, however most of the analysis has focused on a single object as opposed to multiple objects. The aim of this work is to develop an automated method for determining the contour of multiple objects in positron emission tomography (PET) and single photon emission computed tomography (SPECT) filtered backprojection (FBP) reconstructed images. These contours can be used for computing body edges for attenuation correction in PET and SPECT, as well as for eliminating streak artifacts outside the objects, which could be useful in compressive sensing reconstruction. Contour detection has been accomplished by applying a modified cumulative sums (CUSUM) scheme in the sinogram. Our approach automatically detects all objects in the image, without requiring a priori knowledge of the number of distinct objects in the reconstructed image. This method has been tested in simulated phantoms, such as an image-quality (IQ) phantom and two digital multi-object phantoms, as well as a real NEMA phantom and a clinical thoracic study. For this purpose, a GE Discovery PET scanner was employed. The detected contours achieved root mean square accuracy of 1.14 pixels, 1.69 pixels and 3.28 pixels and a Hausdorff distance of 3.13, 3.12 and 4.50 pixels, for the simulated image-quality phantom PET study, the real NEMA phantom and the clinical thoracic study, respectively. These results correspond to a significant improvement over recent results obtained in similar studies. Furthermore, we obtained an optimal sub-pattern assignment (OSPA) localization error of 0.94 and 1.48, for the two-objects and three-objects simulated phantoms, respectively. Our method performs efficiently for sets of convex objects and hence it provides a robust tool for automatic contour determination with precise results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Multi-object segmentation framework using deformable models for medical imaging analysis.

    Science.gov (United States)

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed

  19. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag

  20. Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction

    International Nuclear Information System (INIS)

    Dong, Feifei; Liu, Yong; Su, Han; Zou, Rui; Guo, Huaicheng

    2015-01-01

    Water quality management and load reduction are subject to inherent uncertainties in watershed systems and competing decision objectives. Therefore, optimal decision-making modeling in watershed load reduction is suffering due to the following challenges: (a) it is difficult to obtain absolutely “optimal” solutions, and (b) decision schemes may be vulnerable to failure. The probability that solutions are feasible under uncertainties is defined as reliability. A reliability-oriented multi-objective (ROMO) decision-making approach was proposed in this study for optimal decision making with stochastic parameters and multiple decision reliability objectives. Lake Dianchi, one of the three most eutrophic lakes in China, was examined as a case study for optimal watershed nutrient load reduction to restore lake water quality. This study aimed to maximize reliability levels from considerations of cost and load reductions. The Pareto solutions of the ROMO optimization model were generated with the multi-objective evolutionary algorithm, demonstrating schemes representing different biases towards reliability. The Pareto fronts of six maximum allowable emission (MAE) scenarios were obtained, which indicated that decisions may be unreliable under unpractical load reduction requirements. A decision scheme identification process was conducted using the back propagation neural network (BPNN) method to provide a shortcut for identifying schemes at specific reliability levels for decision makers. The model results indicated that the ROMO approach can offer decision makers great insights into reliability tradeoffs and can thus help them to avoid ineffective decisions. - Highlights: • Reliability-oriented multi-objective (ROMO) optimal decision approach was proposed. • The approach can avoid specifying reliability levels prior to optimization modeling. • Multiple reliability objectives can be systematically balanced using Pareto fronts. • Neural network model was used to

  1. A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil

    International Nuclear Information System (INIS)

    Carvalho, Ariovaldo Lopes de; Antunes, Carlos Henggeler; Freire, Fausto; Henriques, Carla Oliveira

    2015-01-01

    A multi-objective linear programming (MOLP) model based on a hybrid Input–Output (IO) framework is presented. This model aims at assessing the trade-offs between economic, energy, environmental (E3) and social objectives in the Brazilian economic system. This combination of multi-objective models with Input–Output Analysis (IOA) plays a supplementary role in understanding the interactions between the economic and energy systems, and the corresponding impacts on the environment, offering a consistent framework for assessing the effects of distinct policies on these systems. Firstly, the System of National Accounts (SNA) is reorganized to include the National Energy Balance, creating a hybrid IO framework that is extended to assess Greenhouse Gas (GHG) emissions and the employment level. The objective functions considered are the maximization of GDP (gross domestic product) and employment levels, as well as the minimization of energy consumption and GHG emissions. An interactive method enabling a progressive and selective search of non-dominated solutions with distinct characteristics and underlying trade-offs is utilized. Illustrative results indicate that the maximization of GDP and the employment levels lead to an increase of both energy consumption and GHG emissions, while the minimization of either GHG emissions or energy consumption cause negative impacts on GDP and employment. - Highlights: • A hybrid Input–Output multi-objective model is applied to the Brazilian economy. • Objective functions are GDP, employment level, energy consumption and GHG emissions. • Interactive search process identifies trade-offs between the competing objectives. • Positive correlations between GDP growth and employment. • Positive correlations between energy consumption and GHG emissions

