On the multi-level solution algorithm for Markov chains
Energy Technology Data Exchange (ETDEWEB)
Horton, G. [Univ. of Erlangen, Nuernberg (Germany)
1996-12-31
We discuss the recently introduced multi-level algorithm for the steady-state solution of Markov chains. The method is based on the aggregation principle, which is well established in the literature. Recursive application of the aggregation yields a multi-level method which has been shown experimentally to give results significantly faster than the methods currently in use. The algorithm can be reformulated as an algebraic multigrid scheme of Galerkin-full approximation type. The uniqueness of the scheme stems from its solution-dependent prolongation operator which permits significant computational savings in the evaluation of certain terms. This paper describes the modeling of computer systems to derive information on performance, measured typically as job throughput or component utilization, and availability, defined as the proportion of time a system is able to perform a certain function in the presence of component failures and possibly also repairs.
Wałach, Daniel; Sagan, Joanna; Gicala, Magdalena
2017-10-01
The paper presents an environmental and economic analysis of the material solutions of multi-level garage. The construction project approach considered reinforced concrete structure under conditions of use of ordinary concrete and high-performance concrete (HPC). Using of HPC allowed to significant reduction of reinforcement steel, mainly in compression elements (columns) in the construction of the object. The analysis includes elements of the methodology of integrated lice cycle design (ILCD). By making multi-criteria analysis based on established weight of the economic and environmental parameters, three solutions have been evaluated and compared within phase of material production (information modules A1-A3).
Two parameter-tuned metaheuristic algorithms for the multi-level lot sizing and scheduling problem
Directory of Open Access Journals (Sweden)
S.M.T. Fatemi Ghomi
2012-10-01
Full Text Available This paper addresses the problem of lot sizing and scheduling problem for n-products and m-machines in flow shop environment where setups among machines are sequence-dependent and can be carried over. Many products must be produced under capacity constraints and allowing backorders. Since lot sizing and scheduling problems are well-known strongly NP-hard, much attention has been given to heuristics and metaheuristics methods. This paper presents two metaheuristics algorithms namely, Genetic Algorithm (GA and Imperialist Competitive Algorithm (ICA. Moreover, Taguchi robust design methodology is employed to calibrate the parameters of the algorithms for different size problems. In addition, the parameter-tuned algorithms are compared against a presented lower bound on randomly generated problems. At the end, comprehensive numerical examples are presented to demonstrate the effectiveness of the proposed algorithms. The results showed that the performance of both GA and ICA are very promising and ICA outperforms GA statistically.
Multi-Level Sensor Fusion Algorithm Approach for BMD Interceptor Applications
National Research Council Canada - National Science Library
Allen, Doug
1998-01-01
... through fabrication and testing of advanced sensor hardware concepts and advanced sensor fusion algorithms. Advanced sensor concepts include onboard LADAR in conjunction with a multi-color passive IR sensor...
International Nuclear Information System (INIS)
Levitin, Gregory; Dai Yuanshun; Xie Min; Leng Poh, Kim
2003-01-01
In this paper we consider vulnerable systems which can have different states corresponding to different combinations of available elements composing the system. Each state can be characterized by a performance rate, which is the quantitative measure of a system's ability to perform its task. Both the impact of external factors (stress) and internal causes (failures) affect system survivability, which is determined as probability of meeting a given demand. In order to increase the survivability of the system, a multi-level protection is applied to its subsystems. This means that a subsystem and its inner level of protection are in their turn protected by the protection of an outer level. This double-protected subsystem has its outer protection and so forth. In such systems, the protected subsystems can be destroyed only if all of the levels of their protection are destroyed. Each level of protection can be destroyed only if all of the outer levels of protection are destroyed. We formulate the problem of finding the structure of series-parallel multi-state system (including choice of system elements, choice of structure of multi-level protection and choice of protection methods) in order to achieve a desired level of system survivability by the minimal cost. An algorithm based on the universal generating function method is used for determination of the system survivability. A multi-processor version of genetic algorithm is used as optimization tool in order to solve the structure optimization problem. An application example is presented to illustrate the procedure presented in this paper
Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou
2017-08-10
Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.
Kim, Seung-Tae; Cho, Won-Ju
2018-01-01
We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.
Discrete Riccati equation solutions: Distributed algorithms
Directory of Open Access Journals (Sweden)
D. G. Lainiotis
1996-01-01
Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.
Stigt, van Rien; Driessen, Peter P.J.; Spit, Tejo
2016-01-01
Devolution is advocated as a solution to scale mismatches in urban environmental governance. However, urban environmental quality is a multi-scalar issue: its various aspects – noise, soil, odour, air, water et cetera – are influenced by processes at multiple spatial and temporal scales. Decisions
Lv, Jing; Zhang, Jingxue; Wang, Dunyou
2016-02-17
We employed a multi-level quantum mechanics and molecular mechanics approach to study the reaction NH2Cl + OH(-) in aqueous solution. The multi-level quantum method (including the DFT method with both the B3LYP and M06-2X exchange-correlation functionals and the CCSD(T) method, and both methods with the aug-cc-pVDZ basis set) was used to treat the quantum reaction region in different stages of the calculation in order to obtain an accurate potential of mean force. The obtained free energy activation barriers at the DFT/MM level of theory yielded a big difference of 21.8 kcal mol(-1) with the B3LYP functional and 27.4 kcal mol(-1) with the M06-2X functional respectively. Nonetheless, the barrier heights become very close when shifted from DFT to CCSD(T): 22.4 kcal mol(-1) and 22.9 kcal mol(-1) at CCSD(T)(B3LYP)/MM and CCSD(T)(M06-2X)/MM levels of theory, respectively. The free reaction energy obtained using CCSD(T)(M06-2X)/MM shows an excellent agreement with the one calculated using the available gas-phase data. Aqueous solution plays a significant role in shaping the reaction profile. In total, the water solution contributes 13.3 kcal mol(-1) and 14.6 kcal mol(-1) to the free energy barrier heights at CCSD(T)(B3LYP)/MM and CCSD(T)(M06-2X)/MM respectively. The title reaction at nitrogen is a faster reaction than the corresponding reaction at carbon, CH3Cl + OH(-).
Multi-Level Secure Local Area Network
Naval Postgraduate School (U.S.); Center for Information Systems Studies Security and Research (CISR)
2011-01-01
Multi-Level Secure Local Area Network is a cost effective, multi-level, easy to use office environment leveraging existing high assurance technology. The Department of Defense and U.S. Government have an identified need to securely share information classified at differing security levels. Because there exist no commercial solutions to this problem, NPS is developing a MLS LAN. The MLS LAN extends high assurance capabilities of an evaluated multi-level secure system to commercial personal com...
Liu, Peng; Zhang, Jingxue; Wang, Dunyou
2017-06-07
A double-inversion mechanism of the F - + CH 3 I reaction was discovered in aqueous solution using combined multi-level quantum mechanics theories and molecular mechanics. The stationary points along the reaction path show very different structures to the ones in the gas phase due to the interactions between the solvent and solute, especially strong hydrogen bonds. An intermediate complex, a minimum on the potential of mean force, was found to serve as a connecting-link between the abstraction-induced inversion transition state and the Walden-inversion transition state. The potentials of mean force were calculated with both the DFT/MM and CCSD(T)/MM levels of theory. Our calculated free energy barrier of the abstraction-induced inversion is 69.5 kcal mol -1 at the CCSD(T)/MM level of theory, which agrees with the one at 72.9 kcal mol -1 calculated using the Born solvation model and gas-phase data; and our calculated free energy barrier of the Walden inversion is 24.2 kcal mol -1 , which agrees very well with the experimental value at 25.2 kcal mol -1 in aqueous solution. The calculations show that the aqueous solution makes significant contributions to the potentials of mean force and exerts a big impact on the molecular-level evolution along the reaction pathway.
Multi-level decision making models, methods and applications
Zhang, Guangquan; Gao, Ya
2015-01-01
This monograph presents new developments in multi-level decision-making theory, technique and method in both modeling and solution issues. It especially presents how a decision support system can support managers in reaching a solution to a multi-level decision problem in practice. This monograph combines decision theories, methods, algorithms and applications effectively. It discusses in detail the models and solution algorithms of each issue of bi-level and tri-level decision-making, such as multi-leaders, multi-followers, multi-objectives, rule-set-based, and fuzzy parameters. Potential readers include organizational managers and practicing professionals, who can use the methods and software provided to solve their real decision problems; PhD students and researchers in the areas of bi-level and multi-level decision-making and decision support systems; students at an advanced undergraduate, master’s level in information systems, business administration, or the application of computer science.
Directory of Open Access Journals (Sweden)
Constanta Nicoleta BODEA
2008-01-01
Full Text Available Is an original paper, which contains a hierarchical model with three levels, for determining the linearized non-homogeneous and homogeneous credibility premiums at company level, at sector level and at contract level, founded on the relevant covariance relations between the risk premium, the observations and the weighted averages. We give a rather explicit description of the input data for the multi- level hierarchical model used, only to show that in practical situations, there will always be enough data to apply credibility theory to a real insurance portfolio.
Hersh, David S; Kim, Yong H; Razi, Afshin
2011-01-01
The incidence of isthmic spondylolysis is approximately 3% to 6% in the general population. Spondylolytic defects involving multiple vertebral levels, on the other hand, are extremely rare. Only a handful of reports have examined the outcomes of surgical treatment of multi-level spondylolysis. Here, we present one case of bilateral pars defects at L3, L4, and L5. The patient, a 46-year-old female, presented with lower back pain radiating into the left lower extremity. Radiographs and CT scans of the lumbar spine revealed bilateral pars defects at L3-L5. The patient underwent lumbar discectomy and interbody fusion of L4-S1 as well as direct repair of the pars defect at L3. There were no postoperative complications, and by seven months the patient had improved clinically. While previous reports describe the use of either direct repair or fusion in the treatment of spondylolysis, we are unaware of reports describing the use of both techniques at adjacent levels.
Iordache, Octavian
2011-01-01
This book is devoted to modeling of multi-level complex systems, a challenging domain for engineers, researchers and entrepreneurs, confronted with the transition from learning and adaptability to evolvability and autonomy for technologies, devices and problem solving methods. Chapter 1 introduces the multi-scale and multi-level systems and highlights their presence in different domains of science and technology. Methodologies as, random systems, non-Archimedean analysis, category theory and specific techniques as model categorification and integrative closure, are presented in chapter 2. Chapters 3 and 4 describe polystochastic models, PSM, and their developments. Categorical formulation of integrative closure offers the general PSM framework which serves as a flexible guideline for a large variety of multi-level modeling problems. Focusing on chemical engineering, pharmaceutical and environmental case studies, the chapters 5 to 8 analyze mixing, turbulent dispersion and entropy production for multi-scale sy...
Genetic algorithm solution for partial digest problem.
Ahrabian, Hayedeh; Ganjtabesh, Mohammad; Nowzari-Dalini, Abbas; Razaghi-Moghadam-Kashani, Zahra
2013-01-01
One of the fundamental problems in computational biology is the construction of physical maps of chromosomes from the hybridisation experiments between unique probes and clones of chromosome fragments. Before introducing the shotgun sequencing method, Partial Digest Problem (PDP) was an intractable problem used to construct the physical maps of DNA sequence in molecular biology. In this paper, we develop a novel Genetic Algorithm (GA) for solving the PDP. This algorithm is implemented and compared with well-known existing algorithms on different types of random and real instances data, and the obtained results show the efficiency of our algorithm. Also, our GA is adapted to handle the erroneous data and their efficiency is presented for the large instances of this problem.
Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems
International Nuclear Information System (INIS)
Anistratov, Dmitriy Y.
2011-01-01
The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)
Massively Parallel Algorithms for Solution of Schrodinger Equation
Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad
1994-01-01
In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.
A discretized algorithm for the solution of a constrained, continuous ...
African Journals Online (AJOL)
A discretized algorithm for the solution of a constrained, continuous quadratic control problem. ... The results obtained show that the Discretized constrained algorithm (DCA) is much more accurate and more efficient than some of these techniques, particularly the FSA. Journal of the Nigerian Association of Mathematical ...
A Multi-step and Multi-level approach for Computer Aided Molecular Design
DEFF Research Database (Denmark)
. The problem formulation step incorporates a knowledge base for the identification and setup of the design criteria. Candidate compounds are identified using a multi-level generate and test CAMD solution algorithm capable of designing molecules having a high level of molecular detail. A post solution step...... using an Integrated Computer Aided System (ICAS) for result analysis and verification is included in the methodology. Keywords: CAMD, separation processes, knowledge base, molecular design, solvent selection, substitution, group contribution, property prediction, ICAS Introduction The use of Computer...... Aided Molecular Design (CAMD) for the identification of compounds having specific physic...
Alternative solution algorithm for coupled thermal-hydraulic problems
International Nuclear Information System (INIS)
Farnsworth, D.A.; Rice, J.G.
1986-01-01
A thermal-hydraulic system involves flow of a fluid for which a combined solution of the continuity, momentum, and energy equations is required. When the solutions of the energy and momentum fields are dependent on each other, the system is said to be thermally coupled. A common problem encountered in the numerical solution of strongly coupled thermal-hydraulic problems is a very slow rate of convergence or a complete lack of convergence. Many times this degradation in convergence is due to the lack of true coupling between the energy and momentum fields during the iteration process. In the most widely used solution algorithms - such as the SIMPLE algorithm and its many variants - a sequential solution technique is required. That is, the solution process alternates between the flow and energy fields until a converged solution is obtained. This approach allows only implicit energy-momentum coupling. To improve the convergence rate for strongly coupled problems, a practical solution algorithm that can accommodate true energy-momentum coupling terms was developed. A complete simultaneous (versus sequential) solution of the governing conservation equations utilizing a line-by-line solution was developed and direct coupling terms between the momentum and energy fields were added utilizing a modified Newton-Raphson technique
Multi level configuration of ETO products
DEFF Research Database (Denmark)
Petersen, Thomas Ditlev; Jørgensen, Kaj Asbjørn; Hvolby, Hans-Henrik
2007-01-01
The paper introduces and defines central concepts related to multi level configuration and analyzes which challenges an engineer to order company must deal with to be able to realize a multi level configuration system. It is argued that high flexibility can be achieved and focus can be directed...... in certain business processes if a multi level configuration system is realized....
AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK
Directory of Open Access Journals (Sweden)
Denis N. Butorin
2014-01-01
Full Text Available In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE.
AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK
Denis N. Butorin
2014-01-01
In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE.
The linear ordering problem: an algorithm for the optimal solution ...
African Journals Online (AJOL)
In this paper we describe and implement an algorithm for the exact solution of the Linear Ordering problem. Linear Ordering is the problem of finding a linear order of the nodes of a graph such that the sum of the weights which are consistent with this order is as large as possible. It is an NP - Hard combinatorial optimisation ...
Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.
2009-01-01
A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.
Naturally selecting solutions: the use of genetic algorithms in bioinformatics.
Manning, Timmy; Sleator, Roy D; Walsh, Paul
2013-01-01
For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.
Mathematical model comparing of the multi-level economics systems
Brykalov, S. M.; Kryanev, A. V.
2017-12-01
The mathematical model (scheme) of a multi-level comparison of the economic system, characterized by the system of indices, is worked out. In the mathematical model of the multi-level comparison of the economic systems, the indicators of peer review and forecasting of the economic system under consideration can be used. The model can take into account the uncertainty in the estimated values of the parameters or expert estimations. The model uses the multi-criteria approach based on the Pareto solutions.
An algorithm for the solution of dynamic linear programs
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation
An airport surface surveillance solution based on fusion algorithm
Liu, Jianliang; Xu, Yang; Liang, Xuelin; Yang, Yihuang
2017-01-01
In this paper, we propose an airport surface surveillance solution combined with Multilateration (MLAT) and Automatic Dependent Surveillance Broadcast (ADS-B). The moving target to be monitored is regarded as a linear stochastic hybrid system moving freely and each surveillance technology is simplified as a sensor with white Gaussian noise. The dynamic model of target and the observation model of sensor are established in this paper. The measurements of sensors are filtered properly by estimators to get the estimation results for current time. Then, we analysis the characteristics of two fusion solutions proposed, and decide to use the scheme based on sensor estimation fusion for our surveillance solution. In the proposed fusion algorithm, according to the output of estimators, the estimation error is quantified, and the fusion weight of each sensor is calculated. The two estimation results are fused with weights, and the position estimation of target is computed accurately. Finally the proposed solution and algorithm are validated by an illustrative target tracking simulation.
Regulatory networks, legal federalism, and multi-level regulatory systems
Kerber, Wolfgang; Wendel, Julia
2016-01-01
Transnational regulatory networks play important roles in multi-level regulatory regimes, as e.g, the European Union. In this paper we analyze the role of regulatory networks from the perspective of the economic theory of legal federalism. Often sophisticated intermediate institutional solutions between pure centralisation and pure decentralisation can help to solve complex tradeoff problems between the benefits and problems of centralised and decentralised solutions. Drawing upon the insight...
Multi-level methods and approximating distribution functions
International Nuclear Information System (INIS)
Wilson, D.; Baker, R. E.
2016-01-01
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparable to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.
Multi-level methods and approximating distribution functions
Energy Technology Data Exchange (ETDEWEB)
Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E. [Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)
2016-07-15
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparable to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.
An Algorithm for Isolating the Real Solutions of Piecewise Algebraic Curves
Directory of Open Access Journals (Sweden)
Jinming Wu
2011-01-01
to compute the real solutions of two piecewise algebraic curves. It is primarily based on the Krawczyk-Moore iterative algorithm and good initial iterative interval searching algorithm. The proposed algorithm is relatively easy to implement.
Directory of Open Access Journals (Sweden)
Arazi Idrus
2017-12-01
Full Text Available In this paper, we present our work-in-progress of a proposed framework for automated negotiation in the construction domain. The proposed framework enables software agents to conduct negotiations and autonomously make value-based decisions. The framework consists of three main components which are, solution generator algorithm, negotiation algorithm, and conflict resolution algorithm. This paper extends the discussion on the solution generator algorithm that enables software agents to generate solutions and rank them from 1st to nth solution for the negotiation stage of the operation. The solution generator algorithm consists of three steps which are, review solutions, rank solutions, and form ranked solutions. For validation purpose, we present a scenario that utilizes the proposed algorithm to rank solutions. The validation shows that the algorithm is promising, however, it also highlights the conflict between different parties that needs further negotiation action.
Static Load Balancing Algorithms In Cloud Computing Challenges amp Solutions
Directory of Open Access Journals (Sweden)
Nadeem Shah
2015-08-01
Full Text Available Abstract Cloud computing provides on-demand hosted computing resources and services over the Internet on a pay-per-use basis. It is currently becoming the favored method of communication and computation over scalable networks due to numerous attractive attributes such as high availability scalability fault tolerance simplicity of management and low cost of ownership. Due to the huge demand of cloud computing efficient load balancing becomes critical to ensure that computational tasks are evenly distributed across servers to prevent bottlenecks. The aim of this review paper is to understand the current challenges in cloud computing primarily in cloud load balancing using static algorithms and finding gaps to bridge for more efficient static cloud load balancing in the future. We believe the ideas suggested as new solution will allow researchers to redesign better algorithms for better functionalities and improved user experiences in simple cloud systems. This could assist small businesses that cannot afford infrastructure that supports complex amp dynamic load balancing algorithms.
ALGORITHM OF SELECTION EFFECTIVE SOLUTIONS FOR REPROFILING OF INDUSTRIAL BUILDINGS
Directory of Open Access Journals (Sweden)
MENEJLJUK A. I.
2016-08-01
Full Text Available Raising of problem.Non-compliance requirements of today's industrial enterprises, which were built during the Soviet period, as well as significant technical progress, economic reform and transition to market principles of performance evaluation leading to necessity to change their target and functionality. The technical condition of many industrial buildings in Ukraine allows to exploit them for decades.Redesigning manufacturing enterprises allows not only to reduce the cost of construction, but also to obtain new facilities in the city. Despite the large number of industrial buildings that have lost their effectiveness and relevance, as well as a significant investor interest in these objects, the scope of redevelopment in the construction remains unexplored. Analysis researches on the topic. The problem of reconstruction of industrial buildings considered in Topchy D. [3], Travin V. [9], as well as in the work of other scientists. However, there are no rules in regulatory documents and system studies for improving the organization of the reconstruction of buildings at realigning. The purpose of this work is the development an algorithm of actions for selection of effective organizational decisions at the planning stage of a reprofiling project of industrial buildings. The proposed algorithm allows you to select an effective organizational and technological solution for the re-profiling of industrial buildings, taking into account features of the building, its location, its state of structures and existing restrictions. The most effective organizational solution allows realize the reprofiling project of an industrial building in the most possible short terms and with the lowest possible use of material resources, taking into account the available features and restrictions. Conclusion. Each object has a number of unique features that necessary for considering at choosing an effective reprofiling variant. The developed algorithm for selecting
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Algorithms for synthesizing management solutions based on OLAP-technologies
Pishchukhin, A. M.; Akhmedyanova, G. F.
2018-05-01
OLAP technologies are a convenient means of analyzing large amounts of information. An attempt was made in their work to improve the synthesis of optimal management decisions. The developed algorithms allow forecasting the needs and accepted management decisions on the main types of the enterprise resources. Their advantage is the efficiency, based on the simplicity of quadratic functions and differential equations of only the first order. At the same time, the optimal redistribution of resources between different types of products from the assortment of the enterprise is carried out, and the optimal allocation of allocated resources in time. The proposed solutions can be placed on additional specially entered coordinates of the hypercube representing the data warehouse.
Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems
Van Benthem, Mark H.; Keenan, Michael R.
2008-11-11
A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.
Philbin, Morgan M; Tanner, Amanda E; Chambers, Brittany D; Ma, Alice; Ware, Samuella; Lee, Sonia; Fortenberry, J Dennis; The Adolescent Trials Network
2017-10-01
HIV-infected adolescents have disproportionately low rates of care retention and viral suppression. Approximately half disengage from care while transitioning to adult clinics, in part due to fragmented care systems and lack of streamlined protocols. We conducted 58 qualitative interviews with social service and health care providers across 14 Adolescent Trials Network clinics (n = 28) and 20 adult clinics that receive transitioning adolescents (n = 30) from August 2015-June 2016. We used the constant comparative approach to examine processes, barriers, and facilitators of adult care transition. Transition barriers coalesced around three levels. Structural: insurance eligibility, transportation, and HIV-related stigma; Clinical: inter-clinic communication, differences in care cultures, and resource/personnel limitations; and Individual: adolescents' transition readiness and developmental capacity. Staff-initiated solutions (e.g., grant-funded transportation) were often unsustainable and applied individual-level solutions to structural-level barriers. Comprehensive initiatives, which develop collaborative policies and protocols that support providers' ability to match the solution and barrier level (i.e., structural-to-structural), are sorely needed. These initiatives should also support local systematic planning to facilitate inter-clinic structures and communication. Such approaches will help HIV-infected adolescents transition to adult care and improve long-term health outcomes.
Evolutionary Algorithms Approach to the Solution of Damage Detection Problems
Salazar Pinto, Pedro Yoajim; Begambre, Oscar
2010-09-01
In this work is proposed a new Self-Configured Hybrid Algorithm by combining the Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA). The aim of the proposed strategy is to increase the stability and accuracy of the search. The central idea is the concept of Guide Particle, this particle (the best PSO global in each generation) transmits its information to a particle of the following PSO generation, which is controlled by the GA. Thus, the proposed hybrid has an elitism feature that improves its performance and guarantees the convergence of the procedure. In different test carried out in benchmark functions, reported in the international literature, a better performance in stability and accuracy was observed; therefore the new algorithm was used to identify damage in a simple supported beam using modal data. Finally, it is worth noting that the algorithm is independent of the initial definition of heuristic parameters.
a permutation encoding te algorithm solution of reso tation encoding
African Journals Online (AJOL)
eobe
Keywords: Genetic algorithm, resource constrained. 1. INTRODUCTION. 1. .... Nigerian Journal of Technology. Vol. 34, No. 1, January 2015. 128 ... 4. ENCODING OF CHROMOSOME. ENCODING OF CHROMOSOME .... International Multi conference of Engineers and ... method”, Naval Research Logistics, vol 48, issue 2,.
Three essays on multi-level optimization models and applications
Rahdar, Mohammad
The general form of a multi-level mathematical programming problem is a set of nested optimization problems, in which each level controls a series of decision variables independently. However, the value of decision variables may also impact the objective function of other levels. A two-level model is called a bilevel model and can be considered as a Stackelberg game with a leader and a follower. The leader anticipates the response of the follower and optimizes its objective function, and then the follower reacts to the leader's action. The multi-level decision-making model has many real-world applications such as government decisions, energy policies, market economy, network design, etc. However, there is a lack of capable algorithms to solve medium and large scale these types of problems. The dissertation is devoted to both theoretical research and applications of multi-level mathematical programming models, which consists of three parts, each in a paper format. The first part studies the renewable energy portfolio under two major renewable energy policies. The potential competition for biomass for the growth of the renewable energy portfolio in the United States and other interactions between two policies over the next twenty years are investigated. This problem mainly has two levels of decision makers: the government/policy makers and biofuel producers/electricity generators/farmers. We focus on the lower-level problem to predict the amount of capacity expansions, fuel production, and power generation. In the second part, we address uncertainty over demand and lead time in a multi-stage mathematical programming problem. We propose a two-stage tri-level optimization model in the concept of rolling horizon approach to reducing the dimensionality of the multi-stage problem. In the third part of the dissertation, we introduce a new branch and bound algorithm to solve bilevel linear programming problems. The total time is reduced by solving a smaller relaxation
An efficient algorithm for computation of solitary wave solutions to ...
Indian Academy of Sciences (India)
KAMRAN AYUB
2017-09-08
Sep 8, 2017 ... solutions has attracted lots of attention by scientists in the field of nonlinear science ... The procedure of this technique is quite simple, explicit, and can easily be extended ... divided into different sections. In the next section, we.
Indian Academy of Sciences (India)
algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...
Institute of Scientific and Technical Information of China (English)
WANG; Shunjin; ZHANG; Hua
2006-01-01
The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.
Fast numerical solution of KKR-CPA equations: Testing new algorithms
Energy Technology Data Exchange (ETDEWEB)
Bruno, E.; Florio, G.M.; Ginatempo, B.; Giuliano, E.S. (Universita di Messina (Italy))
1994-04-01
Some numerical methods for the solution of KKR-CPA equations are discussed and tested. New, efficient, computational algorithms are proposed, allowing a remarkable reduction of computing time and a good reliability in evaluating spectral quantities. 16 refs., 7 figs.
A Container-based Trusted Multi-level Security Mechanism
Directory of Open Access Journals (Sweden)
Li Xiao-Yong
2017-01-01
Full Text Available Multi-level security mechanism has been widely applied in the military, government, defense and other domains in which information is required to be divided by security-level. Through this type of security mechanism, users at different security levels are provided with information at corresponding security levels. Traditional multi-level security mechanism which depends on the safety of operating system finally proved to be not practical. We propose a container-based trusted multi-level security mechanism in this paper to improve the applicability of the multi-level mechanism. It guarantees multi-level security of the system through a set of multi-level security policy rules and trusted techniques. The technical feasibility and application scenarios are also discussed. The ease of realization, strong practical significance and low cost of our method will largely expand the application of multi-level security mechanism in real life.
Asymmetry in some common assignment algorithms: the dispersion factor solution
T de la Barra; B Pérez
1986-01-01
Many common assignment algorithms are based on Dial's original design to determine the paths that trip makers will follow from a given origin to destination centroids. The purpose of this paper is to show that the rules that have to be applied result in two unwanted properties. The first is that trips assigned from an origin centroid i to a destination j can be dramatically different to those resulting from centroid j to centroid i , even if the number of trips is the same and the network is ...
Directory of Open Access Journals (Sweden)
Alkın Yurtkuran
2016-01-01
Full Text Available The artificial bee colony (ABC algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.
Yurtkuran, Alkın; Emel, Erdal
2016-01-01
The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
Autonomous path planning solution for industrial robot manipulator using backpropagation algorithm
Directory of Open Access Journals (Sweden)
PeiJiang Yuan
2015-12-01
Full Text Available Here, we propose an autonomous path planning solution using backpropagation algorithm. The mechanism of movement used by humans in controlling their arms is analyzed and then applied to control a robot manipulator. Autonomous path planning solution is a numerical method. The model of industrial robot manipulator used in this article is a KUKA KR 210 R2700 EXTRA robot. In order to show the performance of the autonomous path planning solution, an experiment validation of path tracking is provided. Experiment validation consists of implementation of the autonomous path planning solution and the control of physical robot. The process of converging to target solution is provided. The mean absolute error of position for tool center point is also analyzed. Comparison between autonomous path planning solution and the numerical methods based on Newton–Raphson algorithm is provided to demonstrate the efficiency and accuracy of the autonomous path planning solution.
Algorithmic solution of arithmetic problems and operands-answer associations in long-term memory.
Thevenot, C; Barrouillet, P; Fayol, M
2001-05-01
Many developmental models of arithmetic problem solving assume that any algorithmic solution of a given problem results in an association of the two operands and the answer in memory (Logan & Klapp, 1991; Siegler, 1996). In this experiment, adults had to perform either an operation or a comparison on the same pairs of two-digit numbers and then a recognition task. It is shown that unlike comparisons, the algorithmic solution of operations impairs the recognition of operands in adults. Thus, the postulate of a necessary and automatic storage of operands-answer associations in memory when young children solve additions by algorithmic strategies needs to be qualified.
Voytishek, Anton V.; Shipilov, Nikolay M.
2017-11-01
In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.
An Efficient Algorithm for Partitioning and Authenticating Problem-Solutions of eLeaming Contents
Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn
2013-01-01
Content authenticity and correctness is one of the important challenges in eLearning as there can be many solutions to one specific problem in cyber space. Therefore, the authors feel it is necessary to map problems to solutions using graph partition and weighted bipartite matching. This article proposes an efficient algorithm to partition…
Multi-level iteration optimization for diffusive critical calculation
International Nuclear Information System (INIS)
Li Yunzhao; Wu Hongchun; Cao Liangzhi; Zheng Youqi
2013-01-01
In nuclear reactor core neutron diffusion calculation, there are usually at least three levels of iterations, namely the fission source iteration, the multi-group scattering source iteration and the within-group iteration. Unnecessary calculations occur if the inner iterations are converged extremely tight. But the convergence of the outer iteration may be affected if the inner ones are converged insufficiently tight. Thus, a common scheme suit for most of the problems was proposed in this work to automatically find the optimized settings. The basic idea is to optimize the relative error tolerance of the inner iteration based on the corresponding convergence rate of the outer iteration. Numerical results of a typical thermal neutron reactor core problem and a fast neutron reactor core problem demonstrate the effectiveness of this algorithm in the variational nodal method code NODAL with the Gauss-Seidel left preconditioned multi-group GMRES algorithm. The multi-level iteration optimization scheme reduces the number of multi-group and within-group iterations respectively by a factor of about 1-2 and 5-21. (authors)
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
Energy Technology Data Exchange (ETDEWEB)
Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)
2018-01-15
We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)
Directory of Open Access Journals (Sweden)
Anulekha Saha
2017-12-01
Full Text Available A relatively new technique to solve the optimal power flow (OPF problem inspired by the evaporation (vaporization of small quantity water particles from dense surfaces is presented in this paper. IEEE 30 bus and IEEE 118 bus test systems are assessed for various objectives to determine water evaporation algorithm’s (WEA efficiency in handling the OPF problem after satisfying constraints. Comparative study with other established techniques demonstrate competitiveness of WEA in treating varied objectives. It achieved superior results for all the objectives considered. The algorithm is found to minimize its objective values by great margins even in case of large test system. Statistical analysis of all the cases using Wilcoxon’s signed rank test resulted in p-values much lower than the required value of 0.05, thereby establishing the robustness of the applied technique. Best performance of the algorithm are obtained for voltage deviation minimization and voltage stability index minimization objectives in case of IEEE 30 and IEEE 118 bus test systems respectively.
International Nuclear Information System (INIS)
Duo, J. I.; Azmy, Y. Y.
2007-01-01
A new method, the Singular Characteristics Tracking algorithm, is developed to account for potential non-smoothness across the singular characteristics in the exact solution of the discrete ordinates approximation of the transport equation. Numerical results show improved rate of convergence of the solution to the discrete ordinates equations in two spatial dimensions with isotropic scattering using the proposed methodology. Unlike the standard Weighted Diamond Difference methods, the new algorithm achieves local convergence in the case of discontinuous angular flux along the singular characteristics. The method also significantly reduces the error for problems where the angular flux presents discontinuous spatial derivatives across these lines. For purposes of verifying the results, the Method of Manufactured Solutions is used to generate analytical reference solutions that permit estimating the local error in the numerical solution. (authors)
Solution of single linear tridiagonal systems and vectorization of the ICCG algorithm on the Cray 1
International Nuclear Information System (INIS)
Kershaw, D.S.
1981-01-01
The numerical algorithms used to solve the physics equation in codes which model laser fusion are examined, it is found that a large number of subroutines require the solution of tridiagonal linear systems of equations. One dimensional radiation transport, thermal and suprathermal electron transport, ion thermal conduction, charged particle and neutron transport, all require the solution of tridiagonal systems of equations. The standard algorithm that has been used in the past on CDC 7600's will not vectorize and so cannot take advantage of the large speed increases possible on the Cray-1 through vectorization. There is however, an alternate algorithm for solving tridiagonal systems, called cyclic reduction, which allows for vectorization, and which is optimal for the Cray-1. Software based on this algorithm is now being used in LASNEX to solve tridiagonal linear systems in the subroutines mentioned above. The new algorithm runs as much as five times faster than the standard algorithm on the Cray-1. The ICCG method is being used to solve the diffusion equation with a nine-point coupling scheme on the CDC 7600. In going from the CDC 7600 to the Cray-1, a large part of the algorithm consists of solving tridiagonal linear systems on each L line of the Lagrangian mesh in a manner which is not vectorizable. An alternate ICCG algorithm for the Cray-1 was developed which utilizes a block form of the cyclic reduction algorithm. This new algorithm allows full vectorization and runs as much as five times faster than the old algorithm on the Cray-1. It is now being used in Cray LASNEX to solve the two-dimensional diffusion equation in all the physics subroutines mentioned above
Directory of Open Access Journals (Sweden)
Ion LUNGU
2012-01-01
Full Text Available In this paper, we research, analyze and develop optimization solutions for the parallel reduction function using graphics processing units (GPUs that implement the Compute Unified Device Architecture (CUDA, a modern and novel approach for improving the software performance of data processing applications and algorithms. Many of these applications and algorithms make use of the reduction function in their computational steps. After having designed the function and its algorithmic steps in CUDA, we have progressively developed and implemented optimization solutions for the reduction function. In order to confirm, test and evaluate the solutions' efficiency, we have developed a custom tailored benchmark suite. We have analyzed the obtained experimental results regarding: the comparison of the execution time and bandwidth when using graphic processing units covering the main CUDA architectures (Tesla GT200, Fermi GF100, Kepler GK104 and a central processing unit; the data type influence; the binary operator's influence.
Multi-level converter with auxiliary resonant-commutated pole
Dijkhuizen, F.R.; Duarte, J.L.; Groningen, van W.D.H.
1998-01-01
The family of multi-level power converters offers advantages for high-power, high-voltage systems. A multi-level nested-cell structure has the attractive feature of static and dynamic voltage sharing among the switches. This is achieved by using clamping capacitors (floating capacitors) rather than
An efficient parallel algorithm for the solution of a tridiagonal linear system of equations
Stone, H. S.
1971-01-01
Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.
Domí nguez, Luis F.; Pistikopoulos, Efstratios N.
2012-01-01
An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear
Comparison of Nonequilibrium Solution Algorithms Applied to Chemically Stiff Hypersonic Flows
Palmer, Grant; Venkatapathy, Ethiraj
1995-01-01
Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel, are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-km altitude point in its descent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness.The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss-Seidel method produces an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.
Mokeddem, Diab; Khellaf, Abdelhafid
2009-01-01
Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples. PMID:19543537
Multi-level governance in EU climate law
Vedder, Hans; Woerdman, Edwin; Roggenkamp, Martha; Holwerda, Marijn
2015-01-01
This chapter analyses the multi-level governance in EU climate law; it connects the international arena, with EU and national decision-making and relates climate change considerations to competitiveness concerns.
Optimal Multi-Level Lot Sizing for Requirements Planning Systems
Earle Steinberg; H. Albert Napier
1980-01-01
The wide spread use of advanced information systems such as Material Requirements Planning (MRP) has significantly altered the practice of dependent demand inventory management. Recent research has focused on development of multi-level lot sizing heuristics for such systems. In this paper, we develop an optimal procedure for the multi-period, multi-product, multi-level lot sizing problem by modeling the system as a constrained generalized network with fixed charge arcs and side constraints. T...
International Nuclear Information System (INIS)
Mesgarani, H; Parmour, P; Aghazadeh, N
2010-01-01
In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.
Indian Academy of Sciences (India)
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
Improved Solutions for the Optimal Coordination of DOCRs Using Firefly Algorithm
Directory of Open Access Journals (Sweden)
Muhammad Sulaiman
2018-01-01
Full Text Available Nature-inspired optimization techniques are useful tools in electrical engineering problems to minimize or maximize an objective function. In this paper, we use the firefly algorithm to improve the optimal solution for the problem of directional overcurrent relays (DOCRs. It is a complex and highly nonlinear constrained optimization problem. In this problem, we have two types of design variables, which are variables for plug settings (PSs and the time dial settings (TDSs for each relay in the circuit. The objective function is to minimize the total operating time of all the basic relays to avoid unnecessary delays. We have considered four models in this paper which are IEEE (3-bus, 4-bus, 6-bus, and 8-bus models. From the numerical results, it is obvious that the firefly algorithm with certain parameter settings performs better than the other state-of-the-art algorithms.
Investigation of ALEGRA shock hydrocode algorithms using an exact free surface jet flow solution.
Energy Technology Data Exchange (ETDEWEB)
Hanks, Bradley Wright.; Robinson, Allen C
2014-01-01
Computational testing of the arbitrary Lagrangian-Eulerian shock physics code, ALEGRA, is presented using an exact solution that is very similar to a shaped charge jet flow. The solution is a steady, isentropic, subsonic free surface flow with significant compression and release and is provided as a steady state initial condition. There should be no shocks and no entropy production throughout the problem. The purpose of this test problem is to present a detailed and challenging computation in order to provide evidence for algorithmic strengths and weaknesses in ALEGRA which should be examined further. The results of this work are intended to be used to guide future algorithmic improvements in the spirit of test-driven development processes.
Improvement of arm solutions via step width self-tuning algorithm
International Nuclear Information System (INIS)
Sasaki, Shinobu
1993-09-01
This paper is concerned with the significant numerical problems encountered in solving the manipulator inverse kinematics. That is, essential difficulties occurred in linearized calculations such as dependence on initial guess or narrow search region are improved with great success by means of a step width self-tuning algorithm. In a practical optimization model based on the reduction of dimensionality and linearized approximation, it is shown that the desired arm solutions are found out at a faster rate over a wider application range. Also, the capability of finding solutions via a traditional Newton method is enhanced to a large extent by combined application of the proposed idea and simplex method. (author)
Mining the multigroup-discrete ordinates algorithm for high quality solutions
International Nuclear Information System (INIS)
Ganapol, B.D.; Kornreich, D.E.
2005-01-01
A novel approach to the numerical solution of the neutron transport equation via the discrete ordinates (SN) method is presented. The new technique is referred to as 'mining' low order (SN) numerical solutions to obtain high order accuracy. The new numerical method, called the Multigroup Converged SN (MGCSN) algorithm, is a combination of several sequence accelerators: Romberg and Wynn-epsilon. The extreme accuracy obtained by the method is demonstrated through self consistency and comparison to the independent semi-analytical benchmark BLUE. (authors)
Solution Algorithm for a New Bi-Level Discrete Network Design Problem
Directory of Open Access Journals (Sweden)
Qun Chen
2013-12-01
Full Text Available A new discrete network design problem (DNDP was pro-posed in this paper, where the variables can be a series of integers rather than just 0-1. The new DNDP can determine both capacity improvement grades of reconstruction roads and locations and capacity grades of newly added roads, and thus complies with the practical projects where road capacity can only be some discrete levels corresponding to the number of lanes of roads. This paper designed a solution algorithm combining branch-and-bound with Hooke-Jeeves algorithm, where feasible integer solutions are recorded in searching the process of Hooke-Jeeves algorithm, lend -ing itself to determine the upper bound of the upper-level problem. The thresholds for branch cutting and ending were set for earlier convergence. Numerical examples are given to demonstrate the efficiency of the proposed algorithm.
Optimal Solution for VLSI Physical Design Automation Using Hybrid Genetic Algorithm
Directory of Open Access Journals (Sweden)
I. Hameem Shanavas
2014-01-01
Full Text Available In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms. The goal of minimizing the delay in partitioning, minimizing the silicon area in floorplanning, minimizing the layout area in placement, minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length. This approach combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can quickly produce optimal solutions for the popular benchmarks.
An algorithm for computing the hull of the solution set of interval linear equations
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří
2011-01-01
Roč. 435, č. 2 (2011), s. 193-201 ISSN 0024-3795 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * interval hull * algorithm * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 0.974, year: 2011
A solution to the economic dispatch using EP based SA algorithm on large scale power system
Energy Technology Data Exchange (ETDEWEB)
Christober Asir Rajan, C. [Department of EEE, Pondicherry Engineering College, Pondicherry 605 014 (India)
2010-07-15
This paper develops a new approach for solving the Economic Load Dispatch (ELD) using an integrated algorithm based on Evolutionary Programming (EP) and Simulated Annealing (SA) on large scale power system. Classical methods employed for solving Economic Load Dispatch are calculus-based. For generator units having quadratic fuel cost functions, the classical techniques ignore or flatten out the portions of the incremental fuel cost curves and so may be have difficulties in the determination of the global optimum solution for non-differentiable fuel cost functions. To overcome these problems, the intelligent techniques, namely, Evolutionary Programming and Simulated Annealing are employed. The above said optimization techniques are capable of determining the global or near global optimum dispatch solutions. The validity and effectiveness of the proposed integrated algorithm has been tested with 66-bus Indian utility system, IEEE 5-bus, 30-bus, 118-bus system. And the test results are compared with the results obtained from other methods. Numerical results show that the proposed integrated algorithm can provide accurate solutions within reasonable time for any type of fuel cost functions. (author)
Qi, Xin; Ju, Guohao; Xu, Shuyan
2018-04-10
The phase diversity (PD) technique needs optimization algorithms to minimize the error metric and find the global minimum. Particle swarm optimization (PSO) is very suitable for PD due to its simple structure, fast convergence, and global searching ability. However, the traditional PSO algorithm for PD still suffers from the stagnation problem (premature convergence), which can result in a wrong solution. In this paper, the stagnation problem of the traditional PSO algorithm for PD is illustrated first. Then, an explicit strategy is proposed to solve this problem, based on an in-depth understanding of the inherent optimization mechanism of the PSO algorithm. Specifically, a criterion is proposed to detect premature convergence; then a redistributing mechanism is proposed to prevent premature convergence. To improve the efficiency of this redistributing mechanism, randomized Halton sequences are further introduced to ensure the uniform distribution and randomness of the redistributed particles in the search space. Simulation results show that this strategy can effectively solve the stagnation problem of the PSO algorithm for PD, especially for large-scale and high-dimension wavefront sensing and noisy conditions. This work is further verified by an experiment. This work can improve the robustness and performance of PD wavefront sensing.
On multi-level thinking and scientific understanding
McIntyre, Michael Edgeworth
2017-10-01
Professor Duzheng YE's name has been familiar to me ever since my postdoctoral years at MIT with Professors Jule CHARNEY and Norman PHILLIPS, back in the late 1960s. I had the enormous pleasure of meeting Professor YE personally in 1992 in Beijing. His concern to promote the very best science and to use it well, and his thinking on multi-level orderly human activities, reminds me not only of the communication skills we need as scientists but also of the multi-level nature of science itself. Here I want to say something (a) about what science is; (b) about why multi-level thinking—and taking more than one viewpoint—is so important for scientific as well as for other forms of understanding; and (c) about what is meant, at a deep level, by "scientific understanding" and trying to communicate it, not only with lay persons but also across professional disciplines. I hope that Professor YE would approve.
Pracovní motivace v multi-level marketingu
Mrázková, Tereza
2015-01-01
The purpose of this work is to analyse the motivation in multi-level marketing company. The thesis introduces basic general marketing tools, but also multi-level marketing and the theory of motivation. The research in practical part was done in the form of electronical survey, which was completed by 71 responders. The responders were employees of specific company. The thesis does not only focus on the motivation in work in general, but also on the difference in motivation between male and fem...
A solution algorithm for fluid-particle flows across all flow regimes
Kong, Bo; Fox, Rodney O.
2017-09-01
Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
A new algorithm for DNS of turbulent polymer solutions using the FENE-P model
Vaithianathan, T.; Collins, Lance; Robert, Ashish; Brasseur, James
2004-11-01
Direct numerical simulations (DNS) of polymer solutions based on the finite extensible nonlinear elastic model with the Peterlin closure (FENE-P) solve for a conformation tensor with properties that must be maintained by the numerical algorithm. In particular, the eigenvalues of the tensor are all positive (to maintain positive definiteness) and the sum is bounded by the maximum extension length. Loss of either of these properties will give rise to unphysical instabilities. In earlier work, Vaithianathan & Collins (2003) devised an algorithm based on an eigendecomposition that allows you to update the eigenvalues of the conformation tensor directly, making it easier to maintain the necessary conditions for a stable calculation. However, simple fixes (such as ceilings and floors) yield results that violate overall conservation. The present finite-difference algorithm is inherently designed to satisfy all of the bounds on the eigenvalues, and thus restores overall conservation. New results suggest that the earlier algorithm may have exaggerated the energy exchange at high wavenumbers. In particular, feedback of the polymer elastic energy to the isotropic turbulence is now greatly reduced.
Indian Academy of Sciences (India)
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
International Nuclear Information System (INIS)
Svensson, Urban
2001-04-01
A particle tracking algorithm, PARTRACK, that simulates transport and dispersion in a sparsely fractured rock is described. The main novel feature of the algorithm is the introduction of multiple particle states. It is demonstrated that the introduction of this feature allows for the simultaneous simulation of Taylor dispersion, sorption and matrix diffusion. A number of test cases are used to verify and demonstrate the features of PARTRACK. It is shown that PARTRACK can simulate the following processes, believed to be important for the problem addressed: the split up of a tracer cloud at a fracture intersection, channeling in a fracture plane, Taylor dispersion and matrix diffusion and sorption. From the results of the test cases, it is concluded that PARTRACK is an adequate framework for simulation of transport and dispersion of a solute in a sparsely fractured rock
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
Multi-Level Security Cannot Realise NEC Objectives
Schotanus, H.A.; Hartog, T.; Verkoelen, C.A.A.
2012-01-01
Multi-Level Security (MLS) is often viewed as the holy grail of information security, especially in those environments where information of different classifications is being processed. In this paper we argue that MLS cannot facilitate the right balance between need-to-protect and duty-to-share as
Governance and the Commons in a Multi-Level World
Directory of Open Access Journals (Sweden)
Derek Armitage
2007-11-01
Full Text Available Multi-level governance may facilitate learning and adaptation in complex social-ecological circumstances. Such arrangements should connect community-based management with regional/national government-level management, link scientific management and traditional management systems, encourage the sharing of knowledge and information, and promote collaboration and dialogue around goals and outcomes. Governance innovations of this type can thus build capacity to adapt to change and manage for resilience. However, critical reflection on the emergence of adaptive, multi-level governance for the commons is warranted. Drawing on examples from the North and South, the purpose of this review is to connect three complementary bodies of scholarship with insights for commons governance in a multi-level world: common property theory, resilience thinking and political ecology. From the commons and resilience literature, normative principles of adaptive, multi-level governance are synthesized (e.g., participation, accountability, leadership, knowledge pluralism, learning and trust. Political ecological interpretations, however, help to reveal the challenge of actualizing these principles and the contextual forces that make entrenched, top-down management systems resilient to change. These forces include the role of power, scale and levels of organization, knowledge valuation, the positioning of social actors and social constructions of nature. Also addressed are the policy narratives that shape governance, and the dialectic relationship among ecological systems and social change. tekst
A collision dynamics model of a multi-level train
2006-11-05
In train collisions, multi-level rail passenger vehicles can deform in modes that are different from the behavior of single level cars. The deformation in single level cars usually occurs at the front end during a collision. In one particular inciden...
Extending the enterprise through multi-level supply control
Vlist, van der P.; Hoppenbrouwers, J.J.E.M.; Hegge, H.M.H.
1997-01-01
Demands for flexibility require larger parts of the supply chain to become customer driven. This article describes multi-level supply control (MLSC) as a mechanism to facilitate that; it allows to specify gradually and thus to shift the customer order decoupling point well across the boundary to the
Multi-level Reconfigurable Self-organization in Overlay Services
Pournaras, E.
2013-01-01
Large-scale decentralized systems organized in overlay networks are complex to manage. Such systems integrate organizational complexity in the application-level resulting in low abstraction and modularity in their services. This thesis introduces a multi-level conceptual architecture for overlay
Detecting bots using multi-level traffic analysis
DEFF Research Database (Denmark)
Stevanovic, Matija; Pedersen, Jens Myrup
2016-01-01
introduces a novel multi-level botnet detection approach that performs network traffic analysis of three protocols widely considered as the main carriers of botnet Command and Control (C&C) and attack traffic, i.e. TCP, UDP and DNS. The proposed method relies on supervised machine learning for identifying...
Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo
2018-05-10
Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.
Multi-level methods for solving multigroup transport eigenvalue problems in 1D slab geometry
International Nuclear Information System (INIS)
Anistratov, D. Y.; Gol'din, V. Y.
2009-01-01
A methodology for solving eigenvalue problems for the multigroup neutron transport equation in 1D slab geometry is presented. In this paper we formulate and compare different variants of nonlinear multi-level iteration methods. They are defined by means of multigroup and effective one-group low-order quasi diffusion (LOQD) equations. We analyze the effects of utilization of the effective one-group LOQD problem for estimating the eigenvalue. We present numerical results to demonstrate the performance of the iteration algorithms in different types of reactor-physics problems. (authors)
Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.
Directory of Open Access Journals (Sweden)
Eman Ali Hussain
2015-01-01
Full Text Available Absract In this project A new method for solving Stochastic Differential Equations SDEs deriving by Wiener process numerically will be construct and implement using Accelerated Genetic Algorithm AGA. An SDE is a differential equation in which one or more of the terms and hence the solutions itself is a stochastic process. Solving stochastic differential equations requires going away from the recognizable deterministic setting of ordinary and partial differential equations into a world where the evolution of a quantity has an inherent random component and where the expected behavior of this quantity can be described in terms of probability distributions. We applied our method on the Ito formula which is equivalent to the SDE to find approximation solution of the SDEs. Numerical experiments illustrate the behavior of the proposed method.
Doxley, Charles A.
2016-01-01
In the current world of applications that use reconfigurable technology implemented on field programmable gate arrays (FPGAs), there is a need for flexible architectures that can grow as the systems evolve. A project has limited resources and a fixed set of requirements that development efforts are tasked to meet. Designers must develop robust solutions that practically meet the current customer demands and also have the ability to grow for future performance. This paper describes the development of a high speed serial data streaming algorithm that allows for transmission of multiple data channels over a single serial link. The technique has the ability to change to meet new applications developed for future design considerations. This approach uses the Xilinx Serial RapidIO LOGICORE Solution to implement a flexible infrastructure to meet the current project requirements with the ability to adapt future system designs.
Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer
Godoy, William F.; Liu, Xu
2011-01-01
General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.
Design of attitude solution algorithm for tail-sitter VTOL UAV
Directory of Open Access Journals (Sweden)
Donghui LIU
2016-02-01
Full Text Available The tail-sitter Vertical Takeoff and Landing (VTOL Unmanned Aerial Vehicle(UAV, flying in a fixed-wing model, overcomes many shortcomings of traditional fixed-wing UAVs, and inherits the advantage of high overall efficiency, which means it has great development potential and very broad application prospects. The attitude of tail-sitter VTOL UAV shows a wide change range in its takeoff and landing stages, and when the attitude sensor changes more than 90 degrees in pitch direction, the Euler angles converted by the Quaternions will have singular points, which means gimbal deadlock appears. From the solution algorithm, this paper provides a method of changing the order of rotation to avoid the appearance of singular points. The results show that this method can be well applied to the attitude solution of the VTOL UAV.
Adachi, Kohei
2013-01-01
Rubin and Thayer ("Psychometrika," 47:69-76, 1982) proposed the EM algorithm for exploratory and confirmatory maximum likelihood factor analysis. In this paper, we prove the following fact: the EM algorithm always gives a proper solution with positive unique variances and factor correlations with absolute values that do not exceed one,…
Energy Technology Data Exchange (ETDEWEB)
Reddy, N.M.; Reddy, K.R. [G. Narayanamma Inst. of Technology and Science, Hyderabad (India). Dept. of Electrical Engineering; Ramana, N.V. [JNTU College of Engineering, Jagityala (India). Dept. of Electrical Engineering
2008-07-01
Thermal power plants consist of several generating units with different generating capacities, fuel cost per MWH generated, minimum up/down times, and start-up or shut-down costs. The Unit Commitment (UC) problem in power systems involves determining the start-up and shut-down schedules of thermal generating units to meet forecasted load over a future short term for a period of one to seven days. This paper presented a new approach for the most complex UC problem using agglomerative and divisive hierarchical clustering. Euclidean costs, which are a measure of differences in fuel cost and start-up costs of any two units, were first calculated. Then, depending on the value of Euclidean costs, similar type of units were placed in a cluster. The proposed methodology has 2 individual algorithms. An agglomerative cluster algorithm is used while the load is increasing, and a divisive cluster algorithm is used when the load is decreasing. A search was conducted for an optimal solution for a minimal number of clusters and cluster data points. A standard ten-unit thermal unit power system was used to test and evaluate the performance of the method for a period of 24 hours. The new approach proved to be quite effective and satisfactory. 15 refs., 9 tabs., 5 figs.
Management Of Large Scale Osmotic Dehydration Solution Using The Pearsons Square Algorithm
Directory of Open Access Journals (Sweden)
Oladejo Duduyemi
2015-01-01
Full Text Available ABSTRACT Osmotic dehydration is a widely researched and advantageous pre-treatment process in food preservation but has not enjoyed industrial acceptance because if its highly concentrated and voluminous effluent. The Pearsons square algorithm was employed to give a focussed attack to the problem by developing a user-friendly template for reconstituting effluents for recycling purposes using Java script programme. Outflow from a pilot scale plant was reactivated and introduced into a scheme of operation for continuous OD of fruits and vegetables. Screened and re-concentrated effluent were subjected to statistical analysis in comparison to initial concentrations solution at confidence limit of p0.05. The template proven to be an adequate representation of the Pearsons square algorithm it is sufficiently good in reconstituting used osmotic solutions for repetitive usage. This protocol if adopted in the industry is not only environmentally friendly but also promises significant economic improvement of OD process. Application Recycling of non-reacting media and as a template for automation in continuous OD processing.
Multi-stage decoding of multi-level modulation codes
Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.
1991-01-01
Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).
Multi-Level Formation of Complex Software Systems
Directory of Open Access Journals (Sweden)
Hui Li
2016-05-01
Full Text Available We present a multi-level formation model for complex software systems. The previous works extract the software systems to software networks for further studies, but usually investigate the software networks at the class level. In contrast to these works, our treatment of software systems as multi-level networks is more realistic. In particular, the software networks are organized by three levels of granularity, which represents the modularity and hierarchy in the formation process of real-world software systems. More importantly, simulations based on this model have generated more realistic structural properties of software networks, such as power-law, clustering and modularization. On the basis of this model, how the structure of software systems effects software design principles is then explored, and it could be helpful for understanding software evolution and software engineering practices.
Quantum state preparation using multi-level-atom optics
International Nuclear Information System (INIS)
Busch, Th; Deasy, K; Chormaic, S Nic
2007-01-01
One of the most important characteristics for controlling processes on the quantum scale is the fidelity or robustness of the techniques being used. In the case of single atoms localized in micro-traps, it was recently shown that the use of time-dependent tunnelling interactions in a multi-trap setup can be viewed as analogous to the area of multi-level optics. The atom's centre-of-mass can then be controlled with a high fidelity, using a STIRAP-type process. Here, we review previous work that led to the development of multi-level atom optics and present two examples of our most recent work on quantum state preparation
Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models
Vignal, Philippe
2016-02-11
Phase-field models are emerging as a promising strategy to simulate interfacial phenomena. Rather than tracking interfaces explicitly as done in sharp interface descriptions, these models use a diffuse order parameter to monitor interfaces implicitly. This implicit description, as well as solid physical and mathematical footings, allow phase-field models to overcome problems found by predecessors. Nonetheless, the method has significant drawbacks. The phase-field framework relies on the solution of high-order, nonlinear partial differential equations. Solving these equations entails a considerable computational cost, so finding efficient strategies to handle them is important. Also, standard discretization strategies can many times lead to incorrect solutions. This happens because, for numerical solutions to phase-field equations to be valid, physical conditions such as mass conservation and free energy monotonicity need to be guaranteed. In this work, we focus on the development of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure evolution. The algorithm developed conserves, guarantees energy stability and is second order accurate in time. The second part of the thesis presents two numerical schemes that generalize literature regarding energy-stable methods for conserved and non-conserved phase-field models. The time discretization strategies can conserve mass if needed, are energy-stable, and second order accurate in time. We also develop an adaptive time-stepping strategy, which can be applied to any second-order accurate scheme. This time-adaptive strategy relies on a backward approximation to give an accurate error estimator. The spatial discretization, in both parts, relies on a mixed finite element formulation and isogeometric analysis. The codes are
A fast photo-counter with multi-level buffers
International Nuclear Information System (INIS)
Peng Hu; Zhou Peiling; Yao Kun; Guo Guangcan
1992-01-01
Digital Photon Correlator (DPC) is composed of a Photo-counter and a data processing unit. The performance of Photo-counter in data acquisition system has a direct influence on data processing. The Photo-counter with fast carry designed here has multi-level buffers. Photon pulses can be correctly and dynamically recorded by the Photo-counter and processed by a single chip computer
Multi-Level Marketing as a business model
Directory of Open Access Journals (Sweden)
Bogdan Gregor
2013-03-01
Full Text Available Multi Level Marketing is a very popular business model in the Western countries. It is a kind of hybrid of the method of distribution of goods and the method of building a sales network. It is one of the safest (carries a very low risk ways of conducting a business activity. The knowledge about functioning of this business model, both among theoreticians (scanty literature on the subject and practitioners, is still insufficient in Poland. Thus, the presented paper has been prepared as — in the Authors' opinion — it, at least infinitesimally, bridges the gap in the recognition of Multi Level Marketing issues. The aim of the study was, first of all, to describe Multi Level Marketing, to indicate practical benefits of this business model as well as to present basic systems of calculating a commission, which are used in marketing plans of companies. The discussion was based on the study of literature and the knowledge gained in the course of free-form interviews with the leaders of the sector.
Integrating R and Java for Enhancing Interactivity of Algorithmic Data Analysis Software Solutions
Directory of Open Access Journals (Sweden)
Titus Felix FURTUNĂ
2016-06-01
Full Text Available Conceiving software solutions for statistical processing and algorithmic data analysis involves handling diverse data, fetched from various sources and in different formats, and presenting the results in a suggestive, tailorable manner. Our ongoing research aims to design programming technics for integrating R developing environment with Java programming language for interoperability at a source code level. The goal is to combine the intensive data processing capabilities of R programing language, along with the multitude of statistical function libraries, with the flexibility offered by Java programming language and platform, in terms of graphical user interface and mathematical function libraries. Both developing environments are multiplatform oriented, and can complement each other through interoperability. R is a comprehensive and concise programming language, benefiting from a continuously expanding and evolving set of packages for statistical analysis, developed by the open source community. While is a very efficient environment for statistical data processing, R platform lacks support for developing user friendly, interactive, graphical user interfaces (GUIs. Java on the other hand, is a high level object oriented programming language, which supports designing and developing performant and interactive frameworks for general purpose software solutions, through Java Foundation Classes, JavaFX and various graphical libraries. In this paper we treat both aspects of integration and interoperability that refer to integrating Java code into R applications, and bringing R processing sequences into Java driven software solutions. Our research has been conducted focusing on case studies concerning pattern recognition and cluster analysis.
Indian Academy of Sciences (India)
ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...
Modular Multi-level converter based HVDC System for Grid Connection of Offshore Wind Power Plant
DEFF Research Database (Denmark)
Gnanarathna, U.N.; Chaudhary, Sanjay Kumar; Gole, A.M.
2010-01-01
This paper explores the application of modular multi-level converters (MMC) as a means for harnessing the power from off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter (VSC) submodules that can be easily assembled into a converter for high......-voltage and high power. The paper shows that the MMC converter has a fast response and low harmonic content in comparison with a two-level VSC option. The paper discusses the modeling approach used, including a solution to the modeling challenge imposed by the very large number of switching devices in the MMC....
Barrett, Steven R. H.; Britter, Rex E.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean
A finite state projection algorithm for the stationary solution of the chemical master equation
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-01
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.
A finite state projection algorithm for the stationary solution of the chemical master equation.
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-21
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.
Energy mesh optimization for multi-level calculation schemes
International Nuclear Information System (INIS)
Mosca, P.; Taofiki, A.; Bellier, P.; Prevost, A.
2011-01-01
The industrial calculations of third generation nuclear reactors are based on sophisticated strategies of homogenization and collapsing at different spatial and energetic levels. An important issue to ensure the quality of these calculation models is the choice of the collapsing energy mesh. In this work, we show a new approach to generate optimized energy meshes starting from the SHEM 281-group library. The optimization model is applied on 1D cylindrical cells and consists of finding an energy mesh which minimizes the errors between two successive collision probability calculations. The former is realized over the fine SHEM mesh with Livolant-Jeanpierre self-shielded cross sections and the latter is performed with collapsed cross sections over the energy mesh being optimized. The optimization is done by the particle swarm algorithm implemented in the code AEMC and multigroup flux solutions are obtained from standard APOLLO2 solvers. By this new approach, a set of new optimized meshes which encompass from 10 to 50 groups has been defined for PWR and BWR calculations. This set will allow users to adapt the energy detail of the solution to the complexity of the calculation (assembly, multi-assembly, two-dimensional whole core). Some preliminary verifications, in which the accuracy of the new meshes is measured compared to a direct 281-group calculation, show that the 30-group optimized mesh offers a good compromise between simulation time and accuracy for a standard 17 x 17 UO 2 assembly with and without control rods. (author)
Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images
Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.
2012-02-01
Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.
CMT: a constrained multi-level thresholding approach for ChIP-Seq data analysis.
Directory of Open Access Journals (Sweden)
Iman Rezaeian
Full Text Available Genome-wide profiling of DNA-binding proteins using ChIP-Seq has emerged as an alternative to ChIP-chip methods. ChIP-Seq technology offers many advantages over ChIP-chip arrays, including but not limited to less noise, higher resolution, and more coverage. Several algorithms have been developed to take advantage of these abilities and find enriched regions by analyzing ChIP-Seq data. However, the complexity of analyzing various patterns of ChIP-Seq signals still needs the development of new algorithms. Most current algorithms use various heuristics to detect regions accurately. However, despite how many formulations are available, it is still difficult to accurately determine individual peaks corresponding to each binding event. We developed Constrained Multi-level Thresholding (CMT, an algorithm used to detect enriched regions on ChIP-Seq data. CMT employs a constraint-based module that can target regions within a specific range. We show that CMT has higher accuracy in detecting enriched regions (peaks by objectively assessing its performance relative to other previously proposed peak finders. This is shown by testing three algorithms on the well-known FoxA1 Data set, four transcription factors (with a total of six antibodies for Drosophila melanogaster and the H3K4ac antibody dataset.
Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm
Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.
2014-11-01
minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several
International Nuclear Information System (INIS)
Miller, I.; Roman, K.
1979-12-01
In order to perform studies of the influence of regional groundwater flow systems on the long-term performance of potential high-level nuclear waste repositories, it was determined that an adequate computer model would have to consider the full three-dimensional flow system. Golder Associates' SOLTR code, while three-dimensional, has an overly simple algorithm for simulating the passage of radionuclides from one aquifier to another above or below it. Part 1 of this report describes the algorithm developed to provide SOLTR with an improved capability for simulating interaquifer transport
Antecedents of Organisational Creativity: A Multi-Level Approach
Directory of Open Access Journals (Sweden)
Ritu Gupta
2016-06-01
Full Text Available The purpose of this literature review is to provide a better understanding of the antecedents of organisational creativity with a multi-level approach. Organisational creativity is a sum total of the creativity accounted for by the individual employees of the organisation, the cumulative creativity of a team or group and creativity arising out of different structural components of an organisation. Some of the antecedents identified from the literature include personality, intrinsic motivation, group cohesion, social inhibition, cognitive interference, leader member exchange, organisational culture and climate, amongst others at individual, group and organisational level. Based on the literature review, suggestions for future research and research propositions have been proposed.
Multi level governance framework for sustainable urban mobility
DEFF Research Database (Denmark)
Gudmundsson, Henrik
2013-01-01
Cities constitute the backbone of European historic development and provide the basis of its economic future. The near neglect of cities in existing European policies for sustainable growth and development such as the Europe 2020 strategy is untenable. The 2011 White Paper has sought to face...... seem essential to move cities beyond business as usual. Research-wise we need to understand in more detail the political and contextual background for successes - and failures - of European cities. This could help build an effective multi level governance framework for sustainable urban mobility...
Indian Academy of Sciences (India)
algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).
Optimal control of multi-level quantum systems
Energy Technology Data Exchange (ETDEWEB)
Fisher, Robert M.
2010-12-02
This thesis is concerned with the control of quantum systems. Given a Hamiltonian model of a quantum system, we are interested in finding controls - typically shaped electromagnetic pulses - that steer the evolution of the system toward a desired target operation. For this we employ a numerical optimisation method known as the GRAPE algorithm. For particular experimental systems, we design control schemes that respect constraints of robustness and addressability, and are within the reach of the experimental hardware. A general procedure is given for specifying a Hamiltonian model of a driven N-level system and converting it to an appropriate rotating frame. This is then applied together with the numerical algorithm to design improved schemes for two different systems, where laser fields manipulate orbital and hyperfine states of Pr{sup 3+} and Rb. The generation of cluster states in Ising-coupled systems is also studied. We find that, in the ideal case, the solution of evolving only under the coupling Hamiltonian is not time-optimal. This surprising result is in contrast to the known cases for unitary gates. For a symmetrised three-qubit example, we provide a geometrical interpretation of this. Numerically optimised control schemes are then developed for a nonideal coupling topology, modelling an experimental configuration of trapped ions. Controls for the implementation of the two-qubit Deutsch and Grover algorithms are designed for a pair of {sup 13}C nuclear spins at a nitrogen vacancy center in diamond. These implementations are robust to experimental errors, and found to be reproduced with high accuracy on a VFG-150 pulse generator. We also consider two-qubit gate synthesis in a system of superconducting qubits coupled by microwave resonators known as the cavity grid. We find that the optimised schemes allow two-qubit operations to be performed between an arbitrary qubit pair on the grid with only a small time overhead, with speedups of 2-4 over the existing
Optimal control of multi-level quantum systems
International Nuclear Information System (INIS)
Fisher, Robert M.
2010-01-01
This thesis is concerned with the control of quantum systems. Given a Hamiltonian model of a quantum system, we are interested in finding controls - typically shaped electromagnetic pulses - that steer the evolution of the system toward a desired target operation. For this we employ a numerical optimisation method known as the GRAPE algorithm. For particular experimental systems, we design control schemes that respect constraints of robustness and addressability, and are within the reach of the experimental hardware. A general procedure is given for specifying a Hamiltonian model of a driven N-level system and converting it to an appropriate rotating frame. This is then applied together with the numerical algorithm to design improved schemes for two different systems, where laser fields manipulate orbital and hyperfine states of Pr 3+ and Rb. The generation of cluster states in Ising-coupled systems is also studied. We find that, in the ideal case, the solution of evolving only under the coupling Hamiltonian is not time-optimal. This surprising result is in contrast to the known cases for unitary gates. For a symmetrised three-qubit example, we provide a geometrical interpretation of this. Numerically optimised control schemes are then developed for a nonideal coupling topology, modelling an experimental configuration of trapped ions. Controls for the implementation of the two-qubit Deutsch and Grover algorithms are designed for a pair of 13 C nuclear spins at a nitrogen vacancy center in diamond. These implementations are robust to experimental errors, and found to be reproduced with high accuracy on a VFG-150 pulse generator. We also consider two-qubit gate synthesis in a system of superconducting qubits coupled by microwave resonators known as the cavity grid. We find that the optimised schemes allow two-qubit operations to be performed between an arbitrary qubit pair on the grid with only a small time overhead, with speedups of 2-4 over the existing schemes
Percutaneous vertebroplasty for multi-level osteoporotic vertebral compression fractures
International Nuclear Information System (INIS)
Wang Gefang; Cheng Yongde; Wu Chungen; Zhang Ji; Gu Yifeng; Li Minghua
2008-01-01
Objective: To prospectively evaluate the clinical efficiency and safety of patients receiving percutaneous vertebroplasty due to multi-level osteoporotic vertebral compression fractures. Methods: A retrospective study was conducted to review eighty-six osteoporotic vertebral compression fracture patients including 23 with three and more levels of vertebroplasty. The outcome was considered carefully by pre and postoperatively the Visual Analogue Scale (VAS)for pain relief, the Oswestry Disability Index (ODI)for the improvement activity of daily life and also the accompanied imaging information. Results: All procedures were performed successfully. Three patients had a transient high blood pressure and dyspnea, and recovered after sublingual nitroglycerin. The VAS and ODI improved from a mean preoperative score of 8.58±1.12 and 81.43 ±12.54 to a mean postoperative score of 3.03±0.98 and 31.04±11.11 one day afterward. Asymptomatic cement leakage rate was 17.8% with no major complications occurred during operation or post-operation. Five patients had new symptomatic vertebral fracture (s) during follow-up in one year. Conclusions: Vertebroplasty with cement to treat multi-level osteoporotic vertebral compression fractures in the elderly is safe and effective, providing immediate and long-term pain relief with improvement in quality of life. Due to the risk of fat embolism, the limitation of three per session must be kept strictly. (authors)
On decoding of multi-level MPSK modulation codes
Lin, Shu; Gupta, Alok Kumar
1990-01-01
The decoding problem of multi-level block modulation codes is investigated. The hardware design of soft-decision Viterbi decoder for some short length 8-PSK block modulation codes is presented. An effective way to reduce the hardware complexity of the decoder by reducing the branch metric and path metric, using a non-uniform floating-point to integer mapping scheme, is proposed and discussed. The simulation results of the design are presented. The multi-stage decoding (MSD) of multi-level modulation codes is also investigated. The cases of soft-decision and hard-decision MSD are considered and their performance are evaluated for several codes of different lengths and different minimum squared Euclidean distances. It is shown that the soft-decision MSD reduces the decoding complexity drastically and it is suboptimum. The hard-decision MSD further simplifies the decoding while still maintaining a reasonable coding gain over the uncoded system, if the component codes are chosen properly. Finally, some basic 3-level 8-PSK modulation codes using BCH codes as component codes are constructed and their coding gains are found for hard decision multistage decoding.
Multi-level approach for parametric roll analysis
Kim, Taeyoung; Kim, Yonghwan
2011-03-01
The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude- Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.
Multi-level programming paradigm for extreme computing
International Nuclear Information System (INIS)
Petiton, S.; Sato, M.; Emad, N.; Calvin, C.; Tsuji, M.; Dandouna, M.
2013-01-01
In order to propose a framework and programming paradigms for post peta-scale computing, on the road to exa-scale computing and beyond, we introduced new languages, associated with a hierarchical multi-level programming paradigm, allowing scientific end-users and developers to program highly hierarchical architectures designed for extreme computing. In this paper, we explain the interest of such hierarchical multi-level programming paradigm for extreme computing and its well adaptation to several large computational science applications, such as for linear algebra solvers used for reactor core physic. We describe the YML language and framework allowing describing graphs of parallel components, which may be developed using PGAS-like language such as XMP, scheduled and computed on supercomputers. Then, we propose experimentations on supercomputers (such as the 'K' and 'Hooper' ones) of the hybrid method MERAM (Multiple Explicitly Restarted Arnoldi Method) as a case study for iterative methods manipulating sparse matrices, and the block Gauss-Jordan method as a case study for direct method manipulating dense matrices. We conclude proposing evolutions for this programming paradigm. (authors)
Multi-Level Bitmap Indexes for Flash Memory Storage
Energy Technology Data Exchange (ETDEWEB)
Wu, Kesheng; Madduri, Kamesh; Canon, Shane
2010-07-23
Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data at the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.
Directory of Open Access Journals (Sweden)
A. L. Lapikov
2014-01-01
Full Text Available The article is aimed at creating techniques to study multi-sectional manipulators with parallel structure. To solve this task the analysis in the field concerned was carried out to reveal both advantages and drawbacks of such executive mechanisms and main problems to be encountered in the course of research. The work shows that it is inefficient to create complete mathematical models of multisectional manipulators, which in the context of solving a direct kinematic problem are to derive a functional dependence of location and orientation of the end effector on all the generalized coordinates of the mechanism. The structure of multisectional manipulators was considered, where the sections are platform manipulators of parallel kinematics with six degrees of freedom. The paper offers an algorithm to define location and orientation of the end effector of the manipulator by means of iterative solution of analytical equation of the moving platform plane for each section. The equation for the unknown plane is derived using three points, which are attachment points of the moving platform joints. To define the values of joint coordinates a system of nine non-linear equations is completed. It is necessary to mention that for completion of the equation system are used the equations with the same type of non-linearity. The physical sense of all nine equations of the system is Euclidean distance between the points of the manipulator. The result of algorithm execution is a matrix of homogenous transformation for each section. The correlations describing transformations between adjoining sections of the manipulator are given. An example of the mechanism consisting of three sections is examined. The comparison of theoretical calculations with results obtained on a 3D-prototype is made. The next step of the work is to conduct research activities both in the field of dynamics of platform parallel kinematics manipulators with six degrees of freedom and in the
Indian Academy of Sciences (India)
will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...
Big data privacy protection model based on multi-level trusted system
Zhang, Nan; Liu, Zehua; Han, Hongfeng
2018-05-01
This paper introduces and inherit the multi-level trusted system model that solves the Trojan virus by encrypting the privacy of user data, and achieve the principle: "not to read the high priority hierarchy, not to write the hierarchy with low priority". Thus ensuring that the low-priority data privacy leak does not affect the disclosure of high-priority data privacy. This paper inherits the multi-level trustworthy system model of Trojan horse and divides seven different risk levels. The priority level 1˜7 represent the low to high value of user data privacy, and realize seven kinds of encryption with different execution efficiency Algorithm, the higher the priority, the greater the value of user data privacy, at the expense of efficiency under the premise of choosing a more encrypted encryption algorithm to ensure data security. For enterprises, the price point is determined by the unit equipment users to decide the length of time. The higher the risk sub-group algorithm, the longer the encryption time. The model assumes that users prefer the lower priority encryption algorithm to ensure efficiency. This paper proposes a privacy cost model for each of the seven risk subgroups. Among them, the higher the privacy cost, the higher the priority of the risk sub-group, the higher the price the user needs to pay to ensure the privacy of the data. Furthermore, by introducing the existing pricing model of economics and the human traffic model proposed by this paper and fluctuating with the market demand, this paper improves the price of unit products when the market demand is low. On the other hand, when the market demand increases, the profit of the enterprise will be guaranteed under the guidance of the government by reducing the price per unit of product. Then, this paper introduces the dynamic factors of consumers' mood and age to optimize. At the same time, seven algorithms are selected from symmetric and asymmetric encryption algorithms to define the enterprise
Abd-El-Barr, Mostafa
2010-12-01
The use of non-binary (multiple-valued) logic in the synthesis of digital systems can lead to savings in chip area. Advances in very large scale integration (VLSI) technology have enabled the successful implementation of multiple-valued logic (MVL) circuits. A number of heuristic algorithms for the synthesis of (near) minimal sum-of products (two-level) realisation of MVL functions have been reported in the literature. The direct cover (DC) technique is one such algorithm. The ant colony optimisation (ACO) algorithm is a meta-heuristic that uses constructive greediness to explore a large solution space in finding (near) optimal solutions. The ACO algorithm mimics the ant's behaviour in the real world in using the shortest path to reach food sources. We have previously introduced an ACO-based heuristic for the synthesis of two-level MVL functions. In this article, we introduce the ACO-DC hybrid technique for the synthesis of multi-level MVL functions. The basic idea is to use an ant to decompose a given MVL function into a number of levels and then synthesise each sub-function using a DC-based technique. The results obtained using the proposed approach are compared to those obtained using existing techniques reported in the literature. A benchmark set consisting of 50,000 randomly generated 2-variable 4-valued functions is used in the comparison. The results obtained using the proposed ACO-DC technique are shown to produce efficient realisation in terms of the average number of gates (as a measure of chip area) needed for the synthesis of a given MVL function.
Palmer, Grant; Venkatapathy, Ethiraj
1993-01-01
Three solution algorithms, explicit underrelaxation, point implicit, and lower upper symmetric Gauss-Seidel (LUSGS), are used to compute nonequilibrium flow around the Apollo 4 return capsule at 62 km altitude. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness. The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15, 23, and 30, the LUSGS method produces an eight order of magnitude drop in the L2 norm of the energy residual in 1/3 to 1/2 the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 23 and above. At Mach 40 the performance of the LUSGS algorithm deteriorates to the point it is out-performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.
Domínguez, Luis F.
2012-06-25
An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).
Directory of Open Access Journals (Sweden)
Ari Muzakir
2017-05-01
Full Text Available Ease of deployment of digital image through the internet has positive and negative sides, especially for owners of the original digital image. The positive side of the ease of rapid deployment is the owner of that image deploys digital image files to various sites in the world address. While the downside is that if there is no copyright that serves as protector of the image it will be very easily recognized ownership by other parties. Watermarking is one solution to protect the copyright and know the results of the digital image. With Digital Image Watermarking, copyright resulting digital image will be protected through the insertion of additional information such as owner information and the authenticity of the digital image. The least significant bit (LSB is one of the algorithm is simple and easy to understand. The results of the simulations carried out using android smartphone shows that the LSB watermarking technique is not able to be seen by naked human eye, meaning there is no significant difference in the image of the original files with images that have been inserted watermarking. The resulting image has dimensions of 640x480 with a bit depth of 32 bits. In addition, to determine the function of the ability of the device (smartphone in processing the image using this application used black box testing.
An algorithm for determining the K-best solutions of the one-dimensional Knapsack problem
Directory of Open Access Journals (Sweden)
Horacio Hideki Yanasse
2000-06-01
Full Text Available In this work we present an enumerative scheme for determining the K-best solutions (K > 1 of the one dimensional knapsack problem. If n is the total number of different items and b is the knapsack's capacity, the computational complexity of the proposed scheme is bounded by O(Knb with memory requirements bounded by O(nb. The algorithm was implemented in a workstation and computational tests for varying values of the parameters were performed.Neste trabalho apresenta-se um esquema enumerativo para se determinar as K-melhores (K > 1 soluções para o problema da mochila unidimensional. Se n é o número total de itens diferentes e b é a capacidade da mochila, a complexidade computacional do esquema proposto é limitado por O(Knb. O algoritmo foi implementado em uma estação de trabalho e testes computacionais foram realizados variando-se diferentes parâmetros do problema.
A genetic algorithm solution for combinatorial problems - the nuclear core reload example
Energy Technology Data Exchange (ETDEWEB)
Schirru, R.; Silva, F.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Pereira, C.M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Chapot, J.L.C. [FURNAS, Rio de Janeiro, RJ (Brazil)
1997-12-01
This paper presents a solution to Traveling Salesman Problem based upon genetic algorithms (GA), using the classic crossover, but avoiding the feasibility problem in offspring individuals, allowing the natural evolution of the GA without introduction of heuristics in the genetic crossover operator. The genetic model presented, that we call the List Model (LM) is based on the encoding and decoding genotype in the way to always generate a phenotype that has a valid structure, over which will be applied the fitness, represented by the total distance. The main purpose of this work was to develop the basis for a new genetic model to be used in the reload of nuclear core of a PWR. In a generic way, this problem can be interpreted as a a search of the optimal combination of N different fuel elements in N nuclear core `holes`, where each combination or load pattern, determines the neutron flux shape and its associate peak factor. The goal is to find out the load pattern that minimizes the peak factor and consequently maximize the useful life of the nuclear fuel. The GA with the List Model was applied to the Angra-1 PWR reload problem and the results are remarkably better than the ones used in the last fuel cycle. (author). 12 refs., 3 figs., 2 tabs.
An MPCC Formulation and Its Smooth Solution Algorithm for Continuous Network Design Problem
Directory of Open Access Journals (Sweden)
Guangmin Wang
2017-12-01
Full Text Available Continuous network design problem (CNDP is searching for a transportation network configuration to minimize the sum of the total system travel time and the investment cost of link capacity expansions by considering that the travellers follow a traditional Wardrop user equilibrium (UE to choose their routes. In this paper, the CNDP model can be formulated as mathematical programs with complementarity constraints (MPCC by describing UE as a non-linear complementarity problem (NCP. To address the difficulty resulting from complementarity constraints in MPCC, they are substituted by the Fischer-Burmeister (FB function, which can be smoothed by the introduction of the smoothing parameter. Therefore, the MPCC can be transformed into a well-behaved non-linear program (NLP by replacing the complementarity constraints with a smooth equation. Consequently, the solver such as LINDOGLOBAL in GAMS can be used to solve the smooth approximate NLP to obtain the solution to MPCC for modelling CNDP. The numerical experiments on the example from the literature demonstrate that the proposed algorithm is feasible.
Automatic Multi-Level Thresholding Segmentation Based on Multi-Objective Optimization
Directory of Open Access Journals (Sweden)
L. DJEROU,
2012-01-01
Full Text Available In this paper, we present a new multi-level image thresholding technique, called Automatic Threshold based on Multi-objective Optimization "ATMO" that combines the flexibility of multi-objective fitness functions with the power of a Binary Particle Swarm Optimization algorithm "BPSO", for searching the "optimum" number of the thresholds and simultaneously the optimal thresholds of three criteria: the between-class variances criterion, the minimum error criterion and the entropy criterion. Some examples of test images are presented to compare our segmentation method, based on the multi-objective optimization approach with Otsu’s, Kapur’s and Kittler’s methods. Our experimental results show that the thresholding method based on multi-objective optimization is more efficient than the classical Otsu’s, Kapur’s and Kittler’s methods.
Directory of Open Access Journals (Sweden)
V. Jegathesan
2017-11-01
Full Text Available This paper presents an efficient and reliable Genetic Algorithm based solution for Selective Harmonic Elimination (SHE switching pattern. This method eliminates considerable amount of lower order line voltage harmonics in Pulse Width Modulation (PWM inverter. Determination of pulse pattern for the elimination of some lower order harmonics of a PWM inverter necessitates solving a system of nonlinear transcendental equations. Genetic Algorithm is used to solve nonlinear transcendental equations for PWM-SHE. Many methods are available to eliminate the higher order harmonics and it can be easily removed. But the greatest challenge is to eliminate the lower order harmonics and this is successfully achieved using Genetic Algorithm without using Dual transformer. Simulations using MATLABTM and Powersim with experimental results are carried out to validate the solution. The experimental results show that the harmonics up to 13th were totally eliminated.
Keabsahan Dan Kekuatan Hukum Layanan Multi Level Marketing Di Kota Manado
Mandang, Christian Leonardo
2016-01-01
Tujuan dilakukannya penelitian ini adalah untuk mengetahui apa landasan hukum yang mendasari keabsahan layanan Multi Level Marketing dan bagaimana sebuah Perusahaan dapat memenuhi syarat untuk menjalankan sistem Multi Level Marketing. Dengan menggunakan metode penelitian yuridis normatif, maka dapat disimpulkan: 1. Kehadiran Perusahaan dan kegiatan USAha Multi Level Marketing baik secara global maupun secara nasional, khususnya kehadirannya di negara Indonesia berperan untuk membantu berbagai...
PENERAPAN HIRARKI DATA SQL DALAM MULTI LEVEL MARKETING
Directory of Open Access Journals (Sweden)
Sendi Novianto
2012-05-01
Full Text Available Sebagian besar pengguna pada satu waktu pasti pernah berurusan dengan hirarki data dalam database SQL dan tidak diragukan lagi belajar bahwa pengelolaan data hirarkis bukanlah apa yang dimaksudkan oleh database relasional. Tabel database relasional tidaklah hirarkis (seperti XML, tetapi hanya sebuah daftar. Data hirarkis memiliki hubungan parents-child yang tidak biasanya direpresentasikan dalam tabel database relasional. Multi Level Marketing (MLM merupakan suatu strategi pemasaran di mana tenaga penjualan mendapatkan kompensasi tidak hanya untuk penjualan tapi, tetapi juga untuk penjualan orang lain yang mereka rekrut, menciptakan suatu downline distributor dan hirarki dari berbagai tingkat kompensasi. Istilah lainnya untuk MLM termasuk jaringan pemasaran, penjualan dan pemasaran piramida rujukan. Data Hirarki penting di MLM untuk melacak catatan aktivitas penjualan, sehingga mereka dapat termotivasi setiap saat. Kata kunci : MLM, hirarki data, SQL, marketing.
Multi-level barriers to LTBI treatment: a research note.
Hill, Linda; Blumberg, Elaine; Sipan, Carol; Schmitz, Katharine; West, Joshua; Kelley, Norma; Hovell, Melbourne
2010-08-01
This study describes the barriers to effective and timely LTBI treatment encountered in a research study on INH adherence in Latino adolescents. Participant study logs were reviewed, results of continuing medical education pretests for medical providers were examined, and participating medical facilities were contacted in order to construct a profile of multi-level barriers to LTBI treatment. A total of 285 TST positive Latino (96%) high school students were recruited into the trial. We encountered a lack of understanding of the gravity of tuberculosis infection among both the public and providers of health care. Parents and adolescents cited competing priorities, transportation problems and financial constraints as reasons for non-compliance. Improved education of the public and physicians is needed regarding the gravity of the disease and the value of treatment, as well as public and financial support for LTBI treatment by both the government and the medical community.
Multi-Level Marketing - a Tool of Relationship Marketing
Directory of Open Access Journals (Sweden)
Constantin C.
2009-12-01
Full Text Available This paper aims to analyse the opportunity of using multi-level marketing (MLM as a tool of relationship marketing. The research is firstly based on an analysis regarding the issues about the legality of MLM techniques in the context of EU and US regulation systems. The outcomes of this research stress the main characteristics of legal network marketing and how a person which wants to become independent distributor could avoid the cooperation with an illegal pyramid scheme. The second research is based on a case study at the level of an insurance broker, which emphasizes the benefits that all parties involved in a transaction (broker, distributor and customer could obtain by using an MLM scheme.
Multi-level damage identification with response reconstruction
Zhang, Chao-Dong; Xu, You-Lin
2017-10-01
Damage identification through finite element (FE) model updating usually forms an inverse problem. Solving the inverse identification problem for complex civil structures is very challenging since the dimension of potential damage parameters in a complex civil structure is often very large. Aside from enormous computation efforts needed in iterative updating, the ill-condition and non-global identifiability features of the inverse problem probably hinder the realization of model updating based damage identification for large civil structures. Following a divide-and-conquer strategy, a multi-level damage identification method is proposed in this paper. The entire structure is decomposed into several manageable substructures and each substructure is further condensed as a macro element using the component mode synthesis (CMS) technique. The damage identification is performed at two levels: the first is at macro element level to locate the potentially damaged region and the second is over the suspicious substructures to further locate as well as quantify the damage severity. In each level's identification, the damage searching space over which model updating is performed is notably narrowed down, not only reducing the computation amount but also increasing the damage identifiability. Besides, the Kalman filter-based response reconstruction is performed at the second level to reconstruct the response of the suspicious substructure for exact damage quantification. Numerical studies and laboratory tests are both conducted on a simply supported overhanging steel beam for conceptual verification. The results demonstrate that the proposed multi-level damage identification via response reconstruction does improve the identification accuracy of damage localization and quantization considerably.
Multi-level predictive maintenance for multi-component systems
International Nuclear Information System (INIS)
Nguyen, Kim-Anh; Do, Phuc; Grall, Antoine
2015-01-01
In this paper, a novel predictive maintenance policy with multi-level decision-making is proposed for multi-component system with complex structure. The main idea is to propose a decision-making process considered on two levels: system level and component one. The goal of the decision rules at the system level is to address if preventive maintenance actions are needed regarding the predictive reliability of the system. At component level the decision rules aim at identifying optimally a group of several components to be preventively maintained when preventive maintenance is trigged due to the system level decision. Selecting optimal components is based on a cost-based group improvement factor taking into account the predictive reliability of the components, the economic dependencies as well as the location of the components in the system. Moreover, a cost model is developed to find the optimal maintenance decision variables. A 14-component system is finally introduced to illustrate the use and the performance of the proposed predictive maintenance policy. Different sensitivity analysis are also investigated and discussed. Indeed, the proposed policy provides more flexibility in maintenance decision-making for complex structure systems, hence leading to significant profits in terms of maintenance cost when compared with existing policies. - Highlights: • A predictive maintenance policy for complex structure systems is proposed. • Multi-level decision process based on prognostic results is proposed. • A cost-based group importance measure is introduced for decision-making. • Both positive and negative dependencies between components are investigated. • A cost model and Monte Carlo simulation are developed for optimization process.
International Nuclear Information System (INIS)
Zio, E.; Bazzo, R.
2010-01-01
In this paper, a procedure is developed for identifying a number of representative solutions manageable for decision-making in a multiobjective optimization problem concerning the test intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are identified by a genetic algorithm and then clustered by subtractive clustering into 'families'. On the basis of the decision maker's preferences, each family is then synthetically represented by a 'head of the family' solution. This is done by introducing a scoring system that ranks the solutions with respect to the different objectives: a fuzzy preference assignment is employed to this purpose. Level Diagrams are then used to represent, analyze and interpret the Pareto Fronts reduced to the head-of-the-family solutions
Kaur, Avneet; Bakhshi, A. K.
2010-04-01
The interest in copolymers stems from the fact that they present interesting electronic and optical properties leading to a variety of technological applications. In order to get a suitable copolymer for a specific application, genetic algorithm (GA) along with negative factor counting (NFC) method has recently been used. In this paper, we study the effect of change in the ratio of conduction band discontinuity to valence band discontinuity (Δ Ec/Δ Ev) on the optimum solution obtained from GA for model binary copolymers. The effect of varying bandwidths on the optimum GA solution is also investigated. The obtained results show that the optimum solution changes with varying parameters like band discontinuity and band width of constituent homopolymers. As the ratio Δ Ec/Δ Ev increases, band gap of optimum solution decreases. With increasing band widths of constituent homopolymers, the optimum solution tends to be dependent on the component with higher band gap.
Directory of Open Access Journals (Sweden)
Zaer Abo-Hammour
2014-01-01
Full Text Available A new kind of optimization technique, namely, continuous genetic algorithm, is presented in this paper for numerically approximating the solutions of Troesch’s and Bratu’s problems. The underlying idea of the method is to convert the two differential problems into discrete versions by replacing each of the second derivatives by an appropriate difference quotient approximation. The new method has the following characteristics. First, it should not resort to more advanced mathematical tools; that is, the algorithm should be simple to understand and implement and should be thus easily accepted in the mathematical and physical application fields. Second, the algorithm is of global nature in terms of the solutions obtained as well as its ability to solve other mathematical and physical problems. Third, the proposed methodology has an implicit parallel nature which points to its implementation on parallel machines. The algorithm is tested on different versions of Troesch’s and Bratu’s problems. Experimental results show that the proposed algorithm is effective, straightforward, and simple.
A continuation multilevel Monte Carlo algorithm
Collier, Nathan; Haji Ali, Abdul Lateef; Nobile, Fabio; von Schwerin, Erik; Tempone, Raul
2014-01-01
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error
Vijayakumar, Ganesh; Sprague, Michael
2017-11-01
Demonstrating expected convergence rates with spatial- and temporal-grid refinement is the ``gold standard'' of code and algorithm verification. However, the lack of analytical solutions and generating manufactured solutions presents challenges for verifying codes for complex systems. The application of the method of manufactured solutions (MMS) for verification for coupled multi-physics phenomena like fluid-structure interaction (FSI) has only seen recent investigation. While many FSI algorithms for aeroelastic phenomena have focused on boundary-resolved CFD simulations, the actuator-line representation of the structure is widely used for FSI simulations in wind-energy research. In this work, we demonstrate the verification of an FSI algorithm using MMS for actuator-line CFD simulations with a simplified structural model. We use a manufactured solution for the fluid velocity field and the displacement of the SMD system. We demonstrate the convergence of both the fluid and structural solver to second-order accuracy with grid and time-step refinement. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis
2007-07-01
This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence.
Firefly algorithm based solution to minimize the real power loss in a power system
Directory of Open Access Journals (Sweden)
P. Balachennaiah
2018-03-01
Full Text Available This paper proposes a method to minimize the real power loss (RPL of a power system transmission network using a new meta-heuristic algorithm known as firefly algorithm (FA by optimizing the control variables such as transformer taps, UPFC location and UPFC series injected voltage magnitude and phase angle. A software program is developed in MATLAB environment for FA to minimize the RPL by optimizing (i only the transformer tap values, (ii only UPFC location and its variables with optimized tap values and (iii UPFC location and its variables along with transformer tap setting values simultaneously. Interior point successive linear programming (IPSLP technique and real coded genetic algorithm (RCGA are considered here to compare the results and to show the efficiency and superiority of the proposed FA towards the optimization of RPL. Also in this paper, bacteria foraging algorithm (BFA is adopted to validate the results of the proposed algorithm.
Vehicle logo recognition using multi-level fusion model
Ming, Wei; Xiao, Jianli
2018-04-01
Vehicle logo recognition plays an important role in manufacturer identification and vehicle recognition. This paper proposes a new vehicle logo recognition algorithm. It has a hierarchical framework, which consists of two fusion levels. At the first level, a feature fusion model is employed to map the original features to a higher dimension feature space. In this space, the vehicle logos become more recognizable. At the second level, a weighted voting strategy is proposed to promote the accuracy and the robustness of the recognition results. To evaluate the performance of the proposed algorithm, extensive experiments are performed, which demonstrate that the proposed algorithm can achieve high recognition accuracy and work robustly.
Experiments of Multi-Level Read-Only Recording Using Readout Signal Wave-Shape Modulation
International Nuclear Information System (INIS)
Yi, Tang; Jing, Pei; Long-Fa, Pan; Yi, Ni; Hua, Hu; Bu-Qing, Zhang
2008-01-01
An innovative multilevel read-only recording method is proposed. In this method, a short pit/land is deliberately inserted to the original land/pit. This modifies the wave-shape of readout signal. Taking the wave-shape as the symbol of level detection, a signal wave-shape modulation (SWSM) multilevel method is realized. This method is carried out and validated on the DVD read-only manufacture and readout system. A capacity of 15 GB can be expected, and a bit error rate of 10 −4 is achieved. The capacity can meet the demand of high definition movie publication. This method also provides a potential multi-level solution for other storage formats and systems. (fundamental areas of phenomenology (including applications))
Multi-level Governance as an Alternative: The Municipality of Barcelona and the Ciutat Refugi Plan
Directory of Open Access Journals (Sweden)
Ezgi Irgil
2016-12-01
Full Text Available This paper analyses the response of the Municipality of Barcelona to the Syrian refugee crisis in Europe as an alternative solution that challenges the national government’s restrictive approach. This response introduces the Ciutat Refugi Plan with a city-to-city network at the municipal level that involves other European cities in creating safe routes for refugees at the local government level. In line with multi-level governance theory, I argue that central governments’ inaction has pressured local governments to take action during the Syrian refugee influx. Relying on the influence of local government networks, the Municipality of Barcelona uses discourse as a tool of action in opening discursive spaces for humanitarian political responses to the refugee crisis. Using critical discourse analysis, I test this argument by examining in-depth interviews, speeches of people in power that have appeared in news articles, and statements on official websites.
Individual relocation decisions after tornadoes: a multi-level analysis.
Cong, Zhen; Nejat, Ali; Liang, Daan; Pei, Yaolin; Javid, Roxana J
2018-04-01
This study examines how multi-level factors affected individuals' relocation decisions after EF4 and EF5 (Enhanced Fujita Tornado Intensity Scale) tornadoes struck the United States in 2013. A telephone survey was conducted with 536 respondents, including oversampled older adults, one year after these two disaster events. Respondents' addresses were used to associate individual information with block group-level variables recorded by the American Community Survey. Logistic regression revealed that residential damage and homeownership are important predictors of relocation. There was also significant interaction between these two variables, indicating less difference between homeowners and renters at higher damage levels. Homeownership diminished the likelihood of relocation among younger respondents. Random effects logistic regression found that the percentage of homeownership and of higher income households in the community buffered the effect of damage on relocation; the percentage of older adults reduced the likelihood of this group relocating. The findings are assessed from the standpoint of age difference, policy implications, and social capital and vulnerability. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.
PHYSICS OF POLARIZED SCATTERING AT MULTI-LEVEL ATOMIC SYSTEMS
Energy Technology Data Exchange (ETDEWEB)
Stenflo, J. O., E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich, SwitzerlandAND (Switzerland); Istituto Ricerche Solari Locarno, Via Patocchi, CH-6605 Locarno-Monti (Switzerland)
2015-03-01
The symmetric peak observed in linear polarization in the core of the solar sodium D{sub 1} line at 5896 Å has remained enigmatic since its discovery nearly two decades ago. One reason is that the theory of polarized scattering has not been experimentally tested for multi-level atomic systems in the relevant parameter domains, although the theory is continually being used for the interpretation of astrophysical observations. A laboratory experiment that was set up a decade ago to find out whether the D{sub 1} enigma is a problem of solar physics or quantum physics revealed that the D{sub 1} system has a rich polarization structure in situations where standard scattering theory predicts zero polarization, even when optical pumping of the m state populations of the hyperfine-split ground state is accounted for. Here we show that the laboratory results can be modeled in great quantitative detail if the theory is extended to include the coherences in both the initial and final states of the scattering process. Radiative couplings between the allowed dipole transitions generate coherences in the initial state. Corresponding coherences in the final state are then demanded by a phase closure selection rule. The experimental results for the well understood D{sub 2} line are used to constrain the two free parameters of the experiment, collision rate and optical depth, to suppress the need for free parameters when fitting the D{sub 1} results.
Developing Multi-Level Institutions from Top-Down Ancestors
Directory of Open Access Journals (Sweden)
Martha Dowsley
2007-11-01
Full Text Available The academic literature contains numerous examples of the failures of both top-down and bottom-up common pool resource management frameworks. Many authors agree that management regimes instead need to utilize a multi-level governance approach to meet diverse objectives in management. However, many currently operating systems do not have that history. This paper explores the conversion of ancestral top-down regimes to complex systems involving multiple scales, levels and objectives through the management of the polar bear (Ursus maritimus in its five range countries. The less successful polar bear management systems continue to struggle with the challenges of developing institutions with the capacity to learn and change, addressing multiple objectives while recognizing the conservation backbone to management, and matching the institutional scale with biophysical, economic and social scales. The comparatively successful institutions incorporate these features, but reveal on-going problems with vertical links that are partially dealt with through the creation of links to other groups.
Multi-level and hybrid modelling approaches for systems biology.
Bardini, R; Politano, G; Benso, A; Di Carlo, S
2017-01-01
During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.
Multi-level molecular modelling for plasma medicine
International Nuclear Information System (INIS)
Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C W; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C
2016-01-01
Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma–biomolecule interactions. (paper)
PELAKSANAAN JUAL BELI MELALUI SISTEM MULTI LEVEL MARKETING PERSPEKTIF HUKUM ISLAM
Directory of Open Access Journals (Sweden)
Ayu Dewi Utami
2016-03-01
Full Text Available Bisnis Multi Level Marketing (MLM cukup berperan dalam menggerakkan roda perekonomian masyarakat. Dalam sejumlah kasus, Multi Level Marketing (MLM kerap dijadikan kedok dari bisnis money game dan mendewakan passive income. Bertolak dari kasus kasus seperti itulah, Majelis Ulama Indonesia (MUI telah menggodok prinsip-prinsip bisnis ini secara syariah termasuk marketing plannya. Tujuannya untuk melindungi pengusaha dan mitra bisnisnya (masyarakat dari praktik bisnis yang haram atau syubhat. Dari prinsip-prinsip yang ditentukan oleh Majelis Ulama Indonesia (MUI, peneliti mengadakan penelitian ini dengan tujuan untuk mengetahui bagaimana mekanisme bisnis Multi Level Marketing (MLM, serta untuk mengetahui bagaimana bisnis Multi Level Marketing (MLM menurut hukum Islam. Metode yang digunakan dalam penelitian ini adalah menggunakan metode pendekatan yuridis normatif, spesifikasi penelitian yang digunakan adalah deskriptif analitis, sedangkan penentuan sampel menggunakan metode Non Random sampling. Alat penelitian meliputi studi kepustakaan dan wawancara. Metode analisis data dilakukan dengan analisis kualitatif. Ada dua aspek untuk menilai apakah bisnis Multi Level Marketing (MLM itu sesuai dengan syariah atau tidak, yaitu aspek produk atau jasa yang dijual dan sistem dari Multi Level Marketing (MLM itu sendiri. Bagaimana sistem pemberian bonus yang terdapat dalam perusahaan Multi Level Marketing (MLM apakah terbebas dari unsus garar maupun maisir. Penelitian ini bertujuan untuk mengkaji lebih dalam tentang Multi Level Marketing (MLM khususnya dalam Hukum Islam. Sisi negatif yang terdapat pada sistem Multi Level Marketing (MLM tidak mewakili keharaman secara keseluruhan terhadap bisnis yang berbasis Multi Level Marketing (MLM lainnya.
International Nuclear Information System (INIS)
Doster, J.M.; Sills, E.D.
1986-01-01
Current efforts are under way to develop and evaluate numerical algorithms for the parallel solution of the large sparse matrix equations associated with the finite difference representation of the macroscopic Navier-Stokes equations. Previous work has shown that these equations can be cast into smaller coupled matrix equations suitable for solution utilizing multiple computer processors operating in parallel. The individual processors themselves may exhibit parallelism through the use of vector pipelines. This wor, has concentrated on the one-dimensional drift flux form of the Navier-Stokes equations. Direct and iterative algorithms that may be suitable for implementation on parallel computer architectures are evaluated in terms of accuracy and overall execution speed. This work has application to engineering and training simulations, on-line process control systems, and engineering workstations where increased computational speeds are required
Bakar, Sumarni Abu; Ibrahim, Milbah
2017-08-01
The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.
Antibiotic resistance shaping multi-level population biology of bacteria.
Baquero, Fernando; Tedim, Ana P; Coque, Teresa M
2013-01-01
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level
Disentangling multi-level systems: averaging, correlations and memory
International Nuclear Information System (INIS)
Wouters, Jeroen; Lucarini, Valerio
2012-01-01
We consider two weakly coupled systems and adopt a perturbative approach based on the Ruelle response theory to study their interaction. We propose a systematic way of parameterizing the effect of the coupling as a function of only the variables of a system of interest. Our focus is on describing the impacts of the coupling on the long term statistics rather than on the finite-time behavior. By direct calculation, we find that, at first order, the coupling can be surrogated by adding a deterministic perturbation to the autonomous dynamics of the system of interest. At second order, there are additionally two separate and very different contributions. One is a term taking into account the second-order contributions of the fluctuations in the coupling, which can be parameterized as a stochastic forcing with given spectral properties. The other one is a memory term, coupling the system of interest to its previous history, through the correlations of the second system. If these correlations are known, this effect can be implemented as a perturbation with memory on the single system. In order to treat this case, we present an extension to Ruelle's response theory able to deal with integral operators. We discuss our results in the context of other methods previously proposed for disentangling the dynamics of two coupled systems. We emphasize that our results do not rely on assuming a time scale separation, and, if such a separation exists, can be used equally well to study the statistics of the slow variables and that of the fast variables. By recursively applying the technique proposed here, we can treat the general case of multi-level systems
Multi-level deep supervised networks for retinal vessel segmentation.
Mo, Juan; Zhang, Lei
2017-12-01
Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation. A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors. We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set. The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.
Directory of Open Access Journals (Sweden)
Vikram Kumar Kamboj
2016-04-01
Full Text Available In recent years, global warming and carbon dioxide (CO2 emission reduction have become important issues in India, as CO2 emission levels are continuing to rise in accordance with the increased volume of Indian national energy consumption under the pressure of global warming, it is crucial for Indian government to impose the effective policy to promote CO2 emission reduction. Challenge of supplying the nation with high quality and reliable electrical energy at a reasonable cost, converted government policy into deregulation and restructuring environment. This research paper presents aims to presents an effective solution for energy and environmental problems of electric power using an efficient and powerful hybrid optimization algorithm: Hybrid Harmony search-random search algorithm. The proposed algorithm is tested for standard IEEE-14 bus, -30 bus and -56 bus system. The effectiveness of proposed hybrid algorithm is compared with others well known evolutionary, heuristics and meta-heuristics search algorithms. For multi-objective unit commitment, it is found that as there are conflicting relationship between cost and emission, if the performance in cost criterion is improved, performance in the emission is seen to deteriorate.
Bittig, Arne T; Uhrmacher, Adelinde M
2017-01-01
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project
Directory of Open Access Journals (Sweden)
Anisimov Vladimir
2018-01-01
Full Text Available In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.
A sequential quadratic programming algorithm using an incomplete solution of the subproblem
Energy Technology Data Exchange (ETDEWEB)
Murray, W. [Stanford Univ., CA (United States). Systems Optimization Lab.; Prieto, F.J. [Universidad `Carlos III` de Madrid (Spain). Dept. de Estadistica y Econometria
1993-05-01
We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is not assumed that the iterates lie on a compact set.
Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project
Anisimov, Vladimir; Anisimov, Evgeniy; Chernysh, Anatoliy
2018-03-01
In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.
Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations
Fijany, Amir
1993-01-01
In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.
Polynomial Time Algorithms For Some Multi-Level Lot-Sizing Problems With Production Capacities
S. van Hoesel (Stan); H.E. Romeijn (Edwin); D. Romero Morales (Dolores); A.P.M. Wagelmans (Albert)
2002-01-01
textabstractWe consider a model for a serial supply chain in which production, inventory, and transportation decisions are integrated, in the presence of production capacities and for different transportation cost functions. The model we study is a generalization of the traditional single-item
Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.
2012-01-01
, as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network
Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models
Vignal, Philippe
2016-01-01
of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure
1980-10-01
solving (1.3); PFAS combines the concepts of multigrid algorithms with those of projected SOR. In Section 3, we discuss the implementation of PFAS, and...numerique de la torsion elasto- plastique d’une barre cylindrique. In Approximation et Methodes Iteratives de Resolution d’Inequations Variationelles et
Directory of Open Access Journals (Sweden)
McDermott Drew
2009-08-01
Full Text Available Abstract Background Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity. Results To link up the predictions at the three levels, we propose a multi-level machine-learning framework that allows for explicit information flow between the levels. We demonstrate, using representative yeast interaction networks, that our algorithm is able to utilize complementary feature sets to make more accurate predictions at the three levels than when the three problems are approached independently. To facilitate application of our multi-level learning framework, we discuss three key aspects of multi-level learning and the corresponding design choices that we have made in the implementation of a concrete learning algorithm. 1 Architecture of information flow: we show the greater flexibility of bidirectional flow over independent levels and unidirectional flow; 2 Coupling mechanism of the different levels: We show how this can be accomplished via augmenting the training sets at each level, and discuss the prevention of error propagation between different levels by means of soft coupling; 3 Sparseness of data: We show that the multi-level framework compounds data sparsity issues, and discuss how this can be dealt with by building local models in information-rich parts of the data. Our proof-of-concept learning algorithm demonstrates the advantage of combining levels, and opens up
Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin
2016-01-01
This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.
Yan, S.; Lin, H. C.; Jiang, X. Y.
2012-04-01
In this study the authors employ network flow techniques to construct a systematic model that helps ready mixed concrete carriers effectively plan production and truck dispatching schedules under stochastic travel times. The model is formulated as a mixed integer network flow problem with side constraints. Problem decomposition and relaxation techniques, coupled with the CPLEX mathematical programming solver, are employed to develop an algorithm that is capable of efficiently solving the problems. A simulation-based evaluation method is also proposed to evaluate the model, coupled with a deterministic model, and the method currently used in actual operations. Finally, a case study is performed using real operating data from a Taiwan RMC firm. The test results show that the system operating cost obtained using the stochastic model is a significant improvement over that obtained using the deterministic model or the manual approach. Consequently, the model and the solution algorithm could be useful for actual operations.
special algorithm for the numerical solution of system of initial value ...
African Journals Online (AJOL)
Nwokem et al.
Science World Journal Vol 12(No 4) 2017 ... Over the years, several researchers have considered the collocation method as a way of generating numerical solutions to ... study problems in mathematics, engineering, computer science and.
Multi-level Governance in Environmental Risk Management
Directory of Open Access Journals (Sweden)
Petra Hiller
2013-04-01
Full Text Available The article examines regulatory strategies in the field of ecological disaster management with reference to the sociology of risk. The risk perspective draws attention to the fact that political strategies of regulation are to be understood as processes of risk transformation. The behavior of regulatory agencies is related to their perception of risks and opportunities. From this point of view, efforts in the field of disaster management appear as processes that turn perceived environmental threats into risks and opportunities for the agencies involved. The article shows the course of such a governance process which transforms environmental disasters into organizational risks and opportunities. This leads to the following research question: Which types of organizations favor strategies of risk avoidance and which organizations rather allow active pursuit of opportunities? The empirical part of this study is based on data obtained by field research in a multi-level negotiation system set up for managing hazardous wastes. Empirical findings support the assumption that organizational stability is a central condition for active pursuit of opportunities whereas organizational instability supports an orientation towards the avoidance of organizational risk. El artículo examina las estrategias reguladoras en el ámbito de la gestión de los desastres ecológicos, haciendo referencia a la sociología del riesgo. La perspectiva de riesgo pone su atención sobre el hecho de que las estrategias políticas de regulación se deben entender como procesos de transformación de riesgos. El comportamiento de las agencias reguladoras se relaciona con su percepción de los riesgos y oportunidades. Desde este punto de vista, los esfuerzos en el campo de la gestión de catástrofes se convierten en procesos que transforman las amenazas medioambientales (percibidas en riesgos y oportunidades para las agencias involucradas. El artículo muestra el desarrollo de este
Directory of Open Access Journals (Sweden)
Ambarish Panda
2016-09-01
Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.
First 3D Cadastral Registration of Multi-level Ownerships Rights in the Netherlands
Ploeger, H.D.; Stoter, J.E.; Roes, R; Van der Riet, E.; Biljecki, F.; Ledoux, H.
2016-01-01
This paper reports on the first 3D cadastral registration of multi-level ownerships rights in the Netherlands, which was accomplished in March 2016. It is the result of a study that was undertaken from 2013 to 2015 to determine how insight about multi-level ownership can be provided in 3D by the
Kern, K.; Bulkeley, H.
2009-01-01
This article focuses on a variant of multi-level governance and Europeanization, i.e. the transnational networking of local authorities. Focusing on local climate change policy, the article examines how transnational municipal networks (TMNs) govern in the context of multi-level European governance.
The goal of this study was to evaluate the possible use of the Environmental Relative Moldiness Index (ERMI) to quantify mold contamination in multi-level, office buildings. Settled-dust samples were collected in multi-level, office buildings and the ERMI value for each sample de...
Drift-Implicit Multi-Level Monte Carlo Tau-Leap Methods for Stochastic Reaction Networks
Ben Hammouda, Chiheb
2015-05-12
In biochemical systems, stochastic e↵ects can be caused by the presence of small numbers of certain reactant molecules. In this setting, discrete state-space and stochastic simulation approaches were proved to be more relevant than continuous state-space and deterministic ones. These stochastic models constitute the theory of stochastic reaction networks (SRNs). Furthermore, in some cases, the dynamics of fast and slow time scales can be well separated and this is characterized by what is called sti↵ness. For such problems, the existing discrete space-state stochastic path simulation methods, such as the stochastic simulation algorithm (SSA) and the explicit tau-leap method, can be very slow. Therefore, implicit tau-leap approxima- tions were developed to improve the numerical stability and provide more e cient simulation algorithms for these systems. One of the interesting tasks for SRNs is to approximate the expected values of some observables of the process at a certain fixed time T. This is can be achieved using Monte Carlo (MC) techniques. However, in a recent work, Anderson and Higham in 2013, proposed a more computationally e cient method which combines multi-level Monte Carlo (MLMC) technique with explicit tau-leap schemes. In this MSc thesis, we propose new fast stochastic algorithm, particularly designed 5 to address sti↵ systems, for approximating the expected values of some observables of SRNs. In fact, we take advantage of the idea of MLMC techniques and drift-implicit tau-leap approximation to construct a drift-implicit MLMC tau-leap estimator. In addition to accurately estimating the expected values of a given observable of SRNs at a final time T , our proposed estimator ensures the numerical stability with a lower cost than the MLMC explicit tau-leap algorithm, for systems including simultane- ously fast and slow species. The key contribution of our work is the coupling of two drift-implicit tau-leap paths, which is the basic brick for
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available We define a special case for the vehicle routing problem with stochastic demands (SC-VRPSD where customer demands are normally distributed. We propose a new linear model for computing the expected length of a tour in SC-VRPSD. The proposed model is based on the integration of the “Traveling Salesman Problem” (TSP and the Assignment Problem. For large-scale problems, we also use an Iterated Local Search (ILS algorithm in order to reach an effective solution.
Directory of Open Access Journals (Sweden)
C. Xu
2016-06-01
Full Text Available Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.
Multi-level Monte Carlo Methods for Efficient Simulation of Coulomb Collisions
Ricketson, Lee
2013-10-01
We discuss the use of multi-level Monte Carlo (MLMC) schemes--originally introduced by Giles for financial applications--for the efficient simulation of Coulomb collisions in the Fokker-Planck limit. The scheme is based on a Langevin treatment of collisions, and reduces the computational cost of achieving a RMS error scaling as ɛ from O (ɛ-3) --for standard Langevin methods and binary collision algorithms--to the theoretically optimal scaling O (ɛ-2) for the Milstein discretization, and to O (ɛ-2 (logɛ)2) with the simpler Euler-Maruyama discretization. In practice, this speeds up simulation by factors up to 100. We summarize standard MLMC schemes, describe some tricks for achieving the optimal scaling, present results from a test problem, and discuss the method's range of applicability. This work was performed under the auspices of the U.S. DOE by the University of California, Los Angeles, under grant DE-FG02-05ER25710, and by LLNL under contract DE-AC52-07NA27344.
The design of multi-core DSP parallel model based on message passing and multi-level pipeline
Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong
2017-10-01
Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.
Ghazzai, Hakim
2012-01-01
The Base Station (BS) sleeping strategy has become a well-known technique to achieve energy savings in cellular networks by switching off redundant BSs mainly for lightly loaded networks. Besides, the exploitation of renewable energies, as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from the smart grid without affecting the desired Quality of Service. © 2012 Springer-Verlag.
A solution algorithm for calculating photon radiation fields with the aid of the Monte Carlo method
International Nuclear Information System (INIS)
Zappe, D.
1978-04-01
The MCTEST program and its subroutines for the solution of the Boltzmann transport equation is presented. The program renders possible to calculate photon radiation fields of point or plane gamma sources. After changing two subroutines the calculation can also be carried out for the case of directed incidence of radiation on plane shields of iron or concrete. (author)
Debbarma, Sanjoy; Saikia, Lalit Chandra; Sinha, Nidul
2014-03-01
Present work focused on automatic generation control (AGC) of a three unequal area thermal systems considering reheat turbines and appropriate generation rate constraints (GRC). A fractional order (FO) controller named as I(λ)D(µ) controller based on crone approximation is proposed for the first time as an appropriate technique to solve the multi-area AGC problem in power systems. A recently developed metaheuristic algorithm known as firefly algorithm (FA) is used for the simultaneous optimization of the gains and other parameters such as order of integrator (λ) and differentiator (μ) of I(λ)D(µ) controller and governor speed regulation parameters (R). The dynamic responses corresponding to optimized I(λ)D(µ) controller gains, λ, μ, and R are compared with that of classical integer order (IO) controllers such as I, PI and PID controllers. Simulation results show that the proposed I(λ)D(µ) controller provides more improved dynamic responses and outperforms the IO based classical controllers. Further, sensitivity analysis confirms the robustness of the so optimized I(λ)D(µ) controller to wide changes in system loading conditions and size and position of SLP. Proposed controller is also found to have performed well as compared to IO based controllers when SLP takes place simultaneously in any two areas or all the areas. Robustness of the proposed I(λ)D(µ) controller is also tested against system parameter variations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Solution for the multigroup neutron space kinetics equations by the modified Picard algorithm
Energy Technology Data Exchange (ETDEWEB)
Tavares, Matheus G.; Petersen, Claudio Z., E-mail: matheus.gulartetavares@gmail.com [Universidade Federal de Pelotas (UFPEL), Capao do Leao, RS (Brazil). Departamento de Matematica e Estatistica; Schramm, Marcelo, E-mail: schrammmarcelo@gmail.com [Universidade Federal de Pelotas (UFPEL), RS (Brazil). Centro de Engenharias; Zanette, Rodrigo, E-mail: rodrigozanette@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Matematica e Estatistica
2017-07-01
In this work, we used a modified Picards method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a rst order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform using the Stehfest method. We present numerical simulations and comparisons with available results in literature. (author)
Solution for the multigroup neutron space kinetics equations by the modified Picard algorithm
International Nuclear Information System (INIS)
Tavares, Matheus G.; Petersen, Claudio Z.; Schramm, Marcelo; Zanette, Rodrigo
2017-01-01
In this work, we used a modified Picards method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a rst order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform using the Stehfest method. We present numerical simulations and comparisons with available results in literature. (author)
Lötstedt, Erik; Jentschura, Ulrich D
2009-02-01
In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.
Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.
2018-03-01
Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.
Protopopescu, V.; D'Helon, C.; Barhen, J.
2003-06-01
A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.
Fast sweeping algorithm for accurate solution of the TTI eikonal equation using factorization
bin Waheed, Umair
2017-06-10
Traveltime computation is essential for many seismic data processing applications and velocity analysis tools. High-resolution seismic imaging requires eikonal solvers to account for anisotropy whenever it significantly affects the seismic wave kinematics. Moreover, computation of auxiliary quantities, such as amplitude and take-off angle, rely on highly accurate traveltime solutions. However, the finite-difference based eikonal solution for a point-source initial condition has an upwind source-singularity at the source position, since the wavefront curvature is large near the source point. Therefore, all finite-difference solvers, even the high-order ones, show inaccuracies since the errors due to source-singularity spread from the source point to the whole computational domain. We address the source-singularity problem for tilted transversely isotropic (TTI) eikonal solvers using factorization. We solve a sequence of factored tilted elliptically anisotropic (TEA) eikonal equations iteratively, each time by updating the right hand side function. At each iteration, we factor the unknown TEA traveltime into two factors. One of the factors is specified analytically, such that the other factor is smooth in the source neighborhood. Therefore, through the iterative procedure we obtain accurate solution to the TTI eikonal equation. Numerical tests show significant improvement in accuracy due to factorization. The idea can be easily extended to compute accurate traveltimes for models with lower anisotropic symmetries, such as orthorhombic, monoclinic or even triclinic media.
Spectral bisection algorithm for solving Schrodinger equation using upper and lower solutions
Directory of Open Access Journals (Sweden)
Qutaibeh Deeb Katatbeh
2007-10-01
Full Text Available This paper establishes a new criteria for obtaining a sequence of upper and lower bounds for the ground state eigenvalue of Schr"odinger equation $ -Deltapsi(r+V(rpsi(r=Epsi(r$ in $N$ spatial dimensions. Based on this proposed criteria, we prove a new comparison theorem in quantum mechanics for the ground state eigenfunctions of Schrodinger equation. We determine also lower and upper solutions for the exact wave function of the ground state eigenfunctions using the computed upper and lower bounds for the eigenvalues obtained by variational methods. In other words, by using this criteria, we prove that the substitution of the lower(upper bound of the eigenvalue in Schrodinger equation leads to an upper(lower solution. Finally, two proposed iteration approaches lead to an exact convergent sequence of solutions. The first one uses Raielgh-Ritz theorem. Meanwhile, the second approach uses a new numerical spectral bisection technique. We apply our results for a wide class of potentials in quantum mechanics such as sum of power-law potentials in quantum mechanics.
Development of Web-Based Menu Planning Support System and its Solution Using Genetic Algorithm
Kashima, Tomoko; Matsumoto, Shimpei; Ishii, Hiroaki
2009-10-01
Recently lifestyle-related diseases have become an object of public concern, while at the same time people are being more health conscious. As an essential factor for causing the lifestyle-related diseases, we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well-balanced menu planning system as a preventive measure of lifestyle-related diseases. The system is developed by using a Web-based frontend and it provides multi-user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software), MySQL (database management system), and PHP (scripting language for dynamic Web pages). For the menu planning, a genetic algorithm is applied by understanding this problem as multidimensional 0-1 integer programming.
A genetic algorithm solution for a nuclear power plant risk-cost maintenance model
International Nuclear Information System (INIS)
Tong Jiejuan; Mao Dingyuan; Xue Dazhi
2004-01-01
Reliability Centered Maintenance (RCM) is one of the popular maintenance optimization methods according to certain kinds of priorities. Traditional RCM usually analyzes and optimizes the maintenance strategy from the viewpoint of component instead of the whole maintenance program impact. Research presented in this paper is a pilot study using PSA techniques in RCM. How to reflect the effect on component unavailability by the maintenance activities such as surveillance testing and preventive maintenance in PSA model is discussed firstly. Based on the discussion, a maintenance risk-cost model is established for global maintenance optimization in a nuclear power plant, and a genetic algorithm (GA) is applied to solve such a model to get the global optimized maintenance strategy. Finally, the result got from a simple test case based on a risk-cost model consisting of 10 components is presented
International Nuclear Information System (INIS)
Molchanov, I.N.; Khimich, A.N.
1984-01-01
This article shows how a reflection method can be used to find the eigenvalues of a matrix by transforming the matrix to tridiagonal form. The method of conjugate gradients is used to find the smallest eigenvalue and the corresponding eigenvector of symmetric positive-definite band matrices. Topics considered include the computational scheme of the reflection method, the organization of parallel calculations by the reflection method, the computational scheme of the conjugate gradient method, the organization of parallel calculations by the conjugate gradient method, and the effectiveness of parallel algorithms. It is concluded that it is possible to increase the overall effectiveness of the multiprocessor electronic computers by either letting the newly available processors of a new problem operate in the multiprocessor mode, or by improving the coefficient of uniform partition of the original information
Multi-level trellis coded modulation and multi-stage decoding
Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu
1990-01-01
Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.
Energy Technology Data Exchange (ETDEWEB)
Fischer, P.F. [Brown Univ., Providence, RI (United States)
1996-12-31
Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or high-aspect ratio elements.
An integrated approach for multi-level sample size determination
International Nuclear Information System (INIS)
Lu, M.S.; Teichmann, T.; Sanborn, J.B.
1997-01-01
Inspection procedures involving the sampling of items in a population often require steps of increasingly sensitive measurements, with correspondingly smaller sample sizes; these are referred to as multilevel sampling schemes. In the case of nuclear safeguards inspections verifying that there has been no diversion of Special Nuclear Material (SNM), these procedures have been examined often and increasingly complex algorithms have been developed to implement them. The aim in this paper is to provide an integrated approach, and, in so doing, to describe a systematic, consistent method that proceeds logically from level to level with increasing accuracy. The authors emphasize that the methods discussed are generally consistent with those presented in the references mentioned, and yield comparable results when the error models are the same. However, because of its systematic, integrated approach the proposed method elucidates the conceptual understanding of what goes on, and, in many cases, simplifies the calculations. In nuclear safeguards inspections, an important aspect of verifying nuclear items to detect any possible diversion of nuclear fissile materials is the sampling of such items at various levels of sensitivity. The first step usually is sampling by ''attributes'' involving measurements of relatively low accuracy, followed by further levels of sampling involving greater accuracy. This process is discussed in some detail in the references given; also, the nomenclature is described. Here, the authors outline a coordinated step-by-step procedure for achieving such multilevel sampling, and they develop the relationships between the accuracy of measurement and the sample size required at each stage, i.e., at the various levels. The logic of the underlying procedures is carefully elucidated; the calculations involved and their implications, are clearly described, and the process is put in a form that allows systematic generalization
Benchmarking algorithms for the solution of Collisional Radiative Model (CRM) equations.
Klapisch, Marcel; Busquet, Michel
2007-11-01
Elements used in ICF target designs can have many charge states in the same plasma conditions, each charge state having numerous energy levels. When LTE conditions are not met, one has to solve CRM equations for the populations of energy levels, which are necessary for opacities/emissivities, Z* etc. In case of sparse spectra, or when configuration interaction is important (open d or f shells), statistical methods[1] are insufficient. For these cases one must resort to a detailed level CRM rate generator[2]. The equations to be solved may involve tens of thousands of levels. The system is by nature ill conditioned. We show that some classical methods do not converge. Improvements of the latter will be compared with new algorithms[3] with respect to performance, robustness, and accuracy. [1] A Bar-Shalom, J Oreg, and M Klapisch, J. Q. S. R. T.,65, 43 (2000). [2] M Klapisch, M Busquet and A. Bar-Shalom, Proceedings of APIP'07, AIP series (to be published). [3] M Klapisch and M Busquet, High Ener. Density Phys. 3,143 (2007)
An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS
Zhang, Xin; Cui, Yiming; Wang, Yan; Sun, Mingjian; Hu, Hengshan
2018-01-01
In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.
Integration of multi-level marketing management systems geographically industry development
Aleksandr Lavrov; Lada Polikarpova; Alla Handramai
2015-01-01
In the article the authors attempt to develop a multi-level management system territorially industry development in market conditions, built in the widespread use of various types of marketing and their horizontal and vertical integration.
space vector pulse width modulation of a multi-level diode clamped
African Journals Online (AJOL)
ES Obe
step by step development of MATLAB /SIMULINK modeling of the space vector ..... Pulse Width Mod. of Multi-Level Diode Clamped Converter 119 powergui. Discrete, .... Load. Figure 22: Block diagram of the three level DCC design. 3 LEVEL ...
Modeling Performance in C4ISR Sustained Operations: A Multi-Level Approach (Briefing Charts)
National Research Council Canada - National Science Library
Barnes, Christopher; Miller, James C; Elliott, Linda; Coovert, Michael
2003-01-01
This briefing discusses methodology and preliminary findings focused on the application of multi-level modeling techniques to distinguish effects of sleep loss and task demands on individual and team...
Space Vector Pulse Width Modulation of a Multi-Level Diode ...
African Journals Online (AJOL)
Space Vector Pulse Width Modulation of a Multi-Level Diode Clamped ... of MATLAB /SIMULINK modeling of the space vector pulse-width modulation and the ... two adjacent active vectors in determining the switching process of the multilevel ...
Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution, and Inversion
DEFF Research Database (Denmark)
Gustavson, Fred G.; Wasniewski, Jerzy; Dongarra, Jack J
2010-01-01
of the storage space but provide high performance via the use of Level 3 BLAS. Standard packed format arrays fully utilize storage (array space) but provide low performance as there is no Level 3 packed BLAS. We combine the good features of packed and full storage using RFPF to obtain high performance via using...... Level 3 BLAS as RFPF is a standard full-format representation. Also, RFPF requires exactly the same minimal storage as packed the format. Each LAPACK full and/or packed triangular, symmetric, and Hermitian routine becomes a single new RFPF routine based on eight possible data layouts of RFPF. This new...... RFPF routine usually consists of two calls to the corresponding LAPACK full-format routine and two calls to Level 3 BLAS routines. This means no new software is required. As examples, we present LAPACK routines for Cholesky factorization, Cholesky solution, and Cholesky inverse computation in RFPF...
Studies of parallel algorithms for the solution of a Fokker-Planck equation
International Nuclear Information System (INIS)
Deck, D.; Samba, G.
1995-11-01
The study of laser-created plasmas often requires the use of a kinetic model rather than a hydrodynamic one. This model change occurs, for example, in the hot spot formation in an ICF experiment or during the relaxation of colliding plasmas. When the gradients scalelengths or the size of a given system are not small compared to the characteristic mean-free-path, we have to deal with non-equilibrium situations, which can be described by the distribution functions of every species in the system. We present here a numerical method in plane or spherical 1-D geometry, for the solution of a Fokker-Planck equation that describes the evolution of stich functions in the phase space. The size and the time scale of kinetic simulations require the use of Massively Parallel Computers (MPP). We have adopted a message-passing strategy using Parallel Virtual Machine (PVM)
FBILI method for multi-level line transfer
Kuzmanovska, O.; Atanacković, O.; Faurobert, M.
2017-07-01
Efficient non-LTE multilevel radiative transfer calculations are needed for a proper interpretation of astrophysical spectra. In particular, realistic simulations of time-dependent processes or multi-dimensional phenomena require that the iterative method used to solve such non-linear and non-local problem is as fast as possible. There are several multilevel codes based on efficient iterative schemes that provide a very high convergence rate, especially when combined with mathematical acceleration techniques. The Forth-and-Back Implicit Lambda Iteration (FBILI) developed by Atanacković-Vukmanović et al. [1] is a Gauss-Seidel-type iterative scheme that is characterized by a very high convergence rate without the need of complementing it with additional acceleration techniques. In this paper we make the implementation of the FBILI method to the multilevel atom line transfer in 1D more explicit. We also consider some of its variants and investigate their convergence properties by solving the benchmark problem of CaII line formation in the solar atmosphere. Finally, we compare our solutions with results obtained with the well known code MULTI.
Integrated algorithms for RFID-based multi-sensor indoor/outdoor positioning solutions
Zhu, Mi.; Retscher, G.; Zhang, K.
2011-12-01
Position information is very important as people need it almost everywhere all the time. However, it is a challenging task to provide precise positions indoor/outdoor seamlessly. Outdoor positioning has been widely studied and accurate positions can usually be achieved by well developed GPS techniques but these techniques are difficult to be used indoors since GPS signal reception is limited. The alternative techniques that can be used for indoor positioning include, to name a few, Wireless Local Area Network (WLAN), bluetooth and Ultra Wideband (UWB) etc.. However, all of these have limitations. The main objectives of this paper are to investigate and develop algorithms for a low-cost and portable indoor personal positioning system using Radio Frequency Identification (RFID) and its integration with other positioning systems. An RFID system consists of three components, namely a control unit, an interrogator and a transponder that transmits data and communicates with the reader. An RFID tag can be incorporated into a product, animal or person for the purpose of identification and tracking using radio waves. In general, for RFID positioning in urban and indoor environments three different methods can be used, including cellular positioning, trilateration and location fingerprinting. In addition, the integration of RFID with other technologies is also discussed in this paper. A typical combination is to integrate RFID with relative positioning technologies such as MEMS INS to bridge the gaps between RFID tags for continuous positioning applications. Experiments are shown to demonstrate the improvements of integrating multiple sensors with RFID which can be employed successfully for personal positioning.
Adjusting to Social Change - A Multi-Level Analysis in Three Cultures
2013-08-01
example, coping may be more collective in collectivist , compared to individualist , societies (Chang & Sivam, 2004). Some cultures have a greater sense...AFRL-AFOSR-UK-TR-2013-0041 Adjusting to Social Change - A multi-level Analysis in three cultures Prof Robin Goodwin...COVERED (From – To) 23 May 2012 – 22 May 2013 4. TITLE AND SUBTITLE Adjusting to Social Change - A multi-level Analysis in three cultures
Suwarno, Sutrisno
2013-01-01
Multi Level Marketing Business nowadays is rapidly growing. In recent years, there have been so many new Multi Level Marketing Business coming out with their own specific offers and products. One of the advantages of MLM Business is the contribution it makes to economic growth. It makes it possible for the national income to continuously grow. The objectives can be achieved from this research are to examine product traits and innovation process of Talk Fusion. Theories supporting research are...
Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location
Directory of Open Access Journals (Sweden)
Qiaoning Yang
2015-10-01
Full Text Available In actual application, sensors are prone to failure because of harsh environments, battery drain, and sensor aging. Sensor fault location is an important step for follow-up sensor fault detection. In this paper, two new multi-level wavelet Shannon entropies (multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are defined. They take full advantage of sensor fault frequency distribution and energy distribution across multi-subband in wavelet domain. Based on the multi-level wavelet Shannon entropy, a method is proposed for single sensor fault location. The method firstly uses a criterion of maximum energy-to-Shannon entropy ratio to select the appropriate wavelet base for signal analysis. Then multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are used to locate the fault. The method is validated using practical chemical gas concentration data from a gas sensor array. Compared with wavelet time Shannon entropy and wavelet energy Shannon entropy, the experimental results demonstrate that the proposed method can achieve accurate location of a single sensor fault and has good anti-noise ability. The proposed method is feasible and effective for single-sensor fault location.
Kutsanedzie, Felix Y H; Chen, Quansheng; Hassan, Md Mehedi; Yang, Mingxiu; Sun, Hao; Rahman, Md Hafizur
2018-02-01
Total fungi count (TFC) is a quality indicator of cocoa beans when unmonitored leads to quality and safety problems. Fourier transform near infrared spectroscopy (FT-NIRS) combined with chemometric algorithms like partial least square (PLS); synergy interval-PLS (Si-PLS); synergy interval-genetic algorithm-PLS (Si-GAPLS); Ant colony optimization - PLS (ACO-PLS) and competitive-adaptive reweighted sampling-PLS (CARS-PLS) was employed to predict TFC in cocoa beans neat solution. Model results were evaluated using the correlation coefficients of the prediction (Rp) and calibration (Rc); root mean square error of prediction (RMSEP), and the ratio of sample standard deviation to RMSEP (RPD). The developed models performance yielded 0.951≤Rp≤0.975; and 3.15≤RPD≤4.32. The models' prediction stability improved in the order of PLS
Castrillon, Julio; Genton, Marc G.; Yokota, Rio
2015-01-01
We develop a multi-level restricted Gaussian maximum likelihood method for estimating the covariance function parameters and computing the best unbiased predictor. Our approach produces a new set of multi-level contrasts where the deterministic
SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries
International Nuclear Information System (INIS)
Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.
1980-08-01
In this report a simple, but powerful, computer program is presented for the solution of two-dimensional transient fluid flow with free boundaries. The SOLA-VOF program, which is based on the concept of a fractional volume of fluid (VOF), is more flexible and efficient than other methods for treating arbitrary free boundaries. SOLA-VOF has a variety of user options that provide capabilities for a wide range of applications. Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. SOLA-VOF is an easy-to-use program. Its logical parts are isolated in separate subroutines, and numerous special features have been included to simplify its operation, such as an automatic time-step control, a flexible mesh generator, extensive output capabilities, a variety of optional boundary conditions, and instructive internal documentation
International Nuclear Information System (INIS)
Wilde, Juray de; Vierendeels, Jan; Heynderickx, Geraldine J.; Marin, Guy B.
2005-01-01
Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models are presented and their stability analyzed. The integration algorithms are based on dual-time stepping with fourth-order Runge-Kutta in pseudo-time. The domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the multi-phase preconditioned advection upstream splitting method (MP-AUSMP). The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability results are compared with the convergence behaviour of 3D riser simulations. The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment of the source terms which are of crucial importance for the Eulerian-Eulerian gas-solid flow models and their solution. The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume fractions and gas-solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the simulation results is investigated. Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated
International Nuclear Information System (INIS)
Park, H.; De Oliveira, C. R. E.
2007-01-01
This paper describes the verification of the recently developed space-angle self-adaptive algorithm for the finite element-spherical harmonics method via the Method of Manufactured Solutions. This method provides a simple, yet robust way for verifying the theoretical properties of the adaptive algorithm and interfaces very well with the underlying second-order, even-parity transport formulation. Simple analytic solutions in both spatial and angular variables are manufactured to assess the theoretical performance of the a posteriori error estimates. The numerical results confirm reliability of the developed space-angle error indicators. (authors)
Enabling the MLSpOC (Multi-Level Space Operations Center) of the Future
Missal, D.
2012-09-01
accredited today at multiple sites both CONUS and OCONUS. It is designed to assist information systems developers achieve DCID 6/3 Protection Level 4 or 5 (PL4 or PL5) or DoD SABI C&A for SECRET-to-UNCLASSIFIED systems (PL3). The product is on the DoD/DNI Unified Cross-domain Management Office's (UCDMO) Baseline of accredited solutions, and is the only solution on the Baseline which the Government considers to be an "All-in-One" approach to the Cross-domain Security challenge. Our solution is also the only PL-4 Cloud in existence and that is deployed and operational in the entire world today (at DIA). The Space marketplace is a very unique cross-domain challenge, as a need exists for Unclassified SSA Data Sharing at a deeper and more fundamental level than anywhere else in the IC or DoD. For instance, certain Agencies and/or Programs have a requirement to share information with Partner Nations that are not considered to be "friendly" (e.g. China). Our Solution is the ONLY solution in the world today that's achieved C&A, and that is uniquely positioned to enable the Multi-level Space Operations Center (MLSpOC) of the Future.
Directory of Open Access Journals (Sweden)
Daniel J. Garcia
2015-07-01
Full Text Available The water footprint of energy systems must be considered, as future water scarcity has been identified as a major concern. This work presents a general life cycle network modeling and optimization framework for energy-based products and processes using a functional unit of liters of water consumed in the processing pathway. We analyze and optimize the water-energy nexus over the objectives of water footprint minimization, maximization of economic output per liter of water consumed (economic efficiency of water, and maximization of energy output per liter of water consumed (energy efficiency of water. A mixed integer, multiobjective nonlinear fractional programming (MINLFP model is formulated. A mixed integer linear programing (MILP-based branch and refine algorithm that incorporates both the parametric algorithm and nonlinear programming (NLP subproblems is developed to boost solving efficiency. A case study in bioenergy is presented, and the water footprint is considered from biomass cultivation to biofuel production, providing a novel perspective into the consumption of water throughout the value chain. The case study, optimized successively over the three aforementioned objectives, utilizes a variety of candidate biomass feedstocks to meet primary fuel products demand (ethanol, diesel, and gasoline. A minimum water footprint of 55.1 ML/year was found, economic efficiencies of water range from −$1.31/L to $0.76/L, and energy efficiencies of water ranged from 15.32 MJ/L to 27.98 MJ/L. These results show optimization provides avenues for process improvement, as reported values for the energy efficiency of bioethanol range from 0.62 MJ/L to 3.18 MJ/L. Furthermore, the proposed solution approach was shown to be an order of magnitude more efficient than directly solving the original MINLFP problem with general purpose solvers.
Sun, Yuan; Bhattacherjee, Anol
2011-11-01
Information technology (IT) usage within organisations is a multi-level phenomenon that is influenced by individual-level and organisational-level variables. Yet, current theories, such as the unified theory of acceptance and use of technology, describe IT usage as solely an individual-level phenomenon. This article postulates a model of organisational IT usage that integrates salient organisational-level variables such as user training, top management support and technical support within an individual-level model to postulate a multi-level model of IT usage. The multi-level model was then empirically validated using multi-level data collected from 128 end users and 26 managers in 26 firms in China regarding their use of enterprise resource planning systems and analysed using the multi-level structural equation modelling (MSEM) technique. We demonstrate the utility of MSEM analysis of multi-level data relative to the more common structural equation modelling analysis of single-level data and show how single-level data can be aggregated to approximate multi-level analysis when multi-level data collection is not possible. We hope that this article will motivate future scholars to employ multi-level data and multi-level analysis for understanding organisational phenomena that are truly multi-level in nature.
The multi-level perspective analysis: Indonesia geothermal energy transition study
Wisaksono, A.; Murphy, J.; Sharp, J. H.; Younger, P. L.
2018-01-01
The study adopts a multi-level perspective in technology transition to analyse how the transition process in the development of geothermal energy in Indonesia is able to compete against the incumbent fossil-fuelled energy sources. Three levels of multi-level perspective are socio-technical landscape (ST-landscape), socio-technical regime (ST-regime) and niche innovations in Indonesia geothermal development. The identification, mapping and analysis of the dynamic relationship between each level are the important pillars of the multi-level perspective framework. The analysis considers the set of rules, actors and controversies that may arise in the technological transition process. The identified geothermal resource risks are the basis of the emerging geothermal technological innovations in Indonesian geothermal. The analysis of this study reveals the transition pathway, which yields a forecast for the Indonesian geothermal technology transition in the form of scenarios and probable impacts.
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
Progressive geometric algorithms
Alewijnse, S.P.A.; Bagautdinov, T.M.; de Berg, M.T.; Bouts, Q.W.; ten Brink, Alex P.; Buchin, K.A.; Westenberg, M.A.
2015-01-01
Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms
Progressive geometric algorithms
Alewijnse, S.P.A.; Bagautdinov, T.M.; Berg, de M.T.; Bouts, Q.W.; Brink, ten A.P.; Buchin, K.; Westenberg, M.A.
2014-01-01
Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms
Tabu search approaches for the multi-level warehouse layout problem with adjacency constraints
Zhang, G. Q.; Lai, K. K.
2010-08-01
A new multi-level warehouse layout problem, the multi-level warehouse layout problem with adjacency constraints (MLWLPAC), is investigated. The same item type is required to be located in adjacent cells, and horizontal and vertical unit travel costs are product dependent. An integer programming model is proposed to formulate the problem, which is NP hard. Along with a cube-per-order index policy based heuristic, the standard tabu search (TS), greedy TS, and dynamic neighbourhood based TS are presented to solve the problem. The computational results show that the proposed approaches can reduce the transportation cost significantly.
Simulation and Analysis of a Grid Connected Multi-level Converter Topologies and their Comparison
Directory of Open Access Journals (Sweden)
Mohammad Shadab Mirza
2014-09-01
Full Text Available This paper presents simulation and analysis of a grid connected multi-level converter topologies. In this paper, converter circuit works as an inverter by controlling the switching angle (α. This paper, presents a MATLAB/SIMULINK model of multi-level converter topologies (topology1 & topology2. Topology1 is without transformer while topology2 with transformer. Both the topologies are simulated and analyzed for three level converters in order to reduce the total harmonic distortion (THD. A comparative study of topology1 and topology2 is also presented in this paper for different switching angles (α and battery voltages. The results have been tabulated and discussed.
Directory of Open Access Journals (Sweden)
Sara Nakhjirkan
2017-09-01
in green supply chain. Vehicle routing between distribution centres and customers has been considered in the model. Establishment place of distribution centres among potential places is determined by the model. The distributors use continuous review policy (r, Q to control the inventory. The proposed model object is to find an optimal supply chain with minimum costs. To validate the proposed model and measure its compliance with real world problems, GAMS IDE/Cplex has been used. In order to measure the efficiency of the proposed model in large scale problems, a genetic algorithm has been used. The results confirm the efficiency of the proposed model as a practical tool for decision makers to solve location-inventory-routing problems in green supply chain. The proposed GA could reduce the solving time by 85% while reaching on the average 97% of optimal solution compared with exact method.
International Nuclear Information System (INIS)
Warsa, J. S.; Morel, J. E.
2007-01-01
Angular discretizations of the S N transport equation in curvilinear coordinate systems may result in a streaming-plus-removal operator that is dense in the angular variable or that is not lower-triangular. We investigate numerical solution algorithms for such angular discretizations using relationships given by Chandrasekhar to compute the angular derivatives in the one-dimensional S N transport equation in spherical coordinates with Gauss quadrature. This discretization makes the S N transport equation P N-1 - equivalent, but it also makes the sweep operator dense at every spatial point because the N angular derivatives are expressed in terms of the N angular fluxes. To avoid having to invert the sweep operator directly, we must work with the angular fluxes to solve the equations iteratively. We show how we can use approximations to the sweep operator to precondition the full P N-1 equivalent S N equations. We show that these pre-conditioners affect the operator enough such that convergence of a Krylov iterative method improves. (authors)
Directory of Open Access Journals (Sweden)
m. s. osman
2017-09-01
Full Text Available In this paper, we consider fuzzy goal programming (FGP approach for solving multi-level multi-objective quadratic fractional programming (ML-MOQFP problem with fuzzy parameters in the constraints. Firstly, the concept of the ?-cut approach is applied to transform the set of fuzzy constraints into a common deterministic one. Then, the quadratic fractional objective functions in each level are transformed into quadratic objective functions based on a proposed transformation. Secondly, the FGP approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach.
International Nuclear Information System (INIS)
Chen, Yizhong; He, Li; Guan, Yanlong; Lu, Hongwei; Li, Jing
2017-01-01
Highlights: • Detailed model developed for the shale gas supply chain system in the US. • Dynamic integration of multi-level programming and life cycle assessment. • Analysis of the objectives with environmental, economic and energy concerns. • Identification of GHG emissions and water-energy consumption at life cycle stages. • Comparison of management performances obtained from the MLP, MOP, and BLP methods. - Abstract: This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water
Sotoodeh, Pedram
This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.
Graduate Attribute Attainment in a Multi-Level Undergraduate Geography Course
Mager, Sarah; Spronken-Smith, Rachel
2014-01-01
We investigated students' perceptions of graduate attributes in a multi-level (second and third year) geography course. A case study with mixed methodology was employed, with data collected through focus groups and a survey. We found that undergraduate geography students can identify the skills, knowledge and attributes that are developed through…
A Dynamic Multi-Level Factor Model with Long-Range Dependence
DEFF Research Database (Denmark)
Ergemen, Yunus Emre; Rodríguez-Caballero, Carlos Vladimir
A dynamic multi-level factor model with stationary or nonstationary global and regional factors is proposed. In the model, persistence in global and regional common factors as well as innovations allows for the study of fractional cointegrating relationships. Estimation of global and regional...
Van Herk, S.; Rijke, J.S.; Zevenbergen, C.; Ashley, R.
2012-01-01
This paper presents a case study of a new adaptive, multi-level governance approach that supported a transition in river basin management in the Netherlands. The floods of 1993 and 1995 in the Netherlands triggered a paradigm shift in flood management. The 2.3 billion Euro flood safety programme
Developing the multi-level functioning interface framework for DER models
DEFF Research Database (Denmark)
Han, Xue; Bindner, Henrik W.; You, Shi
2013-01-01
The paper summarises several modelling applications of distributed energy resources (DERs) for various purposes, and describes the related operational issues regarding the complexity of the future distribution grid. Furthermore, a multi-level functioning interface framework is proposed for DER mo....... The information mapping for photovoltaic panel (PV) modelling is also provided as an example....
Analysis of Harmonic Injection to the Modulation of Multi-Level ...
African Journals Online (AJOL)
This paper explores the analysis of third and ninth harmonic injection to the modulation of a multilevel diode clamped converter (DCC) at a varying modulation index. The spectral distributions of the various multi-level waveforms obtained under normal modulation index of 0.8 and over modulation index of 1.15 were ...
Governing the energy challenge : Canada and Germany in a multi-level regional and global context
International Nuclear Information System (INIS)
Eberlein, B.; Doern, G.B.; Exeter Univ.,
2009-01-01
This book features essays by leading energy and public policy specialists from Canada and Germany. It originated in the Transatlantic Energy Conference which was hosted by the Canadian Centre for German and European Studies at Toronto's York University in September 2005. The conference was attended by leading energy scholars and experts from Canadian and European universities, research institutes and governmental and non-governmental organizations. The purpose of this book was to compare the dynamics of multi-level energy regulatory governance in Germany and Canada, notably the energy policy challenges that include energy security, environmental sustainability and a competitive resource economy. Many strategies to produce more efficient and sustainable energy are presented in the book. Part 1 of the book focuses on the energy industry, with particular emphasise on electricity, nuclear energy and natural gas. Part 2 of the book focuses on domestic patterns of multi-level energy governance and regulation in the two countries. As a member of the European Union, Germany is more advanced in dealing with multi-level governmental and sustainability constraints than Canada is as a member of the North American Free Trade Agreement (NAFTA). The book focuses on the influence that the energy sector and multi-level institutional arrangements have on energy governance, with particular attention to the link between environmental study, climate change issues and economic market reforms. The growing differences between NAFTA and European Union member countries were highlighted. refs., tabs., figs.
A Bayesian Multi-Level Factor Analytic Model of Consumer Price Sensitivities across Categories
Duvvuri, Sri Devi; Gruca, Thomas S.
2010-01-01
Identifying price sensitive consumers is an important problem in marketing. We develop a Bayesian multi-level factor analytic model of the covariation among household-level price sensitivities across product categories that are substitutes. Based on a multivariate probit model of category incidence, this framework also allows the researcher to…
Fabrication and characterization of injection molded multi level nano and microfluidic systems
DEFF Research Database (Denmark)
Matteucci, Marco; Christiansen, Thomas Lehrmann; Tanzi, Simone
2013-01-01
We here present a method for fabrication of multi-level all-polymer chips by means of silicon dry etching, electroplating and injection molding. This method was used for successful fabrication of microfluidic chips for applications in the fields of electrochemistry, cell trapping and DNA elongati...
Adam, N.R.; Bertrand, J.W.M.; Morehead, D.C.; Surkis, J.
1993-01-01
This paper presents a study of due date assignment procedures in job shop environments where multi-level assembly jobs are processed and due dates are internally assigned. Most of the reported studies in the literature have focused on string type jobs. We propose a dynamic update approach (which
PENGEMBANGAN MEDIA LUBANG MULTI LEVEL UNTUK PEMBELAJARAN LEMPAR TANGKAP BOLA KECIL
Directory of Open Access Journals (Sweden)
Tri Aryo Trubus Anom
2017-02-01
Full Text Available This research aims to develop a media Hole Multi Level to capture the small ball throwing learning grade IV elementary school level that can increase students roll control. The model of the research is the development of research and data analysis in the form of a percentage of data types with a description of the qualitative and quantitative. Procedure development include; 1 Potential problems, 2 Data collection, 3 Early media product design Multi Level Hole, 4 Design Validation by expert penjas and learning experts, 5 Revision products I, 6 Trials I in MI Ma’arif NU Darmakradenan, 7 Product revision II, 8 Trial II at four elementary school in the village of Darmakradenan, 9 Product revision III, 10 And products. The results of expert validation against the media Pit Multi Level was 80%, I Test of 83,23%, and II trials of 85.97%. Those results can be concluded that the development of the media Pit Multi Level can be used to capture the small ball throwing learning grade IV elementary school level.
Replantation of multi-level fingertip amputation using the pocket principle (palmar pocket method).
Arata, J; Ishikawa, K; Soeda, H; Kitayama, T
2003-07-01
Two cases of multi-level fingertip amputation are presented. In each case, replantation was achieved in a two-stage procedure, involving reattachment, de-epithelialisation and insertion into a palmar pocket in stage 1, followed by removal from the palmar pocket 16 days later. The cases are described and the technique is discussed.
Glaser, L.; Fourne, S.P.L.; Elfring, T.
2015-01-01
Drawing on corporate entrepreneurship (CE) and social network research, this study focuses on strategic renewal as a form of CE and examines the impact of boundary-spanning at top and middle management levels on business units’ exploratory innovation. Analyses of multi-source and multi-level data,
The Integrated Multi-Level Bilingual Teaching of "Social Research Methods"
Zhu, Yanhan; Ye, Jian
2012-01-01
"Social Research Methods," as a methodology course, combines theories and practices closely. Based on the synergy theory, this paper tries to establish an integrated multi-level bilingual teaching mode. Starting from the transformation of teaching concepts, we should integrate interactions, experiences, and researches together and focus…
Multi-Level Risk Assessment of a Power Plant Gas Turbine Applying ...
African Journals Online (AJOL)
Multi-Level Risk Assessment of a Power Plant Gas Turbine Applying the Criticality Index Model. ... Journal of the Nigerian Association of Mathematical Physics ... This study has carefully shown and expressed a step by step computation of the severity level of the Turbine component parts, using the Criticality Index model.
Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS.
Yu, Hwanjo; Kim, Taehoon; Oh, Jinoh; Ko, Ilhwan; Kim, Sungchul; Han, Wook-Shin
2010-04-16
Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user's feedback and efficiently processes the function to return relevant articles in real time.
Multigrid solution of diffusion equations on distributed memory multiprocessor systems
International Nuclear Information System (INIS)
Finnemann, H.
1988-01-01
The subject is the solution of partial differential equations for simulation of the reactor core on high-performance computers. The parallelization and implementation of nodal multigrid diffusion algorithms on array and ring configurations of the DIRMU multiprocessor system is outlined. The particular iteration scheme employed in the nodal expansion method appears similarly efficient in serial and parallel environments. The combination of modern multi-level techniques with innovative hardware (vector-multiprocessor systems) provides powerful tools needed for real time simulation of physical systems. The parallel efficiencies range from 70 to 90%. The same performance is estimated for large problems on large multiprocessor systems being designed at present. (orig.) [de
DEFF Research Database (Denmark)
Liu, Hui; Ma, Ke; Loh, Poh Chiang
2016-01-01
challenges but may also result in overstressed components for the modular multi-level converter. However, the thermal loading of the modular multi-level converter under various grid faults has not yet been clarified. In this article, the power loss and thermal performance of the modular multi-level converter...... low-voltage ride-through strongly depend on the types and severity values of grid voltage dips. The thermal distribution among the three phases of the modular multi-level converter may be quite uneven, and some devices are much more stressed than the normal operating condition, which may...
Energy Technology Data Exchange (ETDEWEB)
Jollands, Nigel; Gasc, Emilien; Pasquier, Sara Bryan
2009-12-15
Despite creating a plethora of national and international regulations and voluntary programmes to improve energy efficiency, countries are far from achieving full energy efficiency potential across all sectors of the economy. One major challenge, among numerous barriers, is policy implementation. One strategy that many national governments and international organisations have used to address the implementation issue is to engage regional and local authorities. To that end, many programmes have been created that foster energy efficiency action and collaboration across levels of government. The aim of this report is to identify trends and detail recent developments in multi-level governance in energy efficiency (MLGEE). By sharing lessons learned from daily practitioners in the field, the IEA hopes energy efficiency policy makers at all levels of government will be able to identify useful multilevel governance (MLG) practices across geographical and political contexts and use these to design robust programmes; modify existing programmes, and connect and share experiences with other policy makers in this field.
Non-linear interactions of multi-level atoms with a near-resonant standing wave
International Nuclear Information System (INIS)
O'Kane, T.J.; Scholten, R.E.; Walkiewicz, M.R.; Farrell, P.M.
1998-01-01
Using a semiclassical density matrix formalism we have calculated the behavior of multi-level atoms interacting with a standing wave field, and show how complex non-linear phenomena, including multi-photon effects, combine to produce saturation spectra as observed in experiments. We consider both 20-level sodium and 24-level rubidium models, contrasting these with a simple 2-level case. The influence of parameters such as atomic trajectory and the time the atom remains in the beam are shown to have a critical effect on the lineshape of these resonances and the emission/absorption processes. Stable oscillations in the excited state populations for both the two-level and multi-level cases are shown to be limit cycles. These limit cycles undergo period doubling as the system evolves into chaos. Finally, using a Monte Carlo treatment, these processes average to produce saturated absorption spectra complete with power and Doppler broadening effects consistent with experiment. (authors)
Habit, custom, and power: a multi-level theory of population health.
Zimmerman, Frederick J
2013-03-01
In multi-level theory, individual behavior flows from cognitive habits, either directly through social referencing, rules of thumb, or automatic behaviors; or indirectly through the shaping of rationality itself by framing or heuristics. Although behavior does not arise from individually rational optimization, it generally appears to be rational, because the cognitive habits that guide behavior evolve toward optimality. However, power imbalances shaped by particular social, political, and economic structures can distort this evolution, leading to individual behavior that fails to maximize individual or social well-being. Replacing the dominant rational-choice paradigm with a multi-level theoretical paradigm involving habit, custom, and power will enable public health to engage in rigorous new areas of research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Off-resonant transitions in the collective dynamics of multi-level atomic ensembles
DEFF Research Database (Denmark)
Miroshnychenko, Yevhen; Mølmer, Klaus
2013-01-01
We study the contributions of off-resonant transitions to the dynamics of a system of N multi-level atoms sharing one excitation and interacting with the quantized vector electromagnetic field. The rotating wave approximation significantly simplifies the derivation of the equations of motion...... describing the collective atomic dynamics, but it leads to an incorrect expression for the dispersive part of the atom–atom interaction terms. For the case of two-level atoms and a scalar electromagnetic field, it turns out that the atom–atom interaction can be recovered correctly if integrals over...... the photon mode frequencies are extended to incorporate negative values. We explicitly derive the atom–atom interaction for multi-level atoms, coupled to the full vector electromagnetic field, and we recover also in this general case the validity of the results obtained by the extension to negative...
de Siqueira, Alexandre Fioravante; Cabrera, Flávio Camargo; Nakasuga, Wagner Massayuki; Pagamisse, Aylton; Job, Aldo Eloizo
2018-01-01
Image segmentation, the process of separating the elements within a picture, is frequently used for obtaining information from photomicrographs. Segmentation methods should be used with reservations, since incorrect results can mislead when interpreting regions of interest (ROI). This decreases the success rate of extra procedures. Multi-Level Starlet Segmentation (MLSS) and Multi-Level Starlet Optimal Segmentation (MLSOS) were developed to be an alternative for general segmentation tools. These methods gave rise to Jansen-MIDAS, an open-source software. A scientist can use it to obtain several segmentations of hers/his photomicrographs. It is a reliable alternative to process different types of photomicrographs: previous versions of Jansen-MIDAS were used to segment ROI in photomicrographs of two different materials, with an accuracy superior to 89%. © 2017 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
M.S. Osman
2018-03-01
Full Text Available In this paper, an interactive approach for solving multi-level multi-objective fractional programming (ML-MOFP problems with fuzzy parameters is presented. The proposed interactive approach makes an extended work of Shi and Xia (1997. In the first phase, the numerical crisp model of the ML-MOFP problem has been developed at a confidence level without changing the fuzzy gist of the problem. Then, the linear model for the ML-MOFP problem is formulated. In the second phase, the interactive approach simplifies the linear multi-level multi-objective model by converting it into separate multi-objective programming problems. Also, each separate multi-objective programming problem of the linear model is solved by the ∊-constraint method and the concept of satisfactoriness. Finally, illustrative examples and comparisons with the previous approaches are utilized to evince the feasibility of the proposed approach.
New techniques for multi-level cross section calculation and fitting
International Nuclear Information System (INIS)
Froehner, F.H.
1981-01-01
A number of recent developments in multi-level cross section work are described. A new iteration scheme for the conversion of Reich-Moore resonance parameters to Kapur-Peierls parameters allows application of Turing's method for Gaussian broadening of meromorphic functions directly to multi-level cross section expressions, without recourse to the Voigt profiles psi and chi. This makes calculation of Doppler-broadened Reich-Moore and MLBW cross sections practically as fast as SLBW and Adler-Adler cross section calculations involving the Voigt profiles. A convenient distant-level treatment utilizing average resonance parameters is presented. Apart from effectively dealing with edge effects in resonance fitting work it also leads to a simple prescription for the determination of bound levels which reproduce the thermal cross sections correctly. A brief discussion of improved resonance shape fitting techniques is included, with emphasis on the importance of correlated errors and proper use of prior information by application of Bayes' theorem
Profiling micro-organic contaminants in groundwater using multi-level piezometers
White, Debbie; Lapworth, Dan; Stuart, Marianne; Williams, Peter
2015-01-01
The presence of micro-organic pollutants, including ‘emerging contaminants’ within groundwater is of increasing interest. Robust protocols are required to minimise the introduction of contamination during the sampling process. Below we discuss the sampling protocols used to reduce inputs of plasticisers during the sampling process, as well as the techniques used to characterise the distribution of micro-organic pollutants in the subsurface. In this study multi-level piezometers...
A dedicated database system for handling multi-level data in systems biology
Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens
2014-01-01
Background Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging...
“Peran Polri Dalam Penyidikan Tindak Pidana Yang Terkait Dengan Multi Level Marketing”.
Sidabutar, Ronny Nicolas; Syahrin, Alvi; Mulyadi, Mahmud; Marlina, Marlina
2015-01-01
Business industry Multi Level Marketing (MLM) is a lucrative market society especially with the promised bonuses obtained upon the sale of its products. However, there are also business masquerading as MLM, low quality products but a bonus for members is very large, so as to make the public flocked to follow the program masquerading as MLM business. The issues raised in this study is whether there is legal provision that can ensnare actors masquerading as MLM business practice is, how do I de...
Critical network effect induces business oscillations in multi-level marketing systems
Juanico, Dranreb Earl
2012-01-01
The "social-networking revolution" of late (e.g., with the advent of social media, Facebook, and the like) has been propelling the crusade to elucidate the embedded networks that underlie economic activity. An unexampled synthesis of network science and economics uncovers how the web of human interactions spurred by familiarity and similarity could potentially induce the ups and downs ever so common to our economy. Zeroing in on the million-strong global industry known as multi-level marketin...
A multi-level approach to understanding the impact of cyber crime on the financial sector
Monica Lagazio; Nazneen Sherif; Mike Cushman
2014-01-01
This paper puts forward a multi-level model, based on system dynamics methodology, to understand the impact of cyber crime on the financial sector. Consistent with recent findings, our results show that strong dynamic relationships, amongst tangible and intangible factors, affect cyber crime cost and occur at different levels of society and value network. Specifically, shifts in financial companies’ strategic priorities, having the protection of customer trust and loyalty as a key objective, ...
A multi-level qualitative analysis of Telehomecare in Ontario: challenges and opportunities
Hunting, Gemma; Shahid, Nida; Sahakyan, Yeva; Fan, Iris; Moneypenny, Crystal R.; Stanimirovic, Aleksandra; North, Taylor; Petrosyan, Yelena; Krahn, Murray D.; Rac, Valeria E.
2015-01-01
Background Despite research demonstrating the potential effectiveness of Telehomecare for people with Chronic Obstructive Pulmonary Disease and Heart Failure, broad-scale comprehensive evaluations are lacking. This article discusses the qualitative component of a mixed-method program evaluation of Telehomecare in Ontario, Canada. The objective of the qualitative component was to explore the multi-level factors and processes which facilitate or impede the implementation and adoption of the pro...
A Formal Model of Trust Chain based on Multi-level Security Policy
Kong Xiangying
2013-01-01
Trust chain is the core technology of trusted computing. A formal model of trust chain based on finite state automata theory is proposed. We use communicating sequential processes to describe the system state transition in trust chain and by combining with multi-level security strategy give the definition of trust system and trust decision theorem of trust chain transfer which is proved meantime. Finally, a prototype system is given to show the efficiency of the model.
Study of multi-level atomic systems with the application of magnetic field
Hu, Jianping; Roy, Subhankar; Ummal Momeen, M.
2018-04-01
The complexity of multiple energy levels associated with each atomic system determines the various processes related to light- matter interactions. It is necessary to understand the influence of different levels in a given atomic system. In this work we focus on multi- level atomic schemes with the application of magnetic field. We analyze the different EIT windows which appears in the presence of moderately high magnetic field (∼ 10 G) strength.
Directory of Open Access Journals (Sweden)
Motasem Aldiab
2008-01-01
Full Text Available Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their nondeterministic performance. Although content addressable memories (CAMs are favoured by technology vendors due to their deterministic high-lookup rates, they suffer from the problems of high-power consumption and high-silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multilevel cutting of the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
International Nuclear Information System (INIS)
Piskunov, N.E.
1985-01-01
Mathematical formulation of the inverse problem of determination of magnetic field geometry from the polarization profiles of spectral lines is gven. The solving algorithm is proposed. A set of model calculations has shown the effectiveness of the algorithm, the high precision of magnetic star model parameters obtained and also the advantages of the inverse problem method over the commonly used method of interpretation of effective field curves
Thermo-mechanical analysis for multi-level HLW repository concept
International Nuclear Information System (INIS)
Kwon, Sang Ki; Choi, Jong Won
2004-01-01
This work aims to investigate the influence of design parameters for the underground high-level nuclear waste repository with multi-level concept. B. Necessity o In order to construct an HLW repository in deep underground, it is required to select a site, which is far from major discontinuities. To dispose the whole spent fuels generated from the Korean nuclear power plants in a repository, the underground area of about 4km 2 is required. This would be a constraints for selecting an adequate repository site. It is recommended to dispose the two different spent fuels, PWR and CANDU, in different areas at the operation efficiency point of view. It is necessary to investigate the influence of parameters, which can affect the stability of multi-level repository. It is also needed to consider the influence of heat generated from the HLW and the high in situ stress in deep location. Therefore, thermo-mechanical coupling analysis should be carried out and the results should be compared with the results from single-level repository concept. Three-dimensional analysis is required to model the disposal tunnel and deposition hole. It is recommended to use the Korean geological condition and actually measured rock properties in Korea in order to achieve reliable modeling results. A FISH routine developed for effective modeling of Thermal-Mechanical coupling was implemented in the modeling using FLAC3D, which is a commercial three-dimensional FDM code. The thermal and mechanical properties of rock and rock mass achieved from Yusung drilling site, were used for the computer modeling. Different parameters such as level distance, waste type disposed on different levels, and time interval between the operation on different levels, were considered in the three-dimensional analysis. From the analysis, it was possible to derive adequate multi-level repository concept. Results and recommendations for application From the thermal-mechanical analysis for the multi-level repository
Multi-stage decoding for multi-level block modulation codes
Lin, Shu
1991-01-01
In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
Lomsky-Feder, Edna; Sasson-Levy, Orna
2015-03-01
With the growing elusiveness of the state apparatus in late modernity, military service is one of the last institutions to be clearly identified with the state, its ideologies and its policies. Therefore, negotiations between the military and its recruits produce acting subjects of citizenship with long-lasting consequences. Arguing that these negotiations are regulated by multi-level (civic, group, and individual) contracts, we explore the various meanings that these contracts obtain at the intersectionality of gender, class, and ethnicity; and examine how they shape the subjective experience of soldierhood and citizenship. More particularly, we analyse the meaning of military service in the retrospective life stories of Israeli Jewish women from various ethno-class backgrounds who served as army secretaries - a low-status, feminine gender-typed occupation within a hyper-masculine organization. Findings reveal that for women of the lower class, the organizing cultural schema of the multi-level contract is that of achieving respectability through military service, which means being included in the national collective. Conversely, for middle-class women, it is the sense of entitlement that shapes their contract with the military, which they expect to signify and maintain their privileged status. Thus, while for the lower class, the multi-level contract is about inclusion within the boundaries of the national collective, for the dominant groups, this contract is about reproducing social class hierarchies within national boundaries. © London School of Economics and Political Science 2014.
Multi-level Control Framework for Enhanced Flexibility of Active Distribution Network
DEFF Research Database (Denmark)
Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna
2017-01-01
In this paper, the control objectives of future active distribution networks with high penetration of renewables and flexible loads are analyzed and reviewed. From a state of the art review, the important control objectives seen from the perspective of a distribution system operator are identifie......-ordination and management of the network assets at different voltage levels and geographical locations. The paper finally shows the applicability of the multi-level control architecture to some of the key challenges in the distribution system operation by relevant scenarios....... to be hosting capacity improvement, high reliable operation and cost effective network management. Based on this review and a state of the art review concerning future distribution network control methods, a multi-level control architecture is constructed for an active distribution network, which satisfies...... the selected control objectives and provides enhanced flexibility. The control architecture is supported by generation/load forecasting and distribution state estimation techniques to improve the controllability of the network. The multi-level control architecture consists of three levels of hierarchical...
Multi-level governance of forest resources (Editorial to the special feature
Directory of Open Access Journals (Sweden)
Esther Mwangi
2012-08-01
Full Text Available A major challenge for many researchers and practitioners relates to how to recognize and address cross-scale dynamics in space and over time in order to design and implement effective governance arrangements. This editorial provides an overview of the concept of multi-level governance (MLG. In particular we highlight definitional issues, why the concept matters as well as more practical concerns related to the processes and structure of multi-level governance. It is increasingly clear that multi-level governance of forest resources involves complex interactions of state, private and civil society actors at various levels, and institutions linking higher levels of social and political organization. Local communities are increasingly connected to global networks and influences. This creates new opportunities to learn and address problems but may also introduce new pressures and risks. We conclude by stressing the need for a much complex approach to the varieties of MLG to better understand how policies work as instruments of governance and to organize communities within systems of power and authority.
Directory of Open Access Journals (Sweden)
Chunhua Ju
2012-01-01
Full Text Available Managing multiple project is a complex task involving the unrelenting pressures of time and cost. Many studies have proposed various tools and techniques for single-project scheduling; however, the literature further considering multimode or multiproject issues occurring in the real world is rather scarce. In this paper, design structure matrix (DSM and an improved artificial immune network algorithm (aiNet are developed to solve a multi-mode resource-constrained scheduling problem. Firstly, the DSM is used to simplify the mathematic model of multi-project scheduling problem. Subsequently, aiNet algorithm comprised of clonal selection, negative selection, and network suppression is adopted to realize the local searching and global searching, which will assure that it has a powerful searching ability and also avoids the possible combinatorial explosion. Finally, the approach is tested on a set of randomly cases generated from ProGen. The computational results validate the effectiveness of the proposed algorithm comparing with other famous metaheuristic algorithms such as genetic algorithm (GA, simulated annealing algorithm (SA, and ant colony optimization (ACO.
Thareja, R.; Haftka, R. T.
1986-01-01
There has been recent interest in multidisciplinary multilevel optimization applied to large engineering systems. The usual approach is to divide the system into a hierarchy of subsystems with ever increasing detail in the analysis focus. Equality constraints are usually placed on various design quantities at every successive level to ensure consistency between levels. In many previous applications these equality constraints were eliminated by reducing the number of design variables. In complex systems this may not be possible and these equality constraints may have to be retained in the optimization process. In this paper the impact of such a retention is examined for a simple portal frame problem. It is shown that the equality constraints introduce numerical difficulties, and that the numerical solution becomes very sensitive to optimization parameters for a wide range of optimization algorithms.
Christen, Matthias; Del Medico, Luca; Christen, Heinz; Christen, Beat
2017-01-01
Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.
Directory of Open Access Journals (Sweden)
Matthias Christen
Full Text Available Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.
Directory of Open Access Journals (Sweden)
Georgii N. Lebedev
2017-01-01
Full Text Available The improvement in the effectiveness of airfield operation largely depends on the problem solving quality on the interaction boundaries of different technological sections. One of such hotspots is the use of the same runway by inbound and outbound aircraft. At certain intensity of outbound and inbound air traffic flow the conflict of aircraft interests appears, where it may be quite difficult to sort out priorities even for experienced controllers, in consequence of which mistakes in decision-making unavoidably appear.In this work the task of response correction of landing and takeoff time of the aircraft using the same RW, in condition of the conflict of interests “arrival – departure” at the increased operating intensity is formulated. The choice of optimal solution is made taking into account mutual interests without the complete sorting and the evaluation of all solutions.Accordingly, the genetic algorithm, which offers a simple and effective approach to optimal control problem solution by providing flight safety at an acceptably high level, is proposed. The estimation of additional aviation fuel consumption is used as optimal choice evaluation criterion.The advantages of the genetic algorithm application at decision-making in comparison with today’s “team” solution of the conflict “departure – arrival” in the airfield area are shown.
Multi level optimization of burnable poison utilization for advanced PWR fuel management
Yilmaz, Serkan
The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as
Yan, Xinping; Xu, Xiaojian; Sheng, Chenxing; Yuan, Chengqing; Li, Zhixiong
2018-01-01
Wear faults are among the chief causes of main-engine damage, significantly influencing the secure and economical operation of ships. It is difficult for engineers to utilize multi-source information to identify wear modes, so an intelligent wear mode identification model needs to be developed to assist engineers in diagnosing wear faults in diesel engines. For this purpose, a multi-level belief rule base (BBRB) system is proposed in this paper. The BBRB system consists of two-level belief rule bases, and the 2D and 3D characteristics of wear particles are used as antecedent attributes on each level. Quantitative and qualitative wear information with uncertainties can be processed simultaneously by the BBRB system. In order to enhance the efficiency of the BBRB, the silhouette value is adopted to determine referential points and the fuzzy c-means clustering algorithm is used to transform input wear information into belief degrees. In addition, the initial parameters of the BBRB system are constructed on the basis of expert-domain knowledge and then optimized by the genetic algorithm to ensure the robustness of the system. To verify the validity of the BBRB system, experimental data acquired from real-world diesel engines are analyzed. Five-fold cross-validation is conducted on the experimental data and the BBRB is compared with the other four models in the cross-validation. In addition, a verification dataset containing different wear particles is used to highlight the effectiveness of the BBRB system in wear mode identification. The verification results demonstrate that the proposed BBRB is effective and efficient for wear mode identification with better performance and stability than competing systems.
Directory of Open Access Journals (Sweden)
Nasri Abdelfatah
2011-01-01
Full Text Available The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s cause’s active power transmission reduction, power losses decreasing, and the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC algorithm for critical nodal detection and gentic algorithm optimization (GAO algorithm for optimal seizing capacitor.GAO method is more efficient in combinatory problem solutions. The proposed approach has been examined and tested on the standard IEEE 57-bus the resulats show the power loss minimization denhancement, voltage profile, and stability improvement. The proposed approach results have been compared to those that reported in the literature recently. The results are promising and show the effectiveness and robustness of the proposed approach.
Examining multi-level effects on corporate social responsibility and irresponsibility
Directory of Open Access Journals (Sweden)
Mazzei Matthew J.
2015-10-01
Full Text Available What influences firms to engage in socially responsible (irresponsible activities? Corporate social responsibility (CSR, the efforts of firms to create a positive and desirable impact on society, and corporate social irresponsibility (CSI, contrary actions of unethical behavior that negatively influence society, have become an important focus of discussion for both corporations and scholars. Despite this interest, our understanding of organizations’ socially responsible (irresponsible actions and their antecedents is still developing. A dearth of knowledge about the multi-level nature of the drivers of CSR and CSI continues to exist. Utilizing a longitudinal sample composed of 899 firms in 66 industries, we follow a prominent model to empirically examine industry-, firm-, and individual-level effects on CSR and CSI. Employing variance decomposition analysis, our results confirm that all three levels of investigation do indeed influence CSR and CSI. More substantively, our analysis estimates the magnitude of the effects attributable to each of the three levels for both CSR and CSI. We also compare multi-level influences on two separate CSR strategies, those targeting primary stakeholders (strategic CSR and those targeting secondary stakeholders (social CSR. We find greater industry- and firmlevel effects on social CSR, and higher individual-level effects on strategic CSR. Our results build on the conceptual work of previous authors by providing empirical analyses to confirm multilevel influences on CSR and extending prior multi-level theory to the concept of CSI. Further, we add to the emerging literature regarding stakeholder demands by examining the various influences on CSR strategies targeting different stakeholder groups.
Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media
Chueh, C.C.
2010-10-01
An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium, are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive refinement technique in resolving the saturation field and the complex interaction (transport phenomena) between two fluids in heterogeneous media. © 2010 Elsevier Ltd.
Mohd Fo'ad Rohani; Mohd Aizaini Maarof; Ali Selamat; Houssain Kettani
2010-01-01
This paper proposes a Multi-Level Sampling (MLS) approach for continuous Loss of Self-Similarity (LoSS) detection using iterative window. The method defines LoSS based on Second Order Self-Similarity (SOSS) statistical model. The Optimization Method (OM) is used to estimate self-similarity parameter since it is fast and more accurate in comparison with other estimation methods known in the literature. Probability of LoSS detection is introduced to measure continuous LoSS detection performance...
Emitter signal separation method based on multi-level digital channelization
Han, Xun; Ping, Yifan; Wang, Sujun; Feng, Ying; Kuang, Yin; Yang, Xinquan
2018-02-01
To solve the problem of emitter separation under complex electromagnetic environment, a signal separation method based on multi-level digital channelization is proposed in this paper. A two-level structure which can divide signal into different channel is designed first, after that, the peaks of different channels are tracked using the track filter and the coincident signals in time domain are separated in time-frequency domain. Finally, the time domain waveforms of different signals are acquired by reverse transformation. The validness of the proposed method is proved by experiment.
Panel Data with Cross-Sectional Dependence Characterized by a Multi-Level Factor Structure
DEFF Research Database (Denmark)
Rodríguez-Caballero, Carlos Vladimir
A panel data model with a multi-level cross-sectional dependence is proposed. The factor structure is driven by top-level common factors as well as non-pervasive factors. I propose a simple method to filter out the full factor structure that overcomes limitations in standard procedures which may...... mix up both levels of unobservable factors and may hamper the identification of the model. The model covers both stationary and non-stationary cases and takes into account other relevant features that make the model well suited to the analysis of many types of time series frequently addressed...
A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence
Lam, Heidi
2010-01-01
Displaying multiple levels of data visually has been proposed to address the challenge of limited screen space. Although many previous empirical studies have addressed different aspects of this question, the information visualization research community does not currently have a clearly articulated consensus on how, when, or even if displaying data at multiple levels is effective. To shed more light on this complex topic, we conducted a systematic review of 22 existing multi-level interface studies to extract high-level design guidelines. To facilitate discussion, we cast our analysis findings
Multi-level governance-perspective on management of nuclear waste disposal. A comparative analysis
Energy Technology Data Exchange (ETDEWEB)
Brunnengraeber, Achim; Haefner, Daniel
2015-07-01
The primary aim of the project is to conduct a detailed social and political analysis of the preconditions for the development of an acceptable strategy for nuclear waste disposal in Germany. This includes the identification of stakeholders and their interests, responsibilities, value systems, views and expectations as well as paths for a constructive approach to dialogue and problem-solving. A focus of the research project will be an international comparative multi-level governance analysis of acceptance patterns and steering mechanisms for conflict resolution.
Multi-level switching in TiOx Fy film with nanoparticles
International Nuclear Information System (INIS)
Sun, Xiangyu; Wu, Chuangui; Shuai, Yao; Pan, Xinqiang; Luo, Wenbo; You, Tiangui; Du, Nan; Schmidt, Heidemarie
2017-01-01
A reliable bipolar resistive switching device was achieved with multi-level switching behavior in fluorine-doped titanium oxide (TiO x F y ) film. Different resistance states can be precisely controlled by different pulse voltages, which reveals the device’s high potential in neuromorphic research. The characteristics of I – V curves in each resistance state were analyzed. Nanoparticles were observed in the TiO x F y film by HR-TEM. The underlying physical mechanisms during resistance switching are discussed and a model of a meshy conducting path is proposed. (paper)
Multi-level governance-perspective on management of nuclear waste disposal. A comparative analysis
International Nuclear Information System (INIS)
Brunnengraeber, Achim; Haefner, Daniel
2015-01-01
The primary aim of the project is to conduct a detailed social and political analysis of the preconditions for the development of an acceptable strategy for nuclear waste disposal in Germany. This includes the identification of stakeholders and their interests, responsibilities, value systems, views and expectations as well as paths for a constructive approach to dialogue and problem-solving. A focus of the research project will be an international comparative multi-level governance analysis of acceptance patterns and steering mechanisms for conflict resolution.
Topological structures of adiabatic phase for multi-level quantum systems
International Nuclear Information System (INIS)
Liu Zhengxin; Zhou Xiaoting; Liu Xin; Liu Xiongjun; Chen Jingling
2007-01-01
The topological properties of adiabatic gauge fields for multi-level (three-level in particular) quantum systems are studied in detail. Similar to the result that the adiabatic gauge field for SU(2) systems (e.g. two-level quantum system or angular momentum systems, etc) has a monopole structure, the curvature 2-forms of the adiabatic holonomies for SU(3) three-level and SU(3) eight-level quantum systems are shown to have monopole-like (for all levels) or instanton-like (for the degenerate levels) structures
Risk Evaluation of Railway Coal Transportation Network Based on Multi Level Grey Evaluation Model
Niu, Wei; Wang, Xifu
2018-01-01
The railway transport mode is currently the most important way of coal transportation, and now China’s railway coal transportation network has become increasingly perfect, but there is still insufficient capacity, some lines close to saturation and other issues. In this paper, the theory and method of risk assessment, analytic hierarchy process and multi-level gray evaluation model are applied to the risk evaluation of coal railway transportation network in China. Based on the example analysis of Shanxi railway coal transportation network, to improve the internal structure and the competitiveness of the market.
A multi-level code for metallurgical effects in metal-forming processes
Energy Technology Data Exchange (ETDEWEB)
Taylor, P.A.; Silling, S.A. [Sandia National Labs., Albuquerque, NM (United States). Computational Physics and Mechanics Dept.; Hughes, D.A.; Bammann, D.J.; Chiesa, M.L. [Sandia National Labs., Livermore, CA (United States)
1997-08-01
The authors present the final report on a Laboratory-Directed Research and Development (LDRD) project, A Multi-level Code for Metallurgical Effects in metal-Forming Processes, performed during the fiscal years 1995 and 1996. The project focused on the development of new modeling capabilities for simulating forging and extrusion processes that typically display phenomenology occurring on two different length scales. In support of model fitting and code validation, ring compression and extrusion experiments were performed on 304L stainless steel, a material of interest in DOE nuclear weapons applications.
Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
DEFF Research Database (Denmark)
Ipsen, Christine; Poulsen, Signe; Gish, Liv
2014-01-01
This paper presents the result of four SMEs’ use of a multi-level participatory self-help intervention model (the PoWRS model – Prevention of Work Related Stress). The model itself supports a new view on prevention of work-related stress in the participating companies besides the concrete...... to explicate tacit knowledge about what creates enthusiasms and stress at the work place, Multi-voting which decided two work-related changes to be initiated, a KickOff session to mark the start-up of the actual changes, continuous interviews of colleagues by the in-house facilitators, and ongoing status...... be addressed and how prevention of work-related stress can be understood. In addition to supporting a new understanding of prevention, the use of the model also results in concrete changes which become solutions to the work-place’s current and specific problems. The use of the PoWRS model thus enables an SME...
International Nuclear Information System (INIS)
Ball, G.
1990-01-01
The development and analysis of methods for generating first-flight collision probabilities in two-dimensional geometries consistent with Light Water Moderated (LWR) fuel assemblies are examined. A new ray-tracing algorithm is discussed. A number of numerical results are given demonstrating the feasibility of this algorithm and the effects of the moderator (and fuel) sectorizations on the resulting flux distributions. The collision probabilties have been introduced and their subsequent utilization in the flux calculation procedures illustrated. A brief description of the Coxy-1 and Coxy-2 programs (which were developed in the Reactor Theory Division of the Atomic Energy Agency of South Africa Ltd) has also been added. 41 figs., 9 tabs., 18 refs
Adaptive local refinement and multi-level methods for simulating multiphasic flows
International Nuclear Information System (INIS)
Minjeaud, Sebastian
2010-01-01
This thesis describes some numerical and mathematical aspects of incompressible multiphase flows simulations with a diffuse interface Cahn-Hilliard / Navier-Stokes model (interfaces have a small but a positive thickness). The space discretization is performed thanks to a Galerkin formulation and the finite elements method. The presence of different scales in the system (interfaces have a very small thickness compared to the characteristic lengths of the domain) suggests the use of a local adaptive refinement method. The algorithm that is introduced allows to implicitly handle the non-conformities of the generated meshes to produce conformal finite elements approximation spaces. It consists in refining basis functions instead of cells. The refinement of a basis function is made possible by the conceptual existence of a nested sequence of uniformly refined grids from which 'parent-child' relationships are deduced, linking the basis functions of two consecutive refinement levels. Moreover, it is shown how this method can be exploited to build multigrid pre-conditioners. From a composite finite elements approximation space, it is indeed possible to rebuild, by 'coarsening', a sequence of auxiliary nested spaces which allows to enter in the abstract multigrid framework. Concerning the time discretization, it begins with the study of the Cahn-Hilliard system. A semi-implicit scheme is proposed to remedy to convergence failures of the Newton method used to solve this (non linear) system. It guarantees the decrease of the discrete free energy ensuring the stability of the scheme. The existence and convergence of discrete solutions towards the weak solution of the system are shown. The study continues with providing an unconditionally stable time discretization of the complete Cahn-Hilliard / Navier-Stokes model. An important point is that this discretization does not strongly couple the Cahn-Hilliard and Navier-Stokes systems allowing to independently solve the two systems
Stakeholder conceptualisation of multi-level HIV and AIDS determinants in a Black epicentre.
Brawner, Bridgette M; Reason, Janaiya L; Hanlon, Kelsey; Guthrie, Barbara; Schensul, Jean J
2017-09-01
HIV has reached epidemic proportions among African Americans in the USA but certain urban contexts appear to experience a disproportionate disease burden. Geographic information systems mapping in Philadelphia indicates increased HIV incidence and prevalence in predominantly Black census tracts, with major differences across adjacent communities. What factors shape these geographic HIV disparities among Black Philadelphians? This descriptive study was designed to refine and validate a conceptual model developed to better understand multi-level determinants of HIV-related risk among Black Philadelphians. We used an expanded ecological approach to elicit reflective perceptions from administrators, direct service providers and community members about individual, social and structural factors that interact to protect against or increase the risk for acquiring HIV within their community. Gender equity, social capital and positive cultural mores (e.g., monogamy, abstinence) were seen as the main protective factors. Historical negative contributory influences of racial residential segregation, poverty and incarceration were among the most salient risk factors. This study was a critical next step toward initiating theory-based, multi-level community-based HIV prevention initiatives.
Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography
International Nuclear Information System (INIS)
Nam, Yoonkwang; Kim, Minseok; Kim, Taesung
2013-01-01
Most polymer-replica-based microfluidic devices are mainly fabricated by using standard soft-lithography technology so that multi-level masters (MLMs) require multiple spin-coatings, mask alignments, exposures, developments, and bakings. In this paper, we describe a simple method for fabricating MLMs for planar microfluidic channels with multi-level barriers (MLBs). A single photomask is necessary for standard photolithography technology to create a polydimethylsiloxane grey-scale photomask (PGSP), which adjusts the total amount of UV absorption in a negative-tone photoresist via a wide range of dye concentrations. Since the PGSP in turn adjusts the degree of cross-linking of the photoresist, this method enables the fabrication of MLMs for an MLB-integrated microfluidic device. Since the PGSP-based soft-lithography technology provides a simple but powerful fabrication method for MLBs in a microfluidic device, we believe that the fabrication method can be widely used for micro total analysis systems that benefit from MLBs. We demonstrate an MLB-integrated microfluidic device that can separate microparticles. (paper)
Directory of Open Access Journals (Sweden)
Nirupama Benis
2017-06-01
Full Text Available The genotype and external phenotype of organisms are linked by so-called internal phenotypes which are influenced by environmental conditions. In this study, we used five existing -omics datasets representing five different layers of internal phenotypes, which were simultaneously measured in dietarily perturbed mice. We performed 10 pair-wise correlation analyses verified with a null model built from randomized data. Subsequently, the inferred networks were merged and literature mined for co-occurrences of identified linked nodes. Densely connected internal phenotypes emerged. Forty-five nodes have links with all other data-types and we denote them “connectivity hubs.” In literature, we found proof of 6% of the 577 connections, suggesting a biological meaning for the observed correlations. The observed connectivities between metabolite and cytokines hubs showed higher numbers of literature hits as compared to the number of literature hits on the connectivities between the microbiota and gene expression internal phenotypes. We conclude that multi-level integrated networks may help to generate hypotheses and to design experiments aiming to further close the gap between genotype and phenotype. We describe and/or hypothesize on the biological relevance of four identified multi-level connectivity hubs.
Agent-based model with multi-level herding for complex financial systems
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-02-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.
Is multi-level marketing of nutrition supplements a legal and an ethical practice?
Cardenas, Diana; Fuchs-Tarlovsky, Vanessa
2018-06-01
Multi-level marketing (MLM) of nutrition products has experienced dramatic growth in recent decades. 'Wellness' is the second most popular niche in the MLM industry and represents 35% of sales among all the products in 2016. This category includes dietary supplements, weight management and sports nutrition products. The aim of this paper is to analyse whether this practice is legal and ethical. An analysis of available documentary information about the legal aspects of Multi-level marketing business was performed. Ethical reflexion was based on the "principlism" approach. We argue that, while being a controversial business model, MLM is not fraudulent from a legal point of view. However, it is an unethical strategy obviating all the principles of beneficence, nonmaleficence and autonomy. What is at stake is the possible economic scam and the potential harm those products could cause due to unproven efficacy, exceeding daily nutrient requirements and potential toxicity. The sale of dietary and nutrition supplements products by physicians and dieticians presents a conflict of interests that can undermine the primary obligation of physicians to serve the interests of their patients before their own. While considering that MLM of dietary supplements and other nutrition products are a legal business strategy, we affirm that it is an unethical practice. MLM products that have nutritional value or promoted as remedies may be unnecessary and intended for conditions that are unsuitable for self-prescription as well. Copyright © 2018 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
An Internet of Things Based Multi-Level Privacy-Preserving Access Control for Smart Living
Directory of Open Access Journals (Sweden)
Usama Salama
2018-05-01
Full Text Available The presence of the Internet of Things (IoT in healthcare through the use of mobile medical applications and wearable devices allows patients to capture their healthcare data and enables healthcare professionals to be up-to-date with a patient’s status. Ambient Assisted Living (AAL, which is considered as one of the major applications of IoT, is a home environment augmented with embedded ambient sensors to help improve an individual’s quality of life. This domain faces major challenges in providing safety and security when accessing sensitive health data. This paper presents an access control framework for AAL which considers multi-level access and privacy preservation. We focus on two major points: (1 how to use the data collected from ambient sensors and biometric sensors to perform the high-level task of activity recognition; and (2 how to secure the collected private healthcare data via effective access control. We achieve multi-level access control by extending Public Key Infrastructure (PKI for secure authentication and utilizing Attribute-Based Access Control (ABAC for authorization. The proposed access control system regulates access to healthcare data by defining policy attributes over healthcare professional groups and data classes classifications. We provide guidelines to classify the data classes and healthcare professional groups and describe security policies to control access to the data classes.
Multi-level discriminative dictionary learning with application to large scale image classification.
Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua
2015-10-01
The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.
International Nuclear Information System (INIS)
Pan Danguang; Gao Yanhua; Song Junlei
2010-01-01
A new analysis technique, called multi-level interval estimation method, is developed for locating damage in structures. In this method, the artificial neural networks (ANN) analysis method is combined with the statistics theory to estimate the range of damage location. The ANN is multilayer perceptron trained by back-propagation. Natural frequencies and modal shape at a few selected points are used as input to identify the location and severity of damage. Considering the large-scale structures which have lots of elements, multi-level interval estimation method is developed to reduce the estimation range of damage location step-by-step. Every step, estimation range of damage location is obtained from the output of ANN by using the method of interval estimation. The next ANN training cases are selected from the estimation range after linear transform, and the output of new ANN estimation range of damage location will gained a reduced estimation range. Two numerical example analyses on 10-bar truss and 100-bar truss are presented to demonstrate the effectiveness of the proposed method.
Rapid islanding detection using multi-level inverter for grid-interactive PV system
International Nuclear Information System (INIS)
Tsang, K.M.; Chan, W.L.
2014-01-01
Graphical abstract: - Highlights: • Novel reference signal is used to form an islanding detection scheme for PV system. • Supply fixed magnitude sinusoidal signal even if utility grid is disconnected. • Seamless transfer between grid-connected and stand-alone modes is possible. - Abstract: A novel reference signal generator is combined with a multi-level inverter to form a rapid islanding detection scheme for grid-interactive PV system. The reference signal generator can easily be synchronized with the utility grid signal and produced a fixed magnitude and very low total harmonic distortion (THD) sinusoidal signal which is in phase with the utility grid signal. Unlike conventional phase-locked loop (PLL) circuitry, the reference signal generator can also provide a fixed magnitude sinusoidal signal even if the utility grid is disconnected and automatically re-synchronous with the grid rapidly. Consequently, seamless transfer between grid-connected and stand-alone modes could easily be achieved if anti-islanding protection is not required. If a saturation element is applied to the raw reference signal followed by the synthesis of the truncated signal using a multi-level inverter, the distinct flat-top feature of the synthesized signal can quickly and easily be identified if the network is in islanding mode at the point of common coupling. Experimental results are included to demonstrate the effectiveness of the proposed detection scheme
New techniques for multi-level cross section calculation and fitting
International Nuclear Information System (INIS)
Froehner, F.H.
1980-09-01
A number of recent developments in multi-level cross section work are described. A new iteration scheme for the conversion of Reich-Moore resonance parameters to Kapur-Peierls parameters allows application of Turing's method for Gaussian broadening of meromorphic functions directly to multi-level cross section expressions, without recourse to the Voigt profiles psi and chi. This makes calculation of Doppler-broadened Reich-Moore and MLBW cross sections practically as fast as SLBW and Adler-Adler cross section calculations involving the Voigt profiles. A convenient distant-level treatment utilizing average resonance parameters is presented. Apart from effectively dealing with edge effects in resonance fitting work it also leads to a simple prescription for the determination of bound levels which reproduce the thermal cross sections correctly. A brief discussion of improved resonance shape fitting techniques is included, with empahsis on the importance of correlated errors and proper use of prior information by application of Bayes' theorem. (orig.) [de
Multi-level functionality of social media in the aftermath of the Great East Japan Earthquake.
Jung, Joo-Young; Moro, Munehito
2014-07-01
This study examines the multi-level functionalities of social media in the aftermath of the Great East Japan Earthquake of 11 March 2011. Based on a conceptual model of multi-level story flows of social media (Jung and Moro, 2012), the study analyses the multiple functionalities that were ascribed to social media by individuals, organisations, and macro-level social systems (government and the mass media) after the earthquake. Based on survey data, a review of Twitter timelines and secondary sources, the authors derive five functionalities of social media: interpersonal communications with others (micro level); channels for local governments; organisations and local media (meso level); channels for mass media (macro level); information sharing and gathering (cross level); and direct channels between micro-/meso- and macro-level agents. The study sheds light on the future potential of social media in disaster situations and suggests how to design an effective communication network to prepare for emergency situations. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
Castrillon, Julio
2015-11-10
We develop a multi-level restricted Gaussian maximum likelihood method for estimating the covariance function parameters and computing the best unbiased predictor. Our approach produces a new set of multi-level contrasts where the deterministic parameters of the model are filtered out thus enabling the estimation of the covariance parameters to be decoupled from the deterministic component. Moreover, the multi-level covariance matrix of the contrasts exhibit fast decay that is dependent on the smoothness of the covariance function. Due to the fast decay of the multi-level covariance matrix coefficients only a small set is computed with a level dependent criterion. We demonstrate our approach on problems of up to 512,000 observations with a Matérn covariance function and highly irregular placements of the observations. In addition, these problems are numerically unstable and hard to solve with traditional methods.
Pseudo-deterministic Algorithms
Goldwasser , Shafi
2012-01-01
International audience; In this talk we describe a new type of probabilistic algorithm which we call Bellagio Algorithms: a randomized algorithm which is guaranteed to run in expected polynomial time, and to produce a correct and unique solution with high probability. These algorithms are pseudo-deterministic: they can not be distinguished from deterministic algorithms in polynomial time by a probabilistic polynomial time observer with black box access to the algorithm. We show a necessary an...
Energy Technology Data Exchange (ETDEWEB)
McLay, R.T.; Carey, G.F.
1996-12-31
In this study we consider parallel solution of sparse linear systems arising from discretized PDE`s. As part of our continuing work on our parallel PCG Solver package, we have made improvements in two areas. The first is improving the performance of the matrix-vector product. Here on regular finite-difference grids, we are able to use the cache memory more efficiently for smaller domains or where there are multiple degrees of freedom. The second problem of interest in the present work is the construction of preconditioners in the context of the parallel PCG solver we are developing. Here the problem is partitioned over a set of processors subdomains and the matrix-vector product for PCG is carried out in parallel for overlapping grid subblocks. For problems of scaled speedup, the actual rate of convergence of the unpreconditioned system deteriorates as the mesh is refined. Multigrid and subdomain strategies provide a logical approach to resolving the problem. We consider the parallel trade-offs between communication and computation and provide a complexity analysis of a representative algorithm. Some preliminary calculations using the parallel package and comparisons with other preconditioners are provided together with parallel performance results.
Chen, Tinggui; Xiao, Renbin
2014-01-01
Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness.
Directory of Open Access Journals (Sweden)
DAHIYA, P.
2015-05-01
Full Text Available This paper presents the application of hybrid opposition based disruption operator in gravitational search algorithm (DOGSA to solve automatic generation control (AGC problem of four area hydro-thermal-gas interconnected power system. The proposed DOGSA approach combines the advantages of opposition based learning which enhances the speed of convergence and disruption operator which has the ability to further explore and exploit the search space of standard gravitational search algorithm (GSA. The addition of these two concepts to GSA increases its flexibility for solving the complex optimization problems. This paper addresses the design and performance analysis of DOGSA based proportional integral derivative (PID and fractional order proportional integral derivative (FOPID controllers for automatic generation control problem. The proposed approaches are demonstrated by comparing the results with the standard GSA, opposition learning based GSA (OGSA and disruption based GSA (DGSA. The sensitivity analysis is also carried out to study the robustness of DOGSA tuned controllers in order to accommodate variations in operating load conditions, tie-line synchronizing coefficient, time constants of governor and turbine. Further, the approaches are extended to a more realistic power system model by considering the physical constraints such as thermal turbine generation rate constraint, speed governor dead band and time delay.
A multi-level qualitative analysis of Telehomecare in Ontario: challenges and opportunities.
Hunting, Gemma; Shahid, Nida; Sahakyan, Yeva; Fan, Iris; Moneypenny, Crystal R; Stanimirovic, Aleksandra; North, Taylor; Petrosyan, Yelena; Krahn, Murray D; Rac, Valeria E
2015-12-09
Despite research demonstrating the potential effectiveness of Telehomecare for people with Chronic Obstructive Pulmonary Disease and Heart Failure, broad-scale comprehensive evaluations are lacking. This article discusses the qualitative component of a mixed-method program evaluation of Telehomecare in Ontario, Canada. The objective of the qualitative component was to explore the multi-level factors and processes which facilitate or impede the implementation and adoption of the program across three regions where it was first implemented. The study employs a multi-level framework as a conceptual guide to explore the facilitators and barriers to Telehomecare implementation and adoption across five levels: technology, patients, providers, organizations, and structures. In-depth semi-structured interviews and ethnographic observations with program stakeholders, as well as a Telehomecare document review were used to elicit key themes. Study participants (n = 89) included patients and/or informal caregivers (n = 39), health care providers (n = 23), technicians (n = 2), administrators (n = 12), and decision makers (n = 13) across three different Local Health Integration Networks in Ontario. Key facilitators to Telehomecare implementation and adoption at each level of the multi-level framework included: user-friendliness of Telehomecare technology, patient motivation to participate in the program, support for Telehomecare providers, the integration of Telehomecare into broader health service provision, and comprehensive program evaluation. Key barriers included: access-related issues to using the technology, patient language (if not English or French), Telehomecare provider time limitations, gaps in health care provision for patients, and structural barriers to patient participation related to geography and social location. Though Telehomecare has the potential to positively impact patient lives and strengthen models of health care provision, a
Hamiltonian Algorithm Sound Synthesis
大矢, 健一
2013-01-01
Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.
Salama, Amgad; Sun, Shuyu; Amin, Mohamed F. El
2015-01-01
In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.
Salama, Amgad
2015-06-01
In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the control of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.
International Nuclear Information System (INIS)
Nitej, N.V.; Sharovarov, G.A.
1982-01-01
The method of estimation of counterflow heat exchanger characteristics is presented. Mathematical description of the processes is presented by the mass, energy and pulse conservation equations for both coolants and energy conservation equation for the wall which devides them. In the presence of chemical reactions the system is supplemented by equations, characterizing the kinetics of their progress. The methods of numerical solution of static and dynamic problems have been chosen, and the computer programs on the Fortran language have been developed. The schemes of solution of both problems are so constructed, that the conservation equations are placed in the main program, and such characteristics of the coolants as properties, heat transfer and friction coefficients, the mechanism of chemical reaction are concentrated in the subprogram unit. This allows to create the single method of solution with the flow of single-phase and two-phase coolants of abovecritical and supercritical paramters. The evaluation results of three heat exchangers are given: with heating of N 2 O 4 gas phase by heat of flue gas; with cooling of N 2 O 4 supercritical parameters by water; regenerator on N 2 O 4
Batistic, S.; Cerne, Matej; Vogel, Bernd
2017-01-01
The use of multi-level theories and methodologies in leadership has gained momentum in recent years. However, the leadership field still suffers from a fragmented and unclear evolution and practice of multi-level approaches. The questions of how and to what extent multi-level research has evolved in
The Interaction Features of the Multi-Level Retaining Walls with Soil Mass
Directory of Open Access Journals (Sweden)
Boyko Igor
2017-09-01
Full Text Available The interaction features of multi-level retaining walls with soil base were researched by changing their geometric parameters and locality at the plan. During excavation of deep foundation pits it is important to choose the type of constructions which influences on the horizontal displacements. The distance between the levels of retaining walls should be based on the results of numerical modelling. The objective of this paper is to present a comparison between the data of numerical simulations and the results of the in-situ lateral tests of couple piles. The problems have been solved by using the following soil models: Coulomb-Mohr model; model, which is based on the dilatation theory; elastic-plastic model with variable stiffness parameters.
The Interaction Features of the Multi-Level Retaining Walls with Soil Mass
Boyko, Igor; Skochko, Liudmyla; Zhuk, Veronica
2017-09-01
The interaction features of multi-level retaining walls with soil base were researched by changing their geometric parameters and locality at the plan. During excavation of deep foundation pits it is important to choose the type of constructions which influences on the horizontal displacements. The distance between the levels of retaining walls should be based on the results of numerical modelling. The objective of this paper is to present a comparison between the data of numerical simulations and the results of the in-situ lateral tests of couple piles. The problems have been solved by using the following soil models: Coulomb-Mohr model; model, which is based on the dilatation theory; elastic-plastic model with variable stiffness parameters.
Multi-level and Multi-component Bitmap Encoding for Efficient Search Operations
Directory of Open Access Journals (Sweden)
Madhu BHAN, Department of Computer Applications
2012-12-01
Full Text Available The growing interest in data warehousing for decision makers is becoming more and more crucial to make faster and efficient decisions. On-line decision needs short response times. Many indexing techniques have been created to achieve this goal in read only environments. Indexing technique that has attracted attention in multidimensional databases is Bitmap Indexing. The paper discusses the various existing bitmap indexing techniques along with their performance characteristics. The paper proposes two new bitmap indexing techniques in the class of multi-level and multi-component encoding schemes and prove that the two techniques have better space–time performance than some of the existing techniques used for range queries. We provide an analytical model for comparing the performance of our proposed encoding schemes with that of the existing ones.
Analyzing the Role of Multi-level Learning in Implementing computerized HIS in Developing Countries
DEFF Research Database (Denmark)
Mengiste, Shegaw Anagaw
2008-01-01
This paper presents a perspective for looking at the development and implementation of large scale computerised HIS as a multi-level learning process. Drawing on the empirical evidences from the ongoing Health Information systems program ( HISP) initiatives on the development, customization...... and implementation of computerised HIS in Ethiopia, the paper analyses the learning mechanisms, learning outcomes and obstacles for learning at individual, group, and organizational levels. Empirical data on two distinct phases of software development and customization (District health Information Software (DHIS......) versions 1.3 and 2.0) are contrasted. More specifically, we tried to show the dynamics of learning and the specific learning mechanisms by analysing and contrasting the interaction between IS developers and public health care domain experts, technological capacity at individual, group, and organizational...
Multi-level cascaded DC/DC converters for PV applications
Directory of Open Access Journals (Sweden)
Ahmed A.A. Hafez
2015-12-01
Full Text Available A robust multi-level cascaded DC/DC system for Photovoltaic (PV application is advised in this article. There are three PV generators, each is coupled to a half-bridge buck cell. Each PV-generator–buck-converter channel is controlled such that maximum power is captured independently under different irradiation and temperature levels. The system operation under normal and abnormal conditions was comprehensively investigated. Internal Model Control (IMC technique was adopted for tuning the controllers. An elaborate switching modulation strategy was used to reduce the current ripple and inductor size, while maintaining high efficiency. Annotative, simple and robust remedial strategies were proposed to mitigate different anticipated faults. Comprehensive simulation results in Matlab environment were illustrated for corroborating the performance of the advised cascaded DC/DC system under normal/abnormal conditions. The proposed system enjoys the merits of independency, reduced volumetric dimensions and improved efficiency. Furthermore, the system is inherently fault-tolerant.
International Nuclear Information System (INIS)
Fujii, Minoru; Asai, Kiyoshi
1979-12-01
A simple, effective file management system using magnetic disk, mass storage system (MSS) and magnetic tape is described. Following are the concepts and techniques introduced in this file management system. (1) File distribution and continuity character of file references are closely approximated by memory retention function. A density function using the memory retention function is thus defined. (2) A method of computing the cost/benefit lines for magnetic disk, MSS and magnetic tape is presented. (3) A decision process of an optimal organization of file facilities incorporating file demands distribution to respective file devices, is presented. (4) A method of simple, practical, effective, automatic file management, incorporating multi-level file management, space management and file migration control, is proposed. (author)
Full-color, large area, transmissive holograms enabled by multi-level diffractive optics.
Mohammad, Nabil; Meem, Monjurul; Wan, Xiaowen; Menon, Rajesh
2017-07-19
We show that multi-level diffractive microstructures can enable broadband, on-axis transmissive holograms that can project complex full-color images, which are invariant to viewing angle. Compared to alternatives like metaholograms, diffractive holograms utilize much larger minimum features (>10 µm), much smaller aspect ratios (30 mm ×30 mm). We designed, fabricated and characterized holograms that encode various full-color images. Our devices demonstrate absolute transmission efficiencies of >86% across the visible spectrum from 405 nm to 633 nm (peak value of about 92%), and excellent color fidelity. Furthermore, these devices do not exhibit polarization dependence. Finally, we emphasize that our devices exhibit negligible absorption and are phase-only holograms with high diffraction efficiency.
Mapping and navigating transitions - The multi-level perspective compared with arenas of development
DEFF Research Database (Denmark)
Jørgensen, Ulrik
2012-01-01
actors to navigate. The second concern builds on the observation that actors engage at all levels in society including visions, institutions, and innovations. The third concern addresses the role of academic theories and advice regarding governance of transition processes in which they function......Transitions of socio-technical systems imply the reconfiguration of institutions and politics making made evident the need to understand and intervene in existing patterns of growth and socio-technical practices in more sustainable directions. In recent decades, theories of transitions have been...... introduced, which include the multi-level approach indicating ways to govern transitions through understanding the interactions between niches, regimes and landscapes. An alternative approach is suggested, which takes its outset in arenas of development and increased awareness of actors and their way...
Multi-level governance: The way forward for European illicit drug policy?
Chatwin, Caroline
2007-12-01
Illicit drug policy has long been an area that has attracted international policy intervention, however, the European Union has declared it an area of subsidiarity, leaving ultimate control to national governments. Nevertheless, European Union preoccupation with the illicit drug issue and international drug trafficking and organised crime concerns have ensured that continued and increased cooperation in illicit drug policy is never off the agenda. This article examines the history of European integration in contrasting areas of policy and considers both the desirability and the viability of an increasingly harmonised drug policy for Europe. Finally, it proposes a model of integrated illicit drug policy that is strongly connected to developing patterns of European social policy, calling on multi-level governance and close involvement at the level of the citizen.
Post-stroke balance rehabilitation under multi-level electrotherapy: a conceptual review
Directory of Open Access Journals (Sweden)
Anirban eDutta
2014-12-01
Full Text Available Stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Innovative methodologies for restorative neurorehabilitation are urgently required to reduce long-term disability. The ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections is called neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. It has been shown that active cortical participation in a closed-loop brain machine interface (BMI can induce neuroplasticity in cortical networks where the brain acts as a controller, e.g., during a visuomotor task. Here, the motor task can be assisted with neuromuscular electrical stimulation (NMES where the BMI will act as a real-time decoder. However, the cortical control and induction of neuroplasticity in a closed-loop brain machine interface is also dependent on the state of brain, e.g., visuospatial attention during visuomotor task performance. In fact, spatial neglect is a hidden disability that is a common complication of stroke and is associated with prolonged hospital stays, accidents, falls, safety problems and chronic functional disability. This hypothesis and theory article presents a multi-level electrotherapy paradigm towards motor rehabilitation in virtual reality that postulates that while the brain acts as a controller in a closed-loop BMI to drive NMES, the state of brain can be can be altered towards improvement of visuomotor task performance with non-invasive brain stimulation. This leads to a multi-level electrotherapy paradigm where a virtual reality-based adaptive response technology is proposed for post-stroke balance rehabilitation. In this article, we present a conceptual review of the related
Simple Multi-level Microchannel Fabrication by Pseudo-Grayscale Backside Diffused Light Lithography.
Lai, David; Labuz, Joseph M; Kim, Jiwon; Luker, Gary D; Shikanov, Ariella; Takayama, Shuichi
2013-11-14
Photolithography of multi-level channel features in microfluidics is laborious and/or costly. Grayscale photolithography is mostly used with positive photoresists and conventional front side exposure, but the grayscale masks needed are generally costly and positive photoresists are not commonly used in microfluidic rapid prototyping. Here we introduce a simple and inexpensive alternative that uses pseudo-grayscale (pGS) photomasks in combination with backside diffused light lithography (BDLL) and the commonly used negative photoresist, SU-8. BDLL can produce smooth multi-level channels of gradually changing heights without use of true grayscale masks because of the use of diffused light. Since the exposure is done through a glass slide, the photoresist is cross-linked from the substrate side up enabling well-defined and stable structures to be fabricated from even unspun photoresist layers. In addition to providing unique structures and capabilities, the method is compatible with the "garage microfluidics" concept of creating useful tools at low cost since pGS BDLL can be performed with the use of only hot plates and a UV transilluminator: equipment commonly found in biology labs. Expensive spin coaters or collimated UV aligners are not needed. To demonstrate the applicability of pGS BDLL, a variety of weir-type cell traps were constructed with a single UV exposure to separate cancer cells (MDA-MB-231, 10-15 μm in size) from red blood cells (RBCs, 2-8 μm in size) as well as follicle clusters (40-50 μm in size) from cancer cells (MDA-MB-231, 10-15 μm in size).
Multi-Level Determinants of Parasitic Fly Infection in Forest Passerines
Manzoli, Darío Ezequiel; Antoniazzi, Leandro Raúl; Saravia, María José; Silvestri, Leonardo; Rorhmann, David; Beldomenico, Pablo Martín
2013-01-01
The study of myiasis is important because they may cause problems to the livestock industry, public health, or wildlife conservation. The ecology of parasitic dipterans that cause myiasis is singular, as they actively seek their hosts over relatively long distances. However, studies that address the determinants of myiasis dynamics are very scarce. The genus Philornis include species that may be excellent models to study myiasis ecology, as they exclusively parasitize bird nestlings, which stay in their nests until they are fully fledged, and larvae remain at the point of entry until the parasitic stage is over, thus allowing the collection of sequential individual-level infection data from virtually all the hosts present at a particular area. Here we offer a stratified multi-level analysis of longitudinal data of Philornis torquans parasitism in replicated forest bird communities of central Argentina. Using Generalized Linear Models and Generalized Linear Mixed Models and an information theory approach for model selection, we conducted four groups of analyses, each with a different study unit, the individual, the brood, the community at a given week, and the community at a given year. The response variable was larval abundance per nestling or mean abundance per nestling. At each level, models included the variables of interest of that particular level, and also potential confounders and effect modifiers of higher levels. We found associations of large magnitude at all levels, but only few variables truly governed the dynamics of this parasite. At the individual level, the infection was determined by the species and the age of the host. The main driver of parasite abundance at the microhabitat level was the average height of the forest, and at the community level, the density of hosts and prior rainfall. This multi-level approach contributed to a better understanding of the ecology of myiasis. PMID:23874408
Multi-level Bayesian analyses for single- and multi-vehicle freeway crashes.
Yu, Rongjie; Abdel-Aty, Mohamed
2013-09-01
This study presents multi-level analyses for single- and multi-vehicle crashes on a mountainous freeway. Data from a 15-mile mountainous freeway section on I-70 were investigated. Both aggregate and disaggregate models for the two crash conditions were developed. Five years of crash data were used in the aggregate investigation, while the disaggregate models utilized one year of crash data along with real-time traffic and weather data. For the aggregate analyses, safety performance functions were developed for the purpose of revealing the contributing factors for each crash type. Two methodologies, a Bayesian bivariate Poisson-lognormal model and a Bayesian hierarchical Poisson model with correlated random effects, were estimated to simultaneously analyze the two crash conditions with consideration of possible correlations. Except for the factors related to geometric characteristics, two exposure parameters (annual average daily traffic and segment length) were included. Two different sets of significant explanatory and exposure variables were identified for the single-vehicle (SV) and multi-vehicle (MV) crashes. It was found that the Bayesian bivariate Poisson-lognormal model is superior to the Bayesian hierarchical Poisson model, the former with a substantially lower DIC and more significant variables. In addition to the aggregate analyses, microscopic real-time crash risk evaluation models were developed for the two crash conditions. Multi-level Bayesian logistic regression models were estimated with the random parameters accounting for seasonal variations, crash-unit-level diversity and segment-level random effects capturing unobserved heterogeneity caused by the geometric characteristics. The model results indicate that the effects of the selected variables on crash occurrence vary across seasons and crash units; and that geometric characteristic variables contribute to the segment variations: the more unobserved heterogeneity have been accounted, the better
A Multi-Level Model of Information Seeking in the Clinical Domain
Hung, Peter W.; Johnson, Stephen B.; Kaufman, David R.; Mendonça, Eneida A.
2008-01-01
Objective: Clinicians often have difficulty translating information needs into effective search strategies to find appropriate answers. Information retrieval systems employing an intelligent search agent that generates adaptive search strategies based on human search expertise could be helpful in meeting clinician information needs. A prerequisite for creating such systems is an information seeking model that facilitates the representation of human search expertise. The purpose of developing such a model is to provide guidance to information seeking system development and to shape an empirical research program. Design: The information seeking process was modeled as a complex problem-solving activity. After considering how similarly complex activities had been modeled in other domains, we determined that modeling context-initiated information seeking across multiple problem spaces allows the abstraction of search knowledge into functionally consistent layers. The knowledge layers were identified in the information science literature and validated through our observations of searches performed by health science librarians. Results: A hierarchical multi-level model of context-initiated information seeking is proposed. Each level represents (1) a problem space that is traversed during the online search process, and (2) a distinct layer of knowledge that is required to execute a successful search. Grand strategy determines what information resources will be searched, for what purpose, and in what order. The strategy level represents an overall approach for searching a single resource. Tactics are individual moves made to further a strategy. Operations are mappings of abstract intentions to information resource-specific concrete input. Assessment is the basis of interaction within the strategic hierarchy, influencing the direction of the search. Conclusion: The described multi-level model provides a framework for future research and the foundation for development of an
Mohebbi, Akbar
2018-02-01
In this paper we propose two fast and accurate numerical methods for the solution of multidimensional space fractional Ginzburg-Landau equation (FGLE). In the presented methods, to avoid solving a nonlinear system of algebraic equations and to increase the accuracy and efficiency of method, we split the complex problem into simpler sub-problems using the split-step idea. For a homogeneous FGLE, we propose a method which has fourth-order of accuracy in time component and spectral accuracy in space variable and for nonhomogeneous one, we introduce another scheme based on the Crank-Nicolson approach which has second-order of accuracy in time variable. Due to using the Fourier spectral method for fractional Laplacian operator, the resulting schemes are fully diagonal and easy to code. Numerical results are reported in terms of accuracy, computational order and CPU time to demonstrate the accuracy and efficiency of the proposed methods and to compare the results with the analytical solutions. The results show that the present methods are accurate and require low CPU time. It is illustrated that the numerical results are in good agreement with the theoretical ones.
Directory of Open Access Journals (Sweden)
Eusebio Eduardo Hernández Martinez
2013-01-01
Full Text Available In robotics, solving the direct kinematics problem (DKP for parallel robots is very often more difficult and time consuming than for their serial counterparts. The problem is stated as follows: given the joint variables, the Cartesian variables should be computed, namely the pose of the mobile platform. Most of the time, the DKP requires solving a non-linear system of equations. In addition, given that the system could be non-convex, Newton or Quasi-Newton (Dogleg based solvers get trapped on local minima. The capacity of such kinds of solvers to find an adequate solution strongly depends on the starting point. A well-known problem is the selection of such a starting point, which requires a priori information about the neighbouring region of the solution. In order to circumvent this issue, this article proposes an efficient method to select and to generate the starting point based on probabilistic learning. Experiments and discussion are presented to show the method performance. The method successfully avoids getting trapped on local minima without the need for human intervention, which increases its robustness when compared with a single Dogleg approach. This proposal can be extended to other structures, to any non-linear system of equations, and of course, to non-linear optimization problems.
Directory of Open Access Journals (Sweden)
Hassan Abdullah Kubba
2015-05-01
Full Text Available The paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA with system reduction and restoration. The proposed method (RCGA is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms of the calculated voltages of the generator buses, after a derivation of equations for calculating the voltages of the load busbars. The proposed method was demonstrated on 14-bus IEEE test systems and the practical system 362-busbar IRAQI NATIONAL GRID (ING. The proposed method has reliable convergence, a highly accurate solution and less computing time for on-line applications. The method can conveniently be applied for on-line analysis and planning studies of large power systems.
International Nuclear Information System (INIS)
Shimizu, Yoshiaki
1991-01-01
In recent complicated nuclear systems, there are increasing demands for developing highly advanced procedures for various problems-solvings. Among them keen interests have been paid on man-machine communications to improve both safety and economy factors. Many optimization methods have been good enough to elaborate on these points. In this preliminary note, we will concern with application of linear programming (LP) for this purpose. First we will present a new superior version of the generalized PAPA method (GEPAPA) to solve LP problems. We will then examine its effectiveness when applied to derive dynamic matrix control (DMC) as the LP solution. The approach is to aim at the above goal through a quality control of process that will appear in the system. (author)
Barriers to Uptake of Conservation Agriculture in southern Africa: Multi-level Analyses from Malawi
Dougill, Andrew; Stringer, Lindsay; Whitfield, Stephen; Wood, Ben; Chinseu, Edna
2015-04-01
Conservation agriculture is a key set of actions within the growing body of climate-smart agriculture activities being advocated and rolled out across much of the developing world. Conservation agriculture has purported benefits for environmental quality, food security and the sustained delivery of ecosystem services. In this paper, new multi-level analyses are presented, assessing the current barriers to adoption of conservation agriculture practices in Malawi. Despite significant donor initiatives that have targeted conservation agriculture projects, uptake rates remain low. This paper synthesises studies from across 3 levels in Malawi: i.) national level- drawing on policy analysis, interviews and a multi-stakeholder workshop; ii.) district level - via assessments of development plans and District Office and extension service support, and; iii) local level - through data gained during community / household level studies in Dedza District that have gained significant donor support for conservation agriculture as a component of climate smart agriculture initiatives. The national level multi-stakeholder Conservation Agriculture workshop identified three areas requiring collaborative research and outlined routes for the empowerment of the National Conservation Agriculture Task Force to advance uptake of conservation agriculture and deliver associated benefits in terms of agricultural development, climate adaptation and mitigation. District level analyses highlight that whilst District Development Plans are now checked against climate change adaptation and mitigation criteria, capacity and knowledge limitations exist at the District level, preventing project interventions from being successfully up-scaled. Community level assessments highlight the need for increased community participation at the project-design phase and identify a pressing requirement for conservation agriculture planning processes (in particular those driven by investments in climate
Energy Technology Data Exchange (ETDEWEB)
Malhotra, M. [Stanford Univ., CA (United States)
1996-12-31
Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.
van Witteloostuijn, Arjen
2018-01-01
In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575
Role of calibration, validation, and relevance in multi-level uncertainty integration
International Nuclear Information System (INIS)
Li, Chenzhao; Mahadevan, Sankaran
2016-01-01
Calibration of model parameters is an essential step in predicting the response of a complicated system, but the lack of data at the system level makes it impossible to conduct this quantification directly. In such a situation, system model parameters are estimated using tests at lower levels of complexity which share the same model parameters with the system. For such a multi-level problem, this paper proposes a methodology to quantify the uncertainty in the system level prediction by integrating calibration, validation and sensitivity analysis at different levels. The proposed approach considers the validity of the models used for parameter estimation at lower levels, as well as the relevance at the lower level to the prediction at the system level. The model validity is evaluated using a model reliability metric, and models with multivariate output are considered. The relevance is quantified by comparing Sobol indices at the lower level and system level, thus measuring the extent to which a lower level test represents the characteristics of the system so that the calibration results can be reliably used in the system level. Finally the results of calibration, validation and relevance analysis are integrated in a roll-up method to predict the system output. - Highlights: • Relevance analysis to quantify the closeness of two models. • Stochastic model reliability metric to integrate multiple validation experiments. • Extend the model reliability metric to deal with multivariate output. • Roll-up formula to integrate calibration, validation, and relevance.
MKEM: a Multi-level Knowledge Emergence Model for mining undiscovered public knowledge
Directory of Open Access Journals (Sweden)
Song Min
2010-04-01
Full Text Available Abstract Background Since Swanson proposed the Undiscovered Public Knowledge (UPK model, there have been many approaches to uncover UPK by mining the biomedical literature. These earlier works, however, required substantial manual intervention to reduce the number of possible connections and are mainly applied to disease-effect relation. With the advancement in biomedical science, it has become imperative to extract and combine information from multiple disjoint researches, studies and articles to infer new hypotheses and expand knowledge. Methods We propose MKEM, a Multi-level Knowledge Emergence Model, to discover implicit relationships using Natural Language Processing techniques such as Link Grammar and Ontologies such as Unified Medical Language System (UMLS MetaMap. The contribution of MKEM is as follows: First, we propose a flexible knowledge emergence model to extract implicit relationships across different levels such as molecular level for gene and protein and Phenomic level for disease and treatment. Second, we employ MetaMap for tagging biological concepts. Third, we provide an empirical and systematic approach to discover novel relationships. Results We applied our system on 5000 abstracts downloaded from PubMed database. We performed the performance evaluation as a gold standard is not yet available. Our system performed with a good precision and recall and we generated 24 hypotheses. Conclusions Our experiments show that MKEM is a powerful tool to discover hidden relationships residing in extracted entities that were represented by our Substance-Effect-Process-Disease-Body Part (SEPDB model.
Presenting a Multi-level Superstructure Optimization Approach for Mechatronic System Design
DEFF Research Database (Denmark)
Pedersen, Henrik C.; Andersen, Torben Ole; Bech, Michael Møller
2010-01-01
Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control) and descr......Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control......) and describe the interface between the technologies, whereas the lack of well-established, systematic engineering methods to form the basic set-off in analysis and design of complete mechatronic systems has been obvious. The focus of the current paper is therefore to present an integrated design approach...... for mechatronic system design, utilizing a multi-level superstructure optimization based approach. Finally two design examples are presented and the possibilities and limitations of the approach are outlined....
The Impact of Partial Measurement Invariance on Testing Moderation for Single and Multi-Level Data
Directory of Open Access Journals (Sweden)
Yu-Yu Hsiao
2018-05-01
Full Text Available Moderation effect is a commonly used concept in the field of social and behavioral science. Several studies regarding the implication of moderation effects have been done; however, little is known about how partial measurement invariance influences the properties of tests for moderation effects when categorical moderators were used. Additionally, whether the impact is the same across single and multilevel data is still unknown. Hence, the purpose of the present study is twofold: (a To investigate the performance of the moderation test in single-level studies when measurement invariance does not hold; (b To examine whether unique features of multilevel data, such as intraclass correlation (ICC and number of clusters, influence the effect of measurement non-invariance on the performance of tests for moderation. Simulation results indicated that falsely assuming measurement invariance lead to biased estimates, inflated Type I error rates, and more gain or more loss in power (depends on simulation conditions for the test of moderation effects. Such patterns were more salient as sample size and the number of non-invariant items increase for both single- and multi-level data. With multilevel data, the cluster size seemed to have a larger impact than the number of clusters when falsely assuming measurement invariance in the moderation estimation. ICC was trivially related to the moderation estimates. Overall, when testing moderation effects with categorical moderators, employing a model that accounts for the measurement (noninvariance structure of the predictor and/or the outcome is recommended.
Transport in a three-terminal graphene quantum dot in the multi-level regime
International Nuclear Information System (INIS)
Jacobsen, Arnhild; Simonet, Pauline; Ensslin, Klaus; Ihn, Thomas
2012-01-01
We investigate transport in a three-terminal graphene quantum dot. All nine elements of the conductance matrix have been independently measured. In the Coulomb blockade regime, accurate measurements of individual conductance resonances reveal slightly different resonance energies depending on which pair of leads is used for probing. Rapid changes in the tunneling coupling between the leads and the dot due to localized states in the constrictions have been excluded by tuning the difference in resonance energies using in-plane gates which couple preferentially to individual constrictions. The interpretation of the different resonance energies is then based on the presence of a number of levels in the dot with an energy spacing of the order of the measurement temperature. In this multi-level transport regime, the three-terminal device offers the opportunity to sense if the individual levels couple with different strengths to the different leads. This in turn gives qualitative insight into the spatial profile of the corresponding quantum dot wave functions. (paper)
Pulse number control of electrical resistance for multi-level storage based on phase change
International Nuclear Information System (INIS)
Nakayama, K; Takata, M; Kasai, T; Kitagawa, A; Akita, J
2007-01-01
Phase change nonvolatile memory devices composed of SeSbTe chalcogenide semiconductor thin film were fabricated. The resistivity of the SeSbTe system was investigated to apply to multi-level data storage. The chalcogenide semiconductor acts as a programmable resistor that has a large dynamic range. The resistance of the chalcogenide semiconductor can be set to intermediate resistances between the amorphous and crystalline states using electric pulses of a specified power, and it can be controlled by repetition of the electric pulses. The size of the memory cell used in this work is 200 nm thick with a contact area of 1 μm diameter. The resistance of the chalcogenide semiconductor gradually varies from 41 kΩ to 840 Ω within octal steps. The resistance of the chalcogenide semiconductor decreases with increasing number of applied pulses. The step-down characteristic of the resistance can be explained as the crystalline region of the active phase change region increases with increasing number of applied pulses. The extent of crystallization was also estimated by the overall resistivity of the active region of the memory cell
Multi-level analyses of spatial and temporal determinants for dengue infection.
Vanwambeke, Sophie O; van Benthem, Birgit H B; Khantikul, Nardlada; Burghoorn-Maas, Chantal; Panart, Kamolwan; Oskam, Linda; Lambin, Eric F; Somboon, Pradya
2006-01-18
Dengue is a mosquito-borne viral infection that is now endemic in most tropical countries. In Thailand, dengue fever/dengue hemorrhagic fever is a leading cause of hospitalization and death among children. A longitudinal study among 1750 people in two rural and one urban sites in northern Thailand from 2001 to 2003 studied spatial and temporal determinants for recent dengue infection at three levels (time, individual and household). Determinants for dengue infection were measured by questionnaire, land-cover maps and GIS. IgM antibodies against dengue were detected by ELISA. Three-level multi-level analysis was used to study the risk determinants of recent dengue infection. Rates of recent dengue infection varied substantially in time from 4 to 30%, peaking in 2002. Determinants for recent dengue infection differed per site. Spatial clustering was observed, demonstrating variation in local infection patterns. Most of the variation in recent dengue infection was explained at the time-period level. Location of a person and the environment around the house (including irrigated fields and orchards) were important determinants for recent dengue infection. We showed the focal nature of asymptomatic dengue infections. The great variation of determinants for recent dengue infection in space and time should be taken into account when designing local dengue control programs.
Multi-level analyses of spatial and temporal determinants for dengue infection
Directory of Open Access Journals (Sweden)
Oskam Linda
2006-01-01
Full Text Available Abstract Background Dengue is a mosquito-borne viral infection that is now endemic in most tropical countries. In Thailand, dengue fever/dengue hemorrhagic fever is a leading cause of hospitalization and death among children. A longitudinal study among 1750 people in two rural and one urban sites in northern Thailand from 2001 to 2003 studied spatial and temporal determinants for recent dengue infection at three levels (time, individual and household. Methods Determinants for dengue infection were measured by questionnaire, land-cover maps and GIS. IgM antibodies against dengue were detected by ELISA. Three-level multi-level analysis was used to study the risk determinants of recent dengue infection. Results Rates of recent dengue infection varied substantially in time from 4 to 30%, peaking in 2002. Determinants for recent dengue infection differed per site. Spatial clustering was observed, demonstrating variation in local infection patterns. Most of the variation in recent dengue infection was explained at the time-period level. Location of a person and the environment around the house (including irrigated fields and orchards were important determinants for recent dengue infection. Conclusion We showed the focal nature of asymptomatic dengue infections. The great variation of determinants for recent dengue infection in space and time should be taken into account when designing local dengue control programs.
Du, Jinming; Tang, Lixin
2018-01-01
Understanding voluntary contribution in threshold public goods games has important practical implications. To improve contributions and provision frequency, free-rider problem and assurance problem should be solved. Insurance could play a significant, but largely unrecognized, role in facilitating a contribution to provision of public goods through providing insurance compensation against the losses. In this paper, we study how insurance compensation mechanism affects individuals’ decision-making under risk environments. We propose a multi-level threshold public goods game model where two kinds of public goods games (local and global) are considered. Particularly, the global public goods game involves a threshold, which is related to the safety of all the players. We theoretically probe the evolution of contributions of different levels and free-riders, and focus on the influence of the insurance on the global contribution. We explore, in both the cases, the scenarios that only global contributors could buy insurance and all the players could. It is found that with greater insurance compensation, especially under high collective risks, players are more likely to contribute globally when only global contributors are insured. On the other hand, global contribution could be promoted if a premium discount is given to global contributors when everyone buys insurance.
Economic sustainability, water security and multi-level governance of local water schemes in Nepal
Directory of Open Access Journals (Sweden)
Emma Hakala
2017-07-01
Full Text Available This article explores the role of multi-level governance and power structures in local water security through a case study of the Nawalparasi district in Nepal. It focuses on economic sustainability as a measure to address water security, placing this thematic in the context of a complicated power structure consisting of local, district and national administration as well as external development cooperation actors. The study aims to find out whether efforts to improve the economic sustainability of water schemes have contributed to water security at the local level. In addition, it will consider the interactions between water security, power structures and local equality and justice. The research builds upon survey data from the Nepalese districts of Nawalparasi and Palpa, and a case study based on interviews and observation in Nawalparasi. The survey was performed in water schemes built within a Finnish development cooperation programme spanning from 1990 to 2004, allowing a consideration of the long-term sustainability of water management projects. This adds a crucial external influence into the intra-state power structures shaping water management in Nepal. The article thus provides an alternative perspective to cross-regional water security through a discussion combining transnational involvement with national and local points of view.
DESTINY: A Comprehensive Tool with 3D and Multi-Level Cell Memory Modeling Capability
Directory of Open Access Journals (Sweden)
Sparsh Mittal
2017-09-01
Full Text Available To enable the design of large capacity memory structures, novel memory technologies such as non-volatile memory (NVM and novel fabrication approaches, e.g., 3D stacking and multi-level cell (MLC design have been explored. The existing modeling tools, however, cover only a few memory technologies, technology nodes and fabrication approaches. We present DESTINY, a tool for modeling 2D/3D memories designed using SRAM, resistive RAM (ReRAM, spin transfer torque RAM (STT-RAM, phase change RAM (PCM and embedded DRAM (eDRAM and 2D memories designed using spin orbit torque RAM (SOT-RAM, domain wall memory (DWM and Flash memory. In addition to single-level cell (SLC designs for all of these memories, DESTINY also supports modeling MLC designs for NVMs. We have extensively validated DESTINY against commercial and research prototypes of these memories. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g., latency, area or energy-delay product for a given memory technology, choosing the suitable memory technology or fabrication method (i.e., 2D v/s 3D for a given optimization target, etc. We believe that DESTINY will boost studies of next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers. The latest source-code of DESTINY is available from the following git repository: https://bitbucket.org/sparshmittal/destinyv2.
DReAM: Demand Response Architecture for Multi-level District Heating and Cooling Networks
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Saptarshi; Chandan, Vikas; Arya, Vijay; Kar, Koushik
2017-05-19
In this paper, we exploit the inherent hierarchy of heat exchangers in District Heating and Cooling (DHC) networks and propose DReAM, a novel Demand Response (DR) architecture for Multi-level DHC networks. DReAM serves to economize system operation while still respecting comfort requirements of individual consumers. Contrary to many present day DR schemes that work on a consumer level granularity, DReAM works at a level of hierarchy above buildings, i.e. substations that supply heat to a group of buildings. This improves the overall DR scalability and reduce the computational complexity. In the first step of the proposed approach, mathematical models of individual substations and their downstream networks are abstracted into appropriately constructed low-complexity structural forms. In the second step, this abstracted information is employed by the utility to perform DR optimization that determines the optimal heat inflow to individual substations rather than buildings, in order to achieve the targeted objectives across the network. We validate the proposed DReAM framework through experimental results under different scenarios on a test network.
The Impact of Partial Measurement Invariance on Testing Moderation for Single and Multi-Level Data.
Hsiao, Yu-Yu; Lai, Mark H C
2018-01-01
Moderation effect is a commonly used concept in the field of social and behavioral science. Several studies regarding the implication of moderation effects have been done; however, little is known about how partial measurement invariance influences the properties of tests for moderation effects when categorical moderators were used. Additionally, whether the impact is the same across single and multilevel data is still unknown. Hence, the purpose of the present study is twofold: (a) To investigate the performance of the moderation test in single-level studies when measurement invariance does not hold; (b) To examine whether unique features of multilevel data, such as intraclass correlation (ICC) and number of clusters, influence the effect of measurement non-invariance on the performance of tests for moderation. Simulation results indicated that falsely assuming measurement invariance lead to biased estimates, inflated Type I error rates, and more gain or more loss in power (depends on simulation conditions) for the test of moderation effects. Such patterns were more salient as sample size and the number of non-invariant items increase for both single- and multi-level data. With multilevel data, the cluster size seemed to have a larger impact than the number of clusters when falsely assuming measurement invariance in the moderation estimation. ICC was trivially related to the moderation estimates. Overall, when testing moderation effects with categorical moderators, employing a model that accounts for the measurement (non)invariance structure of the predictor and/or the outcome is recommended.
A dedicated database system for handling multi-level data in systems biology.
Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens
2014-01-01
Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging. To overcome this, we designed and developed a dedicated database system that can serve and solve the vital issues in data management and hereby facilitate data integration, modeling and analysis in systems biology within a sole database. In addition, a yeast data repository was implemented as an integrated database environment which is operated by the database system. Two applications were implemented to demonstrate extensibility and utilization of the system. Both illustrate how the user can access the database via the web query function and implemented scripts. These scripts are specific for two sample cases: 1) Detecting the pheromone pathway in protein interaction networks; and 2) Finding metabolic reactions regulated by Snf1 kinase. In this study we present the design of database system which offers an extensible environment to efficiently capture the majority of biological entities and relations encountered in systems biology. Critical functions and control processes were designed and implemented to ensure consistent, efficient, secure and reliable transactions. The two sample cases on the yeast integrated data clearly demonstrate the value of a sole database environment for systems biology research.
Multi-level emulation of complex climate model responses to boundary forcing data
Tran, Giang T.; Oliver, Kevin I. C.; Holden, Philip B.; Edwards, Neil R.; Sóbester, András; Challenor, Peter
2018-04-01
Climate model components involve both high-dimensional input and output fields. It is desirable to efficiently generate spatio-temporal outputs of these models for applications in integrated assessment modelling or to assess the statistical relationship between such sets of inputs and outputs, for example, uncertainty analysis. However, the need for efficiency often compromises the fidelity of output through the use of low complexity models. Here, we develop a technique which combines statistical emulation with a dimensionality reduction technique to emulate a wide range of outputs from an atmospheric general circulation model, PLASIM, as functions of the boundary forcing prescribed by the ocean component of a lower complexity climate model, GENIE-1. Although accurate and detailed spatial information on atmospheric variables such as precipitation and wind speed is well beyond the capability of GENIE-1's energy-moisture balance model of the atmosphere, this study demonstrates that the output of this model is useful in predicting PLASIM's spatio-temporal fields through multi-level emulation. Meaningful information from the fast model, GENIE-1 was extracted by utilising the correlation between variables of the same type in the two models and between variables of different types in PLASIM. We present here the construction and validation of several PLASIM variable emulators and discuss their potential use in developing a hybrid model with statistical components.
Networking health: multi-level marketing of health products in Ghana.
Droney, Damien
2016-01-01
Multi-level marketing (MLM0), a business model in which product distributors are compensated for enrolling further distributors as well as for selling products, has experienced dramatic growth in recent decades, especially in the so-called global South. This paper argues that the global success of MLM is due to its involvement in local health markets. While MLM has been subject to a number of critiques, few have analyzed the explicit health claims of MLM distributors. The majority of the products distributed through MLM are health products, which are presented as offering transformative health benefits. Based on interviews with MLM distributors in Ghana, but focusing on the experiences of one woman, this paper shows that MLM companies become intimately entwined with Ghanaian quests for health by providing their distributors with the materials to become informal health experts, allowing their distributors to present their products as medicines, and presenting MLM as an avenue to middle class cosmopolitanism. Ghanaian distributors promote MLM products as medically powerful, and the distribution of these products as an avenue to status and profit. As a result, individuals seeking health become a part of ethically questionable forms of medical provision based on the exploitation of personal relationships. The success of MLM therefore suggests that the health industry is at the forefront of transnational corporations' extraction of value from informal economies, drawing on features of health markets to monetize personal relationships.
Multi-level gene/MiRNA feature selection using deep belief nets and active learning.
Ibrahim, Rania; Yousri, Noha A; Ismail, Mohamed A; El-Makky, Nagwa M
2014-01-01
Selecting the most discriminative genes/miRNAs has been raised as an important task in bioinformatics to enhance disease classifiers and to mitigate the dimensionality curse problem. Original feature selection methods choose genes/miRNAs based on their individual features regardless of how they perform together. Considering group features instead of individual ones provides a better view for selecting the most informative genes/miRNAs. Recently, deep learning has proven its ability in representing the data in multiple levels of abstraction, allowing for better discrimination between different classes. However, the idea of using deep learning for feature selection is not widely used in the bioinformatics field yet. In this paper, a novel multi-level feature selection approach named MLFS is proposed for selecting genes/miRNAs based on expression profiles. The approach is based on both deep and active learning. Moreover, an extension to use the technique for miRNAs is presented by considering the biological relation between miRNAs and genes. Experimental results show that the approach was able to outperform classical feature selection methods in hepatocellular carcinoma (HCC) by 9%, lung cancer by 6% and breast cancer by around 10% in F1-measure. Results also show the enhancement in F1-measure of our approach over recently related work in [1] and [2].
MetricForensics: A Multi-Level Approach for Mining Volatile Graphs
Energy Technology Data Exchange (ETDEWEB)
Henderson, Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eliassi-Rad, Tina [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Faloutsos, Christos [Carnegie Mellon Univ., Pittsburgh, PA (United States); Akoglu, Leman [Carnegie Mellon Univ., Pittsburgh, PA (United States); Li, Lei [Carnegie Mellon Univ., Pittsburgh, PA (United States); Maruhashi, Koji [Fujitsu Laboratories Ltd., Kanagawa (Japan); Prakash, B. Aditya [Carnegie Mellon Univ., Pittsburgh, PA (United States); Tong, H [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2010-02-08
Advances in data collection and storage capacity have made it increasingly possible to collect highly volatile graph data for analysis. Existing graph analysis techniques are not appropriate for such data, especially in cases where streaming or near-real-time results are required. An example that has drawn significant research interest is the cyber-security domain, where internet communication traces are collected and real-time discovery of events, behaviors, patterns and anomalies is desired. We propose MetricForensics, a scalable framework for analysis of volatile graphs. MetricForensics combines a multi-level “drill down" approach, a collection of user-selected graph metrics and a collection of analysis techniques. At each successive level, more sophisticated metrics are computed and the graph is viewed at a finer temporal resolution. In this way, MetricForensics scales to highly volatile graphs by only allocating resources for computationally expensive analysis when an interesting event is discovered at a coarser resolution first. We test MetricForensics on three real-world graphs: an enterprise IP trace, a trace of legitimate and malicious network traffic from a research institution, and the MIT Reality Mining proximity sensor data. Our largest graph has »3M vertices and »32M edges, spanning 4:5 days. The results demonstrate the scalability and capability of MetricForensics in analyzing volatile graphs; and highlight four novel phenomena in such graphs: elbows, broken correlations, prolonged spikes, and strange stars.
Participatory System Science: Multi-Level Comprehension Through a Game-like Process
Fatland, D. R.; Kuntz, L.
2012-12-01
Participatory System Science: Multi-Level Comprehension Through a Game-like Process We built a time-series game that permits the player to make water management decisions concerning the Skagit River (north-central Washington state) every five years for 60 years. This work was inspired by the integrative efforts of the Skagit Climate Science Consortium and the Climate Impacts Group at the University of Washington. Our principle guiding concepts have been - Construct a reasonable system description with -- wherever possible -- Events / Consequences rendered both visually and in terms of financial impact. - Base the system description on peer reviewed publications - Emphasize both connection and absence of connection between player Actions and subsequent Consequences in the catchment basin. Player choices center around dam flow levels and steps to mitigate negative impacts of sediment transport into the lower (populated) reaches of the Skagit River and into Puget Sound (levees, new dams, estuary restoration, etcetera). With this work we hope to explore scientific results in public awareness by engaging the game Player as a problem solver.
International Nuclear Information System (INIS)
Hatakeyama, Nozomu; Ise, Mariko; Inaba, Kenji
2011-01-01
In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H 2 to H 2 O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)
Raetrad model extensions for radon entry into multi-level buildings with basements or crawl spaces.
Nielson, K K; Rogers, V C; Rogers, V; Holt, R B
1997-10-01
The RAETRAD model was generalized to characterize radon generation and movement from soils and building materials into multi-level buildings with basements or crawl spaces. With the generalization, the model retains its original simplicity and ease of use. The model calculates radon entry rates that are consistent with measurements published for basement test structures at Colorado State University, confirming approximately equal contributions from diffusion and pressure-driven air flow at indoor-outdoor air pressure differences of deltaP(i-o) = -3.5 Pa. About one-fourth of the diffusive radon entry comes from concrete slabs and three-fourths comes from the surrounding soils. Calculated radon entry rates with and without a barrier over floor-wall shrinkage cracks generally agree with Colorado State University measurements when a sustained pressure of deltaP(i-o) = -2 Pa is used to represent calm wind (<1 m s(-1)) conditions. Calculated radon distributions in a 2-level house also are consistent with published measurements and equations.
Interevent time distributions of human multi-level activity in a virtual world
Mryglod, O.; Fuchs, B.; Szell, M.; Holovatch, Yu.; Thurner, S.
2015-02-01
Studying human behavior in virtual environments provides extraordinary opportunities for a quantitative analysis of social phenomena with levels of accuracy that approach those of the natural sciences. In this paper we use records of player activities in the massive multiplayer online game Pardus over 1238 consecutive days, and analyze dynamical features of sequences of actions of players. We build on previous work where temporal structures of human actions of the same type were quantified, and provide an empirical understanding of human actions of different types. This study of multi-level human activity can be seen as a dynamic counterpart of static multiplex network analysis. We show that the interevent time distributions of actions in the Pardus universe follow highly non-trivial distribution functions, from which we extract action-type specific characteristic 'decay constants'. We discuss characteristic features of interevent time distributions, including periodic patterns on different time scales, bursty dynamics, and various functional forms on different time scales. We comment on gender differences of players in emotional actions, and find that while males and females act similarly when performing some positive actions, females are slightly faster for negative actions. We also observe effects on the age of players: more experienced players are generally faster in making decisions about engaging in and terminating enmity and friendship, respectively.
Nature vs. nurture in human sociality: multi-level genomic analyses of social conformity.
Chen, Biqing; Zhu, Zijian; Wang, Yingying; Ding, Xiaohu; Guo, Xiaobo; He, Mingguang; Fang, Wan; Zhou, Qin; Zhou, Shanbi; Lei, Han; Huang, Ailong; Chen, Tingmei; Ni, Dongsheng; Gu, Yuping; Liu, Jianing; Rao, Yi
2018-05-01
Social conformity is fundamental to human societies and has been studied for more than six decades, but our understanding of its mechanisms remains limited. Individual differences in conformity have been attributed to social and cultural environmental influences, but not to genes. Here we demonstrate a genetic contribution to conformity after analyzing 1,140 twins and single-nucleotide polymorphism (SNP)-based studies of 2,130 young adults. A two-step genome-wide association study (GWAS) revealed replicable associations in 9 genomic loci, and a meta-analysis of three GWAS with a sample size of ~2,600 further confirmed one locus, corresponding to the NAV3 (Neuron Navigator 3) gene which encodes a protein important for axon outgrowth and guidance. Further multi-level (haplotype, gene, pathway) GWAS strongly associated genes including NAV3, PTPRD (protein tyrosine phosphatase receptor type D), ARL10 (ADP ribosylation factor-like GTPase 10), and CTNND2 (catenin delta 2), with conformity. Magnetic resonance imaging of 64 subjects shows correlation of activation or structural features of brain regions with the SNPs of these genes, supporting their functional significance. Our results suggest potential moderate genetic influence on conformity, implicate several specific genetic elements in conformity and will facilitate further research on cellular and molecular mechanisms underlying human conformity.
A novel method for a multi-level hierarchical composite with brick-and-mortar structure.
Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A
2013-01-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.
A novel method for a multi-level hierarchical composite with brick-and-mortar structure
Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.
2013-07-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.
A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion
Energy Technology Data Exchange (ETDEWEB)
Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn [Institute of Natural Sciences, Department of Mathematics, and MOE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China); Lin, Guang, E-mail: lin491@purdue.edu [Department of Mathematics, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States); Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Yang, Xu, E-mail: xuyang@math.ucsb.edu [Department of Mathematics, University of California, Santa Barbara, CA 93106 (United States)
2015-09-01
In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by three steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.
Multi-level Simulation of a Real Time Vibration Monitoring System Component
Robertson, Bryan A.; Wilkerson, Delisa
2005-01-01
This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P
Toward a Theory of Industrial Supply Networks: A Multi-Level Perspective via Network Analysis
Directory of Open Access Journals (Sweden)
Yi Zuo
2017-07-01
Full Text Available In most supply chains (SCs, transaction relationships between suppliers and customers are commonly considered to be an extrapolation from a linear perspective. However, this traditional linear concept of an SC is egotistic and oversimplified and does not sufficiently reflect the complex and cyclical structure of supplier-customer relationships in current economic and industrial situations. The interactional relationships and topological characteristics between suppliers and customers should be analyzed using supply networks (SNs rather than traditional linear SCs. Therefore, this paper reconceptualizes SCs as SNs in complex adaptive systems (CAS, and presents three main contributions. First, we propose an integrated framework of CAS network by synthesizing multi-level network analysis from the network-, community- and vertex-perspective. The CAS perspective enables us to understand the advances of SN properties. Second, in order to emphasize the CAS properties of SNs, we conducted a real-world SN based on the Japanese industry and describe an advanced investigation of SN theory. The CAS properties help in enriching the SN theory, which can benefit SN management, community economics and industrial resilience. Third, we propose a quantitative metric of entropy to measure the complexity and robustness of SNs. The results not only support a specific understanding of the structural outcomes relevant to SNs, but also deliver efficient and effective support to the management and design of SNs.
Magneto-optical transmission-reflection beam splitter for multi-level atoms
International Nuclear Information System (INIS)
Murphy, J.E.; Goodman, P.; Sidorov, A.I.
1994-01-01
An atomic de Broglie wave beam splitter is proposed. The interaction of multi-level atoms (J g = 1 - J e = 0) with a laser beam in the presence of a static magnetic field leads to the partial transmission and reflection of the atomic beam. The coherent splitting of the atomic beam occurs due to non-adiabatic transitions between different dressed states in the vicinity of avoided crossings. The transition probabilities and populations of split beams are dependent on the value of the magnetic field, laser detuning, and the ratio between different polarization components in the laser beam. For optimal conditions the population of each of the two transmitted and two reflected beams is 25 per cent. For cooled atoms it is possible to obtain splitting angles of 80 mrad. The effect of spontaneous emission during the atom-light interaction was estimated and for a reasonable detuning losses were reduced to less than 10 per cent. 14 refs., 1 tab., 6 figs
OAHG: an integrated resource for annotating human genes with multi-level ontologies.
Cheng, Liang; Sun, Jie; Xu, Wanying; Dong, Lixiang; Hu, Yang; Zhou, Meng
2016-10-05
OAHG, an integrated resource, aims to establish a comprehensive functional annotation resource for human protein-coding genes (PCGs), miRNAs, and lncRNAs by multi-level ontologies involving Gene Ontology (GO), Disease Ontology (DO), and Human Phenotype Ontology (HPO). Many previous studies have focused on inferring putative properties and biological functions of PCGs and non-coding RNA genes from different perspectives. During the past several decades, a few of databases have been designed to annotate the functions of PCGs, miRNAs, and lncRNAs, respectively. A part of functional descriptions in these databases were mapped to standardize terminologies, such as GO, which could be helpful to do further analysis. Despite these developments, there is no comprehensive resource recording the function of these three important types of genes. The current version of OAHG, release 1.0 (Jun 2016), integrates three ontologies involving GO, DO, and HPO, six gene functional databases and two interaction databases. Currently, OAHG contains 1,434,694 entries involving 16,929 PCGs, 637 miRNAs, 193 lncRNAs, and 24,894 terms of ontologies. During the performance evaluation, OAHG shows the consistencies with existing gene interactions and the structure of ontology. For example, terms with more similar structure could be associated with more associated genes (Pearson correlation γ 2 = 0.2428, p < 2.2e-16).
Directory of Open Access Journals (Sweden)
Gh. Assadipour
2012-01-01
Full Text Available
ENGLISH ABSTRACT:The trade-off between time, cost, and quality is one of the important problems of project management. This problem assumes that all project activities can be executed in different modes of cost, time, and quality. Thus a manager should select each activity’s mode such that the project can meet the deadline with the minimum possible cost and the maximum achievable quality. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimisation method. The proposed algorithm provides project managers with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Three metrics are employed for evaluating the performance of the algorithm, appraising the diversity and convergence of the achieved Pareto fronts. Finally a comparison is made between CellDE and another meta-heuristic available in the literature. The results show the superiority of CellDE.
AFRIKAANSE OPSOMMING: ‘n Balans tussen tyd, koste en gehalte is een van die belangrike probleme van projekbestuur. Die vraagstuk maak gewoonlik die aanname dat alle projekaktiwiteite uitgevoer kan word op uiteenlopende wyses wat verband hou met koste, tyd en gehalte. ‘n Projekbestuurder selekteer gewoonlik die uitvoeringsmetodes sodanig per aktiwiteit dat gehoor gegegee word aan minimum koste en maksimum gehalte teen die voorwaarde van voltooiingsdatum wat bereik moet word.
Aangesien die beskrewe problem NP-hard is, word dit behandel ten opsigte van konflikterende doelwitte met ‘n multidoelwit metaheuristiese metode (CellDE. Die metode is ‘n hibride-sellulêre genetiese algoritme. Die algoritme lewer aan die besluitvormer ‘n versameling van ongedomineerde of Pareto
International Nuclear Information System (INIS)
Putilov, V.A.
1985-01-01
Problems of organization of multilevel distributed systems for complex investigations of different objects, phenomena and processes are discussed. Priori uncertainty of organization procedures of these investigations assumes compulsory presence of interactive means of communication of an investigator with the system at all the levels of solving complex problems. Recurrent models which assume detailed representation of the solved problem using decomposition tree of research purposes should be used as formal apparatus when developing the considered systems. Recurrent derivation of an algorithm of the problem solution is exercised using the problem-oriented LEADER language
DEFF Research Database (Denmark)
Spanger, Marlene; Dahl, Hanne Marlene; Petersson, Elin
2017-01-01
discursive policy analysis with feminist state and multi-level governance theories. Paying attention to the role of the state, we focus on the framing of policy problems that are important for care chains and on potential tensions between different framings within a state and across the different levels...
Nyman, E.; Rozendaal, Y.J.W.; Helmlinger, G.; Hamrén, B.; Kjellsson, M.C.; Strålfors, P.; van Riel, N.A.W.; Gennemark, P.; Cedersund, G.
2016-01-01
We are currently in the middle of a major shift in biomedical research: unprecedented and rapidly growing amounts of data may be obtained today, from in vitro, in vivo and clinical studies, at molecular, physiological and clinical levels. To make use of these large-scale, multi-level datasets,
Nyman, Elin; Rozendaal, Yvonne J. W.; Helmlinger, Gabriel; Hamrén, Bengt; Kjellsson, Maria C.; Strålfors, Peter; van Riel, Natal A. W.; Gennemark, Peter; Cedersund, Gunnar
2016-01-01
We are currently in the middle of a major shift in biomedical research: unprecedented and rapidly growing amounts of data may be obtained today, from in vitro, in vivo and clinical studies, at molecular, physiological and clinical levels. To make use of these large-scale, multi-level datasets,
Dual deep modeling: multi-level modeling with dual potencies and its formalization in F-Logic.
Neumayr, Bernd; Schuetz, Christoph G; Jeusfeld, Manfred A; Schrefl, Michael
2018-01-01
An enterprise database contains a global, integrated, and consistent representation of a company's data. Multi-level modeling facilitates the definition and maintenance of such an integrated conceptual data model in a dynamic environment of changing data requirements of diverse applications. Multi-level models transcend the traditional separation of class and object with clabjects as the central modeling primitive, which allows for a more flexible and natural representation of many real-world use cases. In deep instantiation, the number of instantiation levels of a clabject or property is indicated by a single potency. Dual deep modeling (DDM) differentiates between source potency and target potency of a property or association and supports the flexible instantiation and refinement of the property by statements connecting clabjects at different modeling levels. DDM comes with multiple generalization of clabjects, subsetting/specialization of properties, and multi-level cardinality constraints. Examples are presented using a UML-style notation for DDM together with UML class and object diagrams for the representation of two-level user views derived from the multi-level model. Syntax and semantics of DDM are formalized and implemented in F-Logic, supporting the modeler with integrity checks and rich query facilities.
Doyle, Louise; Kelliher, Felicity; Harrington, Denis
2016-01-01
The aim of this paper is to review the relevant literature on organisational learning and offer a preliminary conceptual framework as a basis to explore how the multi-levels of individual learning and team learning interact in a public healthcare organisation. The organisational learning literature highlights a need for further understanding of…
Platteel, Anouk C M|info:eu-repo/dai/nl/375805613; Liepe, Juliane; Textoris-Taube, Kathrin; Keller, Christin; Henklein, Petra; Schalkwijk, Hanna H; Cardoso, Rebeca; Kloetzel, Peter M; Mishto, Michele; Sijts, Alice J A M|info:eu-repo/dai/nl/115553843
2017-01-01
Proteasome-catalyzed peptide splicing (PCPS) generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to
CSIR Research Space (South Africa)
Abu-Mahfouz, Adnan M
2012-06-01
Full Text Available are still required for further testing before the real implementation. In this paper we propose a multi-level infrastructure of interconnected testbeds of large- scale WSNs. This testbed consists of 1000 sensor motes that will be distributed into four...
Hallberg, Kelly; Cook, Thomas D.; Figlio, David
2013-01-01
The goal of this paper is to provide guidance for applied education researchers in using multi-level data to study the effects of interventions implemented at the school level. Two primary approaches are currently employed in observational studies of the effect of school-level interventions. One approach employs intact school matching: matching…
Hassink, J.; Grin, J.; Hulsink, W.
2013-01-01
Care farming is a promising example of multifunctional agriculture: it is an innovation at the crossroads of the agricultural and healthcare sectors. Our objective is to develop a framework for understanding the success of initiatives in this field. We link empirical data with the multi-level
Tessema Abissa, Fisseha; Tessema Abissa, Fisseha
2014-01-01
This thesis examines the relationships between multi-leveled decision structures for climate technology transfer through an analysis of top-down macro-policy and bottom-up micro-implementation. It examines how international climate technology transfer policy under the UNFCCC filters down to the
Pictorial AR Tag with Hidden Multi-Level Bar-Code and Its Potential Applications
Directory of Open Access Journals (Sweden)
Huy Le
2017-09-01
Full Text Available For decades, researchers have been trying to create intuitive virtual environments by blending reality and virtual reality, thus enabling general users to interact with the digital domain as easily as with the real world. The result is “augmented reality” (AR. AR seamlessly superimposes virtual objects on to a real environment in three dimensions (3D and in real time. One of the most important parts that helps close the gap between virtuality and reality is the marker used in the AR system. While pictorial marker and bar-code marker are the two most commonly used marker types in the market, they have some disadvantages in visual and processing performance. In this paper, we present a novelty method that combines the bar-code with the original feature of a colour picture (e.g., photos, trading cards, advertisement’s figure. Our method decorates on top of the original pictorial images additional features with a single stereogram image that optically conceals a multi-level (3D bar-code. Thus, it has a larger capability of storing data compared to the general 1D barcode. This new type of marker has the potential of addressing the issues that the current types of marker are facing. It not only keeps the original information of the picture but also contains encoded numeric information. In our limited evaluation, this pictorial bar-code shows a relatively robust performance under various conditions and scaling; thus, it provides a promising AR approach to be used in many applications such as trading card games, educations, and advertisements.
Power penalties for multi-level PAM modulation formats at arbitrary bit error rates
Kaliteevskiy, Nikolay A.; Wood, William A.; Downie, John D.; Hurley, Jason; Sterlingov, Petr
2016-03-01
There is considerable interest in combining multi-level pulsed amplitude modulation formats (PAM-L) and forward error correction (FEC) in next-generation, short-range optical communications links for increased capacity. In this paper we derive new formulas for the optical power penalties due to modulation format complexity relative to PAM-2 and due to inter-symbol interference (ISI). We show that these penalties depend on the required system bit-error rate (BER) and that the conventional formulas overestimate link penalties. Our corrections to the standard formulas are very small at conventional BER levels (typically 1×10-12) but become significant at the higher BER levels enabled by FEC technology, especially for signal distortions due to ISI. The standard formula for format complexity, P = 10log(L-1), is shown to overestimate the actual penalty for PAM-4 and PAM-8 by approximately 0.1 and 0.25 dB respectively at 1×10-3 BER. Then we extend the well-known PAM-2 ISI penalty estimation formula from the IEEE 802.3 standard 10G link modeling spreadsheet to the large BER case and generalize it for arbitrary PAM-L formats. To demonstrate and verify the BER dependence of the ISI penalty, a set of PAM-2 experiments and Monte-Carlo modeling simulations are reported. The experimental results and simulations confirm that the conventional formulas can significantly overestimate ISI penalties at relatively high BER levels. In the experiments, overestimates up to 2 dB are observed at 1×10-3 BER.
Multi-level intervention to prevent influenza infections in older low income and minority adults.
Schensul, Jean J; Radda, Kim; Coman, Emil; Vazquez, Elsie
2009-06-01
In this paper we describe a successful multi-level participatory intervention grounded in principles of individual and group empowerment, and guided by social construction theory. The intervention addressed known and persistent inequities in influenza vaccination among African American and Latino older adults, and associated infections, hospitalizations and mortality. It was designed to increase resident ability to make informed decisions about vaccination, and to build internal and external infrastructure to support sustainability over time. The intervention brought a group of social scientists, vaccine researchers, geriatricians, public health nurses, elder services providers and advocates together with senior housing management and activist African American and Latino residents living in public senior housing in a small east coast city. Two buildings of equal size and similar ethnic composition were randomized as intervention and control buildings. Pre and post intervention surveys were conducted in both buildings, measuring knowledge, attitudes and peer norms. Processes and outcomes were documented at four levels: Influenza Strategic Alliance (macro and exo levels), building management (meso level), building resident committee (meso level) and individual residents. The Influenza Strategic Alliance (I.S.A.) provided ongoing resources, information and vaccine; the building management provided economic and other in-kind resources and supported residents to continue flu clinics in the building. The V.I.P. Resident Committee conducted flu campaigns with flu clinics in English and Spanish. The vaccination rate in the intervention building at post test exceeded the study goal of 70% and showed a significant improvement over the control building. The intervention achieved desired outcomes at all four levels and resulted in a significant increase in influenza vaccination, and improvements in pro-vaccination knowledge, beliefs, and understanding of health consequences.
Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft
Directory of Open Access Journals (Sweden)
Jian FU
2018-05-01
Full Text Available Electromechanical actuators (EMAs are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced system flexibility, and improved management of fault detection and isolation. However, electromechanical actuation raises specific issues when being used for safety-critical aerospace applications like flight controls: huge reflected inertia to load, jamming-type failure, and increase of backlash with service due to wear and local dissipation of heat losses for thermal balance. This study proposes an incremental approach for virtual prototyping of EMAs. It is driven by a model-based system engineering process in order to enable simulation-aided design. Best practices supported by Bond graph formalism are suggested to develop a model’s structure efficiently and to make the model ready for use (or extension by addressing the above mentioned issues. Physical effects are progressively introduced, and the realism of lumped-parameter models is increased step-by-step. In particular, multi-level component models are architected to ensure continuity between engineering activities. The models are implemented in the AMESim simulation environment, and simulation responses are given to illustrate how they can be used for preliminary sizing, control design, thermal balance verification, and faults to failure analysis. The proposed best practices intend to provide engineers with fast, reusable, and efficient means to assess performance virtually and enhance maturity, performance, and robustness. Keywords: Bond graph, Electromechanical actuator, Flight control, Model-based system engineering, More electric aircraft, Power-by-wire
Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers
Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II
2015-01-01
Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.
Customized binary and multi-level HfO2-x-based memristors tuned by oxidation conditions.
He, Weifan; Sun, Huajun; Zhou, Yaxiong; Lu, Ke; Xue, Kanhao; Miao, Xiangshui
2017-08-30
The memristor is a promising candidate for the next generation non-volatile memory, especially based on HfO 2-x , given its compatibility with advanced CMOS technologies. Although various resistive transitions were reported independently, customized binary and multi-level memristors in unified HfO 2-x material have not been studied. Here we report Pt/HfO 2-x /Ti memristors with double memristive modes, forming-free and low operation voltage, which were tuned by oxidation conditions of HfO 2-x films. As O/Hf ratios of HfO 2-x films increase, the forming voltages, SET voltages, and R off /R on windows increase regularly while their resistive transitions undergo from gradually to sharply in I/V sweep. Two memristors with typical resistive transitions were studied to customize binary and multi-level memristive modes, respectively. For binary mode, high-speed switching with 10 3 pulses (10 ns) and retention test at 85 °C (>10 4 s) were achieved. For multi-level mode, the 12-levels stable resistance states were confirmed by ongoing multi-window switching (ranging from 10 ns to 1 μs and completing 10 cycles of each pulse). Our customized binary and multi-level HfO 2-x -based memristors show high-speed switching, multi-level storage and excellent stability, which can be separately applied to logic computing and neuromorphic computing, further suitable for in-memory computing chip when deposition atmosphere may be fine-tuned.
Batistic, S.; Cerne, M.; Vogel, Bernd
2017-01-01
The use of multi-level theories and methodologies in leadership has gained momentum in recent years. However, the leadership field still suffers from a fragmented and unclear evolution and practice of multi-level approaches. The questions of how and to what extent multi-level research has evolved in both leadership phenomena and leadership outcomes, and which informal research networks drove this evolution, remain vastly unexplored. In this study, the extent of literature published between 19...
Optimization of simulated moving bed (SMB) chromatography: a multi-level optimization procedure
DEFF Research Database (Denmark)
Jørgensen, Sten Bay; Lim, Young-il
2004-01-01
objective functions (productivity and desorbent consumption), employing the standing wave analysis, the true moving bed (TMB) model and the simulated moving bed (SMB) model. The procedure is constructed on a non-worse solution property advancing level by level and its solution does not mean a global optimum...
Multi-level flow-based Markov clustering for design structure matrices
Wilschut, T.; Etman, P.L.F.; Rooda, J.E.; Adan, I.J.B.F.
2016-01-01
For decomposition and integration of systems one requires extensive knowledge on system structure. A Design Structure Matrix (DSM) can provide a simple, compact and visual representation of dependencies between system elements. By permuting the rows and columns of a DSM using a clustering algorithm,
Institute of Scientific and Technical Information of China (English)
WANG ShunJin; ZHANG Hua
2007-01-01
Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
International Nuclear Information System (INIS)
Chandrasekharan, Shailesh
2000-01-01
Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm
Multi-level significance of vulnerability indicators. Case study: Eastern Romania
Stanga, I. C.; Grozavu, A.
2012-04-01
Vulnerability assessment aims, most frequently, to emphasize internal fragility of a system comparing to a reference standard, to similar systems or in relation to a given hazard. Internal fragility, either biophysical or structural, may affect the capacity to predict, to prepare for, to cope with or to recover from a disaster. Thus, vulnerability is linked to resilience and adaptive capacity. From local level to global one, vulnerability factors and corresponding indicators are different and their significance must be tested and validated in a well-structured conceptual and methodological framework. In this paper, the authors aim to show the real vulnerability of rural settlements in Eastern Romania in a multi-level approach. The research area, Tutova Hills, counts about 3421 sq.km and more than 200.000 inhabitants in 421 villages characterized by deficient accessibility, lack of endowments, subsistential agriculture, high pressure on natural environment (especially on forest and soil resources), poverty and aging process of population. Factors that could influence the vulnerability of these rural settlements have been inventoried and assigned into groups through a cluster analysis: habitat and technical urban facilities, infrastructure, economical, social and demographical indicators, environment quality, management of emergency situations etc. Firstly, the main difficulty was to convert qualitative variable in quantitative indicators and to standardize all values to make possible mathematical and statistical processing of data. Secondly, the great variability of vulnerability factors, their different measuring units and their high amplitude of variation require different method of standardization in order to obtain values between zero (minimum vulnerability) and one (maximum vulnerability). Final vulnerability indicators were selected and integrated in a general scheme, according to their significance resulted from an appropriate factor analysis: linear and
Analisis Kemampuan Awal Multi Level Representasi Mahasiswa Tingkat I pada Konsep Reaksi Redoks
Directory of Open Access Journals (Sweden)
Indah Langitasari
2016-01-01
reaksi redoks masih tergolong sangat rendah. Mahasiswa belum mampu mendeskripsikan dan menjelaskan hasil pengamatan reaksi redoks (makroskopik dalam bentuk atom, molekul, dan ion yang terlibat dalam reaksi. Hal ini mengindikasikan bahwa pemahaman simbolik dan submikroskopik mahasiswa tingkat I masih sangat terbatas dan hanya 2,9% mahasiswa yang mampu membuat hubungan antara pengamatan makroskopik, representasi simbolik dan gambaran submikroskopik.Kata kunci: Kemampuan awal, Reaksi redoks, Multi level representasi
RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug
Directory of Open Access Journals (Sweden)
Mamidala Praveen
2012-01-01
Full Text Available Abstract Background Bed bugs (Cimex lectularius are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. Results We performed a next-generation RNA sequencing (RNA-Seq experiment to find differentially expressed genes between pesticide-resistant (PR and pesticide-susceptible (PS strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs and our previous 454 pyrosequenced database (21,088 ESTs. The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2 revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. Conclusions We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide
Shojaeefard, Mohammad Hassan; Khalkhali, Abolfazl; Faghihian, Hamed; Dahmardeh, Masoud
2018-03-01
Unlike conventional approaches where optimization is performed on a unique component of a specific product, optimum design of a set of components for employing in a product family can cause significant reduction in costs. Increasing commonality and performance of the product platform simultaneously is a multi-objective optimization problem (MOP). Several optimization methods are reported to solve these MOPs. However, what is less discussed is how to find the trade-off points among the obtained non-dominated optimum points. This article investigates the optimal design of a product family using non-dominated sorting genetic algorithm II (NSGA-II) and proposes the employment of technique for order of preference by similarity to ideal solution (TOPSIS) method to find the trade-off points among the obtained non-dominated results while compromising all objective functions together. A case study for a family of suspension systems is presented, considering performance and commonality. The results indicate the effectiveness of the proposed method to obtain the trade-off points with the best possible performance while maximizing the common parts.
Kang, Qian; Ru, Qingguo; Liu, Yan; Xu, Lingyan; Liu, Jia; Wang, Yifei; Zhang, Yewen; Li, Hui; Zhang, Qing; Wu, Qing
2016-01-01
An on-line near infrared (NIR) spectroscopy monitoring method with an appropriate multivariate calibration method was developed for the extraction process of Fu-fang Shuanghua oral solution (FSOS). On-line NIR spectra were collected through two fiber optic probes, which were designed to transmit NIR radiation by a 2 mm flange. Partial least squares (PLS), interval PLS (iPLS) and synergy interval PLS (siPLS) algorithms were used comparatively for building the calibration regression models. During the extraction process, the feasibility of NIR spectroscopy was employed to determine the concentrations of chlorogenic acid (CA) content, total phenolic acids contents (TPC), total flavonoids contents (TFC) and soluble solid contents (SSC). High performance liquid chromatography (HPLC), ultraviolet spectrophotometric method (UV) and loss on drying methods were employed as reference methods. Experiment results showed that the performance of siPLS model is the best compared with PLS and iPLS. The calibration models for AC, TPC, TFC and SSC had high values of determination coefficients of (R2) (0.9948, 0.9992, 0.9950 and 0.9832) and low root mean square error of cross validation (RMSECV) (0.0113, 0.0341, 0.1787 and 1.2158), which indicate a good correlation between reference values and NIR predicted values. The overall results show that the on line detection method could be feasible in real application and would be of great value for monitoring the mixed decoction process of FSOS and other Chinese patent medicines.
Ghaedi, M; Zeinali, N; Ghaedi, A M; Teimuori, M; Tashkhourian, J
2014-05-05
In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH=7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R(2)) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the
Optimization algorithms and applications
Arora, Rajesh Kumar
2015-01-01
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible direc
Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.
Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao
2017-01-04
The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.
Directory of Open Access Journals (Sweden)
Yu Qi
2017-03-01
Full Text Available The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF, extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.
Homogeneous-oxide stack in IGZO thin-film transistors for multi-level-cell NAND memory application
Ji, Hao; Wei, Yehui; Zhang, Xinlei; Jiang, Ran
2017-11-01
A nonvolatile charge-trap-flash memory that is based on amorphous indium-gallium-zinc-oxide thin film transistors was fabricated with a homogeneous-oxide structure for a multi-level-cell application. All oxide layers, i.e., tunneling layer, charge trapping layer, and blocking layer, were fabricated with Al2O3 films. The fabrication condition (including temperature and deposition method) of the charge trapping layer was different from those of the other oxide layers. This device demonstrated a considerable large memory window of 4 V between the states fully erased and programmed with the operation voltage less than 14 V. This kind of device shows a good prospect for multi-level-cell memory applications.
Energy Technology Data Exchange (ETDEWEB)
Siqueira, A. F. de, E-mail: siqueiraaf@gmail.com; Cabrera, F. C., E-mail: flavioccabrera@yahoo.com.br [UNESP – Univ Estadual Paulista, Dep de Física, Química e Biologia (Brazil); Pagamisse, A., E-mail: aylton@fct.unesp.br [UNESP – Univ Estadual Paulista, Dep de Matemática e Computação (Brazil); Job, A. E., E-mail: job@fct.unesp.br [UNESP – Univ Estadual Paulista, Dep de Física, Química e Biologia (Brazil)
2014-12-15
This study consolidates multi-level starlet segmentation (MLSS) and multi-level starlet optimal segmentation (MLSOS) techniques for photomicrograph segmentation, based on starlet wavelet detail levels to separate areas of interest in an input image. Several segmentation levels can be obtained using MLSS; after that, Matthews correlation coefficient is used to choose an optimal segmentation level, giving rise to MLSOS. In this paper, MLSOS is employed to estimate the concentration of gold nanoparticles with diameter around 47 nm, reduced on natural rubber membranes. These samples were used for the construction of SERS/SERRS substrates and in the study of the influence of natural rubber membranes with incorporated gold nanoparticles on the physiology of Leishmania braziliensis. Precision, recall, and accuracy are used to evaluate the segmentation performance, and MLSOS presents an accuracy greater than 88 % for this application.
Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard
2016-04-01
-fighting missions. The ongoing development focuses on the following topics: (1) Development of a multi-level management solution to coordinate and guide different airborne and terrestrial deployed firefighting modules as well as related data processing and data distribution activities. (2) Further, a targeted control of the thermal sensor based on a rotating mirror system to extend the "area performance" (covered area per hour) in time critical situations for the monitoring requirements during forest fire events. (3) Novel computer vision methods for analysis of thermal sensor signatures, which allow an automatic classification of different forest fire types and situations. (4) A module for simulation-based decision support for planning and evaluation of resource usage and the effectiveness of performed fire-fighting measures. (5) Integration of wearable systems to assist ground teams in rescue operations as well as a mobile information system into innovative command and fire-fighting vehicles. In addition, the paper gives an outlook on future perspectives including a first concept for the integration of the near real-time multilevel forest fire fighting management system into an "EU Civil Protection Team" to support the EU civil protection modules and the Emergency Response Coordination Centre in Brussels. Keywords: Airborne sensing, multi sensor imaging, near real-time fire monitoring, simulation-based decision support, forest firefighting management, firefighting impact analysis.
Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon
2016-01-01
Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d
Gallier, Carlo; Goeschl, Timo; Kesternich, Martin; Lohse, Johannes; Reif, Christiane; Römer, Daniel
2017-01-01
Many public goods can be provided at different spatial levels. Evidence from social identity theory and in-group favoritism raises the possibility that where higher-level provision is more efficient, subjects’ narrow concern for local outcomes (parochialism) could harm efficiency. Building on the experimental paradigm of multi-level public good games and the ‘neighborhood attachment’ concept, we conduct an artefactual field experiment with 600 participants in a setting conducive to parochial...
De Vos, Jaqueline
2012-01-01
Workplace bullying is recognised as a major psychosocial stressor in various professions and can have severe effects on health. Teachers are distinguished as an occupational group that is severely affected by this phenomenon. The general objectives of this research study were to firstly investigate teachers’ experiences of workplace bullying and its effects on health, and secondly, to develop a multi-level intervention programme that can be implemented to address workplace bullying and its ef...
Directory of Open Access Journals (Sweden)
Jianqiang Mo
Full Text Available For multi-level spondylolysis patients, surgeons commonly choose to fix all the segments with pars interarticularis defect even those without slippage and not responsible for clinical symptoms. In this study, we tried to study the necessity of the preventative long-segment surgery for the defected segment without slippage in treatment of multi-level spondylolysis patients from a biomechanical perspective.We established a bi-level spondylolysis model with pars defects at L4 and L5 segments, and simulated posterior lumbar interbody fusion (PLIF and pedicle screw fixation at L5-S1 level. Then we compared the biomechanical changes at L4 segment before and after surgery in neutral, flexion, extension, lateral bending and axial rotation position.The stress on L4 pars interarticularis was very similar before and after surgery, and reached the highest in axial rotation. The L3-L4 intradiscal pressure was almost the same, while L4-L5 intradiscal pressure changed a little in lateral bending (increase from 1.993 to 2.160 MPa and axial rotation (decrease from 1.639 to 1.307 MPa after surgery. The PLIF surgery caused a little increase of range of motion at adjacent L4-L5 and L3-L4 levels, but the change is very tiny (1 degree.The PLIF surgery will not cause significant biomechanical change at adjacent segment with pars defect in multi-level spondylolysis. On the contrary, excessive long-segment surgery will damage surrounding soft tissues which are important for maintaining the stability of spine. So a preventative long-segment surgery is not necessary for multi-level spondylolysis as long as there are no soft tissue degeneration signs at adjacent level.
Mo, Jianqiang; Zhang, Wen; Zhong, Dongyan; Xu, Hao; Wang, Lan; Yu, Jia; Luo, Zongping
2016-01-01
For multi-level spondylolysis patients, surgeons commonly choose to fix all the segments with pars interarticularis defect even those without slippage and not responsible for clinical symptoms. In this study, we tried to study the necessity of the preventative long-segment surgery for the defected segment without slippage in treatment of multi-level spondylolysis patients from a biomechanical perspective. We established a bi-level spondylolysis model with pars defects at L4 and L5 segments, and simulated posterior lumbar interbody fusion (PLIF) and pedicle screw fixation at L5-S1 level. Then we compared the biomechanical changes at L4 segment before and after surgery in neutral, flexion, extension, lateral bending and axial rotation position. The stress on L4 pars interarticularis was very similar before and after surgery, and reached the highest in axial rotation. The L3-L4 intradiscal pressure was almost the same, while L4-L5 intradiscal pressure changed a little in lateral bending (increase from 1.993 to 2.160 MPa) and axial rotation (decrease from 1.639 to 1.307 MPa) after surgery. The PLIF surgery caused a little increase of range of motion at adjacent L4-L5 and L3-L4 levels, but the change is very tiny (1 degree). The PLIF surgery will not cause significant biomechanical change at adjacent segment with pars defect in multi-level spondylolysis. On the contrary, excessive long-segment surgery will damage surrounding soft tissues which are important for maintaining the stability of spine. So a preventative long-segment surgery is not necessary for multi-level spondylolysis as long as there are no soft tissue degeneration signs at adjacent level.
Witt, Michael; Krefting, Dagmar
2016-01-01
Human sample data is stored in biobanks with software managing digital derived sample data. When these stand-alone components are connected and a search infrastructure is employed users become able to collect required research data from different data sources. Data protection, patient rights, data heterogeneity and access control are major challenges for such an infrastructure. This dissertation will investigate concepts for a multi-level security architecture to comply with these requirements.
Minimizing End-to-End Interference in I/O Stacks Spanning Shared Multi-Level Buffer Caches
Patrick, Christina M.
2011-01-01
This thesis presents an end-to-end interference minimizing uniquely designed high performance I/O stack that spans multi-level shared buffer cache hierarchies accessing shared I/O servers to deliver a seamless high performance I/O stack. In this thesis, I show that I can build a superior I/O stack which minimizes the inter-application interference…
Julia Sevy
2016-01-01
Many challenges face English language teachers today, but two common problems in Ecuador specifically in universities are large class sizes and multi-level students. These problems can create boredom, anxiety, and over all lack of interest in English language learning. It is shown in this article how to combat these particular problems through various strategies utilized to teach to the students’ needs, help them work together and intrinsically motivate them to learn different English languag...
Zhang, Yue; Berhane, Kiros
2014-01-01
Questionnaire-based health status outcomes are often prone to misclassification. When studying the effect of risk factors on such outcomes, ignoring any potential misclassification may lead to biased effect estimates. Analytical challenges posed by these misclassified outcomes are further complicated when simultaneously exploring factors for both the misclassification and health processes in a multi-level setting. To address these challenges, we propose a fully Bayesian Mixed Hidden Markov Model (BMHMM) for handling differential misclassification in categorical outcomes in a multi-level setting. The BMHMM generalizes the traditional Hidden Markov Model (HMM) by introducing random effects into three sets of HMM parameters for joint estimation of the prevalence, transition and misclassification probabilities. This formulation not only allows joint estimation of all three sets of parameters, but also accounts for cluster level heterogeneity based on a multi-level model structure. Using this novel approach, both the true health status prevalence and the transition probabilities between the health states during follow-up are modeled as functions of covariates. The observed, possibly misclassified, health states are related to the true, but unobserved, health states and covariates. Results from simulation studies are presented to validate the estimation procedure, to show the computational efficiency due to the Bayesian approach and also to illustrate the gains from the proposed method compared to existing methods that ignore outcome misclassification and cluster level heterogeneity. We apply the proposed method to examine the risk factors for both asthma transition and misclassification in the Southern California Children's Health Study (CHS). PMID:24254432
Energy Technology Data Exchange (ETDEWEB)
Carey, G.F.; Young, D.M.
1993-12-31
The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.
Massive fungal biodiversity data re-annotation with multi-level clustering
DEFF Research Database (Denmark)
Vu, D.; Szoke, S.; Wiwie, Christian
2014-01-01
With the availability of newer and cheaper sequencing methods, genomic data are being generated at an increasingly fast pace. In spite of the high degree of complexity of currently available search routines, the massive number of sequences available virtually prohibits quick and correct identific...... for clustering. An implementation of the algorithm allowed clustering of all 344,239 ITS (Internal Transcribed Spacer) fungal sequences from GenBank utilizing only a normal desktop computer within 22 CPU-hours whereas the greedy clustering method took up to 242 CPU-hours....
Portfolios of quantum algorithms.
Maurer, S M; Hogg, T; Huberman, B A
2001-12-17
Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.
Hybrid PV/diesel solar power system design using multi-level factor analysis optimization
Drake, Joshua P.
Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.
Directory of Open Access Journals (Sweden)
Huynh Toan
2009-01-01
Full Text Available Abstract Background This paper focuses on the creation of a predictive computer-assisted decision making system for traumatic injury using machine learning algorithms. Trauma experts must make several difficult decisions based on a large number of patient attributes, usually in a short period of time. The aim is to compare the existing machine learning methods available for medical informatics, and develop reliable, rule-based computer-assisted decision-making systems that provide recommendations for the course of treatment for new patients, based on previously seen cases in trauma databases. Datasets of traumatic brain injury (TBI patients are used to train and test the decision making algorithm. The work is also applicable to patients with traumatic pelvic injuries. Methods Decision-making rules are created by processing patterns discovered in the datasets, using machine learning techniques. More specifically, CART and C4.5 are used, as they provide grammatical expressions of knowledge extracted by applying logical operations to the available features. The resulting rule sets are tested against other machine learning methods, including AdaBoost and SVM. The rule creation algorithm is applied to multiple datasets, both with and without prior filtering to discover significant variables. This filtering is performed via logistic regression prior to the rule discovery process. Results For survival prediction using all variables, CART outperformed the other machine learning methods. When using only significant variables, neural networks performed best. A reliable rule-base was generated using combined C4.5/CART. The average predictive rule performance was 82% when using all variables, and approximately 84% when using significant variables only. The average performance of the combined C4.5 and CART system using significant variables was 89.7% in predicting the exact outcome (home or rehabilitation, and 93.1% in predicting the ICU length of stay for
Data Model Approach And Markov Chain Based Analysis Of Multi-Level Queue Scheduling
Directory of Open Access Journals (Sweden)
Diwakar Shukla
2010-01-01
Full Text Available There are many CPU scheduling algorithms inliterature like FIFO, Round Robin, Shortest-Job-First and so on.The Multilevel-Queue-Scheduling is superior to these due to itsbetter management of a variety of processes. In this paper, aMarkov chain model is used for a general setup of Multilevelqueue-scheduling and the scheduler is assumed to performrandom movement on queue over the quantum of time.Performance of scheduling is examined through a rowdependent data model. It is found that with increasing value of αand d, the chance of system going over the waiting state reduces.At some of the interesting combinations of α and d, it diminishesto zero, thereby, provides us some clue regarding better choice ofqueues over others for high priority jobs. It is found that ifqueue priorities are added in the scheduling intelligently thenbetter performance could be obtained. Data model helpschoosing appropriate preferences.
Directory of Open Access Journals (Sweden)
Mark James Abraham
2015-09-01
Full Text Available GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. These work on every level; SIMD registers inside cores, multithreading, heterogeneous CPU–GPU acceleration, state-of-the-art 3D domain decomposition, and ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. The latest best-in-class compressed trajectory storage format is supported.
Detecting text in natural scenes with multi-level MSER and SWT
Lu, Tongwei; Liu, Renjun
2018-04-01
The detection of the characters in the natural scene is susceptible to factors such as complex background, variable viewing angle and diverse forms of language, which leads to poor detection results. Aiming at these problems, a new text detection method was proposed, which consisted of two main stages, candidate region extraction and text region detection. At first stage, the method used multiple scale transformations of original image and multiple thresholds of maximally stable extremal regions (MSER) to detect the text regions which could detect character regions comprehensively. At second stage, obtained SWT maps by using the stroke width transform (SWT) algorithm to compute the candidate regions, then using cascaded classifiers to propose non-text regions. The proposed method was evaluated on the standard benchmark datasets of ICDAR2011 and the datasets that we made our own data sets. The experiment results showed that the proposed method have greatly improved that compared to other text detection methods.
Integrated multi-level quality control for proteomic profiling studies using mass spectrometry
Directory of Open Access Journals (Sweden)
Barrett Jennifer H
2008-12-01
Full Text Available Abstract Background Proteomic profiling using mass spectrometry (MS is one of the most promising methods for the analysis of complex biological samples such as urine, serum and tissue for biomarker discovery. Such experiments are often conducted using MALDI-TOF (matrix-assisted laser desorption/ionisation time-of-flight and SELDI-TOF (surface-enhanced laser desorption/ionisation time-of-flight MS. Using such profiling methods it is possible to identify changes in protein expression that differentiate disease states and individual proteins or patterns that may be useful as potential biomarkers. However, the incorporation of quality control (QC processes that allow the identification of low quality spectra reliably and hence allow the removal of such data before further analysis is often overlooked. In this paper we describe rigorous methods for the assessment of quality of spectral data. These procedures are presented in a user-friendly, web-based program. The data obtained post-QC is then examined using variance components analysis to quantify the amount of variance due to some of the factors in the experimental design. Results Using data from a SELDI profiling study of serum from patients with different levels of renal function, we show how the algorithms described in this paper may be used to detect systematic variability within and between sample replicates, pooled samples and SELDI chips and spots. Manual inspection of those spectral data that were identified as being of poor quality confirmed the efficacy of the algorithms. Variance components analysis demonstrated the relatively small amount of technical variance attributable to day of profile generation and experimental array. Conclusion Using the techniques described in this paper it is possible to reliably detect poor quality data within proteomic profiling experiments undertaken by MS. The removal of these spectra at the initial stages of the analysis substantially improves the
Cache-Oblivious Algorithms and Data Structures
DEFF Research Database (Denmark)
Brodal, Gerth Stølting
2004-01-01
Frigo, Leiserson, Prokop and Ramachandran in 1999 introduced the ideal-cache model as a formal model of computation for developing algorithms in environments with multiple levels of caching, and coined the terminology of cache-oblivious algorithms. Cache-oblivious algorithms are described...... as standard RAM algorithms with only one memory level, i.e. without any knowledge about memory hierarchies, but are analyzed in the two-level I/O model of Aggarwal and Vitter for an arbitrary memory and block size and an optimal off-line cache replacement strategy. The result are algorithms that automatically...... apply to multi-level memory hierarchies. This paper gives an overview of the results achieved on cache-oblivious algorithms and data structures since the seminal paper by Frigo et al....
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Diego R.; Silva, Alessandro L. da; Luciano, Edson Jose Rezende; Nepomuceno, Leonardo [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Dept. de Engenharia Eletrica], Emails: diego_eng.eletricista@hotmail.com, alessandrolopessilva@uol.com.br, edson.joserl@uol.com.br, leo@feb.unesp.br
2009-07-01
Problems of DC Optimal Power Flow (OPF) have been solved by various conventional optimization methods. When the modeling of DC OPF involves discontinuous functions or not differentiable, the use of solution methods based on conventional optimization is often not possible because of the difficulty in calculating the gradient vectors at points of discontinuity/non-differentiability of these functions. This paper proposes a method for solving the DC OPF based on Genetic Algorithms (GA) with real coding. The proposed GA has specific genetic operators to improve the quality and viability of the solution. The results are analyzed for an IEEE test system, and its solutions are compared, when possible, with those obtained by a method of interior point primal-dual logarithmic barrier. The results highlight the robustness of the method and feasibility of obtaining the solution to real systems.
Czech Academy of Sciences Publication Activity Database
Bernard, Josef; Šafr, Jiří
2016-01-01
Roč. 52, č. 3 (2016), s. 267-291 ISSN 0038-0288 R&D Projects: GA ČR GAP404/12/0714 Institutional support: RVO:68378025 Keywords : incumbency * legislative recruitment * multi-level political system Subject RIV: AD - Politology ; Political Sciences Impact factor: 0.143, year: 2016 http://sreview.soc.cas.cz/uploads/6184b97b7357aa4e289089fff7852b7d898290d9_16-3-02Bernard15.indd.pdf
DEFF Research Database (Denmark)
Ciobotaru, Mihai; Iov, Florin; Zanchetta, P.
2008-01-01
will be needed in order to control the power flow and to ensure proper and secure operation of this future grid with an increased level of renewable power. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents an analysis of the natural...... reference frame controller, based on proportional-resonant (PR) technique, for a multi-level H-bridge power converter for Universal and Flexible Power Management in Future Electricity Network. The proposed method is tested in terms of harmonic content in the Point of Common Coupling (PCC), voltage...
Ren, Yong; Li, Jiachen; Zhang, Weifeng; Jia, Caihong
2017-10-01
Epitaxial ZnO thin films were grown on SrTiO3:Nb (NSTO) substrates by rf magnetron sputtering method. The multi-level resistance states were observed by applying different amplitudes and/or polarities of voltage pulses, which is supposed to be related to the drift of oxygen vacancies. Furthermore, the decay of retention is also corresponding to the migration of oxygen vacancies. The retention and cycle stability implies that the ZnO/Nb:SrTiO3 heterojunctions are promising for high density memory application.
A systematic fault tree analysis based on multi-level flow modeling
International Nuclear Information System (INIS)
Gofuku, Akio; Ohara, Ai
2010-01-01
The fault tree analysis (FTA) is widely applied for the safety evaluation of a large-scale and mission-critical system. Because the potential of the FTA, however, strongly depends on human skill of analyzers, problems are pointed out in (1) education and training, (2) unreliable quality, (3) necessity of expertise knowledge, and (4) update of FTA results after the reconstruction of a target system. To get rid of these problems, many techniques to systematize FTA activities by applying computer technologies have been proposed. However, these techniques only use structural information of a target system and do not use functional information that is one of important properties of an artifact. The principle of FTA is to trace comprehensively cause-effect relations from a top undesirable effect to anomaly causes. The tracing is similar to the causality estimation technique that the authors proposed to find plausible counter actions to prevent or to mitigate the undesirable behavior of plants based on the model by a functional modeling technique, Multilevel Flow Modeling (MFM). The authors have extended this systematic technique to construct a fault tree (FT). This paper presents an algorithm of systematic construction of FT based on MFM models and demonstrates the applicability of the extended technique by the FT construction result of a cooling plant of nitric acid. (author)
Composite Differential Search Algorithm
Directory of Open Access Journals (Sweden)
Bo Liu
2014-01-01
Full Text Available Differential search algorithm (DS is a relatively new evolutionary algorithm inspired by the Brownian-like random-walk movement which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,” “DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential search algorithm (CDS is proposed in this paper. This new algorithm combines three new proposed search schemes including “DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark functions.
Energy Technology Data Exchange (ETDEWEB)
Fijany, A. [Jet Propulsion Lab., Pasadena, CA (United States); Coley, T.R. [Virtual Chemistry, Inc., San Diego, CA (United States); Cagin, T.; Goddard, W.A. III [California Institute of Technology, Pasadena, CA (United States)
1997-12-31
Successful molecular dynamics (MD) simulation of large systems (> million atoms) for long times (> nanoseconds) requires the integration of constrained equations of motion (CEOM). Constraints are used to eliminate high frequency degrees of freedom (DOF) and to allow the use of rigid bodies. Solving the CEOM allows for larger integration time-steps and helps focus the simulation on the important collective dynamics of chemical, biological, and materials systems. We explore advances in multibody dynamics which have resulted in O(N) algorithms for propagating the CEOM. However, because of their strictly sequential nature, the computational time required by these algorithms does not scale down with increased numbers of processors. We then present the new constraint force algorithm for solving the CEOM and show that this algorithm is fully parallelizable, leading to a computational cost of O(N/P+IogP) for N DOF on P processors.
National Research Council Canada - National Science Library
Hull, Richard
1993-01-01
.... Genetic algorithms (GA's), on the other hand, offer a numerical search method which does not require a statement of the mathematical relationship between the performance criteria and the parameter update rule...
Samba, A. S.
1985-01-01
The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.
Euclidean shortest paths exact or approximate algorithms
Li, Fajie
2014-01-01
This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.
Naderi, Ali; Ghodrati, Maryam
2017-12-01
In this paper, in order to improve the performance of a tunneling carbon nanotube field effect transistor (T-CNTFET) a new structure is proposed using multi-level impurity distribution along the drain region. The new T-CNTFET structure consists of six parts in the drain with stepwise doping distribution. The impurities on the drain side are n -type and the length of each region is 5nm. Electronic features of the proposed structure are simulated by the solution of Poisson and Schrödinger equations and the self-consistent method using Non-equilibrium Green's Function (NEGF). Simulation results show that the proposed structure reduces the band curvature near the drain-channel connection and widens the tunneling barrier. As a result, band-to-band tunneling and the OFF current are reduced and the ON/OFF current ratio increases in comparison with the conventional structure. In summary, by improving the subthreshold swing parameters, delay time, power delay product ( PDP and cut-off frequency compared to the conventional structure, the proposed structure can be considered as a proper candidate for digital applications with high speed and low power dissipation.
Improving survey response rates from parents in school-based research using a multi-level approach.
Schilpzand, Elizabeth J; Sciberras, Emma; Efron, Daryl; Anderson, Vicki; Nicholson, Jan M
2015-01-01
While schools can provide a comprehensive sampling frame for community-based studies of children and their families, recruitment is challenging. Multi-level approaches which engage multiple school stakeholders have been recommended but few studies have documented their effects. This paper compares the impact of a standard versus enhanced engagement approach on multiple indicators of recruitment: parent response rates, response times, reminders required and sample characteristics. Parents and teachers were distributed a brief screening questionnaire as a first step for recruitment to a longitudinal study, with two cohorts recruited in consecutive years (cohort 1 2011, cohort 2 2012). For cohort 2, additional engagement strategies included the use of pre-notification postcards, improved study materials, and recruitment progress graphs provided to school staff. Chi-square and t-tests were used to examine cohort differences. Compared to cohort 1, a higher proportion of cohort 2 parents responded to the survey (76% versus 69%; p value of investing in a relatively simple multi-level strategy to maximise parent response rates, and potentially reduce recruitment time and costs.
Directory of Open Access Journals (Sweden)
Anouk C.M. Platteel
2017-08-01
Full Text Available Proteasome-catalyzed peptide splicing (PCPS generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to identify proteasome-generated spliced epitopes. Applying this strategy to a murine Listeria monocytogenes infection model, we identified two spliced epitopes within the secreted bacterial phospholipase PlcB that primed antigen-specific CD8+ T cells in L. monocytogenes-infected mice. While reacting to the spliced epitopes, these CD8+ T cells failed to recognize the non-spliced peptide parts in the context of their natural flanking sequences. Thus, we here show that PCPS expands the CD8+ T cell response against L. monocytogenes by exposing spliced epitopes on the cell surface. Moreover, our multi-level strategy opens up opportunities to systematically investigate proteins for spliced epitope candidates and thus strategies for immunotherapies or vaccine design.
Tile-Level Annotation of Satellite Images Using Multi-Level Max-Margin Discriminative Random Field
Directory of Open Access Journals (Sweden)
Hong Sun
2013-05-01
Full Text Available This paper proposes a multi-level max-margin discriminative analysis (M3DA framework, which takes both coarse and fine semantics into consideration, for the annotation of high-resolution satellite images. In order to generate more discriminative topic-level features, the M3DA uses the maximum entropy discrimination latent Dirichlet Allocation (MedLDA model. Moreover, for improving the spatial coherence of visual words neglected by M3DA, conditional random field (CRF is employed to optimize the soft label field composed of multiple label posteriors. The framework of M3DA enables one to combine word-level features (generated by support vector machines and topic-level features (generated by MedLDA via the bag-of-words representation. The experimental results on high-resolution satellite images have demonstrated that, using the proposed method can not only obtain suitable semantic interpretation, but also improve the annotation performance by taking into account the multi-level semantics and the contextual information.
Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone.
Nauer, Philipp A; Chiri, Eleonora; Schroth, Martin H
2013-10-01
Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.
Directory of Open Access Journals (Sweden)
Aleksandras Chlebnikovas
2015-10-01
Full Text Available Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for the job, production and operating costs. Studies have examined the air flow parameters change in one–, two– and three–levels multichannel cyclone. These constructions differ according to the productivity of cleaned air under the constant peripheral and transitional (50/50 case air flow relations. Accordance with the results of air flow dynamics – velocity distribution of multi-channel cyclone, aerodynamic resistance and efficiency can be judged on the flow turbulence, the flow channel cross-section and select the most appropriate application. Cleaning efficiency studies were carried out using fine granite and wood ashes PM. The maximum cleaning efficiency was 93.3%, at an average of 4.5 g/m3, the aerodynamic resistance was equal to 1525 Pa.
Jang, Hyeongap; Lim, Jun-Tae; Oh, Juhwan; Lee, Seon-Young; Kim, Yong-Ik; Lee, Jin-Seok
2012-03-01
While there have been many quantitative studies on the public's attitude towards mental illnesses, it is hard to find quantitative study which focused on the contextual effect on the public's attitude. The purpose of this study was to identify factors that affect the public's beliefs and attitudes including contextual effects. We analyzed survey on the public's beliefs and attitudes towards mental illness in Korea with multi-level analysis. We analyzed the public's beliefs and attitudes in terms of prejudice as an intermediate outcome and social distance as a final outcome. Then, we focused on the associations of factors, which were individual and regional socio-economic factors, familiarity, and knowledge based on the comparison of the intermediate and final outcomes. Prejudice was not explained by regional variables but was only correlated with individual factors. Prejudice increased with age and decreased by high education level. However, social distance controlling for prejudice increased in females, in people with a high education level, and in regions with a high education level and a high proportion of the old. Therefore, social distance without controlling for prejudice increased in females, in the elderly, in highly educated people, and in regions with a high education and aged community. The result of the multi-level analysis for the regional variables suggests that social distance for mental illness are not only determined by individual factors but also influenced by the surroundings so that it could be tackled sufficiently with appropriate considering of the relevant regional context with individual characteristics.
Kaye, Erica C; Brinkman, Tara M; Baker, Justin N
2017-06-01
As therapeutic and supportive care interventions become increasingly effective, growing numbers of childhood and adolescent cancer survivors face a myriad of physical and psychological sequelae secondary to their disease and treatment. Mental health issues, in particular, present a significant problem in this unique patient population, with depression affecting a sizable number of childhood and adolescent cancer survivors. Multiple key determinants impact a survivor's risk of developing depression, with variables traversing across biologic, individual, family, community, and global levels, as well as spanning throughout the life course of human development from the preconception and prenatal periods to adulthood. A multi-level life course conceptual model offers a valuable framework to identify and organize the diverse variables that modulate the risk of developing depression in survivors of childhood and adolescent cancer. This review describes the first multi-level life course perspective applied to development of depression in childhood and adolescent cancer survivors. This conceptual framework may be used to guide the investigation of mental health interventions for SCACs to ensure that key determinants of depression occurrence are adequately addressed across various levels and throughout the life trajectory.
Lee, Jongpil; Nam, Juhan
2017-08-01
Music auto-tagging is often handled in a similar manner to image classification by regarding the 2D audio spectrogram as image data. However, music auto-tagging is distinguished from image classification in that the tags are highly diverse and have different levels of abstractions. Considering this issue, we propose a convolutional neural networks (CNN)-based architecture that embraces multi-level and multi-scaled features. The architecture is trained in three steps. First, we conduct supervised feature learning to capture local audio features using a set of CNNs with different input sizes. Second, we extract audio features from each layer of the pre-trained convolutional networks separately and aggregate them altogether given a long audio clip. Finally, we put them into fully-connected networks and make final predictions of the tags. Our experiments show that using the combination of multi-level and multi-scale features is highly effective in music auto-tagging and the proposed method outperforms previous state-of-the-arts on the MagnaTagATune dataset and the Million Song Dataset. We further show that the proposed architecture is useful in transfer learning.
Modelling the distribution of 222Rn concentration in a multi level, general purpose building
International Nuclear Information System (INIS)
Toro, Laszlo; Noditi, Mihaela; Gheorghe, Raluca; Gheorghe, Dan
2008-01-01
The importance of 222 Rn (radon) in the indoor air related to the exposure form natural sources is relatively well documented. About 30% of the individual effective dose from natural sources is coming from the inhalation of 222 Rn and his short lived daughters. In unfavorable conditions given by the soil porosity and the existence of upward air movement in the soil there is a possibility to have unusually high radon concentration in houses even on soil with 'normal' 226 Ra content. Some construction solutions (high indoor spaces) should generate a significant indoor-outdoor negative pressure differences and consequently upward air currents (stack effect) which will facilitate the entrance of radon in the building. This effect will multiply the possibility of migration of radon in the building. The difficulty of the prediction of radon migration in the soil-building system increase the importance of the mathematical modelling of the behavior of radon-soil emission, infiltration and migration in the building - in areas with high radon potential. For one level simple buildings there are several models in the literature but the information regarding the multilevel building models are relatively scarce. Two different approaches used to describe the behavior of the radon gas in large (mainly high) buildings have been analyzed: Direct approach: computational fluid dynamics, solving the transport equations for the whole building (the domain of the solution of the transport and flow equations is delimited by the building envelope - the external walls); the openings (internal and external) and ventilation are defined by the boundary conditions. This approach is quite complex, the equations are solved (numerically) for highly inhomogeneous medium but is based on the fundamental processes governing the transport. In the same time it gives the possibility to obtain a concentration pattern in every part of the building. Multi-zone approach treating the building as interconnected
DEFF Research Database (Denmark)
Mahnke, Martina; Uprichard, Emma
2014-01-01
Imagine sailing across the ocean. The sun is shining, vastness all around you. And suddenly [BOOM] you’ve hit an invisible wall. Welcome to the Truman Show! Ever since Eli Pariser published his thoughts on a potential filter bubble, this movie scenario seems to have become reality, just with slight...... changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-Â§Â§ 238.113 and 238.114 2B Figure 2B to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113 and...
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Example of a Multi-Level Car Complying with Window Location and Staggering Requirements-Â§Â§ 238.113 and 238.114 2 Figure 2 to Subpart B of Part 238.... 238, Subpt. B, Fig. 2 Figure 2 to Subpart B of Part 238—Example of a Multi-Level Car Complying with...
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-Â§Â§ 238.113 and 238.114 2A Figure 2A to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113 and...
Penkov, V. B.; Ivanychev, D. A.; Novikova, O. S.; Levina, L. V.
2018-03-01
The article substantiates the possibility of building full parametric analytical solutions of mathematical physics problems in arbitrary regions by means of computer systems. The suggested effective means for such solutions is the method of boundary states with perturbations, which aptly incorporates all parameters of an orthotropic medium in a general solution. We performed check calculations of elastic fields of an anisotropic rectangular region (test and calculation problems) for a generalized plane stress state.
Housing-related lifestyle and energy saving: A multi-level approach
International Nuclear Information System (INIS)
Thøgersen, John
2017-01-01
A new instrument for measuring housing-related lifestyle (HRL) is introduced and employed for identifying national and cross-national HRL segments in 10 European countries (N=3190). The identified HRL segments are profiled and the practical importance of HRL for everyday energy-saving efforts in the home and for the energy-consumer's openness to new energy saving opportunities (i.e., energy saving innovativeness) is investigated. The HRL instrument's 71 items load on 16 dimensions within five lifestyle elements. Multi-group confirmatory factor analysis reveals that the instrument possesses metric but not scalar (measurement) invariance across the 10 countries. Multilevel latent class analysis is used to classify participants to HRL segments and the 10 countries into regions with similar segment structure. The optimal solution has seven HRL segments and three country classes, which are profiled in terms of relevant background characteristics. A multivariate GLM analysis reveals that when differences in housing-related lifestyles are controlled, neither country of residence nor the interaction between lifestyle and country of residence influence energy saving innovativeness or everyday energy-saving efforts. However, these two behavioural tendencies vary significantly and substantially between lifestyle segments. The study shows that HRL segmentation is a useful tool for creating more targeted and effective energy-saving campaigns. - Highlights: • 7 housing-related lifestyle segments identified in 10 European countries. • The 10 countries cluster in 3 regions with similar housing-related lifestyle pattern. • Lifestyle segments differ significantly with regard to energy saving efforts. • Lifestyle segments also differ with regard to energy saving innovativeness. • Housing-related lifestyle mediate all effects of country on energy saving.
Abdelfatah, Nasri; Brahim, Gasbaoui
2011-01-01
The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s cause’s active power transmission reduction, power losses decreasing, and the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF) combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC) algorithm for critical nodal de...
DEFF Research Database (Denmark)
Sousa, Tiago; Morais, Hugo; Castro, Rui
2016-01-01
vehicles. The proposed algorithms proved to present results very close to the optimal with a small difference between 0.1%. A deterministic technique is used as comparison and it took around 26 h to obtain the optimal one. On the other hand, the simulated annealing was able of obtaining results around 1...
International Nuclear Information System (INIS)
Kulakov, I.S.; Baginyan, S.A.; Ivanov, V.V.; Kisel', P.I.
2013-01-01
The results of the tests for the tracks reconstruction efficiency, the speed of the algorithm and its scalability with respect to the number of cores of the server with two Intel Xeon E5640 CPUs (in total 8 physical or 16 logical cores) are presented and discussed
A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator
International Nuclear Information System (INIS)
Park, Jea-Gun; Kim, Seong-Je; Shin, Mi-Hee; Song, Seung-Hyun; Shim, Tae-Hun; Chung, Sung-Woong; Enomoto, Hirofumi
2011-01-01
A multi-level capacitor-less memory cell was fabricated with a fully depleted n-metal-oxide-semiconductor field-effect transistor on a nano-scale strained silicon channel on insulator (FD sSOI n-MOSFET). The 0.73% biaxial tensile strain in the silicon channel of the FD sSOI n-MOSFET enhanced the effective electron mobility to ∼ 1.7 times that with an unstrained silicon channel. This thereby enables both front- and back-gate cell operations, demonstrating eight-level volatile memory-cell operation with a 1 ms retention time and 12 μA memory margin. This is a step toward achieving a terabit volatile memory cell.
Development of an alarm analysis system based on multi-level flow models for nuclear power plant
International Nuclear Information System (INIS)
Zhang Jiande; Yang Ming; Zhang Zhijian
2008-01-01
An alarm analysis system based on Multi-level Flow Models (MFM) was developed for a PWR NPP. By automatically identifying the primary root causes in complex fault situations, the workload of the operators can be reduced. In addition, because MFM also provides a set of graphical symbols that implies causalities, operators can confirm diagnosis results by semiotic analysis, and hence the understandability of the process of alarm analysis as well as the reliability of maintenance task can be increased. 19 cases of simulation data from RELAP5/MOD2 code were utilized for evaluating the performance of the proposed system. The simulation results show that the proposed alarm analysis system has a good ability to detect and diagnose accidents earlier in time before reactor trip. (authors)
Directory of Open Access Journals (Sweden)
Julia Sevy
2016-09-01
Full Text Available Many challenges face English language teachers today, but two common problems in Ecuador specifically in universities are large class sizes and multi-level students. These problems can create boredom, anxiety, and over all lack of interest in English language learning. It is shown in this article how to combat these particular problems through various strategies utilized to teach to the students’ needs, help them work together and intrinsically motivate them to learn different English language skills, specifically grammar and sentence structure. These strategies include group work, task-based learning, the inverted or flipped classroom, role-play and intrinsic learning. The author explains how these strategies work in a specific group of university pupils in Ecuador to overcome these specific problems in a classroom, but without student participation they can be flawed.
Duan, W. J.; Wang, J. B.; Zhong, X. L.
2018-05-01
Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.
Duncan, C; Jones, K; Moon, G
1993-09-01
A number of commentators have argued that there is a distinctive geography of health-related behaviour. Behaviour has to be understood not only in terms of individual characteristics, but also in relation to local cultures. Places matter, and the context in which behaviour takes place is crucial for understanding and policy. Previous empirical research has been unable to operationalize these ideas and take simultaneous account of both individual compositional and aggregate contextual factors. The present paper addresses this shortcoming through a multi-level analysis of smoking and drinking behaviours recorded in a large-scale national survey. It suggests that place, expressed as regional differences, may be less important than previously implied.
Vieira, Rodrigo Drumond; Kelly, Gregory J.
2014-11-01
In this paper, we present and apply a multi-level method for discourse analysis in science classrooms. This method is based on the structure of human activity (activity, actions, and operations) and it was applied to study a pre-service physics teacher methods course. We argue that such an approach, based on a cultural psychological perspective, affords opportunities for analysts to perform a theoretically based detailed analysis of discourse events. Along with the presentation of analysis, we show and discuss how the articulation of different levels offers interpretative criteria for analyzing instructional conversations. We synthesize the results into a model for a teacher's practice and discuss the implications and possibilities of this approach for the field of discourse analysis in science classrooms. Finally, we reflect on how the development of teachers' understanding of their activity structures can contribute to forms of progressive discourse of science education.
Total Logistic Plant Solutions
Directory of Open Access Journals (Sweden)
Dusan Dorcak
2016-02-01
Full Text Available The Total Logistics Plant Solutions, plant logistics system - TLPS, based on the philosophy of advanced control processes enables complex coordination of business processes and flows and the management and scheduling of production in the appropriate production plans and planning periods. Main attributes of TLPS is to create a comprehensive, multi-level, enterprise logistics information system, with a certain degree of intelligence, which accepts the latest science and research results in the field of production technology and logistics. Logistic model of company understands as a system of mutually transforming flows of materials, energy, information, finance, which is realized by chain activities and operations
Efficient GPS Position Determination Algorithms
National Research Council Canada - National Science Library
Nguyen, Thao Q
2007-01-01
... differential GPS algorithm for a network of users. The stand-alone user GPS algorithm is a direct, closed-form, and efficient new position determination algorithm that exploits the closed-form solution of the GPS trilateration equations and works...
Wilfley, Denise E.; Van Buren, Dorothy J.; Theim, Kelly R.; Stein, Richard I.; Saelens, Brian E.; Ezzet, Farkad; Russian, Angela C.; Perri, Michael G.; Epstein, Leonard H.
2011-01-01
Objective Weight loss outcomes achieved through conventional behavior change interventions are prone to deterioration over time. Basic learning laboratory studies in the area of behavioral extinction and renewal and multi-level models of weight control offer clues as to why newly acquired weight loss skills are prone to relapse. According to these models, current clinic-based interventions may not be of sufficient duration or scope to allow for the practice of new skills across the multiple community contexts necessary to promote sustainable weight loss. Although longer, more intensive interventions with greater reach may hold the key to improving weight loss outcomes, it is difficult to test these assumptions in a time efficient and cost-effective manner. A research design tool that has been increasingly utilized in other fields (e.g., pharmaceuticals) is the use of biosimulation analyses. The present paper describes our research team's use of computer simulation models to assist in designing a study to test a novel, comprehensive socio-environmental treatment approach to weight loss maintenance in children ages 7 to 12 years. Methods Weight outcome data from the weight loss, weight maintenance, and follow-up phases of a recently completed randomized controlled trial (RCT) were used to describe the time course of a proposed, extended multi-level treatment program. Simulations were then conducted to project the expected changes in child percent overweight trajectories in the proposed study. Results A 12.9% decrease in percent overweight at 30 months was estimated based upon the midway point between models of “best-case” and “worst-case” weight maintenance scenarios. Conclusions Preliminary data and further analyses, including biosimulation projections, suggest that our socio-environmental approach to weight loss maintenance treatment is promising and warrants evaluation in a large-scale RCT. Biosimulation techniques may have utility in the design of future
Improving survey response rates from parents in school-based research using a multi-level approach.
Directory of Open Access Journals (Sweden)
Elizabeth J Schilpzand
Full Text Available While schools can provide a comprehensive sampling frame for community-based studies of children and their families, recruitment is challenging. Multi-level approaches which engage multiple school stakeholders have been recommended but few studies have documented their effects. This paper compares the impact of a standard versus enhanced engagement approach on multiple indicators of recruitment: parent response rates, response times, reminders required and sample characteristics.Parents and teachers were distributed a brief screening questionnaire as a first step for recruitment to a longitudinal study, with two cohorts recruited in consecutive years (cohort 1 2011, cohort 2 2012. For cohort 2, additional engagement strategies included the use of pre-notification postcards, improved study materials, and recruitment progress graphs provided to school staff. Chi-square and t-tests were used to examine cohort differences.Compared to cohort 1, a higher proportion of cohort 2 parents responded to the survey (76% versus 69%; p < 0.001, consented to participate (71% versus 56%; p < 0.001, agreed to teacher participation (90% versus 82%; p < 0.001 and agreed to follow-up contact (91% versus 80%; p < 0.001. Fewer cohort 2 parents required reminders (52% versus 63%; p < 0.001, and cohort 2 parents responded more promptly than cohort 1 parents (mean difference: 19.4 days, 95% CI: 18.0 to 20.9, p < 0.001.These results illustrate the value of investing in a relatively simple multi-level strategy to maximise parent response rates, and potentially reduce recruitment time and costs.
Directory of Open Access Journals (Sweden)
Dazhi Jiang
2015-01-01
Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.
International Nuclear Information System (INIS)
Wang Lincong; Donald, Bruce Randall
2004-01-01
We have derived a quartic equation for computing the direction of an internuclear vector from residual dipolar couplings (RDCs) measured in two aligning media, and two simple trigonometric equations for computing the backbone (φ,ψ) angles from two backbone vectors in consecutive peptide planes. These equations make it possible to compute, exactly and in constant time, the backbone (φ,ψ) angles for a residue from RDCs in two media on any single backbone vector type. Building upon these exact solutions we have designed a novel algorithm for determining a protein backbone substructure consisting of α-helices and β-sheets. Our algorithm employs a systematic search technique to refine the conformation of both α-helices and β-sheets and to determine their orientations using exclusively the angular restraints from RDCs. The algorithm computes the backbone substructure employing very sparse distance restraints between pairs of α-helices and β-sheets refined by the systematic search. The algorithm has been demonstrated on the protein human ubiquitin using only backbone NH RDCs, plus twelve hydrogen bonds and four NOE distance restraints. Further, our results show that both the global orientations and the conformations of α-helices and β-strands can be determined with high accuracy using only two RDCs per residue. The algorithm requires, as its input, backbone resonance assignments, the identification of α-helices and β-sheets as well as sparse NOE distance and hydrogen bond restraints.Abbreviations: NMR - nuclear magnetic resonance; RDC - residual dipolar coupling; NOE - nuclear Overhauser effect; SVD - singular value decomposition; DFS - depth-first search; RMSD - root mean square deviation; POF - principal order frame; PDB - protein data bank; SA - simulated annealing; MD - molecular dynamics
De Götzen , Amalia; Mion , Luca; Tache , Olivier
2007-01-01
International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Directory of Open Access Journals (Sweden)
Liu Min
2010-01-01
Full Text Available In this paper, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a system of mixed equilibrium problems, the set of common fixed points for a nonexpansive semigroup and the set of solutions of the quasi-variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in a Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extend some recent results in the literature.
Sedlák, Pavel
2008-01-01
Bachelor's thesis on "Multilevel marketing" focuses on characterization of multilevel marketing, pyramid schemes and their comparison. The work is divided into three chapters. The first part is devoted to the theme of multilevel marketing and principles of its operation. The main positives and negatives of this system are marked out. The second chapter describes pyramid schemes, their functioning, unsustainability and illegality. It is also devoted to Ponzi scheme. In the last chapter the cha...
Hockney, Roger
1987-01-01
Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.
Parallel Implementation and Scaling of an Adaptive Mesh Discrete Ordinates Algorithm for Transport
International Nuclear Information System (INIS)
Howell, L H
2004-01-01
Block-structured adaptive mesh refinement (AMR) uses a mesh structure built up out of locally-uniform rectangular grids. In the BoxLib parallel framework used by the Raptor code, each processor operates on one or more of these grids at each refinement level. The decomposition of the mesh into grids and the distribution of these grids among processors may change every few timesteps as a calculation proceeds. Finer grids use smaller timesteps than coarser grids, requiring additional work to keep the system synchronized and ensure conservation between different refinement levels. In a paper for NECDC 2002 I presented preliminary results on implementation of parallel transport sweeps on the AMR mesh, conjugate gradient acceleration, accuracy of the AMR solution, and scalar speedup of the AMR algorithm compared to a uniform fully-refined mesh. This paper continues with a more in-depth examination of the parallel scaling properties of the scheme, both in single-level and multi-level calculations. Both sweeping and setup costs are considered. The algorithm scales with acceptable performance to several hundred processors. Trends suggest, however, that this is the limit for efficient calculations with traditional transport sweeps, and that modifications to the sweep algorithm will be increasingly needed as job sizes in the thousands of processors become common
Constructing a graph of connections in clustering algorithm of complex objects
Directory of Open Access Journals (Sweden)
Татьяна Шатовская
2015-05-01
Full Text Available The article describes the results of modifying the algorithm Chameleon. Hierarchical multi-level algorithm consists of several phases: the construction of the count, coarsening, the separation and recovery. Each phase can be used various approaches and algorithms. The main aim of the work is to study the quality of the clustering of different sets of data using a set of algorithms combinations at different stages of the algorithm and improve the stage of construction by the optimization algorithm of k choice in the graph construction of k of nearest neighbors
The learner’s perspective in GP teaching practices with multi-level learners: a qualitative study
2014-01-01
Background Medical students, junior hospital doctors on rotation and general practice (GP) registrars are undertaking their training in clinical general practices in increasing numbers in Australia. Some practices have four levels of learner. This study aimed to explore how multi-level teaching (also called vertical integration of GP education and training) is occurring in clinical general practice and the impact of such teaching on the learner. Methods A qualitative research methodology was used with face-to-face, semi-structured interviews of medical students, junior hospital doctors, GP registrars and GP teachers in eight training practices in the region that taught all levels of learners. Interviews were audio-recorded and transcribed. Qualitative analysis was conducted using thematic analysis techniques aided by the use of the software package N-Vivo 9. Primary themes were identified and categorised by the co-investigators. Results 52 interviews were completed and analysed. Themes were identified relating to both the practice learning environment and teaching methods used. A practice environment where there is a strong teaching culture, enjoyment of learning, and flexible learning methods, as well as learning spaces and organised teaching arrangements, all contribute to positive learning from a learners’ perspective. Learners identified a number of innovative teaching methods and viewed them as positive. These included multi-level learner group tutorials in the practice, being taught by a team of teachers, including GP registrars and other health professionals, and access to a supernumerary GP supervisor (also termed “GP consultant teacher”). Other teaching methods that were viewed positively were parallel consulting, informal learning and rural hospital context integrated learning. Conclusions Vertical integration of GP education and training generally impacted positively on all levels of learner. This research has provided further evidence about the
International Nuclear Information System (INIS)
Wu, Woei-Cherng; Chao, Tien-Sheng; Yang, Tsung-Yu; Peng, Wu-Chin; Yang, Wen-Luh; Chen, Jian-Hao; Ma, Ming Wen; Lai, Chao-Sung; Lee, Chien-Hsing; Hsieh, Tsung-Min; Liou, Jhyy Cheng; Chen, Tzu Ping; Chen, Chien Hung; Lin, Chih Hung; Chen, Hwi Huang; Ko, Joe
2008-01-01
In this paper, highly reliable wrapped-select-gate (WSG) silicon–oxide–nitride–oxide–silicon (SONOS) memory cells with multi-level and 2-bit/cell operation have been successfully demonstrated. The source-side injection mechanism for WSG-SONOS memory with different ONO thickness was thoroughly investigated. The different programming efficiencies of the WSG-SONOS memory under different ONO thicknesses are explained by the lateral electrical field extracted from the simulation results. Furthermore, multi-level storage is easily obtained, and good V TH distribution presented, for the WSG-SONOS memory with optimized ONO thickness. High program/erase speed (10 µs/5 ms) and low programming current (3.5 µA) are used to achieve the multi-level operation with tolerable gate and drain disturbance, negligible second-bit effect, excellent data retention and good endurance performance
Joux, Antoine
2009-01-01
Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic
Totally parallel multilevel algorithms
Frederickson, Paul O.
1988-01-01
Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.
Hawkins, Benjamin; Holden, Chris; Mackinder, Sophie
2018-03-09
Despite the extensive literature on the tobacco industry, there has been little attempt to study how transnational tobacco companies (TTCs) coordinate their political activities globally, or to theorise TTC strategies within the context of global governance structures and policy processes. This article draws on three concepts from political science - policy transfer, multi-level governance and venue shifting - to analyse TTCs' integrated, global strategies to oppose augmented packaging requirements across multiple jurisdictions. Following Uruguay's introduction of extended labelling requirements, Australia became the first country in the world to require tobacco products to be sold in standardised ('plain') packaging in 2012. Governments in the European Union, including in the United Kingdom and Ireland, adopted similar laws, with other member states due to follow. TTCs vehemently opposed these measures and developed coordinated, global strategies to oppose their implementation, exploiting the complexity of contemporary global governance arrangements. These included a series of legal challenges in various jurisdictions, alongside political lobbying and public relations campaigns. This article draws on analysis of public documents and 32 semi-structured interviews with key policy actors. It finds that TTCs developed coordinated and highly integrated strategies to oppose packaging restrictions across multiple jurisdictions and levels of governance.
Wang, Shi-Heng; Lin, I-Chin; Chen, Chuan-Yu; Chen, Duan-Rung; Chan, Ta-Chien; Chen, Wei J
2013-12-01
To examine the association between alcohol in school environments and adolescent alcohol use over the previous 6 months. A multi-level logistic regression analysis was performed of cross-sectional surveys conducted in 2004, 2005 and 2006. A total of 52 214 students aged 11-19 years from 387 middle or high schools were selected from a nationally representative, multi-stage, stratified probability sampling across Taiwan. Information on socio-demographic features and substance use experiences was collected using self-administered questionnaires. The alcohol in the environment was measured using the availability of convenience stores surrounding the schools. Using geographical information systems, the weighted numbers of convenience stores within 1 km, a 12-15-minute walk, of a school were calculated. The schools were later categorized into three subgroups via the tertile of nearby convenience stores. Considering the compositional characteristics, the availability of convenience stores was found to account for 1.5% of the school-level variance of youthful drinking. The odds ratios (95% confidence interval) of alcohol use over the previous 6 months among youth attending schools with medium and high availability were 1.04 (0.96-1.13) and 1.08 (1.00-1.17), respectively, with a P-value of 0.04 in the trend test. The greater availability of convenience stores near a school is associated with an increased risk of alcohol use among adolescents over the previous 6 months. © 2013 Society for the Study of Addiction.
Directory of Open Access Journals (Sweden)
Fang Xu
2017-09-01
Full Text Available Ship detection by Unmanned Airborne Vehicles (UAVs and satellites plays an important role in a spectrum of related military and civil applications. To improve the detection efficiency, accuracy, and speed, a novel ship detection method from coarse to fine is presented. Ship targets are viewed as uncommon regions in the sea background caused by the differences in colors, textures, shapes, or other factors. Inspired by this fact, a global saliency model is constructed based on high-frequency coefficients of the multi-scale and multi-direction wavelet decomposition, which can characterize different feature information from edge to texture of the input image. To further reduce the false alarms, a new and effective multi-level discrimination method is designed based on the improved entropy and pixel distribution, which is robust against the interferences introduced by islands, coastlines, clouds, and shadows. The experimental results on optical remote sensing images validate that the presented saliency model outperforms the comparative models in terms of the area under the receiver operating characteristic curves core and the accuracy in the images with different sizes. After the target identification, the locations and the number of the ships in various sizes and colors can be detected accurately and fast with high robustness.
Directory of Open Access Journals (Sweden)
Yixin Tang
2017-06-01
Full Text Available Given the important role of family environment in children's psychological development, the objective of this study was to examine the linkages between family factors at the whole, dyadic, and individual levels and two dimensions (affective and behavioral of Oppositional Defiant Disorder (ODD symptoms in Chinese children. Participants comprised of 80 father-child dyads and 169 mother-child dyads from families with ODD children. The results indicated that multilevel family factors were differently associated with children's affective and behavioral ODD symptoms. All the family factors at the dyadic and individual levels were significantly associated with child affective ODD symptoms. However, only the most proximal factors (parent-child relationship and child emotion regulation, which were directly related to child were significantly related to child behavioral ODD symptoms. The present study extends the current knowledge regarding the relationships between family factors and two dimensions of child ODD symptoms by testing the comprehensive multilevel family factors model. This study also recommends that future interventions for ODD children should consider the multi-level family factors to enhance intervention efficacy.
Davis, Alissa; Jiwatram-Negrón, Tina; Primbetova, Sholpan; Terlikbayeva, Assel; Bilokon, Yelena; Chubukova, Lyubov; El-Bassel, Nabila
2017-12-01
Little is known about the prevalence and risk factors associated with sex trading among HIV-positive women. A total of 242 HIV-positive women were recruited in five regions in Kazakhstan. These women completed a survey containing items on socio-demographics, HIV stigma, intimate partner violence, and partner risk behaviors. Multivariate regression was used to examine associations between risk factors and sex trading after controlling for socio-demographic factors. Fifty-six (23.1%) women reported trading sex in the past 90 days. Women who reported recent sex trading were more likely than women who did not trade sex in the past 90 days to experience intimate partner violence (adjusted odds ratio [AOR]: 2.25; 95% confidence interval [CI]: 1.08-4.73), to have been homeless in the past 90 days (AOR: 4.12; 95% CI: 1.19-14.29), and to know or suspect a male partner had a sexually transmitted infection (AOR: 2.20; 95% CI: 1.07-4.53), had sex with another partner (AOR: 4.53; 95% CI: 2.25-9.14), or injected drugs in the past year (AOR: 3.31; 95% CI: 1.64-6.65). These findings underscore the need for comprehensive HIV prevention and intervention programs that address the multi-level risk factors associated with sex trading for women infected with HIV.
International Nuclear Information System (INIS)
Ivanov, K.; Avramova, M.
2007-01-01
Current trends in nuclear power generation and regulation as well as the design of next generation reactor concepts along with the continuing computer technology progress stimulate the development, qualification and application of multi-physics multi-scale coupled code systems. The efforts have been focused on extending the analysis capabilities by coupling models, which simulate different phenomena or system components, as well as on refining the scale and level of detail of the coupling. This paper reviews the progress made in this area and outlines the remaining challenges. The discussion is illustrated with examples based on neutronics/thermohydraulics coupling in the reactor core modeling. In both fields recent advances and developments are towards more physics-based high-fidelity simulations, which require implementation of improved and flexible coupling methodologies. First, the progresses in coupling of different physics codes along with the advances in multi-level techniques for coupled code simulations are discussed. Second, the issues related to the consistent qualification of coupled multi-physics and multi-scale code systems for design and safety evaluation are presented. The increased importance of uncertainty and sensitivity analysis are discussed along with approaches to propagate the uncertainty quantification between the codes. The incoming OECD LWR Uncertainty Analysis in Modeling (UAM) benchmark is the first international activity to address this issue and it is described in the paper. Finally, the remaining challenges with multi-physics coupling are outlined. (authors)
Multi-level lobbying in the EU: The case of the Renewables Directive and the German energy industry
Energy Technology Data Exchange (ETDEWEB)
Ydersbond, Inga Margrete
2012-11-01
This study examines the lobbying strategies employed by the interest organizations of Germany's energy industries in the process leading up to the EU's Renewable Energy Directive. How did they lobby, and what does this reveal about their perceptions of power relations in the EU? This report focuses on the most controversial part of the Directive: legal prescriptions for support mechanisms to increase the production of renewable energy in Europe. The utilities and the renewables industries disagreed deeply, with the utilities industry favouring an EU-wide green certificate scheme, while the renewables industry pressed for national feed-in tariffs. Nine interest organizations representing these sectors, five German and four at the EU level, serve as cases in this study. Expectations as to lobbying behaviour based on the two theories/theory perspectives of liberal intergovernmentalism (LI) and multi-level governance (MLG) are formulated and tested in a most-likely case design. Result: observations are better described by the MLG perspective than by LI.(auth)
Multi-level comparison of empathy in schizophrenia: an fMRI study of a cartoon task.
Lee, Seung Jae; Kang, Do Hyung; Kim, Chi-Won; Gu, Bon Mi; Park, Ji-Young; Choi, Chi-Hoon; Shin, Na Young; Lee, Jong-Min; Kwon, Jun Soo
2010-02-28
Empathy deficits might play a role in social dysfunction in schizophrenia. However, few studies have investigated the neuroanatomical underpinnings of the subcomponents of empathy in schizophrenia. This study investigated the hemodynamic responses to three subcomponents of empathy in patients with schizophrenia (N=15) and healthy volunteers (N=18), performing an empathy cartoon task during functional magnetic resonance imaging. The experiment used a block design with four conditions: cognitive, emotional, and inhibitory empathy, and physical causality control. Data were analyzed by comparing the blood-oxygen-level-dependent (BOLD) signal activation between the two groups. The cognitive empathy condition activated the right temporal pole to a lesser extent in the patient group than in comparison subjects. In the emotional and inhibitory conditions, the patients showed greater activation in the left insula and in the right middle/inferior frontal cortex, respectively. These findings add to our understanding of the impaired empathy in patients with schizophrenia by identifying a multi-level cortical dysfunction that underlies a deficit in each subcomponent of empathy and highlighting the importance of the fronto-temporal cortical network in ability to empathize. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.