WorldWideScience

Sample records for multi-host model-based identification

  1. Multi-host model-based identification of Armillifer agkistrodontis (Pentastomida), a new zoonotic parasite from China.

    Science.gov (United States)

    Chen, Shao-Hong; Liu, Qin; Zhang, Yong-Nian; Chen, Jia-Xu; Li, Hao; Chen, Ying; Steinmann, Peter; Zhou, Xiao-Nong

    2010-04-06

    Pentastomiasis is a rare parasitic infection of humans. Pentastomids are dioecious obligate parasites requiring multiple hosts to complete their lifecycle. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, their systematic position is not uncontested and historically, they have been considered as a separate phylum. An appraisal of Armillifer agkistrodontis was performed in terms of morphology and genetic identification after its lifecycle had been established in a multi-host model, i.e., mice and rats as intermediate hosts, and snakes (Agkistrodon acutus and Python molurus) as definitive hosts. Different stages of the parasite, including eggs, larvae and adults, were isolated and examined morphologically using light and electron microscopes. Phylogenetic and cluster analysis were also undertaken, focusing on the 18S rRNA and the Cox1 gene. The time for lifecycle completion was about 14 months, including 4 months for the development of eggs to infectious larvae in the intermediate host and 10 months for infectious larvae to mature in the final host. The main morphological difference between A. armillatus and Linguatula serrata is the number of abdominal annuli. Based on the 18S rRNA sequence, the shortest hereditary distance was found between A. agkistrodontis and Raillietiella spp. The highest degree of homology in the Cox 1 nucleic acid sequences and predicted amino acid sequences was found between A. agkistrodontis and A. armillatus. This is the first time that a multi-host model of the entire lifecycle of A. agkistrodontis has been established. Morphologic and genetic analyses supported the notion that pentastomids should be placed into the phylum Arthropoda.

  2. Multi-host model-based identification of Armillifer agkistrodontis (Pentastomida, a new zoonotic parasite from China.

    Directory of Open Access Journals (Sweden)

    Shao-Hong Chen

    Full Text Available BACKGROUND: Pentastomiasis is a rare parasitic infection of humans. Pentastomids are dioecious obligate parasites requiring multiple hosts to complete their lifecycle. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, their systematic position is not uncontested and historically, they have been considered as a separate phylum. METHODOLOGY/PRINCIPAL FINDINGS: An appraisal of Armillifer agkistrodontis was performed in terms of morphology and genetic identification after its lifecycle had been established in a multi-host model, i.e., mice and rats as intermediate hosts, and snakes (Agkistrodon acutus and Python molurus as definitive hosts. Different stages of the parasite, including eggs, larvae and adults, were isolated and examined morphologically using light and electron microscopes. Phylogenetic and cluster analysis were also undertaken, focusing on the 18S rRNA and the Cox1 gene. The time for lifecycle completion was about 14 months, including 4 months for the development of eggs to infectious larvae in the intermediate host and 10 months for infectious larvae to mature in the final host. The main morphological difference between A. armillatus and Linguatula serrata is the number of abdominal annuli. Based on the 18S rRNA sequence, the shortest hereditary distance was found between A. agkistrodontis and Raillietiella spp. The highest degree of homology in the Cox 1 nucleic acid sequences and predicted amino acid sequences was found between A. agkistrodontis and A. armillatus. CONCLUSION: This is the first time that a multi-host model of the entire lifecycle of A. agkistrodontis has been established. Morphologic and genetic analyses supported the notion that pentastomids should be placed into the phylum Arthropoda.

  3. Diagnosis and Model Based Identification of a Coupling Misalignment

    Directory of Open Access Journals (Sweden)

    P. Pennacchi

    2005-01-01

    Full Text Available This paper is focused on the application of two different diagnostic techniques aimed to identify the most important faults in rotating machinery as well as on the simulation and prediction of the frequency response of rotating machines. The application of the two diagnostics techniques, the orbit shape analysis and the model based identification in the frequency domain, is described by means of an experimental case study that concerns a gas turbine-generator unit of a small power plant whose rotor-train was affected by an angular misalignment in a flexible coupling, caused by a wrong machine assembling. The fault type is identified by means of the orbit shape analysis, then the equivalent bending moments, which enable the shaft experimental vibrations to be simulated, have been identified using a model based identification method. These excitations have been used to predict the machine vibrations in a large rotating speed range inside which no monitoring data were available. To the best of the authors' knowledge, this is the first case of identification of coupling misalignment and prediction of the consequent machine behaviour in an actual size rotating machinery. The successful results obtained emphasise the usefulness of integrating common condition monitoring techniques with diagnostic strategies.

  4. Line impedance estimation using model based identification technique

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2011-01-01

    The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...... into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi...

  5. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Samuel Sunghwan Cho

    Full Text Available Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs. However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods

  6. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes

    Science.gov (United States)

    Seo, Minseok; Shin, Su-kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung

    2016-01-01

    Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of

  7. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm

    International Nuclear Information System (INIS)

    Sun, Zhe; Wang, Ning; Bi, Yunrui; Srinivasan, Dipti

    2015-01-01

    In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. - Highlights: • We propose a hybrid adaptive differential evolution algorithm (HADE). • The search efficiency is enhanced in low and high dimension search space. • The effectiveness is confirmed by testing benchmark functions. • The identification of the PEMFC model is conducted by adopting HADE.

  8. Approaching Incast Congestion with Multi-host Ethernet Controllers

    CERN Document Server

    Jereczek, Grzegorz Edmund; The ATLAS collaboration

    2018-01-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, but also present in datacenter networks, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand our study of building incast-resistant networks based on software switches running on commercial-off-the-shelf servers. In this paper we provide the estimates for costs and physical area required to build such a network. Our estimates indicate that our proposed design offers significant cost advantage over traditional solutions, but higher space utilisation. Next, we show how the latter can be improved with multi-host Ethernet controllers, as an alternative to typical network interface cards. This can also make software switching easier to adapt in datacenter as a solution for incast congestion. We confirm the capabilities for incast-avoidance by evaluating the performance of a reference platform.

  9. Approaching Incast Congestion with Multi-host Ethernet Controllers

    CERN Document Server

    AUTHOR|(SzGeCERN)698154; The ATLAS collaboration; Lehmann Miotto, Giovanna; Malone, David; Walukiewicz, Miroslaw

    2017-01-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, but also present in datacenter networks, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand our study of building incast-resistant networks based on software switches running on commercial-off-the-shelf servers. In this paper we provide the estimates for costs and physical area required to build such a network. Our estimates indicate that our proposed design offers significant cost advantage over traditional solutions, but higher space utilisation. Next, we show how the latter can be improved with multi-host Ethernet controllers, as an alternative to typical network interface cards. This can also make software switching easier to adapt in datacenter as a solution for incast congestion. We confirm the capabilities for incast-avoidance by evaluating the performance of a reference platform.

  10. Model-based identification and use of task complexity factors of human integrated systems

    International Nuclear Information System (INIS)

    Ham, Dong-Han; Park, Jinkyun; Jung, Wondea

    2012-01-01

    Task complexity is one of the conceptual constructs that are critical to explain and predict human performance in human integrated systems. A basic approach to evaluating the complexity of tasks is to identify task complexity factors and measure them. Although a great deal of task complexity factors have been studied, there is still a lack of conceptual frameworks for identifying and organizing them analytically, which can be generally used irrespective of the types of domains and tasks. This study proposes a model-based approach to identifying and using task complexity factors, which has two facets—the design aspects of a task and complexity dimensions. Three levels of design abstraction, which are functional, behavioral, and structural aspects of a task, characterize the design aspect of a task. The behavioral aspect is further classified into five cognitive processing activity types. The complexity dimensions explain a task complexity from different perspectives, which are size, variety, and order/organization. Twenty-one task complexity factors are identified by the combination of the attributes of each facet. Identification and evaluation of task complexity factors based on this model is believed to give insights for improving the design quality of tasks. This model for complexity factors can also be used as a referential framework for allocating tasks and designing information aids. The proposed approach is applied to procedure-based tasks of nuclear power plants (NPPs) as a case study to demonstrate its use. Last, we compare the proposed approach with other studies and then suggest some future research directions.

  11. Feasibility Study on Tension Estimation Technique for Hanger Cables Using the FE Model-Based System Identification Method

    Directory of Open Access Journals (Sweden)

    Kyu-Sik Park

    2015-01-01

    Full Text Available Hanger cables in suspension bridges are partly constrained by horizontal clamps. So, existing tension estimation methods based on a single cable model are prone to higher errors as the cable gets shorter, making it more sensitive to flexural rigidity. Therefore, inverse analysis and system identification methods based on finite element models are suggested recently. In this paper, the applicability of system identification methods is investigated using the hanger cables of Gwang-An bridge. The test results show that the inverse analysis and systemic identification methods based on finite element models are more reliable than the existing string theory and linear regression method for calculating the tension in terms of natural frequency errors. However, the estimation error of tension can be varied according to the accuracy of finite element model in model based methods. In particular, the boundary conditions affect the results more profoundly when the cable gets shorter. Therefore, it is important to identify the boundary conditions through experiment if it is possible. The FE model-based tension estimation method using system identification method can take various boundary conditions into account. Also, since it is not sensitive to the number of natural frequency inputs, the availability of this system is high.

  12. Identification of Multiple-Mode Linear Models Based on Particle Swarm Optimizer with Cyclic Network Mechanism

    Directory of Open Access Journals (Sweden)

    Tae-Hyoung Kim

    2017-01-01

    Full Text Available This paper studies the metaheuristic optimizer-based direct identification of a multiple-mode system consisting of a finite set of linear regression representations of subsystems. To this end, the concept of a multiple-mode linear regression model is first introduced, and its identification issues are established. A method for reducing the identification problem for multiple-mode models to an optimization problem is also described in detail. Then, to overcome the difficulties that arise because the formulated optimization problem is inherently ill-conditioned and nonconvex, the cyclic-network-topology-based constrained particle swarm optimizer (CNT-CPSO is introduced, and a concrete procedure for the CNT-CPSO-based identification methodology is developed. This scheme requires no prior knowledge of the mode transitions between subsystems and, unlike some conventional methods, can handle a large amount of data without difficulty during the identification process. This is one of the distinguishing features of the proposed method. The paper also considers an extension of the CNT-CPSO-based identification scheme that makes it possible to simultaneously obtain both the optimal parameters of the multiple submodels and a certain decision parameter involved in the mode transition criteria. Finally, an experimental setup using a DC motor system is established to demonstrate the practical usability of the proposed metaheuristic optimizer-based identification scheme for developing a multiple-mode linear regression model.

  13. Data-Driven Photovoltaic System Modeling Based on Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Ayedh Alqahtani

    2016-01-01

    Full Text Available Solar photovoltaic (PV energy sources are rapidly gaining potential growth and popularity compared to conventional fossil fuel sources. As the merging of PV systems with existing power sources increases, reliable and accurate PV system identification is essential, to address the highly nonlinear change in PV system dynamic and operational characteristics. This paper deals with the identification of a PV system characteristic with a switch-mode power converter. Measured input-output data are collected from a real PV panel to be used for the identification. The data are divided into estimation and validation sets. The identification methodology is discussed. A Hammerstein-Wiener model is identified and selected due to its suitability to best capture the PV system dynamics, and results and discussion are provided to demonstrate the accuracy of the selected model structure.

  14. Research on marine and freshwater fish identification model based on hyper-spectral imaging technology

    Science.gov (United States)

    Fu, Yan; Guo, Pei-yuan; Xiang, Ling-zi; Bao, Man; Chen, Xing-hai

    2013-08-01

    With the gradually mature of hyper spectral image technology, the application of the meat nondestructive detection and recognition has become one of the current research focuses. This paper for the study of marine and freshwater fish by the pre-processing and feature extraction of the collected spectral curve data, combined with BP network structure and LVQ network structure, a predictive model of hyper spectral image data of marine and freshwater fish has been initially established and finally realized the qualitative analysis and identification of marine and freshwater fish quality. The results of this study show that hyper spectral imaging technology combined with the BP and LVQ Artificial Neural Network Model can be used for the identification of marine and freshwater fish detection. Hyper-spectral data acquisition can be carried out without any pretreatment of the samples, thus hyper-spectral imaging technique is the lossless, high- accuracy and rapid detection method for quality of fish. In this study, only 30 samples are used for the exploratory qualitative identification of research, although the ideal study results are achieved, we will further increase the sample capacity to take the analysis of quantitative identification and verify the feasibility of this theory.

  15. Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool

    International Nuclear Information System (INIS)

    Katsoyiannis, Athanasios; Breivik, Knut

    2014-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) molecular diagnostic ratios (MDRs) are unitless concentration ratios of pair-PAHs with the same molecular weight (MW); MDRs have long been used as a tool for PAHs source identification purposes. In the present paper, the efficiency of the MDR methodology is evaluated through the use of a multimedia fate model, the calculation of characteristic travel distances (CTD) and the estimation of air concentrations for individual PAHs as a function of distance from an initial point source. The results show that PAHs with the same MW are sometimes characterized by substantially different CTDs and therefore their air concentrations and hence MDRs are predicted to change as the distance from the original source increases. From the assessed pair-PAHs, the biggest CTD difference is seen for Fluoranthene (107 km) vs. Pyrene (26 km). This study provides a strong indication that MDRs are of limited use as a source identification tool. -- Highlights: • Model-based evaluation of the PAHs molecular diagnostic ratios efficiency. • Individual PAHs are characterized by different characteristic travel distances. • MDRs are proven to be a limited tool for source identification. • Use of MDRs for other environmental media is likely unfeasible. -- PAHs molecular diagnostic ratios which change greatly as a function of distance from the emitting source are improper for source identification purposes

  16. Model-based dynamic resistive wall mode identification and feedback control in the DIII-D tokamak

    International Nuclear Information System (INIS)

    In, Y.; Kim, J.S.; Edgell, D.H.; Strait, E.J.; Humphreys, D.A.; Walker, M.L.; Jackson, G.L.; Chu, M.S.; Johnson, R.; La Haye, R.J.; Okabayashi, M.; Garofalo, A.M.; Reimerdes, H.

    2006-01-01

    A new model-based dynamic resistive wall mode (RWM) identification and feedback control algorithm has been developed. While the overall RWM structure can be detected by a model-based matched filter in a similar manner to a conventional sensor-based scheme, it is significantly influenced by edge-localized-modes (ELMs). A recent study suggested that such ELM noise might cause the RWM control system to respond in an undesirable way. Thus, an advanced algorithm to discriminate ELMs from RWM has been incorporated into this model-based control scheme, dynamic Kalman filter. Specifically, the DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] resistive vessel wall was modeled in two ways: picture frame model or eigenmode treatment. Based on the picture frame model, the first real-time, closed-loop test results of the Kalman filter algorithms during DIII-D experimental operation are presented. The Kalman filtering scheme was experimentally confirmed to be effective in discriminating ELMs from RWM. As a result, the actuator coils (I-coils) were rarely excited during ELMs, while retaining the sensitivity to RWM. However, finding an optimized set of operating parameters for the control algorithm requires further analysis and design. Meanwhile, a more advanced Kalman filter based on a more accurate eigenmode model has been developed. According to this eigenmode approach, significant improvement in terms of control performance has been predicted, while maintaining good ELM discrimination

  17. Parameter identification of piezoelectric hysteresis model based on improved artificial bee colony algorithm

    Science.gov (United States)

    Wang, Geng; Zhou, Kexin; Zhang, Yeming

    2018-04-01

    The widely used Bouc-Wen hysteresis model can be utilized to accurately simulate the voltage-displacement curves of piezoelectric actuators. In order to identify the unknown parameters of the Bouc-Wen model, an improved artificial bee colony (IABC) algorithm is proposed in this paper. A guiding strategy for searching the current optimal position of the food source is proposed in the method, which can help balance the local search ability and global exploitation capability. And the formula for the scout bees to search for the food source is modified to increase the convergence speed. Some experiments were conducted to verify the effectiveness of the IABC algorithm. The results show that the identified hysteresis model agreed well with the actual actuator response. Moreover, the identification results were compared with the standard particle swarm optimization (PSO) method, and it can be seen that the search performance in convergence rate of the IABC algorithm is better than that of the standard PSO method.

  18. Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue.

    Science.gov (United States)

    Wang, Yikun K; Nash, Martyn P; Pullan, Andrew J; Kieser, Jules A; Röhrle, Oliver

    2013-04-01

    Electromagnetic articulography (EMA) is designed to track facial and tongue movements. In practice, the EMA sensors for tracking the movement of the tongue's surface are placed heuristically. No recommendation exists. Within this paper, a model-based approach providing a mathematical analysis and a computational-based recommendation for the placement of sensors, which is based on the tongue's envelope of movement, is proposed. For this purpose, an anatomically detailed Finite Element (FE) model of the tongue has been employed to determine the envelope of motion for retraction and elongation using a forward simulation. Two optimality criteria have been proposed to identify a set of optimal sensor locations based on the pre-computed envelope of motion. The first one is based on the assumption that locations exhibiting large displacements contain the most information regarding the tongue's movement and are less susceptible to measurement errors. The second one selects sensors exhibiting each the largest displacements in the anterior-posterior, superior-inferior, medial-lateral and overall direction. The quality of the two optimality criteria is analysed based on their ability to deduce from the respective sensor locations the corresponding muscle activation parameters of the relevant muscle fibre groups during retraction and elongation by solving the corresponding inverse problem. For this purpose, a statistical analysis has been carried out, in which sensor locations for two different modes of deformation have been subjected to typical measurement errors. Then, for tongue retraction and elongation, the expectation value, the standard deviation, the averaged bias and the averaged coefficient of variation have been computed based on 41 different error-afflicted sensor locations. The results show that the first optimality criteria is superior to the second one and that the averaged bias and averaged coefficient of variation decrease when the number of sensors is

  19. Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information.

    Science.gov (United States)

    Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu

    2013-01-04

    Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .

  20. Climate forcing of an emerging pathogenic fungus across a montane multi-host community.

    Science.gov (United States)

    Clare, Frances C; Halder, Julia B; Daniel, Olivia; Bielby, Jon; Semenov, Mikhail A; Jombart, Thibaut; Loyau, Adeline; Schmeller, Dirk S; Cunningham, Andrew A; Rowcliffe, Marcus; Garner, Trenton W J; Bosch, Jaime; Fisher, Matthew C

    2016-12-05

    Changes in the timings of seasonality as a result of anthropogenic climate change are predicted to occur over the coming decades. While this is expected to have widespread impacts on the dynamics of infectious disease through environmental forcing, empirical data are lacking. Here, we investigated whether seasonality, specifically the timing of spring ice-thaw, affected susceptibility to infection by the emerging pathogenic fungus Batrachochytrium dendrobatidis (Bd) across a montane community of amphibians that are suffering declines and extirpations as a consequence of this infection. We found a robust temporal association between the timing of the spring thaw and Bd infection in two host species, where we show that an early onset of spring forced high prevalences of infection. A third highly susceptible species (the midwife toad, Alytes obstetricans) maintained a high prevalence of infection independent of time of spring thaw. Our data show that perennially overwintering midwife toad larvae may act as a year-round reservoir of infection with variation in time of spring thaw determining the extent to which infection spills over into sympatric species. We used future temperature projections based on global climate models to demonstrate that the timing of spring thaw in this region will advance markedly by the 2050s, indicating that climate change will further force the severity of infection. Our findings on the effect of annual variability on multi-host infection dynamics show that the community-level impact of fungal infectious disease on biodiversity will need to be re-evaluated in the face of climate change.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Authors.

  1. Subject-specific cardiovascular system model-based identification and diagnosis of septic shock with a minimally invasive data set: animal experiments and proof of concept

    International Nuclear Information System (INIS)

    Geoffrey Chase, J; Starfinger, Christina; Hann, Christopher E; Lambermont, Bernard; Ghuysen, Alexandre; Kolh, Philippe; Dauby, Pierre C; Desaive, Thomas; Shaw, Geoffrey M

    2011-01-01

    A cardiovascular system (CVS) model and parameter identification method have previously been validated for identifying different cardiac and circulatory dysfunctions in simulation and using porcine models of pulmonary embolism, hypovolemia with PEEP titrations and induced endotoxic shock. However, these studies required both left and right heart catheters to collect the data required for subject-specific monitoring and diagnosis—a maximally invasive data set in a critical care setting although it does occur in practice. Hence, use of this model-based diagnostic would require significant additional invasive sensors for some subjects, which is unacceptable in some, if not all, cases. The main goal of this study is to prove the concept of using only measurements from one side of the heart (right) in a 'minimal' data set to identify an effective patient-specific model that can capture key clinical trends in endotoxic shock. This research extends existing methods to a reduced and minimal data set requiring only a single catheter and reducing the risk of infection and other complications—a very common, typical situation in critical care patients, particularly after cardiac surgery. The extended methods and assumptions that found it are developed and presented in a case study for the patient-specific parameter identification of pig-specific parameters in an animal model of induced endotoxic shock. This case study is used to define the impact of this minimal data set on the quality and accuracy of the model application for monitoring, detecting and diagnosing septic shock. Six anesthetized healthy pigs weighing 20–30 kg received a 0.5 mg kg −1 endotoxin infusion over a period of 30 min from T0 to T30. For this research, only right heart measurements were obtained. Errors for the identified model are within 8% when the model is identified from data, re-simulated and then compared to the experimentally measured data, including measurements not used in the

  2. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.

    Directory of Open Access Journals (Sweden)

    Benjamin M Althouse

    Full Text Available Isolations of sylvatic dengue-2 virus from mosquitoes, humans and non-human primates in Senegal show synchronized multi-annual dynamics over the past 50 years. Host demography has been shown to directly affect the period between epidemics in other pathogen systems, therefore, one might expect unsynchronized multi-annual cycles occurring in hosts with dramatically different birth rates and life spans. However, in Senegal, we observe a single synchronized eight-year cycle across all vector species, suggesting synchronized dynamics in all vertebrate hosts. In the current study, we aim to explore two specific hypotheses: 1 primates with different demographics will experience outbreaks of dengue at different periodicities when observed as isolated systems, and that coupling of these subsystems through mosquito biting will act to synchronize incidence; and 2 the eight-year periodicity of isolations observed across multiple primate species is the result of long-term cycling in population immunity in the host populations. To test these hypotheses, we develop a multi-host, multi-vector Susceptible, Infected, Removed (SIR model to explore the effects of coupling multiple host-vector systems of dengue virus transmission through cross-species biting rates. We find that under small amounts of coupling, incidence in the host species synchronize. Long-period multi-annual dynamics are observed only when prevalence in troughs reaches vanishingly small levels (< 10(-10, suggesting that these dynamics are inconsistent with sustained transmission in this setting, but are consistent with local dengue virus extinctions followed by reintroductions. Inclusion of a constant introduction of infectious individuals into the system causes the multi-annual periods to shrink, while the effects of coupling remain the same. Inclusion of a stochastic rate of introduction allows for multi-annual periods at a cost of reduced synchrony. Thus, we conclude that the eight-year period

  3. Model-based security testing

    OpenAIRE

    Schieferdecker, Ina; Großmann, Jürgen; Schneider, Martin

    2012-01-01

    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security...

  4. Model-Based Security Testing

    Directory of Open Access Journals (Sweden)

    Ina Schieferdecker

    2012-02-01

    Full Text Available Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.

  5. Identifying the Achilles heel of multi-host pathogens: the concept of keystone ‘host’ species illustrated by Mycobacterium ulcerans transmission

    International Nuclear Information System (INIS)

    Roche, Benjamin; Eric Benbow, M; Merritt, Richard; Kimbirauskas, Ryan; McIntosh, Mollie; Small, Pamela L C; Williamson, Heather; Guégan, Jean-François

    2013-01-01

    Pathogens that use multiple host species are an increasing public health issue due to their complex transmission, which makes them difficult to mitigate. Here, we explore the possibility of using networks of ecological interactions among potential host species to identify the particular disease-source species to target to break down transmission of such pathogens. We fit a mathematical model on prevalence data of Mycobacterium ulcerans in western Africa and we show that removing the most abundant taxa for this category of pathogen is not an optimal strategy to decrease the transmission of the mycobacterium within aquatic ecosystems. On the contrary, we reveal that the removal of some taxa, especially Oligochaeta worms, can clearly reduce rates of pathogen transmission, and these should be considered as keystone organisms for its transmission because they lead to a substantial reduction in pathogen prevalence regardless of the network topology. Besides their potential application for the understanding of M. ulcerans ecology, we discuss how networks of species interactions can modulate transmission of multi-host pathogens. (letter)

  6. Model Based Temporal Reasoning

    Science.gov (United States)

    Rabin, Marla J.; Spinrad, Paul R.; Fall, Thomas C.

    1988-03-01

    Systems that assess the real world must cope with evidence that is uncertain, ambiguous, and spread over time. Typically, the most important function of an assessment system is to identify when activities are occurring that are unusual or unanticipated. Model based temporal reasoning addresses both of these requirements. The differences among temporal reasoning schemes lies in the methods used to avoid computational intractability. If we had n pieces of data and we wanted to examine how they were related, the worst case would be where we had to examine every subset of these points to see if that subset satisfied the relations. This would be 2n, which is intractable. Models compress this; if several data points are all compatible with a model, then that model represents all those data points. Data points are then considered related if they lie within the same model or if they lie in models that are related. Models thus address the intractability problem. They also address the problem of determining unusual activities if the data do not agree with models that are indicated by earlier data then something out of the norm is taking place. The models can summarize what we know up to that time, so when they are not predicting correctly, either something unusual is happening or we need to revise our models. The model based reasoner developed at Advanced Decision Systems is thus both intuitive and powerful. It is currently being used on one operational system and several prototype systems. It has enough power to be used in domains spanning the spectrum from manufacturing engineering and project management to low-intensity conflict and strategic assessment.

  7. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

    Directory of Open Access Journals (Sweden)

    Raymond Kiu

    2017-12-01

    Full Text Available Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc, enterotoxin (cpe, and Perfringolysin O (pfo or pfoA, although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56 of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet and anti-defensins genes (mprF were consistently detected in silico (tet: 75%; mprF: 100%. However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

  8. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors.

    Science.gov (United States)

    Kiu, Raymond; Caim, Shabhonam; Alexander, Sarah; Pachori, Purnima; Hall, Lindsay J

    2017-01-01

    Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an "open" pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens -associated exotoxins genes including α-toxin ( plc ), enterotoxin ( cpe ), and Perfringolysin O ( pfo or pfoA ), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes ( tet ) and anti-defensins genes ( mprF ) were consistently detected in silico ( tet : 75%; mprF : 100%). However, pre-antibiotic era strain genomes did not encode for tet , thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

  9. Model-based version management system framework

    International Nuclear Information System (INIS)

    Mehmood, W.

    2016-01-01

    In this paper we present a model-based version management system. Version Management System (VMS) a branch of software configuration management (SCM) aims to provide a controlling mechanism for evolution of software artifacts created during software development process. Controlling the evolution requires many activities to perform, such as, construction and creation of versions, identification of differences between versions, conflict detection and merging. Traditional VMS systems are file-based and consider software systems as a set of text files. File based VMS systems are not adequate for performing software configuration management activities such as, version control on software artifacts produced in earlier phases of the software life cycle. New challenges of model differencing, merge, and evolution control arise while using models as central artifact. The goal of this work is to present a generic framework model-based VMS which can be used to overcome the problem of tradition file-based VMS systems and provide model versioning services. (author)

  10. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  11. Model-based Recursive Partitioning for Subgroup Analyses

    OpenAIRE

    Seibold, Heidi; Zeileis, Achim; Hothorn, Torsten

    2016-01-01

    The identification of patient subgroups with differential treatment effects is the first step towards individualised treatments. A current draft guideline by the EMA discusses potentials and problems in subgroup analyses and formulated challenges to the development of appropriate statistical procedures for the data-driven identification of patient subgroups. We introduce model-based recursive partitioning as a procedure for the automated detection of patient subgroups that are identifiable by...

  12. Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network

    Science.gov (United States)

    Lebedeva, Galina; Sorokin, Anatoly; Faratian, Dana; Mullen, Peter; Goltsov, Alexey; Langdon, Simon P.; Harrison, David J.; Goryanin, Igor

    2012-01-01

    High levels of variability in cancer-related cellular signalling networks and a lack of parameter identifiability in large-scale network models hamper translation of the results of modelling studies into the process of anti-cancer drug development. Recently global sensitivity analysis (GSA) has been recognised as a useful technique, capable of addressing the uncertainty of the model parameters and generating valid predictions on parametric sensitivities. Here we propose a novel implementation of model-based GSA specially designed to explore how multi-parametric network perturbations affect signal propagation through cancer-related networks. We use area-under-the-curve for time course of changes in phosphorylation of proteins as a characteristic for sensitivity analysis and rank network parameters with regard to their impact on the level of key cancer-related outputs, separating strong inhibitory from stimulatory effects. This allows interpretation of the results in terms which can incorporate the effects of potential anti-cancer drugs on targets and the associated biological markers of cancer. To illustrate the method we applied it to an ErbB signalling network model and explored the sensitivity profile of its key model readout, phosphorylated Akt, in the absence and presence of the ErbB2 inhibitor pertuzumab. The method successfully identified the parameters associated with elevation or suppression of Akt phosphorylation in the ErbB2/3 network. From analysis and comparison of the sensitivity profiles of pAkt in the absence and presence of targeted drugs we derived predictions of drug targets, cancer-related biomarkers and generated hypotheses for combinatorial therapy. Several key predictions have been confirmed in experiments using human ovarian carcinoma cell lines. We also compared GSA-derived predictions with the results of local sensitivity analysis and discuss the applicability of both methods. We propose that the developed GSA procedure can serve as a

  13. Grey-identification model based wind power generation short-term prediction%基于灰色-辨识模型的风电功率短期预测

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      为了准确预测风电机组的输出功率,针对实际风场,给出一种基于灰色 GM(1,1)模型和辨识模型的风电功率预测建模方法,采用残差修正的方法对风速进行预测,得出准确的风速预测序列。同时为了提高风电功率预测的精度,引入 FIR-MA迭代辨识模型,从分段函数的角度对风电场实际风速-风电功率曲线进行拟合,取得合适的 FIR-MA 模型。利用该模型对额定容量为850 kW 的风电机组进行建模,采用平均绝对误差和均方根误差,以及单点误差作为评价指标,与风电场的实测数据进行比较分析。仿真结果表明,基于灰色-辨识模型的风电机组输出功率预测方法是有效和实用的,该模型能够很好地预测风电机组的实时输出功率,从而提高风电场输出功率预测的精确性。%To predict the output power of wind turbine accurately, based on the GM (1, 1) model and the identification method, a wind power generation short-term prediction method is presented for the real wind farm. The revision of residual error is applied to forecast the wind speed and get the accurate predicted wind speed series. Then, in order to increase the prediction precision of wind power, the FIR-MA iterative identification model is adopted to fit the real relationship between sequential wind speed and wind power and get the proper FIR-MA model. By modeling the wind turbine whose rated capacity is 850 kW, this paper compares the predicted wind generation power with the observed data using mean absolute percentage error, root mean square error and single point error as its evaluation indexes. The simulation shows the effectiveness and the practical applicability of the presented method, which can predict the real time generation power of wind turbineness and raise the accuracy of the wind power prediction. Finally, the simulation using the actual data from wind farm in China proves the efficiency of the

  14. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  15. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  16. Model-based machine learning.

    Science.gov (United States)

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  17. A Multi-Host Agent-Based Model for a Zoonotic, Vector-Borne Disease. A Case Study on Trypanosomiasis in Eastern Province, Zambia.

    Directory of Open Access Journals (Sweden)

    Simon Alderton

    2016-12-01

    Full Text Available This paper presents a new agent-based model (ABM for investigating T. b. rhodesiense human African trypanosomiasis (rHAT disease dynamics, produced to aid a greater understanding of disease transmission, and essential for development of appropriate mitigation strategies.The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The method offers a complementary approach to traditional compartmentalised modelling techniques, permitting incorporation of fine scale demographic data such as ethnicity, age and gender into the simulation.Through identification of possible spatial, demographic and behavioural characteristics which may have differing implications for rHAT risk in the region, the ABM produced output that could not be readily generated by other techniques. On average there were 1.99 (S.E. 0.245 human infections and 1.83 (S.E. 0.183 cattle infections per 6 month period. The model output identified that the approximate incidence rate (per 1000 person-years was lower amongst cattle owning households (0.079, S.E. 0.017, than those without cattle (0.134, S.E. 0.017. Immigrant tribes (e.g. Bemba I.R. = 0.353, S.E.0.155 and school-age children (e.g. 5-10 year old I.R. = 0.239, S.E. 0.041 were the most at-risk for acquiring infection. These findings have the potential to aid the targeting of future mitigation strategies.ABMs provide an alternative way of thinking about HAT and NTDs more generally, offering a solution to the investigation of local-scale questions, and which generate results that can be easily disseminated to those affected. The ABM can be used as a tool for scenario testing at an appropriate spatial scale to allow the design of logistically feasible mitigation strategies suggested by model output. This is of particular importance where resources are limited and management strategies are often pushed to the local scale.

  18. Issues in practical model-based diagnosis

    NARCIS (Netherlands)

    Bakker, R.R.; Bakker, R.R.; van den Bempt, P.C.A.; van den Bempt, P.C.A.; Mars, Nicolaas; Out, D.-J.; Out, D.J.; van Soest, D.C.; van Soes, D.C.

    1993-01-01

    The model-based diagnosis project at the University of Twente has been directed at improving the practical usefulness of model-based diagnosis. In cooperation with industrial partners, the research addressed the modeling problem and the efficiency problem in model-based reasoning. Main results of

  19. Model-based sensor diagnosis

    International Nuclear Information System (INIS)

    Milgram, J.; Dormoy, J.L.

    1994-09-01

    Running a nuclear power plant involves monitoring data provided by the installation's sensors. Operators and computerized systems then use these data to establish a diagnostic of the plant. However, the instrumentation system is complex, and is not immune to faults and failures. This paper presents a system for detecting sensor failures using a topological description of the installation and a set of component models. This model of the plant implicitly contains relations between sensor data. These relations must always be checked if all the components are functioning correctly. The failure detection task thus consists of checking these constraints. The constraints are extracted in two stages. Firstly, a qualitative model of their existence is built using structural analysis. Secondly, the models are formally handled according to the results of the structural analysis, in order to establish the constraints on the sensor data. This work constitutes an initial step in extending model-based diagnosis, as the information on which it is based is suspect. This work will be followed by surveillance of the detection system. When the instrumentation is assumed to be sound, the unverified constraints indicate errors on the plant model. (authors). 8 refs., 4 figs

  20. Model-based monitoring of rotors with multiple coexisting faults

    International Nuclear Information System (INIS)

    Rossner, Markus

    2015-01-01

    Monitoring systems are applied to many rotors, but only few monitoring systems can separate coexisting errors and identify their quantity. This research project solves this problem using a combination of signal-based and model-based monitoring. The signal-based part performs a pre-selection of possible errors; these errors are further separated with model-based methods. This approach is demonstrated for the errors unbalance, bow, stator-fixed misalignment, rotor-fixed misalignment and roundness errors. For the model-based part, unambiguous error definitions and models are set up. The Ritz approach reduces the model order and therefore speeds up the diagnosis. Identification algorithms are developed for the different rotor faults. Hereto, reliable damage indicators and proper sub steps of the diagnosis have to be defined. For several monitoring problems, measuring both deflection and bearing force is very useful. The monitoring system is verified by experiments on an academic rotor test rig. The interpretation of the measurements requires much knowledge concerning the dynamics of the rotor. Due to the model-based approach, the system can separate errors with similar signal patterns and identify bow and roundness error online at operation speed. [de

  1. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  2. Traceability in Model-Based Testing

    Directory of Open Access Journals (Sweden)

    Mathew George

    2012-11-01

    Full Text Available The growing complexities of software and the demand for shorter time to market are two important challenges that face today’s IT industry. These challenges demand the increase of both productivity and quality of software. Model-based testing is a promising technique for meeting these challenges. Traceability modeling is a key issue and challenge in model-based testing. Relationships between the different models will help to navigate from one model to another, and trace back to the respective requirements and the design model when the test fails. In this paper, we present an approach for bridging the gaps between the different models in model-based testing. We propose relation definition markup language (RDML for defining the relationships between models.

  3. Model-based testing for embedded systems

    CERN Document Server

    Zander, Justyna; Mosterman, Pieter J

    2011-01-01

    What the experts have to say about Model-Based Testing for Embedded Systems: "This book is exactly what is needed at the exact right time in this fast-growing area. From its beginnings over 10 years ago of deriving tests from UML statecharts, model-based testing has matured into a topic with both breadth and depth. Testing embedded systems is a natural application of MBT, and this book hits the nail exactly on the head. Numerous topics are presented clearly, thoroughly, and concisely in this cutting-edge book. The authors are world-class leading experts in this area and teach us well-used

  4. Model-based internal wave processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Chambers, D.H.

    1995-06-09

    A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.

  5. Model Based Control of Reefer Container Systems

    DEFF Research Database (Denmark)

    Sørensen, Kresten Kjær

    This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together with the Da......This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together...

  6. Neuro-fuzzy system modeling based on automatic fuzzy clustering

    Institute of Scientific and Technical Information of China (English)

    Yuangang TANG; Fuchun SUN; Zengqi SUN

    2005-01-01

    A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.

  7. Service creation: a model-based approach

    NARCIS (Netherlands)

    Quartel, Dick; van Sinderen, Marten J.; Ferreira Pires, Luis

    1999-01-01

    This paper presents a model-based approach to support service creation. In this approach, services are assumed to be created from (available) software components. The creation process may involve multiple design steps in which the requested service is repeatedly decomposed into more detailed

  8. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  9. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  10. Approximation Algorithms for Model-Based Diagnosis

    NARCIS (Netherlands)

    Feldman, A.B.

    2010-01-01

    Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation

  11. Probabilistic Model-based Background Subtraction

    DEFF Research Database (Denmark)

    Krüger, Volker; Anderson, Jakob; Prehn, Thomas

    2005-01-01

    is the correlation between pixels. In this paper we introduce a model-based background subtraction approach which facilitates prior knowledge of pixel correlations for clearer and better results. Model knowledge is being learned from good training video data, the data is stored for fast access in a hierarchical...

  12. Opinion dynamics model based on quantum formalism

    Energy Technology Data Exchange (ETDEWEB)

    Artawan, I. Nengah, E-mail: nengahartawan@gmail.com [Theoretical Physics Division, Department of Physics, Udayana University (Indonesia); Trisnawati, N. L. P., E-mail: nlptrisnawati@gmail.com [Biophysics, Department of Physics, Udayana University (Indonesia)

    2016-03-11

    Opinion dynamics model based on quantum formalism is proposed. The core of the quantum formalism is on the half spin dynamics system. In this research the implicit time evolution operators are derived. The analogy between the model with Deffuant dan Sznajd models is discussed.

  13. Model-based auditing using REA

    NARCIS (Netherlands)

    Weigand, H.; Elsas, P.

    2012-01-01

    The recent financial crisis has renewed interest in the value of the owner-ordered auditing tradition that starts from society's long-term interest rather than management interest. This tradition uses a model-based auditing approach in which control requirements are derived in a principled way. A

  14. Model-based testing for software safety

    NARCIS (Netherlands)

    Gurbuz, Havva Gulay; Tekinerdogan, Bedir

    2017-01-01

    Testing safety-critical systems is crucial since a failure or malfunction may result in death or serious injuries to people, equipment, or environment. An important challenge in testing is the derivation of test cases that can identify the potential faults. Model-based testing adopts models of a

  15. Intelligent model-based diagnostics for vehicle health management

    Science.gov (United States)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  16. Model-Based Recursive Partitioning for Subgroup Analyses.

    Science.gov (United States)

    Seibold, Heidi; Zeileis, Achim; Hothorn, Torsten

    2016-05-01

    The identification of patient subgroups with differential treatment effects is the first step towards individualised treatments. A current draft guideline by the EMA discusses potentials and problems in subgroup analyses and formulated challenges to the development of appropriate statistical procedures for the data-driven identification of patient subgroups. We introduce model-based recursive partitioning as a procedure for the automated detection of patient subgroups that are identifiable by predictive factors. The method starts with a model for the overall treatment effect as defined for the primary analysis in the study protocol and uses measures for detecting parameter instabilities in this treatment effect. The procedure produces a segmented model with differential treatment parameters corresponding to each patient subgroup. The subgroups are linked to predictive factors by means of a decision tree. The method is applied to the search for subgroups of patients suffering from amyotrophic lateral sclerosis that differ with respect to their Riluzole treatment effect, the only currently approved drug for this disease.

  17. Springer handbook of model-based science

    CERN Document Server

    Bertolotti, Tommaso

    2017-01-01

    The handbook offers the first comprehensive reference guide to the interdisciplinary field of model-based reasoning. It highlights the role of models as mediators between theory and experimentation, and as educational devices, as well as their relevance in testing hypotheses and explanatory functions. The Springer Handbook merges philosophical, cognitive and epistemological perspectives on models with the more practical needs related to the application of this tool across various disciplines and practices. The result is a unique, reliable source of information that guides readers toward an understanding of different aspects of model-based science, such as the theoretical and cognitive nature of models, as well as their practical and logical aspects. The inferential role of models in hypothetical reasoning, abduction and creativity once they are constructed, adopted, and manipulated for different scientific and technological purposes is also discussed. Written by a group of internationally renowned experts in ...

  18. Online constrained model-based reinforcement learning

    CSIR Research Space (South Africa)

    Van Niekerk, B

    2017-08-01

    Full Text Available Constrained Model-based Reinforcement Learning Benjamin van Niekerk School of Computer Science University of the Witwatersrand South Africa Andreas Damianou∗ Amazon.com Cambridge, UK Benjamin Rosman Council for Scientific and Industrial Research, and School... MULTIPLE SHOOTING Using direct multiple shooting (Bock and Plitt, 1984), problem (1) can be transformed into a structured non- linear program (NLP). First, the time horizon [t0, t0 + T ] is partitioned into N equal subintervals [tk, tk+1] for k = 0...

  19. Statistical models based on conditional probability distributions

    International Nuclear Information System (INIS)

    Narayanan, R.S.

    1991-10-01

    We present a formulation of statistical mechanics models based on conditional probability distribution rather than a Hamiltonian. We show that it is possible to realize critical phenomena through this procedure. Closely linked with this formulation is a Monte Carlo algorithm, in which a configuration generated is guaranteed to be statistically independent from any other configuration for all values of the parameters, in particular near the critical point. (orig.)

  20. PV panel model based on datasheet values

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Rodriguez, Pedro

    2007-01-01

    This work presents the construction of a model for a PV panel using the single-diode five-parameters model, based exclusively on data-sheet parameters. The model takes into account the series and parallel (shunt) resistance of the panel. The equivalent circuit and the basic equations of the PV cell....... Based on these equations, a PV panel model, which is able to predict the panel behavior in different temperature and irradiance conditions, is built and tested....

  1. DNA sequence modeling based on context trees

    NARCIS (Netherlands)

    Kusters, C.J.; Ignatenko, T.; Roland, J.; Horlin, F.

    2015-01-01

    Genomic sequences contain instructions for protein and cell production. Therefore understanding and identification of biologically and functionally meaningful patterns in DNA sequences is of paramount importance. Modeling of DNA sequences in its turn can help to better understand and identify such

  2. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  3. A model-based risk management framework

    Energy Technology Data Exchange (ETDEWEB)

    Gran, Bjoern Axel; Fredriksen, Rune

    2002-08-15

    The ongoing research activity addresses these issues through two co-operative activities. The first is the IST funded research project CORAS, where Institutt for energiteknikk takes part as responsible for the work package for Risk Analysis. The main objective of the CORAS project is to develop a framework to support risk assessment of security critical systems. The second, called the Halden Open Dependability Demonstrator (HODD), is established in cooperation between Oestfold University College, local companies and HRP. The objective of HODD is to provide an open-source test bed for testing, teaching and learning about risk analysis methods, risk analysis tools, and fault tolerance techniques. The Inverted Pendulum Control System (IPCON), which main task is to keep a pendulum balanced and controlled, is the first system that has been established. In order to make risk assessment one need to know what a system does, or is intended to do. Furthermore, the risk assessment requires correct descriptions of the system, its context and all relevant features. A basic assumption is that a precise model of this knowledge, based on formal or semi-formal descriptions, such as UML, will facilitate a systematic risk assessment. It is also necessary to have a framework to integrate the different risk assessment methods. The experiences so far support this hypothesis. This report presents CORAS and the CORAS model-based risk management framework, including a preliminary guideline for model-based risk assessment. The CORAS framework for model-based risk analysis offers a structured and systematic approach to identify and assess security issues of ICT systems. From the initial assessment of IPCON, we also believe that the framework is applicable in a safety context. Further work on IPCON, as well as the experiences from the CORAS trials, will provide insight and feedback for further improvements. (Author)

  4. Least-squares model-based halftoning

    Science.gov (United States)

    Pappas, Thrasyvoulos N.; Neuhoff, David L.

    1992-08-01

    A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and exploit them to increase, rather than decrease, both spatial and gray-scale resolution. We have shown that the one-dimensional least-squares problem, in which each row or column of the image is halftoned independently, can be implemented with the Viterbi's algorithm. Unfortunately, no closed form solution can be found in two dimensions. The two-dimensional least squares solution is obtained by iterative techniques. Experiments show that least-squares model-based halftoning produces more gray levels and better spatial resolution than conventional techniques. We also show that the least- squares approach eliminates the problems associated with error diffusion. Model-based halftoning can be especially useful in transmission of high quality documents using high fidelity gray-scale image encoders. As we have shown, in such cases halftoning can be performed at the receiver, just before printing. Apart from coding efficiency, this approach

  5. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  6. Model-Based Power Plant Master Control

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Katarina; Thomas, Jean; Funkquist, Jonas

    2010-08-15

    The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are

  7. SLS Model Based Design: A Navigation Perspective

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  8. Sandboxes for Model-Based Inquiry

    Science.gov (United States)

    Brady, Corey; Holbert, Nathan; Soylu, Firat; Novak, Michael; Wilensky, Uri

    2015-04-01

    In this article, we introduce a class of constructionist learning environments that we call Emergent Systems Sandboxes ( ESSs), which have served as a centerpiece of our recent work in developing curriculum to support scalable model-based learning in classroom settings. ESSs are a carefully specified form of virtual construction environment that support students in creating, exploring, and sharing computational models of dynamic systems that exhibit emergent phenomena. They provide learners with "entity"-level construction primitives that reflect an underlying scientific model. These primitives can be directly "painted" into a sandbox space, where they can then be combined, arranged, and manipulated to construct complex systems and explore the emergent properties of those systems. We argue that ESSs offer a means of addressing some of the key barriers to adopting rich, constructionist model-based inquiry approaches in science classrooms at scale. Situating the ESS in a large-scale science modeling curriculum we are implementing across the USA, we describe how the unique "entity-level" primitive design of an ESS facilitates knowledge system refinement at both an individual and social level, we describe how it supports flexible modeling practices by providing both continuous and discrete modes of executability, and we illustrate how it offers students a variety of opportunities for validating their qualitative understandings of emergent systems as they develop.

  9. Identification of physical models

    DEFF Research Database (Denmark)

    Melgaard, Henrik

    1994-01-01

    of the model with the available prior knowledge. The methods for identification of physical models have been applied in two different case studies. One case is the identification of thermal dynamics of building components. The work is related to a CEC research project called PASSYS (Passive Solar Components......The problem of identification of physical models is considered within the frame of stochastic differential equations. Methods for estimation of parameters of these continuous time models based on descrete time measurements are discussed. The important algorithms of a computer program for ML or MAP...... design of experiments, which is for instance the design of an input signal that are optimal according to a criterion based on the information provided by the experiment. Also model validation is discussed. An important verification of a physical model is to compare the physical characteristics...

  10. Unifying Model-Based and Reactive Programming within a Model-Based Executive

    Science.gov (United States)

    Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)

    1999-01-01

    Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.

  11. Model Based Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth

    for automation of these procedures, that is to incorporate some "intelligence" in the control system, this project was started up. The main emphasis of this work has been on model based methods for system optimizing control in supermarket refrigeration systems. The idea of implementing a system optimizing...... control is to let an optimization procedure take over the task of operating the refrigeration system and thereby replace the role of the operator in the traditional control structure. In the context of refrigeration systems, the idea is to divide the optimizing control structure into two parts: A part...... optimizing the steady state operation "set-point optimizing control" and a part optimizing dynamic behaviour of the system "dynamical optimizing control". A novel approach for set-point optimization will be presented. The general idea is to use a prediction of the steady state, for computation of the cost...

  12. Model based risk assessment - the CORAS framework

    Energy Technology Data Exchange (ETDEWEB)

    Gran, Bjoern Axel; Fredriksen, Rune; Thunem, Atoosa P-J.

    2004-04-15

    Traditional risk analysis and assessment is based on failure-oriented models of the system. In contrast to this, model-based risk assessment (MBRA) utilizes success-oriented models describing all intended system aspects, including functional, operational and organizational aspects of the target. The target models are then used as input sources for complementary risk analysis and assessment techniques, as well as a basis for the documentation of the assessment results. The EU-funded CORAS project developed a tool-supported methodology for the application of MBRA in security-critical systems. The methodology has been tested with successful outcome through a series of seven trial within the telemedicine and ecommerce areas. The CORAS project in general and the CORAS application of MBRA in particular have contributed positively to the visibility of model-based risk assessment and thus to the disclosure of several potentials for further exploitation of various aspects within this important research field. In that connection, the CORAS methodology's possibilities for further improvement towards utilization in more complex architectures and also in other application domains such as the nuclear field can be addressed. The latter calls for adapting the framework to address nuclear standards such as IEC 60880 and IEC 61513. For this development we recommend applying a trial driven approach within the nuclear field. The tool supported approach for combining risk analysis and system development also fits well with the HRP proposal for developing an Integrated Design Environment (IDE) providing efficient methods and tools to support control room systems design. (Author)

  13. Symbolic Processing Combined with Model-Based Reasoning

    Science.gov (United States)

    James, Mark

    2009-01-01

    A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.

  14. Diminishing musyarakah investment model based on equity

    Science.gov (United States)

    Jaffar, Maheran Mohd; Zain, Shaharir Mohamad; Jemain, Abdul Aziz

    2017-11-01

    Most of the mudharabah and musyarakah contract funds are involved in debt financing. This does not support the theory that profit sharing contract is better than that of debt financing due to the sharing of risks and ownership of equity. Indeed, it is believed that Islamic banking is a financial model based on equity or musyarakah which emphasis on the sharing of risks, profit and loss in the investment between the investor and entrepreneur. The focus of this paper is to introduce the mathematical model that internalizes diminishing musyarakah, the sharing of profit and equity between entrepreneur and investor. The entrepreneur pays monthly-differed payment to buy out the equity that belongs to the investor (bank) where at the end of the specified period, the entrepreneur owns the business and the investor (bank) exits the joint venture. The model is able to calculate the amount of equity at any time for both parties and hence would be a guide in helping to estimate the value of investment should the entrepreneur or investor exit before the end of the specified period. The model is closer to the Islamic principles for justice and fairness.

  15. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  16. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  17. 3-D model-based vehicle tracking.

    Science.gov (United States)

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  18. Intellectual Model-Based Configuration Management Conception

    Directory of Open Access Journals (Sweden)

    Bartusevics Arturs

    2014-07-01

    Full Text Available Software configuration management is one of the most important disciplines within the software development project, which helps control the software evolution process and allows including into the end project only tested and validated changes. To achieve this, software management completes certain tasks. Concrete tools are used for technical implementation of tasks, such as version control systems, servers of continuous integration, compilers, etc. A correct configuration management process usually requires several tools, which mutually exchange information by generating various kinds of transfers. When it comes to introducing the configuration management process, often there are situations when tool installation is started, yet at that given moment there is no general picture of the total process. The article offers a model-based configuration management concept, which foresees the development of an abstract model for the configuration management process that later is transformed to lower abstraction level models and tools are indicated to support the technical process. A solution of this kind allows a more rational introduction and configuration of tools

  19. Model-based explanation of plant knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Huuskonen, P.J. [VTT Electronics, Oulu (Finland). Embedded Software

    1997-12-31

    This thesis deals with computer explanation of knowledge related to design and operation of industrial plants. The needs for explanation are motivated through case studies and literature reviews. A general framework for analysing plant explanations is presented. Prototypes demonstrate key mechanisms for implementing parts of the framework. Power plants, steel mills, paper factories, and high energy physics control systems are studied to set requirements for explanation. The main problems are seen to be either lack or abundance of information. Design knowledge in particular is found missing at plants. Support systems and automation should be enhanced with ways to explain plant knowledge to the plant staff. A framework is formulated for analysing explanations of plant knowledge. It consists of three parts: 1. a typology of explanation, organised by the class of knowledge (factual, functional, or strategic) and by the target of explanation (processes, automation, or support systems), 2. an identification of explanation tasks generic for the plant domain, and 3. an identification of essential model types for explanation (structural, behavioural, functional, and teleological). The tasks use the models to create the explanations of the given classes. Key mechanisms are discussed to implement the generic explanation tasks. Knowledge representations based on objects and their relations form a vocabulary to model and present plant knowledge. A particular class of models, means-end models, are used to explain plant knowledge. Explanations are generated through searches in the models. Hypertext is adopted to communicate explanations over dialogue based on context. The results are demonstrated in prototypes. The VICE prototype explains the reasoning of an expert system for diagnosis of rotating machines at power plants. The Justifier prototype explains design knowledge obtained from an object-oriented plant design tool. Enhanced access mechanisms into on-line documentation are

  20. Model-based explanation of plant knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Huuskonen, P J [VTT Electronics, Oulu (Finland). Embedded Software

    1998-12-31

    This thesis deals with computer explanation of knowledge related to design and operation of industrial plants. The needs for explanation are motivated through case studies and literature reviews. A general framework for analysing plant explanations is presented. Prototypes demonstrate key mechanisms for implementing parts of the framework. Power plants, steel mills, paper factories, and high energy physics control systems are studied to set requirements for explanation. The main problems are seen to be either lack or abundance of information. Design knowledge in particular is found missing at plants. Support systems and automation should be enhanced with ways to explain plant knowledge to the plant staff. A framework is formulated for analysing explanations of plant knowledge. It consists of three parts: 1. a typology of explanation, organised by the class of knowledge (factual, functional, or strategic) and by the target of explanation (processes, automation, or support systems), 2. an identification of explanation tasks generic for the plant domain, and 3. an identification of essential model types for explanation (structural, behavioural, functional, and teleological). The tasks use the models to create the explanations of the given classes. Key mechanisms are discussed to implement the generic explanation tasks. Knowledge representations based on objects and their relations form a vocabulary to model and present plant knowledge. A particular class of models, means-end models, are used to explain plant knowledge. Explanations are generated through searches in the models. Hypertext is adopted to communicate explanations over dialogue based on context. The results are demonstrated in prototypes. The VICE prototype explains the reasoning of an expert system for diagnosis of rotating machines at power plants. The Justifier prototype explains design knowledge obtained from an object-oriented plant design tool. Enhanced access mechanisms into on-line documentation are

  1. Model based control of refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sloth Larsen, L.F.

    2005-11-15

    The subject for this Ph.D. thesis is model based control of refrigeration systems. Model based control covers a variety of different types of controls, that incorporates mathematical models. In this thesis the main subject therefore has been restricted to deal with system optimizing control. The optimizing control is divided into two layers, where the system oriented top layers deals with set-point optimizing control and the lower layer deals with dynamical optimizing control in the subsystems. The thesis has two main contributions, i.e. a novel approach for set-point optimization and a novel approach for desynchronization based on dynamical optimization. The focus in the development of the proposed set-point optimizing control has been on deriving a simple and general method, that with ease can be applied on various compositions of the same class of systems, such as refrigeration systems. The method is based on a set of parameter depended static equations describing the considered process. By adapting the parameters to the given process, predict the steady state and computing a steady state gradient of the cost function, the process can be driven continuously towards zero gradient, i.e. the optimum (if the cost function is convex). The method furthermore deals with system constrains by introducing barrier functions, hereby the best possible performance taking the given constrains in to account can be obtained, e.g. under extreme operational conditions. The proposed method has been applied on a test refrigeration system, placed at Aalborg University, for minimization of the energy consumption. Here it was proved that by using general static parameter depended system equations it was possible drive the set-points close to the optimum and thus reduce the power consumption with up to 20%. In the dynamical optimizing layer the idea is to optimize the operation of the subsystem or the groupings of subsystems, that limits the obtainable system performance. In systems

  2. Model Based Autonomy for Robust Mars Operations

    Science.gov (United States)

    Kurien, James A.; Nayak, P. Pandurang; Williams, Brian C.; Lau, Sonie (Technical Monitor)

    1998-01-01

    Space missions have historically relied upon a large ground staff, numbering in the hundreds for complex missions, to maintain routine operations. When an anomaly occurs, this small army of engineers attempts to identify and work around the problem. A piloted Mars mission, with its multiyear duration, cost pressures, half-hour communication delays and two-week blackouts cannot be closely controlled by a battalion of engineers on Earth. Flight crew involvement in routine system operations must also be minimized to maximize science return. It also may be unrealistic to require the crew have the expertise in each mission subsystem needed to diagnose a system failure and effect a timely repair, as engineers did for Apollo 13. Enter model-based autonomy, which allows complex systems to autonomously maintain operation despite failures or anomalous conditions, contributing to safe, robust, and minimally supervised operation of spacecraft, life support, In Situ Resource Utilization (ISRU) and power systems. Autonomous reasoning is central to the approach. A reasoning algorithm uses a logical or mathematical model of a system to infer how to operate the system, diagnose failures and generate appropriate behavior to repair or reconfigure the system in response. The 'plug and play' nature of the models enables low cost development of autonomy for multiple platforms. Declarative, reusable models capture relevant aspects of the behavior of simple devices (e.g. valves or thrusters). Reasoning algorithms combine device models to create a model of the system-wide interactions and behavior of a complex, unique artifact such as a spacecraft. Rather than requiring engineers to all possible interactions and failures at design time or perform analysis during the mission, the reasoning engine generates the appropriate response to the current situation, taking into account its system-wide knowledge, the current state, and even sensor failures or unexpected behavior.

  3. Model-Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools

    CERN Document Server

    Ding, Steven X

    2013-01-01

    Guaranteeing a high system performance over a wide operating range is an important issue surrounding the design of automatic control systems with successively increasing complexity. As a key technology in the search for a solution, advanced fault detection and identification (FDI) is receiving considerable attention. This book introduces basic model-based FDI schemes, advanced analysis and design algorithms, and mathematical and control-theoretic tools. This second edition of Model-Based Fault Diagnosis Techniques contains: ·         new material on fault isolation and identification, and fault detection in feedback control loops; ·         extended and revised treatment of systematic threshold determination for systems with both deterministic unknown inputs and stochastic noises; addition of the continuously-stirred tank heater as a representative process-industrial benchmark; and ·         enhanced discussion of residual evaluation in stochastic processes. Model-based Fault Diagno...

  4. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    Science.gov (United States)

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Mars 2020 Model Based Systems Engineering Pilot

    Science.gov (United States)

    Dukes, Alexandra Marie

    2017-01-01

    The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and

  6. Model-based accelerator controls: What, why and how

    International Nuclear Information System (INIS)

    Sidhu, S.S.

    1987-01-01

    Model-based control is defined as a gamut of techniques whose aim is to improve the reliability of an accelerator and enhance the capabilities of the operator, and therefore of the whole control system. The aim of model-based control is seen as gradually moving the function of model-reference from the operator to the computer. The role of the operator in accelerator control and the need for and application of model-based control are briefly summarized

  7. Cognitive components underpinning the development of model-based learning.

    Science.gov (United States)

    Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A

    2017-06-01

    Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A Kriging Model Based Finite Element Model Updating Method for Damage Detection

    Directory of Open Access Journals (Sweden)

    Xiuming Yang

    2017-10-01

    Full Text Available Model updating is an effective means of damage identification and surrogate modeling has attracted considerable attention for saving computational cost in finite element (FE model updating, especially for large-scale structures. In this context, a surrogate model of frequency is normally constructed for damage identification, while the frequency response function (FRF is rarely used as it usually changes dramatically with updating parameters. This paper presents a new surrogate model based model updating method taking advantage of the measured FRFs. The Frequency Domain Assurance Criterion (FDAC is used to build the objective function, whose nonlinear response surface is constructed by the Kriging model. Then, the efficient global optimization (EGO algorithm is introduced to get the model updating results. The proposed method has good accuracy and robustness, which have been verified by a numerical simulation of a cantilever and experimental test data of a laboratory three-story structure.

  9. Enabling Accessibility Through Model-Based User Interface Development.

    Science.gov (United States)

    Ziegler, Daniel; Peissner, Matthias

    2017-01-01

    Adaptive user interfaces (AUIs) can increase the accessibility of interactive systems. They provide personalized display and interaction modes to fit individual user needs. Most AUI approaches rely on model-based development, which is considered relatively demanding. This paper explores strategies to make model-based development more attractive for mainstream developers.

  10. Model-Based Software Testing for Object-Oriented Software

    Science.gov (United States)

    Biju, Soly Mathew

    2008-01-01

    Model-based testing is one of the best solutions for testing object-oriented software. It has a better test coverage than other testing styles. Model-based testing takes into consideration behavioural aspects of a class, which are usually unchecked in other testing methods. An increase in the complexity of software has forced the software industry…

  11. Towards automatic model based controller design for reconfigurable plants

    DEFF Research Database (Denmark)

    Michelsen, Axel Gottlieb; Stoustrup, Jakob; Izadi-Zamanabadi, Roozbeh

    2008-01-01

    This paper introduces model-based Plug and Play Process Control, a novel concept for process control, which allows a model-based control system to be reconfigured when a sensor or an actuator is plugged into a controlled process. The work reported in this paper focuses on composing a monolithic m...

  12. Model based design introduction: modeling game controllers to microprocessor architectures

    Science.gov (United States)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  13. Learning of Chemical Equilibrium through Modelling-Based Teaching

    Science.gov (United States)

    Maia, Poliana Flavia; Justi, Rosaria

    2009-01-01

    This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…

  14. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  15. Model-Based Reasoning in Humans Becomes Automatic with Training.

    Directory of Open Access Journals (Sweden)

    Marcos Economides

    2015-09-01

    Full Text Available Model-based and model-free reinforcement learning (RL have been suggested as algorithmic realizations of goal-directed and habitual action strategies. Model-based RL is more flexible than model-free but requires sophisticated calculations using a learnt model of the world. This has led model-based RL to be identified with slow, deliberative processing, and model-free RL with fast, automatic processing. In support of this distinction, it has recently been shown that model-based reasoning is impaired by placing subjects under cognitive load--a hallmark of non-automaticity. Here, using the same task, we show that cognitive load does not impair model-based reasoning if subjects receive prior training on the task. This finding is replicated across two studies and a variety of analysis methods. Thus, task familiarity permits use of model-based reasoning in parallel with other cognitive demands. The ability to deploy model-based reasoning in an automatic, parallelizable fashion has widespread theoretical implications, particularly for the learning and execution of complex behaviors. It also suggests a range of important failure modes in psychiatric disorders.

  16. Design of an Emulsion-based Personal Detergent through a Model-based Chemical Product Design Methodology

    DEFF Research Database (Denmark)

    Mattei, Michele; Hill, Michael; Kontogeorgis, Georgios

    2013-01-01

    An extended systematic methodology for the design of emulsion-based Chemical products is presented. The methodology consists of a model-based framework involving seven sequential hierarchical steps: starting with the identification of the needs to be satisfied by the product and then adding one-b...... to obtain one or more candidate formulations. A conceptual casestudy representing a personal detergent is presented to highlight the methodology....

  17. Design of an Emulsion-based Personal Detergent through a Model-based Chemical Product Design Methodology

    DEFF Research Database (Denmark)

    Mattei, Michele; Hill, Michael; Kontogeorgis, Georgios

    2013-01-01

    An extended systematic methodology for the design of emulsion-based Chemical products is presented. The methodology consists of a model-based framework involving seven sequential hierarchical steps: starting with the identification of the needs to be satisfied by the product and then adding one...... to obtain one or more candidate formulations. A conceptual casestudy representing a personal detergent is presented to highlight the methodology....

  18. Design of Model-based Controller with Disturbance Estimation in Steer-by-wire System

    Directory of Open Access Journals (Sweden)

    Jung Sanghun

    2018-01-01

    Full Text Available The steer-by-wire system is a next generation steering control technology that has been actively studied because it has many advantages such as fast response, space efficiency due to removal of redundant mechanical elements, and high connectivity with vehicle chassis control, such as active steering. Steer-by-wire system has disturbance composed of tire friction torque and self-aligning torque. These disturbances vary widely due to the weight or friction coefficient change. Therefore, disturbance compensation logic is strongly required to obtain desired performance. This paper proposes model-based controller with disturbance compensation to achieve the robust control performance. Targeted steer-by-wire system is identified through the experiment and system identification method. Moreover, model-based controller is designed using the identified plant model. Disturbance of targeted steer-by-wire is estimated using disturbance observer(DOB, and compensate the estimated disturbance into control input. Experiment of various scenarios are conducted to validate the robust performance of proposed model-based controller.

  19. SUPERMUX A multi-host data communication concentrator multiplexor

    CERN Document Server

    Bruins, T; Palandri, E M; Slettenhaar, Hendrik J; Strack-Zimmermann, H W

    1975-01-01

    This paper describes a front-end concentrator multiplexer system for asynchronous time sharing consoles operating on a minicomputer which has recently been put into operating at CERN. The concentrator will control up to 36 consoles at speeds between 110 and 9600 bits per second and has the capability of dynamically connecting these consoles to several large Host Computers. Details are given on all the CERN developed hardware, including: (a) Host-Concentrator Coupler, (b) Console Interface cards with software selectable line speeds, (c) Data transmission equipment. Furthermore, the paper describes some of the software as well as the techniques used to test the system with simulated users. (10 refs).

  20. Identification of a Cessna Citation II Model Based on Flight Test Data

    NARCIS (Netherlands)

    de Visser, C.C.; Pool, D.M.

    2017-01-01

    As a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to go through flight simulator-based stall recovery training. For this reason the Control and Simulation division at Delft University of Technology has set up a task force to develop a new methodology for

  1. Model Based Approach for Identification of Gears and Bearings Failure Modes

    Directory of Open Access Journals (Sweden)

    Renata Klein

    2011-01-01

    Full Text Available This paper describes the algorithms that were used for analysis of the PHM’09 gear-box. The purpose of the analysis was to detect and identify faults in various components of the gear-box. Each of the 560 vibration recordings presented a different set of faults, including distributed and localized gear faults, typical bearing faults and shaft faults. Each fault had to be pinpointed precisely.In the following sections we describe the algorithms used for finding faults in bearings, gears and shafts, and the conclusions that were reached. A special blend of pattern recognition and signal processing methods was applied.Bearings were analyzed using the orders representation of the envelope of a band pass filtered signal and an envelope of the de-phased signal. A special search algorithm was applied for bearings features extraction. The diagnostics of the bearings failure modes was carried out automatically. Gears were analyzed using the order domains, the quefrency of orders, and the derivatives of the phase average.

  2. Species distribution modeling based on the automated identification of citizen observations.

    Science.gov (United States)

    Botella, Christophe; Joly, Alexis; Bonnet, Pierre; Monestiez, Pascal; Munoz, François

    2018-02-01

    A species distribution model computed with automatically identified plant observations was developed and evaluated to contribute to future ecological studies. We used deep learning techniques to automatically identify opportunistic plant observations made by citizens through a popular mobile application. We compared species distribution modeling of invasive alien plants based on these data to inventories made by experts. The trained models have a reasonable predictive effectiveness for some species, but they are biased by the massive presence of cultivated specimens. The method proposed here allows for fine-grained and regular monitoring of some species of interest based on opportunistic observations. More in-depth investigation of the typology of the observations and the sampling bias should help improve the approach in the future.

  3. Parameter identification of ZnO surge arrester models based on genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bayadi, Abdelhafid [Laboratoire d' Automatique de Setif, Departement d' Electrotechnique, Faculte des Sciences de l' Ingenieur, Universite Ferhat ABBAS de Setif, Route de Bejaia Setif 19000 (Algeria)

    2008-07-15

    The correct and adequate modelling of ZnO surge arresters characteristics is very important for insulation coordination studies and systems reliability. In this context many researchers addressed considerable efforts to the development of surge arresters models to reproduce the dynamic characteristics observed in their behaviour when subjected to fast front impulse currents. The difficulties with these models reside essentially in the calculation and the adjustment of their parameters. This paper proposes a new technique based on genetic algorithm to obtain the best possible series of parameter values of ZnO surge arresters models. The validity of the predicted parameters is then checked by comparing the predicted results with the experimental results available in the literature. Using the ATP-EMTP package, an application of the arrester model on network system studies is presented and discussed. (author)

  4. Modeling and identification for robot motion control

    NARCIS (Netherlands)

    Kostic, D.; Jager, de A.G.; Steinbuch, M.; Kurfess, T.R.

    2004-01-01

    This chapter deals with the problems of robot modelling and identification for high-performance model-based motion control. A derivation of robot kinematic and dynamic models was explained. Modelling of friction effects was also discussed. Use of a writing task to establish correctness of the models

  5. A Model-based Avionic Prognostic Reasoner (MAPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Model-based Avionic Prognostic Reasoner (MAPR) presented in this paper is an innovative solution for non-intrusively monitoring the state of health (SoH) and...

  6. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    Data.gov (United States)

    National Aeronautics and Space Administration — Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain...

  7. A Model-based Prognostics Approach Applied to Pneumatic Valves

    Data.gov (United States)

    National Aeronautics and Space Administration — Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain...

  8. Model-based Prognostics with Concurrent Damage Progression Processes

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics approaches rely on physics-based models that describe the behavior of systems and their components. These models must account for the several...

  9. Model-based reasoning technology for the power industry

    International Nuclear Information System (INIS)

    Touchton, R.A.; Subramanyan, N.S.; Naser, J.A.

    1991-01-01

    This paper reports on model-based reasoning which refers to an expert system implementation methodology that uses a model of the system which is being reasoned about. Model-based representation and reasoning techniques offer many advantages and are highly suitable for domains where the individual components, their interconnection, and their behavior is well-known. Technology Applications, Inc. (TAI), under contract to the Electric Power Research Institute (EPRI), investigated the use of model-based reasoning in the power industry including the nuclear power industry. During this project, a model-based monitoring and diagnostic tool, called ProSys, was developed. Also, an alarm prioritization system was developed as a demonstration prototype

  10. Model-based Prognostics with Fixed-lag Particle Filters

    Data.gov (United States)

    National Aeronautics and Space Administration — Model-based prognostics exploits domain knowl- edge of the system, its components, and how they fail by casting the underlying physical phenom- ena in a...

  11. Fuzzy model-based control of a nuclear reactor

    International Nuclear Information System (INIS)

    Van Den Durpel, L.; Ruan, D.

    1994-01-01

    The fuzzy model-based control of a nuclear power reactor is an emerging research topic world-wide. SCK-CEN is dealing with this research in a preliminary stage, including two aspects, namely fuzzy control and fuzzy modelling. The aim is to combine both methodologies in contrast to conventional model-based PID control techniques, and to state advantages of including fuzzy parameters as safety and operator feedback. This paper summarizes the general scheme of this new research project

  12. System Dynamics as Model-Based Theory Building

    OpenAIRE

    Schwaninger, Markus; Grösser, Stefan N.

    2008-01-01

    This paper introduces model-based theory building as a feature of system dynamics (SD) with large potential. It presents a systemic approach to actualizing that potential, thereby opening up a new perspective on theory building in the social sciences. The question addressed is if and how SD enables the construction of high-quality theories. This contribution is based on field experiment type projects which have been focused on model-based theory building, specifically the construction of a mi...

  13. A model-based approach to estimating forest area

    Science.gov (United States)

    Ronald E. McRoberts

    2006-01-01

    A logistic regression model based on forest inventory plot data and transformations of Landsat Thematic Mapper satellite imagery was used to predict the probability of forest for 15 study areas in Indiana, USA, and 15 in Minnesota, USA. Within each study area, model-based estimates of forest area were obtained for circular areas with radii of 5 km, 10 km, and 15 km and...

  14. Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis G.; Jeung, Ho Young; Aberer, Karl

    2012-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  15. Group Membership, Group Change, and Intergroup Attitudes: A Recategorization Model Based on Cognitive Consistency Principles

    Science.gov (United States)

    Roth, Jenny; Steffens, Melanie C.; Vignoles, Vivian L.

    2018-01-01

    The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility) as associative connections. The model builds on two cognitive principles, balance–congruity and imbalance–dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification) depends in part on the (in)compatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (in)compatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias. PMID:29681878

  16. Group Membership, Group Change, and Intergroup Attitudes: A Recategorization Model Based on Cognitive Consistency Principles

    Directory of Open Access Journals (Sweden)

    Jenny Roth

    2018-04-01

    Full Text Available The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility as associative connections. The model builds on two cognitive principles, balance–congruity and imbalance–dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification depends in part on the (incompatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (incompatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias.

  17. Characteristic Model-Based Robust Model Predictive Control for Hypersonic Vehicles with Constraints

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-06-01

    Full Text Available Designing robust control for hypersonic vehicles in reentry is difficult, due to the features of the vehicles including strong coupling, non-linearity, and multiple constraints. This paper proposed a characteristic model-based robust model predictive control (MPC for hypersonic vehicles with reentry constraints. First, the hypersonic vehicle is modeled by a characteristic model composed of a linear time-varying system and a lumped disturbance. Then, the identification data are regenerated by the accumulative sum idea in the gray theory, which weakens effects of the random noises and strengthens regularity of the identification data. Based on the regenerated data, the time-varying parameters and the disturbance are online estimated according to the gray identification. At last, the mixed H2/H∞ robust predictive control law is proposed based on linear matrix inequalities (LMIs and receding horizon optimization techniques. Using active tackling system constraints of MPC, the input and state constraints are satisfied in the closed-loop control system. The validity of the proposed control is verified theoretically according to Lyapunov theory and illustrated by simulation results.

  18. Group Membership, Group Change, and Intergroup Attitudes: A Recategorization Model Based on Cognitive Consistency Principles.

    Science.gov (United States)

    Roth, Jenny; Steffens, Melanie C; Vignoles, Vivian L

    2018-01-01

    The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility) as associative connections. The model builds on two cognitive principles, balance-congruity and imbalance-dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification) depends in part on the (in)compatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (in)compatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias.

  19. Isotope Identification

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  20. Embracing model-based designs for dose-finding trials.

    Science.gov (United States)

    Love, Sharon B; Brown, Sarah; Weir, Christopher J; Harbron, Chris; Yap, Christina; Gaschler-Markefski, Birgit; Matcham, James; Caffrey, Louise; McKevitt, Christopher; Clive, Sally; Craddock, Charlie; Spicer, James; Cornelius, Victoria

    2017-07-25

    Dose-finding trials are essential to drug development as they establish recommended doses for later-phase testing. We aim to motivate wider use of model-based designs for dose finding, such as the continual reassessment method (CRM). We carried out a literature review of dose-finding designs and conducted a survey to identify perceived barriers to their implementation. We describe the benefits of model-based designs (flexibility, superior operating characteristics, extended scope), their current uptake, and existing resources. The most prominent barriers to implementation of a model-based design were lack of suitable training, chief investigators' preference for algorithm-based designs (e.g., 3+3), and limited resources for study design before funding. We use a real-world example to illustrate how these barriers can be overcome. There is overwhelming evidence for the benefits of CRM. Many leading pharmaceutical companies routinely implement model-based designs. Our analysis identified barriers for academic statisticians and clinical academics in mirroring the progress industry has made in trial design. Unified support from funders, regulators, and journal editors could result in more accurate doses for later-phase testing, and increase the efficiency and success of clinical drug development. We give recommendations for increasing the uptake of model-based designs for dose-finding trials in academia.

  1. Model based process-product design and analysis

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper gives a perspective on modelling and the important role it has within product-process design and analysis. Different modelling issues related to development and application of systematic model-based solution approaches for product-process design is discussed and the need for a hybrid...... model-based framework is highlighted. This framework should be able to manage knowledge-data, models, and associated methods and tools integrated with design work-flows and data-flows for specific product-process design problems. In particular, the framework needs to manage models of different types......, forms and complexity, together with their associated parameters. An example of a model-based system for design of chemicals based formulated products is also given....

  2. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  3. Model Based Mission Assurance: Emerging Opportunities for Robotic Systems

    Science.gov (United States)

    Evans, John W.; DiVenti, Tony

    2016-01-01

    The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).

  4. Model Based Analysis and Test Generation for Flight Software

    Science.gov (United States)

    Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep

    2009-01-01

    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.

  5. Towards model-based testing of electronic funds transfer systems

    OpenAIRE

    Asaadi, H.R.; Khosravi, R.; Mousavi, M.R.; Noroozi, N.

    2010-01-01

    We report on our first experience with applying model-based testing techniques to an operational Electronic Funds Transfer (EFT) switch. The goal is to test the conformance of the EFT switch to the standard flows described by the ISO 8583 standard. To this end, we first make a formalization of the transaction flows specified in the ISO 8583 standard in terms of a Labeled Transition System (LTS). This formalization paves the way for model-based testing based on the formal notion of Input-Outpu...

  6. Model-based approach for cyber-physical attack detection in water distribution systems.

    Science.gov (United States)

    Housh, Mashor; Ohar, Ziv

    2018-08-01

    Modern Water Distribution Systems (WDSs) are often controlled by Supervisory Control and Data Acquisition (SCADA) systems and Programmable Logic Controllers (PLCs) which manage their operation and maintain a reliable water supply. As such, and with the cyber layer becoming a central component of WDS operations, these systems are at a greater risk of being subjected to cyberattacks. This paper offers a model-based methodology based on a detailed hydraulic understanding of WDSs combined with an anomaly detection algorithm for the identification of complex cyberattacks that cannot be fully identified by hydraulically based rules alone. The results show that the proposed algorithm is capable of achieving the best-known performance when tested on the data published in the BATtle of the Attack Detection ALgorithms (BATADAL) competition (http://www.batadal.net). Copyright © 2018. Published by Elsevier Ltd.

  7. Developments in model-based optimization and control distributed control and industrial applications

    CERN Document Server

    Grancharova, Alexandra; Pereira, Fernando

    2015-01-01

    This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and desi...

  8. Non-frontal Model Based Approach to Forensic Face Recognition

    NARCIS (Netherlands)

    Dutta, A.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan

    2012-01-01

    In this paper, we propose a non-frontal model based approach which ensures that a face recognition system always gets to compare images having similar view (or pose). This requires a virtual suspect reference set that consists of non-frontal suspect images having pose similar to the surveillance

  9. Model-Based GUI Testing Using Uppaal at Novo Nordisk

    DEFF Research Database (Denmark)

    H. Hjort, Ulrik; Rasmussen, Jacob Illum; Larsen, Kim Guldstrand

    2009-01-01

    This paper details a collaboration between Aalborg University and Novo Nordiskin developing an automatic model-based test generation tool for system testing of the graphical user interface of a medical device on an embedded platform. The tool takes as input an UML Statemachine model and generates...

  10. Automated model-based testing of hybrid systems

    NARCIS (Netherlands)

    Osch, van M.P.W.J.

    2009-01-01

    In automated model-based input-output conformance testing, tests are automati- cally generated from a speci¯cation and automatically executed on an implemen- tation. Input is applied to the implementation and output is observed from the implementation. If the observed output is allowed according to

  11. Model Based Fault Detection in a Centrifugal Pump Application

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Cocquempot, Vincent; Izadi-Zamanabadi, Roozbeh

    2006-01-01

    A model based approach for fault detection in a centrifugal pump, driven by an induction motor, is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, observer design and Analytical Redundancy Relation (ARR) design. Structural considerations...

  12. Perceptual decision neurosciences: a model-based review

    NARCIS (Netherlands)

    Mulder, M.J.; van Maanen, L.; Forstmann, B.U.

    2014-01-01

    In this review we summarize findings published over the past 10 years focusing on the neural correlates of perceptual decision-making. Importantly, this review highlights only studies that employ a model-based approach, i.e., they use quantitative cognitive models in combination with neuroscientific

  13. A comparative study of independent particle model based ...

    Indian Academy of Sciences (India)

    We find that among these three independent particle model based methods, the ss-VSCF method provides most accurate results in the thermal averages followed by t-SCF and the v-VSCF is the least accurate. However, the ss-VSCF is found to be computationally very expensive for the large molecules. The t-SCF gives ...

  14. Model-based safety architecture framework for complex systems

    NARCIS (Netherlands)

    Schuitemaker, Katja; Rajabali Nejad, Mohammadreza; Braakhuis, J.G.; Podofillini, Luca; Sudret, Bruno; Stojadinovic, Bozidar; Zio, Enrico; Kröger, Wolfgang

    2015-01-01

    The shift to transparency and rising need of the general public for safety, together with the increasing complexity and interdisciplinarity of modern safety-critical Systems of Systems (SoS) have resulted in a Model-Based Safety Architecture Framework (MBSAF) for capturing and sharing architectural

  15. Adopting a Models-Based Approach to Teaching Physical Education

    Science.gov (United States)

    Casey, Ashley; MacPhail, Ann

    2018-01-01

    Background: The popularised notion of models-based practice (MBP) is one that focuses on the delivery of a model, e.g. Cooperative Learning, Sport Education, Teaching Personal and Social Responsibility, Teaching Games for Understanding. Indeed, while an abundance of research studies have examined the delivery of a single model and some have…

  16. Model-based analysis and simulation of regenerative heat wheel

    DEFF Research Database (Denmark)

    Wu, Zhuang; Melnik, Roderick V. N.; Borup, F.

    2006-01-01

    The rotary regenerator (also called the heat wheel) is an important component of energy intensive sectors, which is used in many heat recovery systems. In this paper, a model-based analysis of a rotary regenerator is carried out with a major emphasis given to the development and implementation of...

  17. Towards model-based testing of electronic funds transfer systems

    NARCIS (Netherlands)

    Asaadi, H.R.; Khosravi, R.; Mousavi, M.R.; Noroozi, N.; Arbab, F.; Sirjani, M.

    2012-01-01

    We report on our first experience with applying model-based testing techniques to an operational Electronic Funds Transfer (EFT) switch. The goal is to test the conformance of the EFT switch to the standard flows described by the ISO 8583 standard. To this end, we first make a formalization of the

  18. Towards model-based testing of electronic funds transfer systems

    NARCIS (Netherlands)

    Asaadi, H.R.; Khosravi, R.; Mousavi, M.R.; Noroozi, N.

    2010-01-01

    We report on our first experience with applying model-based testing techniques to an operational Electronic Funds Transfer (EFT) switch. The goal is to test the conformance of the EFT switch to the standard flows described by the ISO 8583 standard. To this end, we first make a formalization of the

  19. Development of a robust model-based reactivity control system

    International Nuclear Information System (INIS)

    Rovere, L.A.; Otaduy, P.J.; Brittain, C.R.

    1990-01-01

    This paper describes the development and implementation of a digital model-based reactivity control system that incorporates a knowledge of the plant physics into the control algorithm to improve system performance. This controller is composed of a model-based module and modified proportional-integral-derivative (PID) module. The model-based module has an estimation component to synthesize unmeasurable process variables that are necessary for the control action computation. These estimated variables, besides being used within the control algorithm, will be used for diagnostic purposes by a supervisory control system under development. The PID module compensates for inaccuracies in model coefficients by supplementing the model-based output with a correction term that eliminates any demand tracking or steady state errors. This control algorithm has been applied to develop controllers for a simulation of liquid metal reactors in a multimodular plant. It has shown its capability to track demands in neutron power much more accurately than conventional controllers, reducing overshoots to almost negligible value while providing a good degree of robustness to unmodeled dynamics. 10 refs., 4 figs

  20. Model-Based Engineering of Supervisory Controllers using CIF

    NARCIS (Netherlands)

    Schiffelers, R.R.H.; Theunissen, R.J.M.; Beek, van D.A.; Rooda, J.E.; Levendovsky, T.; Lengyel, L.

    2009-01-01

    In the Model-Based Engineering (MBE) paradigm, models are the core elements in the design process of a system from its requirements to the actual implementation of the system. By means of Supervisory Control Theory (SCT), supervisory controllers (supervisors) can be synthesized instead of

  1. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, Nicholas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  2. Expediting model-based optoacoustic reconstructions with tomographic symmetries

    International Nuclear Information System (INIS)

    Lutzweiler, Christian; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-01

    Purpose: Image quantification in optoacoustic tomography implies the use of accurate forward models of excitation, propagation, and detection of optoacoustic signals while inversions with high spatial resolution usually involve very large matrices, leading to unreasonably long computation times. The development of fast and memory efficient model-based approaches represents then an important challenge to advance on the quantitative and dynamic imaging capabilities of tomographic optoacoustic imaging. Methods: Herein, a method for simplification and acceleration of model-based inversions, relying on inherent symmetries present in common tomographic acquisition geometries, has been introduced. The method is showcased for the case of cylindrical symmetries by using polar image discretization of the time-domain optoacoustic forward model combined with efficient storage and inversion strategies. Results: The suggested methodology is shown to render fast and accurate model-based inversions in both numerical simulations andpost mortem small animal experiments. In case of a full-view detection scheme, the memory requirements are reduced by one order of magnitude while high-resolution reconstructions are achieved at video rate. Conclusions: By considering the rotational symmetry present in many tomographic optoacoustic imaging systems, the proposed methodology allows exploiting the advantages of model-based algorithms with feasible computational requirements and fast reconstruction times, so that its convenience and general applicability in optoacoustic imaging systems with tomographic symmetries is anticipated

  3. Model based active power control of a wind turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2014-01-01

    in the electricity market that selling the reserve power is more profitable than producing with the full capacity. Therefore wind turbines can be down-regulated and sell the differential capacity as the reserve power. In this paper we suggest a model based approach to control wind turbines for active power reference...

  4. Nonlinear Model-Based Fault Detection for a Hydraulic Actuator

    NARCIS (Netherlands)

    Van Eykeren, L.; Chu, Q.P.

    2011-01-01

    This paper presents a model-based fault detection algorithm for a specific fault scenario of the ADDSAFE project. The fault considered is the disconnection of a control surface from its hydraulic actuator. Detecting this type of fault as fast as possible helps to operate an aircraft more cost

  5. Model based decision support for planning of road maintenance

    NARCIS (Netherlands)

    van Harten, Aart; Worm, J.M.; Worm, J.M.

    1996-01-01

    In this article we describe a Decision Support Model, based on Operational Research methods, for the multi-period planning of maintenance of bituminous pavements. This model is a tool for the road manager to assist in generating an optimal maintenance plan for a road. Optimal means: minimising the

  6. An Approach to Quality Estimation in Model-Based Development

    DEFF Research Database (Denmark)

    Holmegaard, Jens Peter; Koch, Peter; Ravn, Anders Peter

    2004-01-01

    We present an approach to estimation of parameters for design space exploration in Model-Based Development, where synthesis of a system is done in two stages. Component qualities like space, execution time or power consumption are defined in a repository by platform dependent values. Connectors...

  7. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings.

    Science.gov (United States)

    Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun

    2017-05-18

    The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features' information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.

  8. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-05-01

    Full Text Available The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD. Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.

  9. Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.

    Science.gov (United States)

    Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L

    2017-10-01

    The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (pEEG patterns such as generalized periodic discharges (pEEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A Novel Multimodal Biometrics Recognition Model Based on Stacked ELM and CCA Methods

    Directory of Open Access Journals (Sweden)

    Jucheng Yang

    2018-04-01

    Full Text Available Multimodal biometrics combine a variety of biological features to have a significant impact on identification performance, which is a newly developed trend in biometrics identification technology. This study proposes a novel multimodal biometrics recognition model based on the stacked extreme learning machines (ELMs and canonical correlation analysis (CCA methods. The model, which has a symmetric structure, is found to have high potential for multimodal biometrics. The model works as follows. First, it learns the hidden-layer representation of biological images using extreme learning machines layer by layer. Second, the canonical correlation analysis method is applied to map the representation to a feature space, which is used to reconstruct the multimodal image feature representation. Third, the reconstructed features are used as the input of a classifier for supervised training and output. To verify the validity and efficiency of the method, we adopt it for new hybrid datasets obtained from typical face image datasets and finger-vein image datasets. Our experimental results demonstrate that our model performs better than traditional methods.

  11. Model-Based Development of Control Systems for Forestry Cranes

    Directory of Open Access Journals (Sweden)

    Pedro La Hera

    2015-01-01

    Full Text Available Model-based methods are used in industry for prototyping concepts based on mathematical models. With our forest industry partners, we have established a model-based workflow for rapid development of motion control systems for forestry cranes. Applying this working method, we can verify control algorithms, both theoretically and practically. This paper is an example of this workflow and presents four topics related to the application of nonlinear control theory. The first topic presents the system of differential equations describing the motion dynamics. The second topic presents nonlinear control laws formulated according to sliding mode control theory. The third topic presents a procedure for model calibration and control tuning that are a prerequisite to realize experimental tests. The fourth topic presents the results of tests performed on an experimental crane specifically equipped for these tasks. Results of these studies show the advantages and disadvantages of these control algorithms, and they highlight their performance in terms of robustness and smoothness.

  12. A sediment graph model based on SCS-CN method

    Science.gov (United States)

    Singh, P. K.; Bhunya, P. K.; Mishra, S. K.; Chaube, U. C.

    2008-01-01

    SummaryThis paper proposes new conceptual sediment graph models based on coupling of popular and extensively used methods, viz., Nash model based instantaneous unit sediment graph (IUSG), soil conservation service curve number (SCS-CN) method, and Power law. These models vary in their complexity and this paper tests their performance using data of the Nagwan watershed (area = 92.46 km 2) (India). The sensitivity of total sediment yield and peak sediment flow rate computations to model parameterisation is analysed. The exponent of the Power law, β, is more sensitive than other model parameters. The models are found to have substantial potential for computing sediment graphs (temporal sediment flow rate distribution) as well as total sediment yield.

  13. Automated extraction of knowledge for model-based diagnostics

    Science.gov (United States)

    Gonzalez, Avelino J.; Myler, Harley R.; Towhidnejad, Massood; Mckenzie, Frederic D.; Kladke, Robin R.

    1990-01-01

    The concept of accessing computer aided design (CAD) design databases and extracting a process model automatically is investigated as a possible source for the generation of knowledge bases for model-based reasoning systems. The resulting system, referred to as automated knowledge generation (AKG), uses an object-oriented programming structure and constraint techniques as well as internal database of component descriptions to generate a frame-based structure that describes the model. The procedure has been designed to be general enough to be easily coupled to CAD systems that feature a database capable of providing label and connectivity data from the drawn system. The AKG system is capable of defining knowledge bases in formats required by various model-based reasoning tools.

  14. Fuzzy model-based observers for fault detection in CSTR.

    Science.gov (United States)

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan

    2015-11-01

    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  16. MTK: An AI tool for model-based reasoning

    Science.gov (United States)

    Erickson, William K.; Schwartz, Mary R.

    1987-01-01

    A 1988 goal for the Systems Autonomy Demonstration Project Office of the NASA Ames Research Center is to apply model-based representation and reasoning techniques in a knowledge-based system that will provide monitoring, fault diagnosis, control and trend analysis of the space station Thermal Management System (TMS). A number of issues raised during the development of the first prototype system inspired the design and construction of a model-based reasoning tool called MTK, which was used in the building of the second prototype. These issues are outlined, along with examples from the thermal system to highlight the motivating factors behind them. An overview of the capabilities of MTK is given.

  17. Route Choice Model Based on Game Theory for Commuters

    Directory of Open Access Journals (Sweden)

    Licai Yang

    2016-06-01

    Full Text Available The traffic behaviours of commuters may cause traffic congestion during peak hours. Advanced Traffic Information System can provide dynamic information to travellers. Due to the lack of timeliness and comprehensiveness, the provided information cannot satisfy the travellers’ needs. Since the assumptions of traditional route choice model based on Expected Utility Theory conflict with the actual situation, a route choice model based on Game Theory is proposed to provide reliable route choice to commuters in actual situation in this paper. The proposed model treats the alternative routes as game players and utilizes the precision of predicted information and familiarity of traffic condition to build a game. The optimal route can be generated considering Nash Equilibrium by solving the route choice game. Simulations and experimental analysis show that the proposed model can describe the commuters’ routine route choice decisionexactly and the provided route is reliable.

  18. Model based methods and tools for process systems engineering

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    need to be integrated with work-flows and data-flows for specific product-process synthesis-design problems within a computer-aided framework. The framework therefore should be able to manage knowledge-data, models and the associated methods and tools needed by specific synthesis-design work...... of model based methods and tools within a computer aided framework for product-process synthesis-design will be highlighted.......Process systems engineering (PSE) provides means to solve a wide range of problems in a systematic and efficient manner. This presentation will give a perspective on model based methods and tools needed to solve a wide range of problems in product-process synthesis-design. These methods and tools...

  19. Model-based dispersive wave processing: A recursive Bayesian solution

    International Nuclear Information System (INIS)

    Candy, J.V.; Chambers, D.H.

    1999-01-01

    Wave propagation through dispersive media represents a significant problem in many acoustic applications, especially in ocean acoustics, seismology, and nondestructive evaluation. In this paper we propose a propagation model that can easily represent many classes of dispersive waves and proceed to develop the model-based solution to the wave processing problem. It is shown that the underlying wave system is nonlinear and time-variable requiring a recursive processor. Thus the general solution to the model-based dispersive wave enhancement problem is developed using a Bayesian maximum a posteriori (MAP) approach and shown to lead to the recursive, nonlinear extended Kalman filter (EKF) processor. The problem of internal wave estimation is cast within this framework. The specific processor is developed and applied to data synthesized by a sophisticated simulator demonstrating the feasibility of this approach. copyright 1999 Acoustical Society of America.

  20. GENI: A graphical environment for model-based control

    International Nuclear Information System (INIS)

    Kleban, S.; Lee, M.; Zambre, Y.

    1989-10-01

    A new method to operate machine and beam simulation programs for accelerator control has been developed. Existing methods, although cumbersome, have been used in control systems for commissioning and operation of many machines. We developed GENI, a generalized graphical interface to these programs for model-based control. This ''object-oriented''-like environment is described and some typical applications are presented. 4 refs., 5 figs

  1. Model-based security engineering for the internet of things

    OpenAIRE

    NEISSE RICARDO; STERI GARY; NAI FOVINO Igor; BALDINI Gianmarco; VAN HOESEL Lodewijk

    2015-01-01

    We propose in this chapter a Model-based Security Toolkit (SecKit) and methodology to address the control and protection of user data in the deployment of the Internet of Things (IoT). This toolkit takes a more general approach for security engineering including risk analysis, establishment of aspect-specific trust relationships, and enforceable security policies. We describe the integrated metamodels used in the toolkit and the accompanying security engineering methodology for IoT systems...

  2. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  3. Energy, mass, model-based displays, and memory recall

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1989-01-01

    The operation of a pressurized water reactor in the context of the conservation laws for energy and mass is discussed. These conservation laws are the basis of the Rankine heat engine cycle. Computer graphic implementation of the heat engine cycle, in terms of temperature-entropy coordinates for water, serves as a model-based display of the plant process. A human user of this display, trained in first principles of the process, may exercise a monitoring strategy based on the conservation laws

  4. European Climate - Energy Security Nexus. A model based scenario analysis

    International Nuclear Information System (INIS)

    Criqui, Patrick; Mima, Silvana

    2011-01-01

    In this research, we have provided an overview of the climate-security nexus in the European sector through a model based scenario analysis with POLES model. The analysis underline that under stringent climate policies, Europe take advantage of a double dividend in its capacity to develop a new cleaner energy model and in lower vulnerability to potential shocks on the international energy markets. (authors)

  5. Constrained convex minimization via model-based excessive gap

    OpenAIRE

    Tran Dinh, Quoc; Cevher, Volkan

    2014-01-01

    We introduce a model-based excessive gap technique to analyze first-order primal- dual methods for constrained convex minimization. As a result, we construct new primal-dual methods with optimal convergence rates on the objective residual and the primal feasibility gap of their iterates separately. Through a dual smoothing and prox-function selection strategy, our framework subsumes the augmented Lagrangian, and alternating methods as special cases, where our rates apply.

  6. Trojan detection model based on network behavior analysis

    International Nuclear Information System (INIS)

    Liu Junrong; Liu Baoxu; Wang Wenjin

    2012-01-01

    Based on the analysis of existing Trojan detection technology, this paper presents a Trojan detection model based on network behavior analysis. First of all, we abstract description of the Trojan network behavior, then according to certain rules to establish the characteristic behavior library, and then use the support vector machine algorithm to determine whether a Trojan invasion. Finally, through the intrusion detection experiments, shows that this model can effectively detect Trojans. (authors)

  7. On Model Based Synthesis of Embedded Control Software

    OpenAIRE

    Alimguzhin, Vadim; Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico

    2012-01-01

    Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for control software. Given the formal model of a plant as a Discrete Time Linear Hybrid System and the implementation specifications (that is, number of bits in the Analog-to-Digital (AD) conversion) correct-by-construction control software can be...

  8. Model-based design languages: A case study

    OpenAIRE

    Cibrario Bertolotti, Ivan; Hu, Tingting; Navet, Nicolas

    2017-01-01

    Fast-paced innovation in the embedded systems domain puts an ever increasing pressure on effective software development methods, leading to the growing popularity of Model-Based Design (MBD). In this context, a proper choice of modeling languages and related tools - depending on design goals and problem qualities - is crucial to make the most of MBD benefits. In this paper, a comparison between two dissimilar approaches to modeling is carried out, with the goal of highlighting their relative ...

  9. Constructing a justice model based on Sen's capability approach

    OpenAIRE

    Yüksel, Sevgi; Yuksel, Sevgi

    2008-01-01

    The thesis provides a possible justice model based on Sen's capability approach. For this goal, we first analyze the general structure of a theory of justice, identifying the main variables and issues. Furthermore, based on Sen (2006) and Kolm (1998), we look at 'transcendental' and 'comparative' approaches to justice and concentrate on the sufficiency condition for the comparative approach. Then, taking Rawls' theory of justice as a starting point, we present how Sen's capability approach em...

  10. LEARNING CREATIVE WRITING MODEL BASED ON NEUROLINGUISTIC PROGRAMMING

    OpenAIRE

    Rustan, Edhy

    2017-01-01

    The objectives of the study are to determine: (1) condition on learning creative writing at high school students in Makassar, (2) requirement of learning model in creative writing, (3) program planning and design model in ideal creative writing, (4) feasibility of model study based on creative writing in neurolinguistic programming, and (5) the effectiveness of the learning model based on creative writing in neurolinguisticprogramming.The method of this research uses research development of L...

  11. A tool for model based diagnostics of the AGS Booster

    International Nuclear Information System (INIS)

    Luccio, A.

    1993-01-01

    A model-based algorithmic tool was developed to search for lattice errors by a systematic analysis of orbit data in the AGS Booster synchrotron. The algorithm employs transfer matrices calculated with MAD between points in the ring. Iterative model fitting of the data allows one to find and eventually correct magnet displacements and angles or field errors. The tool, implemented on a HP-Apollo workstation system, has proved very general and of immediate physical interpretation

  12. GPU-accelerated 3-D model-based tracking

    International Nuclear Information System (INIS)

    Brown, J Anthony; Capson, David W

    2010-01-01

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  13. A Novel Modeling Method for Aircraft Engine Using Nonlinear Autoregressive Exogenous (NARX) Models Based on Wavelet Neural Networks

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun; Cao, Can

    2018-05-01

    A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.

  14. Research of Uncertainty Reasoning in Pineapple Disease Identification System

    Science.gov (United States)

    Liu, Liqun; Fan, Haifeng

    In order to deal with the uncertainty of evidences mostly existing in pineapple disease identification system, a reasoning model based on evidence credibility factor was established. The uncertainty reasoning method is discussed,including: uncertain representation of knowledge, uncertain representation of rules, uncertain representation of multi-evidences and update of reasoning rules. The reasoning can fully reflect the uncertainty in disease identification and reduce the influence of subjective factors on the accuracy of the system.

  15. The Design of Model-Based Training Programs

    Science.gov (United States)

    Polson, Peter; Sherry, Lance; Feary, Michael; Palmer, Everett; Alkin, Marty; McCrobie, Dan; Kelley, Jerry; Rosekind, Mark (Technical Monitor)

    1997-01-01

    This paper proposes a model-based training program for the skills necessary to operate advance avionics systems that incorporate advanced autopilots and fight management systems. The training model is based on a formalism, the operational procedure model, that represents the mission model, the rules, and the functions of a modem avionics system. This formalism has been defined such that it can be understood and shared by pilots, the avionics software, and design engineers. Each element of the software is defined in terms of its intent (What?), the rationale (Why?), and the resulting behavior (How?). The Advanced Computer Tutoring project at Carnegie Mellon University has developed a type of model-based, computer aided instructional technology called cognitive tutors. They summarize numerous studies showing that training times to a specified level of competence can be achieved in one third the time of conventional class room instruction. We are developing a similar model-based training program for the skills necessary to operation the avionics. The model underlying the instructional program and that simulates the effects of pilots entries and the behavior of the avionics is based on the operational procedure model. Pilots are given a series of vertical flightpath management problems. Entries that result in violations, such as failure to make a crossing restriction or violating the speed limits, result in error messages with instruction. At any time, the flightcrew can request suggestions on the appropriate set of actions. A similar and successful training program for basic skills for the FMS on the Boeing 737-300 was developed and evaluated. The results strongly support the claim that the training methodology can be adapted to the cockpit.

  16. Whale Identification

    Science.gov (United States)

    1991-01-01

    R:BASE for DOS, a computer program developed under NASA contract, has been adapted by the National Marine Mammal Laboratory and the College of the Atlantic to provide and advanced computerized photo matching technique for identification of humpback whales. The program compares photos with stored digitized descriptions, enabling researchers to track and determine distribution and migration patterns. R:BASE is a spinoff of RIM (Relational Information Manager), which was used to store data for analyzing heat shielding tiles on the Space Shuttle Orbiter. It is now the world's second largest selling line of microcomputer database management software.

  17. Model-based engineering for medical-device software.

    Science.gov (United States)

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  18. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    2005-01-01

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  19. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  20. A Cyber-Attack Detection Model Based on Multivariate Analyses

    Science.gov (United States)

    Sakai, Yuto; Rinsaka, Koichiro; Dohi, Tadashi

    In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.

  1. Model-based efficiency evaluation of combine harvester traction drives

    Directory of Open Access Journals (Sweden)

    Steffen Häberle

    2015-08-01

    Full Text Available As part of the research the drive train of the combine harvesters is investigated in detail. The focus on load and power distribution, energy consumption and usage distribution are explicitly explored on two test machines. Based on the lessons learned during field operations, model-based studies of energy saving potential in the traction train of combine harvesters can now be quantified. Beyond that the virtual machine trial provides an opportunity to compare innovative drivetrain architectures and control solutions under reproducible conditions. As a result, an evaluation method is presented and generically used to draw comparisons under local representative operating conditions.

  2. Distributed model based control of multi unit evaporation systems

    International Nuclear Information System (INIS)

    Yudi Samyudia

    2006-01-01

    In this paper, we present a new approach to the analysis and design of distributed control systems for multi-unit plants. The approach is established after treating the effect of recycled dynamics as a gap metric uncertainty from which a distributed controller can be designed sequentially for each unit to tackle the uncertainty. We then use a single effect multi-unit evaporation system to illustrate how the proposed method is used to analyze different control strategies and to systematically achieve a better closed-loop performance using a distributed model-based controller

  3. An Industrial Model Based Disturbance Feedback Control Scheme

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Nakazawa, Chikashi; Vinther, Kasper

    2014-01-01

    This paper presents a model based disturbance feedback control scheme. Industrial process systems have been traditionally controlled by using relay and PID controller. However these controllers are affected by disturbances and model errors and these effects degrade control performance. The authors...... propose a new control method that can decrease the negative impact of disturbance and model errors. The control method is motivated by industrial practice by Fuji Electric. Simulation tests are examined with a conventional PID controller and the disturbance feedback control. The simulation results...

  4. Model-based expert systems for linac computer controls

    International Nuclear Information System (INIS)

    Lee, M.J.

    1988-09-01

    The use of machine modeling and beam simulation programs for the control of accelerator operation has become standard practice. The success of a model-based control operation depends on how the parameter to be controlled is measured, how the measured data is analyzed, how the result of the analysis is interpreted, and how a solution is implemented. There is considerable interest in applying expert systems technology that can automate all of these processes. The design of an expert system to control the beam trajectory in linear accelerators will be discussed as an illustration of this approach. 4 figs., 1 tab

  5. Stabilization of model-based networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  6. Model-Based Integration and Interpretation of Data

    DEFF Research Database (Denmark)

    Petersen, Johannes

    2004-01-01

    Data integration and interpretation plays a crucial role in supervisory control. The paper defines a set of generic inference steps for the data integration and interpretation process based on a three-layer model of system representations. The three-layer model is used to clarify the combination...... of constraint and object-centered representations of the work domain throwing new light on the basic principles underlying the data integration and interpretation process of Rasmussen's abstraction hierarchy as well as other model-based approaches combining constraint and object-centered representations. Based...

  7. Model-based automated testing of critical PLC programs.

    CERN Document Server

    Fernández Adiego, B; Tournier, J-C; González Suárez, V M; Bliudze, S

    2014-01-01

    Testing of critical PLC (Programmable Logic Controller) programs remains a challenging task for control system engineers as it can rarely be automated. This paper proposes a model based approach which uses the BIP (Behavior, Interactions and Priorities) framework to perform automated testing of PLC programs developed with the UNICOS (UNified Industrial COntrol System) framework. This paper defines the translation procedure and rules from UNICOS to BIP which can be fully automated in order to hide the complexity of the underlying model from the control engineers. The approach is illustrated and validated through the study of a water treatment process.

  8. Model-Based GUI Testing Using Uppaal at Novo Nordisk

    Science.gov (United States)

    Hjort, Ulrik H.; Illum, Jacob; Larsen, Kim G.; Petersen, Michael A.; Skou, Arne

    This paper details a collaboration between Aalborg University and Novo Nordiskin developing an automatic model-based test generation tool for system testing of the graphical user interface of a medical device on an embedded platform. The tool takes as input an UML Statemachine model and generates a test suite satisfying some testing criterion, such as edge or state coverage, and converts the individual test case into a scripting language that can be automatically executed against the target. The tool has significantly reduced the time required for test construction and generation, and reduced the number of test scripts while increasing the coverage.

  9. Vehicle coordinated transportation dispatching model base on multiple crisis locations

    Science.gov (United States)

    Tian, Ran; Li, Shanwei; Yang, Guoying

    2018-05-01

    Many disastrous events are often caused after unconventional emergencies occur, and the requirements of disasters are often different. It is difficult for a single emergency resource center to satisfy such requirements at the same time. Therefore, how to coordinate the emergency resources stored by multiple emergency resource centers to various disaster sites requires the coordinated transportation of emergency vehicles. In this paper, according to the problem of emergency logistics coordination scheduling, based on the related constraints of emergency logistics transportation, an emergency resource scheduling model based on multiple disasters is established.

  10. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  11. Muscles of mastication model-based MR image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Ong, S.H. [National Univ. of Singapore (Singapore). Dept. of Electrical and Computer Engineering; National Univ. of Singapore (Singapore). Div. of Bioengineering; Hu, Q.; Nowinski, W.L. [Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Foong, K.W.C. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); National Univ. of Singapore (Singapore). Dept. of Preventive Dentistry; Goh, P.S. [National Univ. of Singapore (Singapore). Dept. of Diagnostic Radiology

    2006-11-15

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  12. Experience with model based display for advanced diagnostics and control

    International Nuclear Information System (INIS)

    Staffon, J.D.; Lindsay, R.W.

    1989-01-01

    A full color, model based display system based on the Rankine thermodynamic cycle has been developed for use at the Experimental Breeder Reactor II by plant operators, engineers, and experimenters. The displays generate a real time thermodynamic model of the plant processes on computer screens to provide a direct indication of the plant performance. Operators and others who view the displays are no longer required to mentally ''construct'' a model of the process before acting. The model based display accurately depicts the plant states. It appears to effectively reduce the gulf of evaluation, which should result in a significant reduction in human operator errors if this plant display approach is adopted by the nuclear industry. Preliminary comments from users, including operators, indicate an overwhelming acceptance of the display approach. The displays incorporate alarm functions as well as levels of detail ''paging'' capability. The system is developed on a computer network which allows the easy addition of displays as well as extra computers. Constructing a complete console can be rapid and inexpensive. 1 ref., 2 figs

  13. Model based rib-cage unfolding for trauma CT

    Science.gov (United States)

    von Berg, Jens; Klinder, Tobias; Lorenz, Cristian

    2018-03-01

    A CT rib-cage unfolding method is proposed that does not require to determine rib centerlines but determines the visceral cavity surface by model base segmentation. Image intensities are sampled across this surface that is flattened using a model based 3D thin-plate-spline registration. An average rib centerline model projected onto this surface serves as a reference system for registration. The flattening registration is designed so that ribs similar to the centerline model are mapped onto parallel lines preserving their relative length. Ribs deviating from this model appear deviating from straight parallel ribs in the unfolded view, accordingly. As the mapping is continuous also the details in intercostal space and those adjacent to the ribs are rendered well. The most beneficial application area is Trauma CT where a fast detection of rib fractures is a crucial task. Specifically in trauma, automatic rib centerline detection may not be guaranteed due to fractures and dislocations. The application by visual assessment on the large public LIDC data base of lung CT proved general feasibility of this early work.

  14. Hybrid attacks on model-based social recommender systems

    Science.gov (United States)

    Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao

    2017-10-01

    With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.

  15. Binaural model-based dynamic-range compression.

    Science.gov (United States)

    Ernst, Stephan M A; Kortlang, Steffen; Grimm, Giso; Bisitz, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2018-01-26

    Binaural cues such as interaural level differences (ILDs) are used to organise auditory perception and to segregate sound sources in complex acoustical environments. In bilaterally fitted hearing aids, dynamic-range compression operating independently at each ear potentially alters these ILDs, thus distorting binaural perception and sound source segregation. A binaurally-linked model-based fast-acting dynamic compression algorithm designed to approximate the normal-hearing basilar membrane (BM) input-output function in hearing-impaired listeners is suggested. A multi-center evaluation in comparison with an alternative binaural and two bilateral fittings was performed to assess the effect of binaural synchronisation on (a) speech intelligibility and (b) perceived quality in realistic conditions. 30 and 12 hearing impaired (HI) listeners were aided individually with the algorithms for both experimental parts, respectively. A small preference towards the proposed model-based algorithm in the direct quality comparison was found. However, no benefit of binaural-synchronisation regarding speech intelligibility was found, suggesting a dominant role of the better ear in all experimental conditions. The suggested binaural synchronisation of compression algorithms showed a limited effect on the tested outcome measures, however, linking could be situationally beneficial to preserve a natural binaural perception of the acoustical environment.

  16. Application of model based control to robotic manipulators

    Science.gov (United States)

    Petrosky, Lyman J.; Oppenheim, Irving J.

    1988-01-01

    A robot that can duplicate humam motion capabilities in such activities as balancing, reaching, lifting, and moving has been built and tested. These capabilities are achieved through the use of real time Model-Based Control (MBC) techniques which have recently been demonstrated. MBC accounts for all manipulator inertial forces and provides stable manipulator motion control even at high speeds. To effectively demonstrate the unique capabilities of MBC, an experimental robotic manipulator was constructed, which stands upright, balancing on a two wheel base. The mathematical modeling of dynamics inherent in MBC permit the control system to perform functions that are impossible with conventional non-model based methods. These capabilities include: (1) Stable control at all speeds of operation; (2) Operations requiring dynamic stability such as balancing; (3) Detection and monitoring of applied forces without the use of load sensors; (4) Manipulator safing via detection of abnormal loads. The full potential of MBC has yet to be realized. The experiments performed for this research are only an indication of the potential applications. MBC has no inherent stability limitations and its range of applicability is limited only by the attainable sampling rate, modeling accuracy, and sensor resolution. Manipulators could be designed to operate at the highest speed mechanically attainable without being limited by control inadequacies. Manipulators capable of operating many times faster than current machines would certainly increase productivity for many tasks.

  17. Model-based design of adaptive embedded systems

    CERN Document Server

    Hamberg, Roelof; Reckers, Frans; Verriet, Jacques

    2013-01-01

    Today’s embedded systems have to operate in a wide variety of dynamically changing environmental circumstances. Adaptivity, the ability of a system to autonomously adapt itself, is a means to optimise a system’s behaviour to accommodate changes in its environment. It involves making in-product trade-offs between system qualities at system level. The main challenge in the development of adaptive systems is keeping control of the intrinsic complexity of such systems while working with multi-disciplinary teams to create different parts of the system. Model-Based Development of Adaptive Embedded Systems focuses on the development of adaptive embedded systems both from an architectural and methodological point of view. It describes architectural solution patterns for adaptive systems and state-of-the-art model-based methods and techniques to support adaptive system development. In particular, the book describes the outcome of the Octopus project, a cooperation of a multi-disciplinary team of academic and indus...

  18. Muscles of mastication model-based MR image segmentation

    International Nuclear Information System (INIS)

    Ng, H.P.; Agency for Science Technology and Research, Singapore; Ong, S.H.; National Univ. of Singapore; Hu, Q.; Nowinski, W.L.; Foong, K.W.C.; National Univ. of Singapore; Goh, P.S.

    2006-01-01

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  19. A model-based approach to operational event groups ranking

    Energy Technology Data Exchange (ETDEWEB)

    Simic, Zdenko [European Commission Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Maqua, Michael [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2014-04-15

    The operational experience (OE) feedback provides improvements in all industrial activities. Identification of the most important and valuable groups of events within accumulated experience is important in order to focus on a detailed investigation of events. The paper describes the new ranking method and compares it with three others. Methods have been described and applied to OE events utilised by nuclear power plants in France and Germany for twenty years. The results show that different ranking methods only roughly agree on which of the event groups are the most important ones. In the new ranking method the analytical hierarchy process is applied in order to assure consistent and comprehensive weighting determination for ranking indexes. The proposed method allows a transparent and flexible event groups ranking and identification of the most important OE for further more detailed investigation in order to complete the feedback. (orig.)

  20. The impact of parameter identification methods on drug therapy control in an intensive care unit

    NARCIS (Netherlands)

    Hann, C.E.; Chase, J.G.; Ypma, M.F.; Elfring, J.; Nor, N.H.M.; Lawrence, P.; Shaw, G.M.

    2008-01-01

    This paper investigates the impact of fast parameter identification methods, which do not require any forward simulations, on model-based glucose control, using retrospective data in the Christchurch Hospital Intensive Care Unit. The integral-based identification method has been previously

  1. Diamond identification

    International Nuclear Information System (INIS)

    Lang, A.R.

    1979-01-01

    Methods of producing sets of records of the internal defects of diamonds as a means of identification of the gems by x-ray topography are described. To obtain the records one can either use (a) monochromatic x-radiation reflected at the Bragg angle from crystallographically equivalent planes of the diamond lattice structure, Bragg reflections from each such plane being recorded from a number of directions of view, or (b) white x-radiation incident upon the diamond in directions having a constant angular relationship to each equivalent axis of symmetry of the diamond lattice structure, Bragg reflections being recorded for each direction of the incident x-radiation. By either method an overall point-to-point three dimensional representation of the diamond is produced. (U.K.)

  2. Differential constraints for bounded recursive identification with multivariate splines

    NARCIS (Netherlands)

    De Visser, C.C.; Chu, Q.P.; Mulder, J.A.

    2011-01-01

    The ability to perform online model identification for nonlinear systems with unknown dynamics is essential to any adaptive model-based control system. In this paper, a new differential equality constrained recursive least squares estimator for multivariate simplex splines is presented that is able

  3. FUZZY NEURAL NETWORK FOR OBJECT IDENTIFICATION ON INTEGRATED CIRCUIT LAYOUTS

    Directory of Open Access Journals (Sweden)

    A. A. Doudkin

    2015-01-01

    Full Text Available Fuzzy neural network model based on neocognitron is proposed to identify layout objects on images of topological layers of integrated circuits. Testing of the model on images of real chip layouts was showed a highеr degree of identification of the proposed neural network in comparison to base neocognitron.

  4. A Model Based on Cocitation for Web Information Retrieval

    Directory of Open Access Journals (Sweden)

    Yue Xie

    2014-01-01

    Full Text Available According to the relationship between authority and cocitation in HITS, we propose a new hyperlink weighting scheme to describe the strength of the relevancy between any two webpages. Then we combine hyperlink weight normalization and random surfing schemes as used in PageRank to justify the new model. In the new model based on cocitation (MBCC, the pages with stronger relevancy are assigned higher values, not just depending on the outlinks. This model combines both features of HITS and PageRank. Finally, we present the results of some numerical experiments, showing that the MBCC ranking agrees with the HITS ranking, especially in top 10. Meanwhile, MBCC keeps the superiority of PageRank, that is, existence and uniqueness of ranking vectors.

  5. A social discounting model based on Tsallis’ statistics

    Science.gov (United States)

    Takahashi, Taiki

    2010-09-01

    Social decision making (e.g. social discounting and social preferences) has been attracting attention in economics, econophysics, social physics, behavioral psychology, and neuroeconomics. This paper proposes a novel social discounting model based on the deformed algebra developed in the Tsallis’ non-extensive thermostatistics. Furthermore, it is suggested that this model can be utilized to quantify the degree of consistency in social discounting in humans and analyze the relationships between behavioral tendencies in social discounting and other-regarding economic decision making under game-theoretic conditions. Future directions in the application of the model to studies in econophysics, neuroeconomics, and social physics, as well as real-world problems such as the supply of live organ donations, are discussed.

  6. Embedded Control System Design A Model Based Approach

    CERN Document Server

    Forrai, Alexandru

    2013-01-01

    Control system design is a challenging task for practicing engineers. It requires knowledge of different engineering fields, a good understanding of technical specifications and good communication skills. The current book introduces the reader into practical control system design, bridging  the gap between theory and practice.  The control design techniques presented in the book are all model based., considering the needs and possibilities of practicing engineers. Classical control design techniques are reviewed and methods are presented how to verify the robustness of the design. It is how the designed control algorithm can be implemented in real-time and tested, fulfilling different safety requirements. Good design practices and the systematic software development process are emphasized in the book according to the generic standard IEC61508. The book is mainly addressed to practicing control and embedded software engineers - working in research and development – as well as graduate students who are face...

  7. Vocational Teachers and Professionalism - A Model Based on Empirical Analyses

    DEFF Research Database (Denmark)

    Duch, Henriette Skjærbæk; Andreasen, Karen E

    Vocational Teachers and Professionalism - A Model Based on Empirical Analyses Several theorists has developed models to illustrate the processes of adult learning and professional development (e.g. Illeris, Argyris, Engeström; Wahlgren & Aarkorg, Kolb and Wenger). Models can sometimes be criticized...... emphasis on the adult employee, the organization, its surroundings as well as other contextual factors. Our concern is adult vocational teachers attending a pedagogical course and teaching at vocational colleges. The aim of the paper is to discuss different models and develop a model concerning teachers...... at vocational colleges based on empirical data in a specific context, vocational teacher-training course in Denmark. By offering a basis and concepts for analysis of practice such model is meant to support the development of vocational teachers’ professionalism at courses and in organizational contexts...

  8. [Model-based biofuels system analysis: a review].

    Science.gov (United States)

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  9. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  10. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central....... This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known...

  11. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  12. Intelligent Transportation and Evacuation Planning A Modeling-Based Approach

    CERN Document Server

    Naser, Arab

    2012-01-01

    Intelligent Transportation and Evacuation Planning: A Modeling-Based Approach provides a new paradigm for evacuation planning strategies and techniques. Recently, evacuation planning and modeling have increasingly attracted interest among researchers as well as government officials. This interest stems from the recent catastrophic hurricanes and weather-related events that occurred in the southeastern United States (Hurricane Katrina and Rita). The evacuation methods that were in place before and during the hurricanes did not work well and resulted in thousands of deaths. This book offers insights into the methods and techniques that allow for implementing mathematical-based, simulation-based, and integrated optimization and simulation-based engineering approaches for evacuation planning. This book also: Comprehensively discusses the application of mathematical models for evacuation and intelligent transportation modeling Covers advanced methodologies in evacuation modeling and planning Discusses principles a...

  13. Integrating Design Decision Management with Model-based Software Development

    DEFF Research Database (Denmark)

    Könemann, Patrick

    Design decisions are continuously made during the development of software systems and are important artifacts for design documentation. Dedicated decision management systems are often used to capture such design knowledge. Most such systems are, however, separated from the design artifacts...... of the system. In model-based software development, where design models are used to develop a software system, outcomes of many design decisions have big impact on design models. The realization of design decisions is often manual and tedious work on design models. Moreover, keeping design models consistent......, or by ignoring the causes. This substitutes manual reviews to some extent. The concepts, implemented in a tool, have been validated with design patterns, refactorings, and domain level tests that comprise a replay of a real project. This proves the applicability of the solution to realistic examples...

  14. Driver's mental workload prediction model based on physiological indices.

    Science.gov (United States)

    Yan, Shengyuan; Tran, Cong Chi; Wei, Yingying; Habiyaremye, Jean Luc

    2017-09-15

    Developing an early warning model to predict the driver's mental workload (MWL) is critical and helpful, especially for new or less experienced drivers. The present study aims to investigate the correlation between new drivers' MWL and their work performance, regarding the number of errors. Additionally, the group method of data handling is used to establish the driver's MWL predictive model based on subjective rating (NASA task load index [NASA-TLX]) and six physiological indices. The results indicate that the NASA-TLX and the number of errors are positively correlated, and the predictive model shows the validity of the proposed model with an R 2 value of 0.745. The proposed model is expected to provide a reference value for the new drivers of their MWL by providing the physiological indices, and the driving lesson plans can be proposed to sustain an appropriate MWL as well as improve the driver's work performance.

  15. Model-based gene set analysis for Bioconductor.

    Science.gov (United States)

    Bauer, Sebastian; Robinson, Peter N; Gagneur, Julien

    2011-07-01

    Gene Ontology and other forms of gene-category analysis play a major role in the evaluation of high-throughput experiments in molecular biology. Single-category enrichment analysis procedures such as Fisher's exact test tend to flag large numbers of redundant categories as significant, which can complicate interpretation. We have recently developed an approach called model-based gene set analysis (MGSA), that substantially reduces the number of redundant categories returned by the gene-category analysis. In this work, we present the Bioconductor package mgsa, which makes the MGSA algorithm available to users of the R language. Our package provides a simple and flexible application programming interface for applying the approach. The mgsa package has been made available as part of Bioconductor 2.8. It is released under the conditions of the Artistic license 2.0. peter.robinson@charite.de; julien.gagneur@embl.de.

  16. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T; de Lira, S; Puig, V; Quevedo, J [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D; Riera, J; Serra, M [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  17. An Emotional Agent Model Based on Granular Computing

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2012-01-01

    Full Text Available Affective computing has a very important significance for fulfilling intelligent information processing and harmonious communication between human being and computers. A new model for emotional agent is proposed in this paper to make agent have the ability of handling emotions, based on the granular computing theory and the traditional BDI agent model. Firstly, a new emotion knowledge base based on granular computing for emotion expression is presented in the model. Secondly, a new emotional reasoning algorithm based on granular computing is proposed. Thirdly, a new emotional agent model based on granular computing is presented. Finally, based on the model, an emotional agent for patient assistant in hospital is realized, experiment results show that it is efficient to handle simple emotions.

  18. Optimal Model-Based Control in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2008-01-01

    is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....

  19. Model-based human reliability analysis: prospects and requirements

    International Nuclear Information System (INIS)

    Mosleh, A.; Chang, Y.H.

    2004-01-01

    Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation

  20. Storm surge model based on variational data assimilation method

    Directory of Open Access Journals (Sweden)

    Shi-li Huang

    2010-06-01

    Full Text Available By combining computation and observation information, the variational data assimilation method has the ability to eliminate errors caused by the uncertainty of parameters in practical forecasting. It was applied to a storm surge model based on unstructured grids with high spatial resolution meant for improving the forecasting accuracy of the storm surge. By controlling the wind stress drag coefficient, the variation-based model was developed and validated through data assimilation tests in an actual storm surge induced by a typhoon. In the data assimilation tests, the model accurately identified the wind stress drag coefficient and obtained results close to the true state. Then, the actual storm surge induced by Typhoon 0515 was forecast by the developed model, and the results demonstrate its efficiency in practical application.

  1. GENERALISED MODEL BASED CONFIDENCE INTERVALS IN TWO STAGE CLUSTER SAMPLING

    Directory of Open Access Journals (Sweden)

    Christopher Ouma Onyango

    2010-09-01

    Full Text Available Chambers and Dorfman (2002 constructed bootstrap confidence intervals in model based estimation for finite population totals assuming that auxiliary values are available throughout a target population and that the auxiliary values are independent. They also assumed that the cluster sizes are known throughout the target population. We now extend to two stage sampling in which the cluster sizes are known only for the sampled clusters, and we therefore predict the unobserved part of the population total. Jan and Elinor (2008 have done similar work, but unlike them, we use a general model, in which the auxiliary values are not necessarily independent. We demonstrate that the asymptotic properties of our proposed estimator and its coverage rates are better than those constructed under the model assisted local polynomial regression model.

  2. Algorithms and procedures in the model based control of accelerators

    International Nuclear Information System (INIS)

    Bozoki, E.

    1987-10-01

    The overall design of a Model Based Control system was presented. The system consists of PLUG-IN MODULES, governed by a SUPERVISORY PROGRAM and communicating via SHARED DATA FILES. Models can be ladded or replaced without affecting the oveall system. There can be more then one module (algorithm) to perform the same task. The user can choose the most appropriate algorithm or can compare the results using different algorithms. Calculations, algorithms, file read and write, etc. which are used in more than one module, will be in a subroutine library. This feature will simplify the maintenance of the system. A partial list of modules is presented, specifying the task they perform. 19 refs., 1 fig

  3. Model-based estimation for dynamic cardiac studies using ECT

    International Nuclear Information System (INIS)

    Chiao, P.C.; Rogers, W.L.; Clinthorne, N.H.; Fessler, J.A.; Hero, A.O.

    1994-01-01

    In this paper, the authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (Emission Computed Tomography). The authors construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. The authors also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performance to the Cramer-Rao lower bound. Finally, model assumptions and potential uses of the joint estimation strategy are discussed

  4. Model-based estimation for dynamic cardiac studies using ECT.

    Science.gov (United States)

    Chiao, P C; Rogers, W L; Clinthorne, N H; Fessler, J A; Hero, A O

    1994-01-01

    The authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (emission computed tomography). They construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. They also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performance to the Cramer-Rao lower bound. Finally, the authors discuss model assumptions and potential uses of the joint estimation strategy.

  5. Model-Based Systems Engineering Approach to Managing Mass Margin

    Science.gov (United States)

    Chung, Seung H.; Bayer, Todd J.; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Christopher; Lam, Doris

    2012-01-01

    When designing a flight system from concept through implementation, one of the fundamental systems engineering tasks ismanaging the mass margin and a mass equipment list (MEL) of the flight system. While generating a MEL and computing a mass margin is conceptually a trivial task, maintaining consistent and correct MELs and mass margins can be challenging due to the current practices of maintaining duplicate information in various forms, such as diagrams and tables, and in various media, such as files and emails. We have overcome this challenge through a model-based systems engineering (MBSE) approach within which we allow only a single-source-of-truth. In this paper we describe the modeling patternsused to capture the single-source-of-truth and the views that have been developed for the Europa Habitability Mission (EHM) project, a mission concept study, at the Jet Propulsion Laboratory (JPL).

  6. Model-Based Systems Engineering Pilot Program at NASA Langley

    Science.gov (United States)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  7. A General Accelerated Degradation Model Based on the Wiener Process.

    Science.gov (United States)

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-12-06

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.

  8. Modular Architecture for Integrated Model-Based Decision Support.

    Science.gov (United States)

    Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen

    2018-01-01

    Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.

  9. Polynomial fuzzy model-based approach for underactuated surface vessels

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav

    2018-01-01

    The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...

  10. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-11-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  11. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-03-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  12. Model Based Control of Moisture Sorption in a Historical Interior

    Directory of Open Access Journals (Sweden)

    P. Zítek

    2005-01-01

    Full Text Available This paper deals with a novel scheme for microclimate control in historical exhibition rooms, inhibiting moisture sorption phenomena that are inadmissible from the preventive conservation point of view. The impact of air humidity is the most significant harmful exposure for a great deal of the cultural heritage deposited in remote historical buildings. Leaving the interior temperature to run almost its spontaneous yearly cycle, the proposed non-linear model-based control protects exhibits from harmful variations in moisture content by compensating the temperature drifts with an adequate adjustment of the air humidity. Already implemented in a medieval interior since 1999, the proposed microclimate control has proved capable of permanently maintaining constant a desirable moisture content in organic or porous materials in the interior of a building. 

  13. Automated and model-based assembly of an anamorphic telescope

    Science.gov (United States)

    Holters, Martin; Dirks, Sebastian; Stollenwerk, Jochen; Loosen, Peter

    2018-02-01

    Since the first usage of optical glasses there has been an increasing demand for optical systems which are highly customized for a wide field of applications. To meet the challenge of the production of so many unique systems, the development of new techniques and approaches has risen in importance. However, the assembly of precision optical systems with lot sizes of one up to a few tens of systems is still dominated by manual labor. In contrast, highly adaptive and model-based approaches may offer a solution for manufacturing with a high degree of automation and high throughput while maintaining high precision. In this work a model-based automated assembly approach based on ray-tracing is presented. This process runs autonomously, and accounts for a wide range of functionality. It firstly identifies the sequence for an optimized assembly and secondly, generates and matches intermediate figures of merit to predict the overall optical functionality of the optical system. This process also takes into account the generation of a digital twin of the optical system, by mapping key-performance-indicators like the first and the second momentum of intensity into the optical model. This approach is verified by the automatic assembly of an anamorphic telescope within an assembly cell. By continuous measuring and mapping the key-performance-indicators into the optical model, the quality of the digital twin is determined. Moreover, by measuring the optical quality and geometrical parameters of the telescope, the precision of this approach is determined. Finally, the productivity of the process is evaluated by monitoring the speed of the different steps of the process.

  14. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.

    Science.gov (United States)

    Tuta, Jure; Juric, Matjaz B

    2018-03-24

    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

  15. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method

    Directory of Open Access Journals (Sweden)

    Jure Tuta

    2018-03-01

    Full Text Available This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method, a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.. Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

  16. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  17. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  18. Human Skeleton Model Based Dynamic Features for Walking Speed Invariant Gait Recognition

    Directory of Open Access Journals (Sweden)

    Jure Kovač

    2014-01-01

    Full Text Available Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometrics can be captured at public places from a distance without subject's collaboration, awareness, and even consent. Although current approaches give encouraging results, we are still far from effective use in real-life applications. In general, methods set various constraints to circumvent the influence of covariate factors like changes of walking speed, view, clothing, footwear, and object carrying, that have negative impact on recognition performance. In this paper we propose a skeleton model based gait recognition system focusing on modelling gait dynamics and eliminating the influence of subjects appearance on recognition. Furthermore, we tackle the problem of walking speed variation and propose space transformation and feature fusion that mitigates its influence on recognition performance. With the evaluation on OU-ISIR gait dataset, we demonstrate state of the art performance of proposed methods.

  19. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    Science.gov (United States)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  20. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    Science.gov (United States)

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2018-01-01

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments.

    Science.gov (United States)

    Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil

    2016-11-16

    Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.

  2. Pyrometer model based on sensor physical structure and thermal operation

    International Nuclear Information System (INIS)

    Sebastian, Eduardo; Armiens, Carlos; Gomez-Elvira, Javier

    2010-01-01

    This paper proposes a new simplified thermal model for pyrometers, which takes into account both their internal and external physical structure and operation. The model is experimentally tested on the REMS GTS, an instrument for measuring ground temperature, which is part of the payload of the NASA MSL mission to Mars. The proposed model is based on an energy balance equation that represents the heat fluxes exchanged between sensor elements through radiation, conduction and convection. Despite being mathematically more complex than the more commonly used model, the proposed model makes it possible to design a methodology to compensate the effects of sensor spatial thermal gradients. The paper includes a practical methodology for identifying model constants, which is part of the GTS instrument calibration plan and uses a differential approach to avoid setup errors. Experimental results of the model identification methodology and a target temperature measurement performance after identification has been made are reported. Results demonstrate the good behaviour of the model, with errors below 0.15 deg. C in target temperature estimates.

  3. Model-Based Methods for Fault Diagnosis: Some Guide-Lines

    DEFF Research Database (Denmark)

    Patton, R.J.; Chen, J.; Nielsen, S.B.

    1995-01-01

    This paper provides a review of model-based fault diagnosis techniques. Starting from basic principles, the properties.......This paper provides a review of model-based fault diagnosis techniques. Starting from basic principles, the properties....

  4. Model-based cartilage thickness measurement in the submillimeter range

    International Nuclear Information System (INIS)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-01-01

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  5. Model-based reasoning and the control of process plants

    International Nuclear Information System (INIS)

    Vaelisuo, Heikki

    1993-02-01

    In addition to feedback control, safe and economic operation of industrial process plants requires discrete-event type logic control like for example automatic control sequences, interlocks, etc. A lot of complex routine reasoning is involved in the design and verification and validation (VandV) of such automatics. Similar reasoning tasks are encountered during plant operation in action planning and fault diagnosis. The low-level part of the required problem solving is so straightforward that it could be accomplished by a computer if only there were plant models which allow versatile mechanised reasoning. Such plant models and corresponding inference algorithms are the main subject of this report. Deep knowledge and qualitative modelling play an essential role in this work. Deep knowledge refers to mechanised reasoning based on the first principles of the phenomena in the problem domain. Qualitative modelling refers to knowledge representation formalism and related reasoning methods which allow solving problems on an abstraction level higher than for example traditional simulation and optimisation. Prolog is a commonly used platform for artificial intelligence (Al) applications. Constraint logic languages like CLP(R) and Prolog-III extend the scope of logic programming to numeric problem solving. In addition they allow a programming style which often reduces the computational complexity significantly. An approach to model-based reasoning implemented in constraint logic programming language CLP(R) is presented. The approach is based on some of the principles of QSIM, an algorithm for qualitative simulation. It is discussed how model-based reasoning can be applied in the design and VandV of plant automatics and in action planning during plant operation. A prototype tool called ISIR is discussed and some initial results obtained during the development of the tool are presented. The results presented originate from preliminary test results of the prototype obtained

  6. Estimation of pump operational state with model-based methods

    International Nuclear Information System (INIS)

    Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina; Kestilae, Juha

    2010-01-01

    Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently.

  7. Small Area Model-Based Estimators Using Big Data Sources

    Directory of Open Access Journals (Sweden)

    Marchetti Stefano

    2015-06-01

    Full Text Available The timely, accurate monitoring of social indicators, such as poverty or inequality, on a finegrained spatial and temporal scale is a crucial tool for understanding social phenomena and policymaking, but poses a great challenge to official statistics. This article argues that an interdisciplinary approach, combining the body of statistical research in small area estimation with the body of research in social data mining based on Big Data, can provide novel means to tackle this problem successfully. Big Data derived from the digital crumbs that humans leave behind in their daily activities are in fact providing ever more accurate proxies of social life. Social data mining from these data, coupled with advanced model-based techniques for fine-grained estimates, have the potential to provide a novel microscope through which to view and understand social complexity. This article suggests three ways to use Big Data together with small area estimation techniques, and shows how Big Data has the potential to mirror aspects of well-being and other socioeconomic phenomena.

  8. Model-based processing for underwater acoustic arrays

    CERN Document Server

    Sullivan, Edmund J

    2015-01-01

    This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Third...

  9. Artificial emotional model based on finite state machine

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-mei; WU Wei-guo

    2008-01-01

    According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition function was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform.And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.

  10. Model-Based Approaches for Teaching and Practicing Personality Assessment.

    Science.gov (United States)

    Blais, Mark A; Hopwood, Christopher J

    2017-01-01

    Psychological assessment is a complex professional skill. Competence in assessment requires an extensive knowledge of personality, neuropsychology, social behavior, and psychopathology, a background in psychometrics, familiarity with a range of multimethod tools, cognitive flexibility, skepticism, and interpersonal sensitivity. This complexity makes assessment a challenge to teach and learn, particularly as the investment of resources and time in assessment has waned in psychological training programs over the last few decades. In this article, we describe 3 conceptual models that can assist teaching and learning psychological assessments. The transtheoretical model of personality provides a personality systems-based framework for understanding how multimethod assessment data relate to major personality systems and can be combined to describe and explain complex human behavior. The quantitative psychopathology-personality trait model is an empirical model based on the hierarchical organization of individual differences. Application of this model can help students understand diagnostic comorbidity and symptom heterogeneity, focus on more meaningful high-order domains, and identify the most effective assessment tools for addressing a given question. The interpersonal situation model is rooted in interpersonal theory and can help students connect test data to here-and-now interactions with patients. We conclude by demonstrating the utility of these models using a case example.

  11. Model-based magnetization retrieval from holographic phase images

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: f.roeder@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Vogel, Karin [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Wolf, Daniel [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Hellwig, Olav [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); AG Magnetische Funktionsmaterialien, Institut für Physik, Technische Universität Chemnitz, D-09126 Chemnitz (Germany); HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wee, Sung Hun [HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wicht, Sebastian; Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-05-15

    The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO{sub 3} substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. - Highlights: • Retrieval of the magnetization from holographic phase images. • Magnetostatic model constructed for a magnetic nano-structure. • Decomposition into homogeneously magnetized components. • Discretization of a each component by elementary cuboids. • Analytic solution for the phase of a magnetized cuboid considered. • Fitting a set of magnetization vectors to experimental phase images.

  12. Model-based normalization for iterative 3D PET image

    International Nuclear Information System (INIS)

    Bai, B.; Li, Q.; Asma, E.; Leahy, R.M.; Holdsworth, C.H.; Chatziioannou, A.; Tai, Y.C.

    2002-01-01

    We describe a method for normalization in 3D PET for use with maximum a posteriori (MAP) or other iterative model-based image reconstruction methods. This approach is an extension of previous factored normalization methods in which we include separate factors for detector sensitivity, geometric response, block effects and deadtime. Since our MAP reconstruction approach already models some of the geometric factors in the forward projection, the normalization factors must be modified to account only for effects not already included in the model. We describe a maximum likelihood approach to joint estimation of the count-rate independent normalization factors, which we apply to data from a uniform cylindrical source. We then compute block-wise and block-profile deadtime correction factors using singles and coincidence data, respectively, from a multiframe cylindrical source. We have applied this method for reconstruction of data from the Concorde microPET P4 scanner. Quantitative evaluation of this method using well-counter measurements of activity in a multicompartment phantom compares favourably with normalization based directly on cylindrical source measurements. (author)

  13. Dynamic model based on Bayesian method for energy security assessment

    International Nuclear Information System (INIS)

    Augutis, Juozas; Krikštolaitis, Ričardas; Pečiulytė, Sigita; Žutautaitė, Inga

    2015-01-01

    Highlights: • Methodology for dynamic indicator model construction and forecasting of indicators. • Application of dynamic indicator model for energy system development scenarios. • Expert judgement involvement using Bayesian method. - Abstract: The methodology for the dynamic indicator model construction and forecasting of indicators for the assessment of energy security level is presented in this article. An indicator is a special index, which provides numerical values to important factors for the investigated area. In real life, models of different processes take into account various factors that are time-dependent and dependent on each other. Thus, it is advisable to construct a dynamic model in order to describe these dependences. The energy security indicators are used as factors in the dynamic model. Usually, the values of indicators are obtained from statistical data. The developed dynamic model enables to forecast indicators’ variation taking into account changes in system configuration. The energy system development is usually based on a new object construction. Since the parameters of changes of the new system are not exactly known, information about their influences on indicators could not be involved in the model by deterministic methods. Thus, dynamic indicators’ model based on historical data is adjusted by probabilistic model with the influence of new factors on indicators using the Bayesian method

  14. A New Non-LTE Model based on Super Configurations

    Science.gov (United States)

    Bar-Shalom, A.; Klapisch, M.

    1996-11-01

    Non-LTE effects are vital for the simulation of radiation in hot plasmas involving even medium Z materials. However, the exceedingly large number of atomic energy levels forbids using a detailed collisional radiative model on-line in the hydrodynamic simulations. For this purpose, greatly simplified models are required. We implemented recently Busquet's model(M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form (M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995), and poster at this meeting.). This model is quick and the results make sense, but in the absence of precisely defined experiments, it is difficult to asses its accuracy. We present here a new collisional radiative model based on superconfigurations( A. Bar-Shalom, J. Oreg, J. F. Seely, U. Feldman, C. M. Brown, B. A. Hammel, R. W. Lee and C. A. Back, Phys. Rev. E, 52, 6686 (1995).), intended to be a benchmark for approximate models used in hydro-codes. It uses accurate rates from the HULLAC Code. Results for various elements will be presented and compared with RADIOM.

  15. RISK LOAN PORTFOLIO OPTIMIZATION MODEL BASED ON CVAR RISK MEASURE

    Directory of Open Access Journals (Sweden)

    Ming-Chang LEE

    2015-07-01

    Full Text Available In order to achieve commercial banks liquidity, safety and profitability objective requirements, loan portfolio risk analysis based optimization decisions are rational allocation of assets.  The risk analysis and asset allocation are the key technology of banking and risk management.  The aim of this paper, build a loan portfolio optimization model based on risk analysis.  Loan portfolio rate of return by using Value-at-Risk (VaR and Conditional Value-at-Risk (CVaR constraint optimization decision model reflects the bank's risk tolerance, and the potential loss of direct control of the bank.  In this paper, it analyze a general risk management model applied to portfolio problems with VaR and CVaR risk measures by using Using the Lagrangian Algorithm.  This paper solves the highly difficult problem by matrix operation method.  Therefore, the combination of this paper is easy understanding the portfolio problems with VaR and CVaR risk model is a hyperbola in mean-standard deviation space.  It is easy calculation in proposed method.

  16. An innovation wall model based on interlayer ventilation

    International Nuclear Information System (INIS)

    Feng Jinmei; Lian Zhiwei; Hou Zhijian

    2008-01-01

    The thermal characteristics of the external wall are important to the energy consumption of the air conditioning system. Great attention should also be paid to the energy loss of the air exhaust. An innovation wall model based on interlayer ventilation is presented in this paper. The interlayer ventilation wall combines the wall and air exhaust of heating, ventilating and air conditioning (HVAC). The results of the experiment show that the energy loss of the exhaust air can be fully recovered by the interlayer ventilation wall. The cooling load can be reduced greatly because the temperature difference between the internal surface of the interlayer ventilation wall and the indoor air is very small. Clearly, the small temperature difference can enhance thermal comfort. In order to popularize the interlayer ventilation wall, technical and economical analysis is presented in this paper. Based on the buildings in the Shanghai area and a standard air conditioning system, a 4 years payback period for interlayer ventilation wall implementation was found according to the analysis

  17. A General Accelerated Degradation Model Based on the Wiener Process

    Directory of Open Access Journals (Sweden)

    Le Liu

    2016-12-01

    Full Text Available Accelerated degradation testing (ADT is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.

  18. Parallelization of the model-based iterative reconstruction algorithm DIRA

    International Nuclear Information System (INIS)

    Oertenberg, A.; Sandborg, M.; Alm Carlsson, G.; Malusek, A.; Magnusson, M.

    2016-01-01

    New paradigms for parallel programming have been devised to simplify software development on multi-core processors and many-core graphical processing units (GPU). Despite their obvious benefits, the parallelization of existing computer programs is not an easy task. In this work, the use of the Open Multiprocessing (OpenMP) and Open Computing Language (OpenCL) frameworks is considered for the parallelization of the model-based iterative reconstruction algorithm DIRA with the aim to significantly shorten the code's execution time. Selected routines were parallelized using OpenMP and OpenCL libraries; some routines were converted from MATLAB to C and optimised. Parallelization of the code with the OpenMP was easy and resulted in an overall speedup of 15 on a 16-core computer. Parallelization with OpenCL was more difficult owing to differences between the central processing unit and GPU architectures. The resulting speedup was substantially lower than the theoretical peak performance of the GPU; the cause was explained. (authors)

  19. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia

    2018-04-10

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite the fact that this leads to a proper posterior for the regression coefficients, the resulting posterior variance is however affected by an unidentifiable parameter, hence any inferential procedure beside point estimation is unreliable. We propose a model-based approach for quantile regression that considers quantiles of the generating distribution directly, and thus allows for a proper uncertainty quantification. We then create a link between quantile regression and generalised linear models by mapping the quantiles to the parameter of the response variable, and we exploit it to fit the model with R-INLA. We extend it also in the case of discrete responses, where there is no 1-to-1 relationship between quantiles and distribution\\'s parameter, by introducing continuous generalisations of the most common discrete variables (Poisson, Binomial and Negative Binomial) to be exploited in the fitting.

  20. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  1. Possibility of object recognition using Altera's model based design approach

    International Nuclear Information System (INIS)

    Tickle, A J; Harvey, P K; Smith, J S; Wu, F

    2009-01-01

    Object recognition is an image processing task of finding a given object in a selected image or video sequence. Object recognition can be divided into two areas: one of these is decision-theoretic and deals with patterns described by quantitative descriptors, for example such as length, area, shape and texture. With this Graphical User Interface Circuitry (GUIC) methodology employed here being relatively new for object recognition systems, the aim of this work is to identify if the developed circuitry can detect certain shapes or strings within the target image. A much smaller reference image feeds the preset data for identification, tests are conducted for both binary and greyscale and the additional mathematical morphology to highlight the area within the target image with the object(s) are located is also presented. This then provides proof that basic recognition methods are valid and would allow the progression to developing decision-theoretical and learning based approaches using GUICs for use in multidisciplinary tasks.

  2. Model-Based Engineering and Manufacturing CAD/CAM Benchmark

    International Nuclear Information System (INIS)

    Domm, T.D.; Underwood, R.S.

    1999-01-01

    The Benehmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus fm Y-12 modmizadon efforts. The companies visited included several large established companies and anew, small, high-tech machining firm. As a result of this effort changes are recommended that will enable Y-12 to become a more responsive cost-effective manufacturing facility capable of suppording the needs of the Nuclear Weapons Complex (NW at sign) and Work Fw Others into the 21' century. The benchmark team identified key areas of interest, both focused and gencml. The focus arm included Human Resources, Information Management, Manufacturing Software Tools, and Standarda/ Policies and Practices. Areas of general interest included Inhstructure, Computer Platforms and Networking, and Organizational Structure. The method for obtaining the desired information in these areas centered on the creation of a benchmark questionnaire. The questionnaire was used throughout each of the visits as the basis for information gathering. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were using both 3-D solid modeling and surfaced Wire-frame models. The manufacturing computer tools were varie4 with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) ftom a common medel. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system

  3. Model Based Mission Assurance in a Model Based Systems Engineering (MBSE) Framework: State-of-the-Art Assessment

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.

    2016-01-01

    This report explores the current state of the art of Safety and Mission Assurance (S&MA) in projects that have shifted towards Model Based Systems Engineering (MBSE). Its goal is to provide insight into how NASA's Office of Safety and Mission Assurance (OSMA) should respond to this shift. In MBSE, systems engineering information is organized and represented in models: rigorous computer-based representations, which collectively make many activities easier to perform, less error prone, and scalable. S&MA practices must shift accordingly. The "Objective Structure Hierarchies" recently developed by OSMA provide the framework for understanding this shift. Although the objectives themselves will remain constant, S&MA practices (activities, processes, tools) to achieve them are subject to change. This report presents insights derived from literature studies and interviews. The literature studies gleaned assurance implications from reports of space-related applications of MBSE. The interviews with knowledgeable S&MA and MBSE personnel discovered concerns and ideas for how assurance may adapt. Preliminary findings and observations are presented on the state of practice of S&MA with respect to MBSE, how it is already changing, and how it is likely to change further. Finally, recommendations are provided on how to foster the evolution of S&MA to best fit with MBSE.

  4. Adaptive surrogate model based multiobjective optimization for coastal aquifer management

    Science.gov (United States)

    Song, Jian; Yang, Yun; Wu, Jianfeng; Wu, Jichun; Sun, Xiaomin; Lin, Jin

    2018-06-01

    In this study, a novel surrogate model assisted multiobjective memetic algorithm (SMOMA) is developed for optimal pumping strategies of large-scale coastal groundwater problems. The proposed SMOMA integrates an efficient data-driven surrogate model with an improved non-dominated sorted genetic algorithm-II (NSGAII) that employs a local search operator to accelerate its convergence in optimization. The surrogate model based on Kernel Extreme Learning Machine (KELM) is developed and evaluated as an approximate simulator to generate the patterns of regional groundwater flow and salinity levels in coastal aquifers for reducing huge computational burden. The KELM model is adaptively trained during evolutionary search to satisfy desired fidelity level of surrogate so that it inhibits error accumulation of forecasting and results in correctly converging to true Pareto-optimal front. The proposed methodology is then applied to a large-scale coastal aquifer management in Baldwin County, Alabama. Objectives of minimizing the saltwater mass increase and maximizing the total pumping rate in the coastal aquifers are considered. The optimal solutions achieved by the proposed adaptive surrogate model are compared against those solutions obtained from one-shot surrogate model and original simulation model. The adaptive surrogate model does not only improve the prediction accuracy of Pareto-optimal solutions compared with those by the one-shot surrogate model, but also maintains the equivalent quality of Pareto-optimal solutions compared with those by NSGAII coupled with original simulation model, while retaining the advantage of surrogate models in reducing computational burden up to 94% of time-saving. This study shows that the proposed methodology is a computationally efficient and promising tool for multiobjective optimizations of coastal aquifer managements.

  5. Medical Device Integration Model Based on the Internet of Things

    Science.gov (United States)

    Hao, Aiyu; Wang, Ling

    2015-01-01

    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  6. A satellite and model based flood inundation climatology of Australia

    Science.gov (United States)

    Schumann, G.; Andreadis, K.; Castillo, C. J.

    2013-12-01

    To date there is no coherent and consistent database on observed or simulated flood event inundation and magnitude at large scales (continental to global). The only compiled data set showing a consistent history of flood inundation area and extent at a near global scale is provided by the MODIS-based Dartmouth Flood Observatory. However, MODIS satellite imagery is only available from 2000 and is hampered by a number of issues associated with flood mapping using optical images (e.g. classification algorithms, cloud cover, vegetation). Here, we present for the first time a proof-of-concept study in which we employ a computationally efficient 2-D hydrodynamic model (LISFLOOD-FP) complemented with a sub-grid channel formulation to generate a complete flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent. The model was built completely from freely available SRTM-derived data, including channel widths, bank heights and floodplain topography, which was corrected for vegetation canopy height using a global ICESat canopy dataset. Channel hydraulics were resolved using actual channel data and bathymetry was estimated within the model using hydraulic geometry. On the floodplain, the model simulated the flow paths and inundation variables at a 1 km resolution. The developed model was run over a period of 40 years and a floodplain inundation climatology was generated and compared to satellite flood event observations. Our proof-of-concept study demonstrates that this type of model can reliably simulate past flood events with reasonable accuracies both in time and space. The Australian model was forced with both observed flow climatology and VIC-simulated flows in order to assess the feasibility of a model-based flood inundation climatology at the global scale.

  7. Model-based Bayesian signal extraction algorithm for peripheral nerves

    Science.gov (United States)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of

  8. Model-based setup assistant for progressive tools

    Science.gov (United States)

    Springer, Robert; Gräler, Manuel; Homberg, Werner; Henke, Christian; Trächtler, Ansgar

    2018-05-01

    In the field of production systems, globalization and technological progress lead to increasing requirements regarding part quality, delivery time and costs. Hence, today's production is challenged much more than a few years ago: it has to be very flexible and produce economically small batch sizes to satisfy consumer's demands and avoid unnecessary stock. Furthermore, a trend towards increasing functional integration continues to lead to an ongoing miniaturization of sheet metal components. In the industry of electric connectivity for example, the miniaturized connectors are manufactured by progressive tools, which are usually used for very large batches. These tools are installed in mechanical presses and then set up by a technician, who has to manually adjust a wide range of punch-bending operations. Disturbances like material thickness, temperatures, lubrication or tool wear complicate the setup procedure. In prospect of the increasing demand of production flexibility, this time-consuming process has to be handled more and more often. In this paper, a new approach for a model-based setup assistant is proposed as a solution, which is exemplarily applied in combination with a progressive tool. First, progressive tools, more specifically, their setup process is described and based on that, the challenges are pointed out. As a result, a systematic process to set up the machines is introduced. Following, the process is investigated with an FE-Analysis regarding the effects of the disturbances. In the next step, design of experiments is used to systematically develop a regression model of the system's behaviour. This model is integrated within an optimization in order to calculate optimal machine parameters and the following necessary adjustment of the progressive tool due to the disturbances. Finally, the assistant is tested in a production environment and the results are discussed.

  9. Background-Modeling-Based Adaptive Prediction for Surveillance Video Coding.

    Science.gov (United States)

    Zhang, Xianguo; Huang, Tiejun; Tian, Yonghong; Gao, Wen

    2014-02-01

    The exponential growth of surveillance videos presents an unprecedented challenge for high-efficiency surveillance video coding technology. Compared with the existing coding standards that were basically developed for generic videos, surveillance video coding should be designed to make the best use of the special characteristics of surveillance videos (e.g., relative static background). To do so, this paper first conducts two analyses on how to improve the background and foreground prediction efficiencies in surveillance video coding. Following the analysis results, we propose a background-modeling-based adaptive prediction (BMAP) method. In this method, all blocks to be encoded are firstly classified into three categories. Then, according to the category of each block, two novel inter predictions are selectively utilized, namely, the background reference prediction (BRP) that uses the background modeled from the original input frames as the long-term reference and the background difference prediction (BDP) that predicts the current data in the background difference domain. For background blocks, the BRP can effectively improve the prediction efficiency using the higher quality background as the reference; whereas for foreground-background-hybrid blocks, the BDP can provide a better reference after subtracting its background pixels. Experimental results show that the BMAP can achieve at least twice the compression ratio on surveillance videos as AVC (MPEG-4 Advanced Video Coding) high profile, yet with a slightly additional encoding complexity. Moreover, for the foreground coding performance, which is crucial to the subjective quality of moving objects in surveillance videos, BMAP also obtains remarkable gains over several state-of-the-art methods.

  10. Model-based sensor-augmented pump therapy.

    Science.gov (United States)

    Grosman, Benyamin; Voskanyan, Gayane; Loutseiko, Mikhail; Roy, Anirban; Mehta, Aloke; Kurtz, Natalie; Parikh, Neha; Kaufman, Francine R; Mastrototaro, John J; Keenan, Barry

    2013-03-01

    In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump. A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested. The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope. The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data. © 2013 Diabetes Technology Society.

  11. A human motion model based on maps for navigation systems

    Directory of Open Access Journals (Sweden)

    Kaiser Susanna

    2011-01-01

    Full Text Available Abstract Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floor-plans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs, long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians' motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floor-plans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest. We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios.

  12. Comparison between two photovoltaic module models based on transistors

    Science.gov (United States)

    Saint-Eve, Frédéric; Sawicki, Jean-Paul; Petit, Pierre; Maufay, Fabrice; Aillerie, Michel

    2018-05-01

    The main objective of this paper is to verify the possibility to reduce to a simple electronic circuit with very few components the behavior simulation of an un-shaded photovoltaic (PV) module. Particularly, two models based on well-tried elementary structures, i.e., the Darlington structure in first model and the voltage regulation with programmable Zener diode in the second are analyzed. Specifications extracted from the behavior of a real I-V characteristic of a panel are considered and the principal electrical variables are deduced. The two models are expected to match with open circuit voltage, maximum power point (MPP) and short circuit current, without forgetting realistic current slopes on the both sides of MPP. The robustness is mentioned when irradiance varies and is considered as an additional fundamental property. For both models, two simulations are done to identify influence of some parameters. In the first model, a parameter allowing to adjust current slope on left side of MPP proves to be also important for the calculation of open circuit voltage. Besides this model does not authorize an entirely adjustment of I-V characteristic and MPP moves significantly away from real value when irradiance increases. On the contrary, the second model seems to have only qualities: open circuit voltage is easy to calculate, current slopes are realistic and there is perhaps a good robustness when irradiance variations are simulated by adjusting short circuit current of PV module. We have shown that these two simplified models are expected to make reliable and easier simulations of complex PV architecture integrating many different devices like PV modules or other renewable energy sources and storage capacities coupled in parallel association.

  13. Comparison of Parameter Identification Techniques

    Directory of Open Access Journals (Sweden)

    Eder Rafael

    2016-01-01

    Full Text Available Model-based control of mechatronic systems requires excellent knowledge about the physical behavior of each component. For several types of components of a system, e.g. mechanical or electrical ones, the dynamic behavior can be described by means of a mathematic model consisting of a set of differential equations, difference equations and/or algebraic constraint equations. The knowledge of a realistic mathematic model and its parameter values is essential to represent the behaviour of a mechatronic system. Frequently it is hard or impossible to obtain all required values of the model parameters from the producer, so an appropriate parameter estimation technique is required to compute missing parameters. A manifold of parameter identification techniques can be found in the literature, but their suitability depends on the mathematic model. Previous work dealt with the automatic assembly of mathematical models of serial and parallel robots with drives and controllers within the dynamic multibody simulation code HOTINT as fully-fledged mechatronic simulation. Several parameters of such robot models were identified successfully by our embedded algorithm. The present work proposes an improved version of the identification algorithm with higher performance. The quality of the identified parameter values and the computation effort are compared with another standard technique.

  14. Model-based PEEP optimisation in mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Chiew Yeong Shiong

    2011-12-01

    Full Text Available Abstract Background Acute Respiratory Distress Syndrome (ARDS patients require mechanical ventilation (MV for breathing support. Patient-specific PEEP is encouraged for treating different patients but there is no well established method in optimal PEEP selection. Methods A study of 10 patients diagnosed with ALI/ARDS whom underwent recruitment manoeuvre is carried out. Airway pressure and flow data are used to identify patient-specific constant lung elastance (Elung and time-variant dynamic lung elastance (Edrs at each PEEP level (increments of 5cmH2O, for a single compartment linear lung model using integral-based methods. Optimal PEEP is estimated using Elung versus PEEP, Edrs-Pressure curve and Edrs Area at minimum elastance (maximum compliance and the inflection of the curves (diminishing return. Results are compared to clinically selected PEEP values. The trials and use of the data were approved by the New Zealand South Island Regional Ethics Committee. Results Median absolute percentage fitting error to the data when estimating time-variant Edrs is 0.9% (IQR = 0.5-2.4 and 5.6% [IQR: 1.8-11.3] when estimating constant Elung. Both Elung and Edrs decrease with PEEP to a minimum, before rising, and indicating potential over-inflation. Median Edrs over all patients across all PEEP values was 32.2 cmH2O/l [IQR: 26.1-46.6], reflecting the heterogeneity of ALI/ARDS patients, and their response to PEEP, that complicates standard approaches to PEEP selection. All Edrs-Pressure curves have a clear inflection point before minimum Edrs, making PEEP selection straightforward. Model-based selected PEEP using the proposed metrics were higher than clinically selected values in 7/10 cases. Conclusion Continuous monitoring of the patient-specific Elung and Edrs and minimally invasive PEEP titration provide a unique, patient-specific and physiologically relevant metric to optimize PEEP selection with minimal disruption of MV therapy.

  15. Uncertainties in model-based outcome predictions for treatment planning

    International Nuclear Information System (INIS)

    Deasy, Joseph O.; Chao, K.S. Clifford; Markman, Jerry

    2001-01-01

    Purpose: Model-based treatment-plan-specific outcome predictions (such as normal tissue complication probability [NTCP] or the relative reduction in salivary function) are typically presented without reference to underlying uncertainties. We provide a method to assess the reliability of treatment-plan-specific dose-volume outcome model predictions. Methods and Materials: A practical method is proposed for evaluating model prediction based on the original input data together with bootstrap-based estimates of parameter uncertainties. The general framework is applicable to continuous variable predictions (e.g., prediction of long-term salivary function) and dichotomous variable predictions (e.g., tumor control probability [TCP] or NTCP). Using bootstrap resampling, a histogram of the likelihood of alternative parameter values is generated. For a given patient and treatment plan we generate a histogram of alternative model results by computing the model predicted outcome for each parameter set in the bootstrap list. Residual uncertainty ('noise') is accounted for by adding a random component to the computed outcome values. The residual noise distribution is estimated from the original fit between model predictions and patient data. Results: The method is demonstrated using a continuous-endpoint model to predict long-term salivary function for head-and-neck cancer patients. Histograms represent the probabilities for the level of posttreatment salivary function based on the input clinical data, the salivary function model, and the three-dimensional dose distribution. For some patients there is significant uncertainty in the prediction of xerostomia, whereas for other patients the predictions are expected to be more reliable. In contrast, TCP and NTCP endpoints are dichotomous, and parameter uncertainties should be folded directly into the estimated probabilities, thereby improving the accuracy of the estimates. Using bootstrap parameter estimates, competing treatment

  16. Rasch model based analysis of the Force Concept Inventory

    Directory of Open Access Journals (Sweden)

    Maja Planinic

    2010-03-01

    Full Text Available The Force Concept Inventory (FCI is an important diagnostic instrument which is widely used in the field of physics education research. It is therefore very important to evaluate and monitor its functioning using different tools for statistical analysis. One of such tools is the stochastic Rasch model, which enables construction of linear measures for persons and items from raw test scores and which can provide important insight in the structure and functioning of the test (how item difficulties are distributed within the test, how well the items fit the model, and how well the items work together to define the underlying construct. The data for the Rasch analysis come from the large-scale research conducted in 2006-07, which investigated Croatian high school students’ conceptual understanding of mechanics on a representative sample of 1676 students (age 17–18 years. The instrument used in research was the FCI. The average FCI score for the whole sample was found to be (27.7±0.4%, indicating that most of the students were still non-Newtonians at the end of high school, despite the fact that physics is a compulsory subject in Croatian schools. The large set of obtained data was analyzed with the Rasch measurement computer software WINSTEPS 3.66. Since the FCI is routinely used as pretest and post-test on two very different types of population (non-Newtonian and predominantly Newtonian, an additional predominantly Newtonian sample (N=141, average FCI score of 64.5% of first year students enrolled in introductory physics course at University of Zagreb was also analyzed. The Rasch model based analysis suggests that the FCI has succeeded in defining a sufficiently unidimensional construct for each population. The analysis of fit of data to the model found no grossly misfitting items which would degrade measurement. Some items with larger misfit and items with significantly different difficulties in the two samples of students do require further

  17. Improving stability of prediction models based on correlated omics data by using network approaches.

    Directory of Open Access Journals (Sweden)

    Renaud Tissier

    Full Text Available Building prediction models based on complex omics datasets such as transcriptomics, proteomics, metabolomics remains a challenge in bioinformatics and biostatistics. Regularized regression techniques are typically used to deal with the high dimensionality of these datasets. However, due to the presence of correlation in the datasets, it is difficult to select the best model and application of these methods yields unstable results. We propose a novel strategy for model selection where the obtained models also perform well in terms of overall predictability. Several three step approaches are considered, where the steps are 1 network construction, 2 clustering to empirically derive modules or pathways, and 3 building a prediction model incorporating the information on the modules. For the first step, we use weighted correlation networks and Gaussian graphical modelling. Identification of groups of features is performed by hierarchical clustering. The grouping information is included in the prediction model by using group-based variable selection or group-specific penalization. We compare the performance of our new approaches with standard regularized regression via simulations. Based on these results we provide recommendations for selecting a strategy for building a prediction model given the specific goal of the analysis and the sizes of the datasets. Finally we illustrate the advantages of our approach by application of the methodology to two problems, namely prediction of body mass index in the DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome study (DILGOM and prediction of response of each breast cancer cell line to treatment with specific drugs using a breast cancer cell lines pharmacogenomics dataset.

  18. The role of model-based methods in the development of single scan techniques

    International Nuclear Information System (INIS)

    Laruelle, Marc

    2000-01-01

    Single scan techniques are highly desirable for clinical trials involving radiotracers because they increase logistical feasibility, improve patient compliance, and decrease the cost associated with the study. However, the information derived from single scans usually are biased by factors unrelated to the process of interest. Therefore, identification of these factors and evaluation of their impact on the proposed outcome measure is important. In this paper, the impact of confounding factors on single scan measurements is illustrated by discussing the effect of between-subject or between-condition differences in radiotracer plasma clearance on normalized activity ratios (specific to nonspecific ratios) in the tissue of interest. Computer simulation based on kinetic analyses are presented to demonstrate this effect. It is proposed that the presence of this and other confounding factors should not necessarily preclude clinical trials based on single scan techniques. First, knowledge of the distribution of plasma clearance values in a sample of the investigated population allows researchers to assign limits to this potential bias. This information can be integrated in the power analysis. Second, the impact of this problem will vary according to the characteristic of the radiotracer, and this information can be used in the development and selection of the radiotracer. Third, simple modification of the experimental design (such as administration of the radiotracer as a bolus, followed by constant infusion, rather than as a single bolus) might remove this potential confounding factor and allow appropriate quantification within the limits of a single scanning session. In conclusion, model-based kinetic characterization of radiotracer distribution and uptake is critical to the design and interpretation of clinical trials based on single scan techniques

  19. Model-based framework for multi-axial real-time hybrid simulation testing

    Science.gov (United States)

    Fermandois, Gaston A.; Spencer, Billie F.

    2017-10-01

    Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six

  20. Modelling-based identification of factors influencing campylobacters in chicken broiler houses and on carcasses sampled after processing and chilling.

    Science.gov (United States)

    Hutchison, M L; Taylor, M J; Tchòrzewska, M A; Ford, G; Madden, R H; Knowles, T G

    2017-05-01

    To identify production and processing practices that might reduce Campylobacter numbers contaminating chicken broiler carcasses. The numbers of campylobacters were determined on carcass neck skins after processing or in broiler house litter samples. Supplementary information that described farm layouts, farming conditions for individual flocks, the slaughterhouse layouts and operating conditions inside plants was collected, matched with each Campylobacter test result. Statistical models predicting the numbers of campylobacters on neck skins and in litter were constructed. Carcass microbial contamination was more strongly influenced by on-farm production practices compared with slaughterhouse activities. We observed correlations between the chilling, washing and defeathering stages of processing and the numbers of campylobacters on carcasses. There were factors on farm that also correlated with numbers of campylobacters in litter. These included bird gender, the exclusion of dogs from houses, beetle presence in the house litter and the materials used to construct the house frame. Changes in farming practices have greater potential for reducing chicken carcass microbial contamination compared with processing interventions. Routine commercial practices were identified that were correlated with lowered numbers of campylobacters. Consequently, these practices are likely to be both cost-effective and suitable for adoption into established farms and commercial processing. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  1. Rapid Identification of Asteraceae Plants with Improved RBF-ANN Classification Models Based on MOS Sensor E-Nose

    Directory of Open Access Journals (Sweden)

    Hui-Qin Zou

    2014-01-01

    Full Text Available Plants from Asteraceae family are widely used as herbal medicines and food ingredients, especially in Asian area. Therefore, authentication and quality control of these different Asteraceae plants are important for ensuring consumers’ safety and efficacy. In recent decades, electronic nose (E-nose has been studied as an alternative approach. In this paper, we aim to develop a novel discriminative model by improving radial basis function artificial neural network (RBF-ANN classification model. Feature selection algorithms, including principal component analysis (PCA and BestFirst + CfsSubsetEval (BC, were applied in the improvement of RBF-ANN models. Results illustrate that in the improved RBF-ANN models with lower dimension data classification accuracies (100% remained the same as in the original model with higher-dimension data. It is the first time to introduce feature selection methods to get valuable information on how to attribute more relevant MOS sensors; namely, in this case, S1, S3, S4, S6, and S7 show better capability to distinguish these Asteraceae plants. This paper also gives insights to further research in this area, for instance, sensor array optimization and performance improvement of classification model.

  2. A Procedure for Identification of Appropriate State Space and ARIMA Models Based on Time-Series Cross-Validation

    Directory of Open Access Journals (Sweden)

    Patrícia Ramos

    2016-11-01

    Full Text Available In this work, a cross-validation procedure is used to identify an appropriate Autoregressive Integrated Moving Average model and an appropriate state space model for a time series. A minimum size for the training set is specified. The procedure is based on one-step forecasts and uses different training sets, each containing one more observation than the previous one. All possible state space models and all ARIMA models where the orders are allowed to range reasonably are fitted considering raw data and log-transformed data with regular differencing (up to second order differences and, if the time series is seasonal, seasonal differencing (up to first order differences. The value of root mean squared error for each model is calculated averaging the one-step forecasts obtained. The model which has the lowest root mean squared error value and passes the Ljung–Box test using all of the available data with a reasonable significance level is selected among all the ARIMA and state space models considered. The procedure is exemplified in this paper with a case study of retail sales of different categories of women’s footwear from a Portuguese retailer, and its accuracy is compared with three reliable forecasting approaches. The results show that our procedure consistently forecasts more accurately than the other approaches and the improvements in the accuracy are significant.

  3. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  4. Muon identification in JADE

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The method of identification of high energy muons in the JADE detector is described in detail. The performance of the procedure is discussed in detail for the case of prompt identification in multihadronic final states. (orig.)

  5. Identification for Control

    DEFF Research Database (Denmark)

    Tøffner-Clausen, S.

    1995-01-01

    Identification of model error bounds for robust control design has recently achieved much attention.......Identification of model error bounds for robust control design has recently achieved much attention....

  6. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site and a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a

  7. Riparian erosion vulnerability model based on environmental features.

    Science.gov (United States)

    Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N

    2017-12-01

    Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank

  8. FORENSIC LINGUISTICS: AUTOMATIC WEB AUTHOR IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    A. A. Vorobeva

    2016-03-01

    Full Text Available Internet is anonymous, this allows posting under a false name, on behalf of others or simply anonymous. Thus, individuals, criminal or terrorist organizations can use Internet for criminal purposes; they hide their identity to avoid the prosecuting. Existing approaches and algorithms for author identification of web-posts on Russian language are not effective. The development of proven methods, technics and tools for author identification is extremely important and challenging task. In this work the algorithm and software for authorship identification of web-posts was developed. During the study the effectiveness of several classification and feature selection algorithms were tested. The algorithm includes some important steps: 1 Feature extraction; 2 Features discretization; 3 Feature selection with the most effective Relief-f algorithm (to find the best feature set with the most discriminating power for each set of candidate authors and maximize accuracy of author identification; 4 Author identification on model based on Random Forest algorithm. Random Forest and Relief-f algorithms are used to identify the author of a short text on Russian language for the first time. The important step of author attribution is data preprocessing - discretization of continuous features; earlier it was not applied to improve the efficiency of author identification. The software outputs top q authors with maximum probabilities of authorship. This approach is helpful for manual analysis in forensic linguistics, when developed tool is used to narrow the set of candidate authors. For experiments on 10 candidate authors, real author appeared in to top 3 in 90.02% cases, on first place real author appeared in 70.5% of cases.

  9. Detection and identification of concealed weapons using matrix pencil

    Science.gov (United States)

    Adve, Raviraj S.; Thayaparan, Thayananthan

    2011-06-01

    The detection and identification of concealed weapons is an extremely hard problem due to the weak signature of the target buried within the much stronger signal from the human body. This paper furthers the automatic detection and identification of concealed weapons by proposing the use of an effective approach to obtain the resonant frequencies in a measurement. The technique, based on Matrix Pencil, a scheme for model based parameter estimation also provides amplitude information, hence providing a level of confidence in the results. Of specific interest is the fact that Matrix Pencil is based on a singular value decomposition, making the scheme robust against noise.

  10. Decoupling Identification for Serial Two-Link Two-Inertia System

    Science.gov (United States)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  11. Model-based wear measurements in total knee arthroplasty : development and validation of novel radiographic techniques

    NARCIS (Netherlands)

    IJsseldijk, van E.A.

    2016-01-01

    The primary aim of this work was to develop novel model-based mJSW measurement methods using a 3D reconstruction and compare the accuracy and precision of these methods to conventional mJSW measurement. This thesis contributed to the development, validation and clinical application of model-based

  12. Model-based design of supervisory controllers for baggage handling systems

    NARCIS (Netherlands)

    Swartjes, L.; van Beek, D.A.; Fokkink, W.J.; van Eekelen, J.A.W.M.

    2017-01-01

    The complexity of airport baggage handling systems in combination with the required high level of robustness makes designing supervisory controllers for these systems a challenging task. We show how a state of the art, formal, model-based design framework has been successfully used for model-based

  13. Analytical Model-based Fault Detection and Isolation in Control Systems

    DEFF Research Database (Denmark)

    Vukic, Z.; Ozbolt, H.; Blanke, M.

    1998-01-01

    The paper gives an introduction and an overview of the field of fault detection and isolation for control systems. The summary of analytical (quantitative model-based) methodds and their implementation are presented. The focus is given to mthe analytical model-based fault-detection and fault...

  14. The Use of Modeling-Based Text to Improve Students' Modeling Competencies

    Science.gov (United States)

    Jong, Jing-Ping; Chiu, Mei-Hung; Chung, Shiao-Lan

    2015-01-01

    This study investigated the effects of a modeling-based text on 10th graders' modeling competencies. Fifteen 10th graders read a researcher-developed modeling-based science text on the ideal gas law that included explicit descriptions and representations of modeling processes (i.e., model selection, model construction, model validation, model…

  15. Architectural design thinking as a form of model-based reasoning

    NARCIS (Netherlands)

    Pauwels, P.; Bod, R.

    2014-01-01

    Model-based reasoning can be considered central in very diverse domains of practice. Recently considered domains of practice are political discourse, social intercourse, language learning, archaeology, collaboration and conversation, and so forth. In this paper, we explore features of model-based

  16. A model-based systems approach to pharmaceutical product-process design and analysis

    DEFF Research Database (Denmark)

    Gernaey, Krist; Gani, Rafiqul

    2010-01-01

    This is a perspective paper highlighting the need for systematic model-based design and analysis in pharmaceutical product-process development. A model-based framework is presented and the role, development and use of models of various types are discussed together with the structure of the models...

  17. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; Mortel - Fronczak, van de J.M.; Rooda, J.E.

    2011-01-01

    Due to increasing system complexity, time-to-market and development costs reduction, there are higher demands on engineering processes. Model-based engineering can play a role here because it supports system development by enabling the use of various model-based analysis techniques and tools. As a

  18. Case studies of extended model-based flood forecasting: prediction of dike strength and flood impacts

    Science.gov (United States)

    Stuparu, Dana; Bachmann, Daniel; Bogaard, Tom; Twigt, Daniel; Verkade, Jan; de Bruijn, Karin; de Leeuw, Annemargreet

    2017-04-01

    Flood forecasts, warning and emergency response are important components in flood risk management. Most flood forecasting systems use models to translate weather predictions to forecasted discharges or water levels. However, this information is often not sufficient for real time decisions. A sound understanding of the reliability of embankments and flood dynamics is needed to react timely and reduce the negative effects of the flood. Where are the weak points in the dike system? When, how much and where the water will flow? When and where is the greatest impact expected? Model-based flood impact forecasting tries to answer these questions by adding new dimensions to the existing forecasting systems by providing forecasted information about: (a) the dike strength during the event (reliability), (b) the flood extent in case of an overflow or a dike failure (flood spread) and (c) the assets at risk (impacts). This work presents three study-cases in which such a set-up is applied. Special features are highlighted. Forecasting of dike strength. The first study-case focusses on the forecast of dike strength in the Netherlands for the river Rhine branches Waal, Nederrijn and IJssel. A so-called reliability transformation is used to translate the predicted water levels at selected dike sections into failure probabilities during a flood event. The reliability of a dike section is defined by fragility curves - a summary of the dike strength conditional to the water level. The reliability information enhances the emergency management and inspections of embankments. Ensemble forecasting. The second study-case shows the setup of a flood impact forecasting system in Dumfries, Scotland. The existing forecasting system is extended with a 2D flood spreading model in combination with the Delft-FIAT impact model. Ensemble forecasts are used to make use of the uncertainty in the precipitation forecasts, which is useful to quantify the certainty of a forecasted flood event. From global

  19. Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking

    Directory of Open Access Journals (Sweden)

    Hiekata Takashi

    2006-01-01

    Full Text Available A new two-stage blind source separation (BSS method for convolutive mixtures of speech is proposed, in which a single-input multiple-output (SIMO-model-based independent component analysis (ICA and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources in their original form at the microphones. Thus, the separated signals of SIMO-model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property, our novel SIMO-model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method compared with that achieved by conventional BSS methods. In addition, the real-time implementation of the proposed BSS is illustrated.

  20. Model-free and model-based reward prediction errors in EEG.

    Science.gov (United States)

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Model-based Clustering of High-Dimensional Data in Astrophysics

    Science.gov (United States)

    Bouveyron, C.

    2016-05-01

    The nature of data in Astrophysics has changed, as in other scientific fields, in the past decades due to the increase of the measurement capabilities. As a consequence, data are nowadays frequently of high dimensionality and available in mass or stream. Model-based techniques for clustering are popular tools which are renowned for their probabilistic foundations and their flexibility. However, classical model-based techniques show a disappointing behavior in high-dimensional spaces which is mainly due to their dramatical over-parametrization. The recent developments in model-based classification overcome these drawbacks and allow to efficiently classify high-dimensional data, even in the "small n / large p" situation. This work presents a comprehensive review of these recent approaches, including regularization-based techniques, parsimonious modeling, subspace classification methods and classification methods based on variable selection. The use of these model-based methods is also illustrated on real-world classification problems in Astrophysics using R packages.

  2. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  3. An Open-Source Simulation Environment for Model-Based Engineering, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work is a new spacecraft simulation environment for model-based engineering of flight algorithms and software. The goal is to provide a much faster way...

  4. Model-based Small Area Estimates of Cancer Risk Factors and Screening Behaviors - Small Area Estimates

    Science.gov (United States)

    These model-based estimates use two surveys, the Behavioral Risk Factor Surveillance System (BRFSS) and the National Health Interview Survey (NHIS). The two surveys are combined using novel statistical methodology.

  5. Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this project is model-based design (MBD) tools for predicting the performance and useful life of commercial-off-the-shelf (COTS) components and...

  6. Category Theory as a Formal Mathematical Foundation for Model-Based Systems Engineering

    KAUST Repository

    Mabrok, Mohamed; Ryan, Michael J.

    2017-01-01

    In this paper, we introduce Category Theory as a formal foundation for model-based systems engineering. A generalised view of the system based on category theory is presented, where any system can be considered as a category. The objects

  7. Model-based design of self-Adapting networked signal processing systems

    NARCIS (Netherlands)

    Oliveira Filho, J.A. de; Papp, Z.; Djapic, R.; Oostveen, J.C.

    2013-01-01

    The paper describes a model based approach for architecture design of runtime reconfigurable, large-scale, networked signal processing applications. A graph based modeling formalism is introduced to describe all relevant aspects of the design (functional, concurrency, hardware, communication,

  8. Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this Phase I project is to prove the feasibility of using model-based design (MBD) tools to predict the performance and useful life of...

  9. An open-loop, physiologic model-based decision support system can provide appropriate ventilator settings

    DEFF Research Database (Denmark)

    Karbing, Dan Stieper; Spadaro, Savino; Dey, Nilanjan

    2018-01-01

    OBJECTIVES: To evaluate the physiologic effects of applying advice on mechanical ventilation by an open-loop, physiologic model-based clinical decision support system. DESIGN: Prospective, observational study. SETTING: University and Regional Hospitals' ICUs. PATIENTS: Varied adult ICU population...

  10. Model-Based Resource and Mode Management for Lunar Surface Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is aimed at developing a model based resource and mode management system for space robotics systems that will allow real time assessment of...

  11. Opportunity identification competence

    NARCIS (Netherlands)

    Baggen, Yvette

    2017-01-01

    Opportunities and their identification are of significant importance for competitiveness in today’s complex and turbulent business environment because they serve as a key influencing factor for new value-creation. Opportunity identification (OI) is interesting not only from the perspective of new

  12. Superior accuracy of model-based radiostereometric analysis for measurement of polyethylene wear

    DEFF Research Database (Denmark)

    Stilling, M; Kold, S; de Raedt, S

    2012-01-01

    The accuracy and precision of two new methods of model-based radiostereometric analysis (RSA) were hypothesised to be superior to a plain radiograph method in the assessment of polyethylene (PE) wear.......The accuracy and precision of two new methods of model-based radiostereometric analysis (RSA) were hypothesised to be superior to a plain radiograph method in the assessment of polyethylene (PE) wear....

  13. A Survey of Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis; Jeung, Hoyoung; Aberer, Karl

    2013-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  14. Improved Palmprint Identification System

    Directory of Open Access Journals (Sweden)

    Harshala C. Salave

    2015-03-01

    Full Text Available Abstract Generally private information is provided by using passwords or Personal Identification Numbers which is easy to implement but it is very easily stolen or forgotten or hack. In Biometrics for individuals identification uses human physiological which are constant throughout life like palm face DNA iris etc. or behavioral characteristicswhich is not constant in life like voice signature keystroke etc.. But mostly gain more attention to palmprint identification and is becoming more popular technique using for identification and promising alternatives to the traditional password or PIN based authentication techniques. In this paper propose palmprint identification using veins on the palm and fingers. Here use fusion of techniques such as Discrete Wavelet transformDWT Canny Edge Detector Gaussian Filter Principle Component AnalysisPCA.

  15. A Brand Loyalty Model Utilizing Team Identification and Customer Satisfaction in the Licensed Sports Product Industry

    Science.gov (United States)

    Lee, Soonhwan; Shin, Hongbum; Park, Jung-Jun; Kwon, Oh-Ryun

    2010-01-01

    The purpose of this study was to investigate the relationship among the attitudinal brand loyalty variables (i.e., cognitive, affective, and conative components), team identification, and customer satisfaction by developing a structural equation model, based on Oliver's (1997) attitudinal brand loyalty model. The results of this study confirmed…

  16. Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept

    International Nuclear Information System (INIS)

    Bieg, B.; Chrzanowski, J.; Kravtsov, Yu. A.; Mazon, D.

    2015-01-01

    Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.

  17. Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhisheng Zhang

    2016-01-01

    Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.

  18. Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept

    Energy Technology Data Exchange (ETDEWEB)

    Bieg, B. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Chrzanowski, J., E-mail: j.chrzanowski@am.szczecin.pl [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Kravtsov, Yu. A. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Space Research Institute, Profsoyuznaya St. 82/34 Russian Academy of Science, Moscow 117997 (Russian Federation); Mazon, D. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-10-15

    Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.

  19. Remote spectroscopic identification of bloodstains

    NARCIS (Netherlands)

    Bremmer, Rolf H.; Edelman, Gerda; Vegter, Tessa Dijn; Bijvoets, Ted; Aalders, Maurice C. G.

    2011-01-01

    Blood detection and identification at crime scenes are crucial for harvesting forensic evidence. Unfortunately, most tests for the identification of blood are destructive and time consuming. We present a fast and nondestructive identification test for blood, using noncontact reflectance

  20. Evaluation of pipeline defect's characteristic axial length via model-based parameter estimation in ultrasonic guided wave-based inspection

    International Nuclear Information System (INIS)

    Wang, Xiaojuan; Tse, Peter W; Dordjevich, Alexandar

    2011-01-01

    The reflection signal from a defect in the process of guided wave-based pipeline inspection usually includes sufficient information to detect and define the defect. In previous research, it has been found that the reflection of guided waves from even a complex defect primarily results from the interference between reflection components generated at the front and the back edges of the defect. The respective contribution of different parameters of a defect to the overall reflection can be affected by the features of the two primary reflection components. The identification of these components embedded in the reflection signal is therefore useful in characterizing the concerned defect. In this research, we propose a method of model-based parameter estimation with the aid of the Hilbert–Huang transform technique for the purpose of decomposition of a reflection signal to enable characterization of the pipeline defect. Once two primary edge reflection components are decomposed and identified, the distance between the reflection positions, which closely relates to the axial length of the defect, could be easily and accurately determined. Considering the irregular profiles of complex pipeline defects at their two edges, which is often the case in real situations, the average of varied axial lengths of such a defect along the circumference of the pipeline is used in this paper as the characteristic value of actual axial length for comparison purpose. The experimental results of artificial defects and real corrosion in sample pipes were considered in this paper to demonstrate the effectiveness of the proposed method

  1. Conceptual Model-based Systems Biology: mapping knowledge and discovering gaps in the mRNA transcription cycle.

    Directory of Open Access Journals (Sweden)

    Judith Somekh

    2012-12-01

    Full Text Available We propose a Conceptual Model-based Systems Biology framework for qualitative modeling, executing, and eliciting knowledge gaps in molecular biology systems. The framework is an adaptation of Object-Process Methodology (OPM, a graphical and textual executable modeling language. OPM enables concurrent representation of the system's structure-the objects that comprise the system, and behavior-how processes transform objects over time. Applying a top-down approach of recursively zooming into processes, we model a case in point-the mRNA transcription cycle. Starting with this high level cell function, we model increasingly detailed processes along with participating objects. Our modeling approach is capable of modeling molecular processes such as complex formation, localization and trafficking, molecular binding, enzymatic stimulation, and environmental intervention. At the lowest level, similar to the Gene Ontology, all biological processes boil down to three basic molecular functions: catalysis, binding/dissociation, and transporting. During modeling and execution of the mRNA transcription model, we discovered knowledge gaps, which we present and classify into various types. We also show how model execution enhances a coherent model construction. Identification and pinpointing knowledge gaps is an important feature of the framework, as it suggests where research should focus and whether conjectures about uncertain mechanisms fit into the already verified model.

  2. ACE - Manufacturer Identification Code (MID)

    Data.gov (United States)

    Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...

  3. Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.

    Science.gov (United States)

    Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram

    2017-02-01

    In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.

  4. TALENT IDENTIFICATION IN FOOTBALL

    Directory of Open Access Journals (Sweden)

    Bojan Rakojević

    2008-08-01

    Full Text Available There is incerasing emphasis on clubs to detect players and nurture and guide them throught the talent identification proces. More over, different factors may contribute to performance prediction at different ages. Thus any such model would need to be agespecific (Reilly et al, 2000. The aim of this paper was to determine essential principles of proces talent identification and determine antropometric, physiological and psychological profile and football-specifc skills that could be used for talent identification in players aged 10-12 years.

  5. Identification and Authentication Policy

    National Research Council Canada - National Science Library

    Gimble, Thomas

    1999-01-01

    .... We will accomplish the audit objective in two phases. In this phase, we reviewed current DoD Component policies on the use of identification and authentication controls to access information systems...

  6. Limited data speaker identification

    Indian Academy of Sciences (India)

    recognition can be either identification or verification depending on the task objective. .... like Bayesian formalism, voting method and Dempster-Shafer (D–S) theory ..... self-organizing map (SOM) (Kohonen 1990), learning vector quantization ...

  7. Regularities in eyewitness identification.

    Science.gov (United States)

    Clark, Steven E; Howell, Ryan T; Davey, Sherrie L

    2008-06-01

    What do eyewitness identification experiments typically show? We address this question through a meta-analysis of 94 comparisons between target-present and target-absent lineups. The analyses showed that: (a) correct identifications and correct-nonidentifications were uncorrelated, (b) suspect identifications were more diagnostic with respect to the suspect's guilt or innocence than any other response, (c) nonidentifications were diagnostic of the suspect's innocence, (d) the diagnosticity of foil identifications depended on lineup composition, and (e) don't know responses were nondiagnostic with respect to guilt or innocence. Results of diagnosticity analyses for simultaneous and sequential lineups varied for full-sample versus direct-comparison analyses. Diagnosticity patterns also varied as a function of lineup composition. Theoretical, forensic, and legal implications are discussed.

  8. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    Science.gov (United States)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  9. Dopamine selectively remediates 'model-based' reward learning: a computational approach.

    Science.gov (United States)

    Sharp, Madeleine E; Foerde, Karin; Daw, Nathaniel D; Shohamy, Daphna

    2016-02-01

    Patients with loss of dopamine due to Parkinson's disease are impaired at learning from reward. However, it remains unknown precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise computationally from 'model-free' learning. The other, 'model-based' learning, involves learning a model of the world that is believed to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may contribute to the learning impairment in Parkinson's disease. To directly test this, we used a two-step reward-learning task which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson's disease tested ON versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medication on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our results suggest that some learning deficits in Parkinson's disease may be related to an inability to pursue reward based on complete representations of the environment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage

    Science.gov (United States)

    Breyta, Rachel; Brito, Ilana L.; Ferguson, Paige; Kurath, Gael; Naish, Kerry A.; Purcell, Maureen; Wargo, Andrew R.; LaDeau, Shannon L.

    2017-01-01

    This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000–2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV-infected cohorts was concentrated in two sub-regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%–55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%–78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%–74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio-temporal and genetic data is likely to yield greater insight in future studies.

  11. Bunch identification module

    International Nuclear Information System (INIS)

    Fox, J.D.

    1981-01-01

    This module provides bunch identification and timing signals for the PEP Interaction areas. Timing information is referenced to the PEP master oscillator, and adjusted in phase as a function of region. Identification signals are generated in a manner that allows observers in all interaction regions to agree on an unambiguous bunch identity. The module provides bunch identification signals via NIM level logic, upon CAMAC command, and through LED indicators. A front panel ''region select'' switch allows the same module to be used in all regions. The module has two modes of operation: a bunch identification mode and a calibration mode. In the identification mode, signals indicate which of the three bunches of electrons and positrons are interacting, and timing information about beam crossing is provided. The calibration mode is provided to assist experimenters making time of flight measurements. In the calibration mode, three distinct gating signals are referenced to a selected bunch, allowing three timing systems to be calibrated against a common standard. Physically, the bunch identifier is constructed as a single width CAMAC module. 2 figs., 1 tab

  12. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    He, Hongwen; Zhang, Xiaowei; Xiong, Rui; Xu, Yongli; Guo, Hongqiang

    2012-01-01

    This paper presents a method to estimate the state-of-charge (SOC) of a lithium-ion battery, based on an online identification of its open-circuit voltage (OCV), according to the battery’s intrinsic relationship between the SOC and the OCV for application in electric vehicles. Firstly an equivalent circuit model with n RC networks is employed modeling the polarization characteristic and the dynamic behavior of the lithium-ion battery, the corresponding equations are built to describe its electric behavior and a recursive function is deduced for the online identification of the OCV, which is implemented by a recursive least squares (RLS) algorithm with an optimal forgetting factor. The models with different RC networks are evaluated based on the terminal voltage comparisons between the model-based simulation and the experiment. Then the OCV-SOC lookup table is built based on the experimental data performed by a linear interpolation of the battery voltages at the same SOC during two consecutive discharge and charge cycles. Finally a verifying experiment is carried out based on nine Urban Dynamometer Driving Schedules. It indicates that the proposed method can ensure an acceptable accuracy of SOC estimation for online application with a maximum error being less than 5.0%. -- Highlights: ► An equivalent circuit model with n RC networks is built for lithium-ion batteries. ► A recursive function is deduced for the online estimation of the model parameters like OCV and R O . ► The relationship between SOC and OCV is built with a linear interpolation method by experiments. ► The experiments show the online model-based SOC estimation is reasonable with enough accuracy.

  13. Observer-Based and Regression Model-Based Detection of Emerging Faults in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Lin, Bao; Jørgensen, Sten Bay

    2006-01-01

    In order to improve the reliability of power plants it is important to detect fault as fast as possible. Doing this it is interesting to find the most efficient method. Since modeling of large scale systems is time consuming it is interesting to compare a model-based method with data driven ones....

  14. Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation

    NARCIS (Netherlands)

    Minasny, B.; Vrugt, J.A.; McBratney, A.B.

    2011-01-01

    This paper demonstrates for the first time the use of Markov Chain Monte Carlo (MCMC) simulation for parameter inference in model-based soil geostatistics. We implemented the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm to jointly summarize the posterior

  15. Developing Learning Model Based on Local Culture and Instrument for Mathematical Higher Order Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin

    2017-01-01

    This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…

  16. The Actualization of Literary Learning Model Based on Verbal-Linguistic Intelligence

    Science.gov (United States)

    Hali, Nur Ihsan

    2017-01-01

    This article is inspired by Howard Gardner's concept of linguistic intelligence and also from some authors' previous writings. All of them became the authors' reference in developing ideas on constructing a literary learning model based on linguistic intelligence. The writing of this article is not done by collecting data empirically, but by…

  17. Automatic Model-Based Generation of Parameterized Test Cases Using Data Abstraction

    NARCIS (Netherlands)

    Calamé, Jens R.; Ioustinova, Natalia; Romijn, J.M.T.; Smith, G.; van de Pol, Jan Cornelis

    2007-01-01

    Developing test suites is a costly and error-prone process. Model-based test generation tools facilitate this process by automatically generating test cases from system models. The applicability of these tools, however, depends on the size of the target systems. Here, we propose an approach to

  18. Model-based fuzzy control solutions for a laboratory Antilock Braking System

    DEFF Research Database (Denmark)

    Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan

    2010-01-01

    This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems...

  19. Model-based schedulability analysis of safety critical hard real-time Java programs

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Kragh-Hansen, Henrik; Olsen, Petur

    2008-01-01

    verifiable by the Uppaal model checker [23]. Schedulability analysis is reduced to a simple reachability question, checking for deadlock freedom. Model-based schedulability analysis has been developed by Amnell et al. [2], but has so far only been applied to high level specifications, not actual...

  20. Model based fault diagnosis in a centrifugal pump application using structural analysis

    DEFF Research Database (Denmark)

    Kallesøe, C. S.; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2004-01-01

    A model based approach for fault detection and isolation in a centrifugal pump is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, Analytical Redundant Relations (ARR) and observer designs. Structural considerations on the system are used...

  1. Model Based Fault Diagnosis in a Centrifugal Pump Application using Structural Analysis

    DEFF Research Database (Denmark)

    Kallesøe, C. S.; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2004-01-01

    A model based approach for fault detection and isolation in a centrifugal pump is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, Analytical Redundant Relations (ARR) and observer designs. Structural considerations on the system are used...

  2. Teaching Personal and Social Responsibility Model-Based Programmes in Physical Education: A Systematic Review

    Science.gov (United States)

    Pozo, Pablo; Grao-Cruces, Alberto; Pérez-Ordás, Raquel

    2018-01-01

    The purpose of this study was to conduct a review of research on the Teaching Personal and Social Responsibility model-based programme within physical education. Papers selected for analysis were found through searches of Web of Science, SportDiscus (EBSCO), SCOPUS, and ERIC (ProQuest) databases. The keywords "responsibility model" and…

  3. Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis

    Science.gov (United States)

    2016-07-31

    distribution unlimited Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis Matthew...vital importance for hydrocarbon -fueled propulsion systems: fuel thermal performance as indicated by physical and chemical effects of cooling passage... analysis . The selection and acquisition of a set of chemically diverse fuels is pivotal for a successful outcome since test method validation and

  4. A model based method for evaluation of crop operation scenarios in greenhouses

    NARCIS (Netherlands)

    Ooster, van 't A.

    2015-01-01

    Abstract

    This research initiated a model-based method to analyse labour in crop production systems and to quantify effects of system changes in order to contribute to effective greenhouse crop cultivation systems with efficient use of human labour and technology. This

  5. An Exploration of the System Dynamics Field : A Model-Based Policy Analysis

    NARCIS (Netherlands)

    Rose, A.C.

    2014-01-01

    This report presents a first look study at the field of System Dynamics. The objective of the study is to perform a model-based policy analysis in order to investigate the future advancement of the System Dynamics field. The aim of this investigation is to determine what this advancement should look

  6. SLC beam line error analysis using a model-based expert system

    International Nuclear Information System (INIS)

    Lee, M.; Kleban, S.

    1988-02-01

    Commissioning particle beam line is usually a very time-consuming and labor-intensive task for accelerator physicists. To aid in commissioning, we developed a model-based expert system that identifies error-free regions, as well as localizing beam line errors. This paper will give examples of the use of our system for the SLC commissioning. 8 refs., 5 figs

  7. Context-Model-Based Instruction in Teaching EFL Writing: A Narrative Inquiry

    Science.gov (United States)

    Lin, Zheng

    2016-01-01

    This study aims to re-story the provision of the context-model-based instruction in teaching EFL writing, focusing especially on students' development of the context model and learning to guide EFL writing with the context model. The research data have been collected from the audio recordings of the classroom instruction, the teacher-researcher's…

  8. Fuzzy delay model based fault simulator for crosstalk delay fault test ...

    Indian Academy of Sciences (India)

    In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design .... To find the quality of non-robust tests, a fuzzy delay ..... Dubois D and Prade H 1989 Processing Fuzzy temporal knowledge. IEEE Transactions ...

  9. Model-based bootstrapping when correcting for measurement error with application to logistic regression.

    Science.gov (United States)

    Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne

    2018-03-01

    When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.

  10. Incorporating stakeholder perspectives into model-based scenarios : Exploring the futures of the Dutch gas sector

    NARCIS (Netherlands)

    Eker, S.; van Daalen, C.; Thissen, W.A.H.

    2017-01-01

    Several model-based, analytical approaches have been developed recently to deal with the deep uncertainty present in situations for which futures studies are conducted. These approaches focus on covering a wide variety of scenarios and searching for robust strategies. However, they generally do

  11. Superstring motivated gauge models based on a rank six subgroup of E6

    International Nuclear Information System (INIS)

    Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.

    1987-01-01

    We discuss gauge models based on a superstring motivated rank six subgroup of E 6 . Lepton number is an accidental unbroken symmetry of the models which leads to an essential stable proton. One of the neutral gauge bosons couples to B-L and may have mass below a TeV. (orig.)

  12. Predicting forest dieback in Maine, USA: a simple model based on soil frost and drought

    Science.gov (United States)

    Allan N.D. Auclair; Warren E. Heilman; Blondel. Brinkman

    2010-01-01

    Tree roots of northern hardwoods are shallow rooted, winter active, and minimally frost hardened; dieback is a winter freezing injury to roots incited by frost penetration in the absence of adequate snow cover and exacerbated by drought in summer. High soil water content greatly increases conductivity of frost. We develop a model based on the sum of z-scores of soil...

  13. Language acquisition is model-based rather than model-free.

    Science.gov (United States)

    Wang, Felix Hao; Mintz, Toben H

    2016-01-01

    Christiansen & Chater (C&C) propose that learning language is learning to process language. However, we believe that the general-purpose prediction mechanism they propose is insufficient to account for many phenomena in language acquisition. We argue from theoretical considerations and empirical evidence that many acquisition tasks are model-based, and that different acquisition tasks require different, specialized models.

  14. Introduction of the Notion of Differential Equations by Modelling Based Teaching

    Science.gov (United States)

    Budinski, Natalija; Takaci, Djurdjica

    2011-01-01

    This paper proposes modelling based learning as a tool for learning and teaching mathematics. The example of modelling real world problems leading to the exponential function as the solution of differential equations is described, as well as the observations about students' activities during the process. The students were acquainted with the…

  15. All Roads Lead to Fault Diagnosis : Model-Based Reasoning with LYDIA

    NARCIS (Netherlands)

    Feldman, A.B.; Pietersma, J.; Van Gemund, A.J.C.

    2006-01-01

    Model-Based Reasoning (MBR) over qualitative models of complex, real-world systems has proven succesful for automated fault diagnosis, control, and repair. Expressing a system under diagnosis in a formal model and infering a diagnosis given observations are both challenging problems. In this paper

  16. Advanced autonomous model-based operation of industrial process systems (Autoprofit) : technological developments and future perspectives

    NARCIS (Netherlands)

    Ozkan, L.; Bombois, X.J.A.; Ludlage, J.H.A.; Rojas, C.R.; Hjalmarsson, H.; Moden, P.E.; Lundh, M.; Backx, A.C.P.M.; Van den Hof, P.M.J.

    2016-01-01

    Model-based operation support technology such as Model Predictive Control (MPC) is a proven and accepted technology for multivariable and constrained large scale control problems in process industry. Despite the growing number of successful implementations, the low level of operational efficiency of

  17. Improving head and neck CTA with hybrid and model-based iterative reconstruction techniques

    NARCIS (Netherlands)

    Niesten, J. M.; van der Schaaf, I. C.; Vos, P. C.; Willemink, MJ; Velthuis, B. K.

    2015-01-01

    AIM: To compare image quality of head and neck computed tomography angiography (CTA) reconstructed with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and model-based iterative reconstruction (MIR) algorithms. MATERIALS AND METHODS: The raw data of 34 studies were

  18. Developing Computer Model-Based Assessment of Chemical Reasoning: A Feasibility Study

    Science.gov (United States)

    Liu, Xiufeng; Waight, Noemi; Gregorius, Roberto; Smith, Erica; Park, Mihwa

    2012-01-01

    This paper reports a feasibility study on developing computer model-based assessments of chemical reasoning at the high school level. Computer models are flash and NetLogo environments to make simultaneously available three domains in chemistry: macroscopic, submicroscopic, and symbolic. Students interact with computer models to answer assessment…

  19. Using Computer Simulations for Promoting Model-based Reasoning. Epistemological and Educational Dimensions

    Science.gov (United States)

    Develaki, Maria

    2017-11-01

    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.

  20. Beyond the Central Dogma: Model-Based Learning of How Genes Determine Phenotypes

    Science.gov (United States)

    Reinagel, Adam; Speth, Elena Bray

    2016-01-01

    In an introductory biology course, we implemented a learner-centered, model-based pedagogy that frequently engaged students in building conceptual models to explain how genes determine phenotypes. Model-building tasks were incorporated within case studies and aimed at eliciting students' understanding of 1) the origin of variation in a population…

  1. Model based monitoring of urban traffic noise : A wireless sensor network design

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2012-01-01

    A good understanding of the acoustic environment due to traffic in urban areas is very important and can be obtained by long term model based monitoring within large areas. As a result one has a good basis for assessing the effect of mitigating measures and for communication and policy making. A

  2. Model-Based Testing of a Reactive System with Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon

    2006-01-01

    In this paper, a reactive and nondeterministic system is tested. This is doneby applying a generic model that has been specified as a configurable Coloured PetriNet. In this way, model-based testing is possible for a wide class of reactive system atthe level of discrete events. Concurrently...

  3. The elaboration of a manufacturing flow connectivity model, based on Multi Agent System

    Directory of Open Access Journals (Sweden)

    Fahhama Lamyae

    2017-01-01

    The aim of this paper was to establish a model of the industrial flow connectivity; Afterward, we’ve detailed a network configuration model based on the multi-agents systems, to study the interactions between all the actors and give a more realistic vision onto manufacturing coordination in the supply chain.

  4. The research of selection model based on LOD in multi-scale display of electronic map

    Science.gov (United States)

    Zhang, Jinming; You, Xiong; Liu, Yingzhen

    2008-10-01

    This paper proposes a selection model based on LOD to aid the display of electronic map. The ratio of display scale to map scale is regarded as a LOD operator. The categorization rule, classification rule, elementary rule and spatial geometry character rule of LOD operator setting are also concluded.

  5. The implementation of assessment model based on character building to improve students’ discipline and achievement

    Science.gov (United States)

    Rusijono; Khotimah, K.

    2018-01-01

    The purpose of this research was to investigate the effect of implementing the assessment model based on character building to improve discipline and student’s achievement. Assessment model based on character building includes three components, which are the behaviour of students, the efforts, and student’s achievement. This assessment model based on the character building is implemented in science philosophy and educational assessment courses, in Graduate Program of Educational Technology Department, Educational Faculty, Universitas Negeri Surabaya. This research used control group pre-test and post-test design. Data collection method used in this research were observation and test. The observation was used to collect the data about the disciplines of the student in the instructional process, while the test was used to collect the data about student’s achievement. Moreover, the study applied t-test to the analysis of data. The result of this research showed that assessment model based on character building improved discipline and student’s achievement.

  6. Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO

    Science.gov (United States)

    Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael

    2014-01-01

    For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.

  7. Simple Models for Model-based Portfolio Load Balancing Controller Synthesis

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Mølbak, Tommy; Bendtsen, Jan Dimon

    2010-01-01

    of generation units existing in an electrical power supply network, for instance in model-based predictive control or declarative control schemes. We focus on the effectuators found in the Danish power system. In particular, the paper presents models for boiler load, district heating, condensate throttling...

  8. Exploring the Argumentation Pattern in Modeling-Based Learning about Apparent Motion of Mars

    Science.gov (United States)

    Park, Su-Kyeong

    2016-01-01

    This study proposed an analytic framework for coding students' dialogic argumentation and investigated the characteristics of the small-group argumentation pattern observed in modeling-based learning. The participants were 122 second grade high school students in South Korea divided into an experimental and a comparison group. Modeling-based…

  9. e-Government Maturity Model Based on Systematic Review and Meta-Ethnography Approach

    Directory of Open Access Journals (Sweden)

    Darmawan Napitupulu

    2016-11-01

    Full Text Available Maturity model based on e-Government portal has been developed by a number of researchers both individually and institutionally, but still scattered in various journals and conference articles and can be said to have a different focus with each other, both in terms of stages and features. The aim of this research is conducting a study to integrate a number of maturity models existing today in order to build generic maturity model based on e-Government portal. The method used in this study is Systematic Review with meta-ethnography qualitative approach. Meta-ethnography, which is part of Systematic Review method, is a technique to perform data integration to obtain theories and concepts with a new level of understanding that is deeper and thorough. The result obtained is a maturity model based on e-Government portal that consists of 7 (seven stages, namely web presence, interaction, transaction, vertical integration, horizontal integration, full integration, and open participation. These seven stages are synthesized from the 111 key concepts related to 25 studies of maturity model based e-Government portal. The maturity model resulted is more comprehensive and generic because it is an integration of models (best practices that exists today.

  10. A Computer-Assisted Learning Model Based on the Digital Game Exponential Reward System

    Science.gov (United States)

    Moon, Man-Ki; Jahng, Surng-Gahb; Kim, Tae-Yong

    2011-01-01

    The aim of this research was to construct a motivational model which would stimulate voluntary and proactive learning using digital game methods offering players more freedom and control. The theoretical framework of this research lays the foundation for a pedagogical learning model based on digital games. We analyzed the game reward system, which…

  11. Efficient predictive model-based and fuzzy control for green urban mobility

    NARCIS (Netherlands)

    Jamshidnejad, A.

    2017-01-01

    In this thesis, we develop efficient predictive model-based control approaches, including model-predictive control (MPC) andmodel-based fuzzy control, for application in urban traffic networks with the aim of reducing a combination of the total time spent by the vehicles within the network and the

  12. Information exchange in global logistics chains : An application for model-based auditing,

    NARCIS (Netherlands)

    Veenstra, A.W.; Hulstijn, J.; Christiaanse, R.M.J.; Tan, Y.

    2013-01-01

    An integrated data pipeline has been proposed to meet requirements for visibility, supervision and control in global supply chains. How can data integration be used for risk assessment, monitoring and control in global supply chains? We argue that concepts from model-based auditing can be used to

  13. Towards a model-based semantic e-Invoicing standard for the Dutch government

    NARCIS (Netherlands)

    Verhoosel, J.P.C.; Bekkum, M.A. van; Roes, J.B.M.; Krukkert, D.; Schrier, A.

    2011-01-01

    In this paper we discuss the case of defining a common semantic e-invoicing model for the Dutch government. We have defined a model-based methodology for developing semantic standards and have applied this methodology to the e-invoicing model. This methodology takes into account that multiple

  14. A model-based software development methodology for high-end automotive components

    NARCIS (Netherlands)

    Ravanan, Mahmoud

    2014-01-01

    This report provides a model-based software development methodology for high-end automotive components. The V-model is used as a process model throughout the development of the software platform. It offers a framework that simplifies the relation between requirements, design, implementation,

  15. How Feedback Can Improve Managerial Evaluations of Model-based Marketing Decision Support Systems

    NARCIS (Netherlands)

    U. Kayande (Ujwal); A. de Bruyn (Arnoud); G.L. Lilien (Gary); A. Rangaswamy (Arvind); G.H. van Bruggen (Gerrit)

    2006-01-01

    textabstractMarketing managers often provide much poorer evaluations of model-based marketing decision support systems (MDSSs) than are warranted by the objective performance of those systems. We show that a reason for this discrepant evaluation may be that MDSSs are often not designed to help users

  16. Model-based specification, analysis and synthesis of servo controllers for lithoscanners

    NARCIS (Netherlands)

    Schiffelers, R.; Alberts, W.; Voeten, J.P.M.

    2012-01-01

    ASML is the world's leading provider of complex lithography systems for the semiconductor industry. Such systems consist of numerous servo control systems. To design such control systems, a multi-disciplinary model-based development environment has been developed. It is based on a set of domain

  17. Fuzzy delay model based fault simulator for crosstalk delay fault test ...

    Indian Academy of Sciences (India)

    In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design trends move towards nanometer technologies, more number of new parameters affects the delay of the component. Fuzzy delay models are ideal for modelling the uncertainty found in the design and manufacturing steps.

  18. Model-based fault detection for proton exchange membrane fuel cell ...

    African Journals Online (AJOL)

    In this paper, an intelligent model-based fault detection (FD) is developed for proton exchange membrane fuel cell (PEMFC) dynamic systems using an independent radial basis function (RBF) networks. The novelty is that this RBF networks is used to model the PEMFC dynamic systems and residuals are generated based ...

  19. A framework for performance evaluation of model-based optical trackers

    NARCIS (Netherlands)

    Smit, F.A.; Liere, van R.

    2008-01-01

    We describe a software framework to evaluate the performance of model-based optical trackers in virtual environments. The framework can be used to evaluate and compare the performance of different trackers under various conditions, to study the effects of varying intrinsic and extrinsic camera

  20. CM5: A pre-Swarm magnetic field model based upon the comprehensive modeling approach

    DEFF Research Database (Denmark)

    Sabaka, T.; Olsen, Nils; Tyler, Robert

    2014-01-01

    We have developed a model based upon the very successful Comprehensive Modeling (CM) approach using recent CHAMP, Ørsted, SAC-C and observatory hourly-means data from September 2000 to the end of 2013. This CM, called CM5, was derived from the algorithm that will provide a consistent line of Leve...

  1. Model-Based Design and Integration of Large Li-ion Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  2. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  3. Information Exchange in Global Logistics Chains : An application for Model-based Auditing (abstract)

    NARCIS (Netherlands)

    Veenstra, A.W.; Hulstijn, J.; Christiaanse, R.; Tan, Y.

    2013-01-01

    An integrated data pipeline has been proposed to meet requirements for supply chain visibility and control. How can data integration be used for risk assessment, monitoring and control in global supply chains? We argue that concepts from model-based auditing can be used to model the ‘ideal’ flow of

  4. A model-based combinatorial optimisation approach for energy-efficient processing of microalgae

    NARCIS (Netherlands)

    Slegers, P.M.; Koetzier, B.J.; Fasaei, F.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2014-01-01

    The analyses of algae biorefinery performance are commonly based on fixed performance data for each processing step. In this work, we demonstrate a model-based combinatorial approach to derive the design-specific upstream energy consumption and biodiesel yield in the production of biodiesel from

  5. Virtual medical plant modeling based on L-system | Ding | African ...

    African Journals Online (AJOL)

    ... aid of graphics and PlantVR, we implemented the plant shape and 3-D structure's reconstruction. Conclusion: Three-dimensional structure virtual plant growth model based on time- controlled L-system has been successfully established. Keywords: Drug R&D, toxicity, medical plants, fractals; L-system; quasi binary-trees.

  6. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; van de Mortel - Fronczak, J.M.; Rooda, J.E.

    2016-01-01

    Increasing system complexity, time to market and development costs reduction place higher demands on engineering processes. Formal models play an important role here because they enable the use of various model-based analyses and early integration techniques and tools. Engineering processes based on

  7. Defect identification using positrons

    International Nuclear Information System (INIS)

    Beling, C.D.; Fung, S.

    2001-01-01

    The current use of the lifetime and Doppler broadening techniques in defect identification is demonstrated with two studies, the first being the identification of carbon vacancy in n-6H SiC through lifetime spectroscopy, and the second the production of de-hydrogenated voids in α-Si:H through light soaking. Some less conventional ideas are presented for more specific defect identification, namely (i) the amalgamation of lifetime and Doppler techniques with conventional deep level transient spectroscopy in what may be called ''positron-deep level transient spectroscopy'', and (ii) the extraction of more spatial information on vacancy defects by means of what may be called ''Fourier transform Doppler broadening of annihilation radiation spectroscopy'' (orig.)

  8. Ratio-based vs. model-based methods to correct for urinary creatinine concentrations.

    Science.gov (United States)

    Jain, Ram B

    2016-08-01

    Creatinine-corrected urinary analyte concentration is usually computed as the ratio of the observed level of analyte concentration divided by the observed level of the urinary creatinine concentration (UCR). This ratio-based method is flawed since it implicitly assumes that hydration is the only factor that affects urinary creatinine concentrations. On the contrary, it has been shown in the literature, that age, gender, race/ethnicity, and other factors also affect UCR. Consequently, an optimal method to correct for UCR should correct for hydration as well as other factors like age, gender, and race/ethnicity that affect UCR. Model-based creatinine correction in which observed UCRs are used as an independent variable in regression models has been proposed. This study was conducted to evaluate the performance of ratio-based and model-based creatinine correction methods when the effects of gender, age, and race/ethnicity are evaluated one factor at a time for selected urinary analytes and metabolites. It was observed that ratio-based method leads to statistically significant pairwise differences, for example, between males and females or between non-Hispanic whites (NHW) and non-Hispanic blacks (NHB), more often than the model-based method. However, depending upon the analyte of interest, the reverse is also possible. The estimated ratios of geometric means (GM), for example, male to female or NHW to NHB, were also compared for the two methods. When estimated UCRs were higher for the group (for example, males) in the numerator of this ratio, these ratios were higher for the model-based method, for example, male to female ratio of GMs. When estimated UCR were lower for the group (for example, NHW) in the numerator of this ratio, these ratios were higher for the ratio-based method, for example, NHW to NHB ratio of GMs. Model-based method is the method of choice if all factors that affect UCR are to be accounted for.

  9. QUALITY INSPECTION AND ANALYSIS OF THREE-DIMENSIONAL GEOGRAPHIC INFORMATION MODEL BASED ON OBLIQUE PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    S. Dong

    2018-04-01

    Full Text Available In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  10. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    Science.gov (United States)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  11. Hob Identification Methods

    Directory of Open Access Journals (Sweden)

    Andrzej Piotrowski

    2018-03-01

    Full Text Available In industrial practice, hobs are manufactured and used. The problem boils down to the identification of a hob with defining its profile, which depends on many design and technological parameters (such as the grinding wheel size, profile, type and positioning during machining. This makes the basis for the correct execution and sharpening of the tool. The accuracy of the hob determines the quality of gear wheel teeth being shaped. The article presents the hob identification methods that are possible to be used in industrial and laboratory practice.

  12. Simplified Multimodal Biometric Identification

    Directory of Open Access Journals (Sweden)

    Abhijit Shete

    2014-03-01

    Full Text Available Multibiometric systems are expected to be more reliable than unimodal biometric systems for personal identification due to the presence of multiple, fairly independent pieces of evidence e.g. Unique Identification Project "Aadhaar" of Government of India. In this paper, we present a novel wavelet based technique to perform fusion at the feature level and score level by considering two biometric modalities, face and fingerprint. The results indicate that the proposed technique can lead to substantial improvement in multimodal matching performance. The proposed technique is simple because of no preprocessing of raw biometric traits as well as no feature and score normalization.

  13. Plant Transporter Identification

    DEFF Research Database (Denmark)

    Larsen, Bo

    Membrane transport proteins (transporters) play a critical role for numerous biological processes, by controlling the movements of ions and molecules in and out of cells. In plants, transporters thus function as gatekeepers between the plant and its surrounding environment and between organs......, tissues, cells and intracellular compartments. Since plants are highly compartmentalized organisms with complex transportation infrastructures, they consequently have many transporters. However, the vast majority of predicted transporters have not yet been experimentally verified to have transport...... activity. This project contains a review of the implemented methods, which have led to plant transporter identification, and present our progress on creating a high-throughput functional genomics transporter identification platform....

  14. An evolutionary model-based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction in HIV-1.

    Directory of Open Access Journals (Sweden)

    Sergei L Kosakovsky Pond

    2009-11-01

    Full Text Available Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1 are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (approximately 5% fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance

  15. IDENTIFICATION SYSTEM, TRACKING AND SUPPORT FOR VESSELS ON RIVERS

    Directory of Open Access Journals (Sweden)

    SAMOILESCU Gheorghe

    2015-05-01

    Full Text Available According to the program COMPRIS (Consortium Operational Management Platform River Information Services, AIS (Automatic Identification System, RIS (River Information Services have compiled a reference model based on the perspective of navigation on the river with related information services. This paper presents a tracking and monitoring surveillance system necessary for assistance of each ship sailing in an area of interest. It shows the operating principle of the composition and role of each equipment. Transferring data to traffic monitoring authority is part of this work.

  16. Denture identification using unique identification authority of India barcode

    OpenAIRE

    Sudhindra Mahoorkar; Anoop Jain

    2013-01-01

    Over the years, various denture marking systems have been reported in the literature for personal identification. They have been broadly divided into surface marking and inclusion methods. In this technique, patient's unique identification number and barcode printed in the patient's Aadhaar card issued by Unique Identification Authority of India (UIDAI) are used as denture markers. This article describes a simple, quick, and economical method for identification of individual.

  17. Denture identification using unique identification authority of India barcode.

    Science.gov (United States)

    Mahoorkar, Sudhindra; Jain, Anoop

    2013-01-01

    Over the years, various denture marking systems have been reported in the literature for personal identification. They have been broadly divided into surface marking and inclusion methods. In this technique, patient's unique identification number and barcode printed in the patient's Aadhaar card issued by Unique Identification Authority of India (UIDAI) are used as denture markers. This article describes a simple, quick, and economical method for identification of individual.

  18. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.

    Science.gov (United States)

    Doll, Bradley B; Bath, Kevin G; Daw, Nathaniel D; Frank, Michael J

    2016-01-27

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes

  19. Identification markings for gemstones

    International Nuclear Information System (INIS)

    Dreschhoff, G.A.M.; Zeller, E.J.

    1980-01-01

    A method is described of providing permanent identification markings to gemstones such as diamond crystals by irradiating the cooled gemstone with protons in the desired pattern. The proton bombardment results in a reaction limited to a defined plane and converting the bombarded area of the plane into a different crystal lattice from that of the preirradiated stone. (author)

  20. Radio Frequency Identification

    Indian Academy of Sciences (India)

    Radio Frequency Identification (RFID) has been around sinceearly 2000. Its use has currently become commonplace as thecost of RFID tags has rapidly decreased. RFID tags have alsobecome more 'intelligent' with the incorporation of processorsand sensors in them. They are widely used now in manyinnovative ways.

  1. Mexican Identification. Project Mexico.

    Science.gov (United States)

    Castellano, Rita

    This document presents an outline and teacher's guide for a community college-level teaching module in Mexican identification, designed for students in introductory courses in the social sciences. Although intended specifically for cultural anthropology, urban anthropology, comparative social organization and sex roles in cross-cultural…

  2. REMI and ROUSE: Quantitative Models for Long-Term and Short-Term Priming in Perceptual Identification

    NARCIS (Netherlands)

    E.J. Wagenmakers (Eric-Jan); R. Zeelenberg (René); D.E. Huber (David); J.G.W. Raaijmakers (Jeroen)

    2003-01-01

    textabstractThe REM model originally developed for recognition memory (Shiffrin & Steyvers, 1997) has recently been extended to implicit memory phenomena observed during threshold identification of words. We discuss two REM models based on Bayesian principles: a model for long-term priming (REMI;

  3. Dental plaque identification at home

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003426.htm Dental plaque identification at home To use the sharing ... a sticky substance that collects around and between teeth. The home dental plaque identification test shows where ...

  4. Identification of nonlinear anelastic models

    International Nuclear Information System (INIS)

    Draganescu, G E; Bereteu, L; Ercuta, A

    2008-01-01

    A useful nonlinear identification technique applied to the anelastic and rheologic models is presented in this paper. First introduced by Feldman, the method is based on the Hilbert transform, and is currently used for identification of the nonlinear vibrations

  5. Embedded System for Biometric Identification

    OpenAIRE

    Rosli, Ahmad Nasir Che

    2010-01-01

    This chapter describes the design and implementation of an Embedded System for Biometric Identification from hardware and software perspectives. The first part of the chapter describes the idea of biometric identification. This includes the definition of

  6. Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices

    OpenAIRE

    Munteanu, Cristian Robert

    2014-01-01

    Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)

  7. The Heuristic Model Based on LPR in the Context of Material Conversion

    Directory of Open Access Journals (Sweden)

    Wilk-Kołodziejczyk D.

    2017-09-01

    Full Text Available High complexity of the physical and chemical processes occurring in liquid metal is the reason why it is so difficult, impossible even sometimes, to make analytical models of these phenomena. In this situation, the use of heuristic models based on the experimental data and experience of technicians is fully justified since, in an approximate manner at least, they allow predicting the mechanical properties of the metal manufactured under given process conditions. The study presents a methodology applicable in the design of a heuristic model based on the formalism of the logic of plausible reasoning (LPR. The problem under consideration consists in finding a technological variant of the process that will give the desired product parameters while minimizing the cost of production. The conducted tests have shown the effectiveness of the proposed approach.

  8. Discrete event model-based simulation for train movement on a single-line railway

    International Nuclear Information System (INIS)

    Xu Xiao-Ming; Li Ke-Ping; Yang Li-Xing

    2014-01-01

    The aim of this paper is to present a discrete event model-based approach to simulate train movement with the considered energy-saving factor. We conduct extensive case studies to show the dynamic characteristics of the traffic flow and demonstrate the effectiveness of the proposed approach. The simulation results indicate that the proposed discrete event model-based simulation approach is suitable for characterizing the movements of a group of trains on a single railway line with less iterations and CPU time. Additionally, some other qualitative and quantitative characteristics are investigated. In particular, because of the cumulative influence from the previous trains, the following trains should be accelerated or braked frequently to control the headway distance, leading to more energy consumption. (general)

  9. Generation of three-dimensional prototype models based on cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M. [University of Basel, Department of Oral Surgery, University Hospital for Oral Surgery, Oral Radiology and Oral Medicine, Basel (Switzerland); Schumacher, R. [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Muttenz (Switzerland)

    2009-03-15

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  10. Generation of three-dimensional prototype models based on cone beam computed tomography

    International Nuclear Information System (INIS)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M.; Schumacher, R.

    2009-01-01

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  11. Robust Transmission of Speech LSFs Using Hidden Markov Model-Based Multiple Description Index Assignments

    Directory of Open Access Journals (Sweden)

    Pradeepa Yahampath

    2008-03-01

    Full Text Available Speech coding techniques capable of generating encoded representations which are robust against channel losses play an important role in enabling reliable voice communication over packet networks and mobile wireless systems. In this paper, we investigate the use of multiple description index assignments (MDIAs for loss-tolerant transmission of line spectral frequency (LSF coefficients, typically generated by state-of-the-art speech coders. We propose a simulated annealing-based approach for optimizing MDIAs for Markov-model-based decoders which exploit inter- and intraframe correlations in LSF coefficients to reconstruct the quantized LSFs from coded bit streams corrupted by channel losses. Experimental results are presented which compare the performance of a number of novel LSF transmission schemes. These results clearly demonstrate that Markov-model-based decoders, when used in conjunction with optimized MDIA, can yield average spectral distortion much lower than that produced by methods such as interleaving/interpolation, commonly used to combat the packet losses.

  12. Student use of model-based reasoning when troubleshooting an electronic circuit

    Science.gov (United States)

    Lewandowski, Heather; Stetzer, Mackenzie; van de Bogart, Kevin; Dounas-Frazer, Dimitri

    2016-03-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  13. Student use of model-based reasoning when troubleshooting an electric circuit

    Science.gov (United States)

    Dounas-Frazer, Dimitri

    2016-05-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  14. A Model-Based Cluster Analysis of Maternal Emotion Regulation and Relations to Parenting Behavior.

    Science.gov (United States)

    Shaffer, Anne; Whitehead, Monica; Davis, Molly; Morelen, Diana; Suveg, Cynthia

    2017-10-15

    In a diverse community sample of mothers (N = 108) and their preschool-aged children (M age  = 3.50 years), this study conducted person-oriented analyses of maternal emotion regulation (ER) based on a multimethod assessment incorporating physiological, observational, and self-report indicators. A model-based cluster analysis was applied to five indicators of maternal ER: maternal self-report, observed negative affect in a parent-child interaction, baseline respiratory sinus arrhythmia (RSA), and RSA suppression across two laboratory tasks. Model-based cluster analyses revealed four maternal ER profiles, including a group of mothers with average ER functioning, characterized by socioeconomic advantage and more positive parenting behavior. A dysregulated cluster demonstrated the greatest challenges with parenting and dyadic interactions. Two clusters of intermediate dysregulation were also identified. Implications for assessment and applications to parenting interventions are discussed. © 2017 Family Process Institute.

  15. An efficient binomial model-based measure for sequence comparison and its application.

    Science.gov (United States)

    Liu, Xiaoqing; Dai, Qi; Li, Lihua; He, Zerong

    2011-04-01

    Sequence comparison is one of the major tasks in bioinformatics, which could serve as evidence of structural and functional conservation, as well as of evolutionary relations. There are several similarity/dissimilarity measures for sequence comparison, but challenges remains. This paper presented a binomial model-based measure to analyze biological sequences. With help of a random indicator, the occurrence of a word at any position of sequence can be regarded as a random Bernoulli variable, and the distribution of a sum of the word occurrence is well known to be a binomial one. By using a recursive formula, we computed the binomial probability of the word count and proposed a binomial model-based measure based on the relative entropy. The proposed measure was tested by extensive experiments including classification of HEV genotypes and phylogenetic analysis, and further compared with alignment-based and alignment-free measures. The results demonstrate that the proposed measure based on binomial model is more efficient.

  16. Model-Based Synthesis of Visual Speech Movements from 3D Video

    Directory of Open Access Journals (Sweden)

    Edge JamesD

    2009-01-01

    Full Text Available We describe a method for the synthesis of visual speech movements using a hybrid unit selection/model-based approach. Speech lip movements are captured using a 3D stereo face capture system and split up into phonetic units. A dynamic parameterisation of this data is constructed which maintains the relationship between lip shapes and velocities; within this parameterisation a model of how lips move is built and is used in the animation of visual speech movements from speech audio input. The mapping from audio parameters to lip movements is disambiguated by selecting only the most similar stored phonetic units to the target utterance during synthesis. By combining properties of model-based synthesis (e.g., HMMs, neural nets with unit selection we improve the quality of our speech synthesis.

  17. Context-model-based instruction in teaching EFL writing: A narrative inquiry

    Directory of Open Access Journals (Sweden)

    Zheng Lin

    2016-12-01

    Full Text Available This study aims to re-story the provision of the context-model-based instruction in teaching EFL writing, focusing especially on students’ development of the context model and learning to guide EFL writing with the context model. The research data have been collected from the audio recordings of the classroom instruction, the teacher-researcher’s memos, and the students’ reflections on their learning experience in the study. The findings that have resulted from this narrative inquiry show (1 the context-model-based instruction has helped students develop their context model; (2 students could learn to configure the four elements of the context model (i.e. “the purpose of communication, the subject matter, the relationship with the reader and the normal pattern of presentation”; and (3 students could learn to be mindful to proactively apply the context model in the process of EFL writing to manage the situated, dynamic and intercultural issues involved.

  18. An u-Service Model Based on a Smart Phone for Urban Computing Environments

    Science.gov (United States)

    Cho, Yongyun; Yoe, Hyun

    In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.

  19. Robust Transmission of Speech LSFs Using Hidden Markov Model-Based Multiple Description Index Assignments

    Directory of Open Access Journals (Sweden)

    Rondeau Paul

    2008-01-01

    Full Text Available Speech coding techniques capable of generating encoded representations which are robust against channel losses play an important role in enabling reliable voice communication over packet networks and mobile wireless systems. In this paper, we investigate the use of multiple description index assignments (MDIAs for loss-tolerant transmission of line spectral frequency (LSF coefficients, typically generated by state-of-the-art speech coders. We propose a simulated annealing-based approach for optimizing MDIAs for Markov-model-based decoders which exploit inter- and intraframe correlations in LSF coefficients to reconstruct the quantized LSFs from coded bit streams corrupted by channel losses. Experimental results are presented which compare the performance of a number of novel LSF transmission schemes. These results clearly demonstrate that Markov-model-based decoders, when used in conjunction with optimized MDIA, can yield average spectral distortion much lower than that produced by methods such as interleaving/interpolation, commonly used to combat the packet losses.

  20. Top-Down and Bottom-Up Approach for Model-Based Testing of Product Lines

    Directory of Open Access Journals (Sweden)

    Stephan Weißleder

    2013-03-01

    Full Text Available Systems tend to become more and more complex. This has a direct impact on system engineering processes. Two of the most important phases in these processes are requirements engineering and quality assurance. Two significant complexity drivers located in these phases are the growing number of product variants that have to be integrated into the requirements engineering and the ever growing effort for manual test design. There are modeling techniques to deal with both complexity drivers like, e.g., feature modeling and model-based test design. Their combination, however, has been seldom the focus of investigation. In this paper, we present two approaches to combine feature modeling and model-based testing as an efficient quality assurance technique for product lines. We present the corresponding difficulties and approaches to overcome them. All explanations are supported by an example of an online shop product line.

  1. A model-based framework for design of intensified enzyme-based processes

    DEFF Research Database (Denmark)

    Román-Martinez, Alicia

    This thesis presents a generic and systematic model-based framework to design intensified enzyme-based processes. The development of the presented methodology was motivated by the needs of the bio-based industry for a more systematic approach to achieve intensification in its production plants...... in enzyme-based processes which have found significant application in the pharmaceutical, food, and renewable fuels sector. The framework uses model-based strategies for (bio)-chemical process design and optimization, including the use of a superstructure to generate all potential reaction......(s)-separation(s) options according to a desired performance criteria and a generic mathematical model represented by the superstructure to derive the specific models corresponding to a specific process option. In principle, three methods of intensification of bioprocess are considered in this thesis: 1. enzymatic one...

  2. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf

    2017-01-01

    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  3. Model-Based Photoacoustic Image Reconstruction using Compressed Sensing and Smoothed L0 Norm

    OpenAIRE

    Mozaffarzadeh, Moein; Mahloojifar, Ali; Nasiriavanaki, Mohammadreza; Orooji, Mahdi

    2018-01-01

    Photoacoustic imaging (PAI) is a novel medical imaging modality that uses the advantages of the spatial resolution of ultrasound imaging and the high contrast of pure optical imaging. Analytical algorithms are usually employed to reconstruct the photoacoustic (PA) images as a result of their simple implementation. However, they provide a low accurate image. Model-based (MB) algorithms are used to improve the image quality and accuracy while a large number of transducers and data acquisition a...

  4. Model based Fault Detection and Isolation for Driving Motors of a Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Young-Joon Kim

    2016-04-01

    Full Text Available This paper proposes model based current sensor and position sensor fault detection and isolation algorithm for driving motor of In-wheel independent drive electric vehicle. From low level perspective, fault diagnosis conducted and analyzed to enhance robustness and stability. Composing state equation of interior permanent magnet synchronous motor (IPMSM, current sensor fault and position sensor fault diagnosed with parity equation. Validation and usefulness of algorithm confirmed based on IPMSM fault occurrence simulation data.

  5. Analysis and Research on Spatial Data Storage Model Based on Cloud Computing Platform

    Science.gov (United States)

    Hu, Yong

    2017-12-01

    In this paper, the data processing and storage characteristics of cloud computing are analyzed and studied. On this basis, a cloud computing data storage model based on BP neural network is proposed. In this data storage model, it can carry out the choice of server cluster according to the different attributes of the data, so as to complete the spatial data storage model with load balancing function, and have certain feasibility and application advantages.

  6. Application of model-based and knowledge-based measuring methods as analytical redundancy

    International Nuclear Information System (INIS)

    Hampel, R.; Kaestner, W.; Chaker, N.; Vandreier, B.

    1997-01-01

    The safe operation of nuclear power plants requires the application of modern and intelligent methods of signal processing for the normal operation as well as for the management of accident conditions. Such modern and intelligent methods are model-based and knowledge-based ones being founded on analytical knowledge (mathematical models) as well as experiences (fuzzy information). In addition to the existing hardware redundancies analytical redundancies will be established with the help of these modern methods. These analytical redundancies support the operating staff during the decision-making. The design of a hybrid model-based and knowledge-based measuring method will be demonstrated by the example of a fuzzy-supported observer. Within the fuzzy-supported observer a classical linear observer is connected with a fuzzy-supported adaptation of the model matrices of the observer model. This application is realized for the estimation of the non-measurable variables as steam content and mixture level within pressure vessels with water-steam mixture during accidental depressurizations. For this example the existing non-linearities will be classified and the verification of the model will be explained. The advantages of the hybrid method in comparison to the classical model-based measuring methods will be demonstrated by the results of estimation. The consideration of the parameters which have an important influence on the non-linearities requires the inclusion of high-dimensional structures of fuzzy logic within the model-based measuring methods. Therefore methods will be presented which allow the conversion of these high-dimensional structures to two-dimensional structures of fuzzy logic. As an efficient solution of this problem a method based on cascaded fuzzy controllers will be presented. (author). 2 refs, 12 figs, 5 tabs

  7. A QUADTREE ORGANIZATION CONSTRUCTION AND SCHEDULING METHOD FOR URBAN 3D MODEL BASED ON WEIGHT

    OpenAIRE

    C. Yao; G. Peng; Y. Song; M. Duan

    2017-01-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weigh...

  8. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  9. Design Principles for Business-Model-based Management Methods—A Service-dominant Logic Perspective

    OpenAIRE

    Blaschke, Michael; Haki, Kazem; Riss, Uwe; Aier, Stephan

    2017-01-01

    Extant research gives rise to the notion of business-model-based management that stresses the pivotal role of the business model concept in organizational management. This role entails a shift in research from predominantly examining business model representation to the use of the business model concept in the design of management methods. In designing respective management methods, managers need to not only account for the business model concept, but also consider the characteristics of the ...

  10. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    OpenAIRE

    Jun-He Yang; Ching-Hsue Cheng; Chia-Pan Chan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting m...

  11. Model-based leakage localization in drinking water distribution networks using structured residuals

    OpenAIRE

    Puig Cayuela, Vicenç; Rosich, Albert

    2013-01-01

    In this paper, a new model based approach to leakage localization in drinking water networks is proposed based on generating a set of structured residuals. The residual evaluation is based on a numerical method based on an enhanced Newton-Raphson algorithm. The proposed method is suitable for water network systems because the non-linearities of the model make impossible to derive analytical residuals. Furthermore, the computed residuals are designed so that leaks are decoupled, which impro...

  12. A Full-Body Layered Deformable Model for Automatic Model-Based Gait Recognition

    Science.gov (United States)

    Lu, Haiping; Plataniotis, Konstantinos N.; Venetsanopoulos, Anastasios N.

    2007-12-01

    This paper proposes a full-body layered deformable model (LDM) inspired by manually labeled silhouettes for automatic model-based gait recognition from part-level gait dynamics in monocular video sequences. The LDM is defined for the fronto-parallel gait with 22 parameters describing the human body part shapes (widths and lengths) and dynamics (positions and orientations). There are four layers in the LDM and the limbs are deformable. Algorithms for LDM-based human body pose recovery are then developed to estimate the LDM parameters from both manually labeled and automatically extracted silhouettes, where the automatic silhouette extraction is through a coarse-to-fine localization and extraction procedure. The estimated LDM parameters are used for model-based gait recognition by employing the dynamic time warping for matching and adopting the combination scheme in AdaBoost.M2. While the existing model-based gait recognition approaches focus primarily on the lower limbs, the estimated LDM parameters enable us to study full-body model-based gait recognition by utilizing the dynamics of the upper limbs, the shoulders and the head as well. In the experiments, the LDM-based gait recognition is tested on gait sequences with differences in shoe-type, surface, carrying condition and time. The results demonstrate that the recognition performance benefits from not only the lower limb dynamics, but also the dynamics of the upper limbs, the shoulders and the head. In addition, the LDM can serve as an analysis tool for studying factors affecting the gait under various conditions.

  13. A Deep Learning Prediction Model Based on Extreme-Point Symmetric Mode Decomposition and Cluster Analysis

    OpenAIRE

    Li, Guohui; Zhang, Songling; Yang, Hong

    2017-01-01

    Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed ...

  14. Model-based fault diagnosis techniques design schemes, algorithms, and tools

    CERN Document Server

    Ding, Steven

    2008-01-01

    The objective of this book is to introduce basic model-based FDI schemes, advanced analysis and design algorithms, and the needed mathematical and control theory tools at a level for graduate students and researchers as well as for engineers. This is a textbook with extensive examples and references. Most methods are given in the form of an algorithm that enables a direct implementation in a programme. Comparisons among different methods are included when possible.

  15. Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2017-01-01

    In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...

  16. Making the Case for a Model-Based Definition of Engineering Materials (Postprint)

    Science.gov (United States)

    2017-09-12

    MBE relies on digi- tal representations, or a model-based definition (MBD), to define a product throughout design , manufacturing and sus- tainment...discovery through development, scale-up, product design and qualification, manufacture and sustainment have changed little over the past decades. This...testing data provided a certifiable material definition, so as to minimize risk and simplify procurement of materials during the design , manufacture , and

  17. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    OpenAIRE

    Li, Shilong; Yin, Chuancun; Zhao, Xia; Dai, Hongshuai

    2017-01-01

    Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigat...

  18. Research on user behavior authentication model based on stochastic Petri nets

    Science.gov (United States)

    Zhang, Chengyuan; Xu, Haishui

    2017-08-01

    A behavioural authentication model based on stochastic Petri net is proposed to meet the randomness, uncertainty and concurrency characteristics of user behaviour. The use of random models in the location, changes, arc and logo to describe the characteristics of a variety of authentication and game relationships, so as to effectively implement the graphical user behaviour authentication model analysis method, according to the corresponding proof to verify the model is valuable.

  19. A Sensitivity Analysis of a Computer Model-Based Leak Detection System for Oil Pipelines

    OpenAIRE

    Zhe Lu; Yuntong She; Mark Loewen

    2017-01-01

    Improving leak detection capability to eliminate undetected releases is an area of focus for the energy pipeline industry, and the pipeline companies are working to improve existing methods for monitoring their pipelines. Computer model-based leak detection methods that detect leaks by analyzing the pipeline hydraulic state have been widely employed in the industry, but their effectiveness in practical applications is often challenged by real-world uncertainties. This study quantitatively ass...

  20. State of the Art : Integrated Management of Requirements in Model-Based Software Engineering

    OpenAIRE

    Thörn, Christer

    2006-01-01

    This report describes the background and future of research concerning integrated management of requirements in model-based software engineering. The focus is on describing the relevant topics and existing theoretical backgrounds that form the basis for the research. The report describes the fundamental difficulties of requirements engineering for software projects, and proposes that the results and methods of models in software engineering can help leverage those problems. Taking inspiration...

  1. A Joint Approach for Single-Channel Speaker Identification and Speech Separation

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Saeidi, Rahim; Christensen, Mads Græsbøll

    2012-01-01

    ) accuracy, here, we report the objective and subjective results as well. The results show that the proposed system performs as well as the best of the state-of-the-art in terms of perceived quality while its performance in terms of speaker identification and automatic speech recognition results......In this paper, we present a novel system for joint speaker identification and speech separation. For speaker identification a single-channel speaker identification algorithm is proposed which provides an estimate of signal-to-signal ratio (SSR) as a by-product. For speech separation, we propose...... a sinusoidal model-based algorithm. The speech separation algorithm consists of a double-talk/single-talk detector followed by a minimum mean square error estimator of sinusoidal parameters for finding optimal codevectors from pre-trained speaker codebooks. In evaluating the proposed system, we start from...

  2. Theory and experiments in model-based space system anomaly management

    Science.gov (United States)

    Kitts, Christopher Adam

    This research program consists of an experimental study of model-based reasoning methods for detecting, diagnosing and resolving anomalies that occur when operating a comprehensive space system. Using a first principles approach, several extensions were made to the existing field of model-based fault detection and diagnosis in order to develop a general theory of model-based anomaly management. Based on this theory, a suite of algorithms were developed and computationally implemented in order to detect, diagnose and identify resolutions for anomalous conditions occurring within an engineering system. The theory and software suite were experimentally verified and validated in the context of a simple but comprehensive, student-developed, end-to-end space system, which was developed specifically to support such demonstrations. This space system consisted of the Sapphire microsatellite which was launched in 2001, several geographically distributed and Internet-enabled communication ground stations, and a centralized mission control complex located in the Space Technology Center in the NASA Ames Research Park. Results of both ground-based and on-board experiments demonstrate the speed, accuracy, and value of the algorithms compared to human operators, and they highlight future improvements required to mature this technology.

  3. Model-based control of the resistive wall mode in DIII-D: A comparison study

    International Nuclear Information System (INIS)

    Dalessio, J.; Schuster, E.; Humphreys, D.A.; Walker, M.L.; In, Y.; Kim, J.-S.

    2009-01-01

    One of the major non-axisymmetric instabilities under study in the DIII-D tokamak is the resistive wall mode (RWM), a form of plasma kink instability whose growth rate is moderated by the influence of a resistive wall. One of the approaches for RWM stabilization, referred to as magnetic control, uses feedback control to produce magnetic fields opposing the moving field that accompanies the growth of the mode. These fields are generated by coils arranged around the tokamak. One problem with RWM control methods used in present experiments is that they predominantly use simple non-model-based proportional-derivative (PD) controllers requiring substantial derivative gain for stabilization, which implies a large response to noise and perturbations, leading to a requirement for high peak voltages and coil currents, usually leading to actuation saturation and instability. Motivated by this limitation, current efforts in DIII-D include the development of model-based RWM controllers. The General Atomics (GA)/Far-Tech DIII-D RWM model represents the plasma surface as a toroidal current sheet and characterizes the wall using an eigenmode approach. Optimal and robust controllers have been designed exploiting the availability of the RWM dynamic model. The controllers are tested through simulations, and results are compared to present non-model-based PD controllers. This comparison also makes use of the μ structured singular value as a measure of robust stability and performance of the closed-loop system.

  4. A Probabilistic Short-Term Water Demand Forecasting Model Based on the Markov Chain

    Directory of Open Access Journals (Sweden)

    Francesca Gagliardi

    2017-07-01

    Full Text Available This paper proposes a short-term water demand forecasting method based on the use of the Markov chain. This method provides estimates of future demands by calculating probabilities that the future demand value will fall within pre-assigned intervals covering the expected total variability. More specifically, two models based on homogeneous and non-homogeneous Markov chains were developed and presented. These models, together with two benchmark models (based on artificial neural network and naïve methods, were applied to three real-life case studies for the purpose of forecasting the respective water demands from 1 to 24 h ahead. The results obtained show that the model based on a homogeneous Markov chain provides more accurate short-term forecasts than the one based on a non-homogeneous Markov chain, which is in line with the artificial neural network model. Both Markov chain models enable probabilistic information regarding the stochastic demand forecast to be easily obtained.

  5. Video Quality Prediction Models Based on Video Content Dynamics for H.264 Video over UMTS Networks

    Directory of Open Access Journals (Sweden)

    Asiya Khan

    2010-01-01

    Full Text Available The aim of this paper is to present video quality prediction models for objective non-intrusive, prediction of H.264 encoded video for all content types combining parameters both in the physical and application layer over Universal Mobile Telecommunication Systems (UMTS networks. In order to characterize the Quality of Service (QoS level, a learning model based on Adaptive Neural Fuzzy Inference System (ANFIS and a second model based on non-linear regression analysis is proposed to predict the video quality in terms of the Mean Opinion Score (MOS. The objective of the paper is two-fold. First, to find the impact of QoS parameters on end-to-end video quality for H.264 encoded video. Second, to develop learning models based on ANFIS and non-linear regression analysis to predict video quality over UMTS networks by considering the impact of radio link loss models. The loss models considered are 2-state Markov models. Both the models are trained with a combination of physical and application layer parameters and validated with unseen dataset. Preliminary results show that good prediction accuracy was obtained from both the models. The work should help in the development of a reference-free video prediction model and QoS control methods for video over UMTS networks.

  6. The Actualization of Literary Learning Model Based on Verbal-Linguistic Intelligence

    Directory of Open Access Journals (Sweden)

    Nur Ihsan Halil

    2017-10-01

    Full Text Available This article is inspired by Howard Gardner's concept of linguistic intelligence and also from some authors' previous writings. All of them became the authors' reference in developing ideas on constructing a literary learning model based on linguistic intelligence. The writing of this article is not done by collecting data empirically, but by developing and constructing an existing concept, namely the concept of linguistic intelligence, which is disseminated into a literature-based learning of verbal-linguistic intelligence. The purpose of this paper is to answer the question of how to apply the literary learning model based on the verbal-linguistic intelligence. Then, regarding Gardner's concept, the author formulated a literary learning model based on the verbal-linguistic intelligence through a story-telling learning model with five steps namely arguing, discussing, interpreting, speaking, and writing about literary works. In short, the writer draw a conclusion that learning-based models of verbal-linguistic intelligence can be designed with attention into five components namely (1 definition, (2 characteristics, (3 teaching strategy, (4 final learning outcomes, and (5 figures.

  7. What is needed to eliminate new pediatric HIV infections: The contribution of model-based analyses

    Science.gov (United States)

    Doherty, Katie; Ciaranello, Andrea

    2013-01-01

    Purpose of Review Computer simulation models can identify key clinical, operational, and economic interventions that will be needed to achieve the elimination of new pediatric HIV infections. In this review, we summarize recent findings from model-based analyses of strategies for prevention of mother-to-child HIV transmission (MTCT). Recent Findings In order to achieve elimination of MTCT (eMTCT), model-based studies suggest that scale-up of services will be needed in several domains: uptake of services and retention in care (the PMTCT “cascade”), interventions to prevent HIV infections in women and reduce unintended pregnancies (the “four-pronged approach”), efforts to support medication adherence through long periods of pregnancy and breastfeeding, and strategies to make breastfeeding safer and/or shorter. Models also project the economic resources that will be needed to achieve these goals in the most efficient ways to allocate limited resources for eMTCT. Results suggest that currently recommended PMTCT regimens (WHO Option A, Option B, and Option B+) will be cost-effective in most settings. Summary Model-based results can guide future implementation science, by highlighting areas in which additional data are needed to make informed decisions and by outlining critical interventions that will be necessary in order to eliminate new pediatric HIV infections. PMID:23743788

  8. Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm

    International Nuclear Information System (INIS)

    Wang, Xinli; Cai, Wenjian; Lu, Jiangang; Sun, Youxian; Zhao, Lei

    2015-01-01

    This study presents a model-based optimization strategy for an actual chiller driven dehumidifier of liquid desiccant dehumidification system operating with lithium chloride solution. By analyzing the characteristics of the components, energy predictive models for the components in the dehumidifier are developed. To minimize the energy usage while maintaining the outlet air conditions at the pre-specified set-points, an optimization problem is formulated with an objective function, the constraints of mechanical limitations and components interactions. Model-based optimization strategy using genetic algorithm is proposed to obtain the optimal set-points for desiccant solution temperature and flow rate, to minimize the energy usage in the dehumidifier. Experimental studies on an actual system are carried out to compare energy consumption between the proposed optimization and the conventional strategies. The results demonstrate that energy consumption using the proposed optimization strategy can be reduced by 12.2% in the dehumidifier operation. - Highlights: • Present a model-based optimization strategy for energy saving in LDDS. • Energy predictive models for components in dehumidifier are developed. • The Optimization strategy are applied and tested in an actual LDDS. • Optimization strategy can achieve energy savings by 12% during operation

  9. Implementing Lumberjacks and Black Swans Into Model-Based Tools to Support Human-Automation Interaction.

    Science.gov (United States)

    Sebok, Angelia; Wickens, Christopher D

    2017-03-01

    The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.

  10. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation.

    Science.gov (United States)

    Dayan, Peter; Berridge, Kent C

    2014-06-01

    Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.

  11. Model-based safety analysis of a control system using Simulink and Simscape extended models

    Directory of Open Access Journals (Sweden)

    Shao Nian

    2017-01-01

    Full Text Available The aircraft or system safety assessment process is an integral part of the overall aircraft development cycle. It is usually characterized by a very high timely and financial effort and can become a critical design driver in certain cases. Therefore, an increasing demand of effective methods to assist the safety assessment process arises within the aerospace community. One approach is the utilization of model-based technology, which is already well-established in the system development, for safety assessment purposes. This paper mainly describes a new tool for Model-Based Safety Analysis. A formal model for an example system is generated and enriched with extended models. Then, system safety analyses are performed on the model with the assistance of automation tools and compared to the results of a manual analysis. The objective of this paper is to improve the increasingly complex aircraft systems development process. This paper develops a new model-based analysis tool in Simulink/Simscape environment.

  12. Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhongyue Zou

    2014-08-01

    Full Text Available Four model-based State of Charge (SOC estimation methods for lithium-ion (Li-ion batteries are studied and evaluated in this paper. Different from existing literatures, this work evaluates different aspects of the SOC estimation, such as the estimation error distribution, the estimation rise time, the estimation time consumption, etc. The equivalent model of the battery is introduced and the state function of the model is deduced. The four model-based SOC estimation methods are analyzed first. Simulations and experiments are then established to evaluate the four methods. The urban dynamometer driving schedule (UDDS current profiles are applied to simulate the drive situations of an electrified vehicle, and a genetic algorithm is utilized to identify the model parameters to find the optimal parameters of the model of the Li-ion battery. The simulations with and without disturbance are carried out and the results are analyzed. A battery test workbench is established and a Li-ion battery is applied to test the hardware in a loop experiment. Experimental results are plotted and analyzed according to the four aspects to evaluate the four model-based SOC estimation methods.

  13. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  14. Designing the database for a reliability aware Model-Based System Engineering process

    International Nuclear Information System (INIS)

    Cressent, Robin; David, Pierre; Idasiak, Vincent; Kratz, Frederic

    2013-01-01

    This article outlines the need for a reliability database to implement model-based description of components failure modes and dysfunctional behaviors. We detail the requirements such a database should honor and describe our own solution: the Dysfunctional Behavior Database (DBD). Through the description of its meta-model, the benefits of integrating the DBD in the system design process is highlighted. The main advantages depicted are the possibility to manage feedback knowledge at various granularity and semantic levels and to ease drastically the interactions between system engineering activities and reliability studies. The compliance of the DBD with other reliability database such as FIDES is presented and illustrated. - Highlights: ► Model-Based System Engineering is more and more used in the industry. ► It results in a need for a reliability database able to deal with model-based description of dysfunctional behavior. ► The Dysfunctional Behavior Database aims to fulfill that need. ► It helps dealing with feedback management thanks to its structured meta-model. ► The DBD can profit from other reliability database such as FIDES.

  15. Model-based energy monitoring and diagnosis of telecommunication cooling systems

    International Nuclear Information System (INIS)

    Sorrentino, Marco; Acconcia, Matteo; Panagrosso, Davide; Trifirò, Alena

    2016-01-01

    A methodology is proposed for on-line monitoring of cooling load supplied by Telecommunication (TLC) cooling systems. Sensible cooling load is estimated via a proportional integral controller-based input estimator, whereas a lumped parameters model was developed aiming at estimating air handling units (AHUs) latent heat load removal. The joint deployment of above estimators enables accurate prediction of total cooling load, as well as of related AHUs and free-coolers energy performance. The procedure was then proven effective when extended to cooling systems having a centralized chiller, through model-based estimation of a key performance metric, such as the energy efficiency ratio. The results and experimental validation presented throughout the paper confirm the suitability of the proposed procedure as a reliable and effective energy monitoring and diagnostic tool for TLC applications. Moreover, the proposed modeling approach, beyond its direct contribution towards smart use and conservation of energy, can be fruitfully deployed as a virtual sensor of removed heat load into a variety of residential and industrial applications. - Highlights: • Accurate cooling load prediction in telecommunication rooms. • Development of an input-estimator for sensible cooling load simulation. • Model-based estimation of latent cooling load. • Model-based prediction of centralized chiller energy performance in central offices. • Diagnosis-oriented application of proposed cooling load estimator.

  16. Snake Model Based on Improved Genetic Algorithm in Fingerprint Image Segmentation

    Directory of Open Access Journals (Sweden)

    Mingying Zhang

    2016-12-01

    Full Text Available Automatic fingerprint identification technology is a quite mature research field in biometric identification technology. As the preprocessing step in fingerprint identification, fingerprint segmentation can improve the accuracy of fingerprint feature extraction, and also reduce the time of fingerprint preprocessing, which has a great significance in improving the performance of the whole system. Based on the analysis of the commonly used methods of fingerprint segmentation, the existing segmentation algorithm is improved in this paper. The snake model is used to segment the fingerprint image. Additionally, it is improved by using the global optimization of the improved genetic algorithm. Experimental results show that the algorithm has obvious advantages both in the speed of image segmentation and in the segmentation effect.

  17. Identification of southern radio sources

    International Nuclear Information System (INIS)

    Savage, A.; Bolton, J.G.; Wright, A.E.

    1977-01-01

    Identifications are suggested for 53 radio sources from the southern zones of the Parkes 2700-MHz survey, 32 with galaxies, 11 with suggested QSOs and 10 with confirmed QSOs. The identifications were made from the ESO quick blue survey plates, the SRC IIIa-J deep survey plates and the Palomar Sky Survey prints. Accurate optical positions have been measured for four of the new identifications and for two previously suggested identifications. A further nine previously suggested QSO identifications have also been confirmed by two-colour photography or spectroscopy. (author)

  18. Identification of Rotating Machines

    Directory of Open Access Journals (Sweden)

    T. Kreuzinger-Janik

    2000-01-01

    Full Text Available In this paper a method is proposed for unbalance identification ofelastic rotors. The method is essentially based on the rotordynamic theory combined with experimental modal analysis and allows to identify the unbalance distribution on the complete rotor. A rotor test rig designed for rotordynamic experiments, modal analysis and especially for the unbalance identification has been developed. It allows an arbitrary excitation with a particularly developed noncontact magnetic exciter, as well as measuring vibrations in radial direction with non-contact laser sensors and eddy currents. Special effects of rotordynamic like anisotropic journal bearings and gyroscopic forces can be simulated. Experimental and theoretical results like mode shapes and unbalance parameters for the laboratory model are presented in detail.

  19. Structural Identification Problem

    Directory of Open Access Journals (Sweden)

    Suvorov Aleksei

    2016-01-01

    Full Text Available The identification problem of the existing structures though the Quasi-Newton and its modification, Trust region algorithms is discussed. For the structural problems, which could be represented by means of the mathematical modelling of the finite element code discussed method is extremely useful. The nonlinear minimization problem of the L2 norm for the structures with linear elastic behaviour is solved by using of the Optimization Toolbox of Matlab. The direct and inverse procedures for the composition of the desired function to minimize are illustrated for the spatial 3D truss structure as well as for the problem of plane finite elements. The truss identification problem is solved with 2 and 3 unknown parameters in order to compare the computational efforts and for the graphical purposes. The particular commands of the Matlab codes are present in this paper.

  20. SYMPOSIUM: Particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-07-15

    Typical elementary particle experiments consist of a source of interactions (an external beam and a fixed target or two colliding beams) and a detector system including most of the following components: a tracking system and analysis magnet, calorimetry (measurement of energy deposition), hadron and electron identification, muon detection, trigger counters and processors, and data acquisition electronics. Experiments aimed at future high luminosity hadron collider (proton-proton or proton-antiproton) projects such as an upgraded Tevatron at Fermilab, the Large Hadron Collider (LHC) idea at CERN, and the proposed US Superconducting Supercollider (SSC), must ideally cover the entire solid angle and be capable of not only surviving the collisions, but also providing high resolution event information at incredible interaction rates. The Symposium on Particle Identification at High Luminosity Hadron Colliders held at Fermilab from 5-7 April (sponsored by Fermilab, the US Department of Energy, and the SSC Central Design Group) focused on this single facet of detector technology.

  1. Identification of microstructures

    International Nuclear Information System (INIS)

    Padilha, A.F.; Ambrozio Filho, F.

    1984-01-01

    The identification of phases in a material can require the utilization of several techniques. The most used technique and discussed are: optical microscope, scanning electron microscope, transmission electron microscope, X-ray diffraction and 'in-situ' chemical analysis of the phases. The microstructures were classified, in according to the size and phase volumetric fraction, in four types. For each type the most appropriate techniques for identifying the phases are discussed. (E.G.) [pt

  2. PINS Spectrum Identification Guide

    Energy Technology Data Exchange (ETDEWEB)

    A.J. Caffrey

    2012-03-01

    The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectral analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.

  3. Evaluation of model-based versus non-parametric monaural noise-reduction approaches for hearing aids.

    Science.gov (United States)

    Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker

    2012-08-01

    Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.

  4. Search procedure for models based on the evolution of experimental curves

    International Nuclear Information System (INIS)

    Delforge, J.

    1975-01-01

    The possibilities offered by numerical analysis regarding the identification of parameters for the model are outlined. The use of a large number of experimental measurements is made possible by the flexibility of the proposed method. It is shown that the errors of numerical identification over all parameters are proportional to experimental errors, and to a proportionality factor called conditioning of the identification problem which is easily computed. Moreover, it is possible to define and calculate, for each parameter, a factor of sensitivity to experimental errors. The numerical values of conditioning and sensitivity factor depend on all experimental conditions, that is, on the one hand, the specific definition of the experiments, and on the other hand, the number and quality of the undertaken measurements. The identification procedure proposed includes several phases. The preliminary phase consists in a first definition of experimental conditions, in agreement with the experimenter. From the data thus obtained, it is generally possible to evaluate the minimum number of equivalence classes required for an interpretation compatible with the morphology of experimental curves. Possibly, from this point, some additional measurements may prove useful or required. The numerical phase comes afterwards to determine a first approximate model by means of the methods previously described. Next phases again require a close collaboration between experimenters and theoreticians. They consist mainly in refining the first model [fr

  5. Understanding electronic market usage : a revised model based on planned behaviour and innovation diffusion theory

    NARCIS (Netherlands)

    Heijden, van der Hans

    1999-01-01

    This paper is concerned with the identification of determinants that influence the use ofbusiness-to-consumer electronic markets. Since the widespread adoption of the Internet, these electronic markets are now commonplace and it becomesincreasingly relevant to identify the factors that influence

  6. Submillisievert coronary calcium quantification using model-based iterative reconstruction: A within-patient analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Annemarie M. den, E-mail: a.m.denharder@umcutrecht.nl [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands); Wolterink, Jelmer M. [Image Sciences Institute, University Medical Center Utrecht, Utrecht (Netherlands); Willemink, Martin J.; Schilham, Arnold M.R.; Jong, Pim A. de [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands); Budde, Ricardo P.J. [Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands); Nathoe, Hendrik M. [Department of Cardiology, University Medical Center Utrecht, Utrecht (Netherlands); Išgum, Ivana [Image Sciences Institute, University Medical Center Utrecht, Utrecht (Netherlands); Leiner, Tim [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands)

    2016-11-15

    Highlights: • Iterative reconstruction (IR) allows for low dose coronary calcium scoring (CCS). • Radiation dose can be safely reduced to 0.4 mSv with hybrid and model-based IR. • FBP is not feasible at these dose levels due to excessive noise. - Abstract: Purpose: To determine the effect of model-based iterative reconstruction (IR) on coronary calcium quantification using different submillisievert CT acquisition protocols. Methods: Twenty-eight patients received a clinically indicated non contrast-enhanced cardiac CT. After the routine dose acquisition, low-dose acquisitions were performed with 60%, 40% and 20% of the routine dose mAs. Images were reconstructed with filtered back projection (FBP), hybrid IR (HIR) and model-based IR (MIR) and Agatston scores, calcium volumes and calcium mass scores were determined. Results: Effective dose was 0.9, 0.5, 0.4 and 0.2 mSv, respectively. At 0.5 and 0.4 mSv, differences in Agatston scores with both HIR and MIR compared to FBP at routine dose were small (−0.1 to −2.9%), while at 0.2 mSv, differences in Agatston scores of −12.6 to −14.6% occurred. Reclassification of risk category at reduced dose levels was more frequent with MIR (21–25%) than with HIR (18%). Conclusions: Radiation dose for coronary calcium scoring can be safely reduced to 0.4 mSv using both HIR and MIR, while FBP is not feasible at these dose levels due to excessive noise. Further dose reduction can lead to an underestimation in Agatston score and subsequent reclassification to lower risk categories. Mass scores were unaffected by dose reductions.

  7. Model-based and model-free “plug-and-play” building energy efficient control

    International Nuclear Information System (INIS)

    Baldi, Simone; Michailidis, Iakovos; Ravanis, Christos; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • “Plug-and-play” Building Optimization and Control (BOC) driven by building data. • Ability to handle the large-scale and complex nature of the BOC problem. • Adaptation to learn the optimal BOC policy when no building model is available. • Comparisons with rule-based and advanced BOC strategies. • Simulation and real-life experiments in a ten-office building. - Abstract: Considerable research efforts in Building Optimization and Control (BOC) have been directed toward the development of “plug-and-play” BOC systems that can achieve energy efficiency without compromising thermal comfort and without the need of qualified personnel engaged in a tedious and time-consuming manual fine-tuning phase. In this paper, we report on how a recently introduced Parametrized Cognitive Adaptive Optimization – abbreviated as PCAO – can be used toward the design of both model-based and model-free “plug-and-play” BOC systems, with minimum human effort required to accomplish the design. In the model-based case, PCAO assesses the performance of its control strategy via a simulation model of the building dynamics; in the model-free case, PCAO optimizes its control strategy without relying on any model of the building dynamics. Extensive simulation and real-life experiments performed on a 10-office building demonstrate the effectiveness of the PCAO–BOC system in providing significant energy efficiency and improved thermal comfort. The mechanisms embedded within PCAO render it capable of automatically and quickly learning an efficient BOC strategy either in the presence of complex nonlinear simulation models of the building dynamics (model-based) or when no model for the building dynamics is available (model-free). Comparative studies with alternative state-of-the-art BOC systems show the effectiveness of the PCAO–BOC solution

  8. Disruption of model-based behavior and learning by cocaine self-administration in rats.

    Science.gov (United States)

    Wied, Heather M; Jones, Joshua L; Cooch, Nisha K; Berg, Benjamin A; Schoenbaum, Geoffrey

    2013-10-01

    Addiction is characterized by maladaptive decision-making, in which individuals seem unable to use adverse outcomes to modify their behavior. Adverse outcomes are often infrequent, delayed, and even rare events, especially when compared to the reliable rewarding drug-associated outcomes. As a result, recognizing and using information about their occurrence put a premium on the operation of so-called model-based systems of behavioral control, which allow one to mentally simulate outcomes of different courses of action based on knowledge of the underlying associative structure of the environment. This suggests that addiction may reflect, in part, drug-induced dysfunction in these systems. Here, we tested this hypothesis. This study aimed to test whether cocaine causes deficits in model-based behavior and learning independent of requirements for response inhibition or perception of costs or punishment. We trained rats to self-administer sucrose or cocaine for 2 weeks. Four weeks later, the rats began training on a sensory preconditioning and inferred value blocking task. Like devaluation, normal performance on this task requires representations of the underlying task structure; however, unlike devaluation, it does not require either response inhibition or adapting behavior to reflect aversive outcomes. Rats trained to self-administer cocaine failed to show conditioned responding or blocking to the preconditioned cue. These deficits were not observed in sucrose-trained rats nor did they reflect any changes in responding to cues paired directly with reward. These results imply that cocaine disrupts the operation of neural circuits that mediate model-based behavioral control.

  9. Observability analysis for model-based fault detection and sensor selection in induction motors

    International Nuclear Information System (INIS)

    Nakhaeinejad, Mohsen; Bryant, Michael D

    2011-01-01

    Sensors in different types and configurations provide information on the dynamics of a system. For a specific task, the question is whether measurements have enough information or whether the sensor configuration can be changed to improve the performance or to reduce costs. Observability analysis may answer the questions. This paper presents a general algorithm of nonlinear observability analysis with application to model-based diagnostics and sensor selection in three-phase induction motors. A bond graph model of the motor is developed and verified with experiments. A nonlinear observability matrix based on Lie derivatives is obtained from state equations. An observability index based on the singular value decomposition of the observability matrix is obtained. Singular values and singular vectors are used to identify the most and least observable configurations of sensors and parameters. A complex step derivative technique is used in the calculation of Jacobians to improve the computational performance of the observability analysis. The proposed algorithm of observability analysis can be applied to any nonlinear system to select the best configuration of sensors for applications of model-based diagnostics, observer-based controller, or to determine the level of sensor redundancy. Observability analysis on induction motors provides various sensor configurations with corresponding observability indices. Results show the redundancy levels for different sensors, and provide a sensor selection guideline for model-based diagnostics, and for observer-based controllers. The results can also be used for sensor fault detection and to improve the reliability of the system by increasing the redundancy level in measurements

  10. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    International Nuclear Information System (INIS)

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    2011-01-01

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi body system model and its included compensation method.

  11. The Experimental Research on E-Learning Instructional Design Model Based on Cognitive Flexibility Theory

    Science.gov (United States)

    Cao, Xianzhong; Wang, Feng; Zheng, Zhongmei

    The paper reports an educational experiment on the e-Learning instructional design model based on Cognitive Flexibility Theory, the experiment were made to explore the feasibility and effectiveness of the model in promoting the learning quality in ill-structured domain. The study performed the experiment on two groups of students: one group learned through the system designed by the model and the other learned by the traditional method. The results of the experiment indicate that the e-Learning designed through the model is helpful to promote the intrinsic motivation, learning quality in ill-structured domains, ability to resolve ill-structured problem and creative thinking ability of the students.

  12. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check....../Off and bidirectional check valves. Based on the analysis it is found that the energy production may be slightly improved by using bidirectional check valves as compared to on/off valves, due to a decrease in switching losses. Furthermore a reduction in high flow peaks are realised. The downside being increased...

  13. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albaek, Mads O.

    2017-01-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved...... is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress...

  14. Can multivariate models based on MOAKS predict OA knee pain? Data from the Osteoarthritis Initiative

    Science.gov (United States)

    Luna-Gómez, Carlos D.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Galván-Tejada, Carlos E.; Celaya-Padilla, José M.

    2017-03-01

    Osteoarthritis is the most common rheumatic disease in the world. Knee pain is the most disabling symptom in the disease, the prediction of pain is one of the targets in preventive medicine, this can be applied to new therapies or treatments. Using the magnetic resonance imaging and the grading scales, a multivariate model based on genetic algorithms is presented. Using a predictive model can be useful to associate minor structure changes in the joint with the future knee pain. Results suggest that multivariate models can be predictive with future knee chronic pain. All models; T0, T1 and T2, were statistically significant, all p values were 0.60.

  15. Model-based Sliding Mode Controller of Anti-lock Braking System

    Science.gov (United States)

    Zheng, Lin; Luo, Yue-Gang; Kang, Jing; Shi, Zhan-Qun

    2016-05-01

    The anti-lock braking system (ABS) used in automobiles is used to prevent wheel from lockup and to maintain the steering ability and stability. The sliding mode controller is able to control nonlinear system steadily. In this research, a one-wheel dynamic model with ABS control is built up using model-based method. Using the sliding model controller, the simulation results by using Matlab/Simulink show qualified data compared with optimal slip rate. By using this method, the ABS brake efficiency is improved efficiently.

  16. Toward a Model-Based Approach for Flight System Fault Protection

    Science.gov (United States)

    Day, John; Meakin, Peter; Murray, Alex

    2012-01-01

    Use SysML/UML to describe the physical structure of the system This part of the model would be shared with other teams - FS Systems Engineering, Planning & Execution, V&V, Operations, etc., in an integrated model-based engineering environment Use the UML Profile mechanism, defining Stereotypes to precisely express the concepts of the FP domain This extends the UML/SysML languages to contain our FP concepts Use UML/SysML, along with our profile, to capture FP concepts and relationships in the model Generate typical FP engineering products (the FMECA, Fault Tree, MRD, V&V Matrices)

  17. Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms Based on Kalman Filter Estimation

    Science.gov (United States)

    Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.

  18. A model based message passing approach for flexible and scalable home automation controllers

    Energy Technology Data Exchange (ETDEWEB)

    Bienhaus, D. [INNIAS GmbH und Co. KG, Frankenberg (Germany); David, K.; Klein, N.; Kroll, D. [ComTec Kassel Univ., SE Kassel Univ. (Germany); Heerdegen, F.; Jubeh, R.; Zuendorf, A. [Kassel Univ. (Germany). FG Software Engineering; Hofmann, J. [BSC Computer GmbH, Allendorf (Germany)

    2012-07-01

    There is a large variety of home automation systems that are largely proprietary systems from different vendors. In addition, the configuration and administration of home automation systems is frequently a very complex task especially, if more complex functionality shall be achieved. Therefore, an open model for home automation was developed that is especially designed for easy integration of various home automation systems. This solution also provides a simple modeling approach that is inspired by typical home automation components like switches, timers, etc. In addition, a model based technology to achieve rich functionality and usability was implemented. (orig.)

  19. Fuzzy model-based adaptive synchronization of time-delayed chaotic systems

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Majd, Vahid Johari

    2009-01-01

    In this paper, fuzzy model-based synchronization of a class of first order chaotic systems described by delayed-differential equations is addressed. To design the fuzzy controller, the chaotic system is modeled by Takagi-Sugeno fuzzy system considering the properties of the nonlinear part of the system. Assuming that the parameters of the chaotic system are unknown, an adaptive law is derived to estimate these unknown parameters, and the stability of error dynamics is guaranteed by Lyapunov theory. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.

  20. A model-based framework for incremental scale-up of wastewater treatment processes

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Sin, Gürkan

    Scale-up is traditionally done following specific ratios or rules of thumb which do not lead to optimal results. We present a generic framework to assist in scale-up of wastewater treatment processes based on multiscale modelling, multiobjective optimisation and a validation of the model at the new...... large scale. The framework is illustrated by the scale-up of a complete autotropic nitrogen removal process. The model based multiobjective scaleup offers a promising improvement compared to the rule of thumbs based emprical scale up rules...

  1. Model-based recognition of 3-D objects by geometric hashing technique

    International Nuclear Information System (INIS)

    Severcan, M.; Uzunalioglu, H.

    1992-09-01

    A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs

  2. GOODNESS-OF-FIT TEST FOR THE ACCELERATED FAILURE TIME MODEL BASED ON MARTINGALE RESIDUALS

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr

    2013-01-01

    Roč. 49, č. 1 (2013), s. 40-59 ISSN 0023-5954 R&D Projects: GA MŠk(CZ) 1M06047 Grant - others:GA MŠk(CZ) SVV 261315/2011 Keywords : accelerated failure time model * survival analysis * goodness-of-fit Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/novak-goodness-of-fit test for the aft model based on martingale residuals.pdf

  3. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  4. Model based design of efficient power take-off systems for wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2011-01-01

    The Power Take-Off (PTO) is the core of a Wave Energy Converter (WECs), being the technology converting wave induced oscillations from mechanical energy to electricity. The induced oscillations are characterized by being slow with varying frequency and amplitude. Resultantly, fluid power is often...... an essential part of the PTO, being the only technology having the required force densities. The focus of this paper is to show the achievable efficiency of a PTO system based on a conventional hydro-static transmission topology. The design is performed using a model based approach. Generic component models...

  5. Complex Behavior in a Selective Aging Neuron Model Based on Small World Networks

    International Nuclear Information System (INIS)

    Zhang Guiqing; Chen Tianlun

    2008-01-01

    Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.

  6. Model-Based Load Estimation for Predictive Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pederen, Bo Juul; Grunnet, Jacob Deleuran

    signal is performed online, and a Load Indicator Signal (LIS) is formulated as a ratio between current estimated accumulated fatigue loads and its expected value based only on a priori knowledge (WTG dynamics and wind climate). LOT initialisation is based on a priori knowledge and can be obtained using...... programme for pre-maintenance actions. The performance of LOT is demonstrated by applying it to one of the most critical WTG components, the gearbox. Model-based load CMS for gearbox requires only standard WTG SCADA data. Direct measuring of gearbox fatigue loads requires high cost and low reliability...... measurement equipment. Thus, LOT can significantly reduce the price of load monitoring....

  7. Model based on diffuse logic for the construction of indicators of urban vulnerability in natural phenomena

    International Nuclear Information System (INIS)

    Garcia L, Carlos Eduardo; Hurtado G, Jorge Eduardo

    2003-01-01

    Upon considering the vulnerability of a urban system in a holistic way and taking into account some natural, technological and social factors, a model based upon a system of fuzzy logic, allowing to estimate the vulnerability of any system under natural phenomena potentially catastrophic is proposed. The model incorporates quantitative and qualitative variables in a dynamic system, in which variations in one of them have a positive or negative impact over the rest. An urban system model and an indicator model to determine the vulnerability due to natural phenomena were designed

  8. Model-based monitoring techniques for leakage localization in distribution water networks

    OpenAIRE

    Meseguer Amela, Jordi; Mirats Tur, Josep Maria; Cembrano Gennari, Gabriela; Puig Cayuela, Vicenç

    2015-01-01

    This is an open access article under the CC BY-NC-ND license This paper describes an integrated model-based monitoring framework for leakage localization in district-metered areas (DMA) of water distribution networks, which takes advantage of the availability of a hydraulic model of the network. The leakage localization methodology is based on the use of flow and pressure sensors at the DMA inlets and a limited number of pressure sensors deployed inside the DMA. The placement of these sens...

  9. Model Checking and Model-based Testing in the Railway Domain

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, Jan

    2015-01-01

    This chapter describes some approaches and emerging trends for verification and model-based testing of railway control systems. We describe state-of-the-art methods and associated tools for verifying interlocking systems and their configuration data, using bounded model checking and k...... with good test strength are explained. Interlocking systems represent just one class of many others, where concrete system instances are created from generic representations, using configuration data for determining the behaviour of the instances. We explain how the systematic transition from generic...... to concrete instances in the development path is complemented by associated transitions in the verification and testing paths....

  10. Fuzzy model-based servo and model following control for nonlinear systems.

    Science.gov (United States)

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  11. Category Theory as a Formal Mathematical Foundation for Model-Based Systems Engineering

    KAUST Repository

    Mabrok, Mohamed

    2017-01-09

    In this paper, we introduce Category Theory as a formal foundation for model-based systems engineering. A generalised view of the system based on category theory is presented, where any system can be considered as a category. The objects of the category represent all the elements and components of the system and the arrows represent the relations between these components (objects). The relationship between these objects are the arrows or the morphisms in the category. The Olog is introduced as a formal language to describe a given real-world situation description and requirement writing. A simple example is provided.

  12. Identification of wastewater processes

    DEFF Research Database (Denmark)

    Carstensen, Niels Jacob

    The introduction of on-line sensors for monitoring of nutrient salts concentrations on wastewater treatment plants with nutrient removal, opens a wide new area of modelling wastewater processes. The subject of this thesis is the formulation of operational dynamic models based on time series...... of ammonia, nitrate, and phosphate concentrations, which are measured in the aeration tanks of the biological nutrient removal system. The alternatign operation modes of the BIO-DENITRO and BIO-DENIPHO processes are of particular interest. Time series models of the hydraulic and biological processes are very......-known theory of the processes with the significant effects found in data. These models are called grey box models, and they contain rate expressions for the processes of influent load of nutrients, transport of nutrients between the aeration tanks, hydrolysis and growth of biomass, nitrification...

  13. Identification for automotive systems

    CERN Document Server

    Hjalmarsson, Håkan; Re, Luigi

    2012-01-01

    Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.

  14. Model-based neural networks to predict emissions in a diesel engine operating with biodiesel blends of castor; Modelo basado en redes neuronales para predecir las emisiones en un motor diésel que opera con mezclas de biodiésel de higuerilla

    Directory of Open Access Journals (Sweden)

    Fabio Narváez

    2012-12-01

    Full Text Available Some identification methods of nonlinear systems using artificialneural networks are explained. Also, a model based on Neural Networks“Supervised Feed Forward” is presented, developed to identifyand predict the behavior of volumetric emissions from combustion of astationary diésel engine based on two input variables: the engine load and the mixture of castor biodiésel. The neural network training and model validation was performed by using the NNModel.

  15. Dynamic Chest Image Analysis: Model-Based Perfusion Analysis in Dynamic Pulmonary Imaging

    Directory of Open Access Journals (Sweden)

    Kiuru Aaro

    2003-01-01

    Full Text Available The "Dynamic Chest Image Analysis" project aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis becomes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed tomography (CT and nuclear medicine (NM studies. This fluoroscopical examination takes only about 2 seconds for perfusion study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

  16. In silico model-based inference: a contemporary approach for hypothesis testing in network biology.

    Science.gov (United States)

    Klinke, David J

    2014-01-01

    Inductive inference plays a central role in the study of biological systems where one aims to increase their understanding of the system by reasoning backwards from uncertain observations to identify causal relationships among components of the system. These causal relationships are postulated from prior knowledge as a hypothesis or simply a model. Experiments are designed to test the model. Inferential statistics are used to establish a level of confidence in how well our postulated model explains the acquired data. This iterative process, commonly referred to as the scientific method, either improves our confidence in a model or suggests that we revisit our prior knowledge to develop a new model. Advances in technology impact how we use prior knowledge and data to formulate models of biological networks and how we observe cellular behavior. However, the approach for model-based inference has remained largely unchanged since Fisher, Neyman and Pearson developed the ideas in the early 1900s that gave rise to what is now known as classical statistical hypothesis (model) testing. Here, I will summarize conventional methods for model-based inference and suggest a contemporary approach to aid in our quest to discover how cells dynamically interpret and transmit information for therapeutic aims that integrates ideas drawn from high performance computing, Bayesian statistics, and chemical kinetics. © 2014 American Institute of Chemical Engineers.

  17. Promoting Model-based Definition to Establish a Complete Product Definition.

    Science.gov (United States)

    Ruemler, Shawn P; Zimmerman, Kyle E; Hartman, Nathan W; Hedberg, Thomas; Feeny, Allison Barnard

    2017-05-01

    The manufacturing industry is evolving and starting to use 3D models as the central knowledge artifact for product data and product definition, or what is known as Model-based Definition (MBD). The Model-based Enterprise (MBE) uses MBD as a way to transition away from using traditional paper-based drawings and documentation. As MBD grows in popularity, it is imperative to understand what information is needed in the transition from drawings to models so that models represent all the relevant information needed for processes to continue efficiently. Finding this information can help define what data is common amongst different models in different stages of the lifecycle, which could help establish a Common Information Model. The Common Information Model is a source that contains common information from domain specific elements amongst different aspects of the lifecycle. To help establish this Common Information Model, information about how models are used in industry within different workflows needs to be understood. To retrieve this information, a survey mechanism was administered to industry professionals from various sectors. Based on the results of the survey a Common Information Model could not be established. However, the results gave great insight that will help in further investigation of the Common Information Model.

  18. Development of a noise prediction model based on advanced fuzzy approaches in typical industrial workrooms.

    Science.gov (United States)

    Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir

    2014-01-01

    Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.

  19. Model-based verification and validation of the SMAP uplink processes

    Science.gov (United States)

    Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.

    Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.

  20. Development of a CANDU Moderator Analysis Model; Based on Coupled Solver

    International Nuclear Information System (INIS)

    Yoon, Churl; Park, Joo Hwan

    2006-01-01

    A CFD model for predicting the CANDU-6 moderator temperature has been developed for several years in KAERI, which is based on CFX-4. This analytic model(CFX4-CAMO) has some strength in the modeling of hydraulic resistance in the core region and in the treatment of heat source term in the energy equations. But the convergence difficulties and slow computing speed reveal to be the limitations of this model, because the CFX-4 code adapts a segregated solver to solve the governing equations with strong coupled-effect. Compared to CFX-4 using segregated solver, CFX-10 adapts high efficient and robust coupled-solver. Before December 2005 when CFX-10 was distributed, the previous version of CFX-10(CFX-5. series) also adapted coupled solver but didn't have any capability to apply porous media approaches correctly. In this study, the developed moderator analysis model based on CFX- 4 (CFX4-CAMO) is transformed into a new moderator analysis model based on CFX-10. The new model is examined and the results are compared to the former