  2. Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Feifei [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Liu, Yong, E-mail: yongliu@pku.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Institute of Water Sciences, Peking University, Beijing 100871 (China); Su, Han [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Zou, Rui [Tetra Tech, Inc., 10306 Eaton Place, Ste 340, Fairfax, VA 22030 (United States); Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034 (China); Guo, Huaicheng [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China)

    2015-05-15

    Water quality management and load reduction are subject to inherent uncertainties in watershed systems and competing decision objectives. Therefore, optimal decision-making modeling in watershed load reduction is suffering due to the following challenges: (a) it is difficult to obtain absolutely “optimal” solutions, and (b) decision schemes may be vulnerable to failure. The probability that solutions are feasible under uncertainties is defined as reliability. A reliability-oriented multi-objective (ROMO) decision-making approach was proposed in this study for optimal decision making with stochastic parameters and multiple decision reliability objectives. Lake Dianchi, one of the three most eutrophic lakes in China, was examined as a case study for optimal watershed nutrient load reduction to restore lake water quality. This study aimed to maximize reliability levels from considerations of cost and load reductions. The Pareto solutions of the ROMO optimization model were generated with the multi-objective evolutionary algorithm, demonstrating schemes representing different biases towards reliability. The Pareto fronts of six maximum allowable emission (MAE) scenarios were obtained, which indicated that decisions may be unreliable under unpractical load reduction requirements. A decision scheme identification process was conducted using the back propagation neural network (BPNN) method to provide a shortcut for identifying schemes at specific reliability levels for decision makers. The model results indicated that the ROMO approach can offer decision makers great insights into reliability tradeoffs and can thus help them to avoid ineffective decisions. - Highlights: • Reliability-oriented multi-objective (ROMO) optimal decision approach was proposed. • The approach can avoid specifying reliability levels prior to optimization modeling. • Multiple reliability objectives can be systematically balanced using Pareto fronts. • Neural network model was used to

  3. Calculation and decomposition of spot price using interior point nonlinear optimisation methods

    International Nuclear Information System (INIS)

    Xie, K.; Song, Y.H.

    2004-01-01

    Optimal pricing for real and reactive power is a very important issue in a deregulation environment. This paper summarises the optimal pricing problem as an extended optimal power flow problem. Then, spot prices are decomposed into different components reflecting various ancillary services. The derivation of the proposed decomposition model is described in detail. Primary-Dual Interior Point method is applied to avoid 'go' 'no go' gauge. In addition, the proposed approach can be extended to cater for other types of ancillary services. (author)

  4. Optimisation of the Method for the Quantitative Determination of Sulforaphane in Broccoli

    International Nuclear Information System (INIS)

    Yi Yi Myint; Antal Bognar; Tauscher, B.

    2002-02-01

    Consumption of vegetables, especially crucifers, reduces the risk of developing cancer. Sulforaphane [l-isothiocyanato-4- (methylsulfinyl)-butane], a compound with the ability to inhibit carcinogenesis, is one of the degradation products of glucosinolates in cruciferous vegetables. Among available extraction methods, autolysis at room temperature is the most effective for Sulforaphane extraction (relatively higher purity and better yield). The research work undertaken at Federal Research Centre for Nutrition, Institute of Biology and Chemistry, Karlsruhe, Germany was isolation of Sulforaphane based on cruciferous vegetables like Broccoli (Brassica oleracea L. Cv. italica) employing autolysis - the yield being higher. The extracted Sulforaphane compound's purity and yield were accordingly examined with gas chromatography. (author)

  5. Optimisation of the Method for the Quantitative Determination of Sulforaphane in Broccoli

    Energy Technology Data Exchange (ETDEWEB)

    Myint, Yi Yi; Bognar, Antal; Tauscher, B

    2002-02-15

    Consumption of vegetables, especially crucifers, reduces the risk of developing cancer. Sulforaphane [l-isothiocyanato-4- (methylsulfinyl)-butane], a compound with the ability to inhibit carcinogenesis, is one of the degradation products of glucosinolates in cruciferous vegetables. Among available extraction methods, autolysis at room temperature is the most effective for Sulforaphane extraction (relatively higher purity and better yield). The research work undertaken at Federal Research Centre for Nutrition, Institute of Biology and Chemistry, Karlsruhe, Germany was isolation of Sulforaphane based on cruciferous vegetables like Broccoli (Brassica oleracea L. Cv. italica) employing autolysis - the yield being higher. The extracted Sulforaphane compound's purity and yield were accordingly examined with gas chromatography. (author)

  6. An Efficient SAR Image Segmentation Framework Using Transformed Nonlocal Mean and Multi-Objective Clustering in Kernel Space

    Directory of Open Access Journals (Sweden)

    Dongdong Yang

    2015-02-01

    Full Text Available Synthetic aperture radar (SAR image segmentation usually involves two crucial issues: suitable speckle noise removing technique and effective image segmentation methodology. Here, an efficient SAR image segmentation method considering both of the two aspects is presented. As for the first issue, the famous nonlocal mean (NLM filter is introduced in this study to suppress the multiplicative speckle noise in SAR image. Furthermore, to achieve a higher denoising accuracy, the local neighboring pixels in the searching window are projected into a lower dimensional subspace by principal component analysis (PCA. Thus, the nonlocal mean filter is implemented in the subspace. Afterwards, a multi-objective clustering algorithm is proposed using the principals of artificial immune system (AIS and kernel-induced distance measures. The multi-objective clustering has been shown to discover the data distribution with different characteristics and the kernel methods can improve its robustness to noise and outliers. Experiments demonstrate that the proposed method is able to partition the SAR image robustly and accurately than the conventional approaches.

  7. Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm

    International Nuclear Information System (INIS)

    Wang, Zhe; Li, Yanzhong

    2015-01-01

    Highlights: • The first application of IMOCS for plate-fin heat exchanger design. • Irreversibility degrees of heat transfer and fluid friction are minimized. • Trade-off of efficiency, total cost and pumping power is achieved. • Both EGM and EDM methods have been compared in the optimization of PFHE. • This study has superiority over other single-objective optimization design. - Abstract: This paper introduces and applies an improved multi-objective cuckoo search (IMOCS) algorithm, a novel met-heuristic optimization algorithm based on cuckoo breeding behavior, for the multi-objective optimization design of plate-fin heat exchangers (PFHEs). A modified irreversibility degree of the PFHE is separated into heat transfer and fluid friction irreversibility degrees which are adopted as two initial objective functions to be minimized simultaneously for narrowing the search scope of the design. The maximization efficiency, minimization of pumping power, and total annual cost are considered final objective functions. Results obtained from a two dimensional normalized Pareto-optimal frontier clearly demonstrate the trade-off between heat transfer and fluid friction irreversibility. Moreover, a three dimensional Pareto-optimal frontier reveals a relationship between efficiency, total annual cost, and pumping power in the PFHE design. Three examples presented here further demonstrate that the presented method is able to obtain optimum solutions with higher accuracy, lower irreversibility, and fewer iterations as compared to the previous methods and single-objective design approaches

  8. Methods of optimising ion beam induced charge collection of polycrystalline silicon photovoltaic cells

    International Nuclear Information System (INIS)

    Witham, L.C.G.; Jamieson, D.N.; Bardos, R.A.

    1998-01-01

    Ion Beam Induced Charge (IBIC) is a valuable method for the mapping of charge carrier transport and recombination in silicon solar cells. However performing IBIC analysis of polycrystalline silicon solar cells is problematic in a manner unlike previous uses of IBIC on silicon-based electronic devices. Typical solar cells have a surface area of several square centimeters and a p-n junction thickness of only few microns. This means the cell has a large junction capacitance in the many nanoFarads range which leads to a large amount of noise on the preamplifier inputs which typically swamps the transient IBIC signal. The normal method of improving the signal-to-noise (S/N) ratio by biasing the junction is impractical for these cells as the low-quality silicon used leads to a large leakage current across the device. We present several experimental techniques which improve the S/N ratio which when used together should make IBIC analysis of many low crystalline quality devices a viable and reliable procedure. (authors)

  9. Simulation by the method of inverse cumulative distribution function applied in optimising of foundry plant production

    Directory of Open Access Journals (Sweden)

    J. Szymszal

    2009-01-01

    Full Text Available The study discusses application of computer simulation based on the method of inverse cumulative distribution function. The simulationrefers to an elementary static case, which can also be solved by physical experiment, consisting mainly in observations of foundryproduction in a selected foundry plant. For the simulation and forecasting of foundry production quality in selected cast iron grade, arandom number generator of Excel calculation sheet was chosen. Very wide potentials of this type of simulation when applied to theevaluation of foundry production quality were demonstrated, using a number generator of even distribution for generation of a variable ofan arbitrary distribution, especially of a preset empirical distribution, without any need of adjusting to this variable the smooth theoreticaldistributions.

  10. Design of AC-DC Grid Connected Converter using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Piasecki Szymon

    2014-05-01

    Full Text Available Power electronic circuits, in particular AC-DC converters are complex systems, many different parameters and objectives have to be taken into account during the design process. Implementation of Multi-Objective Optimization (MOO seems to be attractive idea, which used as designer supporting tool gives possibility for better analysis of the designed system. This paper presents a short introduction to the MOO applied in the field of power electronics. Short introduction to the subject is given in section I. Then, optimization process and its elements are briefly described in section II. Design procedure with proposed optimization parameters and performance indices for AC-DC Grid Connected Converter (GCC interfacing distributed systems is introduced in section III. Some preliminary optimization results, achieved on the basis of analytical and simulation study, are shown at each stage of designing process. Described optimization parameters and performance indices are part of developed global optimization method dedicated for ACDC GCC introduced in section IV. Described optimization method is under development and only short introduction and basic assumptions are presented. In section V laboratory prototype of high efficient and compact 14 kVA AC-DC converter is introduced. The converter is elaborated based on performed designing and optimization procedure with the use of silicon carbide (SiC power semiconductors. Finally, the paper is summarized and concluded in section VI. In presented work theoretical research are conducted in parallel with laboratory prototyping e.g. all theoretical ideas are verified in laboratory using modern DSP microcontrollers and prototypes of the ACDC GCC.

  11. A new Dobson Umkehr ozone profile retrieval method optimising information content and resolution

    Science.gov (United States)

    Stone, K.; Tully, M. B.; Rhodes, S. K.; Schofield, R.

    2015-03-01

    The standard Dobson Umkehr methodology to retrieve coarse-resolution ozone profiles used by the National Oceanographic and Atmospheric Administration uses designated solar zenith angles (SZAs). However, some information may be lost if measurements lie outside the designated SZA range (between 60° and 90°), or do not conform to the fitting technique. Also, while Umkehr measurements can be taken using multiple wavelength pairs (A, C and D), past retrieval methods have focused on a single pair (C). Here we present an Umkehr inversion method that uses measurements at all SZAs (termed operational) and all wavelength pairs. (Although, we caution direct comparison to other algorithms.) Information content for a Melbourne, Australia (38° S, 145° E) Umkehr measurement case study from 28 January 1994, with SZA range similar to that designated in previous algorithms is shown. When comparing the typical single wavelength pair with designated SZAs to the operational measurements, the total degrees of freedom (independent pieces of information) increases from 3.1 to 3.4, with the majority of the information gain originating from Umkehr layers 2 + 3 and 4 (10-20 km and 25-30 km respectively). In addition to this, using all available wavelength pairs increases the total degrees of freedom to 5.2, with the most significant increases in Umkehr layers 2 + 3 to 7 and 9+ (10-40 and 45-80 km). Investigating a case from 13 April 1970 where the measurements extend beyond the 90° SZA range gives further information gain, with total degrees of freedom extending to 6.5. Similar increases are seen in the information content. Comparing the retrieved Melbourne Umkehr time series with ozonesondes shows excellent agreement in layers 2 + 3 and 4 (10-20 and 25-30 km) for both C and A + C + D-pairs. Retrievals in layers 5 and 6 (25-30 and 30-35 km) consistently show lower ozone partial column compared to ozonesondes. This is likely due to stray light effects that are not accounted for in the

  12. A multi-objective framework to predict flows of ungauged rivers within regions of sparse hydrometeorologic observation

    Science.gov (United States)

    Alipour, M.; Kibler, K. M.

    2017-12-01

    Despite advances in flow prediction, managers of ungauged rivers located within broad regions of sparse hydrometeorologic observation still lack prescriptive methods robust to the data challenges of such regions. We propose a multi-objective streamflow prediction framework for regions of minimum observation to select models that balance runoff efficiency with choice of accurate parameter values. We supplement sparse observed data with uncertain or low-resolution information incorporated as `soft' a priori parameter estimates. The performance of the proposed framework is tested against traditional single-objective and constrained single-objective calibrations in two catchments in a remote area of southwestern China. We find that the multi-objective approach performs well with respect to runoff efficiency in both catchments (NSE = 0.74 and 0.72), within the range of efficiencies returned by other models (NSE = 0.67 - 0.78). However, soil moisture capacity estimated by the multi-objective model resonates with a priori estimates (parameter residuals of 61 cm versus 289 and 518 cm for maximum soil moisture capacity in one catchment, and 20 cm versus 246 and 475 cm in the other; parameter residuals of 0.48 versus 0.65 and 0.7 for soil moisture distribution shape factor in one catchment, and 0.91 versus 0.79 and 1.24 in the other). Thus, optimization to a multi-criteria objective function led to very different representations of soil moisture capacity as compared to models selected by single-objective calibration, without compromising runoff efficiency. These different soil moisture representations may translate into considerably different hydrological behaviors. The proposed approach thus offers a preliminary step towards greater process understanding in regions of severe data limitations. For instance, the multi-objective framework may be an adept tool to discern between models of similar efficiency to select models that provide the "right answers for the right reasons

  13. Daylight Design of Office Buildings: Optimisation of External Solar Shadings by Using Combined Simulation Methods

    Directory of Open Access Journals (Sweden)

    Javier González

    2015-05-01

    Full Text Available Integrating daylight and energy performance with optimization into the design process has always been a challenge for designers. Most of the building environmental performance simulation tools require a considerable amount of time and iterations for achieving accurate results. Moreover the combination of daylight and energy performances has always been an issue, as different software packages are needed to perform detailed calculations. A simplified method to overcome both issues using recent advances in software integration is explored here. As a case study; the optimization of external shadings in a typical office space in Australia is presented. Results are compared against common solutions adopted as industry standard practices. Visual comfort and energy efficiency are analysed in an integrated approach. The DIVA (Design, Iterate, Validate and Adapt plug-in for Rhinoceros/Grasshopper software is used as the main tool, given its ability to effectively calculate daylight metrics (using the Radiance/Daysim engine and energy consumption (using the EnergyPlus engine. The optimization process is carried out parametrically controlling the shadings’ geometries. Genetic Algorithms (GA embedded in the evolutionary solver Galapagos are adopted in order to achieve close to optimum results by controlling iteration parameters. The optimized result, in comparison with conventional design techniques, reveals significant enhancement of comfort levels and energy efficiency. Benefits and drawbacks of the proposed strategy are then discussed.

  14. A multi-objective approach to evolving platooning strategies in intelligent transportation systems

    NARCIS (Netherlands)

    Illigen, W. van; Haasdijk, E.; Kester, L.J.H.M.

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective evolutionary algorithm based on NEAT and SPEA2 that evolves highlevel

  15. Multi-objective optimization of riparian buffer networks; valuing present and future benefits

    Science.gov (United States)

    Multi-objective optimization has emerged as a popular approach to support water resources planning and management. This approach provides decision-makers with a suite of management options which are generated based on metrics that represent different social, economic, and environ...

  16. Analysis of Various Multi-Objective Optimization Evolutionary Algorithms for Monte Carlo Treatment Planning System

    CERN Document Server

    Tydrichova, Magdalena

    2017-01-01

    In this project, various available multi-objective optimization evolutionary algorithms were compared considering their performance and distribution of solutions. The main goal was to select the most suitable algorithms for applications in cancer hadron therapy planning. For our purposes, a complex testing and analysis software was developed. Also, many conclusions and hypothesis have been done for the further research.

  17. Multi-Object Spectroscopy in the Next Decade: A Conference Summary

    NARCIS (Netherlands)

    Trager, S. C.; Skillen, I.; Barcells, M.

    2016-01-01

    I present a highly-biased summary of the conference "Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys, and Wide Fields," held 2-6 March 2015 in Santa Cruz de la Palma, Spain. I focus on four issues in this summary: (1) complexity in objects, physics, and instruments is

  18. Design of homo-organic acid producing strains using multi-objective optimization

    DEFF Research Database (Denmark)

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk

    2015-01-01

    Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic ...

  19. Performance of a genetic algorithm for solving the multi-objective, multimodel transportation network design problem

    NARCIS (Netherlands)

    Brands, Ties; van Berkum, Eric C.

    2014-01-01

    The optimization of infrastructure planning in a multimodal network is defined as a multi-objective network design problem, with accessibility, use of urban space by parking, operating deficit and climate impact as objectives. Decision variables are the location of park and ride facilities, train

  20. Multi-objective random search algorithm for simultaneously optimizing wind farm layout and number of turbines

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong; Xu, Chang

    2016-01-01

    A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximi...