WorldWideScience

Sample records for multi-mode blade damping

  1. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    Science.gov (United States)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  2. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  3. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  4. Vibrations of turbine blades bundles model with rubber damping elements

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2014-01-01

    Roč. 21, č. 1 (2014), s. 45-52 ISSN 1802-1484 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : mathematical model * bundle of five blades * rubber damping elements * eigenmodes Subject RIV: BI - Acoustics http://www.engineeringmechanics.cz/obsahy.html?R=21&C=1

  5. Vibration and Damping Analysis of Composite Fiber Reinforced Wind Blade with Viscoelastic Damping Control

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng

    2015-01-01

    Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.

  6. Mathematical model of blades bundle with damping connections

    Czech Academy of Sciences Publication Activity Database

    Pešek, Luděk; Půst, Ladislav; Cibulka, Jan; Bula, Vítězslav

    2013-01-01

    Roč. 63, č. 3 (2013), s. 43-46 ISSN 1729-3774. [Международная научнo-техническая конференция /5./. Alušta, 24.06.2013-28.06.2013] R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : blades vibration * damping elements * rubber * mathematic models Subject RIV: BI - Acoustics

  7. Enhancing the damping of wind turbine rotor blades, the DAMPBLADE project

    DEFF Research Database (Denmark)

    Chaviaropoulos, P.K.; Politis, E.S.; Lekou, D.J.

    2006-01-01

    A research programme enabling the development of damped wind turbine blades, having the acronym DAMPBLADE, has been supported by the EC under its 5th Framework Programme. In DAMPBLADE the following unique composite damping mechanisms were exploited aiming to increase the structural damping......: tailoring of laminate damping anisotropy, damping layers and damped polymer matrices. Additional objectives of the project were the development of the missing critical analytical technologies enabling the explicit modelling of composite structural damping and a novel ‘composite blade design capacity......’ enabling the direct prediction of aeroelastic stability and fatigue life; the development and characterization of damped composite materials; and the evaluation of new technology via the design and fabrication of damped prototype blades and their full-scale laboratory testing. After 4 years of work a 19 m...

  8. Coupling analysis of energy conversion in multi-mode vibration structural control using a synchronized switch damping method

    International Nuclear Information System (INIS)

    Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel

    2012-01-01

    Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)

  9. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2015-01-01

    Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... free-surface elevation equally well, the one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD is carried out based on the one-mode model, and the optimized damper effectively improves the dynamic response of wind turbine blades....

  10. Experimental investigation of damping for edgewise blade vibrations; Eksperimentel bestemmelse af daempning for kantsvingninger

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, K.; Thirstrup Petersen, J. [Forskningscenter Risoe (Denmark); Nim, E. [Bonus Energy A/S (Denmark); Oeye, S. [Danmarks Tekniske Univ. (Denmark); Pedersen, B. [LM Glasfiber A/S (Denmark)

    2000-01-01

    The main result of the investigation is a newly developed method to identify the effective damping for the edgewise blade mode shape for wind turbines. The method consists of an exciter mechanism which makes it possible to excite the edgewise blade mode shapes from the wind turbine nacelle and furthermore of an analysis method, which enables a straightforward determination of the damping. The analysis method is based on a local blade whirl description of the edgewise blade vibrations. The method is verified on a Bonus wind turbine and for this specific turbine the effective damping for edgewise blade vibrations has been determined. The results have been compared with aeroelastic simulations. The potential of the method is that the results can support the further development of aeroelastic models and fine tuning of parameters of importance of the edgewise blade vibration problem and thus improve the certainty in the predicted risk of vibrations. Furthermore, the method can be used for experimental investigation of the risk of edgewise blade vibrations for a specific turbine. (au)

  11. Highly Damping Hard Coatings for Protection of Titanium Blades

    National Research Council Canada - National Science Library

    Movchan, Boris A; Ustinov, Anatolii I

    2005-01-01

    Sn-Cr-MgO system is used as an example to show the basic capability to produce by EBPVD protective metal-ceramic coatings with a high adhesion strength, high values of hardness and damping capacity...

  12. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    Science.gov (United States)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  13. Investigation of damping potential of strip damper on a real turbine blade

    NARCIS (Netherlands)

    Afzal, M.; Lopez Arteaga, I.; Kari, L.; Kharyton, V.

    2016-01-01

    This paper investigates the damping potential of strip dampers on a real turbine bladed disk. A 3D numerical friction contact model is used to compute the contact forces by means of the Alternate Frequency Time domain method. The Jacobian matrix required during the iterative solution is computed in

  14. Blade couple connected by damping element with dry friction contacts

    Czech Academy of Sciences Publication Activity Database

    Pešek, Luděk; Půst, Ladislav

    2014-01-01

    Roč. 52, č. 3 (2014), s. 815-826 ISSN 1429-2955 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : dry friction * three masses system * damping of vibrations * irregular vibrations Subject RIV: BI - Acoustics Impact factor: 0.636, year: 2014 http://www.ptmts.org.pl/article.xsl?vol=52&no=3&page=815

  15. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    International Nuclear Information System (INIS)

    Bachmann, F; Delpero, T; Ermanni, P; De Oliveira, R; Sigg, A; Michaud, V; Schnyder, V; Jaehne, R; Bergamini, A

    2012-01-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty. (paper)

  16. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    Science.gov (United States)

    Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.

    2012-07-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.

  17. Piezoelectric shunt damping of a circular saw blade with autonomous power supply for noise and vibration reduction

    Science.gov (United States)

    Pohl, Martin; Rose, Michael

    2016-01-01

    Circular saws are widespread tools for machining metal, wood or even ceramics. Due to the thin blade and excitation by the workpiece contact of the cutting edges, circular saws are prone to vibration and intense noise emission. Damping the blade will lower the hearing protection requirements of the users and possibly increase precision. Therefore a new damping concept for circular saw blades is presented in this paper. It is based on negative capacitance shunted piezoelectric transducers which are applied to the saw blade core. The required energy for the electronics is harvested from the rotation by a generator, so that no change of the machine tool is required. All components are integrated into an autonomous saw tool. Finally, the system is experimentally investigated without rotation, in idling and in cutting condition in a circular saw test stand in the Institute for Machine Tools and Production Engineering (IWF) at TU Braunschweig. The experimental investigation shows a good reduction of the vibration amplitude over a wide frequency range in the non-rotating condition. When rotating, the damping effect is lower and limited to some narrow frequency bands. The proposed reason for the reduced damping effect in rotating condition consists in the saturation of the electronic circuits due to the limited supply voltage capabilities.

  18. blades

    Directory of Open Access Journals (Sweden)

    Shashishekara S. Talya

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  19. Damping of edgewise vibration in wind turbine blades by means of circular liquid dampers

    DEFF Research Database (Denmark)

    Basu, Biswajit; Zhang, Zili; Nielsen, Søren R.K.

    2016-01-01

    centrifugal acceleration. This centrifugal acceleration makes the use of this kind of oscillatory liquid damper feasible with a small mass ratio to effectively suppress edgewise vibrations. A reduced 2-DOF non-linear model is used for tuning the CLCD attached to a rotating wind turbine blade, ignoring......This paper proposes a new type of passive vibration control damper for controlling edgewise vibrations of wind turbine blades. The damper is a variant of the liquid column damper and is termed as a circular liquid column damper (CLCD). Rotating wind turbine blades generally experience a large...... the coupling between the blade and the tower. The performance of the damper is evaluated under various rotational speeds of the rotor. A special case in which the rotational speed is so small that the gravity dominates the motion of the liquid is also investigated. Further, the legitimacy of the decoupled...

  20. Application of Piezofilms for Excitation and Active Damping of Blade Flexural Vibration

    Czech Academy of Sciences Publication Activity Database

    Pešek, Luděk; Půst, Ladislav; Bula, Vítězslav; Cibulka, Jan

    2015-01-01

    Roč. 40, č. 1 (2015), s. 59-69 ISSN 0137-5075 Institutional support: RVO:61388998 Keywords : vibration suppression * parametric antiresonance * active damping * PVDF films Subject RIV: BI - Acoustics Impact factor: 0.661, year: 2015

  1. Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

    Science.gov (United States)

    Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos

    2010-01-01

    The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.

  2. DAMPE

    CERN Multimedia

    Chen, D

    The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.

  3. Damped gyroscopic effects and axial-flexural-torsional coupling using spinning finite elements for wind-turbine blades characterization

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Renewable energy sources like wind are important technologies, useful to alleviate for the current fossil-fuel crisis. Capturing wind energy in a more efficient way has resulted in the emergence of more sophisticated designs of wind turbines, particularly Horizontal-Axis Wind Turbines (HAWTs). To promote efficiency, traditional finite element methods have been widely used to characterize the aerodynamics of these types of multi-body systems and improve their design. Given their aeroelastic behavior, tapered-swept blades offer the potential to optimize energy capture and decrease fatigue loads. Nevertheless, modeling special complex geometries requires huge computational efforts necessitating tradeoffs between faster computation times at lower cost, and reliability and numerical accuracy. Indeed, the computational cost and the numerical effort invested, using traditional FE methods, to reproduce dependable aerodynamics of these complex-shape beams are sometimes prohibitive. A condensed Spinning Finite Element (SFE) method scheme is presented in this study aimed to alleviate this issue by means of modeling wind-turbine rotor blades properly with tapered-swept cross-section variations of arbitrary order via Lagrangian equations. Axial-flexural-torsional coupling is carried out on axial deformation, torsion, in-plane bending and out-of-plane bending using super-convergent elements. In this study, special attention is paid for the case of damped yaw effects, expressed within the described skew-symmetric damped gyroscopic matrix. Dynamics of the model are analyzed by achieving modal analysis with complex-number eigen-frequencies. By means of mass, damped gyroscopic, and stiffness (axial-flexural-torsional coupling) matrix condensation (order reduction), numerical analysis is carried out for several prototypes with different tapered, swept, and curved variation intensities, and for a practical range of spinning velocities at different rotation angles. A convergence study

  4. Modeling the Elastic and Damping Properties of the Multilayered Torsion Bar-Blade Structure of Rotors of Light Helicopters of the New Generation 2. Finite-Element Approximation of Blades and a Model of Coupling of the Torsion Bar with the Blades

    Science.gov (United States)

    Paimushin, V. N.; Shishkin, V. M.

    2016-01-01

    A rod-shape finite element with twelve degrees of freedom is proposed for modeling the elastic and damping properties of rotor blades with regard to their geometric stiffness caused by rotation of the rotor. A model of coupling of the torsion bar with blades is developed based on the hypothesis of linear deplanation of the connecting section of the torsion bar and a special transition element to ensure the compatibility of displacements of the torsion bar and blades upon their vibrations in the flapping and rotation planes. Numerical experiments were carried out to test and assess the validity of the model developed. Suggestions are made for ensuring unconditional stability of the iteration method in a subspace in determining the specified number of modes and frequencies of free vibrations of the torsion bar-blade structure.

  5. Polarization Characterization of a Multi-Moded Feed Structure

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarization Characterization of a Multi-Moded Feed Structure projects characterize the polarization response of a multi-moded feed horn as an innovative...

  6. Compressive multi-mode superresolution display

    KAUST Repository

    Heide, Felix

    2014-01-01

    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image. © 2014 Optical Society of America.

  7. Squeezing in multi-mode nonlinear optical state truncation

    International Nuclear Information System (INIS)

    Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.

    2007-01-01

    In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases

  8. Damping measurements in flowing water

    Science.gov (United States)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  9. Damping measurements in flowing water

    International Nuclear Information System (INIS)

    Coutu, A; Monette, C; Nennemann, B; Marmont, H; Seeley, C

    2012-01-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  10. Object recognition through a multi-mode fiber

    Science.gov (United States)

    Takagi, Ryosuke; Horisaki, Ryoichi; Tanida, Jun

    2017-04-01

    We present a method of recognizing an object through a multi-mode fiber. A number of speckle patterns transmitted through a multi-mode fiber are provided to a classifier based on machine learning. We experimentally demonstrated binary classification of face and non-face targets based on the method. The measurement process of the experimental setup was random and nonlinear because a multi-mode fiber is a typical strongly scattering medium and any reference light was not used in our setup. Comparisons between three supervised learning methods, support vector machine, adaptive boosting, and neural network, are also provided. All of those learning methods achieved high accuracy rates at about 90% for the classification. The approach presented here can realize a compact and smart optical sensor. It is practically useful for medical applications, such as endoscopy. Also our study indicated a promising utilization of artificial intelligence, which has rapidly progressed, for reducing optical and computational costs in optical sensing systems.

  11. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  12. Whimsicality of multi-mode Hasegawa space-charge waves in a complex plasma containing collision-dominated electrons and streaming ions

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-09-01

    The influence of collision-dominated electrons on multi-mode Hasegawa space-charge waves are investigated in a complex plasma containing streaming ions. The dispersion relation for the multi-mode Hasegawa space-charge wave propagating in a cylindrical waveguide filled with dusty plasma containing collision-dominated electrons and streaming ions is derived by using the fluid equations and Poisson’s equation which lead to a Bessel equation. By the boundary condition, the roots of the Bessel function would characterize the property of space-charge wave propagation. It is found that two solutions exist for wave frequency, which are affected by the radius of waveguide and the roots of the Bessel function. The damping and growing modes are found to be enhanced by an increase of the radius. However, an increase of electron collision frequency would suppress the damping and the growing modes of the propagating space-charge wave in a cylindrical waveguide plasma.

  13. Entanglement purification of multi-mode quantum states

    International Nuclear Information System (INIS)

    Clausen, J; Knoell, L; Welsch, D-G

    2003-01-01

    An iterative random procedure is considered allowing entanglement purification of a class of multi-mode quantum states. In certain cases, complete purification may be achieved using only a single signal state preparation. A physical implementation based on beam splitter arrays and non-linear elements is suggested. The influence of loss is analysed in the example of purification of entangled N-mode coherent states

  14. Anisotropic damping of Timoshenko beam elements

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.

    2001-05-01

    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risoe for modeling wind turbines. The model has been developed to enable modeling of turbine blades which often have different damping characteristics for flapwise, edgewise and torsional vibrations. The structural damping forces acting on the beam element are modeled by viscous damping described by an element damping matrix. The composition of this matrix is based on the element mass and stiffness matrices. It is shown how the coefficients for the mass and stiffness contributions can be calibrated to give the desired modal damping in the complete model of a blade. (au)

  15. Dynamic feedback for multi-mode plasma instabilities

    International Nuclear Information System (INIS)

    Sen, A.K.

    1978-01-01

    Constant feedback, which has been used exclusively, fails to stabilize more than one mode of a plasma instability. It is shown that a suitable dynamic or frequency-dependent feedback can stabilize all modes. Methods are developed in which such a feedback structure can be chosen in terms of its poles and zeros in relation to those of the plasma transfer function in the complex frequency plane. The synthesis procedure for such a feedback structure, in the form of an integrated electronic circuit is also discussed. As an example, a dynamic feedback for multi-mode stabilization of a collisional drift wave instability is developed in detail. (author)

  16. Quadratic Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  17. A Resonant Damping Study Using Piezoelectric Materials

    Science.gov (United States)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  18. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  19. A Novel Atomic Force Microscope with Multi-Mode Scanner

    International Nuclear Information System (INIS)

    Qin, Chun; Zhang, Haijun; Xu, Rui; Han, Xu; Wang, Shuying

    2016-01-01

    A new type of atomic force microscope (AFM) with multi-mode scanner is proposed. The AFM system provides more than four scanning modes using a specially designed scanner with three tube piezoelectric ceramics and three stack piezoelectric ceramics. Sample scanning of small range with high resolution can be realized by using tube piezos, meanwhile, large range scanning can be achieved by stack piezos. Furthermore, the combination with tube piezos and stack piezos not only realizes high-resolution scanning of small samples with large- scale fluctuation structure, but also achieves small range area-selecting scanning. Corresponding experiments are carried out in terms of four different scanning modes showing that the AFM is of reliable stability, high resolution and can be widely applied in the fields of micro/nano-technology. (paper)

  20. Hyperspectral tomography based on multi-mode absorption spectroscopy (MUMAS)

    Science.gov (United States)

    Dai, Jinghang; O'Hagan, Seamus; Liu, Hecong; Cai, Weiwei; Ewart, Paul

    2017-10-01

    This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This method relies on the recently proposed concept of nonlinear tomography, which can take full advantage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolution of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and nonlinear tomography, as well as the mathematical formulation of the inversion problem, are introduced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms and assuming typical laser parameters. The results show that faithful reconstruction of temperature distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially be extended to simultaneously reconstructing distributions of temperature and the concentration of multiple flame species.

  1. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  2. Development of a multi-mode hybrid electric bus

    Energy Technology Data Exchange (ETDEWEB)

    Shemmans, M.J. [Overland Custom Coach, Thorndale, ON (Canada); Bland, C. [BET Services Inc., Mississauga, ON (Canada)

    2004-04-01

    This paper describes the development of an energy efficient, low floor, 28 foot hybrid electric bus for use as an airport shuttle bus or other specialized transit operations. A multi-mode concept was also adopted to include the capability of operating in battery-only drive, engine-only drive or a range of hybrid electric drive modes. The electric drivetrain was powered by a battery pack or a combination of a battery pack and an internal combustion engine-powered electric generator. The participating companies in this project include Overland Custom Coach, BET Services Inc., Siemens and Transport Canada. The technical feasibility study was described with reference to duty cycles, performance issues, vehicle weight, mechanical drive issues, brakes, suspension, powertrain cooling, heating, ventilation, electrical system, batteries and control system. The commercial feasibility was also described in terms of capital and operating costs. Results of the prototype tests validate the possibilities of zero or reduced emission transit in real world applications. 25 tabs., 32 figs.

  3. Physics basis of Multi-Mode anomalous transport module

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Kritz, A. H.; Luo, L. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Weiland, J. [Departments of Applied Physics, Chalmers University of Technology and Euratom-VR Assoc., S41296 Gothenburg (Sweden); Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado (United States)

    2013-03-15

    The derivation of Multi-Mode anomalous transport module version 8.1 (MMM8.1) is presented. The MMM8.1 module is advanced, relative to MMM7.1, by the inclusion of peeling modes, dependence of turbulence correlation length on flow shear, electromagnetic effects in the toroidal momentum diffusivity, and the option to compute poloidal momentum diffusivity. The MMM8.1 model includes a model for ion temperature gradient, trapped electron, kinetic ballooning, peeling, collisionless and collision dominated magnetohydrodynamics modes as well as model for electron temperature gradient modes, and a model for drift resistive inertial ballooning modes. In the derivation of the MMM8.1 module, effects of collisions, fast ion and impurity dilution, non-circular flux surfaces, finite beta, and Shafranov shift are included. The MMM8.1 is used to compute thermal, particle, toroidal, and poloidal angular momentum transports. The fluid approach which underlies the derivation of MMM8.1 is expected to reliably predict, on an energy transport time scale, the evolution of temperature, density, and momentum profiles in plasma discharges for a wide range of plasma conditions.

  4. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    Science.gov (United States)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  5. System for damping vibrations in a turbine

    Science.gov (United States)

    Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis

    2015-11-24

    A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.

  6. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  7. A quantum-classical simulation of a multi-surface multi-mode ...

    Indian Academy of Sciences (India)

    Multi surface multi mode quantum dynamics; parallelized quantum classical approach; TDDVR method. 1. ... cal simulation on molecular system is a great cha- llenge for ..... on a multiple core cluster with shared memory using. OpenMP based ...

  8. Super-Gaussian, super-diffusive transport of multi-mode active matter

    OpenAIRE

    Hahn, Seungsoo; Song, Sanggeun; Kim, Dae Hyun; Yang, Gil-Suk; Lee, Kang Taek; Sung, Jaeyoung

    2017-01-01

    Living cells exhibit multi-mode transport that switches between an active, self-propelled motion and a seemingly passive, random motion. Cellular decision-making over transport mode switching is a stochastic process that depends on the dynamics of the intracellular chemical network regulating the cell migration process. Here, we propose a theory and an exactly solvable model of multi-mode active matter. Our exact model study shows that the reversible transition between a passive mode and an a...

  9. Effect of steady deflections on the aeroelastic stability of a turbine blade

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2011-01-01

    This paper deals with effects of geometric non-linearities on the aeroelastic stability of a steady-state defl ected blade. Today, wind turbine blades are long and slender structures that can have a considerable steady-state defl ection which affects the dynamic behaviour of the blade. The fl...... apwise blade defl ection causes the edgewise blade motion to couple to torsional blade motion and thereby to the aerodynamics through the angle of attack. The analysis shows that in the worst case for this particular blade, the edgewise damping can be decreased by half. Copyright © 2010 John Wiley & Sons......, Ltd....

  10. Applied modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Pedersen, H.B.; Kristensen, O.J.D.

    2003-01-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...

  11. Flapping inertia for selected rotor blades

    Science.gov (United States)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  12. Analysis and synthesis of multi-qubit, multi-mode quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Solgun, Firat

    2015-03-27

    In this thesis we propose new methods in multi-qubit multi-mode circuit quantum electrodynamics (circuit-QED) architectures. First we describe a direct parity measurement method for three qubits, which can be realized in 2D circuit-QED with a possible extension to four qubits in a 3D circuit-QED setup for the implementation of the surface code. In Chapter 3 we show how to derive Hamiltonians and compute relaxation rates of the multi-mode superconducting microwave circuits consisting of single Josephson junctions using an exact impedance synthesis technique (the Brune synthesis) and applying previous formalisms for lumped element circuit quantization. In the rest of the thesis we extend our method to multi-junction (multi-qubit) multi-mode circuits through the use of state-space descriptions which allows us to quantize any multiport microwave superconducting circuit with a reciprocal lossy impedance response.

  13. Mathematical Model of Two Blades System

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2014-01-01

    Roč. 2, č. 4 (2014), s. 361-369 ISSN 2321-3558 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : turbine blades * dry friction * vibration damping * torsion Subject RIV: BI - Acoustics

  14. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    . The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes.......The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element...... formulation accounts for arbitrary mass density distributions, general elastic crosssection properties and geometric stiffness effects due to internal stresses. A compact, linear formulation for aerodynamic forces with associated stiffness and damping terms is established and added to the structural model...

  15. Multi-mode operations for on-line uninterruptible power supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guan, Yajuan

    2018-01-01

    In this paper, the multi-mode operation of the on-line UPS system is investigated and corresponding control strategies are proposed. The proposed control strategies are able to achieve the seamless transition in traditional normal mode, PV-aided normal mode, enhanced eco-mode and burn-in test mod...

  16. Multi-Mode Operation for On-line Uninterruptible Power Supply System

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Golestan, Saeed

    2018-01-01

    To enhance the robustness and disturbance rejection ability of an on-line uninterruptible power supply (UPS) system, an Internal Model Control (IMC)-based DC-link voltage regulation method is proposed in this paper. Furthermore, the multi-mode operations of the on-line UPS system are investigated...

  17. Heralded source of bright multi-mode mesoscopic sub-Poissonian light

    DEFF Research Database (Denmark)

    Iskhakov, Timur; Usenko, V. C.; Andersen, Ulrik Lund

    2016-01-01

    In a direct detection scheme, we observed 7.8 dB of twin-beam squeezing for multi-mode two-color squeezed vacuum generated via parametric downconversion. Applying postselection, we conditionally prepared a sub-Poissonian state of light containing 6.3 . 105 photons per pulse on the average...

  18. An Adaptive Large Neighborhood Search Algorithm for the Multi-mode RCPSP

    DEFF Research Database (Denmark)

    Muller, Laurent Flindt

    We present an Adaptive Large Neighborhood Search algorithm for the Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP). We incorporate techniques for deriving additional precedence relations and propose a new method, so-called mode-diminution, for removing modes during execution...

  19. Modeling the Elastic and Damping Properties of the Multilayered Torsion Bar-Blade Structure of Rotors of Light Helicopters of the New Generation. 1. Finite-Element Approximation of the Torsion Bar

    Science.gov (United States)

    Paimushin, V. N.; Shishkin, V. M.

    2015-11-01

    A prismatic semiquadratic element with a nonclassical approximation of its displacements is suggested for modeling the composite and soft layers of a torsion bar and multilayered plate-rod structures. The stiffness, weight, damping, and geometric stiffness matrices of the above-mentioned element are obtained. Expressions for computing stresses in the finite element under the action of static loads and vibrations in the resonance zone are presented. Test examples confirming the validity of the element suggested are given. An example of finite element determination of the dynamic response of a multilayered torsion bar in the resonant mode is considered.

  20. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  1. Modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H.; Baumgart, A.; Carlen, I.

    2002-02-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriate of these has been selected. Although the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has been quantified by estimating the unsystematic variations in the experimental findings. Satisfactory results have been obtained for natural frequencies, damping characteristics and for the dominating deflection direction of the investigated mode shapes. For the secondary deflection directions, the observed experimental uncertainty may be considerable - especially for the torsional deflection. The experimental analysis of the LM 19 m blade has been compared with results from a state-of-the-art FE-modeling of the same blade. For some of the higher modes substantial discrepancies between the natural frequencies originating from the FE-modeling and the modal analysis, respectively, are observed. In general the qualitative features of measured and computed modes shapes are in good agreement. However, for the secondary deflection directions, substantial deviations in the absolute values may occur (when normalizing with respect to the primary deflection direction). Finally, suggestions of potential future improvements of the experimental procedure are discussed. (au)

  2. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  3. A robo-pigeon based on an innovative multi-mode telestimulation system.

    Science.gov (United States)

    Yang, Junqing; Huai, Ruituo; Wang, Hui; Lv, Changzhi; Su, Xuecheng

    2015-01-01

    In this paper, we describe a new multi-mode telestimulation system for brain-microstimulation for the navigation of a robo-pigeon, a new type of bio-robot based on Brain-Computer Interface (BCI) techniques. The multi-mode telestimulation system overcomes neuron adaptation that was a key shortcoming of the previous single-mode stimulation by the use of non-steady TTL biphasic pulses accomplished by randomly alternating pulse modes. To improve efficiency, a new behavior model ("virtual fear") is proposed and applied to the robo-pigeon. Unlike the previous "virtual reward" model, the "virtual fear" behavior model does not require special training. The performance and effectiveness of the system to alleviate the adaptation of neurons was verified by a robo-pigeon navigation test, simultaneously confirming the practicality of the "virtual fear" behavioral model.

  4. Online probabilistic operational safety assessment of multi-mode engineering systems using Bayesian methods

    International Nuclear Information System (INIS)

    Lin, Yufei; Chen, Maoyin; Zhou, Donghua

    2013-01-01

    In the past decades, engineering systems become more and more complex, and generally work at different operational modes. Since incipient fault can lead to dangerous accidents, it is crucial to develop strategies for online operational safety assessment. However, the existing online assessment methods for multi-mode engineering systems commonly assume that samples are independent, which do not hold for practical cases. This paper proposes a probabilistic framework of online operational safety assessment of multi-mode engineering systems with sample dependency. To begin with, a Gaussian mixture model (GMM) is used to characterize multiple operating modes. Then, based on the definition of safety index (SI), the SI for one single mode is calculated. At last, the Bayesian method is presented to calculate the posterior probabilities belonging to each operating mode with sample dependency. The proposed assessment strategy is applied in two examples: one is the aircraft gas turbine, another is an industrial dryer. Both examples illustrate the efficiency of the proposed method

  5. Unconventional geometric logic gate in a strong-driving-assisted multi-mode cavity

    International Nuclear Information System (INIS)

    Chang-Ning, Pan; Di-Wu, Yang; Xue-Hui, Zhao; Mao-Fa, Fang

    2010-01-01

    We propose a scheme to implement an unconventional geometric logic gate separately in a two-mode cavity and a multi-mode cavity assisted by a strong classical driving field. The effect of the cavity decay is included in the investigation. The numerical calculation is carried out, and the result shows that our scheme is more tolerant to cavity decay than the previous one because the time consumed for finishing the logic gate is doubly reduced. (general)

  6. Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography

    Science.gov (United States)

    Yoshizawa, K.; Ekström, G.

    2008-12-01

    The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.

  7. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...... correlated wind velocity field. It is shown by numerical simulations that the active damping system can provide a significant reduction in the response amplitude of the targeted modes, while applying control moments to the blades that are about 1 order of magnitude smaller than the moments from the external...

  8. Predictive simulations of radio frequency heated plasmas of Tore Supra using the Multi-Mode model

    International Nuclear Information System (INIS)

    Voitsekhovitch, Irina; Bateman, Glenn; Kritz, Arnold H.; Pankin, Alexei

    2002-01-01

    Multichannel integrated predictive simulations using the Multi-Mode transport model are carried out for radio frequency heated Tore Supra tokamak discharges in which helium is the primary ion component. Lower hybrid heated discharges in which the total current is driven noninductively [X. Litaudon et al., Plasma Phys. Controlled Fusion 43, 677 (2001)] and a discharge with ion cyclotron radio frequency heating of the hydrogen minority ions [G. T. Hoang et al., Nucl. Fusion 38, 117 (1998)] are simulated. The simulations of these discharges represent the first test of the Multi-Mode model in helium plasmas with dominant electron heating. Also for the first time, the particle transport in Tore Supra discharges is computed and the density profiles are predicted self-consistently with other transport channels. It is found in these simulations that the anomalous transport driven by trapped electron mode turbulence is dominant compared to the transport driven by the ion temperature gradient turbulence. The feature of the Multi-Mode model to calculate the impurity transport self-consistently with other transport channels is used in this study to predict the influence of carbon impurity influx on the discharge evolution

  9. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2015-04-21

    Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems.

  10. Vibration of circular bladed disk with imperfections

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2011-01-01

    Roč. 21, č. 10 (2011), s. 2893-2904 ISSN 0218-1274 R&D Projects: GA ČR GA101/09/1166 Institutional research plan: CEZ:AV0Z20760514 Keywords : circular bladed disk * vibration * imperfection * nonlinear damping Subject RIV: BI - Acoustics Impact factor: 0.755, year: 2011 http://www.worldscinet.com/ijbc/21/2110/S0218127411030210.html

  11. A Perspective on the Numerical and Experimental Characteristics of Multi-Mode Dry-Friction Whip and Whirl

    National Research Council Canada - National Science Library

    Wilkes, Jason C

    2008-01-01

    .... Efforts of the author, Dyck [1], Pavalek [2], and coworkers enabled the design and construction of a test rig that demonstrated and recorded accurately the character of multi-mode dry-friction whip and whirl...

  12. Applied modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Broen Pedersen, H.; Dahl Kristensen, O.J.

    2003-02-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Different equipment for mounting the accelerometers are investigated and the most suitable are chosen. Different excitation techniques are tried during experimental campaigns. After a discussion the pendulum hammer were chosen, and a new improved hammer was manufactured. Some measurement errors are investigated. The ability to repeat the measured results is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use of accelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded and unloaded wind turbine blade. During this campaign the modal analysis are performed on a blade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Oeyes blade{sub E}V1 program. (au)

  13. Magnetic Damping For Maglev

    Directory of Open Access Journals (Sweden)

    S. Zhu

    1998-01-01

    Full Text Available Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  14. KNOW-BLADE task-3.2 report: Tip shape study

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Johansen, Jeppe; Conway, S.

    2005-01-01

    For modern rotor blades with their very large aspect ratio, the blade tip is a very limited part of the overall rotor, and as such of limited importance for the overall aerodynamics of the rotor. Even though they may not be very important for the overallpower production, the tip noise can be very...... important for the acoustics of the rotor [15], and the blade tips can as well be important for the aerodynamic damping properties of the rotor blades [13]. Unfortunately, not many options exists for predictingthe aerodynamic behavior of blade tips using computational methods. Experimentally it is di...

  15. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  16. Gas Turbine Blade Damper Optimization Methodology

    Directory of Open Access Journals (Sweden)

    R. K. Giridhar

    2012-01-01

    Full Text Available The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement.

  17. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  18. Improving the theoretical foundations of the multi-mode transport model

    International Nuclear Information System (INIS)

    Bateman, G.; Kritz, A.H.; Redd, A.J.; Erba, M.; Rewoldt, G.; Weiland, J.; Strand, P.; Kinsey, J.E.; Scott, B.

    1999-01-01

    A new version of the Multi-Mode transport model, designated MMM98, is being developed with improved theoretical foundations, in an ongoing effort to predict the temperature and density profiles in tokamaks. For transport near the edge of the plasma, MMM98 uses a new model based on 3-D nonlinear simulations of drift Alfven mode turbulence. Flow shear stabilization effects have been added to the Weiland model for Ion Temperature Gradient and Trapped Electron Modes, which usually dominates in most of the plasma core. For transport near the magnetic axis at high beta, a new kinetic ballooning mode model has been constructed based on FULL stability code computations. (author)

  19. Improving the theoretical foundations of the multi-mode transport model

    International Nuclear Information System (INIS)

    Bateman, G.; Kritz, A.H.; Redd, A.J.; Erba, M.; Rewoldt, G.; Weiland, J.; Strand, P.; Kinsey, J.E.; Scott, B.

    2001-01-01

    A new version of the Multi-Mode transport model, designated MMM98, is being developed with improved theoretical foundations, in an ongoing effort to predict the temperature and density profiles in tokamaks. For transport near the edge of the plasma, MMM98 uses a new model based on 3-D nonlinear simulations of drift Alfven mode turbulence. Flow shear stabilization effects have been added to the Weiland model for Ion Temperature Gradient and Trapped Electron Modes, which usually dominates in most of the plasma core. For transport near the magnetic axis at high beta, a new kinetic ballooning mode model has been constructed based on FULL stability code computations. (author)

  20. Interference of Multi-Mode Gaussian States and "non Appearance" of Quantum Correlations

    Science.gov (United States)

    Olivares, Stefano

    2012-01-01

    We theoretically investigate bilinear, mode-mixing interactions involving two modes of uncorrelated multi-mode Gaussian states. In particular, we introduce the notion of "locally the same states" (LSS) and prove that two uncorrelated LSS modes are invariant under the mode mixing, i.e. the interaction does not lead to the birth of correlations between the outgoing modes. We also study the interference of orthogonally polarized Gaussian states by means of an interferometric scheme based on a beam splitter, rotators of polarization and polarization filters.

  1. Structural dynamics of shroudless, hollow fan blades with composite in-lays

    Science.gov (United States)

    Aiello, R. A.; Hirschbein, M. S.; Chamis, C. C.

    1982-01-01

    Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade.

  2. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  3. Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology

    International Nuclear Information System (INIS)

    Lee, Changgil; Park, Seunghee

    2011-01-01

    In a structure, several types of damage can occur, ranging from micro-cracking to corrosion or loose bolts. This makes identifying the damage difficult with a single mode of sensing. Therefore, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In self-sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this experimental study, a pipeline system under water flow operation was examined to verify the effectiveness and robustness of the proposed structural health monitoring approach. Different types of structural damage were inflicted artificially on the pipeline system. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented by composing a three-dimensional space using the damage indices extracted from the impedance and guided wave features as well as temperature variations. For a more systematic damage classification, several control parameters were optimized to determine an optimal decision boundary for the supervised learning-based pattern recognition. Further research issues are also discussed for real-world implementations of the proposed approach

  4. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks

    Science.gov (United States)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree

    2014-06-01

    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  5. Integration of geospatial multi-mode transportation Systems in Kuala Lumpur

    International Nuclear Information System (INIS)

    Ismail, M A; Said, M N

    2014-01-01

    Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis

  6. Integration of geospatial multi-mode transportation Systems in Kuala Lumpur

    Science.gov (United States)

    Ismail, M. A.; Said, M. N.

    2014-06-01

    Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis.

  7. Brightness enhancement of a multi-mode ribbon fiber using transmitting Bragg gratings

    Science.gov (United States)

    Anderson, B. M.; Venus, G.; Ott, D.; Divliansky, I.; Dawson, J. W.; Drachenberg, D. R.; Messerly, M. J.; Pax, P. H.; Tassano, J. B.; Glebov, L. B.

    2015-03-01

    Increasing the dimensions of a waveguide provides the simplest means of reducing detrimental nonlinear effects, but such systems are inherently multi-mode, reducing the brightness of the system. Furthermore, using rectangular dimensions allows for improved heat extraction, as well as uniform temperature profile within the core. We propose a method of using the angular acceptance of a transmitting Bragg grating (TBG) to filter the fundamental mode of a fiber laser resonator, and as a means to increase the brightness of multi-mode fiber laser. Numerical modeling is used to calculate the diffraction losses needed to suppress the higher order modes in a laser system with saturable gain. The model is tested by constructing an external cavity resonator using an ytterbium doped ribbon fiber with core dimensions of 107.8μm by 8.3μm as the active medium. We show that the TBG increases the beam quality of the system from M2 = 11.3 to M2 = 1.45, while reducing the slope efficiency from 76% to 53%, overall increasing the brightness by 5.1 times.

  8. The damped wave equation with unbounded damping

    Czech Academy of Sciences Publication Activity Database

    Freitas, P.; Siegl, Petr; Tretter, C.

    2018-01-01

    Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016

  9. Influence of Icing on the Modal Behavior of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Sudhakar Gantasala

    2016-10-01

    Full Text Available Wind turbines installed in cold climate sites accumulate ice on their structures. Icing of the rotor blades reduces turbine power output and increases loads, vibrations, noise, and safety risks due to the potential ice throw. Ice accumulation increases the mass distribution of the blade, while changes in the aerofoil shapes affect its aerodynamic behavior. Thus, the structural and aerodynamic changes due to icing affect the modal behavior of wind turbine blades. In this study, aeroelastic equations of the wind turbine blade vibrations are derived to analyze modal behavior of the Tjaereborg 2 MW wind turbine blade with ice. Structural vibrations of the blade are coupled with a Beddoes-Leishman unsteady attached flow aerodynamics model and the resulting aeroelastic equations are analyzed using the finite element method (FEM. A linearly increasing ice mass distribution is considered from the blade root to half-length and thereafter constant ice mass distribution to the blade tip, as defined by Germanischer Lloyd (GL for the certification of wind turbines. Both structural and aerodynamic properties of the iced blades are evaluated and used to determine their influence on aeroelastic natural frequencies and damping factors. Blade natural frequencies reduce with ice mass and the amount of reduction in frequencies depends on how the ice mass is distributed along the blade length; but the reduction in damping factors depends on the ice shape. The variations in the natural frequencies of the iced blades with wind velocities are negligible; however, the damping factors change with wind velocity and become negative at some wind velocities. This study shows that the aerodynamic changes in the iced blade can cause violent vibrations within the operating wind velocity range of this turbine.

  10. Damping in Timber Structures

    OpenAIRE

    Labonnote, Nathalie

    2012-01-01

    Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping. The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models h...

  11. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  12. Turbomachine blade assembly

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  13. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  14. Multi-mode excitation of a clamped–clamped microbeam resonator

    KAUST Repository

    Younis, Mohammad I.

    2015-02-18

    We present modeling and simulation of the nonlinear dynamics of a microresonator subjected to two-source electrostatic excitation. The resonator is composed of a clamped–clamped beam excited by a DC voltage load superimposed to two AC voltage loads of different frequencies. One frequency is tuned close to the first natural frequency of the beam and the other is close to the third (second symmetric) natural frequency. A multi-mode Galerkin procedure is applied to extract a reduced-order model, which forms the basis of the numerical simulations. Time history response, Poincare’ sections, Fast Fourier Transforms FFT, and bifurcation diagrams are used to reveal the dynamics of the system. The results indicate complex nonlinear phenomena, which include quasiperiodic motion, torus bifurcations, and modulated chaotic attractors.

  15. Time displacement pictures with multi-mode probes from circumferential welds

    International Nuclear Information System (INIS)

    Wustenberg, H.; Jaffrey, D.; Ludwig, B.; Bertus, N.; Erhard, A.

    1985-01-01

    If a creeping wave probe is applied to butt welds typical echo patterns from weld defects can be received. It seems possible that echoes from the geometric shape of the root or the crown and defect echoes can be separated by simple means. This has been the reason for the development of a special presentation of the echo patterns received by this multi-mode creeping wave probe. The so called time displacement pictures show the AD-converted A-scans in a gray scale along a line corresponding to the time axis of the propagation. Perpendicular to this time axis results obtained from displacement of the probe parallel to the weld are presented. This kind of picture immediately provides the whole A-scan information. This paper presents some first results on simulated welds with artificial defects and on circumferential welds with typical geometric imperfections

  16. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    Energy Technology Data Exchange (ETDEWEB)

    Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  17. Temperature-Corrected Oxygen Detection Based on Multi-Mode Diode Laser Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xiutao Lou

    2013-01-01

    Full Text Available Temperature-corrected oxygen measurements were performed by using multi-mode diode laser correlation spectroscopy at temperatures ranging between 300 and 473 K. The experiments simulate in situ monitoring of oxygen in coal-combustion exhaust gases at the tail of the flue. A linear relationship with a correlation coefficient of −0.999 was found between the evaluated concentration and the gas temperature. Temperature effects were either auto-corrected by keeping the reference gas at the same conditions as the sample gas, or rectified by using a predetermined effective temperature-correction coefficient calibrated for a range of absorption wavelengths. Relative standard deviations of the temperature-corrected oxygen concentrations obtained by different schemes and at various temperatures were estimated, yielding a measurement precision of 0.6%.

  18. Method and apparatus for controlling a powertrain system including a multi-mode transmission

    Science.gov (United States)

    Hessell, Steven M.; Morris, Robert L.; McGrogan, Sean W.; Heap, Anthony H.; Mendoza, Gil J.

    2015-09-08

    A powertrain including an engine and torque machines is configured to transfer torque through a multi-mode transmission to an output member. A method for controlling the powertrain includes employing a closed-loop speed control system to control torque commands for the torque machines in response to a desired input speed. Upon approaching a power limit of a power storage device transferring power to the torque machines, power limited torque commands are determined for the torque machines in response to the power limit and the closed-loop speed control system is employed to determine an engine torque command in response to the desired input speed and the power limited torque commands for the torque machines.

  19. The Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Denis Pinha

    2016-11-01

    Full Text Available This paper presents the formulation and solution of the Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem. The focus of the proposed method is not on finding a single optimal solution, instead on presenting multiple feasible solutions, with cost and duration information to the project manager. The motivation for developing such an approach is due in part to practical situations where the definition of optimal changes on a regular basis. The proposed approach empowers the project manager to determine what is optimal, on a given day, under the current constraints, such as, change of priorities, lack of skilled worker. The proposed method utilizes a simulation approach to determine feasible solutions, under the current constraints. Resources can be non-consumable, consumable, or doubly constrained. The paper also presents a real-life case study dealing with scheduling of ship repair activities.

  20. Refractive index sensors based on the fused tapered special multi-mode fiber

    Science.gov (United States)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  1. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    Science.gov (United States)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  2. The damped wave equation with unbounded damping

    Science.gov (United States)

    Freitas, Pedro; Siegl, Petr; Tretter, Christiane

    2018-06-01

    We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.

  3. Decoherence and Landau-Damping

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  4. Fuel Assembly Damping Summary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghee; Kang, Heungseok; Oh, Dongseok; Yoon, Kyungho; Kim, Hyungkyu; Kim, Jaeyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  5. Bimetallic Blisks with Shrouded Turbine Blades for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    L. A. Magerramova

    2015-01-01

    Full Text Available The paper discusses prospects of using blisks with shrouded blades. Increasing an engine life and efficiency as well as mass reduction can also be achieved by increasing blade numbers and decreasing disk diameter. But design engineers are faced with the problem of blade placement because of the disk size and root dimensions.The problem of increasing life and cyclic durability, vibration strength, and lightweight design of the turbine gas turbine wheels, can be solved by an elimination of blade - disk locks.The technology of manufacturing one-piece blisks by connecting the blades with the disc part using hot isostatic pressing was developed. This technology allows us to use blades with shrouds. It is necessary to increase efficiency and to improve high cycle fatigue performance of rotor blades.One of the pressing problems is to ensure the necessary position of shrouds in relation to each other in the manufacturing process as well as in the service. Numerical studies of the influence of the shroud mounting position on blade strength during operation allowed us to develop a methodology of choosing a shroud mounting position.Based on the two turbine wheels (LPT and HPT calculations advantages of blisk design with respect to the lock-based design were shown. Application of bimetallic blisks with shrouded blades resulted in a lifespan increase and weight reduction.In addition, other advantages of blisk design are as follows: possible reduction in the number of parts, elimination of leaks and fretting that take place in the blade - disk locks, exception of expensive broaching operations and disk alloy saving. The shortcoming is elimination of damping in root connection. In addition, there are no widely used repair methods.Despite these disadvantages the usage of bimetallic turbine blisks with shrouded blades is very promising.

  6. Probabilistic analysis of bladed turbine disks and the effect of mistuning

    Science.gov (United States)

    Shah, Ashwin; Nagpal, V. K.; Chamis, C. C.

    1990-01-01

    Probabilistic assessment of the maximum blade response on a mistuned rotor disk is performed using the computer code NESSUS. The uncertainties in natural frequency, excitation frequency, amplitude of excitation and damping have been included to obtain the cumulative distribution function (CDF) of blade responses. Advanced mean value first order analysis is used to compute CDF. The sensitivities of different random variables are identified. Effect of the number of blades on a rotor on mistuning is evaluated. It is shown that the uncertainties associated with the forcing function parameters have significant effect on the response distribution of the bladed rotor.

  7. Viscoelastic Damping of Turbine and Compressor Blade Vibrations.

    Science.gov (United States)

    1982-03-01

    and Materials Conference, Atlanta, GA: 6 April 1981. 6. Balfour, A. and D.H. Marwick. Pro-ramming in Standard FORTRAN 77. New York: North- Holand Inc...EIGENVALUE PROBLEM RESULTING FROM THE EQUATION OF C MOTION IN THE ANALYTICAL SECTION REAL Gl,G2,C,T,L,M,K,J, F1 ,F2,F3,F4,X1,X2 COMPLEX Z,Z1,B,D,F,W COMMON

  8. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    Science.gov (United States)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  9. Reconfigurable Bandpass Sigma-Delta Modulator With Programmable NTF for Low-IF Multi-Mode Receivers

    DEFF Research Database (Denmark)

    Zhang, Ke; Mikkelsen, Jan H.; Shen, Ming

    2012-01-01

    transfer function of the loop while still maintaining stability. Compared with conventional multi-mode BPSDM, employing cascade structures and multi-bit sub-ADCs, the proposed modulator features many attractive advantages, such as (1) avoiding coefficient mismatch between analog and digital components...

  10. Tuning the dispersion and single/multi-modeness of a hole-assisted fiber by the hole's geometrical parameters

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2008-01-01

    Using a vectorial finite element mode solver developed earlier, we studied a hole-assisted multi-ring fiber. We report the role of the hole’s geometrical parameters in tuning the waveguide dispersion and the single/multi-modeness of the particular fiber. By correctly selecting the hole’s size and

  11. Adhesive performance of a multi-mode adhesive system: 1-year in vitro study.

    Science.gov (United States)

    Marchesi, Giulio; Frassetto, Andrea; Mazzoni, Annalisa; Apolonio, Fabianni; Diolosà, Marina; Cadenaro, Milena; Di Lenarda, Roberto; Pashley, David H; Tay, Franklin; Breschi, Lorenzo

    2014-05-01

    The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Landau Damping Revisited

    International Nuclear Information System (INIS)

    Rees, John; Chao, Alexander

    2008-01-01

    Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread

  13. KNOW-BLADE task-4 report. Navier-Stokes aeroelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.; Bertagnolio, F.; Soerensen, N.N.; Johansen, J.

    2005-01-01

    The problem of the aeroelastic stability of wind turbine blades is addressed in this report by advancing the aerodynamic modelling in the beam element type codes from the engineering-type empirical models to unsteady, 2D or 3D, Navier-Stokes solvers. In this project, structural models for the full wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) is its inability to model induced flow. The lack of a validation test case did not allow for quantitative comparisons with experimental data to be carried out; instead the results of the advanced aeroelastic tools are qualitatively cross-compared. All investigated methods predicted qualitatively similar results. They all resulted in positive aerodynamic damping values for the flap mode, in a decrease in damping with the increase of wind speeds and in a minimum value for the damping for wind speed around 15{approx}m/s. The eigenvalue analyses resulted in steeper distributions for this mode. The agreement in aerodynamic damping decrease with the increase of wind speed is also observed in the distributions for the lead-lag mode. In perspective, the uncoupled, linear method results in higher values of aerodynamic damping compared to the 3D aeroelastic tool. The quasi-3D tool results in lower aerodynamic damping values in the higher wind speeds and in lower damping values in the lower wind speed regime. Apart from the computations for the full blade, 2D computations for the so-called 'typical section' have been carried out. The 2D aeroelastic tools resulted in similar aerodynamic damping values. Qualitative agreement was better for the lead-lag mode. The presence of roughness tapes has a small, rather negligible impact on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted

  14. A four-port launcher for a multi-moded DLDS power distribution system

    International Nuclear Information System (INIS)

    Eppley, K.; Li, Z.; Miller, R.; Nantista, C.; Tantawi, S.

    1998-06-01

    The authors describe a structure for launching the TE 01 and both polarizations of TE 12 modes into a highly overmoded low loss circular waveguide providing remote transmission for a multi-moded Delay Line Distribution System (DLDS). The power from four sources is delivered to four structure ports by rectangular waveguide, and the mode for each pulse subsection is selected by varying the relative phases of the sources. The four ports symmetrically feed a section of waveguide with a fourfold symmetric four-leaf clover-like (or quatrefoil) cross section, dimensioned so as to propagate only four TE modes, characterized as 0, π/2 (two polarizations), and π modes. The 0 and π/2 modes are well matched, the π mode only moderately so. A low loss taper transforms the initial cross section to a circular cross section; the 0 mode transforming to TE 01 , the π/2 to TE 11 , the π to TE 21 , all with negligible mode conversion. A sausage type mode transducer then converts TE 11 to TE 12 (a lower loss mode), and the diameter is then expanded to the full ∼five inch diameter of the delay line. A separate structure to divert power from the last pulse subsection to the local group of accelerator structures is required

  15. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    Science.gov (United States)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  16. Layered Multi-mode Optimal Control Strategy for Multi-MW Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    KONG Yi-gang; WANG Zhi-xin

    2008-01-01

    The control strategy is one of the most important renewable technology, and an increasing number of multi-MW wind turbines are being developed with a variable speed-variable pitch (VS-VP) technology. The main objective of adopting a VS-VP technology is to improve the fast response speed and capture maximum energy. But the power generated by wind turbine changes rapidly because of the centinuous fluctuation of wind speed and direction. At the same time, wind energy conversion systems are of high order, time delays and strong nonlinear characteristics because of many uncertain factors. Based on analyzing the all dynamic processes of wind turbine, a kind of layered multi-mode optimal control strategy is presented which is that three control strategies: bang-bang, fuzzy and adaptive proportienai integral derivative (PID) are adopted according to different stages and expected performance of wind turbine to capture optimum wind power, compensate the nonlinearity and improve the wind turbine performance at low, rated and high wind speed.

  17. OM4 bend insensitive multi-mode fibers’ usefulness for MCM integration

    International Nuclear Information System (INIS)

    Guzowski, Bartłomiej; Lisik, Zbigniew; Tosik, Grzegorz; Ciupa, Emilia

    2012-01-01

    Highlights: ► The influence of high temperature exposure on OM4 fibers’ mechanical properties. ► Researching OM4 class fibers for use in innovative Optical Multi Chip Module. ► The influence of bending at a very small radius, up to 2 mm, on MM fibers. - Abstract: For future generations of electronic systems, a severe bottleneck is expected on the interconnection level and the use of optical interconnection is considered as one of the most promising solutions in this matter. Recent progress in fiber development resulted in new generation of optical fibers that are bend insensitive. This makes them ideal for Multi Chip Module (MCM) application. This paper focuses on OM4 bend insensitive multi-mode fibers’ usefulness for MCM integration, particularly the investigation of MM fiber loss is presented, which is influenced by bend diameter and the fiber's mechanical performance under influence of high temperature (400 °C–1000 °C adequate to MCM production process).

  18. Research tokamak system with multi-mode discharges using inverter power supply

    International Nuclear Information System (INIS)

    Kojima, Hiroki; Kobayashi, Masahiro; Takagi, Makoto; Takamura, Shuichi; Tashiro, Kenji

    1999-01-01

    In Current Sustaining Tokamak in Nagoya university (CSTN)-IV research tokamak system using a compact 40kHz pulse width modulation (PWM) inverter power supply, which is controlled through LabVIEW program, we construct a new tokamak discharge system with multi-mode including a stable alternating current discharge and a high-repetition high-duty one. These discharge modes can be operated continuously for as long as 60sec. The continuous discharge with long duration is able to simulate the important physical and chemical processes of long time discharges in fusion devices, in which the heat load to the wall and the particle balance in the plasma-wall system are crucial topics in order to realize a long pulse fusion reactor, like ITER. Employing ergodic divertor (ED) is one of tools to control the particle balance and the heat load to the wall. In addition, we installed another inverter power supply to generate a rotating magnetic perturbation for dynamic ergodic divertor (DED) with the appropriate measurement system so that we may carry out experiments on heat and particle control with DED at long time operation. (author)

  19. The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.

    Science.gov (United States)

    Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K

    2018-02-09

    A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar

    Science.gov (United States)

    2018-01-01

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed. PMID:29439431

  1. Optimizing strategy for repetitive construction projects within multi-mode resources

    Directory of Open Access Journals (Sweden)

    Remon Fayek Aziz

    2013-03-01

    Full Text Available Estimating tender data for specific project is the most essential part in construction areas as of a contractor’s view such as: proposed project duration with corresponding gross value and cash flows. Cash flow analysis of construction projects has a long history and has been an important topic in construction management. Determination of project cash flows is very sensitive, especially for repetitive construction projects. This paper focuses on how to calculate tender data for repetitive construction projects such as: project duration, project cost, project/bid price, project cash flows, project maximum working capital and project net present value that is equivalent to net profit at the beginning of the project. A simplified multi-objective optimization formulation will be presented that creates best tender data to contractor comparing with more feasible options that are generated from multi-mode resources in a given project. This mathematical formulation is intended to give more scenarios which provide a practical support for typical construction contractors who need to optimize resource utilization in order to minimize project duration, project/bid price and project maximum working capital while maximizing its net present value simultaneously. At the end of the paper, an illustrative example will be presented to demonstrate the applications of proposed technique to an optimization expressway of repetitive construction project.

  2. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS

    Science.gov (United States)

    Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye

    2015-10-01

    An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.

  3. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS

    International Nuclear Information System (INIS)

    Luo Yanbin; Ma Chengyan; Gan Yebing; Qian Min; Ye Tianchun

    2015-01-01

    An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than −26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is −43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm 2 . (paper)

  4. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar.

    Science.gov (United States)

    Lee, Dongkyoung; Pyo, Sukhoon

    2018-02-10

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed.

  5. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.

    Science.gov (United States)

    Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin

    2015-11-01

    Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of large bending deflections on blade flutter limits

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, Bjarne Skovmose; Hartvig Hansen, Morten

    2008-04-15

    The coupling of bending and torsion due to large blade bending are assumed to have some effects of the flutter limits of wind turbines. In the present report, the aeroelastic blade model suggested by Kallesoee, which is similar to a second order model, is used to investigate the aeroelastic stability limits of the RWT blade with and without the effects of the large blade deflection. The investigation shows no significant change of the flutter limit on the rotor speed due to the blade deflection,whereas the first edgewise bending mode becomes negatively damped due to the coupling with blade torsion which causes a change of the effective direction of blade vibration. These observations are confirmed by nonlinear aeroelastic simulations using HAWC2. This work is part of the UpWind project funded by the European Commission under the contract number SES6-CT-2005-019945 which is gratefully acknowledged. This report is the deliverable D2.3 of the UpWind project. (au)

  7. Extended Rayleigh Damping Model

    Directory of Open Access Journals (Sweden)

    Naohiro Nakamura

    2016-07-01

    Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.

  8. Parametric Blade Study Test Report Rotor Configuration. Number 4

    Science.gov (United States)

    1988-11-01

    Figure 2. The rotor shaft is mounted on an oil-damped roller bearing at the forward location and a ball bearing at the aft location; radial runout does...thermodynamic properties. 22 d. Corrections were made to measured compressor temperatures and pressures, facility flowrate, and rotor wheel speed to...1152 .Z660 .1024 STRM- BLADE BLADE WHEEL LINE SECT. LEAN SPEED NUMBER ANGLE ANGLE 1 -55.15 7.32 1497.9 2 -53.85 8.09 1434.7 3 -52.96 7.11 1372.1 4

  9. Multi-mode optical fibers for connecting space-based spectrometers

    Science.gov (United States)

    Roberts, W. T.; Lindenmisth, C. A.; Bender, S.; Miller, E. A.; Motts, E.; Ott, M.; LaRocca, F.; Thomes, J.

    2017-11-01

    significantly smaller, less massive and less robust. Large core multi-mode optical fibers are often used to accommodate the optical connection of the two separated portions of such instrumentation. In some cases, significant throughput efficiency improvement can be realized by judiciously orienting the strands of multi-fiber cable, close-bunching them to accommodate a tight focus of the optical system on the optical side of the connection, and splaying them out linearly along a spectrometer slit on the other end. For such instrumentation to work effectively in identifying elements and molecules, and especially to produce accurate quantitative results, the spectral throughput of the optical fiber connection must be consistent over varying temperatures, over the range of motion of the optical head (and it's implied optical cable stresses), and over angle-aperture invariant of the total system. While the first two of these conditions have been demonstrated[4], spectral observations of the latter present a cause for concern, and may have an impact on future design of fiber-connected LIBS and Raman spectroscopy instruments. In short, we have observed that the shape of the spectral efficiency curve of a large multi-mode core optical fiber changes as a function of input angle.

  10. A triple hybrid micropower generator with simultaneous multi-mode energy harvesting

    Science.gov (United States)

    Uluşan, H.; Chamanian, S.; Pathirana, W. P. M. R.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2018-01-01

    This study presents a triple hybrid energy harvesting system that combines harvested power from thermoelectric (TE), vibration-based electromagnetic (EM) and piezoelectric (PZT) harvesters into a single DC supply. A power management circuit is designed and implemented in 180 nm standard CMOS technology based on the distinct requirements of each harvester, and is terminated with a Schottky diode to avoid reverse current flow. The system topology hence supports simultaneous power generation and delivery from low and high frequency vibrations as well as temperature differences in the environment. The ultra-low DC voltage harvested from TE generator is boosted with a cross-coupled charge-pump driven by an LC oscillator with fully-integrated center-tapped differential inductors. The EM harvester output was rectified with a self-powered and low drop-out AC/DC doubler circuit. The PZT interface electronics benefits from peak-to-peak cycle of the harvested voltage through a negative voltage converter followed by synchronous power extraction and DC-to-DC conversion through internal switches, and an external inductor. The hybrid system was tested with a wearable in-house EM energy harvester placed wrist of a jogger, a commercial low volume PZT harvester, and DC supply as the TE generator output. The system generates more than 1.2 V output for load resistances higher than 50 kΩ, which corresponds to 24 μW to power wearable sensors. Simultaneous multi-mode operation achieves higher voltage and power compared to stand-alone harvesting circuits, and generates up to 110 μW of output power. This is the first hybrid harvester circuit that simultaneously extracts energy from three independent sources, and delivers a single DC output.

  11. Optimizing strategy software for repetitive construction projects within multi-mode resources

    Directory of Open Access Journals (Sweden)

    Remon Fayek Aziz

    2013-09-01

    Full Text Available Estimating tender data for specific project is the most essential part in construction areas as of contractor’s view such as: proposed project duration with corresponding gross value and cash flows. This paper focuses on how to calculate tender data using Optimizing Strategy Software (OSS for repetitive construction projects with identical activity’s duration in case of single number of crew such as: project duration, project/bid price, project maximum working capital, and project net present value of the studied project. A simplified multi-objective optimization software (OSS will be presented that creates best tender data to contractor compared with more feasible options generated from multi-mode resources in a given project. OSS is intended to give more scenarios which provide practical support for typical construction contractors who need to optimize resource utilization in order to minimize project duration, project/bid price, and project maximum working capital while maximizing its net present value simultaneously. OSS is designed by java programing code system to provide a number of new and unique capabilities, including: (1 Ranking the obtained optimal plans according to a set of planner specified weights representing the relative importance of duration, price, maximum working capital and net present value in the analyzed project; (2 Visualizing and viewing the generated optimal trade-off; and (3 Providing seamless integration with available project management calculations. In order to provide the aforementioned capabilities of OSS, the system is implemented and developed in four main modules: (1 A user interface module; (2 A database module; (3 A running module; (4 A connecting module. At the end of the paper, an illustrative example will be presented to demonstrate and verify the applications of the proposed software (OSS to an optimization expressway of repetitive construction project.

  12. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission.

    Science.gov (United States)

    Kao, Hsuan-Yun; Tsai, Cheng-Ting; Leong, Shan-Fong; Peng, Chun-Yen; Chi, Yu-Chieh; Huang, Jian Jang; Kuo, Hao-Chung; Shih, Tien-Tsorng; Jou, Jau-Ji; Cheng, Wood-Hi; Wu, Chao-Hsin; Lin, Gong-Ru

    2017-07-10

    For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 μm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

  13. Pipe damping studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels

  14. Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhang, Yu; Wu, Hua; Zhang, Tieqiang; Gu, Pengfei; Chu, Hairong; Cui, Tian; Wang, Yiding; Zhang, Hanzhuang; Zhao, Jun; Yu, William W.

    2013-01-01

    A theoretical model was established in this paper to analyze the properties of 3.50 and 4.39 nm PbSe quantum dot-doped liquid-core multi-mode fiber. This model was applicable to both single- and multi-mode fiber. The three-level system-based light-propagation equations and rate equations were used to calculate the guided spontaneous emission spectra. Considering the multi-mode in the fiber, the normalized intensity distribution of transversal model was improved and simplified. The detailed calculating results were thus obtained and explained using the above-mentioned model. The redshift of the peak position and the evolution of the emission power were observed and analyzed considering the influence of the fiber length, fiber diameter, doping concentration, and the pump power. The redshift increased with the increases of fiber length, fiber diameter, and doping concentration. The optimal fiber length, fiber diameter, and doping concentration were analyzed and confirmed, and the related spontaneous emission power was obtained. Besides, the normalized emission intensity increased with the increase of pump power in a nearly linear way. The calculating results fitted well to the experimental data

  15. Hybrid UWB and WiMAX radio-over-multi-mode fibre for in-building optical networks

    International Nuclear Information System (INIS)

    Perez, J; Llorente, R

    2014-01-01

    In this paper the use of hybrid WiMedia-defined ultra-wideband (UWB) and IEEE 802.16d WiMAX radio-over-fibre is proposed and experimentally demonstrated for multi-mode based in-building optical networks with the advantage of great immunity to optical transmission impairments. In the proposed approach, spectral coexistence of both signals must be achieved with negligible mutual interference. The experimental study performed addressed an indoor configuration with 50 μm multi-mode fibres (MMF) and 850 nm vertical-cavity surface-emitting laser (VCSEL) transmitters. The results indicate that the impact of the wireless convergence in radio-over-multi-mode fibre (RoMMF) is significant for UWB transmissions, mainly due to MMF dispersion and electrooptical (EO) devices with limited bandwidth. On the other hand, WiMAX transmission is feasible for a 300 m MMF and 30 m wireless link in the presence of UWB, with −31 dBm WiMAX EVM. (paper)

  16. Process Damping Parameters

    International Nuclear Information System (INIS)

    Turner, Sam

    2011-01-01

    The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.

  17. An Entropy-Based Upper Bound Methodology for Robust Predictive Multi-Mode RCPSP Schedules

    Directory of Open Access Journals (Sweden)

    Angela Hsiang-Ling Chen

    2014-09-01

    Full Text Available Projects are an important part of our activities and regardless of their magnitude, scheduling is at the very core of every project. In an ideal world makespan minimization, which is the most commonly sought objective, would give us an advantage. However, every time we execute a project we have to deal with uncertainty; part of it coming from known sources and part remaining unknown until it affects us. For this reason, it is much more practical to focus on making our schedules robust, capable of handling uncertainty, and even to determine a range in which the project could be completed. In this paper we focus on an approach to determine such a range for the Multi-mode Resource Constrained Project Scheduling Problem (MRCPSP, a widely researched, NP-complete problem, but without adding any subjective considerations to its estimation. We do this by using a concept well known in the domain of thermodynamics, entropy and a three-stage approach. First we use Artificial Bee Colony (ABC—an effective and powerful meta-heuristic—to determine a schedule with minimized makespan which serves as a lower bound. The second stage defines buffer times and creates an upper bound makespan using an entropy function, with the advantage over other methods that it only considers elements which are inherent to the schedule itself and does not introduce any subjectivity to the buffer time generation. In the last stage, we use the ABC algorithm with an objective function that seeks to maximize robustness while staying within the makespan boundaries defined previously and in some cases even below the lower boundary. We evaluate our approach with two different benchmarks sets: when using the PSPLIB for the MRCPSP benchmark set, the computational results indicate that it is possible to generate robust schedules which generally result in an increase of less than 10% of the best known solutions while increasing the robustness in at least 20% for practically every

  18. Blade attachment assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  19. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    International Nuclear Information System (INIS)

    Kumar, A A; Hugues-Salas, O; Savini, B; Keogh, W

    2016-01-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods. (paper)

  20. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  1. Hydro-dynamic damping theory in flowing water

    Science.gov (United States)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  2. Damping of Coherent oscillations

    CERN Document Server

    Vos, L

    1996-01-01

    Damping of coherent oscillations by feedback is straightforward in principle. It has been a vital ingredient for the safe operation of accelerators since a long time. The increasing dimensions and beam intensities of the new generation of hadron colliders impose unprecedented demands on the performance of future systems. The arguments leading to the specification of a transverse feedback system for the CERN SPS in its role as LHC injector and the LHC collider itself are developped to illustrate this. The preservation of the transverse emittance is the guiding principle during this exercise keeping in mind the hostile environment which comprises: transverse impedance bent on developping coupled bunch instabilities, injection errors, unwanted transverse excitation, unavoidable tune spreads and noise in the damping loop.

  3. Damping rings for CLIC

    CERN Document Server

    Jowett, John M; Zimmermann, Frank; Owen, H

    2001-01-01

    The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.

  4. Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    Directory of Open Access Journals (Sweden)

    O. Barkman

    2013-04-01

    Full Text Available Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+, Na+ and K+, Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide and subsequently for the design of 1 to 3 multimode interference power splitter in order to improve simulation accuracy. Designs were developed by utilizing finite difference beam propagation method.

  5. Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-11-01

    We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.

  6. Dislocation damping during irradiation

    International Nuclear Information System (INIS)

    Burdett, C.F.; Rahmatalla, H.

    1977-01-01

    The results of Simpson et al (Simpson, H.M., Sosin, A., Johnston, D.F., Phys.Rev. B, 5:1393 (1972)) on the damping produced during electron irradiation of copper are re-examined and it is shown that they can be explained in terms of the model of Granato and Lucke (Granato, A., Lucke, K., J.Appl.Phys., 27:583,789 (1958)). (author)

  7. Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting

    Science.gov (United States)

    Pei, Yalu; Liu, Yilun; Zuo, Lei

    2018-06-01

    This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.

  8. On Landau damping

    KAUST Repository

    Mouhot, Clément

    2011-09-01

    Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.

  9. Ceramic blade attachment system

    Science.gov (United States)

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  10. Blade dynamic stress analysis of rotating bladed disks

    Directory of Open Access Journals (Sweden)

    Kellner J.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of steady forced bladed disk vibrations and with dynamic stress calculation of the blades. The blades are considered as 1D kontinuum elastic coupled with three-dimensional elastic disk centrally clamped into rotor rotating with constant angular speed. The steady forced vibrations are generated by the aerodynamic forces acting along the blade length. By using modal synthesis method the mathematical model of the rotating bladed disk is condensed to calculate steady vibrations. Dynamic stress analysis of the blades is based on calculation of the time dependent reduced stress in blade cross-sections by using Hubert-Misses-Hencky stress hypothesis. The presented method is applied to real turbomachinery rotor with blades connected on the top with shroud.

  11. Modal properties and stability of bend–twist coupled wind turbine blades

    Directory of Open Access Journals (Sweden)

    A. R. Stäblein

    2017-06-01

    Full Text Available Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry (e.g. sweep, prebending, or deflection under load or from the anisotropic properties of the blade material. Bend–twist coupling can be utilized to reduce the fatigue loads of wind turbine blades. In this study the effects of material-based coupling on the aeroelastic modal properties and stability limits of the DTU 10 MW Reference Wind Turbine are investigated. The modal properties are determined by means of eigenvalue analysis around a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend–twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist for flapwise (flap–twist coupling or edgewise (edge–twist coupling bending. Edge–twist coupling can increase or decrease the damping of the edgewise mode relative to the reference blade, depending on the operational condition of the turbine. Edge–twist to feather coupling for edgewise deflection towards the leading edge reduces the inflow speed at which the blade becomes unstable. Flap–twist to feather coupling for flapwise deflections towards the suction side increase the frequency and reduce damping of the flapwise mode. Flap–twist to stall reduces frequency and increases damping. The reduction of blade root flapwise and tower bottom fore–aft moments due to variations in mean wind speed of a flap–twist to feather blade are confirmed by frequency response functions.

  12. FE Modeling of Blade Couple with Friction Contacts Under Dynamic Loading

    Czech Academy of Sciences Publication Activity Database

    Pešek, Luděk; Půst, Ladislav; Vaněk, František; Veselý, Jan

    2014-01-01

    Roč. 2, č. 3 (2014), s. 229-238 ISSN 2321-3558 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : turbine blades * dry friction * damping Subject RIV: BI - Acoustics http://www.tvi-in.com/Journals/journaldetail.aspx?Id=201406251115146464844edeb39be66

  13. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Role of interbranch pumping on the quantum-statistical behavior of multi-mode magnons in ferromagnetic nanowires

    Science.gov (United States)

    Haghshenasfard, Zahra; Cottam, M. G.

    2018-01-01

    Theoretical studies are reported for the quantum-statistical properties of microwave-driven multi-mode magnon systems as represented by ferromagnetic nanowires with a stripe geometry. Effects of both the exchange and the dipole-dipole interactions, as well as a Zeeman term for an external applied field, are included in the magnetic Hamiltonian. The model also contains the time-dependent nonlinear effects due to parallel pumping with an electromagnetic field. Using a coherent magnon state representation in terms of creation and annihilation operators, we investigate the effects of parallel pumping on the temporal evolution of various nonclassical properties of the system. A focus is on the interbranch mixing produced by the pumping field when there are three or more modes. In particular, the occupation magnon number and the multi-mode cross correlations between magnon modes are studied. Manipulation of the collapse and revival phenomena of the average magnon occupation number and the control of the cross correlation between the magnon modes are demonstrated through tuning of the parallel pumping field amplitude and appropriate choices for the coherent magnon states. The cross correlations are a direct consequence of the interbranch pumping effects and do not appear in the corresponding one- or two-mode magnon systems.

  15. A blade deflection monitoring system

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  16. Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

    Science.gov (United States)

    Hennig, Jan-Simon; Barr, Bryan W.; Bell, Angus S.; Cunningham, William; Danilishin, Stefan L.; Dupej, Peter; Gräf, Christian; Hough, James; Huttner, Sabina H.; Jones, Russell; Leavey, Sean S.; Pascucci, Daniela; Sinclair, Martin; Sorazu, Borja; Spencer, Andrew; Steinlechner, Sebastian; Strain, Kenneth A.; Wright, Jennifer; Zhang, Teng; Hild, Stefan

    2017-12-01

    Low-mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilizing multiple pendulum stages with vertical blade springs and materials with high-quality factors provides attenuation of seismic and thermal noise; however, damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed, but it introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low-mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimization for this system.

  17. Database about blade faults

    DEFF Research Database (Denmark)

    Branner, Kim; Ghadirian, Amin

    This report deals with the importance of measuring the reliability of the rotor blades and describing how they can fail. The Challenge is that very little non-confidential data is available and that the quality and detail in the data is limited....

  18. Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization

    Science.gov (United States)

    Liu, Qiang; Chattopadhyay, Aditi

    2000-06-01

    Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.

  19. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    Science.gov (United States)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  20. BWR control blade replacement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kennard, M W [Stoller Nuclear Fuel, NAC International, Pleasantville, NY (United States); Harbottle, J E [Stoller Nuclear Fuel, NAC International, Thornbury, Bristol (United Kingdom)

    2000-02-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B{sub 4}C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  1. BWR control blade replacement strategies

    International Nuclear Information System (INIS)

    Kennard, M.W.; Harbottle, J.E.

    2000-01-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B 4 C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  2. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    Science.gov (United States)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  3. Dynamic configuration management of a multi-standard and multi-mode reconfigurable multi-ASIP architecture for turbo decoding

    Science.gov (United States)

    Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe

    2017-12-01

    The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.

  4. Investigation of single-mode and multi-mode hydromagnetic Rayleigh-Taylor instability in planar geometry

    International Nuclear Information System (INIS)

    Roderick, N.F.; Cochrane, K.; Douglas, M.R.

    1998-01-01

    Previous investigations carried out to study various methods of seeding the hydromagnetic Rayleigh-Taylor instability in magnetohydrodynamic simulations showed features similar to those seen in hydrodynamic calculations. For periodic single-mode initiations the results showed the appearance of harmonics as the single modes became nonlinear. For periodic multi-mode initiations new modes developed that indicated the presence of mode coupling. The MHD simulations used parameters of the high velocity large radius z-pinch experiments performed in the Z-accelerator at Sandia National Laboratories. The cylindrical convergent geometry and variable acceleration of these configurations made comparison with analytic, developed for planar geometry with constant acceleration, difficult. A set of calculations in planar geometry using constant current to produce acceleration and parameters characteristic of the cylindrical implosions has been performed to allow a better comparison. Results of these calculations, comparison with analytic theory, and comparison with the cylindrical configuration calculations will be discussed

  5. Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser.

    Science.gov (United States)

    Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho

    2009-07-20

    Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.

  6. Selective injection locking of a multi-mode semiconductor laser to a multi-frequency reference beam

    Science.gov (United States)

    Pramod, Mysore Srinivas; Yang, Tao; Pandey, Kanhaiya; Giudici, Massimo; Wilkowski, David

    2014-07-01

    Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is obtained on a single-mode laser injected by a single-frequency seeding beam. In this work we show that selective injection locking of a single-frequency may also be achieved on a multi-mode semiconductor laser injected by a multi-frequency seeding beam, if the slave laser provides sufficient frequency filtering. This selective injection locking condition depends critically on the frequency detuning between the free-running slave emission frequency and each injected frequency component. Stable selective injection locking to a set of three seeding components separated by 1.2 GHz is obtained. This system provides an amplification up to 37 dB of each component. This result suggests that, using distinct slave lasers for each frequency line, a set of mutually coherent high-power radiation modes can be tuned in the GHz frequency domain.

  7. Multi-mode-multi-state quantum dynamics of key five-membered heterocycles: spectroscopy and ultrafast internal conversion

    International Nuclear Information System (INIS)

    Koeppel, H.; Gromov, E.V.; Trofimov, A.B.

    2004-01-01

    The multi-mode and multi-state vibronic interactions in the heterocyclic molecules furan, pyrrole, thiophene and their radical cations are investigated theoretically, employing a linear vibronic coupling scheme. The underlying system parameters are determined from large-scale ab initio computations. Previous time-independent dynamical calculations on the radical cations are extended by wave-packet propagations (using the MCTDH method) confirming the strong nonadiabatic coupling effects. For the singlet excited states of furan and thiophene quantum dynamical calculations are presented which go beyond the two-state approximation frequently applied in the literature. The characteristic spectral structures are well reproduced, especially in the case of furan. The implications of these results on the photochemical reaction dynamics of these species are discussed

  8. Multi-mode optical fibers for simultaneous 13-position measurements Thomson scattering apparatus in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nakazawa, Ichiro; Matoba, Tohru; Ogura, Yoshiaki.

    1987-11-01

    The characteristics of fiber bundles for Thomson scattering optics are studied, whose fibers are made of multi-mode optical fibers. The variety of output patterns were observed by weighting on the fiber as well as by bending it after passing a He-Ne laser through a fiber bundle. This variety influenced the matching loss considerably. Then, the effect of former is larger than the latter, which is caused by the micro bending. And also, the spread of pulse width by weighting is connected with the spread of output pattern. The spread of pulse width was about 3ns at the most in a 2.3 m length of fiber bundle. (author)

  9. Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines

    Science.gov (United States)

    Luhmann, B.; Cheng, P. W.

    2014-06-01

    A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body

  10. Dynamic ELM and divertor control using resonant toroidal multi-mode magnetic fields in DIII-D and EAST

    Science.gov (United States)

    Sun, Youwen

    2017-10-01

    A rotating n = 2 Resonant Magnetic Perturbation (RMP) field combined with a stationary n = 3 RMP field has validated predictions that access to ELM suppression can be improved, while divertor heat and particle flux can also be dynamically controlled in DIII-D. Recent observations in the EAST tokamak indicate that edge magnetic topology changes, due to nonlinear plasma response to magnetic perturbations, play a critical role in accessing ELM suppression. MARS-F code MHD simulations, which include the plasma response to the RMP, indicate the nonlinear transition to ELM suppression is optimized by configuring the RMP coils to drive maximal edge stochasticity. Consequently, mixed toroidal multi-mode RMP fields, which produce more densely packed islands over a range of additional rational surfaces, improve access to ELM suppression, and further spread heat loading on the divertor. Beneficial effects of this multi-harmonic spectrum on ELM suppression have been validated in DIII-D. Here, the threshold current required for ELM suppression with a mixed n spectrum, where part of the n = 3 RMP field is replaced by an n = 2 field, is smaller than the case with pure n = 3 field. An important further benefit of this multi-mode approach is that significant changes of 3D particle flux footprint profiles on the divertor are found in the experiment during the application of a rotating n = 2 RMP field superimposed on a static n = 3 RMP field. This result was predicted by modeling studies of the edge magnetic field structure using the TOP2D code which takes into account plasma response from MARS-F code. These results expand physics understanding and potential effectiveness of the technique for reliably controlling ELMs and divertor power/particle loading distributions in future burning plasma devices such as ITER. Work supported by USDOE under DE-FC02-04ER54698 and NNSF of China under 11475224.

  11. 107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Agustin, M.; Chorchos, L.

    2016-01-01

    First time successful 107.5 Gb/s MultiCAP 850 nm OM4 MMF transmissions over 10 m with multi-mode VCSEL and up to 100 m with single-mode VCSEL are demonstrated, with BER below 7% overhead FEC limit measured for each case.......First time successful 107.5 Gb/s MultiCAP 850 nm OM4 MMF transmissions over 10 m with multi-mode VCSEL and up to 100 m with single-mode VCSEL are demonstrated, with BER below 7% overhead FEC limit measured for each case....

  12. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  13. Subsonic Swept Fan Blade

    Science.gov (United States)

    Gallagher, Edward J. (Inventor); Rogers, Thomas H. (Inventor)

    2017-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be driven at a at a design speed by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool. Rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades includes an airfoil body. The leading edge of the airfoil body has a swept profile such that, at the design speed, a component of a relative velocity vector of a working gas that is normal to the leading edge is subsonic along the entire radial span.

  14. Performance of Savonius Blade Waterwheel with Variation of Blade Number

    Science.gov (United States)

    Sule, L.; Rompas, P. T. D.

    2018-02-01

    The utilization of water energy source is mainly used as a provider of electrical energy through hydroelectric power. The potential utilization of water flow energy is relatively small. The objective of this study is to know the best blade of Savonius waterwheel with various variables such as water discharge, blade number, and loading. The data used the efficiency of waterwheel, variation of blade number, variable water discharge, and loading in the shaft. The test results have shown that the performances of a top-water mill with the semicircular curve where the variation in the number of blades are 4, 6, and 8 at discharge and loading of 0.01587 m3/s and 1000 grams respectively were 9.945%, 13.929%, and 17.056% respectively. The blades number of 8 obtained the greatest performance. The more number of blades the greater the efficiency of the waterwheel Savonius.

  15. Active Tuned Mass Dampers for Control of In-Plane Vibrations of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fitzgerald, B.; Basu, Biswajit; Nielsen, Søren R.K.

    2013-01-01

    matrices. The aim of this paper is to determine whether ATMDs could be used to reduce in-plane blade vibrations in wind turbines with better performance than compared with their passive counterparts. A Euler–Lagrangian wind turbine mathematical model based on energy formulation was developed......, centrifugal, and turbulent aerodynamic loadings. Investigations show promising results for the use of ATMDs in the vibration control of wind turbine blades.......This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping...

  16. Sources of fatigue damage to passive yaw wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  17. KNOW-BLADE task-4 report: Navier-Stokes aeroelasticity

    DEFF Research Database (Denmark)

    Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.

    2004-01-01

    wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) isits inability to model induced flow. The lack of a validation test case did not allow...... the computations for the full blade, 2D computations for the so-called “typical section” have been carried out. The 2D aeroelastic tools resulted in similar aerodynamic damping values. Qualitative agreement was better for the lead-lagmode. The presence of roughness tapes has a small, rather negligible impact...... on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted computational model to successfullypredict the corresponding test cases under work package 2 of the project, the aeroelastic tools are not capable to predict the correct...

  18. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  19. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  20. Ceramic blade with tip seal

    Science.gov (United States)

    Glezer, B.; Bhardwaj, N.K.; Jones, R.B.

    1997-08-05

    The present gas turbine engine includes a disc assembly defining a disc having a plurality of blades attached thereto. The disc has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc. A shroud assembly is attached to the gas turbine engine and is spaced from the plurality of blades a preestablished distance forming an interface there between. Positioned in the interface is a seal having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades. 4 figs.

  1. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  2. Damping in aerospace composite materials

    Science.gov (United States)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  3. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...

  4. Emittance damping considerations for TESLA

    International Nuclear Information System (INIS)

    Floettmann, K.; Rossbach, J.

    1993-03-01

    Two schemes are considered to avoid very large damping rings for TESLA. The first (by K.F.) makes use of the linac tunnel to accomodate most of the damping 'ring' structure, which is, in fact, not a ring any more but a long linear structure with two small bends at each of its ends ('dog-bone'). The other scheme (by J.R.) is based on a positron (or electron, respectively) recycling scheme. It makes use of the specific TESLA property, that the full bunch train is much longer (240 km) than the linac length. The spent beams are recycled seven times after interaction, thus reducing the number of bunches to be stored in the damping ring by a factor of eight. Ultimately, this scheme can be used to operate TESLA in a storage ring mode ('storage linac'), with no damping ring at all. Finally, a combination of both schemes is considered. (orig.)

  5. Vibration damping method and apparatus

    Science.gov (United States)

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  6. Damping Measurements of Plasma Modes

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.

    2010-11-01

    For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.

  7. Turbine blade vibration dampening

    Science.gov (United States)

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  8. Multi-Objective Optimization Considering Battery Degradation for a Multi-Mode Power-Split Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xuerui Ma

    2017-07-01

    Full Text Available A multi-mode power-split (MMPS hybrid electric vehicle (HEV has two planetary gearsets and clutches/grounds which results in several operation modes with enhanced electric drive capability and better fuel economy. Basically, the battery storage system is involved in different operation modes to satisfy the power demand and minimize the fuel consumption, whereas the complicated operation modes with frequent charging/discharging will absolutely influence the battery life because of degradation. In this paper, firstly, we introduce the solid electrolyte interface (SEI film growth model based on the previous study of the battery degradation principles and was verified according to the test data. We consider both the fuel economy and battery degradation as a multi-objective problem for MMPS HEV by normalization with a weighting factor. An instantaneous optimization is implemented based on the equivalent fuel consumption concept. Then the control strategy is implemented on a simulation framework integrating the MMPS powertrain model and the SEI film growth map model over some typical driving cycles, such as New European Driving Cycle (NEDC and Urban Dynamometer Driving Schedule (UDDS. Finally, the result demonstrates that these two objectives are conflicting and the trade-off reduces the battery degradation with fuel sacrifice. Additionally, the analysis reveals how the mode selection will reflect the battery degradation.

  9. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  10. Assessment of Closed-Loop Control Using Multi-Mode Sensor Fusion For a High Reynolds Number Transonic Jet

    Science.gov (United States)

    Low, Kerwin; Elhadidi, Basman; Glauser, Mark

    2009-11-01

    Understanding the different noise production mechanisms caused by the free shear flows in a turbulent jet flow provides insight to improve ``intelligent'' feedback mechanisms to control the noise. Towards this effort, a control scheme is based on feedback of azimuthal pressure measurements in the near field of the jet at two streamwise locations. Previous studies suggested that noise reduction can be achieved by azimuthal actuators perturbing the shear layer at the jet lip. The closed-loop actuation will be based on a low-dimensional Fourier representation of the hydrodynamic pressure measurements. Preliminary results show that control authority and reduction in the overall sound pressure level was possible. These results provide motivation to move forward with the overall vision of developing innovative multi-mode sensing methods to improve state estimation and derive dynamical systems. It is envisioned that estimating velocity-field and dynamic pressure information from various locations both local and in the far-field regions, sensor fusion techniques can be utilized to ascertain greater overall control authority.

  11. Wideband Bandpass Filter with High Selectivity and an Adjustable Notched-band Adopting a Multi-mode Resonator

    Science.gov (United States)

    Ma, Xing-Bing; Jiang, Ting

    2018-04-01

    A wideband bandpass filter (BPF) with an adjustable notched-band and high selectivity is proposed. The proposed BPF consists of a multi-mode resonator (MMR), two λ/2 resonators, and I/O feed lines with 50 ohm characteristic impedance. The MMR, connected as a whole by a wide stub, is composed of one I-shaped resonator and two open-loop resonators. Tightly coupling is built between MMR and λ/2 resonators. I/O feed lines are directly connected with two λ/2 resonators, respectively. Due to the use of tapped-line coupling, one transmission zero (TZ) is formed near low-edge of aim passband. High-edge of passband with one attendant TZ can be tuned to desired location by adjusting bottom-side position of used wide stub or bottom-side length of I-shaped resonator in MMR. The top-side length of I-shaped resonator is applied to improve upper stopband performance and shift undesired resonant mode of MMR near high-edge of aim passband to proper frequency point. The notched-band in aim passband is dominated by top-side position of wide stub in MMR. Good agreement is observed between simulated and measured results.

  12. A 3D multi-mode geometry-independent RMP optimization method and its application to TCV

    International Nuclear Information System (INIS)

    Rossel, J X; Moret, J-M; Martin, Y

    2010-01-01

    Resonant magnetic perturbation (RMP) and error field correction (EFC) produced by toroidally and poloidally distributed coil systems can be optimized if each coil is powered with an independent power supply. A 3D multi-mode geometry-independent Lagrange method has been developed and appears to be an efficient way to minimize the parasitic spatial modes of the magnetic perturbation and the coil current requirements while imposing the amplitude and phase of a number of target modes. A figure of merit measuring the quality of a perturbation spectrum with respect to RMP independently of the considered coil system or plasma equilibrium is proposed. To ease the application of the Lagrange method, a spectral characterization of the system, based on a generalized discrete Fourier transform applied in current space, is performed to determine how spectral degeneracy and side-band creation limit the set of simultaneously controllable target modes. This characterization is also useful to quantify the efficiency of the coil system in each toroidal mode number and to know whether optimization is possible for a given number of target modes. The efficiency of the method is demonstrated in the special case of a multi-purpose saddle coil system proposed as part of a future upgrade of Tokamak a Configuration Variable (TCV). This system consists of three rows of eight internal coils, each coil having independent power supplies, and provides simultaneously EFC, RMP and fast vertical position control.

  13. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber.

    Science.gov (United States)

    Zhu, Long; Wang, Andong; Chen, Shi; Liu, Jun; Mo, Qi; Du, Cheng; Wang, Jian

    2017-10-16

    Twisted light carrying orbital angular momentum (OAM) is a special kind of structured light that has a helical phase front, a phase singularity, and a doughnut intensity profile. Beyond widespread developments in manipulation, microscopy, metrology, astronomy, nonlinear and quantum optics, OAM-carrying twisted light has seen emerging application of optical communications in free space and specially designed fibers. Instead of specialty fibers, here we show the direct use of a conventional graded-index multi-mode fiber (MMF) for OAM communications. By exploiting fiber-compatible mode exciting and filtering elements, we excite the first four OAM mode groups in an MMF. We demonstrate 2.6-km MMF transmission using four data-carrying OAM mode groups (OAM 0,1 , OAM +1,1 /OAM -1,1 , OAM +2,1 , OAM +3,1 ). Moreover, we demonstrate two data-carrying OAM mode groups multiplexing transmission over the 2.6-km MMF with low-level crosstalk free of multiple-input multiple-output digital signal processing (MIMO-DSP). The demonstrations may open up new perspectives to fiber-based OAM communication/non-communication applications using already existing conventional fibers.

  14. A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots

    Science.gov (United States)

    Li, Yuankai; Ding, Liang; Zheng, Zhizhong; Yang, Qizhi; Zhao, Xingang; Liu, Guangjun

    2018-05-01

    For motion control of wheeled planetary rovers traversing on deformable terrain, real-time terrain parameter estimation is critical in modeling the wheel-terrain interaction and compensating the effect of wheel slipping. A multi-mode real-time estimation method is proposed in this paper to achieve accurate terrain parameter estimation. The proposed method is composed of an inner layer for real-time filtering and an outer layer for online update. In the inner layer, sinkage exponent and internal frictional angle, which have higher sensitivity than that of the other terrain parameters to wheel-terrain interaction forces, are estimated in real time by using an adaptive robust extended Kalman filter (AREKF), whereas the other parameters are fixed with nominal values. The inner layer result can help synthesize the current wheel-terrain contact forces with adequate precision, but has limited prediction capability for time-variable wheel slipping. To improve estimation accuracy of the result from the inner layer, an outer layer based on recursive Gauss-Newton (RGN) algorithm is introduced to refine the result of real-time filtering according to the innovation contained in the history data. With the two-layer structure, the proposed method can work in three fundamental estimation modes: EKF, REKF and RGN, making the method applicable for flat, rough and non-uniform terrains. Simulations have demonstrated the effectiveness of the proposed method under three terrain types, showing the advantages of introducing the two-layer structure.

  15. Integrated circuit cooled turbine blade

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  16. Failure analysis of turbine blades

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1989-01-01

    Two 20 MW gas turbines suffered damage in blades belonging to the 2nd. stage of the turbine after 24,000 hours of duty. From research it arises that the fuel used is not quite adequate to guarantee the blade's operating life due to the excess of SO 3 , C and Na existing in combustion gases which cause pitting to the former. Later, the corrosion phenomenon is presented under tension produced by working stress enhanced by pitting where Pb is its main agent. A change of fuel is recommended thus considering the blades will reach the operational life they were designed for. (Author) [es

  17. Design Procedure of 4-Bladed Propeller

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... West African Journal of Industrial and Academic Research Vol.8 No.1 September 2013 ..... Number of blades. 5. Taylor's wake friction (w). The speed of ship (Vs), the number of propeller revolution (n), the blade number (Z) and the blade area ratio.... .... moment of inertia of a blade, the approximate.

  18. KNOW-BLADE, task-3.2 report, tip shape study

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.; Johansen, J.; Conway, S.; Voutsinas, S.; Hansen, M.O.L.; Stuermer, A.

    2005-01-01

    For modern rotor blades with their very large aspect ratio, the blade tip is a very limited part of the overall rotor, and as such of limited importance for the overall aerodynamics of the rotor. Even though they may not be very important for the overall power production, the tip noise can be very important for the acoustics of the rotor [15], and the blade tips can as well be important for the aerodynamic damping properties of the rotor blades [13]. Unfortunately, not many options exists for predicting the aerodynamic behavior of blade tips using computational methods. Experimentally it is dicult to perform detailed measurements in the form of pressure and velocity measurements in natural wind conditions on modern large scale turbines due to the inherent unsteadiness in the natural wind. The present study describes the application of four different Navier-Stokes solvers to tip shape studies, and shows that these codes are well suited to study the flow around different tip shape geometries, and can predict the pressure distributions at the blade tip quite accurately. (au)

  19. Torsional Stiffness Effects on the Dynamic Stability of a Horizontal Axis Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Min-Soo Jeong

    2013-04-01

    Full Text Available Aeroelastic instability problems have become an increasingly important issue due to the increased use of larger horizontal axis wind turbines. To maintain these large structures in a stable manner, the blade design process should include studies on the dynamic stability of the wind turbine blade. Therefore, fluid-structure interaction analyses of the large-scaled wind turbine blade were performed with a focus on dynamic stability in this study. A finite element method based on the large deflection beam theory is used for structural analysis considering the geometric nonlinearities. For the stability analysis, a proposed aerodynamic approach based on Greenberg’s extension of Theodorsen’s strip theory and blade element momentum method were employed in conjunction with a structural model. The present methods proved to be valid for estimations of the aerodynamic responses and blade behavior compared with numerical results obtained in the previous studies. Additionally, torsional stiffness effects on the dynamic stability of the wind turbine blade were investigated. It is demonstrated that the damping is considerably influenced by variations of the torsional stiffness. Also, in normal operating conditions, the destabilizing phenomena were observed to occur with low torsional stiffness.

  20. Robust Rudder Roll Damping Control

    DEFF Research Database (Denmark)

    Yang, C.

    The results of a systematic research to solve a specific ship motion control problem, simultaneous roll damping and course keeping using the rudder are presented in this thesis. The fundamental knowledge a priori is that rudder roll damping is highly sensitive to the model uncertainty, therefore H-infinity...... theory is used to deal with the problem. The necessary mathematical tools and the H-Infinity theory as the basis of controller design are presented in Chapter 2 and 3. The mu synthesis and the D-K iteration are introduced in Chapter 3. The ship dynamics and modeling technology are discussed in Chapter 4...

  1. Damping ring designs and issues

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Decking, Winfried

    2003-01-01

    The luminosity performance of a future linear collider (LC) will depend critically on the performance of the damping rings. The design luminosities of the current LC proposals require rings with very short damping times, large acceptance, low equilibrium emittance and high beam intensity. We discuss the design strategies for lattices achieving the goals of dynamical stability, examine the challenges for alignment and coupling correction, and consider a variety of collective effects that threaten to limit beam quality. We put the design goals in context by referring to the experience of operating facilities, and outline the further research and development that is needed

  2. Bladed disc crack diagnostics using blade passage signals

    Science.gov (United States)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Koul, Ashok; Liang, Ming; Alavi, Elham

    2012-12-01

    One of the major potential faults in a turbo fan engine is the crack initiation and propagation in bladed discs under cyclic loads that could result in the breakdown of the engines if not detected at an early stage. Reliable fault detection techniques are therefore in demand to reduce maintenance cost and prevent catastrophic failures. Although a number of approaches have been reported in the literature, it remains very challenging to develop a reliable technique to accurately estimate the health condition of a rotating bladed disc. Correspondingly, this paper presents a novel technique for bladed disc crack detection through two sequential signal processing stages: (1) signal preprocessing that aims to eliminate the noises in the blade passage signals; (2) signal postprocessing that intends to identify the crack location. In the first stage, physics-based modeling and interpretation are established to help characterize the noises. The crack initiation can be determined based on the calculated health monitoring index derived from the sinusoidal effects. In the second stage, the crack is located through advanced detrended fluctuation analysis of the preprocessed data. The proposed technique is validated using a set of spin rig test data (i.e. tip clearance and time of arrival) that was acquired during a test conducted on a bladed military engine fan disc. The test results have demonstrated that the developed technique is an effective approach for identifying and locating the incipient crack that occurs at the root of a bladed disc.

  3. The Microstructural Basis of Damping in High Damping Alloys

    Science.gov (United States)

    1989-09-01

    This transformation is diffusionless and is characterized by the cooperative movement of atoms in a given section of crystal. Removal of the stress...martensites. The cooperative movement of atoms causes large internal friction and high damping. The temperature range in which this transformation can

  4. Hybrid PD and effective multi-mode positive position feedback control for slewing and vibration suppression of a smart flexible manipulator

    International Nuclear Information System (INIS)

    Lou, Jun-qiang; Wei, Yan-ding; Yang, Yi-ling; Xie, Feng-ran

    2015-01-01

    A hybrid control strategy for slewing and vibration suppression of a smart flexible manipulator is presented in this paper. It consists of a proportional derivative controller to realize motion control, and an effective multi-mode positive position feedback (EMPPF) controller to suppress the multi-mode vibration. Rather than treat each mode equally as the standard multi-mode PPF, the essence of the EMPPF is that control forces of different modes are applied according to the mode parameters of the respective modes, so the vibration modes with less vibration energy receive fewer control forces. Stability conditions for the close loop system are established through stability analysis. Optimal parameters of the EMPPF controller are obtained using the method of root locus analysis. The performance of the proposed strategy is demonstrated by simulation and experiments. Experimental results show that the first two vibration modes of the manipulator are effectively suppressed. The setting time of the setup descends approximately 55%, reaching 3.12 s from 5.67 s. (paper)

  5. Hybrid PD and effective multi-mode positive position feedback control for slewing and vibration suppression of a smart flexible manipulator

    Science.gov (United States)

    Lou, Jun-qiang; Wei, Yan-ding; Yang, Yi-ling; Xie, Feng-ran

    2015-03-01

    A hybrid control strategy for slewing and vibration suppression of a smart flexible manipulator is presented in this paper. It consists of a proportional derivative controller to realize motion control, and an effective multi-mode positive position feedback (EMPPF) controller to suppress the multi-mode vibration. Rather than treat each mode equally as the standard multi-mode PPF, the essence of the EMPPF is that control forces of different modes are applied according to the mode parameters of the respective modes, so the vibration modes with less vibration energy receive fewer control forces. Stability conditions for the close loop system are established through stability analysis. Optimal parameters of the EMPPF controller are obtained using the method of root locus analysis. The performance of the proposed strategy is demonstrated by simulation and experiments. Experimental results show that the first two vibration modes of the manipulator are effectively suppressed. The setting time of the setup descends approximately 55%, reaching 3.12 s from 5.67 s.

  6. New blades shape up for dozers

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1985-05-01

    This article discusses the design of blades used on dozers for the reclamation work following surface mining. Two blades are described which have led to a 50% reduction in reclamation costs and a 20% reduction in fuel requirements over conventional equipment. These results are from work carried out at the Kayenta mine in Arizona, USA. Design considerations in the development of the blades are described. Descriptions of both the centre flow blades and the universal blades are given.

  7. High Humidity Aerodynamic Effects Study on Offshore Wind Turbine Airfoil/Blade Performance through CFD Analysis

    Directory of Open Access Journals (Sweden)

    Weipeng Yue

    2017-01-01

    Full Text Available Damp air with high humidity combined with foggy, rainy weather, and icing in winter weather often is found to cause turbine performance degradation, and it is more concerned with offshore wind farm development. To address and understand the high humidity effects on wind turbine performance, our study has been conducted with spread sheet analysis on damp air properties investigation for air density and viscosity; then CFD modeling study using Fluent was carried out on airfoil and blade aerodynamic performance effects due to water vapor partial pressure of mixing flow and water condensation around leading edge and trailing edge of airfoil. It is found that the high humidity effects with water vapor mixing flow and water condensation thin film around airfoil may have insignificant effect directly on airfoil/blade performance; however, the indirect effects such as blade contamination and icing due to the water condensation may have significant effects on turbine performance degradation. Also it is that found the foggy weather with microwater droplet (including rainy weather may cause higher drag that lead to turbine performance degradation. It is found that, at high temperature, the high humidity effect on air density cannot be ignored for annual energy production calculation. The blade contamination and icing phenomenon need to be further investigated in the next study.

  8. Rotational damping motion in nuclei

    International Nuclear Information System (INIS)

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  9. Dampness in buildings and health

    DEFF Research Database (Denmark)

    Bornehag, Carl-Gustaf; Blomquist, G.; Gyntelberg, F.

    2001-01-01

    Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown in the epidem...

  10. Nonlocal quasilinear damped differential inclusions

    Directory of Open Access Journals (Sweden)

    Mouffak Benchohra

    2002-01-01

    Full Text Available In this paper we investigate the existence of mild solutions to second order initial value problems for a class of damped differential inclusions with nonlocal conditions. By using suitable fixed point theorems, we study the case when the multivalued map has convex and nonconvex values.

  11. Next generation HOM-damping

    Science.gov (United States)

    Marhauser, Frank

    2017-06-01

    Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it

  12. Damped Oscillator with Delta-Kicked Frequency

    Science.gov (United States)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  13. Nuclear piping system damping data studies

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1985-01-01

    A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)

  14. Investigations on Vibration Characteristics of Sma Embedded Horizontal Axis Wind Turbine Blade

    Science.gov (United States)

    Jagadeesh, V.; Yuvaraja, M.; Chandhru, A.; Viswanathan, P.; Senthil kumar, M.

    2018-02-01

    Vibration induced in wind turbine blade is a solemn problem as it reduces the life of the blade and also it can create critical vibration onto the tower, which may cause serious damage to the tower. The aim of this paper is to investigate the vibration characteristics of the prototype horizontal axis wind turbine blade. Shape memory alloys (SMA), with its variable physical properties, provides an alternative actuating mechanism. Heating an SMA causes a change in the elastic modulus of the material and hence SMAs are used as a damping material. A prototype blade with S1223 profile has been manufactured and the natural frequency is found. The natural frequency is found by incorporating the single SMA wire of 0.5mm diameter over the surface of the blade for a length of 240 mm. Similarly, number of SMA wires over the blade is increased up to 3 and the natural frequency is found. Frequency responses showed that the embedment of SMA over the blade’s surface will increase the natural frequency and reduce the amplitude of vibration. This is because of super elastic nature of SMA. In this paper, when SMA wire of 0.5 mm diameter and of length of 720 mm is embedded on the blade, an increase in the natural frequency by 6.3% and reducing the amplitude by 64.8%. Results of the experimental modal and harmonic indicates the effectiveness of SMA as a passive vibration absorber and that it has potential as a modest and high-performance method for controlling vibration of the blade.

  15. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant

  16. Transit-Time Damping, Landau Damping, and Perturbed Orbits

    Science.gov (United States)

    Simon, A.; Short, R. W.

    1997-11-01

    Transit-time damping(G.J. Morales and Y.C. Lee, Phys. Rev. Lett. 33), 1534 (1974).*^,*(P.A. Robinson, Phys. Fluids B 3), 545 (1991).** has traditionally been obtained by calculating the net energy gain of transiting electrons, of velocity v, to order E^2* in the amplitude of a localized electric field. This necessarily requires inclusion of the perturbed orbits in the equation of motion. A similar method has been used by others(D.R. Nicholson, Introduction to Plasma Theory) (Wiley, 1983).*^,*(E.M. Lifshitz and L.P. Pitaevskifi, Physical Kinetics) (Pergamon, 1981).** to obtain a ``physical'' picture of Landau damping in a nonlocalized field. The use of perturbed orbits seems odd since the original derivation of Landau (and that of Dawson) never went beyond a linear picture of the dynamics. We introduce a novel method that takes advantage of the time-reversal invariance of the Vlasov equation and requires only the unperturbed orbits to obtain the result. Obviously, there is much reduction in complexity. Application to finite slab geometry yields a simple expression for the damping rate. Equivalence to much more complicated results^2* is demonstrated. This method allows us to calculate damping in more complicated geometries and more complex electric fields, such as occur in SRS in filaments. See accompanying talk.(R.W. Short and A. Simon, this conference.) This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Co-op Agreement No. DE-FC03-92SF19460.

  17. The Study the Vibration Condition of the Blade of the Gas Turbine Engine with an All-metal Wire Rope Damper in the Area Mount of the Blade to the Disk

    Science.gov (United States)

    Melentjev, Vladimir S.; Gvozdev, Alexander S.

    2018-01-01

    Improving the reliability of modern turbine engines is actual task. This is achieved due to prevent a vibration damage of the operating blades. On the department of structure and design of aircraft engines have accumulated a lot of experimental data on the protection of the blades of the gas turbine engine from a vibration. In this paper we proposed a method for calculating the characteristics of wire rope dampers in the root attachment of blade of a gas turbine engine. The method is based on the use of the finite element method and transient analysis. Contact interaction (Lagrange-Euler method) between the compressor blade and the disc of the rotor has been taken into account. Contribution of contact interaction between details in damping of the system was measured. The proposed method provides a convenient way for the iterative selection of the required parameters the wire rope elastic-damping element. This element is able to provide the necessary protection from the vibration for the blade of a gas turbine engine.

  18. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  19. Aerodynamic Analysis of Morphing Blades

    Science.gov (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  20. Route Flap Damping Made Usable

    Science.gov (United States)

    Pelsser, Cristel; Maennel, Olaf; Mohapatra, Pradosh; Bush, Randy; Patel, Keyur

    The Border Gateway Protocol (BGP), the de facto inter-domain routing protocol of the Internet, is known to be noisy. The protocol has two main mechanisms to ameliorate this, MinRouteAdvertisementInterval (MRAI), and Route Flap Damping (RFD). MRAI deals with very short bursts on the order of a few to 30 seconds. RFD deals with longer bursts, minutes to hours. Unfortunately, RFD was found to severely penalize sites for being well-connected because topological richness amplifies the number of update messages exchanged. So most operators have disabled it. Through measurement, this paper explores the avenue of absolutely minimal change to code, and shows that a few RFD algorithmic constants and limits can be trivially modified, with the result being damping a non-trivial amount of long term churn without penalizing well-behaved prefixes' normal convergence process.

  1. On the energetics of a damped beam-like equation for different boundary conditions

    International Nuclear Information System (INIS)

    Sandilo, S.H.; Sheikh, A.H.; Soomro, A.R.

    2017-01-01

    In this paper, the energy estimates for a damped linear homogeneous beam-like equation will be considered. The energy estimates will be studied for different BCs (Boundary Conditions) for the axially moving continuum. The problem has physical and engineering application. The applications are mostly occurring in models of conveyor belts and band-saw blades. The research study is focused on the Dirichlet, the Neumann and the Robin type of BCs. From physical point of view, the considered mathematical model expounds the transversal vibrations of a moving belt system or moving band-saw blade. It is assumed that a viscous damping parameter and the horizontal velocity are positive and constant. It will be shown in this paper that change in geometry or the physics of the boundaries can affect the stability properties of the system in general and stability depends on the axial direction of the motion. In all cases of the BCs, it will be shown that there is energy decay due to viscous damping parameter and it will also be shown that in some cases there is no conclusion whether the beam energy decreases or increases. The detailed physical interpretation of all terms and expressions is provided and studied in detail. (author)

  2. Use of segmented constrained layer damping treatment for improved helicopter aeromechanical stability

    Science.gov (United States)

    Liu, Qiang; Chattopadhyay, Aditi; Gu, Haozhong; Liu, Qiang; Chattopadhyay, Aditi; Zhou, Xu

    2000-08-01

    The use of a special type of smart material, known as segmented constrained layer (SCL) damping, is investigated for improved rotor aeromechanical stability. The rotor blade load-carrying member is modeled using a composite box beam with arbitrary wall thickness. The SCLs are bonded to the upper and lower surfaces of the box beam to provide passive damping. A finite-element model based on a hybrid displacement theory is used to accurately capture the transverse shear effects in the composite primary structure and the viscoelastic and the piezoelectric layers within the SCL. Detailed numerical studies are presented to assess the influence of the number of actuators and their locations for improved aeromechanical stability. Ground and air resonance analysis models are implemented in the rotor blade built around the composite box beam with segmented SCLs. A classic ground resonance model and an air resonance model are used in the rotor-body coupled stability analysis. The Pitt dynamic inflow model is used in the air resonance analysis under hover condition. Results indicate that the surface bonded SCLs significantly increase rotor lead-lag regressive modal damping in the coupled rotor-body system.

  3. On the Energetics of a Damped Beam-Like Equation for Different Boundary Conditions

    Directory of Open Access Journals (Sweden)

    SAJAD HUSSAIN SANDILO

    2017-04-01

    Full Text Available In this paper, the energy estimates for a damped linear homogeneous beam-like equation will be considered. The energy estimates will be studied for different BCs (Boundary Conditions for the axially moving continuum. The problem has physical and engineering application. The applications are mostly occurring in models of conveyor belts and band-saw blades. The research study is focused on the Dirichlet, the Neumann and the Robin type of BCs. From physical point of view, the considered mathematical model expounds the transversal vibrations of a moving belt system or moving band-saw blade. It is assumed that a viscous damping parameter and the horizontal velocity are positive and constant. It will be shown in this paper that change in geometry or the physics of the boundaries can affect the stability properties of the system in general and stability depends on the axial direction of the motion. In all cases of the BCs, it will be shown that there is energy decay due to viscous damping parameter and it will also be shown that in some cases there is no conclusion whether the beam energy decreases or increases. The detailed physical interpretation of all terms and expressions is provided and studied in detail.

  4. Modelling of Dampers and Damping in Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess

    2006-01-01

    and the maximum attainable damping are found by maximizing the expression for the damping ratio. The theory is formulated for linear damper models, but may also be applied for non-linear dampers in terms of equivalent linear parameters for stiffness and damping, respectively. The format of the expressions......, and thereby the damping, of flexible structures are generally described in terms of the dominant vibration modes. A system reduction technique, where the damped vibration mode is constructed as a linear combination of the undamped mode shape and the mode shape obtained by locking the damper, is applied....... This two-component representation leads to a simple solution for the modal damping representing the natural frequency and the associated damping ratio. It appears from numerical examples that this system reduction technique provides very accurate results. % Analytical expressions for the optimal tuning...

  5. Multiparticle phenomena and Landau damping

    International Nuclear Information System (INIS)

    Talman, R.

    1987-01-01

    The purpose of this paper is to survey various methods of studying multiparticle phenomena in accelerators. Both experimental and theoretical methods are described. An effort has been made to emphasize the intuitive and qualitative aspects rather than the detailed mathematics. Some of the terms or concepts to be explained are coherent and incoherent tunes, normal modes, Landau damping, beam-transfer functions, and feedback. These are all of daily importance in the interpretation of colliding-beam observations and the control of performance

  6. Sheath waves, non collisional dampings

    International Nuclear Information System (INIS)

    Marec, Jean Lucien Ernest

    1974-01-01

    When a metallic conductor is inserted into an ionised gas, an area of electron depletion is formed between the conductor and the plasma: the ionic sheath. Moreover, if the conductor is excited by an electric field, this ionic sheath plays an important role with respect to microwave properties. In this research thesis, the author addresses the range of frequencies smaller than the plasma frequency, and reports the study of resonance phenomena. After a presentation of the problem through a bibliographical study, the author recalls general characteristics of sheath wave propagation and of sheath resonances, and discusses the validity of different hypotheses (for example and among others, electrostatic approximations, cold plasma). Then, the author more particularly addresses theoretical problems related to non collisional dampings: brief bibliographical study, detailed presentation and description of the theoretical model, damping calculation methods. The author then justifies the design and performance of an experiment, indicates measurement methods used to determine plasma characteristics as well as other magnitudes which allow the description of mechanisms of propagation and damping of sheath waves. Experimental results are finally presented with respect to various parameters. The author discusses to which extent the chosen theoretical model is satisfying [fr

  7. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  8. Edgewise vibration control of wind turbine blades using roller and liquid dampers

    International Nuclear Information System (INIS)

    Zhang, Z L; Nielsen, S R K

    2014-01-01

    This paper deals with the passive vibration control of edgewise vibrations by means of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small masses for effectively suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice. In this paper, 2-DOF nonlinear models are suggested for tuning a roller damper or a TLCD attached to a rotating wind turbine blade, ignoring the coupling between the blade and the tower. The decoupled optimization is verified by incorporating the optimized damper into a more sophisticated 13- DOF wind turbine model with due consideration of the coupled blade-tower-drivetrain vibrations, quasi-static aeroelasticity as well as a collective pitch controller. Performances of the dampers are compared in terms of the control efficiency and the practical applications. The results indicate that roller dampers and TLCDs at optimal tuning can effectively suppress the dynamic response of wind turbine blades

  9. Structural Damping with Friction Beams

    Directory of Open Access Journals (Sweden)

    L. Gaul

    2008-01-01

    Full Text Available In the last several years, there has been increasing interest in the use of friction joints for enhancing damping in structures. The joints themselves are responsible for the major part of the energy dissipation in assembled structures. The dissipated work in a joint depends on both the applied normal force and the excitation force. For the case of a constant amplitude excitation force, there is an optimal normal force which maximizes the damping. A ‘passive’ approach would be employed in this instance. In most cases however, the excitation force, as well as the interface parameters such as the friction coefficient, normal pressure distribution, etc., are not constant. In these cases, a ‘semi-active’ approach, which implements an active varying normal force, is necessary. For the ‘passive’ and ‘semi-active’ approaches, the normal force has to be measured. Interestingly, since the normal force in a friction joint influences the local stiffness, the natural frequencies of the assembled structure can be tuned by adjusting the normal force. Experiments and simulations are performed for a simple laboratory structure consisting of two superposed beams with friction in the interface. Numerical simulation of the friction interface requires non-linear models. The response of the double beam system is simulated using a numerical algorithm programmed in MATLAB which models point-to-point friction with the Masing friction model. Numerical predictions and measurements of the double beam free vibration response are compared. A practical application is then described, in which a friction beam is used to damp the vibrations of the work piece table on a milling machine. The increased damping of the table reduces vibration amplitudes, which in turn results in enhanced surface quality of the machined parts, reduction in machine tool wear, and potentially higher feed rates. Optimal positioning of the friction beams is based on knowledge of the mode

  10. Estudo in vitro da resistência adesiva na dentina de sistemas adesivos multi-mode variando a estratégia de condicionamento

    OpenAIRE

    Guerreiro, Rúben Miguel

    2013-01-01

    Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz OBJETIVO: Avaliar a resistência adesiva in vitro na dentina de dois sistemas adesivos multi-mode usando a técnica auto-condicionante e a estratégia de condicionamento ácido total. MATERIAIS E MÉTODOS: Vinte e quatro molares humanos hígidos foram divididos aleatoriamente por 4 grupos experimentais: SBU-ER – Aplicação de Scotchbond™ Universal Adhesive (3M ESPE) em dentina, segundo o protocolo...

  11. 4 Gbps Impulse Radio (IR) Ultra-Wideband (UWB) Transmission over 100 Meters Multi Mode Fiber with 4 Meters Wireless Transmission

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes Lopez, Roberto; Caballero Jambrina, Antonio

    2009-01-01

    We present experimental demonstrations of in-building impulse radio (IR) ultra-wideband (UWB) link consisting of 100 m multi mode fiber (MMF) and 4 m wireless transmission at a record 4 Gbps, and a record 8 m wireless transmission at 2.5 Gbps. A directly modulated vertical cavity surface emitting...... laser (VCSEL) was used for the generation of the optical signal. 8 m at 2.5 Gbps corresponds to a bit rate - distance product of 20; the highest yet reported for wireless IR-UWB transmission...

  12. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.

    1997-06-01

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  13. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  14. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  15. Composite blade damaging under impact

    NARCIS (Netherlands)

    Menouillard, T.; Réthoré, J.; Bung, H.; Suffis, A.

    2006-01-01

    Composites materials are now being used in primary aircraft structures, and other domains because of numerous advantages. A part of a continuous in-flight operating costs, gas turbine engine manufacturers are always looking for ways to decrease engine weight. This is the case of compressor blades

  16. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  17. Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm

    2016-01-01

    In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give...

  18. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.

    Science.gov (United States)

    Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho

    2013-10-21

    Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

  19. Damping rates of the SRRC storage ring

    International Nuclear Information System (INIS)

    Hsu, K.T.; Kuo, C.C.; Lau, W.K.; Weng, W.T.

    1995-01-01

    The SRRC storage ring is a low emittance synchrotron radiation machine with nominal operation energy 1.3 GeV. The design damping time due to synchrotron radiation is 10.7, 14.4, 8.7 ms for the horizontal, vertical and longitudinal plane, respectively. The authors measured the real machine damping time as a function of bunch current, chromaticity, etc. To damp the transverse beam instability, especially in the vertical plane, they need to increase chromaticity to large positive value. The damping rates are much larger than the design values. Landau damping contribution in the longitudinal plane is quite large, especially in the multibunch mode. The estimated synchrotron tune spread from the Landau damping is in agreement with the measured coherent longitudinal coupled bunch oscillation amplitude

  20. An approach to the damping of local modes of oscillations resulting from large hydraulic transients

    Energy Technology Data Exchange (ETDEWEB)

    Dobrijevic, D.M.; Jankovic, M.V.

    1999-09-01

    A new method of damping of local modes of oscillations under large disturbance is presented in this paper. The digital governor controller is used. Controller operates in real time to improve the generating unit transients through the guide vane position and the runner blade position. The developed digital governor controller, whose control signals are adjusted using the on-line measurements, offers better damping effects for the generator oscillations under large disturbances than the conventional controller. Digital simulations of hydroelectric power plant equipped with low-head Kaplan turbine are performed and the comparisons between the digital governor control and the conventional governor control are presented. Simulation results show that the new controller offers better performances, than the conventional controller, when the system is subjected to large disturbances.

  1. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  2. Composite ceramic blade for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, A; Hoffmueller, W; Krueger, W

    1980-06-26

    The gas turbine blade consists of a supporting metal core which has at its lower end a modelled root and a profile blade made of ceramics enclosing it at some distance. The invention deals with a reliable connection between these two parts of the rotor blade: from the top end of the blade core a head protrudes supporting the thin-walled profile blade from below with a projection each pointing into the interior. The design of the projections and supporting surfaces is described and illustrated by drawings.

  3. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  4. An Empirical Method for Particle Damping Design

    Directory of Open Access Journals (Sweden)

    Zhi Wei Xu

    2004-01-01

    Full Text Available Particle damping is an effective vibration suppression method. The purpose of this paper is to develop an empirical method for particle damping design based on extensive experiments on three structural objects – steel beam, bond arm and bond head stand. The relationships among several key parameters of structure/particles are obtained. Then the procedures with the use of particle damping are proposed to provide guidelines for practical applications. It is believed that the results presented in this paper would be helpful to effectively implement the particle damping for various structural systems for the purpose of vibration suppression.

  5. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurelien

    2016-01-01

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  6. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  7. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu

    2016-06-21

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  8. The use of platform dampers to reduce turbine blade vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jareland, Martin H.

    2001-07-01

    Friction damping is commonly used in jet engines to reduce the vibration level of the blades and thereby increase the reliability of the engine. This thesis deals with a specific type of friction damper denoted platform damper, which is frequently used in turbine stages. A platform damper is a piece of metal located in a cavity underneath two adjacent blade platforms. It is pressed against the platforms by centrifugal force and friction forces arise in the contacts when a relative motion between the platforms occurs. In this thesis, a number of phenomena regarding platform dampers are investigated and discussed. This is performed both experimentally and theoretically. In the simulations, friction interface models valid for both macroslip and microslip are used. Macroslip means that slipping occurs in the whole contact interface and microslip means that slipping occurs in only part of the interface. The latter is most likely in the contacts between the platform damper and the blade platforms due to the high normal force and the small motions. The first paper deals with mistuning of bladed disks due to variations in the properties of the platform dampers and the closely related topic wear of the dampers. This study indicates that damper mistuning can greatly affect the blade vibrations and that damper and blade mistuning constitutes a more severe case than blade mistuning alone. It is also found that wear of the contact areas can lead either to an increase or decrease in the resonance amplitude of the blades in the studied configuration. In the second paper, so-called cottage-roof dampers are studied. Cottage-roof dampers are a type of platform damper with inclined contact surfaces. The inclination leads to a varying normal load, which complicates the analysis. A model including this effect is presented and simulations are performed both in the time and frequency domain. A parametric study is performed with the aim of finding the optimal damper design with respect to

  9. Intubation of prehospital patients with curved laryngoscope blade is more successful than with straight blade.

    Science.gov (United States)

    Alter, Scott M; Haim, Eithan D; Sullivan, Alex H; Clayton, Lisa M

    2018-02-17

    Direct laryngoscopy can be performed using curved or straight blades, and providers usually choose the blade they are most comfortable with. However, curved blades are anecdotally thought of as easier to use than straight blades. We seek to compare intubation success rates of paramedics using curved versus straight blades. Design: retrospective chart review. hospital-based suburban ALS service with 20,000 annual calls. prehospital patients with any direct laryngoscopy intubation attempt over almost 9years. First attempt and overall success rates were calculated for attempts with curved and straight blades. Differences between the groups were calculated. 2299 patients were intubated by direct laryngoscopy. 1865 had attempts with a curved blade, 367 had attempts with a straight blade, and 67 had attempts with both. Baseline characteristics were similar between groups. First attempt success was 86% with a curved blade and 73% with a straight blade: a difference of 13% (95% CI: 9-17). Overall success was 96% with a curved blade and 81% with a straight blade: a difference of 15% (95% CI: 12-18). There was an average of 1.11 intubation attempts per patient with a curved blade and 1.13 attempts per patient with a straight blade (2% difference, 95% CI: -3-7). Our study found a significant difference in intubation success rates between laryngoscope blade types. Curved blades had higher first attempt and overall success rates when compared to straight blades. Paramedics should consider selecting a curved blade as their tool of choice to potentially improve intubation success. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Aerodynamical calculation of turbomachinery bladings

    International Nuclear Information System (INIS)

    Fruehauf, H.H.

    1978-01-01

    Various flow models are presented in comparison to one another, these flow models being obtained from the basic equations of turbomachinery aerodynamics by means of a series of simplifying assumptions on the spatial distribution of the flow quantities. The simplifying assumptions are analysed precisely. With their knowledge it is possible to construct more accurate simplified flow models, which are necessary for the efficient aerodynamical development of highperformance turbomachinery bladings by means of numerical methods. (orig.) 891 HP [de

  11. Blade-element/momentum theory

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2016-01-01

    Although there exists a large variety of methods for predicting performance and loadings of wind turbines, the only approach used today by wind turbine manufacturers is based on the blade-element/momentum (BEM) theory by Glauert (Aerodynamic theory. Springer, Berlin, pp. 169-360, 1935). A basic...... assumption in the BEM theory is that the flow takes place in independent stream tubes and that the loading is determined from two-dimensional sectional airfoil characteristics....

  12. Damping-off in forest nurseries

    Science.gov (United States)

    Carl Hartley

    1921-01-01

    Damping-off is the commonest English name for a symptomatic group of diseases affecting great numbers of plant species of widely separated phylogenetic groups. It is commonly used for any disease which results in the rapid decay of young succulent seedlings or soft cuttings. Young shoots from underground rootstocks may also be damped-off before they break through the...

  13. Beam dynamic issues in TESLA damping ring

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-05-01

    In this paper we study general requirements on impedances of the linear collider TESLA damping ring design. Quantitative consideration is performed for 17-km long ''dog-bone'' ring. Beam dynamics in alternative options of 6.3 and 2.3-km long damping rings is briefly discussed. 5 refs., 2 tabs

  14. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  15. Study for ILC Damping Ring at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  16. Identification of Damping from Structural Vibrations

    DEFF Research Database (Denmark)

    Bajric, Anela

    Reliable predictions of the dynamic loads and the lifetime of structures are influenced by the limited accuracy concerning the level of structural damping. The mechanisms of damping cannot be derived analytically from first principles, and in the design of structures the damping is therefore based...... on experience or estimated from measurements. This thesis consists of an extended summary and three papers which focus on enhanced methods for identification of damping from random struc-tural vibrations. The developed methods are validated by stochastic simulations, experimental data and full-scale measurements...... which are representative of the vibrations in small and large-scale structures. The first part of the thesis presents an automated procedure which is suitable for estimation of the natural frequencies and the modal damping ratios from random response of structures. The method can be incorporated within...

  17. Swing damped movement of suspended objects

    International Nuclear Information System (INIS)

    Jones, J.F.; Petterson, B.J.; Werner, J.C.

    1990-01-01

    Transportation of large objects such as nuclear waste shipping casks using overhead cranes can induce pendular motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop are obtainable. This report reviews the theory associated with formulating such oscillation damped trajectories for a simply suspended object (e.g., simple pendulum). In addition, the use of force servo damping to eliminate initial oscillation of simply suspended objects is discussed. This is often needed to provide a well defined initial state for the system prior to executing an oscillation damped move. Also included are descriptions of experiments using a CIMCORP XR6100 gantry robot and results from these experiments. Finally, sources of error resulting in small residual oscillations are identified and possible solutions presented

  18. Overview on methods for formulating explicit damping matrices for non-classically damped structures

    International Nuclear Information System (INIS)

    Xu, J.

    1998-04-01

    In computing the dynamic response of a connected system with multiple components having dissimilar damping characteristics, which is often referred to as nonclassically damped system such as nuclear power plant piping systems supported by stiff structures, one needs to define the system-level damping based upon the damping information of components. This is frequently done in practice using approximate methods expressed as composite modal damping with weighting functions. However, when the difference in damping among components is substantial, the composite modal damping may become inappropriate in the characterization of the damping behavior of such systems. In recent years, several new methods have emerged with the expectation that they could produce more exact system-level damping for a group of nonclassically damped structures which are comprised of components that possess classical modal damping. In this paper, an overview is presented to examine these methods in the light of their theoretical basis, the technical merits, and practical applications. To this end, a synthesis method is described, which was shown to reduce to the other methods in the literature

  19. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    Science.gov (United States)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  20. Korean experience with steam turbine blade inspection

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Park, D.Y.; Park, Hyung Jin; Chung, Min Hwa

    1990-01-01

    Several turbine blade accidents in Korea have emphasized the importance of their adequate periodic inspection. As a typical example, a broken blade was found in the Low Pressure (LP) turbine at the 950 MWe KORI unit 3 during the 1986 overhaul after one year commercial operation. Since then the Manufacturer and the Utility company (KEPCO) have been concerned about the need of blade root inspection. The ultrasonic testing was applied to detect cracks in the blade roots without removing the blades from rotor. Due to the complex geometry of the roots, the test results could not be evaluated easily. We feel that the currently applied UT technique seems to be less reliable and more effective method of inspection must be developed in the near future. This paper describes the following items: The causes and analysis of blade damage The inspection techniques and results The remedial action to be taken (Repair and Replacement) The future plan

  1. Servo-elastic dynamics of a hydraulic actuator pitching a blade with large deflections

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping...... if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based...

  2. Edgewise vibration control of wind turbine blades using roller and liquid dampers

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.

    2014-01-01

    suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice......This paper deals with the passive vibration control of edgewise vibrations by means of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small masses for effectively...

  3. Shape memory alloys as damping materials

    International Nuclear Information System (INIS)

    Humbeeck, J. van

    2000-01-01

    Shape memory alloys are gaining an increased interest as passive as well as active damping materials. This damping ability when applied in structural elements can lead to a better noise control, improved life time and even better performance of the envisaged tools. By passive damping, it is understood that the material converts a significant part of unwanted mechanical energy into heat. This mechanical energy can be a (resonance) vibration, impact loading or shock waves. This high damping capacity finds its origin in the thermoelastic martensitic phase due to the hysteretic mobility of martensite-variants or different phase interfaces. The damping capacity increases with increasing amplitude of the applied vibration or impact and is almost frequency independent. Special interest exists moreover for damping extreme large displacements by applying the mechanical hysteresis performed during pseudoelastic loading. This aspect is nowadays very strongly studied as a tool for protecting buildings against earthquakes in seismic active regions. Active damping can be obtained in hybrid composites by controlling the recovery stresses or strains of embedded shape memory alloy wires. This controls the internal energy fo a structure which allows controlled modal modification and tuning of the dynamical properties of structural elements. But also impact damage, acoustic radiation, dynamic shape control can be actively controlled. As a consequence improved fatigue-resistance, better performance and a longer lifetime of the structural elements can be obtained. (orig.)

  4. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hughes, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paquette, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  5. Lifetime measurement of ATF damping ring

    International Nuclear Information System (INIS)

    Okugi, T.; Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J.; Zimmermann, F.

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements

  6. Adaptor assembly for coupling turbine blades to rotor disks

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  7. Multiple piece turbine rotor blade

    Science.gov (United States)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  8. Resonant Electromagnetic Shunt Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2016-01-01

    Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...

  9. Offline software for the DAMPE experiment

    Science.gov (United States)

    Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin

    2017-10-01

    A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science

  10. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  11. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  12. Damping Wiggler Study at KEK-ATF

    CERN Document Server

    Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.

  13. Damping of type III solar radio bursts

    International Nuclear Information System (INIS)

    Levin, B.N.

    1982-01-01

    The meter- and decameter-wavelength damping of type III bursts may be attributable to stabilization of the Langmuir-wave instability of the fast-electron streams through excitation of cyclotron-branch plasma waves

  14. Pedagogical Comparison of Five Reactions Performed under Microwave Heating in Multi-Mode versus Mono-Mode Ovens: Diels-Alder Cycloaddition, Wittig Salt Formation, E2 Dehydrohalogenation to Form an Alkyne, Williamson Ether Synthesis, and Fischer Esterification

    Science.gov (United States)

    Baar, Marsha R.; Gammerdinger, William; Leap, Jennifer; Morales, Erin; Shikora, Jonathan; Weber, Michael H.

    2014-01-01

    Five reactions were rate-accelerated relative to the standard reflux workup in both multi-mode and mono-mode microwave ovens, and the results were compared to determine whether the sequential processing of a mono-mode unit could provide for better lab logistics and pedagogy. Conditions were optimized so that yields matched in both types of…

  15. Flutter of Darrieus wind turbine blades

    Science.gov (United States)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  16. Estimation of gas turbine blades cooling efficiency

    NARCIS (Netherlands)

    Moskalenko, A.B.; Kozhevnikov, A.

    2016-01-01

    This paper outlines the results of the evaluation of the most thermally stressed gas turbine elements, first stage power turbine blades, cooling efficiency. The calculations were implemented using a numerical simulation based on the Finite Element Method. The volume average temperature of the blade

  17. Numerical analysis of turbine blade tip treatments

    Science.gov (United States)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  18. 49 CFR 236.707 - Blade, semaphore.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm. ...

  19. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  20. Composite hub/metal blade compressor rotor

    Science.gov (United States)

    Yao, S.

    1978-01-01

    A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

  1. Metallurgy of gas turbine blades with integral shroud and its influence on blades performance

    International Nuclear Information System (INIS)

    Mazur, Z.; Marino, C.; Kubiak, J.

    1999-01-01

    The influence of the microstructure of the gas turbine blades with integral shroud on the blades performance is presented. The analysis of the solidification process of the gas turbine blades during conventionally casting process (equiaxed grains) with all elements which has influence on the mode of its solidification and variation of the microstructure is carried out. Also, the evaluation of the failure of the gas turbine blade is present. A detailed analysis of the blade tip shroud microstructure (presence of the equiaxed and columnar grains) and its influence on the failure initiation and propagation is carried out. Finally, conclusions and some necessary improvements of the blades casting process to prevent blades failures are presented. (Author) 2 refs

  2. Proceedings of Damping Volume 1 of 3

    Science.gov (United States)

    1993-06-01

    paper. This work will present a passive piezoelectric damping implementation on ASTREX, a large space structure. The motivation behind this research is...Presented at Damping 󈨡 San Francisco, CA February 24-26, 1993 Motivation "• Accurate design of precision structures "* Computer modelling - Design...14) (KI f(0)/Fl,.) FRom equations (3) and (6), Young’s modulus of rubber specimen is written as; L Ea-K (15) A E - EJ(I+ PS4 ) (16) NONRESONANT TEST

  3. Quantum damped oscillator I: Dissipation and resonances

    International Nuclear Information System (INIS)

    Chruscinski, Dariusz; Jurkowski, Jacek

    2006-01-01

    Quantization of a damped harmonic oscillator leads to so called Bateman's dual system. The corresponding Bateman's Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states which are responsible for the irreversible quantum dynamics of a damped harmonic oscillator

  4. Approximation of the modal damping coefficients equivalent to material damping by harmonic excitation with ASKA

    International Nuclear Information System (INIS)

    Edme, R.

    1983-01-01

    If a dynamic response analysis (harmonic excitation) is carried out with the modal method, the modal damping coefficients must be approximated to match the structural damping. The program ASKA-Damping, which also supplies an error assessment of the approximation, was developed for this purpose. The modal method and the direct method are applied to a test example and their results compared. It is suggested that the ASKA manufacturers extend the spectral earthquake response analysis to take these modal damping coefficients into account so that the results become less conservative. (orig.) [de

  5. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  6. Electromagnetic damping of neutron star oscillations

    International Nuclear Information System (INIS)

    McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.

    1984-01-01

    Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr

  7. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  8. Piping system damping data at higher frequencies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-01-01

    Research has been performed at the Idaho National Engineering Laboratory (INEL) for the United States Nuclear Regulatory Commission (USNRC) to determine best-estimate damping values for dynamic analyses of nuclear piping systems excited in the 20 to 100 Hz frequency range. Vibrations in this frequency range are typical of fluid-induced transients, for which no formal pipe damping guidelines exist. The available data found in the open literature and the USNRC/INEL nuclear piping damping data bank were reviewed, and a series of tests on a straight 3-in. (76-mm) piping system and a 5-in. (127-mm) system with several bends and elbows were conducted as part of this research program. These two systems were supported with typical nuclear piping supports that could be changed from test to test during the series. The resulting damping values were ≥ those of the Pressure Vessel Research Committee (PVRC) proposal for unisulated piping. Extending the PVRC damping curve from 20 to 100 Hz at 3% of critical damping would give a satisfactory representation of the test data. This position has been endorsed by the PVRC Technical Committee on Piping Systems. 14 refs

  9. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...... waveforms. The aim of the PSCAD simulations is to study the voltages induced by the lightning current in the blade that may cause internal arcing. With this purpose, the phenomenon of current reflections in the lightning down conductor of the blade and the electromagnetic coupling between the down conductor...... and other internal conductive elements of the blade is studied. Finally, several methods to prevent internal arcing are discussed in order to improve the lightning protection of the blade....

  10. The SNL100-01 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  11. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  12. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  13. Numerical investigation of three wind turbine blade tips

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J.; Soerensen, N.N.

    2002-08-01

    The complex three-dimensional flow around three different tip shapes on a rotating wind turbine blade is investigated and analyzed using Computational Fluid Dynamics. Differences in production, flap wise bending moments and forces are discussed. A method for determining the local inflow angle of attack is presented and further analysis is performed on lift and drag coefficients. It is shown that the original Standard tip results in a more concentrated tip vortex leading to a steeper gradient on both tangential and normal forces when approaching the tip, whereas the two tapered tips show a more flat behavior. This again leads to lower flap wise bending moments and lower production for the Standard tip compared to the two tapered tips. At 12 m/s, though, the Swept tip shows a separation pattern on the surface. This separation causes a decrease in normal force and an increase in tangential force. The Taper tip keeps the higher loading causing the flap wise bending moment to be higher as seen in measurements. To determine the radial variation of lift and drag coefficients the local inflow angle of attack is determined. It is shown that the Standard tip experiences a slightly larger angle of attack at the tip compared to the two tapered tips. The lift coefficients are kept at a more constant level for the two tapered tips due to the decrease in chord, while the drag coefficients actually decrease for the two tapered tips, especially for the Swept tip. For the Swept tip at 12 m/s both lift and drag coefficients changed considerably due to the separation. Differences in aerodynamic damping of the three tips were investigated using HAWCDAMP. The Standard tip seems to be slightly less damped with respect to the edgewise vibrations. (au)

  14. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  15. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  16. Developing a new method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources

    Directory of Open Access Journals (Sweden)

    Aidin Delgoshaei

    2016-09-01

    Full Text Available The issue of resource over-allocating is a big concern for project engineers in the process of scheduling project activities. Resource over-allocating is frequently seen after initial scheduling of a project in practice and causes significant amount of efforts to modify the initial schedules. In this research, a new method is developed for modifying over-allocated schedules in a multi-mode resource constrained project scheduling problems (MRCPSPs with positive cash flows (MRCPSP-PCF. The aim is to maximize profit of the MRCPSPs or logically minimizing costs. The proposed method can be used as a macro in Microsoft Office Project® Software to modify resource over-allocated days after scheduling a project. This research considers progress payment method and preemptive resources. The proposed approach maximizes profit by scheduling activities through the resource calendar respecting to the available level of preemptive resources and activity numbers. To examine the performance of the proposed method a number of experiments derived from the literature are solved. The results are then compared with the circumstances where resource constraints are relaxed. The outcomes show that in all studied cases, the proposed algorithm can provide modified schedules with no over-allocated days. Afterward the method is applied to modify a manufacturing project in practice.

  17. A Practical and Robust Execution Time-Frame Procedure for the Multi-Mode Resource-Constrained Project Scheduling Problem with Minimal and Maximal Time Lags

    Directory of Open Access Journals (Sweden)

    Angela Hsiang-Ling Chen

    2016-09-01

    Full Text Available Modeling and optimizing organizational processes, such as the one represented by the Resource-Constrained Project Scheduling Problem (RCPSP, improve outcomes. Based on assumptions and simplification, this model tackles the allocation of resources so that organizations can continue to generate profits and reinvest in future growth. Nonetheless, despite all of the research dedicated to solving the RCPSP and its multi-mode variations, there is no standardized procedure that can guide project management practitioners in their scheduling tasks. This is mainly because many of the proposed approaches are either based on unrealistic/oversimplified scenarios or they propose solution procedures not easily applicable or even feasible in real-life situations. In this study, we solve a more true-to-life and complex model, Multimode RCPSP with minimal and maximal time lags (MRCPSP/max. The complexity of the model solved is presented, and the practicality of the proposed approach is justified depending on only information that is available for every project regardless of its industrial context. The results confirm that it is possible to determine a robust makespan and to calculate an execution time-frame with gaps lower than 11% between their lower and upper bounds. In addition, in many instances, the solved lower bound obtained was equal to the best-known optimum.

  18. Comparison of low confinement mode transport simulations using the mixed Bohm/gyro-Bohm and the Multi-Mode-95 transport model

    International Nuclear Information System (INIS)

    Onjun, Thawatchai; Bateman, Glenn; Kritz, Arnold H.; Hannum, David

    2001-01-01

    Predictive transport simulations using the mixed Bohm/gyro-Bohm (JET) transport model [M. Erba , Plasma Phys. Controlled Fusion 39, 261 (1997)] are compared with simulations using the Multi-Mode-95 (MMM95) transport model [G. Bateman , Phys. Plasmas 5, 1793 (1998)]. Temperature and density profiles from these simulations are compared with experimental data for 13 low confinement mode (L-mode) discharges from the Doublet III-D Tokamak (DIII-D) [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] and the Tokamak Fusion Test Reactor (TFTR) [D. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)]. The selected discharges include systematic scans over gyro-radius, plasma power, current, and density. It is found that simulations using the two models match experimental data equally well, in spite of the fact that the JET model has predominantly Bohm scaling (proportional to gyro-radius) while the MMM95 model has a purely gyro-Bohm scaling (proportional to gyro-radius squared)

  19. Multi-mode technique for the determination of the biaxial Y{sub 2}SiO{sub 5} permittivity tensor from 300 to 6 K

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, N. C., E-mail: natalia.docarmocarvalho@research.uwa.edu.au; Le Floch, J-M.; Tobar, M. E. [School of Physics, The University of Western Australia, Crawley 6009 (Australia); ARC Centre of Excellence for Engineered Quantum Systems (EQuS), 35 Stirling Hwy, Crawley 6009 (Australia); Krupka, J. [Instytut Mikroelektroniki i Optoelektroniki PW, Koszykowa 75, 00-662 Warsaw (Poland)

    2015-05-11

    The Y{sub 2}SiO{sub 5} (YSO) crystal is a dielectric material with biaxial anisotropy with known values of refractive index at optical frequencies. It is a well-known rare-earth (RE) host material for optical research and more recently has shown promising performance for quantum-engineered devices. In this paper, we report the first microwave characterization of the real permittivity tensor of a bulk YSO sample, as well as an investigation of the temperature dependence of the tensor components from 296 K down to 6 K. Estimated uncertainties were below 0.26%, limited by the precision of machining the cylindrical dielectric. Also, the electrical Q-factors of a few electromagnetic modes were recorded as a way to provide some information about the crystal losses over the temperature range. To solve the tensor components necessary for a biaxial crystal, we developed the multi-mode technique, which uses simultaneous measurement of low order whispering gallery modes. Knowledge of the permittivity tensor offers important data, essential for the design of technologies involving YSO, such as microwave coupling to electron and hyperfine transitions in RE doped samples at low temperatures.

  20. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  1. The SNL100-02 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  2. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  3. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Dampness in buildings and health. Building characteristics as predictors for dampness in 8681 Swedish dwellings

    DEFF Research Database (Denmark)

    Hagerhed, L.; Bornehag, Carl-Gustaf; Sundell, Jan

    2002-01-01

    Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type of found......Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type...... of "Dry air" in 17.3 and 33.7% respectively. Older buildings and the use of natural ventilation were associated with increased frequency of dampness indicators as well as to increased frequencies of complaints on bad indoor air quality....

  5. Numerical studies of shear damped composite beams using a constrained damping layer

    DEFF Research Database (Denmark)

    Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard

    2008-01-01

    Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping....... In addition, a large influence of ill positioned cuts in the damping layer is observed....

  6. Multi-Mode Vibration Suppression in MIMO Systems by Extending the Zero Placement Input Shaping Technique: Applications to a 3-DOF Piezoelectric Tube Actuator

    Directory of Open Access Journals (Sweden)

    Yasser Al Hamidi

    2016-04-01

    Full Text Available Piezoelectric tube actuators are extensively used in scanning probe microscopes to provide dynamic scanning motions in open-loop operations. Furthermore, they are employed as micropositioners due to their high bandwidth, high resolution and ease of excitation. However, these piezoelectric micropositioners exhibit badly damped vibrations that occur when the input excites the dynamic response, which tends to degrade positioning accuracy and performance. This paper deals with vibrations’ feedforward control of a multi-degrees of freedom (DOF piezoelectric micropositioner in order to damp the vibrations in the direct axes and to reduce the cross-couplings. The novelty in this paper relative to the existing vibrations feedforward controls is the simplicity in design approach, the minimal number of shaper impulses for each input required to damp all modes of vibration at each output, and the account for the strong cross-couplings which only occur in multi-DOF cases. A generalization to a multiple degrees of freedom actuator is first proposed. Then simulation runs on a 3-DOF piezoelectric tube micropositioner have been effectuated to demonstrate the efficiency of the proposed method. Finally, experimental tests were carried out to validate and to confirm the predicted simulation.

  7. Unwrapped phase inversion with an exponential damping

    KAUST Repository

    Choi, Yun Seok

    2015-07-28

    Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.

  8. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  9. Aeroelastic response and blade loads of a composite rotor in forward flight

    Science.gov (United States)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  10. Damping in heat exchanger tube bundles. A review

    International Nuclear Information System (INIS)

    Iqbal, Qamar; Khushnood, Shahab; Ghalban, Ali Roheim El; Sheikh, Nadeem Ahmed; Malik, Muhammad Afzaal; Arastu, Asif

    2007-01-01

    Damping is a major concern in the design and operation of tube bundles with loosely supported tubes in baffles for process shell and tube heat exchangers and steam generators which are used in nuclear, process and power generation industries. System damping has a strong influence on the amplitude of vibration. Damping depends upon the mechanical properties of the tube material, geometry of intermediate supports and the physical properties of shell-side fluid. Type of tube motion, number of supports, tube frequency, vibration amplitude, tube mass or diameter, side loads, support thickness, higher modes, shell-side temperature etc., affect damping in tube bundles. The importance of damping is further highlighted due to current trend of larger exchangers with increased shell-side velocities in modern units. Various damping mechanisms have been identified (Friction damping, Viscous damping, Squeeze film damping, Support damping. Two-Phase damping, and very recent-Thermal damping), which affect the performance of process exchangers and steam generators with respect to flow induced vibration design, including standard design guidelines. Damping in two-phase flow is very complex and highly void fraction, and flow-regime dependent. The current paper focuses on the various known damping mechanisms subjected to both single and two-phase cross-flow in process heat exchangers and steam generators and formulates the design guidelines for safer design. (author)

  11. Nuclear power plant piping damping parametric effects

    International Nuclear Information System (INIS)

    Ware, A.G.

    1983-01-01

    The NRC and EG and G Idaho are engaged in programs to evaluate piping-system damping, in order to provide realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping-system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping-system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects are included, and both short-and long-range goals of the program are outlined

  12. Radiation damping in focusing-dominated systems

    International Nuclear Information System (INIS)

    Huang, Zhirong; Chen, Pisin; Ruth, R.D.

    1995-01-01

    A quasi-classical method is developed to calculate the radiation damping of a relativistic particle in a straight, continuous focusing system. In one limiting case where the pitch angle of the particle θ p is much larger than the radiation opening angle 1/γ, the radiation power spectrum is similar to synchrotron radiation and the relative damping rate of the transverse action is proportional to the relative energy loss rate. In the other limiting case where θ p much-lt 1/γ, the radiation is dipole in nature and the relative damping rate of the transverse action is energy-independent and is much faster than the relative energy rate. Quantum excitation to the transverse action is absent in this focusing channel. These results can be extended to bent systems provided that the focusing field dominates over the bending field

  13. Damping of wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Pedersen, Mikkel Melters

    Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... dominated vibrations.The first part of the thesis presents the theoretical framework for implementation of supplemental dampers in wind turbines. It is demonstrated that the feasibility of installing dampers at the bottom of the tower is significantly increased when placing passive or semiactive dampers...... in a stroke amplifying brace, which amplifies the displacement across the damper and thus reduces the desired level of damper force. For optimal damping of the two lowest tower modes, a novel toggle-brace concept for amplifying the bending deformation of the tower is presented. Numerical examples illustrate...

  14. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  15. Pin and roller attachment system for ceramic blades

    Science.gov (United States)

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  16. Multidisciplinary design optimization of film-cooled gas turbine blades

    OpenAIRE

    Shashishekara S. Talya; J. N. Rajadas; A. Chattopadhyay

    1999-01-01

    Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with ...

  17. Development of Standard Approach for Sickle Blade Manufacturing

    OpenAIRE

    Noordin, M. N. A; Hudzari, R. M; Azuan, H. N; Zainon, M. S; Mohamed, S. B; Wafi, S. A

    2016-01-01

    The sickle blade used in the motorised palm cutter known as “CANTAS” provides fast, easy and safe pruning and harvesting for those hard to reach applications. Jariz Technologies Company is experiencing problem in the consistency of sickle blade which was supplied by various blade manufacturers. Identifying the proper blade material with a certain hardness value would produce a consistent as well as long lasting sickle blade. A Standard Operating Procedure (SOP) in the manufacturing of the sic...

  18. Fatigue strength ofcomposite wind turbine blade structures

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro

    Wind turbines are normally designed to withstand 20-30 years of life. During this period, the blades, which are the main rotating structures of a wind turbine, are subjected to high fluctuating load conditions as a result of a combination of gravity, inertia, and aeroelastic forces. For this reason......, fatigue is one of the foremost concerns during the design of these structures. However, current standard fatigue methods used for designing wind turbine blades seem not to be completely appropriate for these structures because they are still based on methods developed for metals and not for composite...... materials from which the blades are made. In this sense, the aim of this work is to develop more accurate and reliable fatigue-life prediction models for composite wind turbine blades. In this project, two types of fatigue models are implemented: fatigue-life models and damage mechanics models. In the first...

  19. Aircraft rotor blade with passive tuned tab

    Science.gov (United States)

    Campbell, T. G. (Inventor)

    1985-01-01

    A structure for reducing vibratory airloading in a rotor blade with a leading edge and a trailing edge includes a cut out portion at the trailing edge. A substantially wedge shaped cross section, inertially deflectable tab, also with a leading edge and a trailing edge is pivotally mounted in the cut out portion. The trailing edge of the tab may move above and below the rotor blade. A torsion strap applies force against the tab when the trailing edge of the tab is above and below the rotor blade. A restraining member is slidably movable along the torsion strap to vary torsional biasing force supplied by the torsion bar to the tab. A plurality of movable weights positioned between plates vary a center of gravity of the tab. Skin of the tab is formed from unidirectional graphite and fiberglass layers. Sliders coupled with a pinned degree of freedom at rod eliminate bending of tab under edgewise blade deflection.

  20. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  1. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  2. Quantization of the damped harmonic oscillator revisited

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Fresneda, R., E-mail: fresneda@gmail.co [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2011-04-11

    We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: We prove the local equivalence of two damped harmonic oscillator models. We find different high energy behaviors between the two models. Based on the local equivalence, we make a simple construction of the coherent states.

  3. Quantization of the damped harmonic oscillator revisited

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Gitman, D.M.

    2011-01-01

    We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: → We prove the local equivalence of two damped harmonic oscillator models. → We find different high energy behaviors between the two models. → Based on the local equivalence, we make a simple construction of the coherent states.

  4. Variable stiffness and damping MR isolator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X Z; Wang, X Y; Li, W H; Kostidis, K [University of Wollongong, School of Mechanical, Materials and Mechatronic Engineering, NSW 2522 (Australia)], E-mail: weihuali@uow.edu.au

    2009-02-01

    This paper presents the development of a magnetorheological (MR) fluid-based variable stiffness and damping isolator for vibration suppressions. The MR fluid isolator used a sole MR control unit to achieve the variable stiffness and damping in stepless and relative large scope. A mathematical model of the isolator was derived, and a prototype of the MR fluid isolator was fabricated and its dynamic behavior was measured in vibration under various applied magnetic fields. The parameters of the model under various magnetic fields were identified and the dynamic performances of isolator were evaluated.

  5. Damping in accelerators due to classical radiation

    International Nuclear Information System (INIS)

    Mills, F.E.

    1962-01-01

    The rates of change of the magnitudes of the adiabatic invariants is calculated in the case of a Hamiltonian system subjected to generalized non conservative forces. These results are applied to the case of the classical radiation of electrons in an accelerator or storage ring. The resulting expressions for the damping rates of three independent oscillation modes suggest structures which are damping in all three modes, while at the same time allowing 'strong focussing' and the attendant strong momentum compaction. (author)

  6. Modulated Langmuir waves and nonlinear Landau damping

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Oikawa, Masayuki; Satsuma, Junkichi; Namba, Chusei.

    1975-01-01

    The nonlinear Schroedinger euqation with an integral term, iusub(t)+P/2.usub(xx)+Q/u/ 2 u+RP∫sub(-infinity)sup(infinity)[/u(x',t)/ 2 /(x-x')]dx'u=0, which describes modulated Langmuir waves with the nonlinear Landau damping effect, is solved by numerical calculations. Especially, the effects of nonlinear Landau damping on solitary wave solutions are studied. For both cases, PQ>0 and PQ<0, the results show that the solitary waves deform in an asymmetric way changing its velocity. (auth.)

  7. Damping of multispan heat exchanger tubes. Pt. 1: in gases

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Goyder, H.G.D.; Qiao, Z.L.; Axisa, F.

    1986-07-01

    Flow-induced vibration analyses of heat exchanger tubes require the knowledge of damping. This paper treats the question of damping on multispan heat exchanger tubes in air and gases. The different energy dissipation mechanisms that contribute to tube damping are discussed. The available experimental data are reviewed and analysed. We find that the main damping mechanism in gases is friction between tube and tube-supports. Damping is strongly related to tube-support thickness. Damping values are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  8. Comparative Research on Characteristics of the Isolation Systems with Dry Friction Damping and with Vicious Damping under Base Excitation

    Science.gov (United States)

    Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen

    2017-12-01

    As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.

  9. Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity

    Science.gov (United States)

    Lázaro, Mario

    2018-01-01

    In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.

  10. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  11. Catastrophic optical bulk degradation in high-power single- and multi-mode InGaAs-AlGaAs strained QW lasers: part II

    Science.gov (United States)

    Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary

    2018-03-01

    High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor

  12. Comparison of high-mode predictive simulations using Mixed Bohm/gyro-Bohm and Multi-Mode (MMM95) transport models

    International Nuclear Information System (INIS)

    Hannum, David; Bateman, Glenn; Kinsey, Jon; Kritz, Arnold H.; Onjun, Thawatchai; Pankin, Alexei

    2001-01-01

    Two different transport models -- the Mixed Bohm/gyro-Bohm [Joint European Torus (JET)] model [Erba , Plasma Phys. Controlled Fusion 39, 261 (1997)] and the Multi-Mode model (MMM95) [Bateman , Phys. Plasmas 5, 1793 (1998)] -- are used in predictive transport simulations of 22 high-mode discharges. Fourteen discharges that include systematic scans in normalized gyroradius (ρ * ), plasma pressure (β), collisionality, and isotope mass in the JET tokamak [Rebut , Nucl. Fusion 25, 1011 (1985)] and eight discharges that include scans in ρ * , elongation (κ), power, and density in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] are considered. When simulation temperature and density profiles are compared with processed experimental data from the International Profile Database, it is found that the results with either the JET or MMM95 transport model match experimental data about equally well. With either model, the average normalized rms deviation is approximately 10%. In the simulations carried out using the JET model, the component of the model with Bohm scaling (which is proportional to gyroradius) dominates over much of the plasma. In contrast, the MMM95 model has purely gyro-Bohm scaling (proportional to gyroradius squared). In spite of the differences in the underlying scaling of these transport models, both models reproduce the global confinement scalings observed in the scans equally well. These results are explained by changes in profile shapes from one end of each scan to the other. These changes in the profile shapes are caused by changes in boundary conditions, heating and particle source profiles, large scale instabilities, and transport

  13. Eddy current inspection of stationary blade rings

    International Nuclear Information System (INIS)

    Krzywosz, K.J.; Hastings, S.N.

    1994-01-01

    Stationary turbine blade rings in a US power plant have experienced chloride-induced cracking. Failure analysis determined two types of cracking mechanisms: corrosion fatigue cracking confined to the leading edge of the outer shroud; and stress corrosion cracking present all over the blade surface. Fluorescent dye penetrant is typically used to detect and size cracks. However, it requires cleaning the blade rings by sandblasting to obtain reliable inspection results. Sand blasting in turn requires sealing the lower half of the turbine housing to prevent sand from contaminating the rest of the power plant components. Furthermore, both the penetrant examination and the removal of the sand are time consuming and costly. An alternative NDE technique is desirable which requires no pre-cleaning of the blade and a quick go/no-go inspection with the capability of estimating the crack length. This paper presents an innovative eddy current technique which meets the desired objectives by incorporating the use of specially designed contoured scanners equipped with an array of pancake coils. A set of eddy current pancake coils housed in three different scanners is used to manually scan and inspect the convex side of the stationary blade rings. The pancake coils are operated in a transmit/receive mode using two separate eddy current instruments. This paper presents the inspection concept, including scanner and probe designs, and test results from the various stages of multiple blade rings

  14. Super titanium blades for advanced steam turbines

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1990-01-01

    In 1986, the Alsthom Steam Turbines Department launched the manufacture of large titanium alloy blades: airfoil length of 1360 mm and overall length of 1520 mm. These blades are designed for the last-stage low pressure blading of advanced steam turbines operating at full speed (3000 rpm) and rating between 300 and 800 MW. Using titanium alloys for steam turbine exhaust stages as substitutes for chrome steels, due to their high strength/density ratio and their almost complete resistance to corrosion, makes it possible to increase the length of blades significantly and correspondingly that steam passage section (by up to 50%) with a still conservative stresses level in the rotor. Alsthom relies on 8 years of experience in the field of titanium, since as early as 1979 large titanium blades (airfoil length of 1240 mm, overall length of 1430 mm) were erected for experimental purposes on the last stage of a 900 MW unit of the Dampierre-sur-Loire power plant and now totals 45,000 operating hours without problems. The paper summarizes the main properties (chemical, mechanical and structural) recorded on very large blades and is based in particular on numerous fatigue corrosion test results to justify the use of the Ti 6 Al 4 V alloy in a specific context of micrographic structure

  15. Dry friction damping couple at high frequencies

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena

    2014-01-01

    Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265

  16. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué , Emilie; Safeer, C.  K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2015-01-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  17. Piezoelectric RL shunt damping of flexible structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2015-01-01

    in the present analysis is based on equal damping of the two modes associated with the resonant vibration form of the structure. An important result of the presented calibration procedure is the explicit inclusion of a quasi-static contribution from the non-resonant vibration modes of the structure via a single...

  18. Stiffness and damping in mechanical design

    National Research Council Canada - National Science Library

    Rivin, Eugene I

    1999-01-01

    ... important conceptual issues are stiffness of mechanical structures and their components and damping in mechanical systems sensitive to and/or generating vibrations. Stiffness and strength are the most important criteria for many mechanical designs. However, although there are hundreds of books on various aspects of strength, and strength issues ar...

  19. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  20. Active damping based on decoupled collocated control

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Auer, Frank; Gardonio, P.; Rafaely, B.

    2002-01-01

    High-precision machines typically suffer from small but persistent vibrations. As it is difficult to damp these vibrations by passive means, research at the Drebbel Institute at the University of Twente is aimed at the development of an active structural element that can be used for vibration

  1. BNS damping of beam breakup instability

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1997-08-01

    The author studies BNS damping of the beam breakup instability in a simple model assuming a constant beam energy, flat bunch distribution, and a smooth transverse focusing. The model allows an analytic solution for a constant and linear wake functions. Scaling dimensionless parameters are derived and the beam dynamics is illustrated for the range of parameters relevant to the Stanford Linear Collider

  2. The DAMPE silicon–tungsten tracker

    Energy Technology Data Exchange (ETDEWEB)

    Azzarello, P., E-mail: philipp.azzarello@unige.ch [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others

    2016-09-21

    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.

  3. Kicker for the SLC electron damping ring

    International Nuclear Information System (INIS)

    Bartelson, L.; Crawford, C.; Dinkel, J.; Kerns, Q.; Howell, J.; Snowdon, S.; Walton, J.

    1987-01-01

    The SLC electron damping ring requires two kickers each providing a 5 mr kick at 1.2 GEV to pairs of electron bunches spaced 61.63 nsec apart. The exact shape of the kick is unimportant, but the specification applies to the field the bunches see

  4. Damping of liquid sloshing by foams

    Science.gov (United States)

    Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.

    2015-02-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  5. Nuclear power plant piping damping parametric effects

    International Nuclear Information System (INIS)

    Ware, A.G.

    1983-01-01

    The present NRC guidelines for structural damping to be used in the dynamic stress analyses of nuclear power plant piping systems are generally considered to be overly conservative. As a result, plant designers have in many instances used a considerable number of seismic supports to keep stresses calculated by large scale piping computer codes below the allowable limits. In response to this problem, the NRC and EG and G Idaho are engaged in programs to evaluate piping system damping, in order to provide more realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects is included, and both short and long range goals of the program are outlined

  6. Factors controlling superelastic damping capacity of SMAs

    Czech Academy of Sciences Publication Activity Database

    Heller, Luděk; Šittner, Petr; Pilch, Jan; Landa, Michal

    2009-01-01

    Roč. 18, 5-6 (2009), 603-611 ISSN 1059-9495 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z20760514 Keywords : shape memory alloys * superelastic damping * thermomechanical testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.592, year: 2009

  7. Structural dynamic modification using additive damping

    Indian Academy of Sciences (India)

    elements, FEM and perturbation methods for reanalysis or structural dynamic modification ... to a system changes its mass, stiffness and damping. Thus ... due to the phase difference between stress ' and strain or 'a И E1 З iE2 for direct strain.

  8. Spatial Damping of Linear Compressional Magnetoacoustic Waves ...

    Indian Academy of Sciences (India)

    The uncertainty in the radiative relaxation time, how- ever, does .... For spatial damping, we take ω to be real and k to be complex as kR +ikI . The disper- ... bances may travel up in the solar atmosphere through the magnetic field lines that are.

  9. Gas Turbine Blade Damper Optimization Methodology

    OpenAIRE

    R. K. Giridhar; P. V. Ramaiah; G. Krishnaiah; S. G. Barad

    2012-01-01

    The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to...

  10. A review of experimental soil-structure interaction damping

    International Nuclear Information System (INIS)

    Tsai, N.C.

    1981-01-01

    In soil-structure interaction analysis, the foundation soil is usually represented by impedance springs and dampers. The impedance damping includes the effect of both the material damping and the radiation damping. Because the impedance theory normally assumes a rigid structural base and an elastic bond between the soil and structure, it is generally held that the radiation damping has been overestimated by the theory. There are some published information on the dynamic tests of footings and structures that allow direct or indirect assessments of the validity of the analytical radiation damping. An overview of such information is presented here. Based on these limited test data, it is concluded that for horizontal soil-structure interaction analysis the analytical radiation damping alone is sufficient to represent the combined material and radiation damping in the field. On the other hand, for vertical analysis it appears that the theory may have overestimated the radiation damping and certain reduction is recommended. (orig.)

  11. Damped time advance methods for particles and EM fields

    International Nuclear Information System (INIS)

    Friedman, A.; Ambrosiano, J.J.; Boyd, J.K.; Brandon, S.T.; Nielsen, D.E. Jr.; Rambo, P.W.

    1990-01-01

    Recent developments in the application of damped time advance methods to plasma simulations include the synthesis of implicit and explicit ''adjustably damped'' second order accurate methods for particle motion and electromagnetic field propagation. This paper discusses this method

  12. Exponential decay for solutions to semilinear damped wave equation

    KAUST Repository

    Gerbi, Sté phane; Said-Houari, Belkacem

    2011-01-01

    This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data

  13. Integrity assessment of stationary blade ring for nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jung Yong; Chung, Yong Keun; Park, Jong Jin; Kang, Yong Ho

    2004-01-01

    The inner side between HP stationary blades in no.1 turbine of nuclear power plant A is damaged by the FAC(Flow Assisted Corrosion) which is exposed to moisture. For many years the inner side is repaired by welding the damaged part, however, the FAC continues to deteriorate the original material of the welded blade ring. In this study, we have two stages to verify the integrity of stationary blade ring in nuclear power plant A. In the stage I, replication of blade ring is performed to survey the microstructure of blade ring. In the stage II, the stress analysis of blade ring is performed to verify the structural safety of blade ring. Throughout the two stages analysis of blade ring, the stationary blade ring had remained undamaged

  14. Onset of chaos in Josephson junctions with intermediate damping

    International Nuclear Information System (INIS)

    Yao, X.; Wu, J.Z.; Ting, C.S.

    1990-01-01

    By use of the analytical solution of the Stewart-McCumber equation including quadratic damping and dc bias, the Melnikov method has been extended to the parameter regions of intermediate damping and dc bias for the Josephson junctions with quadratic damping and with linear damping and cosφ term. The comparison between the thresholds predicted by the Melnikov method and that derived from numerical simulation has been studied. In addition, the validity conditions for the Melnikov threshold are also discussed

  15. Distribution of defects in wind turbine blades and reliability assessment of blades containing defects

    DEFF Research Database (Denmark)

    Stensgaard Toft, Henrik; Branner, Kim; Berring, Peter

    2009-01-01

    on the assumption that one error in the production process tends to trigger several defects. For both models additional information about number, type and size of the defects is included as stochastic variables. The probability of failure for a wind turbine blade will not only depend on variations in the material......In the present paper two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size based...... properties and the load but also on potential defects in the blades. As a numerical example the probability of failure is calculated for the main spar both with and without defects in terms of delaminations. The delaminations increase the probability of failure compared to a perfect blade, but by applying...

  16. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-02-01

    Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.

  17. Active and passive damping based on piezoelectric elements -controllability issues-

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; van Amerongen, J.; Jonker, Jan B.; Jonker, J.B.

    2001-01-01

    Piezoelectric elements are widely used for damping micro-vibrations in mechanical structures. Active damping can be realised robustly by means of collocated actuator-sensor-pairs, controlled so as to extract vibration energy. Excellent damping performance is possible as long as sufficient

  18. Spacer grid with mixing blades for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Noailly, J.

    1986-01-01

    The spacer grid for nuclear fuel assembly has two sets of intersecting metal plates provided with blades and defining cells. The plates are fitted only with half-blades associated with a single grid opening. The half-blades of adjacent cells are arranged at 90deg C to each other and each plate has at most one half-blade at each corner of a cell. The invention concerns fuel assemblies of pressurized water reactors. The blades arranged on a single side of the plate provide a good hydraulic uniformity. The invention provides a uniform distribution of blades (and thus of absorbing material in each hydraulic cell) [fr

  19. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  20. 3X-100 blade field test.

    Energy Technology Data Exchange (ETDEWEB)

    Zayas, Jose R.; Johnson, Wesley D.

    2008-03-01

    In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

  1. Piezoelectric actuation of helicopter rotor blades

    Science.gov (United States)

    Lieven, Nicholas A. J.

    2001-07-01

    The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.

  2. Individual blade pitch for yaw control

    International Nuclear Information System (INIS)

    Navalkar, S T; Van Wingerden, J W; Van Kuik, G A M

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design

  3. Damping Estimation of Friction Systems in Random Vibrations

    DEFF Research Database (Denmark)

    Friis, Tobias; Katsanos, Evangelos; Amador, Sandro

    Friction is one of the most efficient and economical mechanisms to reduce vibrations in structural mechanics. However, the estimation of the equivalent linear damping of the friction damped systems in experimental modal analysis and operational modal analysis can be adversely affected by several...... assumptions regarding the definition of the linear damping and the identification methods or may be lacking a meaningful interpretation of the damping. Along these lines, this project focuses on assessing the potential to estimate efficiently the equivalent linear damping of friction systems in random...

  4. Development of a numerical tool to study the mixing phenomenon occurring during mode one operation of a multi-mode ejector-augmented pulsed detonation rocket engine

    Science.gov (United States)

    Dawson, Joshua

    A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly

  5. Discussion paper on managing composite blade waste

    DEFF Research Database (Denmark)

    Skelton, Kristen

    A sustainable process for dealing with wind turbines at the end of their service life is needed in order to maximize the environmental benefits of wind power from a life cycle approach. Most components of a wind turbine such as foundation, tower, components of the gear box and generator are alrea...... as practical examples and experiences from research and industry projects. Important sources have been obtained from researchers, the original equipment manufacturers (OEMs), operators and maintainers (O&Ms), waste handlers and those that use the recyclates from blade waste....... recyclable and treated accordingly. Nevertheless, wind turbine blades represent a challenge due to the materials used and their complex composition. The objective of this research note is to provide an overview of the different methods used for sectioning and recycling wind turbine blades as well...

  6. Laser Displacement Measurements of Fan Blades in Resonance and Flutter During the Boundary Layer Ingesting Inlet and Distortion-Tolerant Fan Test

    Science.gov (United States)

    Duffy, Kirsten P.; Provenza, Andrew J.; Bakhle, Milind A.; Min, James B.; Abdul-Aziz, Ali

    2018-01-01

    NASA's Advanced Air Transport Technology Project is investigating boundary layer ingesting propulsors for future subsonic commercial aircraft to improve aircraft efficiency, thereby reducing fuel burn. To that end, a boundary layer ingesting inlet and distortion-tolerant fan stage was designed, fabricated, and tested within the 8' x 6' Supersonic Wind Tunnel at NASA Glenn Research Center. Because of the distortion in the air flow over the fan, the blades were designed to withstand a much higher aerodynamic forcing than for a typical clean flow. The blade response for several resonance modes were measured during start-up and shutdown, as well as at near 85% design speed. Flutter in the first bending mode was also observed in the fan at the design speed, at an off-design condition, although instabilities were difficult to instigate with this fan in general. Blade vibrations were monitored through twelve laser displacement probes that were placed around the inner circumference of the casing, at the blade leading and trailing edges. These probes captured the movement of all the blades during the entire test. Results are presented for various resonance mode amplitudes, frequencies and damping, as well as flutter amplitudes and frequency. Benefits and disadvantages of laser displacement probe measurements versus strain gage measurements are discussed.

  7. DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS

    Directory of Open Access Journals (Sweden)

    JAGADEESH PASUPULETI

    2006-06-01

    Full Text Available The IEEE bench mark model 2 series compensated system is considered for analysis. It consists of single machine supplying power to infinite bus through two parallel lines one of which is series compensated. The mechanical system considered consists of six mass, viz, high pressure turbine, intermediate pressure turbine, two low pressure turbines, generator and an exciter. The excitation system considered is IEEE type 1 with saturation. The auxiliary controls considered to damp the unstable subsynchronous modes of oscillations are Power System Stabilizer (PSS and Static var Compensator (SVC. The different cases of power system stabilizer and reactive power controls are adapted to study the effectiveness of damping these unstable subsynchronous modes of oscillations.

  8. Damping of Crank–Nicolson error oscillations

    DEFF Research Database (Denmark)

    Britz, Dieter; Østerby, Ole; Strutwolf, J.

    2003-01-01

    The Crank–Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one......-dimensional system with an initial singularity, subdivision of the first time interval into a number of equal subintervals (the Pearson method) works rather well, and so does division with exponentially increasing subintervals, where however an optimum expansion parameter must be found. This method can...... be computationally more expensive with some systems. The simple device of starting with one backward implicit (BI, or Laasonen) step does damp the oscillations, but not always sufficiently. For electrochemical microdisk simulations which are two-dimensional in space and using CN, the use of a first BI step is much...

  9. Relativity damps OPEP in nuclear matter

    International Nuclear Information System (INIS)

    Banerjee, M.K.

    1998-06-01

    Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M * /M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M * it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter

  10. Damping system immersed in a fluid

    International Nuclear Information System (INIS)

    1980-01-01

    The invention relates to a damping system which is immersed in a fluid and allows slow motion, while opposing fast motion of a mobile or deformable system immersed in a fluid. Nuclear reactors utilize fabricated assemblies immmersed in the spent fuel storage pool to support the fuel elements placed in the pool, e.g., when refueling the reactor. These fabricated assemblies must be held in position, relative to the concrete walls of the pool, so as to allow slow deformation of the assemblies due to thermal expansion, while curbing fast motion, e.g., earthquake-induced motion. Such fast motion due to earthquakes might be the cause of resonance phenomena involving the fuel storage rack structure and the pool walls, should the rack structure and pool walls have the same resonant frequency. In the event of an earthquake, the damping system would provide for fast curbing of structure motion to prevent uncontrolled deformation which might result in breaks and destruction [fr

  11. Barotropic FRW cosmologies with Chiellini damping

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico); Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-05-08

    It is known that barotropic FRW equations written in the conformal time variable can be reduced to simple linear equations for an exponential function involving the conformal Hubble rate. Here, we show that an interesting class of barotropic universes can be obtained in the linear limit of a special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from Chiellini's integrability condition. These cosmologies, which evolutionary are similar to the standard ones, correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes of the scale factors inverse proportional to the adiabatic index. - Highlights: • Chiellini-damped Ermakov–Pinney equations are used in barotropic FRW cosmological context. • Chiellini-damped scale factors of the barotropic FRW universes are introduced. • These scale factors are similar to the undamped ones.

  12. WAKEFIELD DAMPING FOR THE CLIC CRAB CAVITY

    CERN Document Server

    Ambattu, P; Dexter, A; Carter, R; Khan, V; Jones, R; Dolgashev, V

    2009-01-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  13. System Reduction and Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess; Krenk, Steen

    2007-01-01

    An increasing number of flexible structures such as cable-stayed bridges, pedestrian bridges and high-rise buildings are fitted with local dampers to mitigate vibration problems. In principle the effect of local dampers can be analyzed by use of complex modes, e.g. in conjunction with an averaging...... technique for local linearization of the damper characteristics. However, the complex mode shapes and frequencies depend on the magnitude of the damper and therefore are less suitable for design of the damper system. An efficient alternative consists in the use of a two-component representation...... of the damped modes of the structure. The idea is to represent the damped mode as a linear combination of the modes that occur in two distinctly different situations representing extreme conditions: the mode shape of the structure without the damper(s), and the mode shape of the structure, when the damper...

  14. Size effect related to damping caused by water submersion

    International Nuclear Information System (INIS)

    Dong, R.G.

    1981-01-01

    An important effect of water submersion on the dynamic response of a structure is the increase in effective damping. The dynamic response of submerged structures is of interest in the nuclear power industry for reasons of operational safety during seismic and other dynamic excitations. In this paper, the added damping contribution that results from the viscosity of water and the dependence of the contribution on structural size are examined. Other factors considered are the applicable range of viscous damping with respect to displacement amplitude and, as far as damping is concerned, how far neighboring members must be from each other to respond as if in open water. An expression is derived for relating the damping value to structural size. Estimated added-damping values for representative fuel elements, fuel bundles, and main steam-pressure-relief-valve lines are given based on our derived expression for added damping

  15. Tuned mass absorbers on damped structures under random load

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2008-01-01

    the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent......A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... for the response variance of a structure with initial damping in terms of the mass ratio and both damping ratios. Within this format the optimal tuning of the absorber turns out to be independent of the structural damping, and a simple explicit expression is obtained for the equivalent total damping....

  16. Single bunch beam breakup in linacs and BNS damping

    International Nuclear Information System (INIS)

    Toyomasu, Takanori

    1991-12-01

    We study a single-bunch beam breakup (BBU) problem by a macro-particle model. We consider both the BBU solution and the Landau damping solution which includes the Balakin-Novokhatsky-Smirnov (BNS) damping. In the BBU solution, we get an analytic solution which includes both the Chao-Richter-Yao solution and the two-particle model solution and which agrees well with simulation. The solution can also be used in a multi-bunch case. In the Landau damping solution, we can be see the mechanism of Landau damping formally and can get some insights into BNS damping. We confirm that a two-particle model criterion for BNS damping is a good one. We expect that the two-particle model criterion is represented by the first order interaction in Landau damping solution of a macro-particle model. (author)

  17. A review of damping of two-phase flows

    International Nuclear Information System (INIS)

    Hara, Fumio

    1993-01-01

    Damping of two-phase flows has been recognized as one of the most unknown parameters in analyzing vibrational characteristics of structures subjected to two-phase flows since it seems to be influenced by many physical parameters involved in the physics of dynamic energy dissipation of a vibrating structure, for example, liquid viscosity, surface tension, flow velocity, mass ratio, frequency, void fraction, flow regime and so forth. This paper deals with a review of scientific works done to date on the damping of two phase flows and discussions about what has been clarified and what has not been known to us, or what kinds of research are needed about two-phase flow damping. The emphasis is put on the definition of two-phase fluid damping, damping measurement techniques, damping characteristics in relation to two phase flow configurations, and damping generation mechanisms

  18. Power Oscillations Damping in DC Microgrids

    DEFF Research Database (Denmark)

    Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang

    2016-01-01

    This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow transi...... of the proposed control scheme is verified using hardware-in-the-loop (HIL) simulations carried out in OPAL-RT technologies....

  19. Multibunch resistive wall instability damping with feedback

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1992-01-01

    The theory of multibunch transverse resistive wall instability damping with feedback is development. The system of coupling equations is obtained for description of bunched beam motion. The general solution and eigen frequencies are found. But for two bunches or multi bunches the tune splitting is found. The band of the tune splitting is calculated. The influence of the tune splitting on the damper system stability is discussed. 14 refs

  20. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  1. Magnus wind turbines as an alternative to the blade ones

    International Nuclear Information System (INIS)

    Bychkov, N M; Dovgal, A V; Kozlov, V V

    2007-01-01

    Experimental and calculated data on a wind turbine equipped with rotating cylinders instead of traditional blades are reported. Optimal parameters and the corresponding operational characteristics of the windwheel are given in comparison with those of the blade wind turbines

  2. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  3. Wind blade spar cap and method of making

    Science.gov (United States)

    Mohamed, Mansour H [Raleigh, NC

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  4. Repairing methods of steam turbine blades using welding procedures

    International Nuclear Information System (INIS)

    Mazur, Z.; Cristalinas, V.; Kubiak, J.

    1995-01-01

    The steam turbine blades are subjected to the natural permanent wear or damage, which may be of mechanical or metallurgical origin. The typical damage occurring during the lifetime of turbine blading may be erosion, corrosion, foreign objects damage, rubbing and cracking caused by high cycle fatigue and creep crack growth. The nozzle and diaphragm vanes (stationary blades) of the steam turbine are elements whose damage is commonly occurring and they require special repair processes. The damage of the blade trailing edge of nozzle and diaphragm vanes, due to the former causes, may be refurbished by welding deposits or stainless steel inserts welded to the blades. Both repair methods of the stationary steam turbine blades are presented. The results of the blades refurbishment are an increase of the turbine availability, reliability and efficiency, and a decrease of the risk that failure will occur. Also, the repair cost versus the spare blades cost represent significant reduction of expenditure. 7 refs

  5. New airfoil sections for straight bladed turbine

    Science.gov (United States)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine.

  6. New airfoil sections for straight bladed turbine

    International Nuclear Information System (INIS)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine

  7. Simple theoretical models for composite rotor blades

    Science.gov (United States)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  8. Designing for hot-blade cutting

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Clausen, Kenn

    2016-01-01

    In this paper we present a novel method for the generation of doubly-curved, architectural design surfaces using swept Euler elastica and cubic splines. The method enables a direct design to production workflow with robotic hot-blade cutting, a novel robotic fabrication method under development......-trivial constraints of blade-cutting in a bottom-up fashion, enabling an exploration of the unique architectural potential of this fabrication approach. The method is implemented as prototype design tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting of expanded polystyrene foam design...

  9. Metallic materials for mechanical damping capacity applications

    Science.gov (United States)

    Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.

    2016-08-01

    Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.

  10. Collisional damping rates for plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Tigik, S. F., E-mail: sabrina.tigik@ufrgs.br; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-06-15

    The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic (“Spitzer”) formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.

  11. Limitations of modal analysis of damped structures

    International Nuclear Information System (INIS)

    Krapf, K.G.; Woelfel, H.

    1983-01-01

    Quite recently discrete spring-damper elements are increasingly used for the low-tuned supports of nuclear power-plant buildings and equipment (reactor building, turbine-fundaments etc.) to reduce the vibration response due to the dynamic load cases earthquake and airplane crash. Because of this development, it is to be investigated whether the usual modal analysis method is applicable within the design process or should be changed respectively replaced in special cases. The paper contributes to this discussion by demonstrating and valuing the discrepancies in the different ways for the implementation of damping. Different methods for uncoupling (energy weighting, reduction to Rayleigh-damping) are compared with the solution of the coupled equations of motion. In particular vertical vibrations of a spring-damper-supported building on foundation (including ground springs) are examined using a two-degree-of-freedom-system. The results of coupled and (by force) uncoupled methods are interpreted concerning free vibration by comparison of the damping of natural vibrations, natural frequencies and natural mode shapes. The effect on the forced vibrations is shown by floor response spectra to an earthquake accelerogram. (orig./HP)

  12. Landau damping in trapped Bose condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B; Zaremba, E [Department of Physics, Queen' s University, Kingston, ON K7L 3N6 (Canada)

    2003-07-01

    We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock (HF) approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the HF approximation and obtain a novel expression for the Landau damping rate involving the time-dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.

  13. First Results from the DAMPE Mission

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    DAMPE (DArk Matter Particle Explorer) is a satellite mission of the Chinese Academy of Sciences (CAS) dedicated to high energy cosmic ray detections. Since its successful launch on December 17th, 2015 a large amount of cosmic ray data has been collected. With relatively large acceptance, DAMPE is designed to detect electrons (and positrons) up to 10 TeV with unprecedented energy resolution to search for new features in the cosmic ray electron plus positron (CRE) spectrum. It will also study cosmic ray nuclei up to 100 TeV with good precision, which will bring new input to the study of their still unknown origin and their propagation through the Galaxy. In this talk, the DAMPE mission will be introduced, together with some details of the construction and on-ground calibration of the detector subsystems. The in-orbit detector commissioning, calibration and operation will be described. First data analysis results, including the recently published CRE spectrum from 25 GeV to 4.6 TeV based on the data collected i...

  14. DAMPs and influenza virus infection in ageing.

    Science.gov (United States)

    Samy, Ramar Perumal; Lim, Lina H K

    2015-11-01

    Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Etiology of root parsley damping-off

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available The investigations were done between 1990-1994. Seedlings collected from 120 plantations were evaluated. The fungi responsible for seedling damping-off occurrening most often were Alternariu spp., Fusarium spp. and Pythium spp. isolated from 46,3, 32,2 and 16,6% of infected plants, respectively. The most important pathogens were A.petroselini which infected 33% of seedlings and A.radicina - 11%„ Among Fusarium species the most common was F.avenaceum, comprising 61% of total Fusarium isolates. The next were following: F.culmorum - 21%, F.solani - 12,6% and 3% for both F.equiseti and F.oxysporum. Damping-off of se,edlings was also caused by the other fungi but they were noted in low intensity. Among them were following: Phoma spp., A.alternata and Rhizoctonia solani on 2,8; 2,3 and 1,2% of tested seedlings. respectively. The species: Sclerotinia sclerotiorum, Botrytis cinerea, Bipolaris sorokinianu and Septoria petroselini were isolated in total from 0,9% of seedlings. Drechslera biseptata and Stemphylium botryosum caused seedling damping-off sporadically.

  16. Possibility of Landau damping of gravitational waves

    International Nuclear Information System (INIS)

    Gayer, S.; Kennel, C.F.

    1979-01-01

    There is considerable uncertainty in the literature concerning whether or not transverse traceless gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase speeds less than that of light. We approach the question of Landau damping in various ways. We consider first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker universe of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We show that a freely moving particle interacting only with the collective fields cannot comove with such waves if it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible

  17. Radiative damping in plasma-based accelerators

    Directory of Open Access Journals (Sweden)

    I. Yu. Kostyukov

    2012-11-01

    Full Text Available The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  18. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  19. Vibration analysis of gas turbine blade using FEM

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Chohan, G.Y.; Khusnood, S.; Khan, M.A.

    2003-01-01

    In a typical turbo-machine, there is a stator row of blades, which guide the gases onto a rotor row of blades, to extract the mechanical power from the machine. A typical rotor blade was sees upstream disturbance from the stator row and as it rotates, receive a corresponding number of increasing and decreasing lift and moment forces alternating periodically, depending on the number of stator blades/nozzles/guide vanes. Thus all the blades in a turbo-machine receiver their major periodic excitation at a frequency equal to nozzle passing frequency. Since these forces are periodic, one has to consider several number of these harmonics in determining whether resonance takes place, when one of these harmonics coincides with any of the natural frequencies of the blades. Turbine blades have a variety of natural modes of vibration, predominantly as blade alone but also in combination with flexing of the disc rim. These mode occur at characteristic frequencies, which are determined by the distribution of mass and stiffness (in bending or torsion), resulting from the variable thickness over the blade area. Since the advent of steam turbines and their application in various sectors of industry, it is a common experience that a blade failure is a major cause of breakdown in these machines. Blade failures due to fatigue are predominantly vibration related. The dynamic loads on the blading can arise from many sources, the predominant being the source of the operation principles on which the machine is designed. This work deals with vibration analysis of a gas turbine blade using a finite element package ANSYS. Determined the natural frequencies and mode shapes for a turbine blade and a rectangular blade. Results have been validated experimentally using a rectangular blade. ANSYS results have also been compared against published results. (author)

  20. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...... of the rotor, icing and lightning. Research is done throughout the world in order to develop and improve such measurement systems. Commercial hardware and software available for the described purpose is presented in the report....

  1. Application of OMA to an Operating Wind Turbine: now including Vibration Data from the Blades

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Larsen, Gunner Chr.

    2013-01-01

    due to the rotor rotation) as well as the considerable aerodynamic damping make OMA of operating wind turbines a difficult task. While in the previous works OMA was based on data provided by sensors mounted on the wind turbine tower and nacelle, we here attempt to improve the results by instrumenting......The presented study continues the work on application of Output Only Modal Analysis (OMA) to operating wind turbines. It is known from previous studies that issues like the time-varying nature of the equations of motion of an operating wind turbine (in particular the significant harmonic components...... discusses the technical challenges regarding blade instrumentation and data acquisition, data processing applied to eliminate the time-varying nature of an operating wind turbine in the resulting eigenvalue problem and, finally, it presents and discusses the initial results....

  2. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    International Nuclear Information System (INIS)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo; Martinet, Philippe

    2008-01-01

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  3. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo [Sungkyunkwan University, Suwon (Korea, Republic of); Martinet, Philippe [Blaise Pascal University, Clermont-Ferrand Cedex (France)

    2008-07-15

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  4. Digital radiographic technology; non-destructive testing of tubine blades

    NARCIS (Netherlands)

    Penumadu, P.S.

    2014-01-01

    Inspection of turbine blades has always been a big challenge. Any irregularities in the blade have a huge impact on the gas turbine, so these blades have to be manufactured and inspected in the most sophisticated way possible. The evolution of digital radiographic technology took a leap forward to

  5. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    Antenna gain impact on UWB wind turbine blade deflection sensing is studied in this paper. Simulations are applied with a 4.5-meter blade tip. The antennas with high gain (HG) and low gain (LG) in free space are simulated inside a blade. It is interesting to find that tip antennas with HG and LG...

  6. Modeling of uncertainties for wind turbine blade design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2014-01-01

    Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...

  7. Gas turbine engine turbine blade damaging estimate in maintenance

    Directory of Open Access Journals (Sweden)

    Ель-Хожайрі Хусейн

    2004-01-01

    Full Text Available  The factors determining character and intensity of corrosive damages of gas turbine blades are analyzed in the article. The classification of detrimental impurities polluting gas turbine airflow duct and injuring blade erosion damages are given. Common features of the method of turbine blade corrosive damage estimation are shown in the article.

  8. Multidisciplinary design optimization of film-cooled gas turbine blades

    Directory of Open Access Journals (Sweden)

    Talya Shashishekara S.

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  9. Channel flow analysis. [velocity distribution throughout blade flow field

    Science.gov (United States)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  10. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  11. Design and fabrication of a wind turbine blade | Laryea | Ghana ...

    African Journals Online (AJOL)

    Dimensions and weights were measured to determine the possibilities of its performance. Factors that affect the spinning of the blade include the weight, blade count and its aerodynamic features. The new blades are assumed to be more reliable and efficient than wholly wood design. The calculated wind speed and power ...

  12. Structural experiment of wind turbine blades; Fushayo blade no zairyo rikigakuteki jikken kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K; Shimizu, Y; Kuroyanagi, H [Tokai University, Tokyo (Japan)

    1997-11-25

    Aluminum, GFRP and composite of aluminum coated with carbon as structural materials for wind turbine blades were bending-tested, to improve blade bending stiffness, understand stress conditions at each position, and clarify structural dynamic strength by the bending-failure test. It is possible to estimate stress conditions at each position from the test results of displacement and strain at each load. The test results with GFRP are well explained qualitatively by the boundary theory, known as a theory for composite materials. The test gives reasonable material strength data, useful for designing wind turbines of high functions and safety. The results of the blade bending-failure test are in good agreement with the calculated structural blade strength. It is also found that GFRP is a good material of high structural strength for wind turbines. 8 refs., 6 tabs.

  13. New morphing blade section designs and structural solutions for smart blades

    DEFF Research Database (Denmark)

    Karakalas, Anargyros A.; Machairas, Theodore; Solomou, Alexandros

    2015-01-01

    Within INNWIND.EU new concepts are investigated having the ultimate goal to reduce the cost per kilowatt-hour of the produced energy. With increasing size of wind turbines, new approaches to load control are required to reduce the stresses in blades. Experimental and numerical studies in the fields...... of helicopter and wind turbine blade research have shown the potential of shape morphing in reducing blade loads. Morphing technologies, along with other control concepts, are investigated under Task 2.3 of WP “Lightweight Rotor”, against aerodynamic compliance and requirements of the complete wind turbine...... the efforts performed within Task 2.2 “Lightweight structural design” of INNWIND.Eu work-package WP2 “Lightweight Rotor” regarding the structural solutions necessary to accommodate the requirements of smart blades developed within work-package WP2 Task 2.3 “Active and passive loads control and alleviation...

  14. Nonstandard conserved Hamiltonian structures in dissipative/damped systems: Nonlinear generalizations of damped harmonic oscillator

    International Nuclear Information System (INIS)

    Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2009-01-01

    In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.

  15. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul; Kim, Jong H.

    2016-01-01

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure

  16. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...

  17. Fatigue Life of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The present paper analyses the possibility of reducing the expected damage accumulation during tower passage by modifying the wind turbine tower design from a traditional mono-tower to a tripod. Due to a narrow stagnation zone the stress reversals and hence the damage accumulation in the blades...

  18. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    . The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  19. Remote inspection of steam turbine blades

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    During the past five years Reinhart and Associates, Inc. has been involved in remote examination of L-0 and L-1 steam turbine blade rows of in-place LP turbines using visual and eddy current techniques. These tests have concentrated on the trailing edge and blade-to-rotor attachment (Christmas tree) areas. These remote nondestructive examinations were performed through hand access ports of the inner shell. Since the remote scanning system was in a prototype configuration, the inspection was highly operator-dependent. Refinement of the scanning equipment would considerably improve the efficiency of the test; however, the feasibility of remote in-place inspection of turbine blades was established. To further improve this technology, and to provide for remote inspection of other areas of the blade and additional turbine designs, EPRI is funding a one-year project with Reinhart and Associates, Inc. This project will develop a new system that employs state-of-the-art multifrequency eddy current techniques, a miniature charged coupled device (CCD) television camera, and remote positioning equipment. Project results from the first six months are presented

  20. Fluidic load control for wind turbines blades

    NARCIS (Netherlands)

    Boeije, C.S.; Vries, de H.; Cleine, I.; Emden, van E.; Zwart, G.G.M.; Stobbe, H.; Hirschberg, A.; Hoeijmakers, H.W.M.; Maureen Hand, xx

    2009-01-01

    This paper describes the initial steps into the investigation of the possibility of reducing fatigue loads on wind turbine blades by the application of fluidic jets. This investigation involves static pressure measurements as well as numerical simulations for a non-rotating NACA-0018 airfoil. The

  1. Structural dynamic analysis of turbine blade

    Science.gov (United States)

    Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.

    2017-10-01

    In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.

  2. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The las...

  3. The Evolution of Rotor and Blade Design

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.

    2000-08-01

    The objective of this paper is to provide a historical perspective of the evolution of rotor and blade design during the last 20 years. This evolution is a balanced integration of economic, aerodynamic, structural dynamic, noise, and aesthetic considerations, which are known to be machine type and size dependent.

  4. Damping in building structures during earthquakes: test data and modeling

    International Nuclear Information System (INIS)

    Coats, D.W. Jr.

    1982-01-01

    A review and evaluation of the state-of-the-art of damping in building structures during earthquakes is presented. The primary emphasis is in the following areas: 1) the evaluation of commonly used mathematical techniques for incorporating damping effects in both simple and complex systems; 2) a compilation and interpretation of damping test data; and 3) an evaluation of structure testing methods, building instrumentation practices, and an investigation of rigid-body rotation effects on damping values from test data. A literature review provided the basis for evaluating mathematical techiques used to incorporate earthquake induced damping effects in simple and complex systems. A discussion on the effectiveness of damping, as a function of excitation type, is also included. Test data, from a wide range of sources, has been compiled and interpreted for buidings, nuclear power plant structures, piping, equipment, and isolated structural elements. Test methods used to determine damping and frequency parameters are discussed. In particular, the advantages and disadvantages associated with the normal mode and transfer function approaches are evaluated. Additionally, the effect of rigid-body rotations on damping values deduced from strong-motion building response records is investigated. A discussion of identification techniques typically used to determine building parameters (frequency and damping) from strong motion records is included. Finally, an analytical demonstration problem is presented to quantify the potential error in predicting fixed-base structural frequency and damping values from strong motion records, when rigid-body rotations are not properly accounted for

  5. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  6. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    Science.gov (United States)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  7. Family of airfoil shapes for rotating blades. [for increased power efficiency and blade stability

    Science.gov (United States)

    Noonan, K. W. (Inventor)

    1983-01-01

    An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance.

  8. Non-Linear Slosh Damping Model Development and Validation

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  9. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  10. Experimental investigation on multidisciplinary geophysical characterization of deep underground structure using multi-scale, multi-mode seismic profiling for the evaluation of ground motion and seismic model building

    International Nuclear Information System (INIS)

    Abe, Susumu

    2014-01-01

    Recent advancements in data acquisition and velocity estimation for multi-mode, multiscale seismic exploration were explained along with the basic concept of strategic geophysical surveys for NPP siting assessment. Then, as a case study using this concept, multidisciplinary geophysical characterization results pertaining to the deep underground structure beneath the JNES Kashiwazaki Center were explained in detail. At the site, reflection/refraction surveys and magnetotelluric/gravity surveys were also conducted. It was shown that these surveys can be used complementary because at the upsurge part, where clear images cannot be obtained by reflection/refraction surveys, magnetotelluric /gravity surveys can be used to obtain clear images. (author)

  11. Analysis of impact resistance of composite fan blade. Fukugozai fan blade no taishogekisei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, T; Okumura, H; Otake, K; Sofue, Y [Japan Society for Aeronautical and Space Sciences, Tokyo (Japan)

    1992-01-05

    Numerical analysis of impact response was carried out when a bird strike was simulated to study the applicability of fiber reinforced composite material to fan blades for turbo-fan engines. The validity of the numerical analysis was verified by comparing the analyzed results with impact tested results of a fan-blade model of Ti-alloy. The impact resistance was studied by applying this method to fan blades of composite materials such as carbon fiber, epoxy resin and carbon-silicate fiber reinforced Ti-alloy. The finite element method was used for the analysis by dividing the model into triangular flat elements. The relation between the impact load, the deformation of blade and the strain, the natural frequency characteristics, the elastic modulus and hetrogeneity of blade were considered to analyze the impact response. The impact load by the strike of 1.5 lbs bird is very severe to the fan blades for turbo-fan engines having the thrust of 5 ton class. 23 refs., 23 figs., 3 tabs.

  12. Measurements of blade aerodynamics on a rotor in the field

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.M.R. [Imperical College, Dept. of Aeronautics, London (United Kingdom)

    1997-12-31

    This contribution describes the field test measurements undertaken on an instrumented rotor at the Rutherford Appleton Laboratory, Oxfordshire, UK, during the period 1994 - 97. The programme was directed at improving the prediction of the steady and unsteady rotor blade loading, particularly the loads arising from the stalling of the blade. The measured data consisted of blade surface pressure distributions sampled at 50Hz at 6 sections along the span of one blade of the 17m diameter, 3 bladed, fixed pitch, upwind H.A.W.T., together with measurements of the incident velocity. (au)

  13. Analysis and improvement of gas turbine blade temperature measurement error

    International Nuclear Information System (INIS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-01-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed. (paper)

  14. Analysis and improvement of gas turbine blade temperature measurement error

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  15. Noise from Propellers with Symmetrical Sections at Zero Blade Angle

    Science.gov (United States)

    Deming, A F

    1937-01-01

    A theory has been deduced for the "rotation noise" from a propeller with blades of symmetrical section about the chord line and set at zero blade angle. Owing to the limitation of the theory, the equations give without appreciable error only the sound pressure for cases where the wave lengths are large compared with the blade lengths. With the aid of experimental data obtained from a two-blade arrangement, an empirical relation was introduced that permitted calculation of higher harmonics. The generality of the final relation given is indicated by the fundamental and second harmonic of a four-blade arrangement.

  16. New Design of Blade Untwisting Device of Cyclone Unit

    Directory of Open Access Journals (Sweden)

    D. I. Misiulia

    2010-01-01

    Full Text Available The paper presents a new design of a blade untwisting device where blades are considered as a main element of the device. A profile of the blades corresponds to a circular arch. An inlet angle of  the blades is determined by stream aerodynamics in an exhaust pipe, and an exit angle is determined by rectilinear gas motion. Optimum geometrical parameters of the untwisting device have been determined and its application allows to reduce a pressure drop in the ЦН-15 cyclones by 28–30 % while screw-blade untwisting device recovers only 19–20 % of energy.

  17. Servo-Elastic Dynamics of a Hydraulic Actuator Pitching a Blade with Large Deflections

    International Nuclear Information System (INIS)

    Hansen, M H; Kallesoee, B S

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based on the Ziegler-Nichols method. Computed transfer functions from reference to actual pitch angles indicate that the actuator can be approximated as a low-pass filter with some appropriate limitations on pitching speed and acceleration. The structural blade model includes the geometrical coupling of edgewise bending and torsion for large flapwise deflections. This coupling is shown to introduce edgewise bending response for pitch reference oscillations around the natural frequency of the edgewise bending mode, in which frequency range the transfer function from reference to actual pitch angle cannot be modeled as a simple low-pass filter. The pitch bearing is assumed to be frictionless as a first approximation

  18. Determination of Turbine Blade Life from Engine Field Data

    Science.gov (United States)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  19. Development of 52 inches last stage blade for steam turbines

    International Nuclear Information System (INIS)

    Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shinichiro; Ogata, Hisao

    1986-01-01

    The last stage blades of steam turbines are the important component controlling the power output and performance of plants. In order to realize a unit of large capacity and high efficiency, the proper exhaust area and the last stage blades having good performance are indispensable. Toshiba Corp. has completed the development of the 52 inch last stage blades for 1500 and 1800 rpm steam turbines. The 52 inch last stage blades are the longest in the world, which have the annular exhaust area nearly 1.5 times as much as that of 41 inch blades used for 1100 MW, 1500 rpm turbines in nuclear power stations. By adopting these 52 inch blades, the large capacity nuclear power plants up to 1800 MW can be economically constructed, the rate of heat consumption of 1350 MW plants is improved by 3 ∼ 4 % as compared with 41 inch blades, and in the plants up to 1100 MW, LP turbines can be reduced from three sets to two. The features of 52 inch blades, the flow pattern and blade form design, the structural strength analysis and the erosion withstanding property, and the verification by the rotation test of the actual blades, the performance test using a test turbine, the vibration analysis of the actually loaded blades and the analysis of wet steam behavior are reported. (Kako, I.)

  20. Development of 52 inch last stage blade for steam turbine

    International Nuclear Information System (INIS)

    Kadoya, Yoshiki; Harada, Masakatsu; Watanabe, Eiichiro

    1985-01-01

    Mitsubishi Heavy Industries, Ltd. has developed the last stage blades with 1320 mm length for a 1800 rpm LP turbine, and the verification by rotating vibration test using actual blades was finished, thus the blades were completed. In a nuclear power plant with an A-PWR of 3800 MW thermal output, the 1350 MW steam turbine has one HP turbine and three LP turbines coupled in tandem, and the optimum last stage blades for the LP turbines became the 1320 mm blades. The completion of these blades largely contributes to the improvement of thermal efficiency and the increase of generator output in large nuclear power plants, and has the possibility to decrease three LP turbines to two in 900 MW plants, which reduces the construction cost. The velocity energy of steam coming out of last stage blades is abandoned as exhaust loss in a condenser, which is the largest loss in a turbine. The increase of exhaust area using long blades reduces this loss. The economy of the 1320 mm blades, the features of the 1320 mm blades, the aerodynamic design and its verification, the prevention of the erosion of the 1320 mm blades due to wet steam, the strength design, the anti-vibration design and its verification, and the CAD/CAM system are reported. (Kako, I.)

  1. Vibration and flutter of mistuned bladed-disk assemblies

    Science.gov (United States)

    Kaza, K. R. V.; Kielb, R. E.

    1984-01-01

    An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.

  2. Fundamental investigation on the impact strength of hollow fan blades

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T; Miyachi, T; Sofue, Y

    1985-01-01

    Models of hollow fan blades were made and tested to prove that their strength is sufficient for use in real engines. The hollow blades were fabricated by diffusion bonding of two titanium alloy (6Al-4V-Ti) plates, one of which had three spanwise stiffners and the other being flat plate. The model as a nontwisted tapered blade. Impact tests were carried out on the hollow fan blade models in which the ingestion of a 1.5 pounds bird was simulated. Solid blades with the same external form were also tested by similar methods for comparison. The results of these tests show that properly designed hollow blades have sufficient stiffness and strength for use as fan blades in the turbo-fan engine.

  3. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    effective (or equivalent) isotropic radiated power (EIRP), an HG tip antenna inside a blade gives stronger direct pulse amplitudes and better pulse waveforms for accurate and reliable distance estimations than the LG. Moreover, the direct pulse with the HG antenna is also closer to the blade surface, which...... in free space have similar realized gain when allocated inside blades, so that the emission power for the HG and LG antennas in blades can be the same. The antenna gain impacts on time-domain pulse waveforms and power distributions around a blade are carefully investigated (with the tip antenna inside...... a blade). Higher antenna gain enlarges both direct pulse and multipath but in different levels. To verify the simulations, time-domain measurements are performed with a full 37-meter blade. Pulse waveforms and power delay profiles are measured. From all the studies, it follows that: with the similar...

  4. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    . In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....

  5. Controlled damping of a physical pendulum: experiments near critical conditions

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I; Bol, Alfredo

    2006-01-01

    This paper presents an experimental device for the study of damped oscillatory motion along with three associated experiments. Special emphasis is given on both didactic aspects and the interactivity of the experimental set-up, in order to assist students in understanding fundamental aspects of damped oscillatory motion and allow them to directly compare their experimental results with the well-known theory they can find in textbooks. With this in mind, a physical pendulum was selected with an eddy-current damping system that allows the damping conditions to be controlled with great precision. The three experiments examine accurate control of damping, frequency shift near critical damping and the transition from underdamped to overdamped conditions

  6. Special class of nonlinear damping models in flexible space structures

    Science.gov (United States)

    Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.

    1991-01-01

    A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.

  7. Magnon damping in two-dimensional Heisenberg ferromagnetic system

    International Nuclear Information System (INIS)

    Cheng, T.-M.; Li Lin; Ze Xianyu

    2006-01-01

    A magnon-phonon interaction model is set up for a two-dimensional insulating ferromagnetic system. By using Matsubara function theory we have studied the magnon damping -I m Σ* (1) (k->) and calculated the magnon damping -I m Σ* (1) (k->) curve on the main symmetric point and line in the Brillouin zone for various parameters in the system. It is concluded that at the boundary of Brillouin zone there is a strong magnon damping. However, the magnon damping is very weak on the zone of small wave vector and the magnon damping reaches maximal value at very low temperature. The contributions of longitudinal phonon and transverse phonon on the magnon damping are compared and the influences of various parameters are also discussed

  8. Collisional damping of Langmuir waves in the collisionless limit

    International Nuclear Information System (INIS)

    Auerbach, S.P.

    1977-01-01

    Linear Langmuir wave damping by collisions is studied in the limit of collision frequency ν approaching zero. In this limit, collisions are negligible, except in a region in velocity space, the boundary layer, centered about the phase velocity. If kappa, the ratio of the collisional equilibration time in the boundary layer to the Landau damping time, is small, the boundary layer width scales as ν/sup 1/3/, and the perturbed distribution function scales as ν/sup -1/3/. The damping rate is thus independent of ν, although essentially all the damping occurs in the collision-dominated boundary layer. Solution of the Fokker--Planck equation shows that the damping rate is precisely the Landau (collisionless) rate. The damping rate is independent of kappa, although the boundary layer thickness is not

  9. An experimental study on damping characteristics of thermal insulation

    International Nuclear Information System (INIS)

    Chiba, Toshio; Kobayashi, Hiroe; Aida, Shigekazu; Wada, Hidetoshi

    1984-01-01

    The damping ratio is one of the most important parameters in seismic analysis of piping systems in a nuclear power plant. Thermal insulation is considered contributing to the damping characteristics of piping systems. At the 6th SMiRT and 1983 ASME PVP conferences, the damping effect and damping estimating formula were presented as a result of regression analysis using the component test data for 2,4 and 8B diameter piping and the proof model test for 1,2 and 4B piping system. In this study, in order to clarify the damping characteristics of a larger diameter piping than 8B,the component test of 12 and 20B diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers, it was found that the damping ratio of anactual piping system with thermal insulation is at minimum 1% for all size diameter piping. (author)

  10. An experimental study on damping characteristics of thermal insulation

    International Nuclear Information System (INIS)

    Chiba, T.; Kobayashi, H.

    1985-01-01

    The damping ratio is one of the most important parameters in seismic analysis of nuclear power plant piping systems. Thermal Insulation is considered to contribute to the damping characteristics of piping systems. In the 6th SMiRT conference and 1983 ASME PVP, the damping effect and damping estimating formula was presented as a result of regression analysis from the component tests of 2'' , 4'', and 8'' diameter piping and the proof model test of 1'', 2'' and 4'' piping. In this study, in order to clarify the damping characteristics of larger diameter piping than 8'', the component test of 12'' and 20'' diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers it was found that the damping ratio of actual piping system with thermal insulation is at least 1% for all size diameter piping

  11. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  12. Power Oscillations Damping in DC Microgrids

    OpenAIRE

    Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang; Sheshyekani, Keyhan; Guerrero, Josep M.

    2016-01-01

    This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow transient response of the FC stack. The HPCS controller comprises a multi-loop voltage controller and a virtual impedance loop for power management. The virtual impedance loop uses a dynamic droop gain to a...

  13. Hyperchaotic circuit with damped harmonic oscillators

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    2001-01-01

    A simple fourth-order hyperchaotic circuit with damped harmonic oscillators is described. ANP3 and PSpice simulations including an eigenvalue study of the linearized Jacobian are presented together with a hardware implementation. The circuit contains two inductors with series resistance, two ideal...... capacitors and one nonlinear active conductor. The Lyapunov exponents are presented to confirm the hyperchaotic nature of the oscillations of the circuit. The nonlinear conductor is realized with a diode. A negative impedance converter and a linear resistor. The performance of the circuit is investigated...... by means of numerical integration of the appropriate differential equations....

  14. Status of the SLC damping rings

    International Nuclear Information System (INIS)

    Hutton, A.M.; Davies-White, W.A.; Delahaye, J.P.

    1985-06-01

    Electron beams of full design energy 1.21 GeV and nearly full design intensity 4 x 10 10 particles/pulse (design 5 x 10 10 ) have been extracted from the Stanford Linac and successfully stored in the electron damping ring. Beams of less intensity have been extracted from the ring and reinjected into the Linac. The present intensity limits are not thought to be fundamental. The operating experience with the electron ring and the status of the construction of the positron ring will be discussed. 11 refs., 1 fig., 2 tabs

  15. Coherent Synchrotron Radiation effect in damping rings

    International Nuclear Information System (INIS)

    Raubenheimer, T

    2004-01-01

    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter K. The primary consideration is a low frequency microwave-like instability in the damping rings of several linear collider projects. The threshold is determined by the instability with the longest possible wavelength

  16. Transport description of damped nuclear reactions

    International Nuclear Information System (INIS)

    Randrup, J.

    1983-04-01

    Part I is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expression for the transport coefficients. The results can also be used in a wider context than the present one. Part II gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations

  17. Thermal equilibrium in strongly damped collisions

    International Nuclear Information System (INIS)

    Samaddar, S.K.; De, J.N.; Krishan, K.

    1985-01-01

    Energy division between colliding nuclei in damped collisions is studied in the statistical nucleon exchange model. The reactions 56 Fe+ 165 Ho and 56 Fe+ 238 U at incident energy of 465 MeV are considered for this purpose. It is found that the excitation energy is approximately equally shared between the nuclei for the peripheral collisions and the systems slowly approach equilibrium for more central collisions. This is in conformity with the recent experimental observations. The calculated variances of the charge distributions are found to depend appreciably on the temperature and are in very good agreement with the experimental data

  18. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    International Nuclear Information System (INIS)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately

  19. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    Science.gov (United States)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.

  20. Confirmation of soil radiation damping from test versus analysis

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Mukhim, G.S.; Desmond, T.P.

    1987-01-01

    The work was performed to demonstrate that soil-structure interaction effects for nuclear plant structures can be accurately (and conservatively) predicted using the finite element or soil spring methods of soil-structure interaction analysis. Further, the work was done to investigate the relative importance of soil radiation versus soil material damping in the total soil damping analytical treatment. The analytical work was benchmarked with forced vibration tests of a concrete circular slab resting on the soil surface. The applied loading was in the form of a suddenly applied pulse load, or snapback. The measured responses of the slap represent the free vibration of the slab after the pulse load has been applied. This simplifies the interpretation of soil damping, by the use of the logarithmic decay formulation. To make comparisons with the test results, the damping data calculated from the analytical models is also based on the logarithmic decay formulation. An attempt is made to differentiate the observed damped behavior of the concrete slab as being caused by soil radiation versus soil material damping. It is concluded that both the traditional soil radiation and material damping analytical simplifications are validated by the observed responses. It is concluded that arbitrary 'conservative' assumptions traditionally made in nuclear plant soil-structure interaction analyses are indeed arbitrary, and not born out by physical evidence. The amount of conservatism introduced by limiting total soil damping to values like 5% to 10% can be large. For the test slab sizes investigated, total soil damping is about 25%. For full size nuclear plant foundations, total soil damping is commonly in the 35% to 70% range. The authors suggest that full soil damping values (the combined radiation and material damping) should be used in the design, backfit and margin assessment of nuclear plants. (orig./HP)

  1. Rising damp in building walls: the wall base ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.S.; Delgado, J.M.P.Q.; Freitas, V.P. de [Faculdade de Engenharia da Universidade do Porto, Laboratorio de Fisica das Construcoes (LFC), Departamento de Engenharia Civil, Porto (Portugal)

    2012-12-15

    This work intends to validate a new system for treating rising damp in historic buildings walls. The results of laboratory experiments show that an efficient way of treating rising damp is by ventilating the wall base, using the HUMIVENT technique. The analytical model presented describes very well the observed features of rising damp in walls, verified by laboratory tests, who contributed for a simple sizing of the wall base ventilation system that will be implemented in historic buildings. (orig.)

  2. Complex modes and frequencies in damped structural vibrations

    DEFF Research Database (Denmark)

    Krenk, Steen

    2004-01-01

    It is demonstrated that the state space formulation of the equation of motion of damped structural elements like cables and beams leads to a symmetric eigenvalue problem if the stiffness and damping operators are self-adjoint, and that this is typically the case in the absence of gyroscopic forces....... The corresponding theory of complex modal analysis of continuous systems is developed and illustrated in relation to optimal damping and impulse response of cables and beams with discrete dampers....

  3. Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes

    DEFF Research Database (Denmark)

    Holst, G; Høst, A; Doekes, G

    2016-01-01

    was identified based on technical inspection and bedroom dampness on parents' self-report. Classroom and bedroom dust was analysed for seven microbial components. Skin-prick-testing determined atopic sensitisation. Lung function was expressed as z-scores for forced expiratory volume in one second (zFEV1...... ), forced vital capacity (zFVC) and the ratio zFEV1 /zFVC using GLI-2012-prediction-equations. The parents reported children's allergies, airway symptoms and doctor-diagnosed asthma. High classroom dampness, but not bedroom dampness, was negatively associated with zFEV1 (β-coef. -0.71; 95%CI -1.17 - -0...... (ETS) decreased zFEV1 (β-coef. -0.22; 95%CI -0.42- -0.02) and zFEV1 /zFVC-ratio (β-coef. -0.26; 95%CI -0.44 - -0.07) and increased upper airway symptoms (OR1.66; 95%CI 1.03-2.66). In conclusion, dampness in classrooms may have adverse respiratory health effects in pupils, but microbial agents...

  4. Structural dynamic analysis with generalized damping models analysis

    CERN Document Server

    Adhikari , Sondipon

    2013-01-01

    Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book

  5. Dynamic apeerture in damping rings with realistic wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  6. Enhancing the Damping Properties of Viscoelastic Composites by Topology Optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Andreassen, Erik; Sigmund, Ole

    Vibrations, if undamped, might be annoying or even dangerous. Most often some kind of damping mechanism is applied in order to limit the vibration level. Vibration insulators, for instance of rubber material, have favorable damping characteristics but lack the structural stiffness often needed...... in engineering structures. Thus, materials or composites with high stiffness and high damping are of great interest to the industry. The inherent compromise between high stiffness and high damping in viscoelastic materials has been treated theoretically [2, 3] and experimentally [1]. It has been shown that high...

  7. Amplitude dependent damping in single crystalline high purity molybdenum

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N

    2004-01-01

    Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)

  8. Damping element for reducing the vibration of an airfoil

    Science.gov (United States)

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  9. Small horizontal emittance in the TESLA damping ring

    International Nuclear Information System (INIS)

    Decking, W.

    2001-01-01

    The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10 -6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given

  10. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-01-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  11. Transport description of damped nuclear reactions

    International Nuclear Information System (INIS)

    Randrup, J.

    1984-01-01

    This lecture series is concerned with the transport description of damped nuclear reactions. Part 1 is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expressions for the transport coefficients. The results can also be used in a wider context than the present one. Part 2 gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations. More detailed presentations are due to be published soon. By necessity entire topics have been omitted. For example, no discussion is given of the calculation of the form factors, and the several instructive applications of the theory to transport of mass and change are not covered at all. For these topics they refer to the literature. It is hoped that the present notes provide a sufficient basis to make the literature on the subject accessible to the student

  12. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    to be determined in several different ways. The accuracy of different ways of measuring residual stresses in the adhesive was tested by applying five different methods on a single sandwich test specimen (laminate/adhesive/laminate) that was instrumented with strain gauges and fiber Bragg gratings. Quasi...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  13. Souvenir knife: a retained transcranial knife blade.

    Science.gov (United States)

    Davis, Neil L; Kahana, Tzipi; Hiss, Jehuda

    2004-09-01

    Upon necroscopic examination of a homeless male found comatose in the street and pronounced dead at a medical center 12 hours later, a sharp tip of a knife lodged in the right parietal region of his skull was incidentally discovered. The blade transected the diploe and penetrated the cerebral cortex. Subsequent police investigation revealed that this was the remnant of a stabbing attempt on his life several months prior to his death. The cause of death was determined to be unrelated to the metallic blade fragment, thus making it a truly incidental and rare finding of a "souvenir knife." Nevertheless, since the injury sustained in the stabbing was potentially life threatening, the investigation into that assault was reopened.A case report is presented, along with a brief review of the literature on "souvenir objects."

  14. Structural Reliability of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    turbine blades. The main purpose is to draw a clear picture of how reliability-based design of wind turbines can be done in practice. The objectives of the thesis are to create methodologies for efficient reliability assessment of composite materials and composite wind turbine blades, and to map...... the uncertainties in the processes, materials and external conditions that have an effect on the health of a composite structure. The study considers all stages in a reliability analysis, from defining models of structural components to obtaining the reliability index and calibration of partial safety factors...... by developing new models and standards or carrying out tests The following aspects are covered in detail: ⋅ The probabilistic aspects of ultimate strength of composite laminates are addressed. Laminated plates are considered as a general structural reliability system where each layer in a laminate is a separate...

  15. Test and evaluation about damping characteristics of hanger supports for nuclear power plant piping systems (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, A.; Tanaka, K.; Niino, T.; Gotoh, N.

    1981-01-01

    Generally, damping phenomena of structures and equipments is caused by very complex energy dissipation. Especially, as piping systems are composed of many components, it is very difficult to evaluate damping characteristics of its system theoretically. On the other hand, the damping value for aseismic design of nuclear power plants is very important design factor to decide seismic response loads of structures, equipments and piping systems. The very extensive studies titled SDREP (Seismic Damping Ratio Evaluation Program) were performed to establish proper damping values for seismic design of piping as a joint work among a university, electric companies and plant makers. In SDREP, various systematic vibration tests were conducted to investigate factors which may contribute to damping characteristics of piping systems and to supplement the data of the pre-operating tests. This study is related to the component damping characteristics tests of that program. The object of this study is to clarify damping characteristics and mechanism of hanger supports used in piping systems, and to establish the evaluation technique of dispersing energy at hanger support points and its effect to the total damping ability of piping system. (orig./WL)

  16. Research on the nonintrusive measurement of the turbine blade vibration

    Science.gov (United States)

    Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de

    2008-11-01

    It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.

  17. An aerodynamic study on flexed blades for VAWT applications

    Science.gov (United States)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  18. Influence of delayed excitation on vibrations of turbine blades couple

    Directory of Open Access Journals (Sweden)

    Půst L.

    2013-06-01

    Full Text Available In the presented paper, the computational model of the turbine blade couple is investigated with the main attention to the influence two harmonic excitation forces, having the same frequency and amplitude but with moderate delay in time. Time delay between the exciting harmonic forces depends on the revolutions of bladed disk, on the number of blades on a rotating disk and on the number of stator blades. The reduction of resonance vibrations realized by means of dry friction between the shroud blade-heads increases roughly proportional to the difference of stator and rotor blade-numbers and also to the magnitude of dry friction force. From the analysis of blade couple with direct contact it was proved that the increase of friction forces causes decrease of resonance peaks, but the influence of elastic micro-deformations in the contact surfaces (modeled e.g. by the modified Coulomb dry friction law is rather small. Analysis of a blade couple with a friction element shows that the lower number of stator blades has negligible influence on the amplitudes of both blades, but decreases amplitudes of the friction element oscillations. Similarly the increase of friction forces causes a decrease of resonance peaks, but an increase of friction element amplitudes.

  19. A Take Stock of Turbine Blades Failure Phenomenon

    Science.gov (United States)

    Roy, Abhijit

    2018-02-01

    Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.

  20. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Materials for Wind Turbine Blades: An Overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural...... composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed....

  2. Materials for Wind Turbine Blades: An Overview.

    Science.gov (United States)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  3. Bounce-harmonic Landau Damping of Plasma Waves

    Science.gov (United States)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  4. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  5. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  6. Dynamic characteristics of a novel damped outrigger system

    Science.gov (United States)

    Tan, Ping; Fang, Chuangjie; Zhou, Fulin

    2014-06-01

    This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method (DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and efficiency are verified in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the influences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coefficient. Results show that the modal damping ratio is significantly influenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.

  7. Semilinear damped wave equation in locally uniform spaces

    Czech Academy of Sciences Publication Activity Database

    Michálek, Martin; Pražák, D.; Slavík, J.

    2017-01-01

    Roč. 16, č. 5 (2017), s. 1673-1695 ISSN 1534-0392 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : damped wave equations * nonlinear damping * unbounded domains Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.801, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14110

  8. Dynamic stability of a lightly damped column trapped by a ...

    African Journals Online (AJOL)

    In this paper we initiate an analytical approach for determining the dynamic buckling load of a finite viscously damped column acted upon by a harmonically slowly varying explicitly time dependent load. The viscous damping is considered light and the column rests on an elastic foundation that produces a nonlinear ...

  9. Damping and Frequency Shift of Large Amplitude Electron Plasma Waves

    DEFF Research Database (Denmark)

    Thomsen, Kenneth; Juul Rasmussen, Jens

    1983-01-01

    The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...

  10. Quantum theory of damped harmonic oscillator | Antia | Global ...

    African Journals Online (AJOL)

    The exact solutions of the Schrödinger equation for damped harmonic oscillator with pulsating mass and modified Caldirola-Kanai Hamiltonian are evaluated. We also investigated the case of under-damped for the two models constructed and the results obtained in both cases do not violate Heisenberg uncertainty principle ...

  11. Simple model with damping of the mode-coupling instability

    Energy Technology Data Exchange (ETDEWEB)

    Pestrikov, D V [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-08-01

    In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)

  12. Exponential decay for solutions to semilinear damped wave equation

    KAUST Repository

    Gerbi, Stéphane

    2011-10-01

    This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].

  13. Process Damping and Cutting Tool Geometry in Machining

    Science.gov (United States)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  14. Equivalent viscous damping procedure for multi-material systems

    International Nuclear Information System (INIS)

    Ahmed, H.; Ma, D.

    1979-01-01

    The inclusion of accurate viscous damping effects in the seismic analysis of nuclear power plants is discussed. A procedure to evaluate and use equivalent viscous damping coefficients in conjunction with the substructure method of finite element analysis is outlined in detail

  15. Comparing Sources of Damping of Cross-Wind Motion

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Mørch, Christian; Andersen, Lars

    2009-01-01

    practise plays a key role in this. The questions are: does more damping exist and is one of the sources of damping the main contributor allowing for site-independent guidelines. The aim of this paper is to address these issues. It is demonstrated that tower dampers are important in order to tackle...

  16. PID motion control tuning rules in a damping injection framework

    NARCIS (Netherlands)

    Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano

    2013-01-01

    This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety

  17. Dynamic response analysis of a 24-story damped steel structure

    Science.gov (United States)

    Feng, Demin; Miyama, Takafumi

    2017-10-01

    In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.

  18. Canonical quantization of the Bateman-Morse-Feshbach damped oscillator

    International Nuclear Information System (INIS)

    Rideau, G.; Anderson, R.L.; Hebda, P.W.

    1991-01-01

    The Bateman-Morse-Feshbach classical formulation of the damped oscillator is canonically quantized. The spectrum of the Hamiltonian is given. It is shown that the wavefunctions behave asymptotically as a superposition of damped oscillators when their initial values belong to an appropriately-selected dense subset of the Hilbert space. (orig.)

  19. Exploring damping characteristics of composite tower of cable ...

    Indian Academy of Sciences (India)

    SHEHATA E ABDEL RAHEEM

    the seismic design [1–7] by dividing the cable-stayed bridge into several ..... damping characteristics is represented by a simple model to study the effect of ...... lent modal damping of short-span bridges subjected to strong motion. J. Bridge ...

  20. Study of Ion Acoustic Wave Damping through Green's Functions

    DEFF Research Database (Denmark)

    Hsuan, H.C.S.; Jensen, Vagn Orla

    1973-01-01

    Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter.......Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter....