WorldWideScience

Sample records for multi-frame energy-selective imaging

  1. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    Directory of Open Access Journals (Sweden)

    Dongming Li

    2017-04-01

    Full Text Available An adaptive optics (AO system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  2. Improvement of Quality of Reconstructed Images in Multi-Frame Fresnel Digital Holography

    International Nuclear Information System (INIS)

    Xiao-Wei, Lu; Jing-Zhen, Li; Hong-Yi, Chen

    2010-01-01

    A modified reconstruction algorithm to improve the quality of reconstructed images of multi-frame Fresnel digital holography is presented. When the reference beams are plane or spherical waves with azimuth encoding, by introducing two spherical wave factors, images can be reconstructed with only one time Fourier transform. In numerical simulation, this algorithm could simplify the reconstruction process and improve the signal-to-noise ratio of the reconstructed images. In single-frame reconstruction experiments, the accurate reconstructed image is obtained with this simplified algorithm

  3. Detection of pulmonary nodules on lung X-ray images. Studies on multi-resolutional filter and energy subtraction images

    International Nuclear Information System (INIS)

    Sawada, Akira; Sato, Yoshinobu; Kido, Shoji; Tamura, Shinichi

    1999-01-01

    The purpose of this work is to prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Ribs and vessels are major causes of CAD errors in detection of pulmonary nodules and many researches have tried to solve this problem. So we select conventional X-ray images and energy subtraction X-ray images as types of images, and at the same time select ∇ 2 G (Laplacian of Guassian) filter, Min-DD (Minimum Directional Difference) filter and our multi-resolutional filter as types of digital filters. Also we select two evaluation methods and prove the effectiveness of an energy subtraction image, the effectiveness of Min-DD filter on a conventional X-ray image and the effectiveness of multi-resolutional filter on an energy subtraction image. (author)

  4. Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy.

    Science.gov (United States)

    Wang, Yi; Huang, Michael R S; Salzberger, Ute; Hahn, Kersten; Sigle, Wilfried; van Aken, Peter A

    2018-01-01

    Electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are two of the most common means for chemical analysis in the scanning transmission electron microscope. The marked progress of the instrumentation hardware has made chemical analysis at atomic resolution readily possible nowadays. However, the acquisition and interpretation of atomically resolved spectra can still be problematic due to image distortions and poor signal-to-noise ratio of the spectra, especially for investigation of energy-loss near-edge fine structures. By combining multi-frame spectrum imaging and automatic energy-offset correction, we developed a spectrum imaging technique implemented into customized DigitalMicrograph scripts for suppressing image distortions and improving the signal-to-noise ratio. With practical examples, i.e. SrTiO 3 bulk material and Sr-doped La 2 CuO 4 superlattices, we demonstrate the improvement of elemental mapping and the EELS spectrum quality, which opens up new possibilities for atomically resolved EELS fine structure mapping. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.

    Science.gov (United States)

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R

    2017-11-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

  6. An Algorithm-Independent Analysis of the Quality of Images Produced Using Multi-Frame Blind Deconvolution Algorithms--Conference Proceedings (Postprint)

    National Research Council Canada - National Science Library

    Matson, Charles; Haji, Alim

    2007-01-01

    Multi-frame blind deconvolution (MFBD) algorithms can be used to generate a deblurred image of an object from a sequence of short-exposure and atmospherically-blurred images of the object by jointly estimating the common object...

  7. The future 2015 Danish Building Regulations concerning energy performance of multi framed windows

    DEFF Research Database (Denmark)

    Hacksen Kampmann, Thomas

    The future Danish Building Regulation BR 2015 will reduce energy consumption within the overall building stock. Regarding the very important field windows, it seems that BR 2015 will be based on the same rules as today, except for a simple reduction of the limits for energy loss. Since a big part...... of the total amount of energy consumption in buildings is lost through windows, and the regulations concerning multi framed windows are already highly problematic today, there is a risk of the problem getting bigger in the future....

  8. Multi-energy spectral CT: adding value in emergency body imaging.

    Science.gov (United States)

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  9. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    Science.gov (United States)

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  10. A frame simulator for data produced by 'multi-accumulation' readout detectors

    Science.gov (United States)

    Bonoli, Carlotta; Bortoletto, Favio; Giro, Enrico; Corcione, Leonardo; Ligori, Sebastiano; Nicastro, Luciano

    2010-07-01

    A simulator of data frames produced by 'multi-accumulation' readout detectors has been developed during the feasibility study for the NIS spectrograph, part of the European Euclid mission. The software can emulate various readout strategies, allowing to compare the efficiency of different sampling techniques. Special care is given to two crucial aspects: the minimization of the noise and the effects produced by cosmic hits. The resulting readout noise is analyzed as a function of the background sources, detector native characteristics and readout strategy, while the image deterioration by cosmic rays covers the simulation of hits and their correction efficiency varying the readout modalities. Simulated "multi-accumulation" frames, typical of multiplexer based detectors, are an ideal tool for testing the efficiency of cosmic ray rejection techniques. In the present case cosmic rays are added to each raw frame conforming to the rates and energy expected in the operational L2 region and in the chosen exposure time. Procedures efficiency for cosmic ray identification and correction can also be easily tested in terms of memory occupancy and telemetry rates.

  11. A framed, 16-image Kirkpatrick-Baez x-ray microscope

    Science.gov (United States)

    Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.; Glebov, V. Yu.; Peng, B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2017-09-01

    A 16-image Kirkpatrick-Baez (KB)-type x-ray microscope consisting of compact KB mirrors [F. J. Marshall, Rev. Sci. Instrum. 83, 10E518 (2012)] has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ˜30 ps. Images are arranged four to a strip with ˜60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ˜15 ps is achieved. A framed resolution of ˜6-μm is achieved with this combination in a 400-μm region of laser-plasma x-ray emission in the 2- to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester's OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The unprecedented time and spatial resolutions achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. These core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 Gbar in OMEGA cryogenic target implosions [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)].

  12. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM)

    International Nuclear Information System (INIS)

    Gao, Hao; Osher, Stanley; Yu, Hengyong; Wang, Ge

    2011-01-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations. (papers)

  13. Cramer-Rao Lower Bound for Support-Constrained and Pixel-Based Multi-Frame Blind Deconvolution (Postprint)

    National Research Council Canada - National Science Library

    Matson, Charles; Haji, Aiim

    2006-01-01

    Multi-frame blind deconvolution (MFBD) algorithms can be used to reconstruct a single high-resolution image of an object from one or more measurement frames of that are blurred and noisy realizations of that object...

  14. Compact Beamformer Design with High Frame Rate for Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-04-01

    Full Text Available In medical field, two-dimension ultrasound images are widely used in clinical diagnosis. Beamformer is critical in determining the complexity and performance of an ultrasound imaging system. Different from traditional means implemented with separated chips, a compact beamformer with 64 effective channels in a single moderate Field Programmable Gate Array has been presented in this paper. The compactness is acquired by employing receive synthetic aperture, harmonic imaging, time sharing and linear interpolation. Besides that, multi-beams method is used to improve the frame rate of the ultrasound imaging system. Online dynamic configuration is employed to expand system’s flexibility to two kinds of transducers with multi-scanning modes. The design is verified on a prototype scanner board. Simulation results have shown that on-chip memories can be saved and the frame rate can be improved on the case of 64 effective channels which will meet the requirement of real-time application.

  15. Four-frame gated optical imager with 120-ps resolution

    International Nuclear Information System (INIS)

    Young, P.E.; Hares, J.D.; Kilkenny, J.D.; Phillion, D.W.; Campbell, E.M.

    1988-04-01

    In this paper we describe the operation and applications of a framing camera capable of four separate two-dimensional images with each frame having a 120-ps gate width. Fast gating of a single frame is accomplished by using a wafer image intensifier tube in which the cathode is capacitively coupled to an external electrode placed outside of the photocathode of the tube. This electrode is then pulsed relative to the microchannel plate by a narrow (120 ps), high-voltage pulse. Multiple frames are obtained by using multiple gated tubes which share a single bias supply and pulser with relative gate times selected by the cable lengths between the tubes and the pulser. A beamsplitter system has been constructed which produces a separate image for each tube from a single scene. Applications of the framing camera to inertial confinement fusion experiments are discussed

  16. Multi-frequency Defect Selective Imaging via Nonlinear Ultrasound

    Science.gov (United States)

    Solodov, Igor; Busse, Gerd

    The concept of defect-selective ultrasonic nonlinear imaging is based on visualization of strongly nonlinear inclusions in the form of localized cracked defects. For intense excitation, the ultrasonic response of defects is affected by mechanical constraint between their fragments that makes their vibrations extremely nonlinear. The cracked flaws, therefore, efficiently generate multiple new frequencies, which can be used as a nonlinear "tag" to detect and image them. In this paper, the methodologies of nonlinear scanning laser vibrometry (NSLV) and nonlinear air-coupled emission (NACE) are applied for nonlinear imaging of various defects in hi-tech and constructional materials. A broad database obtained demonstrates evident advantages of the nonlinear approach over its linear counterpart. The higher-order nonlinear frequencies provide increase in signal-to-noise ratio and enhance the contrast of imaging. Unlike conventional ultrasonic instruments, the nonlinear approach yields abundant multi-frequency information on defect location. The application of image recognition and processing algorithms is described and shown to improve reliability and quality of ultrasonic imaging.

  17. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation

    International Nuclear Information System (INIS)

    Daniels, Matthew J; Varghese, Tomy

    2010-01-01

    Minimally invasive therapies such as radiofrequency ablation have been developed to treat cancers of the liver, prostate and kidney without invasive surgery. Prior work has demonstrated that ultrasound echo shifts due to temperature changes can be utilized to track the temperature distribution in real time. In this paper, a motion compensation algorithm is evaluated to reduce the impact of cardiac and respiratory motion on ultrasound-based temperature tracking methods. The algorithm dynamically selects the next suitable frame given a start frame (selected during the exhale or expiration phase where extraneous motion is reduced), enabling optimization of the computational time in addition to reducing displacement noise artifacts incurred with the estimation of smaller frame-to-frame displacements at the full frame rate. A region of interest that does not undergo ablation is selected in the first frame and the algorithm searches through subsequent frames to find a similarly located region of interest in subsequent frames, with a high value of the mean normalized cross-correlation coefficient value. In conjunction with dynamic frame selection, two different two-dimensional displacement estimation algorithms namely a block matching and multilevel cross-correlation are compared. The multi-level cross-correlation method incorporates tracking of the lateral tissue expansion in addition to the axial deformation to improve the estimation performance. Our results demonstrate the ability of the proposed motion compensation using dynamic frame selection in conjunction with the two-dimensional multilevel cross-correlation to track the temperature distribution.

  18. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor.

    Science.gov (United States)

    Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2016-02-22

    In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.

  19. Imaging the renal lesion with dual-energy multidetector CT and multi-energy applications in clinical practice: what can it truly do for you?

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille; Marin, Daniele [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Sofue, Keitaro [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Kobe University School of Medicine, Department of Radiology, Kobe (Japan)

    2016-10-15

    Many fortuitously detected renal lesions are incompletely characterised at traditional MDCT imaging, thus posing daily challenges to radiologists and referring physicians. There is burgeoning evidence that dual-energy MDCT and multi-energy applications provide an added value over traditional MDCT imaging in renal lesion characterisation and throughput. This special report gives a vendor-neutral outlook on technical essentials, recommended protocols, high-yield clinical opportunities and reviews radiation dose aspects of dual-energy MDCT imaging and multi-energy applications in renal lesions. In addition to a guide on interpretative traps and emerging problems, we provide an update on new, potential imaging horizons. Dual-energy MDCT and multi-energy applications can facilitate the imaging interpretation and throughput of renal lesions. Conjointly with capitalisation on the benefits, familiarity with dual- and multi-energy data sets as well as continuous scrutiny of interpretative traps can be the keys to the successful implementation and enhanced clinical acceptance of this powerful technique in the imaging community. Continuous advances in hardware and computer interfaces are expected to pave the way for the further expansion of the application spectrum. (orig.)

  20. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes

    Science.gov (United States)

    Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio

    2017-12-01

    A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of

  1. Background suppression of infrared small target image based on inter-frame registration

    Science.gov (United States)

    Ye, Xiubo; Xue, Bindang

    2018-04-01

    We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.

  2. Research on multi-spectrum detector in high-energy dual-energy X-ray imaging system

    International Nuclear Information System (INIS)

    Li Qinghua; Wang Xuewu; Li Jianmin; Kang Kejun; Li Yuanjing; Zhong Huaqiang

    2008-01-01

    The high-energy dual-energy X-ray imaging system can discriminate the material of the objects inspected, but when the objects are too thin, the discrimination becomes very difficult. This paper proposes the use of multi-spectrum detector to improve the ability to discriminate thin material, and a series of simulation were done with the Monte Carlo method. Firstly the X-ray depositions in the detectors with different thickness were calculated, and then the discrimination effects with different detector structure and parameters were calculated. The simulation results validated that using appropriate multi-spectrum detector can improve the discrimination accuracy of thin material, particularly thin high-Z material. (authors)

  3. Robust super-resolution by fusion of interpolated frames for color and grayscale images

    Directory of Open Access Journals (Sweden)

    Barry eKarch

    2015-04-01

    Full Text Available Multi-frame super-resolution (SR processing seeks to overcome undersampling issues that can lead to undesirable aliasing artifacts. The key to effective multi-frame SR is accurate subpixel inter-frame registration. This accurate registration is challenging when the motion does not obey a simple global translational model and may include local motion. SR processing is further complicated when the camera uses a division-of-focal-plane (DoFP sensor, such as the Bayer color filter array. Various aspects of these SR challenges have been previously investigated. Fast SR algorithms tend to have difficulty accommodating complex motion and DoFP sensors. Furthermore, methods that can tolerate these complexities tend to be iterative in nature and may not be amenable to real-time processing. In this paper, we present a new fast approach for performing SR in the presence of these challenging imaging conditions. We refer to the new approach as Fusion of Interpolated Frames (FIF SR. The FIF SR method decouples the demosaicing, interpolation, and restoration steps to simplify the algorithm. Frames are first individually demosaiced and interpolated to the desired resolution. Next, FIF uses a novel weighted sum of the interpolated frames to fuse them into an improved resolution estimate. Finally, restoration is applied to deconvolve the modeled system PSF. The proposed FIF approach has a lower computational complexity than most iterative methods, making it a candidate for real-time implementation. We provide a detailed description of the FIF SR method and show experimental results using synthetic and real datasets in both constrained and complex imaging scenarios. The experiments include airborne grayscale imagery and Bayer color array images with affine background motion plus local motion.

  4. Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty

    International Nuclear Information System (INIS)

    Read, Laura; Madani, Kaveh; Mokhtari, Soroush; Hanks, Catherine

    2017-01-01

    In practice, selecting an energy project for development requires balancing criteria and competing stakeholder priorities to identify the best alternative. Energy source selection can be modeled as multi-criteria decision-maker problems to provide quantitative support to reconcile technical, economic, environmental, social, and political factors with respect to the stakeholders' interests. Decision making among these complex interactions should also account for the uncertainty present in the input data. In response, this work develops a stochastic decision analysis framework to evaluate alternatives by involving stakeholders to identify both quantitative and qualitative selection criteria and performance metrics which carry uncertainties. The developed framework is illustrated using a case study from Fairbanks, Alaska, where decision makers and residents must decide on a new source of energy for heating and electricity. We approach this problem in a five step methodology: (1) engaging experts (role players) to develop criteria of project performance; (2) collecting a range of quantitative and qualitative input information to determine the performance of each proposed solution according to the selected criteria; (3) performing a Monte-Carlo analysis to capture uncertainties given in the inputs; (4) applying multi-criteria decision-making, social choice (voting), and fallback bargaining methods to account for three different levels of cooperation among the stakeholders; and (5) computing an aggregate performance index (API) score for each alternative based on its performance across criteria and cooperation levels. API scores communicate relative performance between alternatives. In this way, our methodology maps uncertainty from the input data to reflect risk in the decision and incorporates varying degrees of cooperation into the analysis to identify an optimal and practical alternative. - Highlights: • We develop an applicable stakeholder-driven framework for

  5. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2015-01-01

    imaging refractometry without moving parts is presented. DFB dye lasers are low-cost and highly sensitive refractive index sensors. The unique multi-wavelength DFB laser structure presented here comprises several areas with different grating periods. Imaging in two dimensions of space is enabled...... by analyzing laser light from all areas in parallel with an imaging spectrometer. With this multi-resonance imaging refractometry method, the spatial position in one direction is identified from the horizontal, i.e., spectral position of the multiple laser lines which is obtained from the spectrometer charged...

  6. Predictive 3D search algorithm for multi-frame motion estimation

    NARCIS (Netherlands)

    Lim, Hong Yin; Kassim, A.A.; With, de P.H.N.

    2008-01-01

    Multi-frame motion estimation introduced in recent video standards such as H.264/AVC, helps to improve the rate-distortion performance and hence the video quality. This, however, comes at the expense of having a much higher computational complexity. In multi-frame motion estimation, there exists

  7. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  8. A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images.

    Science.gov (United States)

    Mendonca, Paulo R S; Lamb, Peter; Sahani, Dushyant V

    2014-01-01

    The ability of dual-energy computed-tomographic (CT) systems to determine the concentration of constituent materials in a mixture, known as material decomposition, is the basis for many of dual-energy CT's clinical applications. However, the complex composition of tissues and organs in the human body poses a challenge for many material decomposition methods, which assume the presence of only two, or at most three, materials in the mixture. We developed a flexible, model-based method that extends dual-energy CT's core material decomposition capability to handle more complex situations, in which it is necessary to disambiguate among and quantify the concentration of a larger number of materials. The proposed method, named multi-material decomposition (MMD), was used to develop two image analysis algorithms. The first was virtual unenhancement (VUE), which digitally removes the effect of contrast agents from contrast-enhanced dual-energy CT exams. VUE has the ability to reduce patient dose and improve clinical workflow, and can be used in a number of clinical applications such as CT urography and CT angiography. The second algorithm developed was liver-fat quantification (LFQ), which accurately quantifies the fat concentration in the liver from dual-energy CT exams. LFQ can form the basis of a clinical application targeting the diagnosis and treatment of fatty liver disease. Using image data collected from a cohort consisting of 50 patients and from phantoms, the application of MMD to VUE and LFQ yielded quantitatively accurate results when compared against gold standards. Furthermore, consistent results were obtained across all phases of imaging (contrast-free and contrast-enhanced). This is of particular importance since most clinical protocols for abdominal imaging with CT call for multi-phase imaging. We conclude that MMD can successfully form the basis of a number of dual-energy CT image analysis algorithms, and has the potential to improve the clinical utility

  9. Channel Selection Policy in Multi-SU and Multi-PU Cognitive Radio Networks with Energy Harvesting for Internet of Everything

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2016-01-01

    Full Text Available Cognitive radio, which will become a fundamental part of the Internet of Everything (IoE, has been identified as a promising solution for the spectrum scarcity. In a multi-SU and multi-PU cognitive radio network, selecting channels is a fundamental problem due to the channel competition among secondary users (SUs and packet collision between SUs and primary users (PUs. In this paper, we adopt cooperative sensing method to avoid the packet collision between SUs and PUs and focus on how to collect the spectrum sensing data of SUs for cooperative sensing. In order to reduce the channel competition among SUs, we first consider the hybrid transmission model for single SU where a SU can opportunistically access both idle channels operating either the Overlay or the Underlay model and the busy channels by using the energy harvesting technology. Then we propose a competitive set based channel selection policy for multi-SU where all SUs competing for data transmission or energy harvesting in the same channel will form a competitive set. Extensive simulations show that the proposed cooperative sensing method and the channel selection policy outperform previous solutions in terms of false alarm, average throughput, average waiting time, and energy harvesting efficiency of SUs.

  10. Pengaruh Negative Framing dan Adverse Selection terhadap Eskalasi Komitmen

    OpenAIRE

    Arimawan, Muhammad Sandi; Sukirno, Sukirno

    2014-01-01

    Penelitian ini dilakukan bertujuan untuk mengetahui: (1) Pengaruh negative framing terhadap eskalasi komitmen, (2) Pengaruh adverse selection terhadap eskalasi komitmen, (3) Pengaruh negative framing dan adverse selection secara bersama-sama terhadap eskalasi komitmen, (4) Pengaruh negative framing terhadap eskalasi komitmen dimoderasi locus of control, (5) Pengaruh adverse selection terhadap eskalasi komitmen dimoderasi locus of control, (6) Pengaruh negative framing dan adverse selection se...

  11. Design of large-format X-ray framing image tube

    International Nuclear Information System (INIS)

    Zong Fangke; Yang Qinlao; Gu Li; Li Xiang; Zhang Jingjin

    2012-01-01

    An implementation method of large-format framing image tube is proposed. An electrostatic focusing image tube with large input photocathode and small output image is designed. Coupling with common small-format microchannel plate (MCP) gated framing unit, image gating and enhancement can be realized. Compared to the tube with large-format MCP, this kind of framing tube avoids the high manufacturing cost of lager-format MCP and overcomes the transmission voltage loss and gain uniformity caused by long micro strips. The framing image tube has an effective input working diameter of 100 mm, an output image diameter of 40 mm, and a magnification of 0.4. The centre spatial resolution is 14.4 lp/mm, the marginal spatial resolution is 11.2 lp/mm, and the the geometric distortion is less than 15%. The framing characteristics is determined by the MCP framing unit. This method is an effective way for expanding the work area of framing image tubes. (authors)

  12. Multi-frame super-resolution with quality self-assessment for retinal fundus videos.

    Science.gov (United States)

    Köhler, Thomas; Brost, Alexander; Mogalle, Katja; Zhang, Qianyi; Köhler, Christiane; Michelson, Georg; Hornegger, Joachim; Tornow, Ralf P

    2014-01-01

    This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.

  13. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.

    Science.gov (United States)

    Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-10-21

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.

  14. Multi-energy method of digital radiography for imaging of biological objects

    Science.gov (United States)

    Ryzhikov, V. D.; Naydenov, S. V.; Opolonin, O. D.; Volkov, V. G.; Smith, C. F.

    2016-03-01

    This work has been dedicated to the search for a new possibility to use multi-energy digital radiography (MER) for medical applications. Our work has included both theoretical and experimental investigations of 2-energy (2E) and 3- energy (3D) radiography for imaging the structure of biological objects. Using special simulation methods and digital analysis based on the X-ray interaction energy dependence for each element of importance to medical applications in the X-ray range of energy up to 150 keV, we have implemented a quasi-linear approximation for the energy dependence of the X-ray linear mass absorption coefficient μm (E) that permits us to determine the intrinsic structure of the biological objects. Our measurements utilize multiple X-ray tube voltages (50, 100, and 150 kV) with Al and Cu filters of different thicknesses to achieve 3-energy X-ray examination of objects. By doing so, we are able to achieve significantly improved imaging quality of the structure of the subject biological objects. To reconstruct and visualize the final images, we use both two-dimensional (2D) and three-dimensional (3D) palettes of identification. The result is a 2E and/or 3E representation of the object with color coding of each pixel according to the data outputs. Following the experimental measurements and post-processing, we produce a 3D image of the biological object - in the case of our trials, fragments or parts of chicken and turkey.

  15. Solid-state framing camera with multiple time frames

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  16. Two-stage atlas subset selection in multi-atlas based image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu [The Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-06-15

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors

  17. Two-stage atlas subset selection in multi-atlas based image segmentation.

    Science.gov (United States)

    Zhao, Tingting; Ruan, Dan

    2015-06-01

    Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas

  18. Two-stage atlas subset selection in multi-atlas based image segmentation

    International Nuclear Information System (INIS)

    Zhao, Tingting; Ruan, Dan

    2015-01-01

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors

  19. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging

    Science.gov (United States)

    Yang, Yunjie; Jia, Jiabin

    2017-08-01

    This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.

  20. TU-CD-BRA-05: Atlas Selection for Multi-Atlas-Based Image Segmentation Using Surrogate Modeling

    International Nuclear Information System (INIS)

    Zhao, T; Ruan, D

    2015-01-01

    Purpose: The growing size and heterogeneity in training atlas necessitates sophisticated schemes to identify only the most relevant atlases for the specific multi-atlas-based image segmentation problem. This study aims to develop a model to infer the inaccessible oracle geometric relevance metric from surrogate image similarity metrics, and based on such model, provide guidance to atlas selection in multi-atlas-based image segmentation. Methods: We relate the oracle geometric relevance metric in label space to the surrogate metric in image space, by a monotonically non-decreasing function with additive random perturbations. Subsequently, a surrogate’s ability to prognosticate the oracle order for atlas subset selection is quantified probabilistically. Finally, important insights and guidance are provided for the design of fusion set size, balancing the competing demands to include the most relevant atlases and to exclude the most irrelevant ones. A systematic solution is derived based on an optimization framework. Model verification and performance assessment is performed based on clinical prostate MR images. Results: The proposed surrogate model was exemplified by a linear map with normally distributed perturbation, and verified with several commonly-used surrogates, including MSD, NCC and (N)MI. The derived behaviors of different surrogates in atlas selection and their corresponding performance in ultimate label estimate were validated. The performance of NCC and (N)MI was similarly superior to MSD, with a 10% higher atlas selection probability and a segmentation performance increase in DSC by 0.10 with the first and third quartiles of (0.83, 0.89), compared to (0.81, 0.89). The derived optimal fusion set size, valued at 7/8/8/7 for MSD/NCC/MI/NMI, agreed well with the appropriate range [4, 9] from empirical observation. Conclusion: This work has developed an efficacious probabilistic model to characterize the image-based surrogate metric on atlas selection

  1. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  2. A novel scatter separation method for multi-energy x-ray imaging

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-06-01

    X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in computed tomography (CT). The aim of the present study was to introduce and evaluate a partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. This evaluation was carried out with the aid of numerical simulations provided by an internal simulation tool, Sindbad-SFFD. A simplified numerical thorax phantom placed in a CT geometry was used. The attenuation images and CT slices obtained from corrected data showed a remarkable increase in local contrast and internal structure detectability when compared to uncorrected images. Scatter induced bias was also substantially decreased. In terms of quantitative performance, the developed approach proved to be quite accurate as well. The average normalized root-mean-square error between the uncorrected projections and the reference primary projections was around 23%. The application of PASSSA reduced this error to around 5%. Finally, in terms of voxel value accuracy, an increase by a factor  >10 was observed for most inspected volumes-of-interest, when comparing the corrected and uncorrected total volumes.

  3. Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease.

    Science.gov (United States)

    Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang

    2013-01-01

    Accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method.

  4. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  5. Schedulability-Driven Frame Packing for Multi-Cluster Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2003-01-01

    We present an approach to frame packing for multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In our approach, the application messages are packed into frames such that the application is schedulable. Thus, we have...... also proposed a schedulability analysis for applications consisting of mixed event-triggered and time-triggered processes and messages, and a worst case queuing delay analysis for the gateways, responsible for routing inter-cluster traffic. Optimization heuristics for frame packing aiming at producing...... a schedulable system have been proposed. Extensive experiments and a real-life example show the efficiency of our frame-packing approach....

  6. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, Artur, E-mail: artur.sossin@gmail.com [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373 Lyon (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  7. Fusion set selection with surrogate metric in multi-atlas based image segmentation

    International Nuclear Information System (INIS)

    Zhao, Tingting; Ruan, Dan

    2016-01-01

    Multi-atlas based image segmentation sees unprecedented opportunities but also demanding challenges in the big data era. Relevant atlas selection before label fusion plays a crucial role in reducing potential performance loss from heterogeneous data quality and high computation cost from extensive data. This paper starts with investigating the image similarity metric (termed ‘surrogate’), an alternative to the inaccessible geometric agreement metric (termed ‘oracle’) in atlas relevance assessment, and probes into the problem of how to select the ‘most-relevant’ atlases and how many such atlases to incorporate. We propose an inference model to relate the surrogates and the oracle geometric agreement metrics. Based on this model, we quantify the behavior of the surrogates in mimicking oracle metrics for atlas relevance ordering. Finally, analytical insights on the choice of fusion set size are presented from a probabilistic perspective, with the integrated goal of including the most relevant atlases and excluding the irrelevant ones. Empirical evidence and performance assessment are provided based on prostate and corpus callosum segmentation. (paper)

  8. A multi-object spectral imaging instrument

    OpenAIRE

    Gibson, G.M.; Dienerowitz, M.; Kelleher, P.A.; Harvey, A.R.; Padgett, M.J.

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the ...

  9. Rovibrational spectroscopy using a kinetic energy operator in Eckart frame and the multi-configuration time-dependent Hartree (MCTDH) approach

    International Nuclear Information System (INIS)

    Sadri, Keyvan; Meyer, Hans-Dieter; Lauvergnat, David; Gatti, Fabien

    2014-01-01

    For computational rovibrational spectroscopy the choice of the frame is critical for an approximate separation of overall rotation from internal motions. To minimize the coupling between internal coordinates and rotation, Eckart proposed a condition [“Some studies concerning rotating axes and polyatomic molecules,” Phys. Rev. 47, 552–558 (1935)] and a frame that fulfills this condition is hence called an Eckart frame. A method is developed to introduce in a systematic way the Eckart frame for the expression of the kinetic energy operator (KEO) in the polyspherical approach. The computed energy levels of a water molecule are compared with those obtained using a KEO in the standard definition of the Body-fixed frame of the polyspherical approach. The KEO in the Eckart frame leads to a faster convergence especially for large J states and vibrationally excited states. To provide an example with more degrees of freedom, rotational states of the vibrational ground state of the trans nitrous acid (HONO) are also investigated

  10. MULTI-TEMPORAL AND MULTI-SENSOR IMAGE MATCHING BASED ON LOCAL FREQUENCY INFORMATION

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-08-01

    Full Text Available Image Matching is often one of the first tasks in many Photogrammetry and Remote Sensing applications. This paper presents an efficient approach to automated multi-temporal and multi-sensor image matching based on local frequency information. Two new independent image representations, Local Average Phase (LAP and Local Weighted Amplitude (LWA, are presented to emphasize the common scene information, while suppressing the non-common illumination and sensor-dependent information. In order to get the two representations, local frequency information is firstly obtained from Log-Gabor wavelet transformation, which is similar to that of the human visual system; then the outputs of odd and even symmetric filters are used to construct the LAP and LWA. The LAP and LWA emphasize on the phase and amplitude information respectively. As these two representations are both derivative-free and threshold-free, they are robust to noise and can keep as much of the image details as possible. A new Compositional Similarity Measure (CSM is also presented to combine the LAP and LWA with the same weight for measuring the similarity of multi-temporal and multi-sensor images. The CSM can make the LAP and LWA compensate for each other and can make full use of the amplitude and phase of local frequency information. In many image matching applications, the template is usually selected without consideration of its matching robustness and accuracy. In order to overcome this problem, a local best matching point detection is presented to detect the best matching template. In the detection method, we employ self-similarity analysis to identify the template with the highest matching robustness and accuracy. Experimental results using some real images and simulation images demonstrate that the presented approach is effective for matching image pairs with significant scene and illumination changes and that it has advantages over other state-of-the-art approaches, which include: the

  11. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Hamidreza; Najafi, Behzad [K. N. Toosi University of Technology, Department of Mechanical Engineering, Tehran (Iran)

    2010-06-15

    In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project's limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB. (orig.)

  12. Clinical multi-colour fluorescence imaging of malignant tumours - initial experience

    International Nuclear Information System (INIS)

    Svanberg, K.; Wang, I.; Montan, S.; Andersson-Engels, S.; Svanberg, S.; Lund Inst. of Technology

    1998-01-01

    The purpose of this study was to present a new technique for non-invasive tumour detection based on tissue fluorescence imaging. A clinically adapted multi-colour fluorescence system was employed in the real-time imaging of malignant tumours of the skin, breast, head and neck region, and urinary bladder. Tumour detection was based on the contrast displayed in fluorescence between normal and malignant tissue, related to the selective uptake of tumour-marking agents and natural chromophore differences between various tissues. In order to demarcate basal cell carcinomas of the skin, ALA was applied topically 4-6 h before the fluorescence investigation. For urinary bladder tumour visualisation, ALA was instilled into the bladder 1-2 h prior to the study. Malignant and premalignant lesions in the head and neck region were imaged after i.v. injection of HPD (Photofrin). The tumour imaging system was coupled to an endoscope. Fluorescence light emission from the tissue surface was induced with 100-ns-long optical pulses at 390 nm, generated from a frequency-doubled alexandrite laser. With the use of special image-splitting optics, the tumour fluorescence, intensified in a micro-channel plate, was imaged in 3 selected wavelength bands. These 3 images were processed together to form a new optimised-contrast image of the tumour. This image, updated at a rate of about 3 frames/s was mixed with a normal colour video image of the tissue. A clear demarcation from normal surrounding tissue was found during in vivo measurements of superficial bladder carcinoma, basal cell carcinoma of the skin, and leukoplakia with dysplasia of the lip, and in vitro investigations of resected breast cancer. (orig./MG)

  13. Cloud-based processing of multi-spectral imaging data

    Science.gov (United States)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  14. Improved frame-based estimation of head motion in PET brain imaging

    International Nuclear Information System (INIS)

    Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  15. Improved frame-based estimation of head motion in PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)

    2016-05-15

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  16. Manifold Regularized Multi-Task Feature Selection for Multi-Modality Classification in Alzheimer’s Disease

    Science.gov (United States)

    Jie, Biao; Cheng, Bo

    2014-01-01

    Accurate diagnosis of Alzheimer’s disease (AD), as well as its pro-dromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method. PMID:24505676

  17. Energy Performance of Two Multi-Story Wood-Frame Passive Houses in Sweden

    Directory of Open Access Journals (Sweden)

    Krushna Mahapatra

    2015-11-01

    Full Text Available Two eight-story wood-framed residential buildings with the Swedish 2012 passive house standard were built in 2009 in the Portvakten Söder quarter in the city of Växjö in Sweden. In this paper, we present the monitored specific energy use of the buildings and compare to the requirements of the Swedish building code and recommendation for passive houses. We also estimated the primary energy use and CO2 emissions and investigated the tenants’ views and experiences of the two buildings. Results show that the actual specific energy use of 40.2 kWh/m2Atemp/year in the Portvakten Söder building fulfills, by a good margin, the requirements of the Swedish building code and the recommended passive house standard, but is higher than projected. Applying a marginal perspective, the calculated primary energy use and carbon dioxide emission from operating the buildings (excluding household electricity was 40 kWh/m2Atemp/year and zero, respectively. Responses of 20 tenants to a mail-in questionnaire survey showed that over 90% were satisfied with their apartments.

  18. Selections from 2017: Image Processing with AstroImageJ

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.AstroImageJ: Image Processing and Photometric Extraction for Ultra-Precise Astronomical Light CurvesPublished January2017The AIJ image display. A wide range of astronomy specific image display options and image analysis tools are available from the menus, quick access icons, and interactive histogram. [Collins et al. 2017]Main takeaway:AstroImageJ is a new integrated software package presented in a publication led byKaren Collins(Vanderbilt University,Fisk University, andUniversity of Louisville). Itenables new users even at the level of undergraduate student, high school student, or amateur astronomer to quickly start processing, modeling, and plotting astronomical image data.Why its interesting:Science doesnt just happen the momenta telescope captures a picture of a distantobject. Instead, astronomical images must firstbe carefully processed to clean up thedata, and this data must then be systematically analyzed to learn about the objects within it. AstroImageJ as a GUI-driven, easily installed, public-domain tool is a uniquelyaccessible tool for thisprocessing and analysis, allowing even non-specialist users to explore and visualizeastronomical data.Some features ofAstroImageJ:(as reported by Astrobites)Image calibration:generate master flat, dark, and bias framesImage arithmetic:combineimages viasubtraction, addition, division, multiplication, etc.Stack editing:easily perform operations on a series of imagesImage stabilization and image alignment featuresPrecise coordinate converters:calculate Heliocentric and Barycentric Julian DatesWCS coordinates:determine precisely where atelescope was pointed for an image by PlateSolving using Astronomy.netMacro and plugin support:write your own macrosMulti-aperture photometry

  19. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  20. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  1. Compact Aberration-Free Relay-Imaging Multi-Pass Layouts for High-Energy Laser Amplifiers

    Directory of Open Access Journals (Sweden)

    Jörg Körner

    2016-11-01

    Full Text Available We present the results from a theoretical investigation of laser beam propagation in relay imaging multi-pass layouts, which recently found application in high-energy laser amplifiers. Using a method based on the well-known ABCD-matrix formalism and proven by ray tracing, it was possible to derive a categorization of such systems. Furthermore, basic rules for the setup of such systems and the compensation for low order aberrations are derived. Due to the introduced generalization and parametrization, the presented results can immediately be applied to any system of the investigated kinds for a wide range of parameters, such as number of round-trips, focal lengths and optics sizes. It is shown that appropriate setups allow a close-to-perfect compensation of defocus caused by a thermal lens and astigmatism caused by non-normal incidence on the imaging optics, as well. Both are important to avoid intensity spikes leading to damages of optics in multi-pass laser amplifiers.

  2. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Jonassen, Johnny; Jensen, Carsten; Schmidt, Mai Lykkegaard

    2015-01-01

    Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with a 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2

  3. Optical flow estimation on image sequences with differently exposed frames

    Science.gov (United States)

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin

    2015-09-01

    Optical flow (OF) methods are used to estimate dense motion information between consecutive frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the performance. An approach to avoid this negative effect is to use different camera settings when capturing the individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed frames. Information from multiple frames are combined into a total cost functional such that the lack of an active data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow estimates. When saturation of image data is significant, the proposed methods show superior performance in terms of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide some qualitative examples of how and when our method should be used.

  4. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    Science.gov (United States)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  5. Mechanical Energy Change in Inertial Reference Frames

    Science.gov (United States)

    Ghanbari, Saeed

    2016-01-01

    The mechanical energy change of a system in an inertial frame of reference equals work done by the total nonconservative force in the same frame. This relation is covariant under the Galilean transformations from inertial frame S to S', where S' moves with constant velocity relative to S. In the presence of nonconservative forces, such as normal…

  6. Multi-material size optimization of a ladder frame chassis

    Science.gov (United States)

    Baker, Michael

    The Corporate Average Fuel Economy (CAFE) is an American fuel standard that sets regulations on fuel economy in vehicles. This law ultimately shapes the development and design research for automakers. Reducing the weight of conventional cars offers a way to improve fuel efficiency. This research investigated the optimality of an automobile's ladder frame chassis (LFC) by conducting multi-objective optimization on the LFC in order to reduce the weight of the chassis. The focus of the design and optimization was a ladder frame chassis commonly used for mass production light motor vehicles with an open-top rear cargo area. This thesis is comprised of two major sections. The first looked to perform thickness optimization in the outer walls of the ladder frame. In the second section, many multi-material distributions, including steel and aluminium varieties, were investigated. A simplified model was used to do an initial hand calculation analysis of the problem. This was used to create a baseline validation to compare the theory with the modeling. A CAD model of the LFC was designed. From the CAD model, a finite element model was extracted and joined using weld and bolt connectors. Following this, a linear static analysis was performed to look at displacement and stresses when subjected to loading conditions that simulate harsh driving conditions. The analysis showed significant values of stress and displacement on the ends of the rails, suggesting improvements could be made elsewhere. An optimization scheme was used to find the values of an all steel frame an optimal thickness distribution was found. This provided a 13% weight reduction over the initial model. To advance the analysis a multi-material approach was used to push the weight savings even further. Several material distributions were analyzed and the lightest utilized aluminium in all but the most strenuous subjected components. This enabled a reduction in weight of 15% over the initial model, equivalent to

  7. Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction

    International Nuclear Information System (INIS)

    Navare, Sachin M.; Liu, Yi-Hwa; Wackers, Frans J.T.

    2003-01-01

    Electrocardiographic (ECG) gated single-photon emission tomography (SPET) allows for simultaneous assessment of myocardial perfusion and left ventricular (LV) function. Presently 8-frame per cardiac cycle ECG gating of SPET images is standard. The aim of this study was to compare the effect of 8-frame and 16-frame gated SPET on measurements of LV volumes and to evaluate the effects of the presence of myocardial perfusion defects and of radiotracer dose administered on the calculation of LV volumes. A total of 86 patients underwent technetium-99m SPET myocardial perfusion imaging using 16-frame per cardiac cycle acquisition. Eight-frame gated SPET images were generated by summation of contiguous frames. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated from the 16-frame and 8-frame data sets. The patients were divided into groups according to the administered dose of the radiotracer and the size of the perfusion defect. Results. Sixteen frame per cardiac cycle acquisition resulted in significantly larger EDV (122±72 ml vs 115±68 ml, P<0.0001), smaller ESV (64±58.6 ml vs 67.6±59.5 ml, P<0.0001), and higher LVEF (55.3%±18% vs 49%±17.4%, P<0.0001) as compared to 8-frame SPET imaging. This effect was seen regardless of whether a high or a low dose was administered and whether or not significant perfusion defects were present. This study shows that EDV, ESV and LVEF determined by 16-frame gated SPET are significantly different from those determined by 8-frame gated SPET. The radiotracer dose and perfusion defects do not affect estimation of LV parameters by 16-frame gated SPET. (orig.)

  8. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X

  9. High-frame-rate imaging of biological samples with optoacoustic micro-tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; López-Schier, Hernán.; Razansky, Daniel

    2018-02-01

    Optical microscopy remains a major workhorse in biological discovery despite the fact that light scattering limits its applicability to depths of ˜ 1 mm in scattering tissues. Optoacoustic imaging has been shown to overcome this barrier by resolving optical absorption with microscopic resolution in significantly deeper regions. Yet, the time domain is paramount for the observation of biological dynamics in living systems that exhibit fast motion. Commonly, acquisition of microscopy data involves raster scanning across the imaged volume, which significantly limits temporal resolution in 3D. To overcome these limitations, we have devised a fast optoacoustic micro-tomography (OMT) approach based on simultaneous acquisition of 3D image data with a high-density hemispherical ultrasound array having effective detection bandwidth around 25 MHz. We performed experiments by imaging tissue-mimicking phantoms and zebrafish larvae, demonstrating that OMT can provide nearly cellular resolution and imaging speed of 100 volumetric frames per second. As opposed to other optical microscopy techniques, OMT is a hybrid method that resolves optical absorption contrast acoustically using unfocused light excitation. Thus, no penetration barriers are imposed by light scattering in deep tissues, suggesting it as a powerful approach for multi-scale functional and molecular imaging applications.

  10. Multi-view Multi-sparsity Kernel Reconstruction for Multi-class Image Classification

    KAUST Repository

    Zhu, Xiaofeng; Xie, Qing; Zhu, Yonghua; Liu, Xingyi; Zhang, Shichao

    2015-01-01

    This paper addresses the problem of multi-class image classification by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple

  11. [Research on K-means clustering segmentation method for MRI brain image based on selecting multi-peaks in gray histogram].

    Science.gov (United States)

    Chen, Zhaoxue; Yu, Haizhong; Chen, Hao

    2013-12-01

    To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.

  12. Age differences in treatment decision making for breast cancer in a sample of healthy women: the effects of body image and risk framing.

    Science.gov (United States)

    Romanek, Kathleen M; McCaul, Kevin D; Sandgren, Ann K

    2005-07-01

    To examine the effects of age, body image, and risk framing on treatment decision making for breast cancer using a healthy population. An experimental 2 (younger women, older women) X 2 (survival, mortality frame) between-groups design. Midwestern university. Two groups of healthy women: 56 women ages 18-24 from undergraduate psychology courses and 60 women ages 35-60 from the university community. Healthy women imagined that they had been diagnosed with breast cancer and received information regarding lumpectomy versus mastectomy and recurrence rates. Participants indicated whether they would choose lumpectomy or mastectomy and why. Age, framing condition, treatment choice, body image, and reasons for treatment decision. The difference in treatment selection between younger and older women was mediated by concern for appearance. No main effect for risk framing was found; however, older women were somewhat less likely to select lumpectomy when given a mortality frame. Age, mediated by body image, influences treatment selection of lumpectomy versus mastectomy. Framing has no direct effect on treatment decisions, but younger and older women may be affected by risk information differently. Nurses should provide women who recently have been diagnosed with breast cancer with age-appropriate information regarding treatment alternatives to ensure women's active participation in the decision-making process. Women who have different levels of investment in body image also may have different concerns about treatment, and healthcare professionals should be alert to and empathetic of such concerns.

  13. Robotically-adjustable microstereotactic frames for image-guided neurosurgery

    Science.gov (United States)

    Kratchman, Louis B.; Fitzpatrick, J. Michael

    2013-03-01

    Stereotactic frames are a standard tool for neurosurgical targeting, but are uncomfortable for patients and obstruct the surgical field. Microstereotactic frames are more comfortable for patients, provide better access to the surgical site, and have grown in popularity as an alternative to traditional stereotactic devices. However, clinically available microstereotactic frames require either lengthy manufacturing delays or expensive image guidance systems. We introduce a robotically-adjusted, disposable microstereotactic frame for deep brain stimulation surgery that eliminates the drawbacks of existing microstereotactic frames. Our frame can be automatically adjusted in the operating room using a preoperative plan in less than five minutes. A validation study on phantoms shows that our approach provides a target positioning error of 0.14 mm, which exceeds the required accuracy for deep brain stimulation surgery.

  14. Image registration based on virtual frame sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Ng, W.S. [Nanyang Technological University, Computer Integrated Medical Intervention Laboratory, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Shi, D. (Nanyang Technological University, School of Computer Engineering, Singapore, Singpore); Wee, S.B. [Tan Tock Seng Hospital, Department of General Surgery, Singapore (Singapore)

    2007-08-15

    This paper is to propose a new framework for medical image registration with large nonrigid deformations, which still remains one of the biggest challenges for image fusion and further analysis in many medical applications. Registration problem is formulated as to recover a deformation process with the known initial state and final state. To deal with large nonlinear deformations, virtual frames are proposed to be inserted to model the deformation process. A time parameter is introduced and the deformation between consecutive frames is described with a linear affine transformation. Experiments are conducted with simple geometric deformation as well as complex deformations presented in MRI and ultrasound images. All the deformations are characterized with nonlinearity. The positive results demonstrated the effectiveness of this algorithm. The framework proposed in this paper is feasible to register medical images with large nonlinear deformations and is especially useful for sequential images. (orig.)

  15. Using neutrosophic graph cut segmentation algorithm for qualified rendering image selection in thyroid elastography video.

    Science.gov (United States)

    Guo, Yanhui; Jiang, Shuang-Quan; Sun, Baiqing; Siuly, Siuly; Şengür, Abdulkadir; Tian, Jia-Wei

    2017-12-01

    Recently, elastography has become very popular in clinical investigation for thyroid cancer detection and diagnosis. In elastogram, the stress results of the thyroid are displayed using pseudo colors. Due to variation of the rendering results in different frames, it is difficult for radiologists to manually select the qualified frame image quickly and efficiently. The purpose of this study is to find the qualified rendering result in the thyroid elastogram. This paper employs an efficient thyroid ultrasound image segmentation algorithm based on neutrosophic graph cut to find the qualified rendering images. Firstly, a thyroid ultrasound image is mapped into neutrosophic set, and an indeterminacy filter is constructed to reduce the indeterminacy of the spatial and intensity information in the image. A graph is defined on the image and the weight for each pixel is represented using the value after indeterminacy filtering. The segmentation results are obtained using a maximum-flow algorithm on the graph. Then the anatomic structure is identified in thyroid ultrasound image. Finally the rendering colors on these anatomic regions are extracted and validated to find the frames which satisfy the selection criteria. To test the performance of the proposed method, a thyroid elastogram dataset is built and totally 33 cases were collected. An experienced radiologist manually evaluates the selection results of the proposed method. Experimental results demonstrate that the proposed method finds the qualified rendering frame with 100% accuracy. The proposed scheme assists the radiologists to diagnose the thyroid diseases using the qualified rendering images.

  16. Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach

    International Nuclear Information System (INIS)

    Wang, Endong

    2015-01-01

    Highlights: • A TOPSIS based multi-criteria whole-building energy benchmarking is developed. • A selective objective-weighting procedure is used for a cost-accuracy tradeoff. • Results from a real case validated the benefits of the presented approach. - Abstract: This paper develops a robust multi-criteria Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) based building energy efficiency benchmarking approach. The approach is explicitly selective to address multicollinearity trap due to the subjectivity in selecting energy variables by considering cost-accuracy trade-off. It objectively weights the relative importance of individual pertinent efficiency measuring criteria using either multiple linear regression or principal component analysis contingent on meta data quality. Through this approach, building energy performance is comprehensively evaluated and optimized. Simultaneously, the significant challenges associated with conventional single-criterion benchmarking models can be avoided. Together with a clustering algorithm on a three-year panel dataset, the benchmarking case of 324 single-family dwellings demonstrated an improved robustness of the presented multi-criteria benchmarking approach over the conventional single-criterion ones

  17. X-ray energy selected imaging with Medipix II

    International Nuclear Information System (INIS)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-01-01

    Two different X-ray tube accelerating voltages (60 and 70 kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature. First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively

  18. X-ray energy selected imaging with Medipix II

    Science.gov (United States)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-09-01

    Two different X-ray tube accelerating voltages (60 and 70kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature.First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively.

  19. Lateralized goal framing: how selective presentation impacts message effectiveness.

    Science.gov (United States)

    McCormick, Michael; Seta, John J

    2012-11-01

    We tested whether framing a message as a gain or loss would alter its effectiveness by using a dichotic listening procedure to selectively present a health related message to the left or right hemisphere. A significant goal framing effect (losses > gains) was found when right, but not left, hemisphere processing was initially enhanced. The results support the position that the contextual processing style of the right hemisphere is especially sensitive to the associative implications of the frame. We discussed the implications of these findings for goal framing research, and the valence hypothesis. We also discussed how these findings converge with prior valence framing research and how they can be of potential use to health care providers.

  20. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-06-15

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  1. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    International Nuclear Information System (INIS)

    Yip, Stephen; Rottmann, Joerg; Berbeco, Ross

    2014-01-01

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  2. Green-Frag: Energy-Efficient Frame Fragmentation Scheme for Wireless Sensor Networks

    KAUST Repository

    Daghistani, Anas H.

    2013-05-15

    Power management is an active area of research in wireless sensor networks (WSNs). Efficient power management is necessary because WSNs are battery-operated devices that can be deployed in mission-critical applications. From the communications perspective, one main approach to reduce energy is to maximize throughput so the data can be transmitted in a short amount of time. Frame fragmentation techniques aim to achieve higher throughput by reducing retransmissions. Using experiments on a WSN testbed, we show that frame fragmentation helps to reduce energy consumption. We then study and compare recent frame fragmentation schemes to find the most energy-efficient scheme. Our main contribution is to propose a new frame fragmentation scheme that is optimized to be energy efficient, which is originated from the chosen frame fragmentation scheme. This new energy-efficient frame fragmentation protocol is called (Green-Frag). Green-Frag uses an algorithm that gives sensor nodes the ability to transmit data with optimal transmit power and optimal frame structure based on environmental conditions. Green-Frag takes into consideration the channel conditions, interference patterns and level, as well as the distance between sender and receiver. The thesis discusses various design and implementation considerations for Green-Frag. Also, it shows empirical results of comparing Green-Frag with other frame fragmentation protocols in terms of energy efficiency. Green-Frag performance results shows that it is capable of choosing the best transmit according to the channel conditions. Subsequently, Green-Frag achieves the least energy consumption in all environmental conditions.

  3. Based on airborne multi-array butting for IRFPA staring imagery

    Science.gov (United States)

    Mao, Minjun; Xiao, Gonghai; Lin, Yancheng; Xie, Feng; Shu, Rong

    2010-10-01

    Because infrared system detects the radiation energy of the target, it has the ability to work all day that the visible-light detection system cannot achieve, at the same time, infrared system is a passive detection system, does not need active detection technology such as radar, which requires large radiation power or a larger expandable antenna. It is more suitable for airborne applications, therefore, infrared imaging based on the aircraft and aerostat platform, has been an important means of monitoring the ground. However, due to detector limitations, the spatial resolution of current infrared cameras or spectrographs and the total field coverage of view are generally not satisfied the customer's requirements. This paper proposes an airborne infrared camera imaging method based on multi-planar arrays, using frame-type imaging array. In order to provide large ground coverage together with good spatial resolution, the mirror is drove to scan rapidly by the galvanometer. The scanning mirror works at staring imagery mode. During multi-planar detectors exposure and imaging, the mirror moves to the staring position. There is more than 10 % overlapping sensor foot prints between two adjacent frames, and the functions of image matching algorithms are used to ensure the seamless butting. This imaging method improves the system integration time, and effectively improves the sensitivity of infrared systems; frame-type imaging solves the serious image distortion caused by the platform attitude.

  4. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    Science.gov (United States)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  5. What's in a Frame?

    DEFF Research Database (Denmark)

    Holmgreen, Lise-Lotte

    Maintaining a good image and reputation in the eyes of stakeholders is vital to the organisation. Thus, in its corporate communication and discourse the organisation will seek to present or frame itself as favourably as possible while observing regulations stipulating accuracy and precision...... an organisation, and hence in shaping the image projected to the public. Framing is here understood as the selection of ‘some aspects of perceived reality … [making] them more salient in the communication text, in such a way as to promote a particular problem definition, causal interpretation, moral evaluation...

  6. The impact of verbal framing on brain activity evoked by emotional images.

    Science.gov (United States)

    Kisley, Michael A; Campbell, Alana M; Larson, Jenna M; Naftz, Andrea E; Regnier, Jesse T; Davalos, Deana B

    2011-12-01

    Emotional stimuli generally command more brain processing resources than non-emotional stimuli, but the magnitude of this effect is subject to voluntary control. Cognitive reappraisal represents one type of emotion regulation that can be voluntarily employed to modulate responses to emotional stimuli. Here, the late positive potential (LPP), a specific event-related brain potential (ERP) component, was measured in response to neutral, positive and negative images while participants performed an evaluative categorization task. One experimental group adopted a "negative frame" in which images were categorized as negative or not. The other adopted a "positive frame" in which the exact same images were categorized as positive or not. Behavioral performance confirmed compliance with random group assignment, and peak LPP amplitude to negative images was affected by group membership: brain responses to negative images were significantly reduced in the "positive frame" group. This suggests that adopting a more positive appraisal frame can modulate brain activity elicited by negative stimuli in the environment.

  7. Predicting Teacher Emotional Labour Based on Multi-Frame Leadership Orientations: A Case from Turkey

    Science.gov (United States)

    Özdemir, Murat; Koçak, Seval

    2018-01-01

    Human behaviours in organisations are closely associated with leadership styles. The main purpose of this study is to find out the relationship between teachers' perception about multi-frame leadership orientations of principals and teachers' emotional labour. The study is based on Bolman and Deal's Four Frames Model, and, therefore, the…

  8. Multi-view Multi-sparsity Kernel Reconstruction for Multi-class Image Classification

    KAUST Repository

    Zhu, Xiaofeng

    2015-05-28

    This paper addresses the problem of multi-class image classification by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple visual features, the MMKR first maps them into a high-dimensional space, e.g., a reproducing kernel Hilbert space (RKHS), where test images are then linearly reconstructed by some representative training images, rather than all of them. Furthermore a classification rule is proposed to classify test images. Experimental results on real datasets show the effectiveness of the proposed MMKR while comparing to state-of-the-art algorithms.

  9. Multi-Modality Medical Image Fusion Based on Wavelet Analysis and Quality Evaluation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Multi-modality medical image fusion has more and more important applications in medical image analysisand understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fusemedical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusionresults when applying different selection rules and obtain optimum combination of fusion parameters.

  10. Multi-granularity synthesis segmentation for high spatial resolution Remote sensing images

    International Nuclear Information System (INIS)

    Yi, Lina; Liu, Pengfei; Qiao, Xiaojun; Zhang, Xiaoning; Gao, Yuan; Feng, Boyan

    2014-01-01

    Traditional segmentation method can only partition an image in a single granularity space, with segmentation accuracy limited to the single granularity space. This paper proposes a multi-granularity synthesis segmentation method for high spatial resolution remote sensing images based on a quotient space model. Firstly, we divide the whole image area into multiple granules (regions), each region is consisted of ground objects that have similar optimal segmentation scale, and then select and synthesize the sub-optimal segmentations of each region to get the final segmentation result. To validate this method, the land cover category map is used to guide the scale synthesis of multi-scale image segmentations for Quickbird image land use classification. Firstly, the image is coarsely divided into multiple regions, each region belongs to a certain land cover category. Then multi-scale segmentation results are generated by the Mumford-Shah function based region merging method. For each land cover category, the optimal segmentation scale is selected by the supervised segmentation accuracy assessment method. Finally, the optimal scales of segmentation results are synthesized under the guide of land cover category. Experiments show that the multi-granularity synthesis segmentation can produce more accurate segmentation than that of a single granularity space and benefit the classification

  11. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    International Nuclear Information System (INIS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-01-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l 1 -regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method. (paper)

  12. Modeling human faces with multi-image photogrammetry

    Science.gov (United States)

    D'Apuzzo, Nicola

    2002-03-01

    Modeling and measurement of the human face have been increasing by importance for various purposes. Laser scanning, coded light range digitizers, image-based approaches and digital stereo photogrammetry are the used methods currently employed in medical applications, computer animation, video surveillance, teleconferencing and virtual reality to produce three dimensional computer models of the human face. Depending on the application, different are the requirements. Ours are primarily high accuracy of the measurement and automation in the process. The method presented in this paper is based on multi-image photogrammetry. The equipment, the method and results achieved with this technique are here depicted. The process is composed of five steps: acquisition of multi-images, calibration of the system, establishment of corresponding points in the images, computation of their 3-D coordinates and generation of a surface model. The images captured by five CCD cameras arranged in front of the subject are digitized by a frame grabber. The complete system is calibrated using a reference object with coded target points, which can be measured fully automatically. To facilitate the establishment of correspondences in the images, texture in the form of random patterns can be projected from two directions onto the face. The multi-image matching process, based on a geometrical constrained least squares matching algorithm, produces a dense set of corresponding points in the five images. Neighborhood filters are then applied on the matching results to remove the errors. After filtering the data, the three-dimensional coordinates of the matched points are computed by forward intersection using the results of the calibration process; the achieved mean accuracy is about 0.2 mm in the sagittal direction and about 0.1 mm in the lateral direction. The last step of data processing is the generation of a surface model from the point cloud and the application of smooth filters. Moreover, a

  13. USING THE 1.6 μm BUMP TO STUDY REST-FRAME NEAR-INFRARED-SELECTED GALAXIES AT REDSHIFT 2

    International Nuclear Information System (INIS)

    Sorba, Robert; Sawicki, Marcin

    2010-01-01

    We explore the feasibility and limitations of using the 1.6 μm bump as a photometric redshift indicator and selection technique, and use it to study the rest-frame H-band galaxy luminosity and stellar mass functions (SMFs) at redshift z ∼ 2. We use publicly available Spitzer/IRAC images in the GOODS fields and find that color selection in the IRAC bandpasses alone is comparable in completeness and contamination to BzK selection. We find that the shape of the 1.6 μm bump is robust, and photometric redshifts are not greatly affected by choice of model parameters. Comparison with spectroscopic redshifts shows photometric redshifts to be reliable. We create a rest-frame NIR-selected catalog of galaxies at z ∼ 2 and construct a galaxy SMF. Comparisons with other SMFs at approximately the same redshift but determined using shorter wavelengths show good agreement. This agreement suggests that selection at bluer wavelengths does not miss a significant amount of stellar mass in passive galaxies. Comparison with SMFs at other redshifts shows evidence for the downsizing scenario of galaxy evolution. We conclude by pointing out the potential for using the 1.6 μm bump technique to select high-redshift galaxies with the JWST, whose λ>0.6 μm coverage will not be well suited to selecting galaxies using techniques that require imaging at shorter wavelengths.

  14. The framing of unconventional natural gas resources in the foreign energy policy discourse of the Russian Federation

    International Nuclear Information System (INIS)

    Ocelík, Petr; Osička, Jan

    2014-01-01

    The advent of unconventional resources of natural gas has altered the order on global as well as continental gas markets. With rising liquidity, the position of established dominant suppliers is eroding. We focus on the initial response of Russia, the leading supplier of natural gas to Europe, to the new situation, building the research on unit-level constructivism and discourse analysis. We use frame analysis to reveal what image of unconventional resources was constructed in Russian foreign energy policy discourse (FEPD) in the period between 2009 and 2011, when the “unconventional revolution” did not yet have any sharp contours. We conclude that in Russian FEPD the unconventionals are considered as a distinctive and inferior source of energy compared to conventional natural gas. Emphasis is put on their economic irrationality and environmental hazards. The bottom line of the discourse is the idea that there is a choice between conventional and unconventional sources, with this choice being framed as one between good and bad, or right and wrong. - Highlights: • We examine the image of “unconventional gas” in Russian foreign energy policy discourse. • Two main frames (reliable supplier and triumphant natural gas) were identified. • Two main argumentation schemes (economic and environmental) were identified. • The “unconventional gas” is defined as a mistaken and inferior source of energy

  15. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  16. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Teo, P; Guo, K; Alayoubi, N; Kehler, K; Pistorius, S [CancerCare Manitoba, Winnipeg, MB (Canada)

    2015-06-15

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions of a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for

  17. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    International Nuclear Information System (INIS)

    Teo, P; Guo, K; Alayoubi, N; Kehler, K; Pistorius, S

    2015-01-01

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions of a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for

  18. Multi-dimensional imaging

    CERN Document Server

    Javidi, Bahram; Andres, Pedro

    2014-01-01

    Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image capture, processing, visualization and display, using 1) a Multi-View Approach and 2.) a Holographic Approach, followed by a 3rd part addressing other 3D systems approaches, applications and signal processing for advanced 3D imaging. This book describes recent developments, as well as the prospects and

  19. Development of a fast multi-line x-ray CT detector for NDT

    International Nuclear Information System (INIS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Mühlbauer, J.; Schröpfer, S.; Firsching, M.; Uhlmann, N.; Neubauer, H.; Ernst, J.; Schweiger, T.; Oberst, M.; Meyer, A.

    2015-01-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm 2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  20. Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography

    DEFF Research Database (Denmark)

    Kazantsev, Daniil; Jørgensen, Jakob Sauer; Andersen, Martin S

    2018-01-01

    peaks. The acquired energy-binned data, however, suffer from low signal-to-noise ratio, acquisition artifacts, and frequently angular undersampled conditions. New regularized iterative reconstruction methods have the potential to produce higher quality images and since energy channels are mutually...... to encourage joint smoothing directions. In particular, the method selects reference channels from which to propagate structure in an adaptive and stochastic way while preferring channels with a high data signal-to-noise ratio. The method is compared with current state-of-the-art multi-channel reconstruction...

  1. SU-E-J-128: Two-Stage Atlas Selection in Multi-Atlas-Based Image Segmentation

    International Nuclear Information System (INIS)

    Zhao, T; Ruan, D

    2015-01-01

    Purpose: In the new era of big data, multi-atlas-based image segmentation is challenged by heterogeneous atlas quality and high computation burden from extensive atlas collection, demanding efficient identification of the most relevant atlases. This study aims to develop a two-stage atlas selection scheme to achieve computational economy with performance guarantee. Methods: We develop a low-cost fusion set selection scheme by introducing a preliminary selection to trim full atlas collection into an augmented subset, alleviating the need for extensive full-fledged registrations. More specifically, fusion set selection is performed in two successive steps: preliminary selection and refinement. An augmented subset is first roughly selected from the whole atlas collection with a simple registration scheme and the corresponding preliminary relevance metric; the augmented subset is further refined into the desired fusion set size, using full-fledged registration and the associated relevance metric. The main novelty of this work is the introduction of an inference model to relate the preliminary and refined relevance metrics, based on which the augmented subset size is rigorously derived to ensure the desired atlases survive the preliminary selection with high probability. Results: The performance and complexity of the proposed two-stage atlas selection method were assessed using a collection of 30 prostate MR images. It achieved comparable segmentation accuracy as the conventional one-stage method with full-fledged registration, but significantly reduced computation time to 1/3 (from 30.82 to 11.04 min per segmentation). Compared with alternative one-stage cost-saving approach, the proposed scheme yielded superior performance with mean and medium DSC of (0.83, 0.85) compared to (0.74, 0.78). Conclusion: This work has developed a model-guided two-stage atlas selection scheme to achieve significant cost reduction while guaranteeing high segmentation accuracy. The benefit

  2. A multi-object spectral imaging instrument

    International Nuclear Information System (INIS)

    Gibson, G M; Dienerowitz, M; Kelleher, P A; Harvey, A R; Padgett, M J

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the CCD for wavelength. A CMOS camera on the front port of the microscope allows the full image of the sample to be displayed and can also be used for particle tracking, providing spectra of multiple particles moving in the sample. We demonstrate the system by recording the spectra of multiple fluorescent beads in aqueous solution and from multiple points along a microscope sample channel containing a mixture of red and blue dye. (paper)

  3. Application of a multi-criteria analysis for the selection of the most suitable energy source and water desalination system in Mauritania

    International Nuclear Information System (INIS)

    Bayod Rujula, Angel Antonio; Dia, Nourou Khalidou

    2010-01-01

    Water deficits and their associated shortages are serious problems in many areas of the world. The paper presents a multi-criteria analysis for selection of the most suitable system in Mauritania. Six scenarios, different energy sources, technologies of water desalination processes and water use and five criteria are analyzed. The multi-criteria analysis shows that the optimal solution is different for each scenario; in some cases the photovoltaic-reverse osmosis option is preferable; in others, the best option is reverse-osmosis powered by wind energy or concentrating solar parabolic.

  4. Multi-Frame Rate Based Multiple-Model Training for Robust Speaker Identification of Disguised Voice

    DEFF Research Database (Denmark)

    Prasad, Swati; Tan, Zheng-Hua; Prasad, Ramjee

    2013-01-01

    Speaker identification systems are prone to attack when voice disguise is adopted by the user. To address this issue,our paper studies the effect of using different frame rates on the accuracy of the speaker identification system for disguised voice.In addition, a multi-frame rate based multiple......-model training method is proposed. The experimental results show the superior performance of the proposed method compared to the commonly used single frame rate method for three types of disguised voice taken from the CHAINS corpus....

  5. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  6. Automatic Thresholding for Frame-Repositioning Using External Tracking in PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Keller, Sune; Sibomana, Merence

    2010-01-01

    Motion correction (MC) in positron emission tomography (PET) brain imaging become of higher importance with increasing scanner resolution. Several motion correction methods have been suggested and so far the Polaris Vicra tracking system has been the preferred one for motion registration. We...... present an automated algorithm for dividing PET acquisitions into subframes based on the registered head motion to correct for intra-frame motion with the frame repositioning MC method. The method is tested on real patient data (five 11C-SB studies and five 11C-PIB studies) and compared with an image...... based registration method (AIR). Quantitative evaluation was done using a correlation measure. The study shows that MC improves the correlation of the PET images and that AIR performed slightly better than the Polaris Vicra. We found significant intra-frame motion of 1-5 mm in 9 frames...

  7. Sparsity- and continuity-promoting seismic image recovery with curvelet frames

    NARCIS (Netherlands)

    Herrmann, Felix J.; Moghaddam, Peyman; Stolk, C.C.

    2008-01-01

    A nonlinear singularity-preserving solution to seismic image recovery with sparseness and continuity constraints is proposed. We observe that curvelets, as a directional frame expansion, lead to sparsity of seismic images and exhibit invariance under the normal operator of the linearized imaging

  8. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    Science.gov (United States)

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  9. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, P. M., E-mail: pmccowan@cancercare.mb.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); McCurdy, B. M. C. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Radiology, University of Manitoba, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9 (Canada)

    2016-01-15

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose (<20% prescription dose) and high dose regions (>80% prescription dose) was calculated for each frame averaged

  10. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    International Nuclear Information System (INIS)

    McCowan, P. M.; McCurdy, B. M. C.

    2016-01-01

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose ( 80% prescription dose) was calculated for each frame averaged scenario for each plan. The authors defined their

  11. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Science.gov (United States)

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE

  12. Efficient Multi-Label Feature Selection Using Entropy-Based Label Selection

    Directory of Open Access Journals (Sweden)

    Jaesung Lee

    2016-11-01

    Full Text Available Multi-label feature selection is designed to select a subset of features according to their importance to multiple labels. This task can be achieved by ranking the dependencies of features and selecting the features with the highest rankings. In a multi-label feature selection problem, the algorithm may be faced with a dataset containing a large number of labels. Because the computational cost of multi-label feature selection increases according to the number of labels, the algorithm may suffer from a degradation in performance when processing very large datasets. In this study, we propose an efficient multi-label feature selection method based on an information-theoretic label selection strategy. By identifying a subset of labels that significantly influence the importance of features, the proposed method efficiently outputs a feature subset. Experimental results demonstrate that the proposed method can identify a feature subset much faster than conventional multi-label feature selection methods for large multi-label datasets.

  13. Full-frame compression of discrete wavelet and cosine transforms

    Science.gov (United States)

    Lo, Shih-Chung B.; Li, Huai; Krasner, Brian; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    At the foreground of computerized radiology and the filmless hospital are the possibilities for easy image retrieval, efficient storage, and rapid image communication. This paper represents the authors' continuous efforts in compression research on full-frame discrete wavelet (FFDWT) and full-frame discrete cosine transforms (FFDCT) for medical image compression. Prior to the coding, it is important to evaluate the global entropy in the decomposed space. It is because of the minimum entropy, that a maximum compression efficiency can be achieved. In this study, each image was split into the top three most significant bit (MSB) and the remaining remapped least significant bit (RLSB) images. The 3MSB image was compressed by an error-free contour coding and received an average of 0.1 bit/pixel. The RLSB image was either transformed to a multi-channel wavelet or the cosine transform domain for entropy evaluation. Ten x-ray chest radiographs and ten mammograms were randomly selected from our clinical database and were used for the study. Our results indicated that the coding scheme in the FFDCT domain performed better than in FFDWT domain for high-resolution digital chest radiographs and mammograms. From this study, we found that decomposition efficiency in the DCT domain for relatively smooth images is higher than that in the DWT. However, both schemes worked just as well for low resolution digital images. We also found that the image characteristics of the `Lena' image commonly used in the compression literature are very different from those of radiological images. The compression outcome of the radiological images can not be extrapolated from the compression result based on the `Lena.'

  14. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching.

    Science.gov (United States)

    Wang, Guohua; Liu, Qiong

    2015-12-21

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians' head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians' size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.

  15. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching

    Directory of Open Access Journals (Sweden)

    Guohua Wang

    2015-12-01

    Full Text Available Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians’ head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians’ size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.

  16. Green-Frag: Energy-Efficient Frame Fragmentation Scheme for Wireless Sensor Networks

    KAUST Repository

    Daghistani, Anas H.

    2013-01-01

    that is optimized to be energy efficient, which is originated from the chosen frame fragmentation scheme. This new energy-efficient frame fragmentation protocol is called (Green-Frag). Green-Frag uses an algorithm that gives sensor nodes the ability to transmit data

  17. Green-Frag: Energy-efficient frame fragmentation scheme for wireless sensor networks

    KAUST Repository

    Daghistani, Anas

    2013-10-01

    Frame fragmentation techniques aim to achieve higher throughput by reducing retransmissions. Using experiments on a WSN testbed, we show that frame fragmentation also helps to reduce energy consumption. In this paper we propose Green-Frag, a new energy-efficient protocol based on efficient frame fragmentation technique. Green-Frag allows sensor nodes to transmit data with optimal transmit power and frame structure based on environmental conditions. Green-Frag takes into consideration the channel conditions, interference patterns and level, as well as the distance between sender and receiver. The paper discusses various design and implementation considerations for Green-Frag. Using experimental evaluation on a sensor mote testbed, we show that Green-Frag achieves the least energy consumption by choosing the best transmit power according to the channel conditions.

  18. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Energy Technology Data Exchange (ETDEWEB)

    Cros, B., E-mail: brigitte.cros@u-psud.fr [LPGP, CNRS and Université Paris Sud, Orsay (France); Paradkar, B.S. [LPGP, CNRS and Université Paris Sud, Orsay (France); Davoine, X. [CEA DAM DIF, Arpajon F-91297 (France); Chancé, A. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Desforges, F.G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Dobosz-Dufrénoy, S. [CEA DSM-IRAMIS-SPAM, Gif-sur-Yvette (France); Delerue, N. [LAL, CNRS and Universit Paris Sud, Orsay (France); Ju, J.; Audet, T.L.; Maynard, G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Lobet, M.; Gremillet, L. [CEA DAM DIF, Arpajon F-91297 (France); Mora, P. [CPhT, CNRS and Ecole Polytechnique, Palaiseau (France); Schwindling, J.; Delferrière, O. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Bruni, C.; Rimbault, C.; Vinatier, T. [LAL, CNRS and Universit Paris Sud, Orsay (France); Di Piazza, A. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Grech, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau (France); and others

    2014-03-11

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (>15fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  19. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.

    Science.gov (United States)

    Zhao, Wei; Vernekohl, Don; Han, Fei; Han, Bin; Peng, Hao; Yang, Yong; Xing, Lei; Min, James K

    2018-04-21

    Many clinical applications depend critically on the accurate differentiation and classi-fication of different types of materials in patient anatomy. This work introduces a unified framework for accurate nonlinear material decomposition and applies it, for the first time, in the concept of triple-energy CT (TECT) for enhanced material differentiation and classification as well as dual-energy CT METHODS: We express polychromatic projection into a linear combination of line integrals of material-selective images. The material decomposition is then turned into a problem of minimizing the least-squares difference between measured and estimated CT projections. The optimization problem is solved iteratively by updating the line integrals. The proposed technique is evaluated by using several numerical phantom measurements under different scanning protocols The triple-energy data acquisition is implemented at the scales of micro-CT and clinical CT imaging with commercial "TwinBeam" dual-source DECT configuration and a fast kV switching DECT configu-ration. Material decomposition and quantitative comparison with a photon counting detector and with the presence of a bow-tie filter are also performed. The proposed method provides quantitative material- and energy-selective images exam-ining realistic configurations for both dual- and triple-energy CT measurements. Compared to the polychromatic kV CT images, virtual monochromatic images show superior image quality. For the mouse phantom, quantitative measurements show that the differences between gadodiamide and iodine concentrations obtained using TECT and idealized photon counting CT (PCCT) are smaller than 8 mg/mL and 1 mg/mL, respectively. TECT outperforms DECT for multi-contrast CT imag-ing and is robust with respect to spectrum estimation. For the thorax phantom, the differences between the concentrations of the contrast map and the corresponding true reference values are smaller than 7 mg/mL for all of the realistic

  20. Fluoroscopic dose reduction by acquisition frame rate reduction and image processing

    International Nuclear Information System (INIS)

    Fritz, S.L.; Mirvis, S.E.; Pals, S.O.

    1986-01-01

    A new design for fluoroscopic exposure reduction incorporates pulsed x-ray exposure, progressive scan video acquisition at frame rates below 30 Hz, interlaced video display at 30 Hz, and a video rate image processing. To evaluate this design, a variety of phantom systems have been developed to measure the impact of low frame rate pulsed digital fluoroscopy on the performance of several clinical tasks (e.g., catheter placement). The authors are currently using these phantoms with a digital fluoroscopy system using continuous x-ray, interlaced video acquisition and variable acquisition frame rate. The design of their target digital fluoroscopic system, sample image sequences, and the results of some preliminary phantom studies are reported

  1. 3D Imaging with a Sonar Sensor and an Automated 3-Axes Frame for Selective Spraying in Controlled Conditions

    Directory of Open Access Journals (Sweden)

    David Reiser

    2017-02-01

    Full Text Available Autonomous selective spraying could be a way for agriculture to reduce production costs, save resources, protect the environment and help to fulfill specific pesticide regulations. The objective of this paper was to investigate the use of a low-cost sonar sensor for autonomous selective spraying of single plants. For this, a belt driven autonomous robot was used with an attached 3-axes frame with three degrees of freedom. In the tool center point (TCP of the 3-axes frame, a sonar sensor and a spray valve were attached to create a point cloud representation of the surface, detect plants in the area and perform selective spraying. The autonomous robot was tested on replicates of artificial crop plants. The location of each plant was identified out of the acquired point cloud with the help of Euclidian clustering. The gained plant positions were spatially transformed from the coordinates of the sonar sensor to the valve location to determine the exact irrigation points. The results showed that the robot was able to automatically detect the position of each plant with an accuracy of 2.7 cm and could spray on these selected points. This selective spraying reduced the used liquid by 72%, when comparing it to a conventional spraying method in the same conditions.

  2. Rethinking Global Care Chains through the Perspective of Heterogeneous States, Discursive Framings and Multi-Level Governance

    DEFF Research Database (Denmark)

    Spanger, Marlene; Dahl, Hanne Marlene; Petersson, Elin

    2017-01-01

    discursive policy analysis with feminist state and multi-level governance theories. Paying attention to the role of the state, we focus on the framing of policy problems that are important for care chains and on potential tensions between different framings within a state and across the different levels...

  3. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2016-03-01

    Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.

  4. Analysis of the image of pion-emitting sources in the source center-of-mass frame

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yanyu; Feng, Qichun; Huo, Lei; Zhang, Jingbo; Liu, Jianli; Tang, Guixin [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Zhang, Weining [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Dalian University of Technology, School of Physics and Optoelectronic Technology, Dalian, Liaoning (China)

    2017-08-15

    In this paper, we try a method to extract the image of pion-emitting source function in the center-of-mass frame of the source (CMFS). We choose identical pion pairs according to the difference of their energy and use these pion pairs to build the correlation function. The purpose is to reduce the effect of ΔEΔt, thus the corresponding imaging result can tend to the real source function. We examine the effect of this method by comparing its results with real source functions extracted from models directly. (orig.)

  5. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  6. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  7. Development of a dual MCP framing camera for high energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N., E-mail: izumi2@llnl.gov; Hall, G. N.; Carpenter, A. C.; Allen, F. V.; Cruz, J. G.; Felker, B.; Hargrove, D.; Holder, J.; Lumbard, A.; Montesanti, R.; Palmer, N. E.; Piston, K.; Stone, G.; Thao, M.; Vern, R.; Zacharias, R.; Landen, O. L.; Tommasini, R.; Bradley, D. K.; Bell, P. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., “AXIS: An instrument for imaging Compton radiographs using ARC on the NIF,” Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

  8. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-03-01

    Full Text Available An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT-based power management system (PMS is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  9. Software programmable multi-mode interface for nuclear-medical imaging

    International Nuclear Information System (INIS)

    Zubal, I.G.; Rowe, R.W.; Bizais, Y.J.C.; Bennett, G.W.; Brill, A.B.

    1982-01-01

    An innovative multi-port interface allows gamma camera events (spatial coordinates and energy) to be acquired concurrently with a sampling of physiological patient data. The versatility of the interface permits all conventional static, dynamic, and tomographic imaging modes, in addition to multi-hole coded aperture acquisition. The acquired list mode data may be analyzed or gated on the basis of various camera, isotopic, or physiological parameters

  10. A motion-tolerant approach for monitoring SpO2 and heart rate using photoplethysmography signal with dual frame length processing and multi-classifier fusion.

    Science.gov (United States)

    Fan, Feiyi; Yan, Yuepeng; Tang, Yongzhong; Zhang, Hao

    2017-12-01

    Monitoring pulse oxygen saturation (SpO 2 ) and heart rate (HR) using photoplethysmography (PPG) signal contaminated by a motion artifact (MA) remains a difficult problem, especially when the oximeter is not equipped with a 3-axis accelerometer for adaptive noise cancellation. In this paper, we report a pioneering investigation on the impact of altering the frame length of Molgedey and Schuster independent component analysis (ICAMS) on performance, design a multi-classifier fusion strategy for selecting the PPG correlated signal component, and propose a novel approach to extract SpO 2 and HR readings from PPG signal contaminated by strong MA interference. The algorithm comprises multiple stages, including dual frame length ICAMS, a multi-classifier-based PPG correlated component selector, line spectral analysis, tree-based HR monitoring, and post-processing. Our approach is evaluated by multi-subject tests. The root mean square error (RMSE) is calculated for each trial. Three statistical metrics are selected as performance evaluation criteria: mean RMSE, median RMSE and the standard deviation (SD) of RMSE. The experimental results demonstrate that a shorter ICAMS analysis window probably results in better performance in SpO 2 estimation. Notably, the designed multi-classifier signal component selector achieved satisfactory performance. The subject tests indicate that our algorithm outperforms other baseline methods regarding accuracy under most criteria. The proposed work can contribute to improving the performance of current pulse oximetry and personal wearable monitoring devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [A preliminary research on multi-source medical image fusion].

    Science.gov (United States)

    Kang, Yuanyuan; Li, Bin; Tian, Lianfang; Mao, Zongyuan

    2009-04-01

    Multi-modal medical image fusion has important value in clinical diagnosis and treatment. In this paper, the multi-resolution analysis of Daubechies 9/7 Biorthogonal Wavelet Transform is introduced for anatomical and functional image fusion, then a new fusion algorithm with the combination of local standard deviation and energy as texture measurement is presented. At last, a set of quantitative evaluation criteria is given. Experiments show that both anatomical and metabolism information can be obtained effectively, and both the edge and texture features can be reserved successfully. The presented algorithm is more effective than the traditional algorithms.

  12. Smear correction of highly variable, frame-transfer CCD images with application to polarimetry.

    Science.gov (United States)

    Iglesias, Francisco A; Feller, Alex; Nagaraju, Krishnappa

    2015-07-01

    Image smear, produced by the shutterless operation of frame-transfer CCD detectors, can be detrimental for many imaging applications. Existing algorithms used to numerically remove smear do not contemplate cases where intensity levels change considerably between consecutive frame exposures. In this report, we reformulate the smearing model to include specific variations of the sensor illumination. The corresponding desmearing expression and its noise properties are also presented and demonstrated in the context of fast imaging polarimetry.

  13. Development of multi-dimensional body image scale for malaysian female adolescents.

    Science.gov (United States)

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.

  14. REFLECTANCE CALIBRATION SCHEME FOR AIRBORNE FRAME CAMERA IMAGES

    Directory of Open Access Journals (Sweden)

    U. Beisl

    2012-07-01

    Full Text Available The image quality of photogrammetric images is influenced by various effects from outside the camera. One effect is the scattered light from the atmosphere that lowers contrast in the images and creates a colour shift towards the blue. Another is the changing illumination during the day which results in changing image brightness within an image block. In addition, there is the so-called bidirectional reflectance of the ground (BRDF effects that is giving rise to a view and sun angle dependent brightness gradient in the image itself. To correct for the first two effects an atmospheric correction with reflectance calibration is chosen. The effects have been corrected successfully for ADS linescan sensor data by using a parametrization of the atmospheric quantities. Following Kaufman et al. the actual atmospheric condition is estimated by the brightness of a dark pixel taken from the image. The BRDF effects are corrected using a semi-empirical modelling of the brightness gradient. Both methods are now extended to frame cameras. Linescan sensors have a viewing geometry that is only dependent from the cross track view zenith angle. The difference for frame cameras now is to include the extra dimension of the view azimuth into the modelling. Since both the atmospheric correction and the BRDF correction require a model inversion with the help of image data, a different image sampling strategy is necessary which includes the azimuth angle dependence. For the atmospheric correction a sixth variable is added to the existing five variables visibility, view zenith angle, sun zenith angle, ground altitude, and flight altitude – thus multiplying the number of modelling input combinations for the offline-inversion. The parametrization has to reflect the view azimuth angle dependence. The BRDF model already contains the view azimuth dependence and is combined with a new sampling strategy.

  15. Green frame aggregation scheme for Wi-Fi networks

    KAUST Repository

    Alaslani, Maha S.

    2015-07-01

    Frame aggregation is a major enhancement in the IEEE 802.11 family to boost the network performance. The increasing awareness about energy efficiency motivates the re-think of frame aggregation design. In this paper, we propose a novel Green Frame Aggregation (GFA) scheduling scheme that optimizes the aggregate size based on channel quality in order to minimize the consumed energy. GFA selects an optimal sub-frame size that satisfies the loss constraint for real-time applications as well as the energy budget of the ideal channel. This scheme is implemented and evaluated using a testbed deployment. The experimental analysis shows that GFA outperforms the conventional frame aggregation methodology in terms of energy efficiency by about 6x in the presence of severe interference conditions. Moreover, GFA outperforms the static frame sizing method in terms of network goodput while maintaining the same end-to-end latency.

  16. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  17. WE-G-18C-07: Accelerated Water/fat Separation in MRI for Radiotherapy Planning Using Multi-Band Imaging Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, S; Stemkens, B; Sbrizzi, A; Lagendijk, J; Berg, C van den; Andreychenko, A [UMC Utrecht, Utrecht, Utrecht (Netherlands)

    2014-06-15

    Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to that in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.

  18. Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction

    Directory of Open Access Journals (Sweden)

    Sebastian Schaetz

    2017-01-01

    Full Text Available Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs in magnetic resonance imaging (MRI and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results. The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

  19. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  20. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    , current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI...

  1. MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Multispectral remote sensing images have...

  2. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, S; Rottmann, J; Berbeco, R [Brigham and Women' s Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  3. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    International Nuclear Information System (INIS)

    Yip, S; Rottmann, J; Berbeco, R

    2014-01-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  4. Optional Frame Selection Algorithm for Adaptive Symmetric Service of Augmented Reality Big Data on Smart Devices

    Directory of Open Access Journals (Sweden)

    HwiRim Byun

    2016-05-01

    Full Text Available Following recent technological advances in diverse mobile devices, including smartphones, tablets and smartwatches, in-depth studies aimed at improving the quality of augmented reality (AR are currently ongoing. Smartphones feature the essential elements of AR implementation, such as a camera, a processor and a display in a single device. As a result, additional hardware expansion for AR implementation has become unnecessary, popularizing AR technology at the user level. In the early stages, low-level AR technology was used mainly in limited fields, including simple road guides and marker-based recognition. Due to advances in AR technology, the range of usage has expanded as diverse technologies and purposes are combined. Users’ expectations of AR technology have also increased with this trend, and a high quality of service (QoS, with high-resolution, high-quality images, is now available. However, there are limitations in terms of processing speed and graphic treatment with smart devices, which, due to their small size, have inferior performance compared to the desktop environment when processing data for the implementation of high-resolution, high-quality images. This paper proposes an optional frame-selection algorithm (OFSA, which eliminates the unnecessary work involved with redundant frames during rendering for adaptive symmetric service of augmented reality big data on smart devices. Moreover, the memory read-write delay of the internally-operating OFSA, is minimized by adding an adaptive operation function. It is possible to provide adaptive common AR images at an improved frame rate in heterogeneous smart devices with different levels of performance.

  5. Frames as visual links between paintings and the museum environment: An analysis of statistical image properties

    Directory of Open Access Journals (Sweden)

    Christoph eRedies

    2013-11-01

    Full Text Available Frames provide a visual link between artworks and their surround. We asked how image properties change as an observer zooms out from viewing a painting alone, to viewing the painting with its frame and, finally, the framed painting in its museum environment (museum scene. To address this question, we determined three higher-order image properties that are based on histograms of oriented luminance gradients. First, complexity was measured as the sum of the strengths of all gradients in the image. Second, we determined the self-similarity of histograms of the orientated gradients at different levels of spatial analysis. Third, we analyzed how much gradient strength varied across orientations (anisotropy. Results were obtained for three art museums that exhibited paintings from three major periods of Western art. In all three museums, the mean complexity of the frames was higher than that of the paintings or the museum scenes. Frames thus provide a barrier of complexity between the paintings and their exterior. By contrast, self-similarity and anisotropy values of images of framed paintings were intermediate between the images of the paintings and the museum scenes, i.e., the frames provided a transition between the paintings and their surround. We also observed differences between the three museums that may reflect modified frame usage in different art periods. For example, frames in the museum for 20th century art tended to be smaller and less complex than in the two other two museums that exhibit paintings from earlier art periods (13th-18th century and 19th century, respectively. Finally, we found that the three properties did not depend on the type of reproduction of the paintings (photographs in museums, scans from books or images from the Google Art Project. To the best of our knowledge, this study is the first to investigate the relation between frames and paintings by measuring physically defined, higher-order image properties.

  6. Establishment of frame image in dynamic function renal studies

    International Nuclear Information System (INIS)

    Guedes, Germano P.; Brunetto, Sergio Q.

    1996-01-01

    Statistical procedures applied to a set of images of renal function study are described to define a region of interest (ROI) on the kidneys's contours. The kidneys geometry is considered to adapt to the emitting area in every frames

  7. Image Fusion Based on the \\({\\Delta ^{ - 1}} - T{V_0}\\ Energy Function

    Directory of Open Access Journals (Sweden)

    Qiwei Xie

    2014-11-01

    Full Text Available This article proposes a \\({\\Delta^{-1}}-T{V_0}\\ energy function to fuse a multi-spectral image with a panchromatic image. The proposed energy function consists of two components, a \\(TV_0\\ component and a \\(\\Delta^{-1}\\ component. The \\(TV_0\\ term uses the sparse priority to increase the detailed spatial information; while the \\({\\Delta ^{ - 1}}\\ term removes the block effect of the multi-spectral image. Furthermore, as the proposed energy function is non-convex, we also adopt an alternative minimization algorithm and the \\(L_0\\ gradient minimization to solve it. Experimental results demonstrate the improved performance of the proposed method over existing methods.

  8. Novel driver method to improve ordinary CCD frame rate for high-speed imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tong-Ding, E-mail: snuohui@126.com; Li, Bin-Kang; Yang, Shao-Hua; Guo, Ming-An; Yan, Ming

    2016-06-21

    The use of ordinary Charge-coupled-Device (CCD) imagers for the analysis of fast physical phenomenon is restricted because of the low-speed performance resulting from their long output times. Even though the form of Intensified-CCD (ICCD), coupled with a gated image intensifier, has extended their use for high speed imaging, the deficiency remains to be solved that ICDD could record only one image in a single shot. This paper presents a novel driver method designed to significantly improve the ordinary interline CCD burst frame rate for high-speed photography. This method is based on the use of vertical registers as storage, so that a small number of additional frames comprised of reduced-spatial-resolution images obtained via a specific sampling operation can be buffered. Hence, the interval time of the received series of images is related to the exposure and vertical transfer times only and, thus, the burst frame rate can be increased significantly. A prototype camera based on this method is designed as part of this study, exhibiting a burst rate of up to 250,000 frames per second (fps) and a capacity to record three continuous images. This device exhibits a speed enhancement of approximately 16,000 times compared with the conventional speed, with a spatial resolution reduction of only 1/4.

  9. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Jonassen, Johnny; Schmidt, Mai Lykkegaard

    2015-01-01

    of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without...... absolute error of 2.0% for the gold marker. Conclusions: A device that triggers readout of unexposed frames during kV fluoroscopy was built and shown to greatly improve the quality of intratreatment kV images. A simple theoretical model successfully described the CNR improvements with the device.......Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used forreal-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout...

  10. Green-Frag: Energy-efficient frame fragmentation scheme for wireless sensor networks

    KAUST Repository

    Daghistani, Anas; Shihada, Basem

    2013-01-01

    Frame fragmentation techniques aim to achieve higher throughput by reducing retransmissions. Using experiments on a WSN testbed, we show that frame fragmentation also helps to reduce energy consumption. In this paper we propose Green-Frag, a new

  11. High speed display algorithm for 3D medical images using Multi Layer Range Image

    International Nuclear Information System (INIS)

    Ban, Hideyuki; Suzuki, Ryuuichi

    1993-01-01

    We propose high speed algorithm that display 3D voxel images obtained from medical imaging systems such as MRI. This algorithm convert voxel image data to 6 Multi Layer Range Image (MLRI) data, which is an augmentation of the range image data. To avoid the calculation for invisible voxels, the algorithm selects at most 3 MLRI data from 6 in accordance with the view direction. The proposed algorithm displays 256 x 256 x 256 voxel data within 0.6 seconds using 22 MIPS Workstation without a special hardware such as Graphics Engine. Real-time display will be possible on 100 MIPS class Workstation by our algorithm. (author)

  12. On the effect of the near field records on the steel braced frames equipped with energy dissipating devices

    Directory of Open Access Journals (Sweden)

    Mahmoud Bayat

    Full Text Available The behavior of braced steel frame structures is of special importance due to its extensive use. Also the application of active and semi-active control systems, regarding to their benefits in obtaining better seismic performance has increased significantly. The majority of the works on steel structures and steel connections has been done under far field records, and the behavior of steel frame structures equipped with yielding dampers under these circumstances has not yet been fully analyzed. The main purpose of this paper is to determine the behavior of structures equipped with yielding dampers, located in near field based on energy concepts. In order to optimize their seismic behavior, the codes and solutions are also presented.The selected system is a braced steel frame system which is equipped with yielding dampers and the analysis is performed using the "Perform 3D V.4" software and the conclusions are drawn upon energy criterion. The effect of PGA variation and height of the frames are also considered in the study .Finally, using the above mentioned results, a proper solution is presented for typical systems in order to increase the energy damping ability and reduce the destructive effects in structures on an earthquake event, so that a great amount of induced energy is damped and destruction of the structure is prevented as much as possible.

  13. Performance-based plastic design of earthquake resistant reinforced concrete moment frames

    Science.gov (United States)

    Liao, Wen-Cheng

    Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those

  14. Pengaruh Adverse Selection dan Negative Framing pada Kecenderungan Eskalasi Komitmen

    Directory of Open Access Journals (Sweden)

    Gede Wira Kusuma

    2017-02-01

    Full Text Available Escalation of commitment is a decision to increase or expand the commitment to a project or a particular investment even though the investment project or indicate failure. This research has the objective to obtain empirical evidence of the effect of adverse selection and negative framing effect on the escalation of commitment tendency. Experimental design used of this research is 2 x 2 factorial design with the instrument in the form of cases. Participants in this research were Magister ofAccounting and Magister of Management students, as a proxy manager chosen by purposive sampling technique as much as 196 participants. This research uses of two ways ANOVA analysis techniques. This research proves that adverse selection and negative framing have an influence on the propensity of escalation of commitment.

  15. Transform- and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging.

    Science.gov (United States)

    Jiang, Shaowei; Liao, Jun; Bian, Zichao; Guo, Kaikai; Zhang, Yongbing; Zheng, Guoan

    2018-04-01

    A whole slide imaging (WSI) system has recently been approved for primary diagnostic use in the US. The image quality and system throughput of WSI is largely determined by the autofocusing process. Traditional approaches acquire multiple images along the optical axis and maximize a figure of merit for autofocusing. Here we explore the use of deep convolution neural networks (CNNs) to predict the focal position of the acquired image without axial scanning. We investigate the autofocusing performance with three illumination settings: incoherent Kohler illumination, partially coherent illumination with two plane waves, and one-plane-wave illumination. We acquire ~130,000 images with different defocus distances as the training data set. Different defocus distances lead to different spatial features of the captured images. However, solely relying on the spatial information leads to a relatively bad performance of the autofocusing process. It is better to extract defocus features from transform domains of the acquired image. For incoherent illumination, the Fourier cutoff frequency is directly related to the defocus distance. Similarly, autocorrelation peaks are directly related to the defocus distance for two-plane-wave illumination. In our implementation, we use the spatial image, the Fourier spectrum, the autocorrelation of the spatial image, and combinations thereof as the inputs for the CNNs. We show that the information from the transform domains can improve the performance and robustness of the autofocusing process. The resulting focusing error is ~0.5 µm, which is within the 0.8-µm depth-of-field range. The reported approach requires little hardware modification for conventional WSI systems and the images can be captured on the fly without focus map surveying. It may find applications in WSI and time-lapse microscopy. The transform- and multi-domain approaches may also provide new insights for developing microscopy-related deep-learning networks. We have made

  16. 100-ps framing-camera tube

    International Nuclear Information System (INIS)

    Kalibjian, R.

    1978-01-01

    The optoelectronic framing-camera tube described is capable of recording two-dimensional image frames with high spatial resolution in the <100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits. The resulting dissected electron line images from the slits are restored into framed images by a restorer deflector operating synchronously with the dissector deflector. The number of framed images on the tube's viewing screen equals the number of dissecting slits in the tube. Performance has been demonstrated in a prototype tube by recording 135-ps-duration framed images of 2.5-mm patterns at the cathode. The limitation in the framing speed is in the external drivers for the deflectors and not in the tube design characteristics. Faster frame speeds in the <100-ps range can be obtained by use of faster deflection drivers

  17. OBJECT-SPACE MULTI-IMAGE MATCHING OF MOBILE-MAPPING-SYSTEM IMAGE SEQUENCES

    Directory of Open Access Journals (Sweden)

    Y. C. Chen

    2012-07-01

    Full Text Available This paper proposes an object-space multi-image matching procedure of terrestrial MMS (Mobile Mapping System image sequences to determine the coordinates of an object point automatically and reliably. This image matching procedure can be applied to find conjugate points of MMS image sequences efficiently. Conventional area-based image matching methods are not reliable to deliver accurate matching results for this application due to image scale variations, viewing angle variations, and object occlusions. In order to deal with these three matching problems, an object space multi-image matching is proposed. A modified NCC (Normalized Cross Correlation coefficient is proposed to measure the similarity of image patches. A modified multi-window matching procedure will also be introduced to solve the problem of object occlusion. A coarse-to-fine procedure with a combination of object-space multi-image matching and multi-window matching is adopted. The proposed procedure has been implemented for the purpose of matching terrestrial MMS image sequences. The ratio of correct matches of this experiment was about 80 %. By providing an approximate conjugate point in an overlapping image manually, most of the incorrect matches could be fixed properly and the ratio of correct matches was improved up to 98 %.

  18. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Daehyeok Kim

    2017-06-01

    Full Text Available In this paper, we present a multi-resolution mode CMOS image sensor (CIS for intelligent surveillance system (ISS applications. A low column fixed-pattern noise (CFPN comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution with supply voltages of 3.3 V (analog and 1.8 V (digital and 14 frame/s of frame rates.

  19. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems.

    Science.gov (United States)

    Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn

    2017-06-25

    In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.

  20. Role of accentuation in the selection/rejection task framing effect.

    Science.gov (United States)

    Chen, Jing; Proctor, Robert W

    2017-04-01

    Procedure invariance is a basic assumption of rational theories of choice, however, it has been shown to be violated: Different response modes, or task frames, sometimes reveal opposite preferences. The current study focused on selection and rejection task frames, involving a unique type of problem with enriched and impoverished options, which has previously led to conflicting findings and theoretical explanations: the compatibility hypothesis (Shafir, 1993) and the accentuation hypothesis (Wedell, 1997). We examined the role of task frame by distinguishing these 2 hypotheses and evaluating the information-processing basis of the choices. Experiments conducted online (Experiments 1 and 3) and in-lab (Experiment 4 with eye-tracking technique) revealed a difference between the 2 task frames in the choice data (i.e., the task-framing effect) as a function of the relative attractiveness of the options. Also, this task-framing effect was not influenced by imposed time constraints (Experiments 5 and 6) and was similarly evident with a more direct measure for the option attractiveness (obtained in Experiment 7). Experiment 2, conducted in a lab setting with verbal-protocol requirements, yielded no task-framing effect, suggesting that a requirement to verbalize reasons for choice minimizes accentuation. With this exception, the choice data are in agreement with the accentuation hypothesis, and the combined findings in choice, decision time, task confusion, and eye-tracking data provide evidence of a basis in cognitive effort rather than motivation, as Wedell proposed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method

    International Nuclear Information System (INIS)

    San Cristobal, J.R.

    2011-01-01

    One of the characteristics of the Spanish energy system is its high degree of dependence on imports. In 2005, the Spanish government approved the new Renewable Energy Plan in the following sectors: Windpower, Hydroelectric, Solar Thermal, Solar Thermo-electric, Photovoltaic, Biomass, Biogas and Biofuels. The aim of the Plan is to make it possible to reach the target of 12% of primary energy being met from renewable sources by 2010. When selecting one from various Renewable Energy investment projects different groups of decision-makers become involved in the process. Decision-making has to take into consideration several conflicting objectives because of the increasingly complex social, economic, technological, and environmental factors that are present. Traditional single-criterion decision-making is no longer able to handle these problems. The Compromise Ranking method, also known as the VIKOR method, introduces the Multi-criteria ranking index based on the particular measure of ''closeness'' to the ''ideal'' solution. In this paper, we apply the method in the selection of a Renewable Energy project corresponding to the Renewable Energy Plan launched by the Spanish Government. The method is combined with the Analytical Hierarchy Process method for weighting the importance of the different criteria, which allows decision-makers to assign these values based on their preferences. The results show that the Biomass plant option (Co-combustion in a conventional power plant) is the best choice, followed by the Wind power and Solar Thermo-electric alternatives. (author)

  2. Selection of bi-level image compression method for reduction of communication energy in wireless visual sensor networks

    Science.gov (United States)

    Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias

    2012-06-01

    Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.

  3. Selection bias in population-based cancer case-control studies due to incomplete sampling frame coverage.

    Science.gov (United States)

    Walsh, Matthew C; Trentham-Dietz, Amy; Gangnon, Ronald E; Nieto, F Javier; Newcomb, Polly A; Palta, Mari

    2012-06-01

    Increasing numbers of individuals are choosing to opt out of population-based sampling frames due to privacy concerns. This is especially a problem in the selection of controls for case-control studies, as the cases often arise from relatively complete population-based registries, whereas control selection requires a sampling frame. If opt out is also related to risk factors, bias can arise. We linked breast cancer cases who reported having a valid driver's license from the 2004-2008 Wisconsin women's health study (N = 2,988) with a master list of licensed drivers from the Wisconsin Department of Transportation (WDOT). This master list excludes Wisconsin drivers that requested their information not be sold by the state. Multivariate-adjusted selection probability ratios (SPR) were calculated to estimate potential bias when using this driver's license sampling frame to select controls. A total of 962 cases (32%) had opted out of the WDOT sampling frame. Cases age <40 (SPR = 0.90), income either unreported (SPR = 0.89) or greater than $50,000 (SPR = 0.94), lower parity (SPR = 0.96 per one-child decrease), and hormone use (SPR = 0.93) were significantly less likely to be covered by the WDOT sampling frame (α = 0.05 level). Our results indicate the potential for selection bias due to differential opt out between various demographic and behavioral subgroups of controls. As selection bias may differ by exposure and study base, the assessment of potential bias needs to be ongoing. SPRs can be used to predict the direction of bias when cases and controls stem from different sampling frames in population-based case-control studies.

  4. Multi-criteria sustainability assessment: A tool for evaluation of new energy system

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2007-01-01

    Full Text Available One of perspective methods for the evaluation of quality of energy system is the multi-criteria sustainability assessment, based on the analysis and synthesis of indicators expressing different aspects of the system. Application of this methodology in the cases of information deficiency (ASPID methodology enables evaluation of various energy systems. In the paper, the multi-criteria sustainability assessment of energy systems of various energy sources is used to evaluate the energy power system of Bosnia and Herzegovina. Eight different energy system options are taken into a consideration as the potential options for the capacity building within the energy power system of Bosnia and Herzegovina. It has included various renewable sources and fossil fuel clean technologies. Within the multi-criteria sustainability assessment method, sustainability indicators and weighting coefficients are defined and calculated, including: resource indicator, environment indicator, social indicator and economic indicator with respective weighting factors. The methodology includes the system of stochastic models of uncertainty in order to realize the assessment from various supporting systems, and to obtain respective normalization indexes by using non-numeric (ordinal, non-exact (interval, and non-complete information (NNN- information, for sources of various reliability and probability. By the analysis of multi-criteria sustainability assessment of selected options, the decision makers could be enabled to form opinion on quality of considered energy systems, and from the aspect of sustainability, make selection an optimum option of energy system. .

  5. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    Science.gov (United States)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  6. A Multi-Frame Post-Processing Approach to Improved Decoding of H.264/AVC Video

    DEFF Research Database (Denmark)

    Huang, Xin; Li, Huiying; Forchhammer, Søren

    2007-01-01

    Video compression techniques may yield visually annoying artifacts for limited bitrate coding. In order to improve video quality, a multi-frame based motion compensated filtering algorithm is reported based on combining multiple pictures to form a single super-resolution picture and decimation......, and annoying ringing artifacts are effectively suppressed....

  7. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-code Processors

    Science.gov (United States)

    Linderman, R.; Spetka, S.; Fitzgerald, D.; Emeny, S.

    The Physically-Constrained Iterative Deconvolution (PCID) image deblurring code is being ported to heterogeneous networks of multi-core systems, including Intel Xeons and IBM Cell Broadband Engines. This paper reports results from experiments using the JAWS supercomputer at MHPCC (60 TFLOPS of dual-dual Xeon nodes linked with Infiniband) and the Cell Cluster at AFRL in Rome, NY. The Cell Cluster has 52 TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes Infiniband, 10 Gigabit Ethernet and 1 Gigabit Ethernet to each of the 336 PS3s. The results compare approaches to parallelizing FFT executions across the Xeons and the Cell's Synergistic Processing Elements (SPEs) for frame-level image processing. The experiments included Intel's Performance Primitives and Math Kernel Library, FFTW3.2, and Carnegie Mellon's SPIRAL. Optimization of FFTs in the PCID code led to a decrease in relative processing time for FFTs. Profiling PCID version 6.2, about one year ago, showed the 13 functions that accounted for the highest percentage of processing were all FFT processing functions. They accounted for over 88% of processing time in one run on Xeons. FFT optimizations led to improvement in the current PCID version 8.0. A recent profile showed that only two of the 19 functions with the highest processing time were FFT processing functions. Timing measurements showed that FFT processing for PCID version 8.0 has been reduced to less than 19% of overall processing time. We are working toward a goal of scaling to 200-400 cores per job (1-2 imagery frames/core). Running a pair of cores on each set of frames reduces latency by implementing parallel FFT processing. Our current results show scaling well out to 100 pairs of cores. These results support the next higher level of parallelism in PCID, where groups of several hundred frames each producing one resolved image are sent to cliques of several

  8. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  9. Multi sensor satellite imagers for commercial remote sensing

    Science.gov (United States)

    Cronje, T.; Burger, H.; Du Plessis, J.; Du Toit, J. F.; Marais, L.; Strumpfer, F.

    2005-10-01

    This paper will discuss and compare recent refractive and catodioptric imager designs developed and manufactured at SunSpace for Multi Sensor Satellite Imagers with Panchromatic, Multi-spectral, Area and Hyperspectral sensors on a single Focal Plane Array (FPA). These satellite optical systems were designed with applications to monitor food supplies, crop yield and disaster monitoring in mind. The aim of these imagers is to achieve medium to high resolution (2.5m to 15m) spatial sampling, wide swaths (up to 45km) and noise equivalent reflectance (NER) values of less than 0.5%. State-of-the-art FPA designs are discussed and address the choice of detectors to achieve these performances. Special attention is given to thermal robustness and compactness, the use of folding prisms to place multiple detectors in a large FPA and a specially developed process to customize the spectral selection with the need to minimize mass, power and cost. A refractive imager with up to 6 spectral bands (6.25m GSD) and a catodioptric imager with panchromatic (2.7m GSD), multi-spectral (6 bands, 4.6m GSD), hyperspectral (400nm to 2.35μm, 200 bands, 15m GSD) sensors on the same FPA will be discussed. Both of these imagers are also equipped with real time video view finding capabilities. The electronic units could be subdivided into the Front-End Electronics and Control Electronics with analogue and digital signal processing. A dedicated Analogue Front-End is used for Correlated Double Sampling (CDS), black level correction, variable gain and up to 12-bit digitizing and high speed LVDS data link to a mass memory unit.

  10. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  11. X-ray framing cameras for > 5 keV imaging

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; Costa, R.; Kalantar, D.H.; Bradley, D.K.

    1995-01-01

    Recent and proposed improvements in spatial resolution, temporal resolution, contrast, and detection efficiency for x-ray framing cameras are discussed in light of present and future laser-plasma diagnostic needs. In particular, improvements in image contrast above hard x-ray background levels is demonstrated by using high aspect ratio tapered pinholes

  12. Joint variable frame rate and length analysis for speech recognition under adverse conditions

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Kraljevski, Ivan

    2014-01-01

    This paper presents a method that combines variable frame length and rate analysis for speech recognition in noisy environments, together with an investigation of the effect of different frame lengths on speech recognition performance. The method adopts frame selection using an a posteriori signal......-to-noise (SNR) ratio weighted energy distance and increases the length of the selected frames, according to the number of non-selected preceding frames. It assigns a higher frame rate and a normal frame length to a rapidly changing and high SNR region of a speech signal, and a lower frame rate and an increased...... frame length to a steady or low SNR region. The speech recognition results show that the proposed variable frame rate and length method outperforms fixed frame rate and length analysis, as well as standalone variable frame rate analysis in terms of noise-robustness....

  13. Fast and robust multi-atlas segmentation of brain magnetic resonance images

    DEFF Research Database (Denmark)

    Lötjönen, Jyrki Mp; Wolz, Robin; Koikkalainen, Juha R

    2010-01-01

    We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead of stand......We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead...... of standard normalised mutual information in registration without compromising the accuracy but leading to threefold decrease in the computation time. We study and validate also different methods for atlas selection. Finally, we propose two new approaches for combining multi-atlas segmentation and intensity...

  14. Design of RC frames for pre-selected collapse mechanism and ...

    Indian Academy of Sciences (India)

    In this study, total energy of RC frames is calculated and .... curvature relations of RC beam and column members are required for both ..... Case study ..... Turkish Seismic Design Code 2007 Ministry of Public Works and Settlement, Ankara.

  15. Design and Development of a New Multi-Projection X-Ray System for Chest Imaging

    Science.gov (United States)

    Chawla, Amarpreet S.; Boyce, Sarah; Washington, Lacey; McAdams, H. Page; Samei, Ehsan

    2009-02-01

    Overlapping anatomical structures may confound the detection of abnormal pathology, including lung nodules, in conventional single-projection chest radiography. To minimize this fundamental limiting factor, a dedicated digital multi-projection system for chest imaging was recently developed at the Radiology Department of Duke University. We are reporting the design of the multi-projection imaging system and its initial performance in an ongoing clinical trial. The system is capable of acquiring multiple full-field projections of the same patient along both the horizontal and vertical axes at variable speeds and acquisition frame rates. These images acquired in rapid succession from slightly different angles about the posterior-anterior (PA) orientation can be correlated to minimize the influence of overlying anatomy. The developed system has been tested for repeatability and motion blur artifacts to investigate its robustness for clinical trials. Excellent geometrical consistency was found in the tube motion, with positional errors for clinical settings within 1%. The effect of tube-motion on the image quality measured in terms of impact on the modulation transfer function (MTF) was found to be minimal. The system was deemed clinic-ready and a clinical trial was subsequently launched. The flexibility of image acquisition built into the system provides a unique opportunity to easily modify it for different clinical applications, including tomosynthesis, correlation imaging (CI), and stereoscopic imaging.

  16. Quantitative image fusion in infrared radiometry

    Science.gov (United States)

    Romm, Iliya; Cukurel, Beni

    2018-05-01

    Towards high-accuracy infrared radiance estimates, measurement practices and processing techniques aimed to achieve quantitative image fusion using a set of multi-exposure images of a static scene are reviewed. The conventional non-uniformity correction technique is extended, as the original is incompatible with quantitative fusion. Recognizing the inherent limitations of even the extended non-uniformity correction, an alternative measurement methodology, which relies on estimates of the detector bias using self-calibration, is developed. Combining data from multi-exposure images, two novel image fusion techniques that ultimately provide high tonal fidelity of a photoquantity are considered: ‘subtract-then-fuse’, which conducts image subtraction in the camera output domain and partially negates the bias frame contribution common to both the dark and scene frames; and ‘fuse-then-subtract’, which reconstructs the bias frame explicitly and conducts image fusion independently for the dark and the scene frames, followed by subtraction in the photoquantity domain. The performances of the different techniques are evaluated for various synthetic and experimental data, identifying the factors contributing to potential degradation of the image quality. The findings reflect the superiority of the ‘fuse-then-subtract’ approach, conducting image fusion via per-pixel nonlinear weighted least squares optimization.

  17. Vibration piezoelectric energy harvester with multi-beam

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yan, E-mail: yanc@dlut.edu.cn; Zhang, Qunying, E-mail: zhangqunying89@126.com; Yao, Minglei, E-mail: yaomingleiok@126.com [Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Dong, Weijie, E-mail: dongwj@dlut.edu.cn [School of Electronic and Information Engineering, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Gao, Shiqiao, E-mail: gaoshq@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing Province (China)

    2015-04-15

    This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .

  18. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    International Nuclear Information System (INIS)

    Zhou, Z; Folkert, M; Wang, J

    2016-01-01

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  19. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z; Folkert, M; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  20. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  1. Multi-scale and multi-orientation medical image analysis

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Deserno, T.M.

    2011-01-01

    Inspired by multi-scale and multi-orientation mechanisms recognized in the first stages of our visual system, this chapter gives a tutorial overview of the basic principles. Images are discrete, measured data. The optimal aperture for an observation with as little artefacts as possible, is derived

  2. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Bechsgaard, Thor

    2016-01-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis vie...

  3. Frames and counter-frames giving meaning to dementia: a framing analysis of media content.

    Science.gov (United States)

    Van Gorp, Baldwin; Vercruysse, Tom

    2012-04-01

    Media tend to reinforce the stigmatization of dementia as one of the most dreaded diseases in western society, which may have repercussions on the quality of life of those with the illness. The persons with dementia, but also those around them become imbued with the idea that life comes to an end as soon as the diagnosis is pronounced. The aim of this paper is to understand the dominant images related to dementia by means of an inductive framing analysis. The sample is composed of newspaper articles from six Belgian newspapers (2008-2010) and a convenience sample of popular images of the condition in movies, documentaries, literature and health care communications. The results demonstrate that the most dominant frame postulates that a human being is composed of two distinct parts: a material body and an immaterial mind. If this frame is used, the person with dementia ends up with no identity, which is in opposition to the Western ideals of personal self-fulfilment and individualism. For each dominant frame an alternative counter-frame is defined. It is concluded that the relative absence of counter-frames confirms the negative image of dementia. The inventory might be a help for caregivers and other professionals who want to evaluate their communication strategy. It is discussed that a more resolute use of counter-frames in communication about dementia might mitigate the stigma that surrounds dementia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. WE-E-18C-01: Multi-Energy CT: Current Status and Recent Innovations

    International Nuclear Information System (INIS)

    Pelc, N; McCollough, C; Yu, L; Schmidt, T

    2014-01-01

    Conventional computed tomography (CT) uses a single polychromatic x-ray spectrum and energy integrating detectors, and produces images whose contrast depends on the effective attenuation coefficient of the broad spectrum beam. This can introduce errors from beam hardening and does not produce the optimal contrast-to-noise ratio. In addition, multiple materials can have the same effective attenuation coefficient, causing different materials to be indistinguishable in conventional CT images. If transmission measurements at two or more energies are obtained, even with polychromatic beams, more specific information about the object can be obtained. If the object does not contain materials with k-edges in the spectrum, the x-ray attenuation can be well-approximated by a linear combination of two processes (photoelectric absorption and Compton scattering) or, equivalently, two basis materials. For such cases, two spectral measurements suffice, although additional measurements can provide higher precision. If K-edge materials are present, additional spectral measurements can allow these materials to be isolated. Current commercial implementations use varied approaches, including two sources operating a different kVp, one source whose kVp is rapidly switched in a single scan, and a dual layer detector that can provide spectral information in every reading. Processing of the spectral information can be performed in the raw data domain or in the image domain. The process of calculating the amount of the two basis functions implicitly corrects for beam hardening and therefore can lead to improvements in quantitative accuracy. Information can be extracted to provide material specific information beyond that of conventional CT. This additional information has been shown to be important in several clinical applications, and can also lead to more efficient clinical protocols. Recent innovations in x-ray sources, detectors, and systems have made multi-energy CT much more practical

  5. Low-Complexity Variable Frame Rate Analysis for Speech Recognition and Voice Activity Detection

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Lindberg, Børge

    2010-01-01

    present a low-complexity and effective frame selection approach based on a posteriori signal-to-noise ratio (SNR) weighted energy distance: The use of an energy distance, instead of e.g. a standard cepstral distance, makes the approach computationally efficient and enables fine granularity search......Frame based speech processing inherently assumes a stationary behavior of speech signals in a short period of time. Over a long time, the characteristics of the signals can change significantly and frames are not equally important, underscoring the need for frame selection. In this paper, we......, and the use of a posteriori SNR weighting emphasizes the reliable regions in noisy speech signals. It is experimentally found that the approach is able to assign a higher frame rate to fast changing events such as consonants, a lower frame rate to steady regions like vowels and no frames to silence, even...

  6. ORF-selector ESPRIT: a second generation library screen for soluble protein expression employing precise open reading frame selection.

    Science.gov (United States)

    An, Yingfeng; Yumerefendi, Hayretin; Mas, Philippe J; Chesneau, Alban; Hart, Darren J

    2011-08-01

    Here we present ORF-selector ESPRIT, a 9-fold enhanced version of our technology for screening incremental truncation libraries to identify soluble high yielding constructs of challenging proteins. Gene fragments are truncated at both termini to access internal domains and the resulting reading frame problem is addressed by an unbiased, intein-based open reading frame selection yielding only in-frame DNA inserts. This enriched library is then subcloned into a standard high-level expression plasmid where tens of thousands of constructs can be assayed in a two-step process using colony- and liquid-handling robots to isolate rare highly expressing clones useful for production of multi milligram quantities of purifiable proteins. The p85α protein was used to benchmark the system resulting in isolation of all known domains, either alone or in tandem. The human kinase IKK1 was then screened resulting in purification of a predicted internal domain. This strategy provides an integrated, facile route to produce soluble proteins from challenging and poorly understood target genes at quantities compatible with structural biology, screening applications and immunisation studies. The high genetic diversity that can be sampled opens the way to study more diverse systems including multisubunit complexes. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography

    Science.gov (United States)

    Kazantsev, Daniil; Jørgensen, Jakob S.; Andersen, Martin S.; Lionheart, William R. B.; Lee, Peter D.; Withers, Philip J.

    2018-06-01

    Rapid developments in photon-counting and energy-discriminating detectors have the potential to provide an additional spectral dimension to conventional x-ray grayscale imaging. Reconstructed spectroscopic tomographic data can be used to distinguish individual materials by characteristic absorption peaks. The acquired energy-binned data, however, suffer from low signal-to-noise ratio, acquisition artifacts, and frequently angular undersampled conditions. New regularized iterative reconstruction methods have the potential to produce higher quality images and since energy channels are mutually correlated it can be advantageous to exploit this additional knowledge. In this paper, we propose a novel method which jointly reconstructs all energy channels while imposing a strong structural correlation. The core of the proposed algorithm is to employ a variational framework of parallel level sets to encourage joint smoothing directions. In particular, the method selects reference channels from which to propagate structure in an adaptive and stochastic way while preferring channels with a high data signal-to-noise ratio. The method is compared with current state-of-the-art multi-channel reconstruction techniques including channel-wise total variation and correlative total nuclear variation regularization. Realistic simulation experiments demonstrate the performance improvements achievable by using correlative regularization methods.

  8. Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.

    Science.gov (United States)

    Liu, Min; Wang, Xueping; Zhang, Hongzhong

    2018-03-01

    In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Interval-Valued Neutrosophic Bonferroni Mean Operators and the Application in the Selection of Renewable Energy

    OpenAIRE

    Pu Ji; Peng-fei Cheng; Hong-yu Zhang; Jian-qiang Wang

    2018-01-01

    Renewable energy selection, which is a multi-criteria decision-making (MCDM) problem, is crucial for the sustainable development of economy. Criteria are interdependent in the selection problem of renewable energy.

  10. Green Frame Aggregation Scheme for IEEE 802.11n Networks

    KAUST Repository

    Alaslani, Maha S.

    2015-04-01

    Frame aggregation is one of the major MAC layer enhancements in the IEEE 802.11 family that boosts the network throughput performance. It aims to achieve higher throughput by transmitting huge amount of data in a single transmit oppor- tunity. With the increasing awareness of energy e ciency, it has become vital to rethink about the design of such frame aggregation protocol. Aggregation techniques help to reduce energy consumption over ideal channel conditions. However, in a noisy channel environment, a new energy-aware frame aggregation scheme is required. In this thesis, a novel Green Frame Aggregation (GFA) scheduling scheme has been proposed and evaluated. GFA optimizes the aggregate size based on channel quality in order to minimize the consumed energy. GFA selects the optimal sub-frame size that satisfies the loss constraint for real-time applications as well as the energy budget of the ideal channel situations. The design, the implementation, and evaluation of GFA using testbed deployment is done. The experimental analysis shows that GFA outperforms the conventional frame aggregation methodology in terms of energy e ciency by about 6⇥ in the presence of severe interference conditions. Moreover, GFA also outperforms the static frame sizing method in terms of network goodput and maintains almost the same end- to-end latency.

  11. Advanced multi-dimensional imaging of gamma-ray radiation

    International Nuclear Information System (INIS)

    Woodring, Mitchell; Beddingfield, David; Souza, David; Entine, Gerald; Squillante, Michael; Christian, James; Kogan, Alex

    2003-01-01

    The tracking of radiation contamination and distribution has become a high-priority US DOE task. To support DOE needs, Radiation Monitoring Devices Inc. has been actively carrying out research and development on a gamma-radiation imager, RadCam 2000 TM . The imager is based upon a position-sensitive PMT coupled to a scintillator near a MURA coded aperture. The modulated gamma flux detected by the PSPMT is mathematically decoded to produce images that are computer displayed in near real time. Additionally, we have developed a data-manipulation scheme which allows a multi-dimensional data array, comprised of x position, y position, and energy, to be used in the imaging process. In the imager software a gate can be set on a specific isotope energy to reveal where in the field of view the gated data lies or, conversely, a gate can be set on an area in the field of view to examine what isotopes are present in that area. This process is complicated by the FFT decoding process used with the coded aperture; however, we have achieved excellent performance and results are presented here

  12. Green frame aggregation scheme for Wi-Fi networks

    KAUST Repository

    Alaslani, Maha S.; Showail, Ahmad; Shihada, Basem

    2015-01-01

    Aggregation (GFA) scheduling scheme that optimizes the aggregate size based on channel quality in order to minimize the consumed energy. GFA selects an optimal sub-frame size that satisfies the loss constraint for real-time applications as well as the energy

  13. The role of multi modality imaging in selecting patients and guiding lead placement for the delivery of cardiac resynchronization therapy.

    Science.gov (United States)

    Behar, Jonathan M; Claridge, Simon; Jackson, Tom; Sieniewicz, Ben; Porter, Bradley; Webb, Jessica; Rajani, Ronak; Kapetanakis, Stamatis; Carr-White, Gerald; Rinaldi, Christopher A

    2017-02-01

    Cardiac resynchronization therapy (CRT) is an effective pacemaker delivered treatment for selected patients with heart failure with the target of restoring electro-mechanical synchrony. Imaging techniques using echocardiography have as yet failed to find a metric of dyssynchrony to predict CRT response. Current guidelines are thus unchanged in recommending prolonged QRS duration, severe systolic function and refractory heart failure symptoms as criteria for CRT implantation. Evolving strain imaging techniques in 3D echocardiography, cardiac MRI and CT may however, overcome limitations of older methods and yield more powerful CRT response predictors. Areas covered: In this review, we firstly discuss the use of multi modality cardiac imaging in the selection of patients for CRT implantation and predicting the response to CRT. Secondly we examine the clinical evidence on avoiding areas of myocardial scar, targeting areas of dyssynchrony and in doing so, achieving the optimal positioning of the left ventricular lead to deliver CRT. Finally, we present the latest clinical studies which are integrating both clinical and imaging data with X-rays during the implantation in order to improve the accuracy of LV lead placement. Expert commentary: Image integration and fusion of datasets with live X-Ray angiography to guide procedures in real time is now a reality for some implanting centers. Such hybrid facilities will enable users to interact with images, allowing measurement, annotation and manipulation with instantaneous visualization on the catheter laboratory monitor. Such advances will serve as an invaluable adjunct for implanting physicians to accurately deliver pacemaker leads into the optimal position to deliver CRT.

  14. Multi-target molecular imaging and its progress in research and application

    International Nuclear Information System (INIS)

    Tang Ganghua

    2011-01-01

    Multi-target molecular imaging (MMI) is an important field of research in molecular imaging. It includes multi-tracer multi-target molecular imaging(MTMI), fusion-molecule multi-target imaging (FMMI), coupling-molecule multi-target imaging (CMMI), and multi-target multifunctional molecular imaging(MMMI). In this paper,imaging modes of MMI are reviewed, and potential applications of positron emission tomography MMI in near future are discussed. (author)

  15. Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser

    Science.gov (United States)

    Wang, Fu-Bin; Tu, Paul; Wu, Chen; Chen, Lei; Feng, Ding

    2018-01-01

    In femtosecond laser processing, the field of view of each image frame of the microscale structure is extremely small. In order to obtain the morphology of the whole microstructure, a multi-image mosaic with partially overlapped regions is required. In the present work, the SIFT algorithm for mosaic images was analyzed theoretically, and by using multiple images of a microgroove structure processed by femtosecond laser, a stitched image of the whole groove structure could be studied experimentally and realized. The object of our research concerned a silicon wafer with a microgroove structure ablated by femtosecond laser. First, we obtained microgrooves at a width of 380 μm at different depths. Second, based on the gray image of the microgroove, a multi-image mosaic with slot width and slot depth was realized. In order to improve the image contrast between the target and the background, and taking the slot depth image as an example, a multi-image mosaic was then realized using pseudo color enhancement. Third, in order to measure the structural size of the microgroove with the image, a known width streak ablated by femtosecond laser at 20 mW was used as a calibration sample. Through edge detection, corner extraction, and image correction for the streak images, we calculated the pixel width of the streak image and found the measurement ratio constant Kw in the width direction, and then obtained the proportional relationship between a pixel and a micrometer. Finally, circular spot marks ablated by femtosecond laser at 2 mW and 15 mW were used as test images, and proving that the value Kw was correct, the measurement ratio constant Kh in the height direction was obtained, and the image measurements for a microgroove of 380 × 117 μm was realized based on a measurement ratio constant Kw and Kh. The research and experimental results show that the image mosaic, image calibration, and geometric image parameter measurements for the microstructural image ablated by

  16. Kinetic energy dependence of carrier diffusion in a GaAs epilayer studied by wavelength selective PL imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Providence High School, Charlotte, NC 28270 (United States); Su, L.Q.; Kon, J. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Gfroerer, T. [Davidson College, Davidson, NC 28035 (United States); Wanlass, M.W. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Zhang, Y., E-mail: yong.zhang@uncc.edu [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2017-05-15

    Photoluminescence (PL) imaging has been shown to be an efficient technique for investigating carrier diffusion in semiconductors. In the past, the measurement was typically carried out by measuring at one wavelength (e.g., at the band gap) or simply the whole emission band. At room temperature in a semiconductor like GaAs, the band-to-band PL emission may occur in a spectral range over 200 meV, vastly exceeding the average thermal energy of about 26 meV. To investigate the potential dependence of the carrier diffusion on the carrier kinetic energy, we performed wavelength selective PL imaging on a GaAs double hetero-structure in a spectral range from about 70 meV above to 50 meV below the bandgap, extracting the carrier diffusion lengths at different PL wavelengths by fitting the imaging data to a theoretical model. The results clearly show that the locally generated carriers of different kinetic energies mostly diffuse together, maintaining the same thermal distribution throughout the diffusion process. Potential effects related to carrier density, self-absorption, lateral wave-guiding, and local heating are also discussed.

  17. Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif

    2016-01-01

    In this study, the extent to which different climate scenarios influence overheating risk, energy use and peak loads for space conditioning of district heated multi-storey buildings in Sweden are explored. Furthermore, the effectiveness of different overheating control measures and the implications of different electricity supply options for space cooling and ventilation are investigated. The analysis is based on buildings with different architectural and energy efficiency configurations including a prefab concrete-frame, a massive timber-frame and a light timber-frame building. Thermal performance of the buildings under low and high Representative Concentration Pathway climate scenarios for 2050–2059 and 2090–2099 are analysed and compared to that under historical climate of 1961–1990 and recent climate of 1996–2005. The study is based on a bottom-up methodology and includes detailed hour-by-hour energy balance and systems analyses. The results show significant changes in the buildings’ thermal performance under the future climate scenarios, relative to the historical and recent climates. Heating demand decreased significantly while cooling demand and overheating risk increased considerably with the future climate scenarios, for all buildings. In contrast to the cooling demand, the relative changes in heating demand of the buildings under the future climate scenarios are somewhat similar. The changes in the space conditioning demands and overheating risk vary for the buildings. Overheating risk was found to be slightly higher for the massive-frame building and slightly lower for the light-frame building. - Highlights: • We analysed thermal performance of buildings under different climate scenarios. • Our analysis is based on historical, recent and projected future climate datasets. • The buildings' thermal performance changed notably under future climate scenarios. • The extent of the changes is influenced by the buildings' energy efficiency

  18. WIN Energy: A case study in using MultiSpeak to enable best of breed software selection

    Energy Technology Data Exchange (ETDEWEB)

    Wolven, G. [WIN Energy REMC, Vincennes, IN (United States)

    2004-10-01

    Automation of a small 16,000 member rural electric cooperative covering approximately 2,500 miles of distribution lines in Indiana, is described. The project was undertaken in an effort to meet the challenge of annual load growth of 15 per cent over the last several years, and to keep rates low by investing in technological solutions. To ensure the best possible computer software in each area of operation, WIN Energy decided to use the Best Breed approach (in place of the 'single vendor' approach) to select software for accounting, staking, mapping, automated mater reading and customer information systems. This decision was taken despite the obvious difficulties involved in getting software vendors to communicate willingly among themselves, and to come up with the custom interfaces or integration between the various systems. Based on the success of their participation in a cooperative study to test the viability of interfacing different software systems using a software specification called MultiSpeak, WIN Energy decided to focus on MultiSpeak compliant products. This article describes the implementation of the following software packages: Minimax Stakeout for field design and automation, Lookout for utility-wide map viewing, the ArcGIS geographic information system, Hunt Technologies' AMR for automated meter reading, NISC's CAPsXL+ financial accounting and Milsoft's Windmill for use in engineering analysis. To date, implementation is proceeding smoothly. Plans include the addition of Milsoft's DisSPatch Outage package at a future date.

  19. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad

    2014-02-01

    Full Text Available Visual sensor networks (VSNs usually generate a low-resolution (LR frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP. This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  20. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-02-21

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  1. Compositional-prior-guided image reconstruction algorithm for multi-modality imaging

    Science.gov (United States)

    Fang, Qianqian; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2010-01-01

    The development of effective multi-modality imaging methods typically requires an efficient information fusion model, particularly when combining structural images with a complementary imaging modality that provides functional information. We propose a composition-based image segmentation method for X-ray digital breast tomosynthesis (DBT) and a structural-prior-guided image reconstruction for a combined DBT and diffuse optical tomography (DOT) breast imaging system. Using the 3D DBT images from 31 clinically measured healthy breasts, we create an empirical relationship between the X-ray intensities for adipose and fibroglandular tissue. We use this relationship to then segment another 58 healthy breast DBT images from 29 subjects into compositional maps of different tissue types. For each breast, we build a weighted-graph in the compositional space and construct a regularization matrix to incorporate the structural priors into a finite-element-based DOT image reconstruction. Use of the compositional priors enables us to fuse tissue anatomy into optical images with less restriction than when using a binary segmentation. This allows us to recover the image contrast captured by DOT but not by DBT. We show that it is possible to fine-tune the strength of the structural priors by changing a single regularization parameter. By estimating the optical properties for adipose and fibroglandular tissue using the proposed algorithm, we found the results are comparable or superior to those estimated with expert-segmentations, but does not involve the time-consuming manual selection of regions-of-interest. PMID:21258460

  2. Development of on-chip multi-imaging flow cytometry for identification of imaging biomarkers of clustered circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Hyonchol Kim

    Full Text Available An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as "imaging biomarkers", with simultaneous acquisition and analysis of both bright-field (BF and fluorescent (FL images at 200 frames per second (fps; by using this system, we examined the effectiveness of using imaging biomarkers for the identification of clustered circulating tumor cells (CTCs. Sample blood of rats in which a prostate cancer cell line (MAT-LyLu had been pre-implanted was applied to a microchannel on a disposable microchip after staining the nuclei using fluorescent dye for their visualization, and the acquired images were measured and compared with those of healthy rats. In terms of the results, clustered cells having (1 cell area larger than 200 µm2 and (2 nucleus area larger than 90 µm2 were specifically observed in cancer cell-implanted blood, but were not observed in healthy rats. In addition, (3 clusters having more than 3 nuclei were specific for cancer-implanted blood and (4 a ratio between the actual perimeter and the perimeter calculated from the obtained area, which reflects a shape distorted from ideal roundness, of less than 0.90 was specific for all clusters having more than 3 nuclei and was also specific for cancer-implanted blood. The collected clusters larger than 300 µm2 were examined by quantitative gene copy number assay, and were identified as being CTCs. These results indicate the usefulness of the imaging biomarkers for characterizing clusters, and all of the four examined imaging biomarkers-cluster area, nuclei area, nuclei number, and ratio of perimeter-can identify clustered CTCs in blood with the same level of preciseness using multi-imaging cytometry.

  3. Measurement of Flat Slab Deformations by the Multi-Image Photogrammetry Method

    Science.gov (United States)

    Marčiš, Marián; Fraštia, Marek; Augustín, Tomáš

    2017-12-01

    The use of photogrammetry during load tests of building components is a common practise all over the world. It is very effective thanks to its contactless approach, 3D measurement, fast data collection, and partial or full automation of image processing; it can deliver very accurate results. Multi-image convergent photogrammetry supported by artificial coded targets is the most accurate photogrammetric method when the targets are detected in an image with a higher degree of accuracy than a 0.1 pixel. It is possible to achieve an accuracy of 0.03 mm for all the points measured on the object observed if the camera is close enough to the object, and the positions of the camera and the number of shots are precisely planned. This contribution deals with the design of a special hanging frame for a DSLR camera used during the photogrammetric measurement of the deformation of flat concrete slab. The results of the photogrammetric measurements are compared to the results from traditional contact measurement techniques during load tests.

  4. Measurement of Flat Slab Deformations by the Multi-Image Photogrammetry Method

    Directory of Open Access Journals (Sweden)

    Marčiš Marián

    2017-12-01

    Full Text Available The use of photogrammetry during load tests of building components is a common practise all over the world. It is very effective thanks to its contactless approach, 3D measurement, fast data collection, and partial or full automation of image processing; it can deliver very accurate results. Multi-image convergent photogrammetry supported by artificial coded targets is the most accurate photogrammetric method when the targets are detected in an image with a higher degree of accuracy than a 0.1 pixel. It is possible to achieve an accuracy of 0.03 mm for all the points measured on the object observed if the camera is close enough to the object, and the positions of the camera and the number of shots are precisely planned. This contribution deals with the design of a special hanging frame for a DSLR camera used during the photogrammetric measurement of the deformation of flat concrete slab. The results of the photogrammetric measurements are compared to the results from traditional contact measurement techniques during load tests.

  5. Polarimetric analysis of a CdZnTe spectro-imager under multi-pixel irradiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, M. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Coimbra, Coimbra (Portugal); Curado da Silva, R.M., E-mail: rui.silva@coimbra.lip.pt [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Coimbra, Coimbra (Portugal); Maia, J.M. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Beira-Interior, Covilhã (Portugal); Simões, N. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Physics Department, University of Coimbra, Coimbra (Portugal); Marques, J. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Centro de Astrofísica, Universidade do Porto, Porto (Portugal); Pereira, L.; Trindade, A.M.F. [LIP-Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); and others

    2016-12-21

    So far, polarimetry in high-energy astrophysics has been insufficiently explored due to the complexity of the required detection, electronic and signal processing systems. However, its importance is today largely recognized by the astrophysical community, therefore the next generation of high-energy space instruments will certainly provide polarimetric observations, contemporaneously with spectroscopy and imaging. We have been participating in high-energy observatory proposals submitted to ESA Cosmic Vision calls, such as GRI (Gamma-Ray Imager), DUAL and ASTROGAM, where the main instrument was a spectro-imager with polarimetric capabilities. More recently, the H2020 AHEAD project was launched with the objective to promote more coherent and mature future high-energy space mission proposals. In this context of high-energy proposal development, we have tested a CdZnTe detection plane prototype polarimeter under a partially polarized gamma-ray beam generated from an aluminum target irradiated by a {sup 22}Na (511 keV) radioactive source. The polarized beam cross section was 1 cm{sup 2}, allowing the irradiation of a wide multi-pixelated area where all the pixels operate simultaneously as a scatterer and as an absorber. The methods implemented to analyze such multi-pixel irradiation are similar to those required to analyze a spectro-imager polarimeter operating in space, since celestial source photons should irradiate its full pixilated area. Correction methods to mitigate systematic errors inherent to CdZnTe and to the experimental conditions were also implemented. The polarization level (~40%) and the polarization angle (precision of ±5° up to ±9°) obtained under multi-pixel irradiation conditions are presented and compared with simulated data.

  6. Image de-noising based on mathematical morphology and multi-objective particle swarm optimization

    Science.gov (United States)

    Dou, Liyun; Xu, Dan; Chen, Hao; Liu, Yicheng

    2017-07-01

    To overcome the problem of image de-noising, an efficient image de-noising approach based on mathematical morphology and multi-objective particle swarm optimization (MOPSO) is proposed in this paper. Firstly, constructing a series and parallel compound morphology filter based on open-close (OC) operation and selecting a structural element with different sizes try best to eliminate all noise in a series link. Then, combining multi-objective particle swarm optimization (MOPSO) to solve the parameters setting of multiple structural element. Simulation result shows that our algorithm can achieve a superior performance compared with some traditional de-noising algorithm.

  7. Renewable energy selection Matrix based on multi-attribute analysis for fish preservation

    International Nuclear Information System (INIS)

    Vega-Clavijo, Lili Tatiana; Prías-Caicedo, Omar Fredy; Sierra-Vargas, Fabio Emiro

    2016-01-01

    The article presents the application of the methodology of multi attribute utility theory validated by a matrix system established by researchers, to identify the best alternative of energy supply to 10 kwe in the generation of ice for preservation of fish in coastal and rural areas of the Chocó. The comparison between the potentials of different renewable energy sources and diesel, natural gas and propane fuels took place, based on economic, technological, environmental and social criteria, being validated by experts and the community on field work. It was concluded that the best alternative is diesel followed by biomass. (author)

  8. Securitizing Moves To Nowhere? The Framing of the European Union’s Energy Policy

    Directory of Open Access Journals (Sweden)

    Michal Natorski

    2008-07-01

    Full Text Available In 2006, debates about ‘energy security’ reached the top of the EU’s political agenda. A conjunction of political and economic factors seemed to be critically affecting the security of supply in most EU member states. A wide range of actors called for the establishment of a ‘Common Energy Policy,’ based on a fully operational Internal Energy Market and equipped with an external dimension enabling the EU to speak with one voice in the world. The results of this heated debate, however, fell short of these objectives. Informed by securitisation approaches, this article explores the debate over energy security that unfolded between 2005 and 2007. It aims to provide an understanding about why the framing of energy as a security issue did not mobilise enough support in favour of ground-breaking measures to tackle what was unanimously presented as a unique and especially hazardous situation. Specifically, the article will argue that those attempts to frame energy as a security issue in order to gain support for a Common Energy Policy have been of limited effect, precisely because the security framing contributed to the further legitimisation of EU member states’ reluctance to cede sovereignty in the energy domain.

  9. Stroboscopic image capture: Reducing the dose per frame by a factor of 30 does not prevent beam-induced specimen movement in paraffin

    International Nuclear Information System (INIS)

    Typke, Dieter; Gilpin, Christopher J.; Downing, Kenneth H.; Glaeser, Robert M.

    2007-01-01

    Beam-induced specimen movement may be the major factor that limits the quality of high-resolution images of organic specimens. One of the possible measures to improve the situation that was proposed by Henderson and Glaeser [Ultramicroscopy 16 (1985) 139-150], which we refer to here as 'stroboscopic image capture', is to divide the normal exposure into many successive frames, thus reducing the amount of electron exposure-and possibly the amount of beam-induced movement-per frame. The frames would then be aligned and summed. We have performed preliminary experiments on stroboscopic imaging using a 200-kV electron microscope that was equipped with a high dynamic range Charge-coupled device (CCD) camera for image recording and a liquid N 2 -cooled cryoholder. Single-layer paraffin crystals on carbon film were used as a test specimen. The ratio F(g)/F(0) of paraffin reflections, calculated from the images, serves as our criterion for the image quality. In the series that were evaluated, no significant improvement of the F image (g)/F image (0) ratio was found, even though the electron exposure per frame was reduced by a factor of 30. A frame-to-frame analysis of image distortions showed that considerable beam-induced movement had still occurred during each frame. In addition, the paraffin crystal lattice was observed to move relative to the supporting carbon film, a fact that cannot be explained as being an electron-optical effect caused by specimen charging. We conclude that a significant further reduction of the dose per frame (than was possible with this CCD detector) will be needed in order to test whether the frame-to-frame changes ultimately become small enough for stroboscopic image capture to show its potential

  10. Toward the greening of nuclear energy: A content analysis of nuclear energy frames from 1991 to 2008

    Science.gov (United States)

    Miller, Sonya R.

    Framing theory has emerged as one of the predominant theories employed in mass communications research in the 21st century. Frames are identified as interpretive packages for content where some issue attributes are highlighted over other attributes. While framing effects studies appear plentiful, longitudinal studies assessing trends in dominant framing packages and story elements for an issue appear to be less understood. Through content analysis, this study examines dominant frame packages, story elements, headline tone, story tone, stereotypes, and source attribution for nuclear energy from 1991-2008 in the New York Times, USA Today, the Wall Street Journal, and the Washington Post. Unlike many content analysis studies, this study compares intercoder reliability among three indices---percentage agreement, proportional reduction of loss and Scott's Pi. The newspapers represented in this study possess a commonality in the types of dominant frames packages employed. Significant dominant frame packages among the four newspapers include human/health, proliferation, procedural, and marketplace. While the procedural frame package was more likely to appear prior to the 1997 Kyoto Protocol, the proliferation frame packaged was more likely to appear after the Kyoto Protol. Over time, the sustainable frame package demonstrated increased significance. This study is part of the growing literature regarding the function of frames over time.

  11. Analysis of Energy Saving Potential and Optimization of Thermally Broken Fiberglass Window Frames

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2011-01-01

    This paper elaborates on the energy saving potential and development process of fiberglass window frames, with intention for application in cold climates. A method is presented, where different means of improving thermal performance of a window frame are evaluated. Firstly, very simple geometries...

  12. High-speed three-frame image recording system using colored flash units and low-cost video equipment

    Science.gov (United States)

    Racca, Roberto G.; Scotten, Larry N.

    1995-05-01

    This article describes a method that allows the digital recording of sequences of three black and white images at rates of several thousand frames per second using a system consisting of an ordinary CCD camcorder, three flash units with color filters, a PC-based frame grabber board and some additional electronics. The maximum framing rate is determined by the duration of the flashtube emission, and for common photographic flash units lasting about 20 microsecond(s) it can exceed 10,000 frames per second in actual use. The subject under study is strobe- illuminated using a red, a green and a blue flash unit controlled by a special sequencer, and the three images are captured by a color CCD camera on a single video field. Color is used as the distinguishing parameter that allows the overlaid exposures to be resolved. The video output for that particular field will contain three individual scenes, one for each primary color component, which potentially can be resolved with no crosstalk between them. The output is electronically decoded into the primary color channels, frame grabbed and stored into digital memory, yielding three time-resolved images of the subject. A synchronization pulse provided by the flash sequencer triggers the frame grabbing so that the correct video field is acquired. A scheme involving the use of videotape as intermediate storage allows the frame grabbing to be performed using a monochrome video digitizer. Ideally each flash- illuminated scene would be confined to one color channel, but in practice various factors, both optical and electronic, affect color separation. Correction equations have been derived that counteract these effects in the digitized images and minimize 'ghosting' between frames. Once the appropriate coefficients have been established through a calibration procedure that needs to be performed only once for a given configuration of the equipment, the correction process is carried out transparently in software every time a

  13. Mass media image of selected instruments of economic develepment

    Directory of Open Access Journals (Sweden)

    Kruliš Ladislav

    2016-07-01

    Full Text Available The goal of this paper is twofold. Firstly, two instruments of economic development – investment incentives and cluster initiatives – were compared according to the frequency of their occurrence in selected mass media sources in the Czech Republic in the periods 2004-2005 and 2011-2012. Secondly, the mass media image of these two instruments of economic development was evaluated with respect to the frames deductively constructed from literature review. The findings pointed out a higher occurrence of the mass media articles/news dealing with investment incentives. These articles/news were, additionally, more controversial and covered a wider spectrum of frames. Politicians were a relatively more frequent type of actors who created the media message from the articles/news. On the contrary, the mass media articles/news concerning cluster initiatives typically created the frame of positive effects of clusters. The messages were told either by economic experts or by public authority representatives who were closely connected with cluster initiatives. Spatial origin of these messages was rather limited. The definitional vagueness, intangible and uncontroversial nature of cluster initiatives restrained their media appeal.

  14. Energy and spectral efficiency analysis for selective ARQ multi-channel systems

    KAUST Repository

    Shafique, Taniya

    2017-07-31

    In this paper, we develop selective retransmission schemes for multiple-channel systems. The proposed schemes are selective automatic repeat request with fixed bandwidth (SARQ-FB), selective chase combining with fixed bandwidth (SCC-FB) and selective automatic repeat request with variable bandwidth (SARQ-VB). The main objective of the proposed schemes is to use the available power and bandwidth budget effectively along with the selective retransmission to deliver the required data successfully within a limited number of transmissions. To investigate the performance of each scheme, we first analyze the average spectral and energy efficiency and derive closed form expressions for each scheme. Then, we compare the EE and SE of each scheme through numerical results.

  15. Markerless registration for image guided surgery. Preoperative image, intraoperative video image, and patient

    International Nuclear Information System (INIS)

    Kihara, Tomohiko; Tanaka, Yuko

    1998-01-01

    Real-time and volumetric acquisition of X-ray CT, MR, and SPECT is the latest trend of the medical imaging devices. A clinical challenge is to use these multi-modality volumetric information complementary on patient in the entire diagnostic and surgical processes. The intraoperative image and patient integration intents to establish a common reference frame by image in diagnostic and surgical processes. This provides a quantitative measure during surgery, for which we have been relied mostly on doctors' skills and experiences. The intraoperative image and patient integration involves various technologies, however, we think one of the most important elements is the development of markerless registration, which should be efficient and applicable to the preoperative multi-modality data sets, intraoperative image, and patient. We developed a registration system which integrates preoperative multi-modality images, intraoperative video image, and patient. It consists of a real-time registration of video camera for intraoperative use, a markerless surface sampling matching of patient and image, our previous works of markerless multi-modality image registration of X-ray CT, MR, and SPECT, and an image synthesis on video image. We think these techniques can be used in many applications which involve video camera like devices such as video camera, microscope, and image Intensifier. (author)

  16. High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.

    Science.gov (United States)

    Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2014-08-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Pengaruh Adverse Selection dan Negative Framing pada Kecenderungan Eskalasi Komitmen

    OpenAIRE

    Gede Wira Kusuma; Ari Puspa Sari

    2017-01-01

    Eskalasi komitmen merupakan suatu pengambilan keputusan untuk meningkatkan atau memperluas komitmen terhadap suatu proyek atau investasi tertentu meskipun proyek atau investasi tersebut mengindikasikan kegagalan. Penelitian ini bertujuan untuk mendapatkan bukti empiris dari pengaruh adverse selection dan pengaruh negative framing pada kecenderungan eskalasi komitmen. Penelitian ini menggunakan desain eksperimen faktorial 2 x 2 dengan instrumen berupa kasus. Partisipan dalam penelitian ini ad...

  18. Shake Table Test for the Collapse Investigation of a Typical Multi-Story Reinforced Concrete Frame Structure in the Meizoseismal Area

    Directory of Open Access Journals (Sweden)

    Weixiao Xu

    2017-06-01

    Full Text Available According to statistics from past earthquakes, it is observed that multi-story reinforced concrete (RC frames represent a large proportion of the structural failures or collapses in seismic events. Hence, research on seismic collapse mechanisms and risks of RC frame structures subjected to extreme earthquakes is of foremost importance. Both experimental and numerical studies have been substantially carried out in this field. In order to represent an actual process of structural damage in an actual seismic event and provide a calibration test for numerical studies, a shake table collapse test of a typical multi-story RC frame structural model, which is scaled from a nearly collapsed building in the 2010 Ms 7.1 Yushu earthquake in China, was performed. Both the test and earthquake field investigation indicate that severe damage mainly occurred at the column ends. As dual structural systems, i.e., systems combining frames and additional members that mainly carry seismic loading, could be a better way to solve the unexpected damage mechanism of RC frames, a practical stiffness iteration design method based on the nonlinear static analysis to obtain the optimal stiffness demanding of the lateral load-resisting members in each story is proposed. This approach aims to control the structural deformation pattern along the height. The outcome of this study provides some intrinsic understanding of the inherent collapse mechanisms of similar RC frames during strong earthquakes. It also offers a practical design method to improve the seismic collapse resistance of RC frames.

  19. Geometric accuracy of 3D coordinates of the Leksell stereotactic skull frame in 1.5 Tesla- and 3.0 Tesla-magnetic resonance imaging: a comparison of three different fixation screw materials

    Science.gov (United States)

    Nakazawa, Hisato; Mori, Yoshimasa; Yamamuro, Osamu; Komori, Masataka; Shibamoto, Yuta; Uchiyama, Yukio; Tsugawa, Takahiko; Hagiwara, Masahiro

    2014-01-01

    We assessed the geometric distortion of 1.5-Tesla (T) and 3.0-T magnetic resonance (MR) images with the Leksell skull frame system using three types of cranial quick fixation screws (QFSs) of different materials—aluminum, aluminum with tungsten tip, and titanium—for skull frame fixation. Two kinds of acrylic phantoms were placed on a Leksell skull frame using the three types of screws, and were scanned with computed tomography (CT), 1.5-T MR imaging and 3.0-T MR imaging. The 3D coordinates for both strengths of MR imaging were compared with those for CT. The deviations of the measured coordinates at selected points (x = 50, 100 and 150; y = 50, 100 and 150) were indicated on different axial planes (z = 50, 75, 100, 125 and 150). The errors of coordinates with QFSs of aluminum, tungsten-tipped aluminum, and titanium were 2.0 mm in most positions. The geometric accuracy of the Leksell skull frame system with 1.5-T MR imaging was high and valid for clinical use. However, the geometric errors with 3.0-T MR imaging were larger than those of 1.5-T MR imaging and were acceptable only with aluminum QFSs, and then only around the central region. PMID:25034732

  20. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  1. Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif; Sathre, Roger

    2012-01-01

    Highlights: ► The effect of thermal mass on life cycle primary energy balance of concrete and wood building is analyzed. ► A concrete building has slightly lower space heating demand than a wood alternative. ► Still, a wood building has a lower life cycle primary energy use than a concrete alternative. ► The influence of thermal mass on space heating energy use for buildings in Nordic climate is small. -- Abstract: In this study we analyze the effect of thermal mass on space heating energy use and life cycle primary energy balances of a concrete- and a wood-frame building. The analysis includes primary energy use during the production, operation, and end-of-life phases. Based on hour-by-hour dynamic modeling of heat flows in building mass configurations we calculate the energy saving benefits of thermal mass during the operation phase of the buildings. Our results indicate that the energy savings due to thermal mass is small and varies with the climatic location and energy efficiency levels of the buildings. A concrete-frame building has slightly lower space heating demand than a wood-frame alternative, due to the higher thermal mass of concrete-based materials. Still, a wood-frame building has a lower life cycle primary energy balance than a concrete-frame alternative. This is due primarily to the lower production primary energy use and greater bioenergy recovery benefits of the wood-frame buildings. These advantages outweigh the energy saving benefits of thermal mass. We conclude that the influence of thermal mass on space heating energy use for buildings located in Nordic climate is small and that wood-frame buildings with cogeneration based district heating would be an effective means of reducing primary energy use in the built environment.

  2. Proximity correction of high-dosed frame with PROXECCO

    Science.gov (United States)

    Eisenmann, Hans; Waas, Thomas; Hartmann, Hans

    1994-05-01

    Usefulness of electron beam lithography is strongly related to the efficiency and quality of methods used for proximity correction. This paper addresses the above issue by proposing an extension to the new proximity correction program PROXECCO. The combination of a framing step with PROXECCO produces a pattern with a very high edge accuracy and still allows usage of the fast correction procedure. Making a frame with a higher dose imitates a fine resolution correction where the coarse part is disregarded. So after handling the high resolution effect by means of framing, an additional coarse correction is still needed. Higher doses have a higher contribution to the proximity effect. This additional proximity effect is taken into account with the help of the multi-dose input of PROXECCO. The dose of the frame is variable, depending on the deposited energy coming from backscattering of the proximity. Simulation proves the very high edge accuracy of the applied method.

  3. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Ying [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China); Liu, Wei [Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China)

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  4. Discriminative Multi-View Interactive Image Re-Ranking.

    Science.gov (United States)

    Li, Jun; Xu, Chang; Yang, Wankou; Sun, Changyin; Tao, Dacheng

    2017-07-01

    Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.

  5. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor

    Science.gov (United States)

    Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg

    2018-03-01

    A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.

  6. Video frame processor

    International Nuclear Information System (INIS)

    Joshi, V.M.; Agashe, Alok; Bairi, B.R.

    1993-01-01

    This report provides technical description regarding the Video Frame Processor (VFP) developed at Bhabha Atomic Research Centre. The instrument provides capture of video images available in CCIR format. Two memory planes each with a capacity of 512 x 512 x 8 bit data enable storage of two video image frames. The stored image can be processed on-line and on-line image subtraction can also be carried out for image comparisons. The VFP is a PC Add-on board and is I/O mapped within the host IBM PC/AT compatible computer. (author). 9 refs., 4 figs., 19 photographs

  7. POINT CLOUD DERIVED FROMVIDEO FRAMES: ACCURACY ASSESSMENT IN RELATION TO TERRESTRIAL LASER SCANNINGAND DIGITAL CAMERA DATA

    Directory of Open Access Journals (Sweden)

    P. Delis

    2017-02-01

    Full Text Available The use of image sequences in the form of video frames recorded on data storage is very useful in especially when working with large and complex structures. Two cameras were used in this study: Sony NEX-5N (for the test object and Sony NEX-VG10 E (for the historic building. In both cases, a Sony α f = 16 mm fixed focus wide-angle lens was used. Single frames with sufficient overlap were selected from the video sequence using an equation for automatic frame selection. In order to improve the quality of the generated point clouds, each video frame underwent histogram equalization and image sharpening. Point clouds were generated from the video frames using the SGM-like image matching algorithm. The accuracy assessment was based on two reference point clouds: the first from terrestrial laser scanning and the second generated based on images acquired using a high resolution camera, the NIKON D800. The performed research has shown, that highest accuracies are obtained for point clouds generated from video frames, for which a high pass filtration and histogram equalization had been performed. Studies have shown that to obtain a point cloud density comparable to TLS, an overlap between subsequent video frames must be 85 % or more. Based on the point cloud generated from video data, a parametric 3D model can be generated. This type of the 3D model can be used in HBIM construction.

  8. Finding and Improving the Key-Frames of Long Video Sequences for Face Recognition

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2010-01-01

    Face recognition systems are very sensitive to the quality and resolution of their input face images. This makes such systems unreliable when working with long surveillance video sequences without employing some selection and enhancement algorithms. On the other hand, processing all the frames...... of such video sequences by any enhancement or even face recognition algorithm is demanding. Thus, there is a need for a mechanism to summarize the input video sequence to a set of key-frames and then applying an enhancement algorithm to this subset. This paper presents a system doing exactly this. The system...... uses face quality assessment to select the key-frames and a hybrid super-resolution to enhance the face image quality. The suggested system that employs a linear associator face recognizer to evaluate the enhanced results has been tested on real surveillance video sequences and the experimental results...

  9. Filtering SVM frame-by-frame binary classification in a detection framework

    NARCIS (Netherlands)

    Betancourt Arango, A.; Morerio, P.; Marcenaro, L.; Rauterberg, G.W.M.; Regazzoni, C.S.

    2015-01-01

    Classifying frames, or parts of them, is a common way of carrying out detection tasks in computer vision. However, frame by frame classification suffers from sudden significant variations in image texture, colour and luminosity, resulting in noise in the extracted features and consequently in the

  10. Seismic behavior and design of wall-EDD-frame systems

    Directory of Open Access Journals (Sweden)

    Oren eLavan

    2015-06-01

    Full Text Available Walls and frames have different deflection lines and, depending on the seismic mass they support, may often poses different natural periods. In many cases, wall-frame structures present an advantageous behavior. In these structures the walls and the frames are rigidly connected. Nevertheless, if the walls and the frames were not rigidly connected, an opportunity for an efficient passive control strategy would arise: Connecting the two systems by energy dissipation devices (EDDs to result in wall-EDD-frame systems. This, depending on the parameters of the system, is expected to lead to an efficient energy dissipation mechanism.This paper studies the seismic behavior of wall-EDD-frame systems in the context of retrofitting existing frame structures. The controlling non-dimensional parameters of such systems are first identified. This is followed by a rigorous and extensive parametric study that reveals the pros and cons of the new system versus wall-frame systems. The effect of the controlling parameters on the behavior of the new system are analyzed and discussed. Finally, tools are given for initial design of such retrofitting schemes. These enable both choosing the most appropriate retrofitting alternative and selecting initial values for its parameters.

  11. Oriented Edge-Based Feature Descriptor for Multi-Sensor Image Alignment and Enhancement

    Directory of Open Access Journals (Sweden)

    Myung-Ho Ju

    2013-10-01

    Full Text Available In this paper, we present an efficient image alignment and enhancement method for multi-sensor images. The shape of the object captured in a multi-sensor images can be determined by comparing variability of contrast using corresponding edges across multi-sensor image. Using this cue, we construct a robust feature descriptor based on the magnitudes of the oriented edges. Our proposed method enables fast image alignment by identifying matching features in multi-sensor images. We enhance the aligned multi-sensor images through the fusion of the salient regions from each image. The results of stitching the multi-sensor images and their enhancement demonstrate that our proposed method can align and enhance multi-sensor images more efficiently than previous methods.

  12. Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm.

    Science.gov (United States)

    Al Ajmi, Eiman; Forghani, Behzad; Reinhold, Caroline; Bayat, Maryam; Forghani, Reza

    2018-06-01

    There is a rich amount of quantitative information in spectral datasets generated from dual-energy CT (DECT). In this study, we compare the performance of texture analysis performed on multi-energy datasets to that of virtual monochromatic images (VMIs) at 65 keV only, using classification of the two most common benign parotid neoplasms as a testing paradigm. Forty-two patients with pathologically proven Warthin tumour (n = 25) or pleomorphic adenoma (n = 17) were evaluated. Texture analysis was performed on VMIs ranging from 40 to 140 keV in 5-keV increments (multi-energy analysis) or 65-keV VMIs only, which is typically considered equivalent to single-energy CT. Random forest (RF) models were constructed for outcome prediction using separate randomly selected training and testing sets or the entire patient set. Using multi-energy texture analysis, tumour classification in the independent testing set had accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 92%, 86%, 100%, 100%, and 83%, compared to 75%, 57%, 100%, 100%, and 63%, respectively, for single-energy analysis. Multi-energy texture analysis demonstrates superior performance compared to single-energy texture analysis of VMIs at 65 keV for classification of benign parotid tumours. • We present and validate a paradigm for texture analysis of DECT scans. • Multi-energy dataset texture analysis is superior to single-energy dataset texture analysis. • DECT texture analysis has high accura\\cy for diagnosis of benign parotid tumours. • DECT texture analysis with machine learning can enhance non-invasive diagnostic tumour evaluation.

  13. An energy efficient hybrid interference-resilient frame fragmentation for wireless sensor networks

    KAUST Repository

    Meer, Ammar M.; Daghistani, Anas; Shihada, Basem

    2015-01-01

    Frame fragmentation into small blocks with dedicated error detection codes per block can reduce the unnecessary retransmission of the correctly received blocks. However, the optimal block size varies based on the wireless channel conditions. Further, blocks within a single frame may have different optimal sizes based on variations in interference patterns. This paper proposes a hybrid interference-resilient frame fragmentation (Hi-Frag) link-layer scheme for wireless sensor networks. It effectively addresses the challenges associated with dynamic partitioning of blocks while accounting for the observed error patterns. Hi-Frag is the first work to introduce an adaptive frame fragmentation scheme with hybrid block sizing, implemented and evaluated on a real WSN testbed. Hi-Frag shows substantial enhancements over fixed-size partial packet recovery protocols, achieving up to 2.5× improvement in throughput when the channel condition is noisy, while reducing network delays by up to 14% of the observed delay. On average, Hi-Frag shows 35% gain in throughput compared to static fragmentation approaches across all channel conditions used in our experiments. Also, Hi-Frag lowers the energy consumed per useful bit by 66% on average compared to conventional protocols, which increases the energy efficiency.

  14. An energy efficient hybrid interference-resilient frame fragmentation for wireless sensor networks

    KAUST Repository

    Meer, Ammar M.

    2015-08-30

    Frame fragmentation into small blocks with dedicated error detection codes per block can reduce the unnecessary retransmission of the correctly received blocks. However, the optimal block size varies based on the wireless channel conditions. Further, blocks within a single frame may have different optimal sizes based on variations in interference patterns. This paper proposes a hybrid interference-resilient frame fragmentation (Hi-Frag) link-layer scheme for wireless sensor networks. It effectively addresses the challenges associated with dynamic partitioning of blocks while accounting for the observed error patterns. Hi-Frag is the first work to introduce an adaptive frame fragmentation scheme with hybrid block sizing, implemented and evaluated on a real WSN testbed. Hi-Frag shows substantial enhancements over fixed-size partial packet recovery protocols, achieving up to 2.5× improvement in throughput when the channel condition is noisy, while reducing network delays by up to 14% of the observed delay. On average, Hi-Frag shows 35% gain in throughput compared to static fragmentation approaches across all channel conditions used in our experiments. Also, Hi-Frag lowers the energy consumed per useful bit by 66% on average compared to conventional protocols, which increases the energy efficiency.

  15. Frame by Frame II: A Filmography of the African American Image, 1978-1994.

    Science.gov (United States)

    Klotman, Phyllis R.; Gibson, Gloria J.

    A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I,"…

  16. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  17. A Practical Guide to Multi-image Alignment

    OpenAIRE

    Aguerrebere, Cecilia; Delbracio, Mauricio; Bartesaghi, Alberto; Sapiro, Guillermo

    2018-01-01

    Multi-image alignment, bringing a group of images into common register, is an ubiquitous problem and the first step of many applications in a wide variety of domains. As a result, a great amount of effort is being invested in developing efficient multi-image alignment algorithms. Little has been done, however, to answer fundamental practical questions such as: what is the comparative performance of existing methods? is there still room for improvement? under which conditions should one techni...

  18. The role of upstream sequences in selecting the reading frame on tmRNA

    Directory of Open Access Journals (Sweden)

    Dewey Jonathan D

    2008-06-01

    Full Text Available Abstract Background tmRNA acts first as a tRNA and then as an mRNA to rescue stalled ribosomes in eubacteria. Two unanswered questions about tmRNA function remain: how does tmRNA, lacking an anticodon, bypass the decoding machinery and enter the ribosome? Secondly, how does the ribosome choose the proper codon to resume translation on tmRNA? According to the -1 triplet hypothesis, the answer to both questions lies in the unique properties of the three nucleotides upstream of the first tmRNA codon. These nucleotides assume an A-form conformation that mimics the codon-anticodon interaction, leading to recognition by the decoding center and choice of the reading frame. The -1 triplet hypothesis is important because it is the most credible model in which direct binding and recognition by the ribosome sets the reading frame on tmRNA. Results Conformational analysis predicts that 18 triplets cannot form the correct structure to function as the -1 triplet of tmRNA. We tested the tmRNA activity of all possible -1 triplet mutants using a genetic assay in Escherichia coli. While many mutants displayed reduced activity, our findings do not match the predictions of this model. Additional mutagenesis identified sequences further upstream that are required for tmRNA function. An immunoblot assay for translation of the tmRNA tag revealed that certain mutations in U85, A86, and the -1 triplet sequence result in improper selection of the first codon and translation in the wrong frame (-1 or +1 in vivo. Conclusion Our findings disprove the -1 triplet hypothesis. The -1 triplet is not required for accommodation of tmRNA into the ribosome, although it plays a minor role in frame selection. Our results strongly disfavor direct ribosomal recognition of the upstream sequence, instead supporting a model in which the binding of a separate ligand to A86 is primarily responsible for frame selection.

  19. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Directory of Open Access Journals (Sweden)

    Pengwei Li

    2015-04-01

    Full Text Available As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  20. Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates

    International Nuclear Information System (INIS)

    Tisa, Simone; Guerrieri, Fabrizio; Zappa, Franco

    2009-01-01

    We present a single-chip monolithic array of 32 Single-Photon Avalanche Diodes (SPAD) and associated electronics for imaging at high frame rates and high sensitivity. Photodetectors, front-end circuitry and control electronics used to manage the array are monolithically integrated on the same chip in a standard 0.35 μm CMOS high-voltage technology. The array is composed of 32 'smart' pixels working in photon counting mode and functioning in a parallel fashion. Every cell comprises of an integrated SPAD photodetector, a novel quenching circuit named as Variable Load Quenching Circuit (VLQC), counting electronics and a buffer memory. Proper ancillary electronics that perform the arbitration of photon counts between two consecutive frames is integrated as well. Thanks to the presence of in-pixel memory registers, the inter-frame dead time between subsequent frames is limited to few nanoseconds. Since integration and download are performed simultaneously and the array can be addressed like a standard digital memory, the achievable maximum frame rate is very high in the order of hundreds of thousands of frame/s.

  1. Tensor-based Multi-view Feature Selection with Applications to Brain Diseases

    Science.gov (United States)

    Cao, Bokai; He, Lifang; Kong, Xiangnan; Yu, Philip S.; Hao, Zhifeng; Ragin, Ann B.

    2015-01-01

    In the era of big data, we can easily access information from multiple views which may be obtained from different sources or feature subsets. Generally, different views provide complementary information for learning tasks. Thus, multi-view learning can facilitate the learning process and is prevalent in a wide range of application domains. For example, in medical science, measurements from a series of medical examinations are documented for each subject, including clinical, imaging, immunologic, serologic and cognitive measures which are obtained from multiple sources. Specifically, for brain diagnosis, we can have different quantitative analysis which can be seen as different feature subsets of a subject. It is desirable to combine all these features in an effective way for disease diagnosis. However, some measurements from less relevant medical examinations can introduce irrelevant information which can even be exaggerated after view combinations. Feature selection should therefore be incorporated in the process of multi-view learning. In this paper, we explore tensor product to bring different views together in a joint space, and present a dual method of tensor-based multi-view feature selection (dual-Tmfs) based on the idea of support vector machine recursive feature elimination. Experiments conducted on datasets derived from neurological disorder demonstrate the features selected by our proposed method yield better classification performance and are relevant to disease diagnosis. PMID:25937823

  2. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Science.gov (United States)

    Kamanli, Mehmet; Unal, Alptug

    2017-10-01

    After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  3. A multi-criteria optimization analysis for Jordan's energy mix

    International Nuclear Information System (INIS)

    Malkawi, Salaheddin; Al-Nimr, Moh'd; Azizi, Danah

    2017-01-01

    In this study Jordan's energy options were evaluated and ranked with respect to several criteria clusters including financial, technical, environmental, ecological, social, and risk assessment. The Analytical Hierarchy Process; a multi-criteria decision-making analysis, was selected to evaluate the electricity generation options for Jordan. Energy options covered in the analysis include both conventional and renewable sources. Conventional sources evaluated include Oil and Natural Gas. Renewable sources covered wind, biomass, Photovoltaic and concentrated solar systems. The study also investigated generation from nuclear energy and direct combustion of oil shale as well as demand side savings from energy efficiency measures as a resource. Results indicate that to date; conventional fuels remain Jordan's most feasible options from a technical and financial perspective. Nonetheless diversification is essential to promoting energy security as well as environmental welfare. Results indicate that Jordan's best diversification options are nuclear, oil shale, biomass, and wind energy. - Highlights: • A Multi-Criteria Optimization Analysis technique was used to compare nine electricity generation options. • Options considered included Fossil Fuel sources, Nuclear Energy , Renewable Energy and Energy Efficiency. • Six criteria clusters were considered: financial, technical, environmental, ecological, social, and risk assessment. • Results outline potential policy implications for diversifying Jordan's energy mix. • Conventional fuels remain integral and Oil shale, Nuclear, Biomass and Wind offer the best diversification potential.Tag as highlight.

  4. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Science.gov (United States)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  5. High image quality sub 100 picosecond gated framing camera development

    International Nuclear Information System (INIS)

    Price, R.H.; Wiedwald, J.D.

    1983-01-01

    A major challenge for laser fusion is the study of the symmetry and hydrodynamic stability of imploding fuel capsules. Framed x-radiographs of 10-100 ps duration, excellent image quality, minimum geometrical distortion (< 1%), dynamic range greater than 1000, and more than 200 x 200 pixels are required for this application. Recent progress on a gated proximity focused intensifier which meets these requirements is presented

  6. Keyhole imaging method for dynamic objects behind the occlusion area

    Science.gov (United States)

    Hao, Conghui; Chen, Xi; Dong, Liquan; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Hui, Mei; Liu, Xiaohua; Wu, Hong

    2018-01-01

    A method of keyhole imaging based on camera array is realized to obtain the video image behind a keyhole in shielded space at a relatively long distance. We get the multi-angle video images by using a 2×2 CCD camera array to take the images behind the keyhole in four directions. The multi-angle video images are saved in the form of frame sequences. This paper presents a method of video frame alignment. In order to remove the non-target area outside the aperture, we use the canny operator and morphological method to realize the edge detection of images and fill the images. The image stitching of four images is accomplished on the basis of the image stitching algorithm of two images. In the image stitching algorithm of two images, the SIFT method is adopted to accomplish the initial matching of images, and then the RANSAC algorithm is applied to eliminate the wrong matching points and to obtain a homography matrix. A method of optimizing transformation matrix is proposed in this paper. Finally, the video image with larger field of view behind the keyhole can be synthesized with image frame sequence in which every single frame is stitched. The results show that the screen of the video is clear and natural, the brightness transition is smooth. There is no obvious artificial stitching marks in the video, and it can be applied in different engineering environment .

  7. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications

    Science.gov (United States)

    Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.

    2015-01-01

    In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values on a CT image (ie, CT numbers), depending on the mass density of the material. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT, an additional attenuation measurement is obtained with a second x-ray spectrum (ie, a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this review, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches is described. In addition, current and evolving clinical applications are introduced. © RSNA, 2015 PMID:26302388

  8. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    Science.gov (United States)

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Novel Energy Saving Algorithm with Frame Response Delay Constraint in IEEE 802.16e

    Science.gov (United States)

    Nga, Dinh Thi Thuy; Kim, Mingon; Kang, Minho

    Sleep-mode operation of a Mobile Subscriber Station (MSS) in IEEE 802.16e effectively saves energy consumption; however, it induces frame response delay. In this letter, we propose an algorithm to quickly find the optimal value of the final sleep interval in sleep-mode in order to minimize energy consumption with respect to a given frame response delay constraint. The validations of our proposed algorithm through analytical results and simulation results suggest that our algorithm provide a potential guidance to energy saving.

  10. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Directory of Open Access Journals (Sweden)

    Kamanli Mehmet

    2017-01-01

    Full Text Available After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  11. A multi-objective approach for developing national energy efficiency plans

    International Nuclear Information System (INIS)

    Haydt, Gustavo; Leal, Vítor; Dias, Luís

    2014-01-01

    This paper proposes a new approach to deal with the problem of building national energy efficiency (EE) plans, considering multiple objectives instead of only energy savings. The objectives considered are minimizing the influence of energy use on climate change, minimizing the financial risk from the investment, maximizing the security of energy supply, minimizing investment costs, minimizing the impacts of building new power plants and transmission infrastructures, and maximizing the local air quality. These were identified through literature review and interaction with real decision makers. A database of measures is established, from which millions of potential EE plans can be built by combining measures and their respective degree of implementation. Finally, a hybrid multi-objective and multi-criteria decision analysis (MCDA) model is proposed to search and select the EE plans that best match the decision makers’ preferences. An illustration of the working mode and the type of results obtained from this novel hybrid model is provided through an application to Portugal. For each of five decision perspectives a wide range of potential best plans were identified. These wide ranges show the relevance of introducing multi-objective analysis in a comprehensive search space as a tool to inform decisions about national EE plans. - Highlights: • A multiple objective approach to aid the choice of national energy efficiency plans. • A hybrid multi-objective MCDA model is proposed to search among the possible plans. • The model identified relevant plans according to five different idealized DMs. • The approach is tested with Portugal

  12. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    Directory of Open Access Journals (Sweden)

    Postnikov E.B.

    2017-01-01

    Full Text Available This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV. It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  13. The TRICLOBS Dynamic Multi-Band Image Data Set for the Development and Evaluation of Image Fusion Methods.

    Directory of Open Access Journals (Sweden)

    Alexander Toet

    Full Text Available The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm, near-infrared (NIR, 0.7-1.0μm and long-wave infrared (LWIR, 8-14μm motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer. The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs

  14. Cosmological selection of multi-TeV supersymmetry

    Directory of Open Access Journals (Sweden)

    Keisuke Harigaya

    2015-10-01

    Full Text Available We discuss a possible answer to the fundamental question of why nature would actually prefer low-scale supersymmetry, but end up with a supersymmetry scale that is not completely natural. This question is inevitable if we postulate that low-energy supersymmetry is indeed realized in nature, despite the null observation of superparticles below a TeV at the Large Hadron Collider. As we argue in this paper, superparticles masses in the multi-TeV range can, in fact, be reconciled with the concept of naturalness by means of a cosmological selection effect—a selection effect based on the assumption of an exact discrete R-symmetry that is spontaneously broken by gaugino condensation in a pure supersymmetric Yang–Mills theory. In such theories, the dynamical scale of the Yang–Mills gauge interactions is required to be higher than the inflationary Hubble scale, in order to avoid the formation of domain walls. This results in a lower limit on the superparticle masses and leads us to conclude that, according to the idea of naturalness, the most probable range of superparticle masses is potentially located at the multi-TeV, if the inflationary Hubble rate is of O(1014 GeV. Our argument can be partially tested by future measurements of the tensor fraction in the Cosmic Microwave Background fluctuations.

  15. A three-frame digital image correlation (DIC) method for the measurement of small displacements and strains

    International Nuclear Information System (INIS)

    Cofaru, C; Philips, W; Van Paepegem, W

    2012-01-01

    Digital image correlation (DIC) has become a well-established approach for the calculation of full-field displacement and strains within the field of experimental mechanics. Since their introduction, DIC methods have been relying on only two images to measure the displacements and strains that materials undergo under load. It can be foreseen that the use of additional image information for the calculus of displacements and strains, although computationally more expensive, can positively impact DIC method accuracy under both ideal and challenging experimental conditions. Such accuracy improvements are especially important when measuring very small deformations, which still constitutes a great challenge: small displacements and strains translate into equally small digital image intensity changes on the material’s surface, which are affected by the digitization processes of the imaging hardware and by other image acquisition effects such as image noise. This paper proposes a new three-frame Newton–Raphson DIC method and evaluates it from the standpoints of accuracy and speed. The method models the deformations that are to be measured under the assumption that the deformation occurs at approximately the same rate between each two consecutive images in the three image sequences that are employed. The aim is to investigate how the use of image data from more than two images impacts accuracy and what is the effect on the computational speed. The proposed method is compared with the classic two-frame Newton–Raphson method in three experiments. Two experiments rely on numerically deformed images that simulate heterogeneous deformations. The third experiment uses images from a real deformation experiment. Results indicate that although it is computationally more demanding, the three-frame method significantly improves displacement and strain accuracy and is less sensitive to image noise. (paper)

  16. Intensity correction method customized for multi-animal abdominal MR imaging with 3 T clinical scanner and multi-array coil

    International Nuclear Information System (INIS)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Nakagami, Ryutaro; Furuta, Toshihiro; Fujii, Hirofumi; Sekine, Norio; Niitsu, Mamoru; Moriyama, Noriyuki

    2013-01-01

    Simultaneous magnetic resonance (MR) imaging of multiple small animals in a single session increases throughput of preclinical imaging experiments. Such imaging using a 3-tesla clinical scanner with multi-array coil requires correction of intensity variation caused by the inhomogeneous sensitivity profile of the coil. We explored a method for correcting intensity that we customized for multi-animal MR imaging, especially abdominal imaging. Our institutional committee for animal experimentation approved the protocol. We acquired high resolution T 1 -, T 2 -, and T 2 * -weighted images and low resolution proton density-weighted images (PDWIs) of 4 rat abdomens simultaneously using a 3T clinical scanner and custom-made multi-array coil. For comparison, we also acquired T 1 -, T 2 -, and T 2 * -weighted volume coil images in the same rats in 4 separate sessions. We used software created in-house to correct intensity variation. We applied thresholding to the PDWIs to produce binary images that displayed only a signal-producing area, calculated multi-array coil sensitivity maps by dividing low-pass filtered PDWIs by low-pass filtered binary images pixel by pixel, and divided uncorrected T 1 -, T 2 -, or T 2 * -weighted images by those maps to obtain intensity-corrected images. We compared tissue contrast among the liver, spinal canal, and muscle between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method performed well for all pulse sequences studied and corrected variation in original multi-array coil images without deteriorating the throughput of animal experiments. Tissue contrasts were comparable between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method customized for multi-animal abdominal MR imaging using a 3T clinical scanner and dedicated multi-array coil could facilitate image interpretation. (author)

  17. Extended depth of field integral imaging using multi-focus fusion

    Science.gov (United States)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  18. Shake Table Test for the Collapse Investigation of a Typical Multi-Story Reinforced Concrete Frame Structure in the Meizoseismal Area

    OpenAIRE

    Weixiao Xu; Weisong Yang; Chunwei Zhang; Dehu Yu

    2017-01-01

    According to statistics from past earthquakes, it is observed that multi-story reinforced concrete (RC) frames represent a large proportion of the structural failures or collapses in seismic events. Hence, research on seismic collapse mechanisms and risks of RC frame structures subjected to extreme earthquakes is of foremost importance. Both experimental and numerical studies have been substantially carried out in this field. In order to represent an actual process of structural damage in an ...

  19. Limited-angle multi-energy CT using joint clustering prior and sparsity regularization

    Science.gov (United States)

    Zhang, Huayu; Xing, Yuxiang

    2016-03-01

    In this article, we present an easy-to-implement Multi-energy CT scanning strategy and a corresponding reconstruction method, which facilitate spectral CT imaging by improving the data efficiency the number-of-energy- channel fold without introducing visible limited-angle artifacts caused by reducing projection views. Leveraging the structure coherence at different energies, we first pre-reconstruct a prior structure information image using projection data from all energy channels. Then, we perform a k-means clustering on the prior image to generate a sparse dictionary representation for the image, which severs as a structure information constraint. We com- bine this constraint with conventional compressed sensing method and proposed a new model which we referred as Joint Clustering Prior and Sparsity Regularization (CPSR). CPSR is a convex problem and we solve it by Alternating Direction Method of Multipliers (ADMM). We verify our CPSR reconstruction method with a numerical simulation experiment. A dental phantom with complicate structures of teeth and soft tissues is used. X-ray beams from three spectra of different peak energies (120kVp, 90kVp, 60kVp) irradiate the phantom to form tri-energy projections. Projection data covering only 75◦ from each energy spectrum are collected for reconstruction. Independent reconstruction for each energy will cause severe limited-angle artifacts even with the help of compressed sensing approaches. Our CPSR provides us with images free of the limited-angle artifact. All edge details are well preserved in our experimental study.

  20. The importance of message framing for providing information about sustainability and environmental aspects of energy

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, Liesbeth; Verbeke, Wim; Van Huylenbroeck, Guido [Department of Agricultural Economics, Ghent University, Coupure Links 653, 9000 Gent (Belgium); Popp, Michael [Department of Agricultural Economics and Agribusiness, University of Arkansas, 217 Agriculture Building, Fayetteville, AR 72701 (United States)

    2010-10-15

    With a looming energy crisis, energy conservation and attention to environmental problems are warranted. The transport sector experiences great challenges to introduce more environmental friendly renewable energy like biofuels. The majority of the Belgian people are asking for more information about this issue. Because individuals are sensitive to how information is presented, the choice of the message frame can significantly influence attitudes and behavioural intention. Because of the strengthening effect on both concern and PCE, our findings suggest that for the prevention of energy and environmental problems and the promotion of a more sustainable and environmental friendly energy consumption not the gravity of these problems and the possible disadvantages but the possibilities to overcome these problems (e.g. reduction of energy use, environmental friendly energy sources) have to be stressed. Men, higher educated people, people between 35 and 54 years old and people with the most pro-environmental attitude are less affected by the message frame, while the choice of the frame is more important when addressing women, people younger than 35 and older than 55 years, lower educated and less pro-environmental people. (author)

  1. The importance of message framing for providing information about sustainability and environmental aspects of energy

    International Nuclear Information System (INIS)

    Van de Velde, Liesbeth; Verbeke, Wim; Popp, Michael; Van Huylenbroeck, Guido

    2010-01-01

    With a looming energy crisis, energy conservation and attention to environmental problems are warranted. The transport sector experiences great challenges to introduce more environmental friendly renewable energy like biofuels. The majority of the Belgian people are asking for more information about this issue. Because individuals are sensitive to how information is presented, the choice of the message frame can significantly influence attitudes and behavioural intention. Because of the strengthening effect on both concern and PCE, our findings suggest that for the prevention of energy and environmental problems and the promotion of a more sustainable and environmental friendly energy consumption not the gravity of these problems and the possible disadvantages but the possibilities to overcome these problems (e.g. reduction of energy use, environmental friendly energy sources) have to be stressed. Men, higher educated people, people between 35 and 54 years old and people with the most pro-environmental attitude are less affected by the message frame, while the choice of the frame is more important when addressing women, people younger than 35 and older than 55 years, lower educated and less pro-environmental people.

  2. Sustainability Frames in the Context of the Energy Wood Conflict in Germany

    Directory of Open Access Journals (Sweden)

    Dörte Marie Peters

    2015-10-01

    Full Text Available Interpretations of the concept of sustainability vary substantially in relation to forests and their management, and they are usually present in conflicts about forest use. In this article, we consider underlying interests relating to conflicts of forest use as a given. Our aim is therefore not to reveal those interests, but rather to explore understandings of sustainability hiding behind them—sustainability frames. To this end, we use frame theory to investigate the following research question: How are different sustainability frames of interest groups reflected in a forest use conflict situation in Germany? The energy wood conflict serves as the example for our research, as it is currently the most prominent forest management conflict in Germany. Using 12 stakeholder interviews within three interest groups as the empirical data basis, it becomes clear that sustainability understandings reflect particular positionings in conflicts, or vice versa. In the energy wood conflict, the classic dichotomy between forestry and conservation groups becomes a trichotomy in which the forestry group splits into an interest group that profits from energy wood production and one that competes with it. We suggest that sustainability understandings do not represent worldviews that guide how actors understand conflicts, but rather that they are shaped according to actors’ particular interests in conflicts.

  3. Images of climate change in the news: Visual framing of a global environmental issue

    Science.gov (United States)

    Rebich Hespanha, S.; Rice, R. E.; Montello, D. R.; Retzloff, S.; Tien, S.

    2012-12-01

    News media play a powerful role in disseminating and framing information and shaping public opinion on environmental issues. Choices of text and images that are made by the creators and distributors of news media not only influence public perception about which issues are important, but also surreptitiously lead consumers of these media to perceive certain aspects or perspectives on an issue while neglecting to consider others. Our research was motivated by a desire to obtain comprehensive quantitative and qualitative understanding of the types of information - both textual and visual -- that have been provided to the U.S. public over the past several decades through news reports about climate change. As part of this project, we documented and examined 118 themes in 19 categories presented in 350 randomly-selected visual images from U.S. news coverage of global climate change between 1969 and late 2009. This study examines how the use of imagery in print news positions climate change within public and private arenas and how it emphasizes particular geographic, political, scientific, technological, sociological, and ideological aspects of the issue.

  4. Benchmarking of nuclear reactors selected in the frame of GIF project

    International Nuclear Information System (INIS)

    Azpitarte, O; Villanueva, A; Ramos, R; Ramilo, L; Alvarez, M; Yorio, D; Herrero, V

    2012-01-01

    In this article a comparative assessment of the six reactor concepts selected in the frame of the Generation IV International Forum (GIF) project is presented. The assessment was carried out in the areas of Viability of the concept, Design and nuclear safety, Economics, Sustainability, Proliferation resistance, Nuclear fuel, Reprocessing, Materials and Balance of Plant, by means of qualification of chosen performance indicators (author)

  5. Optimum selection of an energy resource using fuzzy logic

    International Nuclear Information System (INIS)

    Abouelnaga, Ayah E.; Metwally, Abdelmohsen; Nagy, Mohammad E.; Agamy, Saeed

    2009-01-01

    Optimum selection of an energy resource is a vital issue in developed countries. Considering energy resources as alternatives (nuclear, hydroelectric, gas/oil, and solar) and factors upon which the proper decision will be taken as attributes (economics, availability, environmental impact, and proliferation), one can use the multi-attribute utility theory (MAUT) to optimize the selection process. Recently, fuzzy logic is extensively applied to the MAUT as it expresses the linguistic appraisal for all attributes in wide and reliable manners. The rise in oil prices and the increased concern about environmental protection from CO 2 emissions have promoted the attention to the use of nuclear power as a viable energy source for power generation. For Egypt, as a case study, the nuclear option is found to be an appropriate choice. Following the introduction of innovative designs of nuclear power plants, improvements in the proliferation resistance, environmental impacts, and economics will enhance the selection of the nuclear option.

  6. Comparisons of selected frame constructions considering effects of rock bursts and earthquakes. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Trojan, Z.; Lipski, Z.; Raczek, R.

    1985-01-01

    Methods for assessing apartment buildings with frames made of reinforced concrete or steel elements situated above coal mines in Upper Silesia are analyzed. Six buildings from 13.5 m to 37.8 m high are analyzed. Methods for design of earthquake-resistant buildings and buildings constructed in areas affected by underground coal mining are compared. Safety standards used in Israel, the FRG, the USSR, Czechoslovakia and Australia are compared to standards used in Poland for buildings in areas affected by underground mining in Upper Silesia. Loads on a building frame during a shock (caused by mining) with an energy of 10/sup 9/ J are analyzed. Force of inertia and bending moment in the building frame is calculated. Investigation results are shown in 3 tables and in a diagram. Recommendations for methods of calculating bending moment in frames of buildings affected by shocks caused by underground coal mining are made. 11 references.

  7. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  8. Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption

    Science.gov (United States)

    Saritha, R.; Vinod Chandra, S. S.

    2017-10-01

    In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.

  9. A new transmission based monochromator for energy-selective neutron imaging at the ICON beamline

    International Nuclear Information System (INIS)

    Peetermans, S.; Tamaki, M.; Hartmann, S.; Kaestner, A.; Morgano, M.; Lehmann, E.H.

    2014-01-01

    A new type of monochromator has been developed for energy-selective neutron imaging at continuous sources. It combines the use of a mechanical neutron velocity selector with pyrolytic graphite crystals of different mosaicity. The beam can be monochromatized to similar levels as a standard double crystal monochromator. It can flexibly produce different desired spectral shapes, even an asymmetric one. Intrinsically, no higher order contamination of the spectrum is present. Working with the transmitted beam, the beam divergence (and thus the spatial resolution) is uncompromised. The device has been calibrated, characterized and its performance demonstrated with the measurement of Bragg edges for iron and lead, resolving them more sharply than if solely a mechanical velocity selector was used

  10. Extracellular Bio-imaging of Acetylcholine-stimulated PC12 Cells Using a Calcium and Potassium Multi-ion Image Sensor.

    Science.gov (United States)

    Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki

    2018-01-01

    In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.

  11. Influence of residential habits on energy consumption in multi-story housing

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, O

    1984-01-01

    The report describes the results of an investigation of residential habits and their influence on energy consumption - particularly the cosumption of heating and hot water - in multi-story housing. There seems to be a considerable need for an information effort in this field, but not even very precise information for practical use is enough to make the residents change their consumption habits to any substantial extent. This can only be achieved through activating a conscious attitude among the residents. In reaching these aims, the housing estate, its administration and residents should play a large and active role. This is partly due to the fact that the preparation and settling of accounts are carried out with the participation of the residents themselves. Furthermore, the local estate is a natural frame for the residents daily life and social situation, as compared to national campaigns for energy-saving. Therefore, within the housing estate there are better possibilities - through discussions among the residents and through social interaction - of increasing the motivation of the individual resident for saving energy.

  12. The effects of slice thickness and reconstructive parameters on VR image quality in multi-slice CT

    International Nuclear Information System (INIS)

    Gao Zhenlong; Wang Qiang; Liu Caixia

    2005-01-01

    Objective: To explore the effects of slice thickness, reconstructive thickness and reconstructive interval on VR image quality in multi-slice CT, in order to select the best slice thickness and reconstructive parameters for the imaging. Methods: Multi-slice CT scan was applied on a rubber dinosaur model with different slice thickness. VR images were reconstructed with different reconstructive thickness and reconstructive interval. Five radiologists were invited to evaluate the quality of the images without knowing anything about the parameters. Results: The slice thickness, reconstructive thickness and reconstructive interval did have effects on VR image quality and the effective degree was different. The effective coefficients were V 1 =1413.033, V 2 =563.733, V 3 =390.533, respectively. The parameters interacted with the others (P<0.05). The smaller of those parameters, the better of the image quality. With a small slice thickness and a reconstructive slice equal to slice thickness, the image quality had no obvious difference when the reconstructive interval was 1/2, 1/3, 1/4 of the slice thickness. Conclusion: A relative small scan slice thickness, a reconstructive slice equal to slice thickness and a reconstructive interval 1/2 of the slice thickness should be selected for the best VR image quality. The image quality depends mostly on the slice thickness. (authors)

  13. Multiattribute selection of acute stroke imaging software platform for Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) clinical trial.

    Science.gov (United States)

    Churilov, Leonid; Liu, Daniel; Ma, Henry; Christensen, Soren; Nagakane, Yoshinari; Campbell, Bruce; Parsons, Mark W; Levi, Christopher R; Davis, Stephen M; Donnan, Geoffrey A

    2013-04-01

    The appropriateness of a software platform for rapid MRI assessment of the amount of salvageable brain tissue after stroke is critical for both the validity of the Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) Clinical Trial of stroke thrombolysis beyond 4.5 hours and for stroke patient care outcomes. The objective of this research is to develop and implement a methodology for selecting the acute stroke imaging software platform most appropriate for the setting of a multi-centre clinical trial. A multi-disciplinary decision making panel formulated the set of preferentially independent evaluation attributes. Alternative Multi-Attribute Value Measurement methods were used to identify the best imaging software platform followed by sensitivity analysis to ensure the validity and robustness of the proposed solution. Four alternative imaging software platforms were identified. RApid processing of PerfusIon and Diffusion (RAPID) software was selected as the most appropriate for the needs of the EXTEND trial. A theoretically grounded generic multi-attribute selection methodology for imaging software was developed and implemented. The developed methodology assured both a high quality decision outcome and a rational and transparent decision process. This development contributes to stroke literature in the area of comprehensive evaluation of MRI clinical software. At the time of evaluation, RAPID software presented the most appropriate imaging software platform for use in the EXTEND clinical trial. The proposed multi-attribute imaging software evaluation methodology is based on sound theoretical foundations of multiple criteria decision analysis and can be successfully used for choosing the most appropriate imaging software while ensuring both robust decision process and outcomes. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  14. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  15. Time-grated energy-selected cold neutron radiography

    International Nuclear Information System (INIS)

    McDonald, T.E. Jr.; Brun, T.O.; Claytor, T.N.; Farnum, E.H.; Greene, G.L.; Morris, C.

    1998-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as Time-Gated Energy-Selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross section drops significantly. This difference in scattering characteristics can be recorded in the TGES radiography and, because the Bragg cutoff occurs at different energy levels for various materials, the approach can be used to differentiate among these materials. This paper outlines the TGES radiography technique and shows an example of radiography using the approach

  16. Framing-camera tube developed for sub-100-ps range

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    A new framing-camera tube, developed by Electronics Engineering, is capable of recording two-dimensional image frames with high spatial resolution in the sub-100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits; the resulting electron-line images from the slits are restored into a framed image by a restorer deflector operating synchronously with the dissector deflector. We have demonstrated its performance in a prototype tube by recording 125-ps-duration framed images of 2.5-mm patterns. The limitation in the framing speed is in the external electronic drivers for the deflectors and not in the tube design characteristics. Shorter frame durations (below 100 ps) can be obtained by use of faster deflection drivers

  17. Radial k-t SPIRiT: autocalibrated parallel imaging for generalized phase-contrast MRI.

    Science.gov (United States)

    Santelli, Claudio; Schaeffter, Tobias; Kozerke, Sebastian

    2014-11-01

    To extend SPIRiT to additionally exploit temporal correlations for highly accelerated generalized phase-contrast MRI and to compare the performance of the proposed radial k-t SPIRiT method relative to frame-by-frame SPIRiT and radial k-t GRAPPA reconstruction for velocity and turbulence mapping in the aortic arch. Free-breathing navigator-gated two-dimensional radial cine imaging with three-directional multi-point velocity encoding was implemented and fully sampled data were obtained in the aortic arch of healthy volunteers. Velocities were encoded with three different first gradient moments per axis to permit quantification of mean velocity and turbulent kinetic energy. Velocity and turbulent kinetic energy maps from up to 14-fold undersampled data were compared for k-t SPIRiT, frame-by-frame SPIRiT, and k-t GRAPPA relative to the fully sampled reference. Using k-t SPIRiT, improvements in magnitude and velocity reconstruction accuracy were found. Temporally resolved magnitude profiles revealed a reduction in spatial blurring with k-t SPIRiT compared with frame-by-frame SPIRiT and k-t GRAPPA for all velocity encodings, leading to improved estimates of turbulent kinetic energy. k-t SPIRiT offers improved reconstruction accuracy at high radial undersampling factors and hence facilitates the use of generalized phase-contrast MRI for routine use. Copyright © 2013 Wiley Periodicals, Inc.

  18. A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits

    Science.gov (United States)

    Lee, Sangrok

    Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.

  19. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    Science.gov (United States)

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  20. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  1. Semiconductor laser multi-spectral sensing and imaging.

    Science.gov (United States)

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  2. Adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves

    International Nuclear Information System (INIS)

    Goodrich, C.C.; Scudder, J.D.

    1984-01-01

    In collisionless magnetosonic shock waves, ions are commonly thought to be decelerated by dc electrostatic cross-shock electric field along the shock normal n. In a frame where ions are normally incident to the shock the change in the potential energy [qphi/sup N/] in the quasi-perpendicular geommetry is of the order of the change of the energy of normal ion flow: [qphi/sup N/]roughly-equal[1/2m/sub i/(V/sub i//sup N/xn) 2 ], which is approximately 200-500 eV at the earth's bow shock. We show that the electron energy gain, typically 1/10 this number, is consistent with such a large potential jump in this geometry. Key facts are the different paths taken by electrons an ions through the shock wave and the frame dependence of the potential jump in the geometry. In the normal incidence frame, electrons lose energy by doing work against the solar wind motional electric field E/sub M//sup N/, which partially offsets the energy gain from the cross-shock electrostatic potential energy [ephi/sub asterisk//sup N/]. In the de Hoffman-Teller frame the motional electric field vanishes; the elctrons gain the full electrostatic potential energy jump e[phi/sub asterisk//sup H//sup T/] of that frame, which is not, however, equal to the electrostatic potential energy jump e[phi/sub asterisk//sup N/] of that frame, which is not, however, equal to the electrostatic potential energy jump e[phi/sub asterisk//sup N/] in the normal incidence frame

  3. A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection

    Science.gov (United States)

    Ju, Kuanyu; Xiong, Hongkai

    2014-11-01

    To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.

  4. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    Science.gov (United States)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  5. Earthquake behavior of steel cushion-implemented reinforced concrete frames

    Science.gov (United States)

    Özkaynak, Hasan

    2018-04-01

    The earthquake performance of vulnerable structures can be increased by the implementation of supplementary energy-dissipative metallic elements. The main aim of this paper is to describe the earthquake behavior of steel cushion-implemented reinforced concrete frames (SCI-RCFR) in terms of displacement demands and energy components. Several quasi-static experiments were performed on steel cushions (SC) installed in reinforced concrete (RC) frames. The test results served as the basis of the analytical models of SCs and a bare reinforced concrete frame (B-RCFR). These models were integrated in order to obtain the resulting analytical model of the SCI-RCFR. Nonlinear-time history analyses (NTHA) were performed on the SCI-RCFR under the effects of the selected earthquake data set. According to the NTHA, SC application is an effective technique for increasing the seismic performance of RC structures. The main portion of the earthquake input energy was dissipated through SCs. SCs succeeded in decreasing the plastic energy demand on structural elements by almost 50% at distinct drift levels.

  6. Selective-imaging camera

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  7. Public values for energy futures: Framing, indeterminacy and policy making

    International Nuclear Information System (INIS)

    Butler, C.; Demski, C.; Parkhill, K.; Pidgeon, N.; Spence, A.

    2015-01-01

    In the UK there are strong policy imperatives to transition toward low carbon energy systems but how and in what ways such transitional processes might be realised remains highly uncertain. One key area of uncertainty pertains to public attitudes and acceptability. Though there is wide-ranging research relevant to public acceptability, very little work has unpacked the multiple questions concerning how policy-makers can grapple with and mitigate related uncertainties in efforts to enact energy systems change. In this paper, public acceptability is identified as an indeterminate form of uncertainty that presents particular challenges for policy making. We build on our existing research into public values for energy system change to explore how the outcomes of the project can be applied in thinking through the uncertainties associated with public acceptability. Notably, we illustrate how the public values identified through our research bring into view alternative and quite different problem and solution framings to those currently evident within UK policy. We argue that engagement with a wide range of different framings can offer a basis for better understanding and anticipating public responses to energy system change, ultimately aiding in managing the complex set of uncertainties associated with public acceptability. - Highlights: • We argue that public acceptability represents an indeterminate form of uncertainty. • This means alternative approaches to decision-making are required. • We introduce a public value set for energy system change. • We use this as a basis for interrogating current UK policy approaches to transitions. • Incorporating public values in policy can help tackle uncertainty about acceptability.

  8. Multi-Label Classification Based on Low Rank Representation for Image Annotation

    Directory of Open Access Journals (Sweden)

    Qiaoyu Tan

    2017-01-01

    Full Text Available Annotating remote sensing images is a challenging task for its labor demanding annotation process and requirement of expert knowledge, especially when images can be annotated with multiple semantic concepts (or labels. To automatically annotate these multi-label images, we introduce an approach called Multi-Label Classification based on Low Rank Representation (MLC-LRR. MLC-LRR firstly utilizes low rank representation in the feature space of images to compute the low rank constrained coefficient matrix, then it adapts the coefficient matrix to define a feature-based graph and to capture the global relationships between images. Next, it utilizes low rank representation in the label space of labeled images to construct a semantic graph. Finally, these two graphs are exploited to train a graph-based multi-label classifier. To validate the performance of MLC-LRR against other related graph-based multi-label methods in annotating images, we conduct experiments on a public available multi-label remote sensing images (Land Cover. We perform additional experiments on five real-world multi-label image datasets to further investigate the performance of MLC-LRR. Empirical study demonstrates that MLC-LRR achieves better performance on annotating images than these comparing methods across various evaluation criteria; it also can effectively exploit global structure and label correlations of multi-label images.

  9. Selecting salient frames for spatiotemporal video modeling and segmentation.

    Science.gov (United States)

    Song, Xiaomu; Fan, Guoliang

    2007-12-01

    We propose a new statistical generative model for spatiotemporal video segmentation. The objective is to partition a video sequence into homogeneous segments that can be used as "building blocks" for semantic video segmentation. The baseline framework is a Gaussian mixture model (GMM)-based video modeling approach that involves a six-dimensional spatiotemporal feature space. Specifically, we introduce the concept of frame saliency to quantify the relevancy of a video frame to the GMM-based spatiotemporal video modeling. This helps us use a small set of salient frames to facilitate the model training by reducing data redundancy and irrelevance. A modified expectation maximization algorithm is developed for simultaneous GMM training and frame saliency estimation, and the frames with the highest saliency values are extracted to refine the GMM estimation for video segmentation. Moreover, it is interesting to find that frame saliency can imply some object behaviors. This makes the proposed method also applicable to other frame-related video analysis tasks, such as key-frame extraction, video skimming, etc. Experiments on real videos demonstrate the effectiveness and efficiency of the proposed method.

  10. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    Science.gov (United States)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  11. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging.

    Science.gov (United States)

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I

    2016-03-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans.

  12. SU-F-J-96: Comparison of Frame-Based and Mutual Information Registration Techniques for CT and MR Image Sets

    Energy Technology Data Exchange (ETDEWEB)

    Popple, R; Bredel, M; Brezovich, I; Dobelbower, M; Fisher, W; Fiveash, J; Guthrie, B; Riley, K; Wu, X [The University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-06-15

    Purpose: To compare the accuracy of CT-MR registration using a mutual information method with registration using a frame-based localizer box. Methods: Ten patients having the Leksell head frame and scanned with a modality specific localizer box were imported into the treatment planning system. The fiducial rods of the localizer box were contoured on both the MR and CT scans. The skull was contoured on the CT images. The MR and CT images were registered by two methods. The frame-based method used the transformation that minimized the mean square distance of the centroids of the contours of the fiducial rods from a mathematical model of the localizer. The mutual information method used automated image registration tools in the TPS and was restricted to a volume-of-interest defined by the skull contours with a 5 mm margin. For each case, the two registrations were adjusted by two evaluation teams, each comprised of an experienced radiation oncologist and neurosurgeon, to optimize alignment in the region of the brainstem. The teams were blinded to the registration method. Results: The mean adjustment was 0.4 mm (range 0 to 2 mm) and 0.2 mm (range 0 to 1 mm) for the frame and mutual information methods, respectively. The median difference between the frame and mutual information registrations was 0.3 mm, but was not statistically significant using the Wilcoxon signed rank test (p=0.37). Conclusion: The difference between frame and mutual information registration techniques was neither statistically significant nor, for most applications, clinically important. These results suggest that mutual information is equivalent to frame-based image registration for radiosurgery. Work is ongoing to add additional evaluators and to assess the differences between evaluators.

  13. Renewable energy policy design and framing influence public support in the United States

    Science.gov (United States)

    Stokes, Leah C.; Warshaw, Christopher

    2017-08-01

    The United States has often led the world in supporting renewable energy technologies at both the state and federal level. However, since 2011 several states have weakened their renewable energy policies. Public opinion will probably be crucial for determining whether states expand or contract their renewable energy policies in the future. Here we show that a majority of the public in most states supports renewable portfolio standards, which require a portion of the electricity mix to come from renewables. However, policy design and framing can strongly influence public support. Using a survey experiment, we show that effects of renewable portfolio standards bills on residential electricity costs, jobs and pollution, as well as bipartisan elite support, are all important drivers of public support. In many states, these bills' design and framing can push public opinion above or below majority support.

  14. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    Science.gov (United States)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to

  15. A MULTI-CORE PARALLEL MOSAIC ALORITHM FOR MULTI-VIEW UAV IMAGES

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-09-01

    Full Text Available As the spread of the error and accumulation often lead to distortion or failure of image mosaic during the multi-view UAV (Unmanned Aerial Vehicle images stitching. In this paper, to solve the problem we propose a mosaic strategy to construct a mosaic ring and multi-level grouping parallel acceleration as an auxiliary. First, the input images will be divided into several groups, each group in the ring way to stitch. Then, use SIFT for matching, RANSAC to remove the wrong matching points. And then, calculate the perspective transformation matrix. Finally weaken the error by using the adjustment equation. All these steps run between different groups at the same time. By using real UAV images, the experiment results show that this method can effectively reduce the influence of accumulative error, improve the precision of mosaic and reduce the mosaic time by 60 %. The proposed method can be used as one of the effective ways to minimize the accumulative error.

  16. Representation of Block-Based Image Features in a Multi-Scale Framework for Built-Up Area Detection

    Directory of Open Access Journals (Sweden)

    Zhongwen Hu

    2016-02-01

    Full Text Available The accurate extraction and mapping of built-up areas play an important role in many social, economic, and environmental studies. In this paper, we propose a novel approach for built-up area detection from high spatial resolution remote sensing images, using a block-based multi-scale feature representation framework. First, an image is divided into small blocks, in which the spectral, textural, and structural features are extracted and represented using a multi-scale framework; a set of refined Harris corner points is then used to select blocks as training samples; finally, a built-up index image is obtained by minimizing the normalized spectral, textural, and structural distances to the training samples, and a built-up area map is obtained by thresholding the index image. Experiments confirm that the proposed approach is effective for high-resolution optical and synthetic aperture radar images, with different scenes and different spatial resolutions.

  17. Multi-spectral imager

    CSIR Research Space (South Africa)

    Stolper, R

    2006-02-01

    Full Text Available channel are boresighted with two beamsplitter windows; and • The IR system is boresighted. APPLICATION High-voltage environment • Detecting loose strands, bolts and nuts; • Detecting Corona discharges on insulator discs; • Detecting... and locating spark gaps; • Detecting and locating RIV sources; • Audit sub-stations and transmission lines for audio noise and Corona activities. RECORDINGS / APPLICATIONS REPORTING TOOL: MultiSOFT • Image handling software for grabbing, processing...

  18. Precise Multi-Spectral Dermatological Imaging

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2004-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral dermatological images is proposed. The system is made up of an integrating sphere, light emitting diodes and a generic monochromatic camera. The system can collect up to 10 different spectral bands....... These spectral bands vary from ultraviolet to near infrared. The welldefined and diffuse illumination of the optically closed scene aims to avoid shadows and specular reflections. Furthermore, the system has been developed to guarantee the reproducibility of the collected images. This allows for comparative...

  19. EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.

    Science.gov (United States)

    Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos

    2015-01-01

    Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.

  20. Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chun-Yi [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-16

    By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitive or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access

  1. Investigation on Reference Frames and Time Systems in Multi-GNSS

    Directory of Open Access Journals (Sweden)

    Luca Nicolini

    2018-01-01

    Full Text Available Receivers able to track satellites belonging to different GNSSs (Global Navigation Satellite Systems are available on the market. To compute coordinates and velocities it is necessary to identify all the elements that contribute to interoperability of the different GNSSs. For example the timescales kept by different GNSSs have to be aligned. Receiver-specific biases, or firmware-dependent biases, need to be calibrated. The reference frame used in the representation of the orbits must be unique. In this paper we address the interoperability issues from the standpoint of a Single Point Positioning (SPP user, i.e., using pseudoranges and broadcast ephemeris. The biases between GNSSs timescales and receiver-dependent biases are analyzed for a set of 31 MGEX (Multi-GNSS Experiment stations over a time span of more than three years. Time series of biases between timescales of GPS (Global Positioning System, GLONASS (Global Navigation Satellite System, Galileo, BeiDou, QZSS (Quasi-Zenith Satellite System, SBAS (Satellite Based Augmentation System and NAVIC (Navigation with Indian Constellation are investigated, in addition to the identification of events like discontinuity of receiver-dependent biases due to firmware updating. The GPS broadcast reference frame is shown to be aligned to the one (IGS14 realized by the precise ephemeris of CODE (Center for Orbit Determination in Europe to within 0.1 m and 2 milliarcsec, with values dependent on whether IIR-A, IIR-B/M or IIF satellite blocks are considered. Larger offsets are observed for GLONASS, up to 1 m for GLONASS K satellites. For Galileo the alignment of the broadcast orbit to IGS14/CODE is again at the 0.1 m and several milliarcsec level, with the FOC (Full Operational Capability satellites slightly better than IOV (In Orbit Validation. For BeiDou an alignment of the broadcast frame to IGS14/CODE comparable to GLONASS is observed, regardless of whether IGSO (Inclined Geosynchronous Orbit or MEO

  2. Ceres Photometry and Albedo from Dawn Framing Camera Images

    Science.gov (United States)

    Schröder, S. E.; Mottola, S.; Keller, H. U.; Li, J.-Y.; Matz, K.-D.; Otto, K.; Roatsch, T.; Stephan, K.; Raymond, C. A.; Russell, C. T.

    2015-10-01

    The Dawn spacecraft is in orbit around dwarf planet Ceres. The onboard Framing Camera (FC) [1] is mapping the surface through a clear filter and 7 narrow-band filters at various observational geometries. Generally, Ceres' appearance in these images is affected by shadows and shading, effects which become stronger for larger solar phase angles, obscuring the intrinsic reflective properties of the surface. By means of photometric modeling we attempt to remove these effects and reconstruct the surface albedo over the full visible wavelength range. Knowledge of the albedo distribution will contribute to our understanding of the physical nature and composition of the surface.

  3. Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores

    Directory of Open Access Journals (Sweden)

    Youngmin Kim

    2017-12-01

    Full Text Available In wireless sensor networks (WSNs, sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods.

  4. Block level energy planning for domestic lighting - a multi-objective fuzzy linear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Jana, C. [Indian Inst. of Social Welfare and Business Management, Kolkata (India); Chattopadhyay, R.N. [Indian Inst. of Technology, Kharagpur (India). Rural Development Centre

    2004-09-01

    Creating provisions for domestic lighting is important for rural development. Its significance in rural economy is unquestionable since some activities, like literacy, education and manufacture of craft items and other cottage products are largely dependent on domestic lighting facilities for their progress and prosperity. Thus, in rural energy planning, domestic lighting remains a key sector for allocation of investments. For rational allocation, decision makers need alternative strategies for identifying adequate and proper investment structure corresponding to appropriate sources and precise devices. The present study aims at designing a model of energy utilisation by developing a decision support frame for an optimised solution to the problem, taking into consideration four sources and six devices suitable for the study area, namely Narayangarh Block of Midnapore District in India. Since the data available from rural and unorganised sectors are often ill-defined and subjective in nature, many coefficients are fuzzy numbers, and hence several constraints appear to be fuzzy expressions. In this study, the energy allocation model is initiated with three separate objectives for optimisation, namely minimising the total cost, minimising the use of non-local sources of energy and maximising the overall efficiency of the system. Since each of the above objective-based solutions has relevance to the needs of the society and economy, it is necessary to build a model that makes a compromise among the three individual solutions. This multi-objective fuzzy linear programming (MOFLP) model, solved in a compromising decision support frame, seems to be a more rational alternative than single objective linear programming model in rural energy planning. (author)

  5. Image Fusion-Based Land Cover Change Detection Using Multi-Temporal High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Biao Wang

    2017-08-01

    Full Text Available Change detection is usually treated as a problem of explicitly detecting land cover transitions in satellite images obtained at different times, and helps with emergency response and government management. This study presents an unsupervised change detection method based on the image fusion of multi-temporal images. The main objective of this study is to improve the accuracy of unsupervised change detection from high-resolution multi-temporal images. Our method effectively reduces change detection errors, since spatial displacement and spectral differences between multi-temporal images are evaluated. To this end, a total of four cross-fused images are generated with multi-temporal images, and the iteratively reweighted multivariate alteration detection (IR-MAD method—a measure for the spectral distortion of change information—is applied to the fused images. In this experiment, the land cover change maps were extracted using multi-temporal IKONOS-2, WorldView-3, and GF-1 satellite images. The effectiveness of the proposed method compared with other unsupervised change detection methods is demonstrated through experimentation. The proposed method achieved an overall accuracy of 80.51% and 97.87% for cases 1 and 2, respectively. Moreover, the proposed method performed better when differentiating the water area from the vegetation area compared to the existing change detection methods. Although the water area beneath moderate and sparse vegetation canopy was captured, vegetation cover and paved regions of the water body were the main sources of omission error, and commission errors occurred primarily in pixels of mixed land use and along the water body edge. Nevertheless, the proposed method, in conjunction with high-resolution satellite imagery, offers a robust and flexible approach to land cover change mapping that requires no ancillary data for rapid implementation.

  6. A Big Data Analytics Pipeline for the Analysis of TESS Full Frame Images

    Science.gov (United States)

    Wampler-Doty, Matthew; Pierce Doty, John

    2015-12-01

    We present a novel method for producing a catalogue of extra-solar planets and transients using the full frame image data from TESS. Our method involves (1) creating a fast Monte Carlo simulation of the TESS science instruments, (2) using the simulation to create a labeled dataset consisting of exoplanets with various orbital durations as well as transients (such as tidal disruption events), (3) using supervised machine learning to find optimal matched filters, Support Vector Machines (SVMs) and statistical classifiers (i.e. naïve Bayes and Markov Random Fields) to detect astronomical objects of interest and (4) “Big Data” analysis to produce a catalogue based on the TESS data. We will apply the resulting methods to all stars in the full frame images. We hope that by providing libraries that conform to industry standards of Free Open Source Software we may invite researchers from the astronomical community as well as the wider data-analytics community to contribute to our effort.

  7. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE.

    Science.gov (United States)

    Anderson, N G; Butler, A P; Scott, N J A; Cook, N J; Butzer, J S; Schleich, N; Firsching, M; Grasset, R; de Ruiter, N; Campbell, M; Butler, P H

    2010-09-01

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 microA). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications.

  8. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.G. [University of Otago, Department of Radiology, Christchurch (New Zealand); Butler, A.P. [University of Otago, Department of Radiology, Christchurch (New Zealand); University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Scott, N.J.A. [University of Otago, Department of Medicine, Christchurch (New Zealand); Cook, N.J. [Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Butzer, J.S. [Karlsruhe Institute of Technology, Physics Department, Karlsruhe (Germany); Schleich, N. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Firsching, M. [Friedrich Alexander University, Physics Department, Erlangen (Germany); Grasset, R.; Ruiter, N. de [University of Canterbury, Hitlab NZ, Christchurch (New Zealand); Campbell, M. [European Organisation for Nuclear Research, Physics Section, Geneva (Switzerland); Butler, P.H. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand)

    2010-09-15

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 {mu}A). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 {mu}m isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)

  9. Nuclear image display controller

    International Nuclear Information System (INIS)

    Roth, D.A.

    1985-01-01

    In a nuclear imaging system the digitized x and y coordinates of gamma ray photon emission events address memory locations corresponding to the coordinates. The respective locations are incremented each time they are addressed so at the end of a selected time or event count period the locations contain digital values or raw data corresponding to the intensity of pixels comprising an image frame. The raw data for a frame is coupled to one input of an arithmetic logic unit (ALU) whose output is coupled to a display controller memory. The output of the controller memory is coupled to another ALU input with a feedback bus and is also coupled to a further signal processing circuit which includes means for converting processed data to analog video signals for television display. The ALU is selectively controlled to let raw image data pass through to the display controllor memory or alternately to add (or subtract) raw data for the last image frame developed to the raw data for preceding frames held in the display controller to thereby produce the visual effect on the television screen of an isotope flowing through anatomy

  10. Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Oh, Ji Eun; Woo, Seung Tae

    2008-01-01

    Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at 60 .deg. C in oven overnight for hardening. Four sealed pipe tips containing [ 18 F]FDG solution were used as fiduciary markers. After injection of [ 18 F]FDG via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment

  11. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.

    Science.gov (United States)

    Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di

    2018-03-06

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.

  12. Optimizing Energy and Modulation Selection in Multi-Resolution Modulation For Wireless Video Broadcast/Multicast

    KAUST Repository

    She, James

    2009-11-01

    Emerging technologies in Broadband Wireless Access (BWA) networks and video coding have enabled high-quality wireless video broadcast/multicast services in metropolitan areas. Joint source-channel coded wireless transmission, especially using hierarchical/superposition coded modulation at the channel, is recognized as an effective and scalable approach to increase the system scalability while tackling the multi-user channel diversity problem. The power allocation and modulation selection problem, however, is subject to a high computational complexity due to the nonlinear formulation and huge solution space. This paper introduces a dynamic programming framework with conditioned parsing, which significantly reduces the search space. The optimized result is further verified with experiments using real video content. The proposed approach effectively serves as a generalized and practical optimization framework that can gauge and optimize a scalable wireless video broadcast/multicast based on multi-resolution modulation in any BWA network.

  13. Optimizing Energy and Modulation Selection in Multi-Resolution Modulation For Wireless Video Broadcast/Multicast

    KAUST Repository

    She, James; Ho, Pin-Han; Shihada, Basem

    2009-01-01

    Emerging technologies in Broadband Wireless Access (BWA) networks and video coding have enabled high-quality wireless video broadcast/multicast services in metropolitan areas. Joint source-channel coded wireless transmission, especially using hierarchical/superposition coded modulation at the channel, is recognized as an effective and scalable approach to increase the system scalability while tackling the multi-user channel diversity problem. The power allocation and modulation selection problem, however, is subject to a high computational complexity due to the nonlinear formulation and huge solution space. This paper introduces a dynamic programming framework with conditioned parsing, which significantly reduces the search space. The optimized result is further verified with experiments using real video content. The proposed approach effectively serves as a generalized and practical optimization framework that can gauge and optimize a scalable wireless video broadcast/multicast based on multi-resolution modulation in any BWA network.

  14. Framing climate change and spatial planning: how risk communication can be improved.

    Science.gov (United States)

    de Boer, J

    2007-01-01

    Taking the role of frames into account may significantly add to the tools that have been developed for communication and learning on complex risks and benefits. As part of a larger multidisciplinary study into climate-related forms of sense-making this paper explores which frames are used by the citizens of Western European countries and, in particular, the Netherlands. Three recent multi-national public opinion surveys were analysed to examine beliefs about climate change in the context of beliefs about energy technology and concerns about other environmental issues, such as natural disasters. It appeared that many citizens had only vague ideas about the energy situation and that these do not constitute an unequivocal frame for climate issues. In contrast, the results suggest that the long-lasting rainfall and severe floods in Central Europe have had a significant impact. Climate change was often framed in a way that articulates its associations with rain- and river-based problems. This result is extremely important for risk communication, because especially in the Netherlands with its vulnerable coastal zones climate change may produce many more consequences than rain- and river-based problems only.

  15. Improving parallel imaging by jointly reconstructing multi-contrast data.

    Science.gov (United States)

    Bilgic, Berkin; Kim, Tae Hyung; Liao, Congyu; Manhard, Mary Kate; Wald, Lawrence L; Haldar, Justin P; Setsompop, Kawin

    2018-08-01

    To develop parallel imaging techniques that simultaneously exploit coil sensitivity encoding, image phase prior information, similarities across multiple images, and complementary k-space sampling for highly accelerated data acquisition. We introduce joint virtual coil (JVC)-generalized autocalibrating partially parallel acquisitions (GRAPPA) to jointly reconstruct data acquired with different contrast preparations, and show its application in 2D, 3D, and simultaneous multi-slice (SMS) acquisitions. We extend the joint parallel imaging concept to exploit limited support and smooth phase constraints through Joint (J-) LORAKS formulation. J-LORAKS allows joint parallel imaging from limited autocalibration signal region, as well as permitting partial Fourier sampling and calibrationless reconstruction. We demonstrate highly accelerated 2D balanced steady-state free precession with phase cycling, SMS multi-echo spin echo, 3D multi-echo magnetization-prepared rapid gradient echo, and multi-echo gradient recalled echo acquisitions in vivo. Compared to conventional GRAPPA, proposed joint acquisition/reconstruction techniques provide more than 2-fold reduction in reconstruction error. JVC-GRAPPA takes advantage of additional spatial encoding from phase information and image similarity, and employs different sampling patterns across acquisitions. J-LORAKS achieves a more parsimonious low-rank representation of local k-space by considering multiple images as additional coils. Both approaches provide dramatic improvement in artifact and noise mitigation over conventional single-contrast parallel imaging reconstruction. Magn Reson Med 80:619-632, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing

    Science.gov (United States)

    Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio

    2013-01-01

    The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.

  17. Inter frame motion estimation and its application to image sequence compression: an introduction

    International Nuclear Information System (INIS)

    Cremy, C.

    1996-01-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs

  18. Contribution of Multi-GNSS Constellation to SLR-Derived Terrestrial Reference Frame

    Science.gov (United States)

    Sośnica, K.; Bury, G.; Zajdel, R.

    2018-03-01

    All satellites of new Global Navigation Satellite Systems (GNSS) are equipped with laser retroreflectors dedicated to Satellite Laser Ranging (SLR). This paper demonstrates the contribution of SLR tracking of multi-GNSS constellations to the improved SLR-derived reference frame and scientific products. We show a solution strategy with estimating satellite orbits, SLR station coordinates, geocenter coordinates, and Earth rotation parameters using SLR observations to 2 Laser Geodynamics Satellites (LAGEOS) and 55 GNSS satellites: 1 GPS, 31 Globalnaya Navigatsionnaya Sputnikovaya Sistema, 18 Galileo, 3 BeiDou Inclined Geosynchronous Orbit, 1 BeiDou Medium Earth Orbit, and 1 Quasi-Zenith Satellite System satellite for the period 2014.0-2017.4. Due to a substantial number of GNSS observations, the number of weekly solutions for some SLR stations, for example, Arkhyz, Komsomolsk, Altay, and Brasilia, is larger up to 41% in the combined LAGEOS + GNSS solution when compared to the LAGEOS-only solution. The SLR observations to GNSS can transfer the orientation of the reference frame from GNSS to SLR solutions. As a result, the SLR-derived pole coordinates and length-of-day estimates become more consistent with GNSS microwave-based results. The root-mean-square errors of length-of-day are reduced from 122.5 μs/d to 43.0 μs/d, whereas mean offsets are reduced from -81.6 μs/d to 0.5 μs/d in LAGEOS only and in the combined LAGEOS + GNSS solutions, respectively.

  19. A bio-image sensor for simultaneous detection of multi-neurotransmitters.

    Science.gov (United States)

    Lee, You-Na; Okumura, Koichi; Horio, Tomoko; Iwata, Tatsuya; Takahashi, Kazuhiro; Hattori, Toshiaki; Sawada, Kazuaki

    2018-03-01

    We report here a new bio-image sensor for simultaneous detection of spatial and temporal distribution of multi-neurotransmitters. It consists of multiple enzyme-immobilized membranes on a 128 × 128 pixel array with read-out circuit. Apyrase and acetylcholinesterase (AChE), as selective elements, are used to recognize adenosine 5'-triphosphate (ATP) and acetylcholine (ACh), respectively. To enhance the spatial resolution, hydrogen ion (H + ) diffusion barrier layers are deposited on top of the bio-image sensor and demonstrated their prevention capability. The results are used to design the space among enzyme-immobilized pixels and the null H + sensor to minimize the undesired signal overlap by H + diffusion. Using this bio-image sensor, we can obtain H + diffusion-independent imaging of concentration gradients of ATP and ACh in real-time. The sensing characteristics, such as sensitivity and detection of limit, are determined experimentally. With the proposed bio-image sensor the possibility exists for customizable monitoring of the activities of various neurochemicals by using different kinds of proton-consuming or generating enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  1. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    Science.gov (United States)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  2. Image matrix processor for fast multi-dimensional computations

    Science.gov (United States)

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  3. Social movement heterogeneity in public policy framing: A multi-stakeholder analysis of the Keystone XL pipeline

    Science.gov (United States)

    Wesley, David T. A.

    In 2011, stakeholders with differing objectives formed an alliance to oppose the Keystone XL heavy oil pipeline. The alliance, which came to be known as "Tar Sands Action," implemented various strategies, some of which were more successful than others. Tar Sands Action was a largely heterogeneous alliance that included indigenous tribes, environmentalists, ranchers, landowners, and trade unions, making it one of the more diverse social movement organizations in history. Each of these stakeholder categories had distinct demographic structures, representing an array of racial, ethnic, educational, occupational, and political backgrounds. Participants also had differing policy objectives that included combating climate change and protecting jobs, agricultural interests, water resources, wildlife, and human health. The current dissertation examines the Tar Sands Action movement to understand how heterogeneous social movement organizations mobilize supporters, maintain alliances, and create effective frames to achieve policy objectives. A multi-stakeholder analysis of the development, evolution and communication of frames concerning the Keystone XL controversy provides insight into the role of alliances, direct action, and the news media in challenging hegemonic frames. Previous research has ignored the potential value that SMO heterogeneity provides by treating social movements as culturally homogenous. However, diversity has been shown to affect performance in business organizations. The current study demonstrates that under some circumstances, diversity can also improve policy outcomes. Moreover, policy frames are shown to be more effective in sustaining news media and public interest through a process the author calls dynamic frame sequencing (DFS). DFS refers to a process implementing different stakeholder frames at strategically opportune moments. Finally, Tar Sands Action was one of the first SMOs to rely heavily on social media to build alliances, disseminate

  4. Statistical and physical content of low-energy photons in nuclear medicine imaging

    International Nuclear Information System (INIS)

    Gagnon, D.; Pouliot, N.; Laperriere, L.; Harel, F.; Gregoire, J.; Arsenault, A.

    1990-01-01

    Limit in the energy resolution of present gamma camera technology prevents a total rejection of Compton events: inclusion of bad photons in the image is inescapable. Various methods acquiring data over a large portion of the spectrum have already been described. This paper investigates the usefulness of low energy photons using statistical and physical models. Holospectral Imaging, for instance, exploits correlation between energy frames to build an information related transformation optimizing primary photon image. One can also use computer simulation to show that a portion of low energy photons is detected at the same location (pixel) as pure primary photons. These events are for instance: photons undergoing scatter interaction in the crystal; photons undergoing a small angle backscatter or forwardscatter interaction in the medium, photons backscattered by the Pyrex into the crystal. For a 140 keV source in 10 cm of water and a 1/4 inch thick crystal, more than 6% of all the photons detected do not have the primary energy and still are located in the right 4 mm pixel. Similarly, it is possible to show that more than 5% of all the photons detected at 140 keV deposit their energy in more than one pixel. These results give additional support to techniques considering low energy photons and more sophisticated ways to segregate between good and bad events

  5. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  6. Impact of low-energy CT imaging on selection of positive oral contrast media concentration.

    Science.gov (United States)

    Patino, Manuel; Murcia, Diana J; Iamurri, Andrea Prochowski; Kambadakone, Avinash R; Hahn, Peter F; Sahani, Dushyant V

    2017-05-01

    To determine to what extent low-energy CT imaging affects attenuation of gastrointestinal tract (GIT) opacified with positive oral contrast media (OCM). Second, to establish optimal OCM concentrations for low-energy diagnostic CT exams. One hundred patients (38 men and 62 women; age 62 ± 11 years; BMI 26 ± 5) with positive OCM-enhanced 120-kVp single-energy CT (SECT), and follow-up 100-kVp acquisitions (group A; n = 50), or 40-70-keV reconstructions from rapid kV switching-single-source dual-energy CT (ssDECT) (group B; n = 50) were included. Luminal attenuation from different GIT segments was compared between exams. Standard dose of three OCM and diluted solutions (75%, 50%, and 25% concentrations) were introduced serially in a gastrointestinal phantom and scanned using SECT (120, 100, and 80 kVp) and DECT (80/140 kVp) acquisitions on a ssDECT scanner. Luminal attenuation was obtained on SECT and DECT images (40-70 keV), and compared to 120-kVp scans with standard OCM concentrations. Luminal attenuation was higher on 100-kVp (328 HU) and on 40-60-keV images (410-924 HU) in comparison to 120-kVp scans (298 HU) in groups A and B (p < 0.05). Phantom: There was an inverse correlation between luminal attenuation and X-ray energy, increasing up to 527 HU on low-kVp and 999 HU on low-keV images (p < 0.05). 25% and 50% diluted OCM solutions provided similar or higher attenuation than 120 kVp, at low kVp and keV, respectively. Low-energy CT imaging increases the attenuation of GIT opacified with positive OCM, permitting reduction of 25%-75% OCM concentration.

  7. Multi-country comparisons of energy performance: The index decomposition analysis approach

    International Nuclear Information System (INIS)

    Ang, B.W.; Xu, X.Y.; Su, Bin

    2015-01-01

    Index decomposition analysis (IDA) is a popular tool for studying changes in energy consumption over time in a country or region. This specific application of IDA, which may be called temporal decomposition analysis, has been extended by researchers and analysts to study variations in energy consumption or energy efficiency between countries or regions, i.e. spatial decomposition analysis. In spatial decomposition analysis, the main objective is often to understand the relative contributions of overall activity level, activity structure, and energy intensity in explaining differences in total energy consumption between two countries or regions. We review the literature of spatial decomposition analysis, investigate the methodological issues, and propose a spatial decomposition analysis framework for multi-region comparisons. A key feature of the proposed framework is that it passes the circularity test and provides consistent results for multi-region comparisons. A case study in which 30 regions in China are compared and ranked based on their performance in energy consumption is presented. - Highlights: • We conducted cross-regional comparisons of energy consumption using IDA. • We proposed two criteria for IDA method selection in spatial decomposition analysis. • We proposed a new model for regional comparison that passes the circularity test. • Features of the new model are illustrated using the data of 30 regions in China

  8. TRUE multi-annual energy planning

    International Nuclear Information System (INIS)

    Bringault, Anne; Cormier, Cyrille; Arditi, Maryse

    2016-01-01

    A multi-annual energy planning (PPE) has been introduced by the French government to transcribe the objectives of the law on energy transition into evolutions for energy consumption and production for different periods (2016-2018 and 2019-2023). This publication first indicates various assessments for these periods regarding energy consumption, electricity consumption, fossil energy consumption, renewable energy production, the share of electric renewable energies, and the decrease of the nuclear share. These objectives are then discussed with respect to different scenarios, and notably a reference scenario

  9. Multi-Wavelength Photomagnetic Imaging for Oral Cancer

    Science.gov (United States)

    Marks, Michael

    In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.

  10. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    Science.gov (United States)

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  11. Low energy electron microscopy imaging using Medipix2 detector

    International Nuclear Information System (INIS)

    Sikharulidze, I.; Gastel, R. van; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  12. Low energy electron microscopy imaging using Medipix2 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sikharulidze, I., E-mail: irakli@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Gastel, R. van [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Schramm, S. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); Abrahams, J.P. [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Poelsema, B. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Tromp, R.M. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands)

    2011-05-15

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  13. MicroCT parameters for multi material elements assessment

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, Olga M.O. de; Machado, Alessandra S.; Santos, Thaís M.P. dos; Ferreira, Cintia G.; Lopes, Ricardo T., E-mail: olgaufrjlin@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Bastos, Jaqueline Silva [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), São Paulo, SP (Brazil)

    2017-07-01

    Microtomography is a non-destructive testing technique for quantitative and qualitative analysis. The investigation of multi material elements with great difference of density can result in artifacts that degrade image quality depending on combination of additional filter. The aim of this study is the selection of parameters most appropriate for analysis of bone tissue with metallic implant. The results show the simulation with MCNPX code for the distribution of energy without additional filter, with use of aluminum, copper and brass filters and their respective reconstructed images showing the importance of the choice of these parameters in image acquisition process on computed microtomography. (author)

  14. Geo-Spatial Multi-criteria Analysis for Wave Energy System Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Ana; Pacheco, Miguel (Instituto Hidrografico, Rua das Trinas, 49, Lisboa (PT)); Jorge, Raquel Lopes, M. F. P.; Gato, L. M. C. (IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, Lisboa (PT))

    2007-07-01

    The growing requirements for renewable energy production lead to the development of a new series of systems, including wave energy conversion systems. Due to their sensitivity and the impact of the aggressive marine environment, the selection of the most adequate location for these systems is a major and very important task. Several factors, such as technological limitations, environmental conditions, administrative and logistic conditions, have to be taken into account in order to support the decision for best location. This paper describes a geo-spatial multi-criteria analysis methodology, based on geographic information systems technology, for selection of the best location to deploy a wave energy farm. This methodology is not conversion system dependent and therefore can be easily customized for different systems and conditions. Selection factors can include, for example, ocean depth, bottom type, underwater cables, marine protected areas, ports location, shoreline, power grid location, military exercise areas, climatology of wave significant height, period and direction. A case study demonstrating this methodology is presented, for an area offshore the Portuguese southwest coast. The system output allows a clear identification of the best spots for a wave energy farm. It is not just a simple Boolean result showing valid and invalid locations, but a layer with a graded suitability for farm deployment.

  15. High-frame-rate digital radiographic videography

    Science.gov (United States)

    King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott

    1994-10-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  16. Analysis of Energy Demand for Low-Energy Multi-Dwelling Buildings of Different Configuration

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2014-10-01

    Full Text Available To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined.

  17. A Study on Integrated Use of Turbulence Theory and Multi-Frame Leadership in School Leadership and Change

    OpenAIRE

    Cheng-Hung Chen

    2014-01-01

    This study aimed to engage in an empirical investigation on school leaders’ comprehensive perspectives of adopting both turbulence theory and multi-frame leadership model on change and leadership within school settings. Applying the qualitative case study approach, workshops and focus group interviews were held involving five directors and three principals from different elementary schools, who graduated from the master program in school administration where the researcher serves, to discuss ...

  18. Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information.

    Science.gov (United States)

    Lian, Jian; Zheng, Yuanjie; Jiao, Wanzhen; Yan, Fang; Zhao, Bojun

    2018-06-01

    Multi-spectral imaging (MSI) produces a sequence of spectral images to capture the inner structure of different species, which was recently introduced into ocular disease diagnosis. However, the quality of MSI images can be significantly degraded by motion blur caused by the inevitable saccades and exposure time required for maintaining a sufficiently high signal-to-noise ratio. This degradation may confuse an ophthalmologist, reduce the examination quality, or defeat various image analysis algorithms. We propose an early work specially on deblurring sequential MSI images, which is distinguished from many of the current image deblurring techniques by resolving the blur kernel simultaneously for all the images in an MSI sequence. It is accomplished by incorporating several a priori constraints including the sharpness of the latent clear image, the spatial and temporal smoothness of the blur kernel and the similarity between temporally-neighboring images in MSI sequence. Specifically, we model the similarity between MSI images with mutual information considering the different wavelengths used for capturing different images in MSI sequence. The optimization of the proposed approach is based on a multi-scale framework and stepwise optimization strategy. Experimental results from 22 MSI sequences validate that our approach outperforms several state-of-the-art techniques in natural image deblurring.

  19. Enterprise imaging and multi-departmental PACS

    International Nuclear Information System (INIS)

    Bergh, Bjoern

    2006-01-01

    The aim of this review is to present the status of digital image acquisition and archiving outside of radiology and to describe the technical concepts and possibilities of how a ''radiology'' Picture Archiving and Communication System (PACS) can become a multi-departmental (MD-)PACS. First the principles of system integration technology are explained and illustrated by the description of a typical radiology system integration. Then four types of modality integration approaches are defined: the direct modality integration (Type-I), the integration via DICOM acquisition software (Type-II) the integration via specialised systems either with (Type-III) or without PACS connection (Type-IV). The last section is dedicated to the presentation of the PACS requirements of selected interdisciplinary modality types [Endoscopy, Ultrasound and Electrocardiography (ECG)] and clinical disciplines (Pathology, Dermatology, Ophthalmology and Cardiology), which are then compared with the technical possibilities of a MD-PACS. (orig.)

  20. Multi-Stage Recognition of Speech Emotion Using Sequential Forward Feature Selection

    Directory of Open Access Journals (Sweden)

    Liogienė Tatjana

    2016-07-01

    Full Text Available The intensive research of speech emotion recognition introduced a huge collection of speech emotion features. Large feature sets complicate the speech emotion recognition task. Among various feature selection and transformation techniques for one-stage classification, multiple classifier systems were proposed. The main idea of multiple classifiers is to arrange the emotion classification process in stages. Besides parallel and serial cases, the hierarchical arrangement of multi-stage classification is most widely used for speech emotion recognition. In this paper, we present a sequential-forward-feature-selection-based multi-stage classification scheme. The Sequential Forward Selection (SFS and Sequential Floating Forward Selection (SFFS techniques were employed for every stage of the multi-stage classification scheme. Experimental testing of the proposed scheme was performed using the German and Lithuanian emotional speech datasets. Sequential-feature-selection-based multi-stage classification outperformed the single-stage scheme by 12–42 % for different emotion sets. The multi-stage scheme has shown higher robustness to the growth of emotion set. The decrease in recognition rate with the increase in emotion set for multi-stage scheme was lower by 10–20 % in comparison with the single-stage case. Differences in SFS and SFFS employment for feature selection were negligible.

  1. Three-dimensional atomic-image reconstruction from a single-energy Si(100) photoelectron hologram

    International Nuclear Information System (INIS)

    Matsushita, T.; Agui, A.; Yoshigoe, A.

    2004-01-01

    Full text: J. J. Barton proposed a basic algorithm for three-dimensional atomic-image reconstruction from photoelectron hologram, which is based on the Fourier transform(FT). In the use of a single-energy hologram, the twin-image appears in principle. The twin image disappears in the use of multi-energy hologram, which requires longer measuring time and variable-energy light source. But the reconstruction in the use of a simple FT is difficult because the scattered electron wave is not s-symmetric wave. Many theoretical and experimental approaches based on the FT have been researched. We propose a new algorithm so-called 'scattering pattern matrix', which is not based on the FT. The algorithm utilizes the 'scattering pattern', and iterative gradient method. Real space image can be reconstructed from a single-energy hologram without initial model. In addition, the twin image disappears. We reconstructed the three-dimensional atomic image of Si bulk structure from an experimental single-energy hologram of Si(100) 2s emission, which is shown The experiment was performed with using a Al-K α light source. The experimental setup is shown in. Then we calculated a vertical slice image of the reconstructed Si bulk structure, which is shown. The atomic images appear around the expected positions

  2. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images

    Science.gov (United States)

    McClelland, Jamie R.; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; O' Connell, Dylan; Low, Daniel A.; Kaza, Evangelia; Collins, David J.; Leach, Martin O.; Hawkes, David J.

    2017-06-01

    Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.

  3. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  4. A REGION-BASED MULTI-SCALE APPROACH FOR OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    T. Kavzoglu

    2016-06-01

    Full Text Available Within the last two decades, object-based image analysis (OBIA considering objects (i.e. groups of pixels instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient. Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.

  5. New technology to collect solar energy: non-imaging focusing heliostat

    International Nuclear Information System (INIS)

    Kok Keong Chong; Bahrom Sanugi; Chen, L.C.; Jasmy Yunus; Kannan, K.S.; Lim, B.H.; Lim, C.S.; Noriah Bidin; Omar Aliman; Sahar Salehan; Shaikh Ab Rezan; Tam, C.M.; Tan, K.K.; Chen, Y.T.

    2001-01-01

    In this paper, we report a non-imaging focusing heliostat with multi-faceted plane mirrors for the effective use of solar energy. The non-imaging heliostat demonstrates a new technology to track the sun radiation and then concentrating it onto a stationary receiver by a mere single reflection. Deviated from the conventional method, one of the rotation axes is reoriented in a way that can significantly reduce the number of motors. The feasibility of the new scheme has been proved by a 25-mirrors-heliostat in Universiti Technologi Malaysia (UTM) campus. (Author)

  6. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    International Nuclear Information System (INIS)

    Boerner, M.; Frank, A.; Pelka, A.; Schaumann, G.; Schoekel, A.; Schumacher, D.; Roth, M.; Fils, J.; Blazevic, A.; Hessling, T.; Basko, M. M.; Maruhn, J.; Tauschwitz, An.

    2012-01-01

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10 18 cm -3 , the maximal one is 2 x 10 20 cm -3 . Furthermore, it provides a resolution of the electron density in space of 50 μm and in time of 0.5 ns for one image with a customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.

  7. Multimodal news framing effects

    NARCIS (Netherlands)

    Powell, T.E.

    2017-01-01

    Visuals in news media play a vital role in framing citizens’ political preferences. Yet, compared to the written word, visual images are undervalued in political communication research. Using framing theory, this thesis redresses the balance by studying the combined, or multimodal, effects of visual

  8. Multi-task feature selection in microarray data by binary integer programming.

    Science.gov (United States)

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  9. Multi-focus Image Fusion Using Epifluorescence Microscopy for Robust Vascular Segmentation

    OpenAIRE

    Pelapur, Rengarajan; Prasath, Surya; Palaniappan, Kannappan

    2014-01-01

    We are building a computerized image analysis system for Dura Mater vascular network from fluorescence microscopy images. We propose a system that couples a multi-focus image fusion module with a robust adaptive filtering based segmentation. The robust adaptive filtering scheme handles noise without destroying small structures, and the multi focal image fusion considerably improves the overall segmentation quality by integrating information from multiple images. Based on the segmenta...

  10. Multi criteria analysis in the renewable energy industry

    CERN Document Server

    San Cristóbal Mateo, José Ramón

    2012-01-01

    Decision makers in the Renewable Energy sector face an increasingly complex social, economic, technological, and environmental scenario in their decision process. Different groups of decision-makers become involved in the process, each group bringing along different criteria therefore, policy formulation for fossil fuel substitution by Renewable Energies must be addressed in a multi-criteria context. Multi Criteria Analysis in the Renewable Energy Industry is a direct response to the increasing interest in the Renewable Energy industry which can be seen as an important remedy to many environmental problems that the world faces today. The multiplicity of criteria and the increasingly complex social, economic, technological, and environmental scenario makes multi-criteria analysis a valuable tool in the decision-making process for fossil fuel substitution. The detailed chapters explore the use of the Multi-criteria decision-making methods and how they provide valuable assistance in reaching equitable and accept...

  11. Moisture Performance of Energy-Efficient and Conventional Wood-Frame Wall Assemblies in a Mixed-Humid Climate

    Science.gov (United States)

    Samuel Glass; Vladimir Kochkin; S. Drumheller; Lance Barta

    2015-01-01

    Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB)...

  12. Image quality comparison between single energy and dual energy CT protocols for hepatic imaging

    International Nuclear Information System (INIS)

    Yao, Yuan; Pelc, Norbert J.; Ng, Joshua M.; Megibow, Alec J.

    2016-01-01

    Purpose: Multi-detector computed tomography (MDCT) enables volumetric scans in a single breath hold and is clinically useful for hepatic imaging. For simple tasks, conventional single energy (SE) computed tomography (CT) images acquired at the optimal tube potential are known to have better quality than dual energy (DE) blended images. However, liver imaging is complex and often requires imaging of both structures containing iodinated contrast media, where atomic number differences are the primary contrast mechanism, and other structures, where density differences are the primary contrast mechanism. Hence it is conceivable that the broad spectrum used in a dual energy acquisition may be an advantage. In this work we are interested in comparing these two imaging strategies at equal-dose and more complex settings. Methods: We developed numerical anthropomorphic phantoms to mimic realistic clinical CT scans for medium size and large size patients. MDCT images based on the defined phantoms were simulated using various SE and DE protocols at pre- and post-contrast stages. For SE CT, images from 60 kVp through 140 with 10 kVp steps were considered; for DE CT, both 80/140 and 100/140 kVp scans were simulated and linearly blended at the optimal weights. To make a fair comparison, the mAs of each scan was adjusted to match the reference radiation dose (120 kVp, 200 mAs for medium size patients and 140 kVp, 400 mAs for large size patients). Contrast-to-noise ratio (CNR) of liver against other soft tissues was used to evaluate and compare the SE and DE protocols, and multiple pre- and post-contrasted liver-tissue pairs were used to define a composite CNR. To help validate the simulation results, we conducted a small clinical study. Eighty-five 120 kVp images and 81 blended 80/140 kVp images were collected and compared through both quantitative image quality analysis and an observer study. Results: In the simulation study, we found that the CNR of pre-contrast SE image mostly

  13. Energy-dependent imaging in digital radiography: a review on acquisition, processing and display technique

    International Nuclear Information System (INIS)

    Coppini, G.; Maltinti, G.; Valli, G.; Baroni, M.; Buchignan, M.; Valli, G.

    1986-01-01

    The capabilities of energy-dependent imaging in digital radiography are analyzed paying particular attention to digital video systems. The main techniques developed in recent years for selective energy imaging are reviewed following a unified approach. Discussion about advantages and limits of energy methods is carried out by a comparative analysis of computer simulated data and experimental results as obtained by standard x-ray equipments coupled to a digital video unit. Geometric phantoms are used as test object, as also images of a chest phantom are produced. Since signal-to-noise ratio degradation is one of the major problems when dealing with selective imaging, a particular effort is made to investigate noise effects. In this perspective, an original colour encoding display of energy sequences is presented. By mapping the various energy measurements on different colour bands (typically those of an RGB TV-monitor), an increased image conspicuity is obtained without a significant noise degradation: this is ensured by the energy dependence of attenuation coefficients and by the integrating characteristics of the display device

  14. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    Science.gov (United States)

    Villagómez-Hoyos, Carlos A.; Stuart, Matthias B.; Bechsgaard, Thor; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter vessel at a depth of 100 mm in a tissue-mimicking phantom. A flow pump produced a 2 ml/s constant flow with a peak velocity of 0.2 m/s. The average estimated flow angle in the ROI was 86.22° +/- 6.66° with a true flow angle of 90°. A relative velocity bias of -39% with a standard deviation of 13% was found. In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle cavity through the mitral valve and splitting in two ways when approximating the left ventricle wall. The work presents 2-D velocity estimates on the heart from a non-invasive transthoracic scan. The ability of the method detecting flow regardless of the beam angle could potentially reveal a more complete view of the flow patterns presented on the heart.

  15. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    NARCIS (Netherlands)

    Kok, P.; Dijkstra, J.; Botha, C.P.; Post, F.H.; Kaijzel, E.; Que, I.; Löwik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2007-01-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate

  16. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  17. Multi-image Matching of Airborne SAR Imagery by SANCC

    Directory of Open Access Journals (Sweden)

    DING Hao

    2015-03-01

    Full Text Available In order to improve accuracy of SAR matching, a multi-image matching method based on sum of adaptive normalized cross-correlation (SANCC is proposed. It utilizes geometrical and radiometric information of multi-baselinesynthetic aperture radar (SARimages effectively. Firstly, imaging parameters, platform parameters and approximate digital surface model (DSM are used to predict matching line. Secondly, similarity and proximity in Gestalt theory are introduced to SANCC, and SANCC measures of potential matching points along the matching line are calculated. Thirdly, multi-image matching results and object coordinates of matching points are obtained by winner-take-all (WTA optimization strategy. The approach has been demonstrated with airborne SAR images acquired by a Chinese airborne SAR system (CASMSAR system. The experimental results indicate that the proposed algorithm is effective for providing dense and accuracy matching points, reducing the number of mismatches caused by repeated textures, and offering a better solution to match in poor textured areas.

  18. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  19. Feature-based Alignment of Volumetric Multi-modal Images

    Science.gov (United States)

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  20. 10 CFR 710.35 - Time frames.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing the...

  1. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    International Nuclear Information System (INIS)

    Simpson, D.R.

    1981-01-01

    Recently, multi-pinhole gamma camera collimation has been introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. This study has investigated a possible method for improving the images obtained by this technique by two multi-pinhole views taken 90 0 apart. During the course of this work, multi-pinhole collimation was also applied to in vivo imaging of the disintegration of tablets. Collimmators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 mm 2 , while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration. Further experiments are planned using this technique to measure gastric emptying times disintegration times of various tablet formulations. Limitations of multi-pinhole technique included problems such as limited ranges of viewing and artifacts introduced due to incomplete sampling

  2. Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-11-01

    Full Text Available Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has become an important problem called spatio-temporal fusion problem in both research and practice. A Multi-Dictionary Bayesian Spatio-Temporal Reflectance Fusion Model (MDBFM has been proposed in this paper. First, multiple dictionaries from regions of different classes are trained. Second, a Bayesian framework is constructed to solve the dictionary selection problem. A pixel-dictionary likehood function and a dictionary-dictionary prior function are constructed under the Bayesian framework. Third, remote sensing images before and after the middle moment are combined to predict images at the middle moment. Diverse shapes and textures information is learned from different landscapes in multi-dictionary learning to help dictionaries capture the distinctions between regions. The Bayesian framework makes full use of the priori information while the input image is classified. The experiments with one simulated dataset and two satellite datasets validate that the MDBFM is highly effective in both subjective and objective evaluation indexes. The results of MDBFM show more precise details and have a higher similarity with real images when dealing with both type changes and phenology changes.

  3. Review of Image Quality Measures for Solar Imaging

    Science.gov (United States)

    Popowicz, Adam; Radlak, Krystian; Bernacki, Krzysztof; Orlov, Valeri

    2017-12-01

    Observations of the solar photosphere from the ground encounter significant problems caused by Earth's turbulent atmosphere. Before image reconstruction techniques can be applied, the frames obtained in the most favorable atmospheric conditions (the so-called lucky frames) have to be carefully selected. However, estimating the quality of images containing complex photospheric structures is not a trivial task, and the standard routines applied in nighttime lucky imaging observations are not applicable. In this paper we evaluate 36 methods dedicated to the assessment of image quality, which were presented in the literature over the past 40 years. We compare their effectiveness on simulated solar observations of both active regions and granulation patches, using reference data obtained by the Solar Optical Telescope on the Hinode satellite. To create images that are affected by a known degree of atmospheric degradation, we employed the random wave vector method, which faithfully models all the seeing characteristics. The results provide useful information about the method performances, depending on the average seeing conditions expressed by the ratio of the telescope's aperture to the Fried parameter, D/r0. The comparison identifies three methods for consideration by observers: Helmli and Scherer's mean, the median filter gradient similarity, and the discrete cosine transform energy ratio. While the first method requires less computational effort and can be used effectively in virtually any atmospheric conditions, the second method shows its superiority at good seeing (D/r0<4). The third method should mainly be considered for the post-processing of strongly blurred images.

  4. Experimental validation of a multi-energy x-ray adapted scatter separation method

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-12-01

    Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.

  5. Integrated topology optimisation of multi-energy networks

    NARCIS (Netherlands)

    Mazairac, L.A.J.; Salenbien, R.; Vanhoudt, D.; Desmedt, J.; Vries, de B.

    2015-01-01

    Multi-carrier hybrid energy distribution net- works provide flexibility in case of network malfunctions, energy shortages and price fluctuations through energy conversion and storage. Therefore hybrid networks can cope with large-scale integration of distributed and intermittent renewable energy

  6. Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging

    International Nuclear Information System (INIS)

    Crum, W R; Tanner, C; Hawkes, D J

    2005-01-01

    Registration using models of compressible viscous fluids has not found the general application of some other techniques (e.g., free-form-deformation (FFD)) despite its ability to model large diffeomorphic deformations. We report on a multi-resolution fluid registration algorithm which improves on previous work by (a) directly solving the Navier-Stokes equation at the resolution of the images (b) accommodating image sampling anisotropy using semi-coarsening and implicit smoothing in a full multi-grid (FMG) solver and (c) exploiting the inherent multi-resolution nature of FMG to implement a multi-scale approach. Evaluation is on five magnetic resonance (MR) breast images subject to six biomechanical deformation fields over 11 multi-resolution schemes. Quantitative assessment is by tissue overlaps and target registration errors and by registering using the known correspondences rather than image features to validate the fluid model. Context is given by comparison with a validated FFD algorithm and by application to images of volunteers subjected to large applied deformation. The results show that fluid registration of 3D breast MR images to sub-voxel accuracy is possible in minutes on a 1.6 GHz Linux-based Athlon processor with coarse solutions obtainable in a few tens of seconds. Accuracy and computation time are comparable to FFD techniques validated for this application

  7. Frame on frames: an annotated bibliography

    International Nuclear Information System (INIS)

    Wright, T.; Tsao, H.J.

    1983-01-01

    The success or failure of any sample survey of a finite population is largely dependent upon the condition and adequacy of the list or frame from which the probability sample is selected. Much of the published survey sampling related work has focused on the measurement of sampling errors and, more recently, on nonsampling errors to a lesser extent. Recent studies on data quality for various types of data collection systems have revealed that the extent of the nonsampling errors far exceeds that of the sampling errors in many cases. While much of this nonsampling error, which is difficult to measure, can be attributed to poor frames, relatively little effort or theoretical work has focused on this contribution to total error. The objective of this paper is to present an annotated bibliography on frames with the hope that it will bring together, for experimenters, a number of suggestions for action when sampling from imperfect frames and that more attention will be given to this area of survey methods research

  8. Multi Spectral Fluorescence Imager (MSFI)

    Science.gov (United States)

    Caron, Allison

    2016-01-01

    Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.

  9. MULTI-PERSON DECISION FOR SUSTAINABLE DESIGN ON IBS FLOOR SYSTEM SELECTION

    Directory of Open Access Journals (Sweden)

    Christiono Utomo

    2013-05-01

    Full Text Available Selecting a design solution (choice problem is one of the natures of design decision. If the problem is more complex and involves multi participants, decision aid is necessary. This paper discusses the nature of group judgment and negotiation on multi-criteria decision-making methodologies. It presents a conceptual model of negotiation support in a multi-person decision on building floor system selection. Decision technique (AHP was applied for decision process in a satisfying options and game theory for coalition formation. An n-person cooperative game is represented by a set of all players. The proposed coalition formation model enables each agent to select individually or coalition. It improves the value of building system decision. It further emphasizes the importance of performance evaluation in the design process and value-based decision. The support model can be extended to an automated negotiation and in different building system selection with proper  modification. Keywords: Multi-person, design decision, IBS, floor system selection.

  10. Pre-processing, registration and selection of adaptive optics corrected retinal images.

    Science.gov (United States)

    Ramaswamy, Gomathy; Devaney, Nicholas

    2013-07-01

    In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased

  11. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    Directory of Open Access Journals (Sweden)

    Keunyeol Park

    2018-02-01

    Full Text Available This paper presents a single-bit CMOS image sensor (CIS that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB on an 8-bit ADC basis at a 50 MHz sampling frequency.

  12. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    Science.gov (United States)

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  13. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  14. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  15. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets.

    Science.gov (United States)

    Parsons, David; Robar, James L

    2012-07-01

    Recent work has demonstrated improvement of image quality with low-Z linear accelerator targets and energies as low as 3.5 MV. In this paper, the authors lower the incident electron beam energy between 1.90 and 2.35 MeV and assess the improvement of megavoltage planar image quality with the use of carbon and aluminum linear accelerator targets. The bending magnet shunt current was adjusted in a Varian linear accelerator to allow selection of mean electron energy between 1.90 and 2.35 MeV. Linac set points were altered to increase beam current to allow experimental imaging in a practical time frame. Electron energy was determined through comparison of measured and Monte Carlo modeled depth dose curves. Planar image CNR and spatial resolution measurements were performed to quantify the improvement of image quality. Magnitudes of improvement are explained with reference to Monte Carlo generated energy spectra. After modifications to the linac, beam current was increased by a factor greater than four and incident electron energy was determined to have an adjustable range from 1.90 MeV to 2.35 MeV. CNR of cortical bone was increased by a factor ranging from 6.2 to 7.4 and 3.7 to 4.3 for thin and thick phantoms, respectively, compared to a 6 MV therapeutic beam for both aluminum and carbon targets. Spatial resolution was degraded slightly, with a relative change of 3% and 10% at 0.20 lp∕mm and 0.40 lp∕mm, respectively, when reducing energy from 2.35 to 1.90 MV. The percentage of diagnostic x-rays for the beams examined here, ranges from 46% to 54%. It is possible to produce a large fraction of diagnostic energy x-rays by lowering the beam energy below 2.35 MV. By lowering the beam energy to 1.90 MV or 2.35 MV, CNR improves by factors ranging from 3.7 to 7.4 compared to a 6 MV therapy beam, with only a slight degradation of spatial resolution when lowering the energy from 2.35 MV to 1.90 MV.

  16. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  17. Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems

    International Nuclear Information System (INIS)

    Zhang, Xiaoshun; Yu, Tao; Yang, Bo; Zheng, Limin; Huang, Linni

    2015-01-01

    Highlights: • A novel optimal carbon-energy combined-flow (OCECF) model is firstly established. • A novel approximate ideal multi-objective solution Q(λ) learning is designed. • The proposed algorithm has a high convergence stability and reliability. • The proposed algorithm can be applied for OCECF in a large-scale power grid. - Abstract: This paper proposes a novel approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems. The carbon emissions, fuel cost, active power loss, voltage deviation and carbon emission loss are chosen as the optimization objectives, which are simultaneously optimized by five different Q-value matrices. The dynamic optimal weight of each objective is calculated online from the entire Q-value matrices such that the greedy action policy can be obtained. Case studies are carried out to evaluate the optimization performance for carbon-energy combined-flow in an IEEE 118-bus system and the regional power grid of southern China.

  18. Application of multi-criteria decision analysis in selecting of sustainable investments

    Science.gov (United States)

    Kozik, Renata

    2017-07-01

    Investors of construction projects, especially financed with public money, quite slowly adapt environmentally friendly solutions, e.g. passive buildings. Practice shows that the use of green public procurement among the public investors is negligible. Energy-saving technologies and equipment are expensive at the construction phase and investors less or not at all take into account the future operating costs. The aim of this article is to apply the method of multi-criteria analysis ELECTRE to select the best investment in terms of cost of implementation, operation, as well as the impact on the environment.

  19. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.

    Science.gov (United States)

    Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J

    2017-03-03

    We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  20. Scalable gastroscopic video summarization via similar-inhibition dictionary selection.

    Science.gov (United States)

    Wang, Shuai; Cong, Yang; Cao, Jun; Yang, Yunsheng; Tang, Yandong; Zhao, Huaici; Yu, Haibin

    2016-01-01

    This paper aims at developing an automated gastroscopic video summarization algorithm to assist clinicians to more effectively go through the abnormal contents of the video. To select the most representative frames from the original video sequence, we formulate the problem of gastroscopic video summarization as a dictionary selection issue. Different from the traditional dictionary selection methods, which take into account only the number and reconstruction ability of selected key frames, our model introduces the similar-inhibition constraint to reinforce the diversity of selected key frames. We calculate the attention cost by merging both gaze and content change into a prior cue to help select the frames with more high-level semantic information. Moreover, we adopt an image quality evaluation process to eliminate the interference of the poor quality images and a segmentation process to reduce the computational complexity. For experiments, we build a new gastroscopic video dataset captured from 30 volunteers with more than 400k images and compare our method with the state-of-the-arts using the content consistency, index consistency and content-index consistency with the ground truth. Compared with all competitors, our method obtains the best results in 23 of 30 videos evaluated based on content consistency, 24 of 30 videos evaluated based on index consistency and all videos evaluated based on content-index consistency. For gastroscopic video summarization, we propose an automated annotation method via similar-inhibition dictionary selection. Our model can achieve better performance compared with other state-of-the-art models and supplies more suitable key frames for diagnosis. The developed algorithm can be automatically adapted to various real applications, such as the training of young clinicians, computer-aided diagnosis or medical report generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Modal Identification of a Time-Invariant 6-Storey Model Test RC-Frame from Free Decay Tests using Multi-Variate Models

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning

    1997-01-01

    in the comparison. The data investigated are sampled from a laboratory model of a plane 6-storey, 2-bay RC-frame. The laboratory model is excited at the top storey where two different types of excitation where considered. In the first case the structure was excited in the first mode and in the second case......The scope of the paper is to apply multi-variate time-domain models for identification of eginfrequencies and mode shapes of a time- invariant model test Reinforced Concrete (RC) frame from measured decays. The frequencies and mode shapes of interest are the two lowest ones since they are normally...

  2. Modal Identification of a Time-Invariant 6-Storey Model Test RC-Frame from Free Decay Tests using Multi-Variate Models

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning

    in the comparison. The data investigated are sampled from a laboratory model of a plane 6-storey, 2-bay RC-frame. The laboratory model is excited at the top storey where two different types of excitation where considered. In the first case the structure was excited in the first mode and in the second case......The scope of the paper is to apply multi-variate time-domain models for identification of eginfrequencies and mode shapes of a time- invariant model test Reinforced Concrete (RC) frame from measured decays. The frequencies and mode shapes of interest are the two lowest ones since they are normally...

  3. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

    International Nuclear Information System (INIS)

    Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene

    2016-01-01

    Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

  4. Color sensitivity of the multi-exposure HDR imaging process

    Science.gov (United States)

    Lenseigne, Boris; Jacobs, Valéry Ann; Withouck, Martijn; Hanselaer, Peter; Jonker, Pieter P.

    2013-04-01

    Multi-exposure high dynamic range(HDR) imaging builds HDR radiance maps by stitching together different views of a same scene with varying exposures. Practically, this process involves converting raw sensor data into low dynamic range (LDR) images, estimate the camera response curves, and use them in order to recover the irradiance for every pixel. During the export, applying white balance settings and image stitching, which both have an influence on the color balance in the final image. In this paper, we use a calibrated quasi-monochromatic light source, an integrating sphere, and a spectrograph in order to evaluate and compare the average spectral response of the image sensor. We finally draw some conclusion about the color consistency of HDR imaging and the additional steps necessary to use multi-exposure HDR imaging as a tool to measure the physical quantities such as radiance and luminance.

  5. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  6. Optimal portfolio selection between different kinds of Renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Zakerinia, MohammadSaleh; Piltan, Mehdi; Ghaderi, Farid

    2010-09-15

    In this paper, selection of the optimal energy supply system in an industrial unit is taken into consideration. This study takes environmental, economical and social parameters into consideration in modeling along with technical factors. Several alternatives which include renewable energy sources, micro-CHP systems and conventional system has been compared by means of an integrated model of linear programming and three multi-criteria approaches (AHP, TOPSIS and ELECTRE III). New parameters like availability of sources, fuels' price volatility, besides traditional factors are considered in different scenarios. Results show with environmental preferences, renewable sources and micro-CHP are good alternatives for conventional systems.

  7. A very high energy imaging for radioactive wastes processing

    International Nuclear Information System (INIS)

    Moulin, V.; Pettier, J.L.

    2004-01-01

    The X imaging occurs at a lot of steps of the radioactive wastes processing: selection for conditioning, physical characterization with a view to radiological characterization, quality control of the product before storage, transport or disposal. Size and volume of the objects considered here necessitate to work with very high energy systems. Here is shown, through some examples, in which conditions this X imaging is carried out as well as the contribution of the obtained images. (O.M.)

  8. High-frame-rate Imaging of a Carotid Bifurcation using a Low-complexity Velocity Estimation Approach

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Villagómez Hoyos, Carlos Armando; Ewertsen, Caroline

    2017-01-01

    In this paper, a 2-D vector flow imaging (VFI) method developed by combining synthetic aperture sequential beamforming and directional transverse oscillation is used to image a carotid bifurcation. Ninety-six beamformed lines are sent from the probe to the host system for each VFI frame, enabling...... the possibility of wireless transmission. The velocity is estimated using a relatively inexpensive 2-D phase-shift approach, and real-time performance can be achieved in mobile devices. However, high-frame-rate velocities can be obtained by sending the data to a cluster of computers. The objective of this study...... is to demonstrate the scalability of the method’s performance according to the needs of the user and the processing capabilities of the host system. In vivo measurements of a carotid bifurcation of a 54-year-old volunteer were conducted using a linear array transducer connected to the SARUS scanner. The velocities...

  9. A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey

    International Nuclear Information System (INIS)

    Tie, S. S.; Martini, P.; Mudd, D.; Ostrovski, F.; Reed, S. L.

    2017-01-01

    In this paper, we present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) mid-IR W1-W2 color, a mixture of WISE and DES colors (g - i and i-W1), and a mixture of Vista Hemisphere Survey and DES colors (g - i and i - K). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band χ"2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i 85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg"2 of the DES supernova fields. Finally, the catalog includes quasars with redshifts up to z ~ 4 and brighter than i = 22 mag, although the catalog is not complete up to this magnitude limit.

  10. Sub-piexl methods for improving vector quality in echo PIV flow, imaging technology.

    Science.gov (United States)

    Niu, Lili; Wang, Jing; Qian, Ming; Zheng, Hairong

    2009-01-01

    Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions. An ultrasound-based particle image velocimetry technique(Echo PIV) was recently developed to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. To improve the measurement accuracy, sub-pixel calculation method was adopted in this paper to maximize the ultrasound RF signal and B mode image correlation accuracy and increase the image spatial resolution. This algorithm is employed in processing both computer-generated particle image patterns and the B-mode images of microbubbles in rotating flows obtained by a high frame rate (up to 1000 frames per second) ultrasound imaging system. The results show the correlation of particle patterns and individual flow vector quality are improved and the overall flow mappings are also improved significantly. This would help the Echo PIV system to provide better multi-component velocity accuracy.

  11. The optimal algorithm for Multi-source RS image fusion.

    Science.gov (United States)

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  12. Traversable Lorentzian wormholes in the vacuum low energy effective string theory in Einstein and Jordan frames

    International Nuclear Information System (INIS)

    Nandi, K.K.; Zhang Yuanzhong

    2004-01-01

    Three new classes (II-IV) of solutions of the vacuum low energy effective string theory in four dimensions are derived. Wormhole solutions are investigated in those solutions including the class I case both in the Einstein and in the Jordan (string) frame. It turns out that, of the eight classes of solutions investigated (four in the Einstein frame and four in the corresponding string frame), massive Lorentzian traversable wormholes exist in five classes. Nontrivial massless limit exists only in class I Einstein frame solution while none at all exists in the string frame. An investigation of test scalar charge motion in the class I solution in the two frames is carried out by using the Plebanski-Sawicki theorem. A curious consequence is that the motion around the extremal zero (Keplerian) mass configuration leads, as a result of scalar-scalar interaction, to a new hypothetical 'mass' that confines test scalar charges in bound orbits, but does not interact with neutral test particles

  13. A multi-criteria approach to evaluate the natural gas energy systems

    International Nuclear Information System (INIS)

    Dinca, Cristian; Badea, Adrian; Rousseaux, Patrick; Apostol, Tiberiu

    2007-01-01

    This paper aims to select the optimal energetic scenario applied to a consumer with 100 000 inhabitants from the residential-tertiary sector, from the ecological, energetical and economic points of view. A series of seven scenarios based on natural gas has been analyzed. The authors proposed six scenarios for the combined heat and power generation using existing technologies and one scenario for separate generation of the two energy forms. To compare the seven energetic scenarios, the amount of thermal and electrical energy produced by each one had to be the same for a defined time period. To select the optimal energy scenario a multi-criteria NAIADE-based method has been used. Consequently, the optimal energy scenario has been established with respect to criteria groups: ecologic, economic, energetic and global where all criteria groups have been considered. The study results prove that a combined gas and steam turbine cycle is optimal technically, economically and ecologically as it is for each criteria group. A sensitivity analysis has been performed to establish the influence of various parameters in the identification of the optimal energy scenario. For all analyzed scenarios, the optimal energetic scenario is the combined gas and steam turbine cycle

  14. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  15. Neural network and wavelet average framing percentage energy for atrial fibrillation classification.

    Science.gov (United States)

    Daqrouq, K; Alkhateeb, A; Ajour, M N; Morfeq, A

    2014-03-01

    ECG signals are an important source of information in the diagnosis of atrial conduction pathology. Nevertheless, diagnosis by visual inspection is a difficult task. This work introduces a novel wavelet feature extraction method for atrial fibrillation derived from the average framing percentage energy (AFE) of terminal wavelet packet transform (WPT) sub signals. Probabilistic neural network (PNN) is used for classification. The presented method is shown to be a potentially effective discriminator in an automated diagnostic process. The ECG signals taken from the MIT-BIH database are used to classify different arrhythmias together with normal ECG. Several published methods were investigated for comparison. The best recognition rate selection was obtained for AFE. The classification performance achieved accuracy 97.92%. It was also suggested to analyze the presented system in an additive white Gaussian noise (AWGN) environment; 55.14% for 0dB and 92.53% for 5dB. It was concluded that the proposed approach of automating classification is worth pursuing with larger samples to validate and extend the present study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Front-end vision and multi-scale image analysis multi-scale computer vision theory and applications, written in Mathematica

    CERN Document Server

    Romeny, Bart M Haar

    2008-01-01

    Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective

  17. Multi-sensor image fusion and its applications

    CERN Document Server

    Blum, Rick S

    2005-01-01

    Taking another lesson from nature, the latest advances in image processing technology seek to combine image data from several diverse types of sensors in order to obtain a more accurate view of the scene: very much the same as we rely on our five senses. Multi-Sensor Image Fusion and Its Applications is the first text dedicated to the theory and practice of the registration and fusion of image data, covering such approaches as statistical methods, color-related techniques, model-based methods, and visual information display strategies.After a review of state-of-the-art image fusion techniques,

  18. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  19. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods

    Directory of Open Access Journals (Sweden)

    Anthony Hoak

    2017-03-01

    Full Text Available We develop an interactive likelihood (ILH for sequential Monte Carlo (SMC methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL and TUD-Stadtmitte using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA and classification of events, activities and relationships for multi-object trackers (CLEAR MOT. In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  20. Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    T. Lahousse

    2011-10-01

    Full Text Available We developed a multi-scale OBIA (object-based image analysis landslide detection technique to map shallow landslides in the Baichi watershed, Taiwan, after the 2004 Typhoon Aere event. Our semi-automated detection method selected multiple scales through landslide size statistics analysis for successive classification rounds. The detection performance achieved a modified success rate (MSR of 86.5% with the training dataset and 86% with the validation dataset. This performance level was due to the multi-scale aspect of our methodology, as the MSR for single scale classification was substantially lower, even after spectral difference segmentation, with a maximum of 74%. Our multi-scale technique was capable of detecting landslides of varying sizes, including very small landslides, up to 95 m2. The method presented certain limitations: the thresholds we established for classification were specific to the study area, to the landslide type in the study area, and to the spectral characteristics of the satellite image. Because updating site-specific and image-specific classification thresholds is easy with OBIA software, our multi-scale technique is expected to be useful for mapping shallow landslides at watershed level.

  1. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin; Zhang Qi; Zheng Futang

    2000-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  2. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin

    2003-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  3. Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm

    International Nuclear Information System (INIS)

    Cheung, Brian C.; Carriveau, Rupp; Ting, David S.K.

    2014-01-01

    This paper presents the findings from a multi-objective genetic algorithm optimization study on the design parameters of an underwater compressed air energy storage system (UWCAES). A 4 MWh UWCAES system was numerically simulated and its energy, exergy, and exergoeconomics were analysed. Optimal system configurations were determined that maximized the UWCAES system round-trip efficiency and operating profit, and minimized the cost rate of exergy destruction and capital expenditures. The optimal solutions obtained from the multi-objective optimization model formed a Pareto-optimal front, and a single preferred solution was selected using the pseudo-weight vector multi-criteria decision making approach. A sensitivity analysis was performed on interest rates to gauge its impact on preferred system designs. Results showed similar preferred system designs for all interest rates in the studied range. The round-trip efficiency and operating profit of the preferred system designs were approximately 68.5% and $53.5/cycle, respectively. The cost rate of the system increased with interest rates. - Highlights: • UWCAES system configurations were developed using multi-objective optimization. • System was optimized for energy efficiency, exergy, and exergoeconomics • Pareto-optimal solution surfaces were developed at different interest rates. • Similar preferred system configurations were found at all interest rates studied

  4. Optical loop framing

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system

  5. Accurate current synchronization trigger mode for multi-framing gated camera on YANG accelerator

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Huang Xianbin; Li Chenggang; Yang Libing; Wang Yuan; Zhang Kaizhi; Ye Yi

    2007-01-01

    The current synchronization trigger mode is important for Z-pinch experiments carried out on the YANG accelerator. The technology can solve the problem of low synchronization precision. The inherent delay time between the load current waveform and the experimental phenomenon can be adopted to obtain the synchronization trigger time. The correlative time precision about ns level can be achieved in this way. The photoelectric isolator and optical fiber are used in the synchronization trigger system to eliminate the electro-magnetic interference and many accurate measurements on the YANG accelerator can be realized. The application of this trigger mode to the multi-framing gated camera synchronization trigger system has done the trick. The evolution course of Z-pinch imploding plasma has been recorded with 3 ns exposure time and 10 ns interframing time. (authors)

  6. Horror Image Recognition Based on Context-Aware Multi-Instance Learning.

    Science.gov (United States)

    Li, Bing; Xiong, Weihua; Wu, Ou; Hu, Weiming; Maybank, Stephen; Yan, Shuicheng

    2015-12-01

    Horror content sharing on the Web is a growing phenomenon that can interfere with our daily life and affect the mental health of those involved. As an important form of expression, horror images have their own characteristics that can evoke extreme emotions. In this paper, we present a novel context-aware multi-instance learning (CMIL) algorithm for horror image recognition. The CMIL algorithm identifies horror images and picks out the regions that cause the sensation of horror in these horror images. It obtains contextual cues among adjacent regions in an image using a random walk on a contextual graph. Borrowing the strength of the fuzzy support vector machine (FSVM), we define a heuristic optimization procedure based on the FSVM to search for the optimal classifier for the CMIL. To improve the initialization of the CMIL, we propose a novel visual saliency model based on the tensor analysis. The average saliency value of each segmented region is set as its initial fuzzy membership in the CMIL. The advantage of the tensor-based visual saliency model is that it not only adaptively selects features, but also dynamically determines fusion weights for saliency value combination from different feature subspaces. The effectiveness of the proposed CMIL model is demonstrated by its use in horror image recognition on two large-scale image sets collected from the Internet.

  7. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    Science.gov (United States)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  8. A business case modelling framework for smart multi-energy districts

    OpenAIRE

    Good, Nicholas; Martinez Cesena, Eduardo Alejandro; Liu, Xuezhi; Mancarella, Pierluigi

    2017-01-01

    The potential energy, environmental, technical and economic benefits that might arise from multi-energy systems are increasing interest in smart districts. However, in a liberalised market, it is essential to develop a relevant attractive business case. This paper presents a holistic techno-economic framework that couples building/district, multi-network and business case assessment models for the development of robust business cases for smart multi-energy districts. The framework is demonstr...

  9. Predicting the Strength of Online News Frames

    Directory of Open Access Journals (Sweden)

    Hrvoje Jakopović

    2017-10-01

    Full Text Available Framing theory is one of the most significant approaches to understanding media and their potential impact on publics. Leaving aside that fact, the author finds that publicity effects seem to be dispersed and difficult to catch for public relations. This article employs a specific research design, which could be applied to public relations practice, namely with a view to observing correlations between specific media frames and individual frames. The approach is based on the typology of news frames. The author attributes negative, positive and neutral determinants to the types of frames in his empirical research. Online news regarding three transport organizations and the accompanying user comments (identified as negative, positive and neutral are analysed by means of the method of content and sentiment analysis. The author recognizes user comments and reviews as individual frames that take part in the creation of online image. Furthermore, he identifies the types of media frames as well as individual frames manifested as image, and undertakes correlation research in order to establish their prediction potential. The results expose the most frequently used types of media frames concerning the transport domain. The media are keen to report through the attribution of responsibility frame, and after that, through the economic frame and the conflict frame, but, on the other hand, they tend to neglect the human interest frame and the morality frame. The results show that specific types of news frames enable better prediction of user reactions. The economic frame and the human interest frame therefore represent the most predictable types of frame.

  10. Synthetic Aperture Sequential Beamforming implemented on multi-core platforms

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas; Lassen, Lee; Hemmsen, Martin Christian

    2014-01-01

    This paper compares several computational ap- proaches to Synthetic Aperture Sequential Beamforming (SASB) targeting consumer level parallel processors such as multi-core CPUs and GPUs. The proposed implementations demonstrate that ultrasound imaging using SASB can be executed in real- time with ...... per second) on an Intel Core i7 2600 CPU with an AMD HD7850 and a NVIDIA GTX680 GPU. The fastest CPU and GPU implementations use 14% and 1.3% of the real-time budget of 62 ms/frame, respectively. The maximum achieved processing rate is 1265 frames/s....

  11. Derivation of energy-based base shear force coefficient considering hysteretic behavior and P-delta effects

    Science.gov (United States)

    Ucar, Taner; Merter, Onur

    2018-01-01

    A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.

  12. [Research progress of multi-model medical image fusion and recognition].

    Science.gov (United States)

    Zhou, Tao; Lu, Huiling; Chen, Zhiqiang; Ma, Jingxian

    2013-10-01

    Medical image fusion and recognition has a wide range of applications, such as focal location, cancer staging and treatment effect assessment. Multi-model medical image fusion and recognition are analyzed and summarized in this paper. Firstly, the question of multi-model medical image fusion and recognition is discussed, and its advantage and key steps are discussed. Secondly, three fusion strategies are reviewed from the point of algorithm, and four fusion recognition structures are discussed. Thirdly, difficulties, challenges and possible future research direction are discussed.

  13. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    Science.gov (United States)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  14. Obtaining Approximate Values of Exterior Orientation Elements of Multi-Intersection Images Using Particle Swarm Optimization

    Science.gov (United States)

    Li, X.; Li, S. W.

    2012-07-01

    In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO), is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm, two experiments are

  15. OBTAINING APPROXIMATE VALUES OF EXTERIOR ORIENTATION ELEMENTS OF MULTI-INTERSECTION IMAGES USING PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    X. Li

    2012-07-01

    Full Text Available In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO, is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm

  16. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    Science.gov (United States)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  17. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    International Nuclear Information System (INIS)

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research

  18. Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to Imaging With Zero Echo Time.

    Science.gov (United States)

    Marjanovic, Josip; Weiger, Markus; Reber, Jonas; Brunner, David O; Dietrich, Benjamin E; Wilm, Bertram J; Froidevaux, Romain; Pruessmann, Klaas P

    2018-02-01

    For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent.

  19. Depth-Based Selective Blurring in Stereo Images Using Accelerated Framework

    Science.gov (United States)

    Mukherjee, Subhayan; Guddeti, Ram Mohana Reddy

    2014-09-01

    We propose a hybrid method for stereo disparity estimation by combining block and region-based stereo matching approaches. It generates dense depth maps from disparity measurements of only 18 % image pixels (left or right). The methodology involves segmenting pixel lightness values using fast K-Means implementation, refining segment boundaries using morphological filtering and connected components analysis; then determining boundaries' disparities using sum of absolute differences (SAD) cost function. Complete disparity maps are reconstructed from boundaries' disparities. We consider an application of our method for depth-based selective blurring of non-interest regions of stereo images, using Gaussian blur to de-focus users' non-interest regions. Experiments on Middlebury dataset demonstrate that our method outperforms traditional disparity estimation approaches using SAD and normalized cross correlation by up to 33.6 % and some recent methods by up to 6.1 %. Further, our method is highly parallelizable using CPU-GPU framework based on Java Thread Pool and APARAPI with speed-up of 5.8 for 250 stereo video frames (4,096 × 2,304).

  20. Integrated shape and material selection for single and multi-performance criteria

    International Nuclear Information System (INIS)

    Singh, Jasveer; Mirjalili, Vahid; Pasini, Damiano

    2011-01-01

    Research highlights: → The method of shape transformers is extended to torsional stiffness and combined load design. → The method is generalized for multi-criteria selection of shape and material. → Performance charts are presented for single and multi-objective selection of cross-section shape and material. → A four quadrant performance chart is presented to visualize the relation between objective function space and design variable space. -- Abstract: A shape and material selection method, based on the concept of shape transformers, has been recently introduced to characterize the mass efficiency of lightweight beams under bending and shear. This paper extends this method to deal with the case of torsional stiffness design, and generalize it to single and multi-crieria selection of lightweight shafts subjected to a combination of bending, shear, and torsional load. The novel feature of the paper is the useful integration of shape and material to model and visualize multi-objective selection problems. The scheme is centered on concept selection in structural design, and hinges on measures that govern the shape properties of a cross-section regardless of its size. These measures, referred as shape transformers, can classify shapes in a way similar to material classification. The procedure is exemplified by considering torsional stiffness as a constraint. The performance charts are developed for single and multi-criteria to visualize in a glance the whole range of cross-sectional shapes for each material. Each design chart is explained with a brief example.

  1. Multi-spectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2011-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...

  2. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    Science.gov (United States)

    Simpson, D. R.

    1981-06-01

    Multi-pinhole gamma camera collimation was introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. A possible method for improving the images obtained by this technique by combining two multi-pinhole views taken 90 deg apart was investigated. Collimators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 sq mm, while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration.

  3. Single Image Super Resolution via Sparse Reconstruction

    NARCIS (Netherlands)

    Kruithof, M.C.; Eekeren, A.W.M. van; Dijk, J.; Schutte, K.

    2012-01-01

    High resolution sensors are required for recognition purposes. Low resolution sensors, however, are still widely used. Software can be used to increase the resolution of such sensors. One way of increasing the resolution of the images produced is using multi-frame super resolution algorithms.

  4. Prussian blue nanocubes: multi-functional nanoparticles for multimodal imaging and image-guided therapy (Conference Presentation)

    Science.gov (United States)

    Cook, Jason R.; Dumani, Diego S.; Kubelick, Kelsey P.; Luci, Jeffrey; Emelianov, Stanislav Y.

    2017-03-01

    Imaging modalities utilize contrast agents to improve morphological visualization and to assess functional and molecular/cellular information. Here we present a new type of nanometer scale multi-functional particle that can be used for multi-modal imaging and therapeutic applications. Specifically, we synthesized monodisperse 20 nm Prussian Blue Nanocubes (PBNCs) with desired optical absorption in the near-infrared region and superparamagnetic properties. PBNCs showed excellent contrast in photoacoustic (700 nm wavelength) and MR (3T) imaging. Furthermore, photostability was assessed by exposing the PBNCs to nearly 1,000 laser pulses (5 ns pulse width) with up to 30 mJ/cm2 laser fluences. The PBNCs exhibited insignificant changes in photoacoustic signal, demonstrating enhanced robustness compared to the commonly used gold nanorods (substantial photodegradation with fluences greater than 5 mJ/cm2). Furthermore, the PBNCs exhibited superparamagnetism with a magnetic saturation of 105 emu/g, a 5x improvement over superparamagnetic iron-oxide (SPIO) nanoparticles. PBNCs exhibited enhanced T2 contrast measured using 3T clinical MRI. Because of the excellent optical absorption and magnetism, PBNCs have potential uses in other imaging modalities including optical tomography, microscopy, magneto-motive OCT/ultrasound, etc. In addition to multi-modal imaging, the PBNCs are multi-functional and, for example, can be used to enhance magnetic delivery and as therapeutic agents. Our initial studies show that stem cells can be labeled with PBNCs to perform image-guided magnetic delivery. Overall, PBNCs can act as imaging/therapeutic agents in diverse applications including cancer, cardiovascular disease, ophthalmology, and tissue engineering. Furthermore, PBNCs are based on FDA approved Prussian Blue thus potentially easing clinical translation of PBNCs.

  5. Large-Scale Multi-Resolution Representations for Accurate Interactive Image and Volume Operations

    KAUST Repository

    Sicat, Ronell B.

    2015-11-25

    The resolutions of acquired image and volume data are ever increasing. However, the resolutions of commodity display devices remain limited. This leads to an increasing gap between data and display resolutions. To bridge this gap, the standard approach is to employ output-sensitive operations on multi-resolution data representations. Output-sensitive operations facilitate interactive applications since their required computations are proportional only to the size of the data that is visible, i.e., the output, and not the full size of the input. Multi-resolution representations, such as image mipmaps, and volume octrees, are crucial in providing these operations direct access to any subset of the data at any resolution corresponding to the output. Despite its widespread use, this standard approach has some shortcomings in three important application areas, namely non-linear image operations, multi-resolution volume rendering, and large-scale image exploration. This dissertation presents new multi-resolution representations for large-scale images and volumes that address these shortcomings. Standard multi-resolution representations require low-pass pre-filtering for anti- aliasing. However, linear pre-filters do not commute with non-linear operations. This becomes problematic when applying non-linear operations directly to any coarse resolution levels in standard representations. Particularly, this leads to inaccurate output when applying non-linear image operations, e.g., color mapping and detail-aware filters, to multi-resolution images. Similarly, in multi-resolution volume rendering, this leads to inconsistency artifacts which manifest as erroneous differences in rendering outputs across resolution levels. To address these issues, we introduce the sparse pdf maps and sparse pdf volumes representations for large-scale images and volumes, respectively. These representations sparsely encode continuous probability density functions (pdfs) of multi-resolution pixel

  6. MultiSpec—a tool for multispectral hyperspectral image data analysis

    Science.gov (United States)

    Biehl, Larry; Landgrebe, David

    2002-12-01

    MultiSpec is a multispectral image data analysis software application. It is intended to provide a fast, easy-to-use means for analysis of multispectral image data, such as that from the Landsat, SPOT, MODIS or IKONOS series of Earth observational satellites, hyperspectral data such as that from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and EO-1 Hyperion satellite system or the data that will be produced by the next generation of Earth observational sensors. The primary purpose for the system was to make new, otherwise complex analysis tools available to the general Earth science community. It has also found use in displaying and analyzing many other types of non-space related digital imagery, such as medical image data and in K-12 and university level educational activities. MultiSpec has been implemented for both the Apple Macintosh ® and Microsoft Windows ® operating systems (OS). The effort was first begun on the Macintosh OS in 1988. The GLOBE ( http://www.globe.gov) program supported the development of a subset of MultiSpec for the Windows OS in 1995. Since then most (but not all) of the features in the Macintosh OS version have been ported to the Windows OS version. Although copyrighted, MultiSpec with its documentation is distributed without charge. The Macintosh and Windows versions and documentation on its use are available from the World Wide Web at URL: http://dynamo.ecn.purdue.edu/˜biehl/MultiSpec/ MultiSpec is copyrighted (1991-2001) by Purdue Research Foundation, West Lafayette, Indiana 47907.

  7. The image evaluation of iterative motion correction reconstruction algorithm PROPELLER T2-weighted imaging compared with MultiVane T2-weighted imaging

    Science.gov (United States)

    Lee, Suk-Jun; Yu, Seung-Man

    2017-08-01

    The purpose of this study was to evaluate the usefulness and clinical applications of MultiVaneXD which was applying iterative motion correction reconstruction algorithm T2-weighted images compared with MultiVane images taken with a 3T MRI. A total of 20 patients with suspected pathologies of the liver and pancreatic-biliary system based on clinical and laboratory findings underwent upper abdominal MRI, acquired using the MultiVane and MultiVaneXD techniques. Two reviewers analyzed the MultiVane and MultiVaneXD T2-weighted images qualitatively and quantitatively. Each reviewer evaluated vessel conspicuity by observing motion artifacts and the sharpness of the portal vein, hepatic vein, and upper organs. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated by one reviewer for quantitative analysis. The interclass correlation coefficient was evaluated to measure inter-observer reliability. There were significant differences between MultiVane and MultiVaneXD in motion artifact evaluation. Furthermore, MultiVane was given a better score than MultiVaneXD in abdominal organ sharpness and vessel conspicuity, but the difference was insignificant. The reliability coefficient values were over 0.8 in every evaluation. MultiVaneXD (2.12) showed a higher value than did MultiVane (1.98), but the difference was insignificant ( p = 0.135). MultiVaneXD is a motion correction method that is more advanced than MultiVane, and it produced an increased SNR, resulting in a greater ability to detect focal abdominal lesions.

  8. Numerical validation of selected computer programs in nonlinear analysis of steel frame exposed to fire

    Science.gov (United States)

    Maślak, Mariusz; Pazdanowski, Michał; Woźniczka, Piotr

    2018-01-01

    Validation of fire resistance for the same steel frame bearing structure is performed here using three different numerical models, i.e. a bar one prepared in the SAFIR environment, and two 3D models developed within the framework of Autodesk Simulation Mechanical (ASM) and an alternative one developed in the environment of the Abaqus code. The results of the computer simulations performed are compared with the experimental results obtained previously, in a laboratory fire test, on a structure having the same characteristics and subjected to the same heating regimen. Comparison of the experimental and numerically determined displacement evolution paths for selected nodes of the considered frame during the simulated fire exposure constitutes the basic criterion applied to evaluate the validity of the numerical results obtained. The experimental and numerically determined estimates of critical temperature specific to the considered frame and related to the limit state of bearing capacity in fire have been verified as well.

  9. Prior image constrained image reconstruction in emerging computed tomography applications

    Science.gov (United States)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  10. Prostate cancer multi-feature analysis using trans-rectal ultrasound images

    International Nuclear Information System (INIS)

    Mohamed, S S; Salama, M M A; Kamel, M; El-Saadany, E F; Rizkalla, K; Chin, J

    2005-01-01

    This note focuses on extracting and analysing prostate texture features from trans-rectal ultrasound (TRUS) images for tissue characterization. One of the principal contributions of this investigation is the use of the information of the images' frequency domain features and spatial domain features to attain a more accurate diagnosis. Each image is divided into regions of interest (ROIs) by the Gabor multi-resolution analysis, a crucial stage, in which segmentation is achieved according to the frequency response of the image pixels. The pixels with a similar response to the same filter are grouped to form one ROI. Next, from each ROI two different statistical feature sets are constructed; the first set includes four grey level dependence matrix (GLDM) features and the second set consists of five grey level difference vector (GLDV) features. These constructed feature sets are then ranked by the mutual information feature selection (MIFS) algorithm. Here, the features that provide the maximum mutual information of each feature and class (cancerous and non-cancerous) and the minimum mutual information of the selected features are chosen, yeilding a reduced feature subset. The two constructed feature sets, GLDM and GLDV, as well as the reduced feature subset, are examined in terms of three different classifiers: the condensed k-nearest neighbour (CNN), the decision tree (DT) and the support vector machine (SVM). The accuracy classification results range from 87.5% to 93.75%, where the performance of the SVM and that of the DT are significantly better than the performance of the CNN. (note)

  11. Market influence on the low carbon energy refurbishment of existing multi-residential buildings

    International Nuclear Information System (INIS)

    Atkinson, Jonathan G.B.; Jackson, Tim; Mullings-Smith, Elizabeth

    2009-01-01

    This paper explores the relationship between the energy market; the political and regulatory context; and energy design decisions for existing multi-residential buildings, to determine what form the energy market landscape would take if tailored to encourage low carbon solutions. The links between market dynamics, Government strategies, and building designs are mapped to understand the steps that achieve carbon reduction from building operation. This is achieved using a model that takes financial and energy components with market and design variables to provide net present cost and annual carbon outputs. The financial component applies discounted cash flow analysis over the building lifespan, with discount rates reflecting contractual characteristics; the carbon component uses Standard Assessment Procedure (SAP) 2005. A scenario approach is adopted to test alternative strategies selected to encourage low carbon solutions in two residential and two office designs. The results show that the forward assumption of energy price escalation is the most influential factor on energy investment, together with the expected differentiation between the escalation of gas and electricity prices. Using this, and other influencing factors, the research reveals trends and strategies that will achieve mainstream application of energy efficiency and microgeneration technologies, and reduce carbon emissions in the existing multi-residential sector.

  12. Multi-layer imager design for mega-voltage spectral imaging

    Science.gov (United States)

    Myronakis, Marios; Hu, Yue-Houng; Fueglistaller, Rony; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross

    2018-05-01

    The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.

  13. Variable Frame Rate and Length Analysis for Data Compression in Distributed Speech Recognition

    DEFF Research Database (Denmark)

    Kraljevski, Ivan; Tan, Zheng-Hua

    2014-01-01

    This paper addresses the issue of data compression in distributed speech recognition on the basis of a variable frame rate and length analysis method. The method first conducts frame selection by using a posteriori signal-to-noise ratio weighted energy distance to find the right time resolution...... length for steady regions. The method is applied to scalable source coding in distributed speech recognition where the target bitrate is met by adjusting the frame rate. Speech recognition results show that the proposed approach outperforms other compression methods in terms of recognition accuracy...... for noisy speech while achieving higher compression rates....

  14. Multi-data integration of exploration criteria and selection of prospecting targets

    International Nuclear Information System (INIS)

    Dechang, L.; Jingke, Z.; Maorong, S.; Guojuan, W.

    1991-01-01

    In this paper based on the analysis of the exploration criteria for Shengyuan Basin-a uranium ore field, the multi-data integration and information extraction of exploration criteria are carried out on computer and image processing system so that the areas with best combinations of exploration criteria are directly displayed on the screen. Six prospecting targets are selected through the field examination. Shengyuan basin in Jiangxi province is a uranium-producing, Jurassic Cretaceous volcanic-sedimentary basin with an area of about 400 sq km. Its basement consists of Sinian-Cambrian rocks with Caledonian granites intruded. Several uranium deposits, occurrences and anomalies were discovered over the basin region which, therefore, becomes a very important uranium ore field in China

  15. Evaluation of Seismic Behavior of Steel Braced Frames with Controlled Rocking System and Energy Dissipating Fuses

    Directory of Open Access Journals (Sweden)

    Hassan Amirzehni

    2016-12-01

    Full Text Available The self-centering rocking steel braced frames are new type of seismic lateral-force resisting systems that are developed with aim to limiting structural damages, minimizing residual drifts on systems and creating easy and inexpensive reconstruction capability, after sever earthquakes. In Steel braced frames with controlled rocking system, column bases on seismic resisting frame are not attached to the foundation and the frame allowed to rock freely. The task of restoring the rotated frame to its initial location is on post-tensioned cables, which attaches top of the frame to foundation. The design of post tensioned stands and braced frame members is such that during earthquakes they remain in elastic region. Seismic energy, dissipates by plastic deformations in replaceable elements on each rock of frame. In current research work, the seismic behavior of this type of lateral resisting systems is evaluated. The research conducted on a one bay steel braced frame with controlled rocking system that is analyzed using nonlinear dynamic time history analysis (NLTHA procedure. The frame is subjected to JMA-Kobe and Northridge ground motions records that are scaled to unit, 1.2 and 1.5 times of maximum considered earthquake (MCE ground motion level intensity. Extracted results show that seismic behavior of this type of lateral force resisting systems are so desirable even under MCE ground motion levels. The only anxiety is about occurring fatigue in post-tensioned strands that endangers overall stability of system.

  16. Can older adults resist the positivity effect in neural responding? The impact of verbal framing on event-related brain potentials elicited by emotional images.

    Science.gov (United States)

    Rehmert, Andrea E; Kisley, Michael A

    2013-10-01

    Older adults have demonstrated an avoidance of negative information, presumably with a goal of greater emotional satisfaction. Understanding whether avoidance of negative information is a voluntary, motivated choice or an involuntary, automatic response will be important to differentiate, as decision making often involves emotional factors. With the use of an emotional framing event-related potential (ERP) paradigm, the present study investigated whether older adults could alter neural responses to negative stimuli through verbal reframing of evaluative response options. The late positive potential (LPP) response of 50 older adults and 50 younger adults was recorded while participants categorized emotional images in one of two framing conditions: positive ("more or less positive") or negative ("more or less negative"). It was hypothesized that older adults would be able to overcome a presumed tendency to down-regulate neural responding to negative stimuli in the negative framing condition, thus leading to larger LPP wave amplitudes to negative images. A similar effect was predicted for younger adults, but for positively valenced images, such that LPP responses would be increased in the positive framing condition compared with the negative framing condition. Overall, younger adults' LPP wave amplitudes were modulated by framing condition, including a reduction in the negativity bias in the positive frame. Older adults' neural responses were not significantly modulated, even though task-related behavior supported the notion that older adults were able to successfully adopt the negative framing condition.

  17. Can Older Adults Resist the Positivity Effect in Neural Responding: The Impact of Verbal Framing on Event-Related Brain Potentials Elicited by Emotional Images

    Science.gov (United States)

    Rehmert, Andrea E.; Kisley, Michael A.

    2014-01-01

    Older adults have demonstrated an avoidance of negative information presumably with a goal of greater emotional satisfaction. Understanding whether avoidance of negative information is a voluntary, motivated choice, or an involuntary, automatic response will be important to differentiate, as decision-making often involves emotional factors. With the use of an emotional framing event-related potential (ERP) paradigm, the present study investigated whether older adults could alter neural responses to negative stimuli through verbal reframing of evaluative response options. The late-positive potential (LPP) response of 50 older adults and 50 younger adults was recorded while participants categorized emotional images in one of two framing conditions: positive (“more or less positive”) or negative (“more or less negative”). It was hypothesized that older adults would be able to overcome a presumed tendency to down-regulate neural responding to negative stimuli in the negative framing condition thus leading to larger LPP wave amplitudes to negative images. A similar effect was predicted for younger adults but for positively valenced images such that LPP responses would be increased in the positive framing condition compared to the negative framing condition. Overall, younger adults' LPP wave amplitudes were modulated by framing condition, including a reduction in the negativity bias in the positive frame. Older adults' neural responses were not significantly modulated even though task-related behavior supported the notion that older adults were able to successfully adopt the negative framing condition. PMID:23731435

  18. Hyperspectral band selection and classification of Hyperion image of Bhitarkanika mangrove ecosystem, eastern India

    Science.gov (United States)

    Ashokkumar, L.; Shanmugam, S.

    2014-10-01

    identified and the health status of these species are assessed by the selected band. Further, the performance of this band selection approaches are evaluated in multi-sensor image fusion for better mapping of mangrove ecosystems, wherein spatial resolution is enhanced while retaining the optimal number of hyperspectral bands.

  19. Vision communications based on LED array and imaging sensor

    Science.gov (United States)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  20. Combined multi-kernel head computed tomography images optimized for depicting both brain parenchyma and bone.

    Science.gov (United States)

    Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki

    2014-01-01

    The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.

  1. Methods of selection in heavy ion collisions at Fermi energies and de-excitation modes with the INDRA multi-detector

    International Nuclear Information System (INIS)

    Lautesse, Ph.

    2005-11-01

    The progress made in particle detection, particularly the design of multi-detectors, like INDRA, that cover a solid angle of almost 4π, have given a new impetus to heavy ion collisions. These detectors are demanding for an efficient way of selecting events that have a common history or similar features, for instance the events representing the de-excitation of a unique emitter. The problem is to find the adequate variable on which the discrimination can be based. Different methods are proposed in this work, the common point is that they require efficient models to reproduce and analyse experimental data in order to apprehend the equation of state of nuclear matter. Most of these models are based on the numerically solving of the nuclear Boltzmann equation. The application to the Ni + Ni reaction with an energy ranging from a few A.MeV to more than 50 A.MeV illustrates this work. (A.C.)

  2. Design of coordinated energy and environmental policies: use of multi-criteria decision-making

    International Nuclear Information System (INIS)

    Greening, L.A.; Bernow, Steve

    2004-01-01

    Conventional economic modeling tools that depend upon one criterion to select among possible alternatives for inclusion in an energy or environmental policy have limitations. Formulation of both sets of policies involves large numbers of stakeholders with differing views and preferences. Those views and preferences cannot always be determined in advance or with certainty since many of the attributes of these policy alternatives are non-market valued. The use of multi-criteria decision-making (MCDM) methods in an integrated assessment (IA) framework offers a far better alternative to cost/benefit and similar methods. To facilitate understanding of MCDM methods, we offer a typology for this broad class of models, suggest some of the types of problems that may be analyzed with these methods, and recommend the implementation of several MCDM methods in currently evolving IA frameworks. Depending upon the choice of method from this family of methods, a wide range of attributes associated with multi-pollutant reduction and energy system development strategies, and a diversity of stakeholder preferences may be incorporated into the analysis. The resulting policy space can then provide a basis for comparison and selection of policy alternatives in a political or negotiated process

  3. Low-energy electron scattering from CO. 2: Ab-initio study using the frame-transformation theory

    Science.gov (United States)

    Chandra, N.

    1976-01-01

    The Wigner-Eisenbud R matrix method has been combined with the frame transformation theory to study electron scattering from molecular systems. The R matrix, calculated at the boundary point of the molecular core radius, has been transformed to the space frame in order to continue the solution of the scattering equations in the outer region where rotational motion of the nuclei is taken into account. This procedure has been applied to a model calculation of thermal energy electron scattering from CO.

  4. Smart CMOS image sensor for lightning detection and imaging.

    Science.gov (United States)

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  5. High Resolution Depth-Resolved Imaging From Multi-Focal Images for Medical Ultrasound

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.

    2015-01-01

    An ultrasound imaging technique providing subdiffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values...... calibration curves combined with the use of a maximum-likelihood algorithm is then able to estimate, with high precision, the depth location of any emitter fron each single image. Estimated values are compared with the ground truth demonstrating that an accuracy of 28.6 µm (0.13λ) is achieved for a 4 mm depth...

  6. Multi-Scale Pattern Recognition for Image Classification and Segmentation

    NARCIS (Netherlands)

    Li, Y.

    2013-01-01

    Scale is an important parameter of images. Different objects or image structures (e.g. edges and corners) can appear at different scales and each is meaningful only over a limited range of scales. Multi-scale analysis has been widely used in image processing and computer vision, serving as the basis

  7. Comment on ''Vacuum stress-energy tensor of the electromagnetic field in rotating frames''

    International Nuclear Information System (INIS)

    Mane, S.R.

    1991-01-01

    Hacyan and Sarmiento have found that an observer accelerating in a circle will detect a nonzero energy flux (Poynting vector) caused by the vacuum electromagnetic fluctuations in that frame. I wish to suggest that the above flux is related to synchrotron radiation. I treat only the leading order of perturbation theory

  8. Information Overload in Multi-Stage Selection Procedures

    NARCIS (Netherlands)

    S.S. Ficco (Stefano); V.A. Karamychev (Vladimir)

    2004-01-01

    textabstractThe paper studies information processing imperfections in a fully rational decision-making network. It is shown that imperfect information transmission and imperfect information acquisition in a multi-stage selection game yield information overload. The paper analyses the mechanisms

  9. Statin Selection in Qatar Based on Multi-indication Pharmacotherapeutic Multi-criteria Scoring Model, and Clinician Preference.

    Science.gov (United States)

    Al-Badriyeh, Daoud; Fahey, Michael; Alabbadi, Ibrahim; Al-Khal, Abdullatif; Zaidan, Manal

    2015-12-01

    Statin selection for the largest hospital formulary in Qatar is not systematic, not comparative, and does not consider the multi-indication nature of statins. There are no reports in the literature of multi-indication-based comparative scoring models of statins or of statin selection criteria weights that are based primarily on local clinicians' preferences and experiences. This study sought to comparatively evaluate statins for first-line therapy in Qatar, and to quantify the economic impact of this. An evidence-based, multi-indication, multi-criteria pharmacotherapeutic model was developed for the scoring of statins from the perspective of the main health care provider in Qatar. The literature and an expert panel informed the selection criteria of statins. Relative weighting of selection criteria was based on the input of the relevant local clinician population. Statins were comparatively scored based on literature evidence, with those exceeding a defined scoring threshold being recommended for use. With 95% CI and 5% margin of error, the scoring model was successfully developed. Selection criteria comprised 28 subcriteria under the following main criteria: clinical efficacy, best publish evidence and experience, adverse effects, drug interaction, dosing time, and fixed dose combination availability. Outcome measures for multiple indications were related to effects on LDL cholesterol, HDL cholesterol, triglyceride, total cholesterol, and C-reactive protein. Atorvastatin, pravastatin, and rosuvastatin exceeded defined pharmacotherapeutic thresholds. Atorvastatin and pravastatin were recommended as first-line use and rosuvastatin as a nonformulary alternative. It was estimated that this would produce a 17.6% cost savings in statins expenditure. Sensitivity analyses confirmed the robustness of the evaluation's outcomes against input uncertainties. Incorporating a comparative evaluation of statins in Qatari practices based on a locally developed, transparent, multi

  10. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  11. Cloud decision model for selecting sustainable energy crop based on linguistic intuitionistic information

    Science.gov (United States)

    Peng, Hong-Gang; Wang, Jian-Qiang

    2017-11-01

    In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.

  12. RTS noise and dark current white defects reduction using selective averaging based on a multi-aperture system.

    Science.gov (United States)

    Zhang, Bo; Kagawa, Keiichiro; Takasawa, Taishi; Seo, Min Woong; Yasutomi, Keita; Kawahito, Shoji

    2014-01-16

    In extremely low-light conditions, random telegraph signal (RTS) noise and dark current white defects become visible. In this paper, a multi-aperture imaging system and selective averaging method which removes the RTS noise and the dark current white defects by minimizing the synthetic sensor noise at every pixel is proposed. In the multi-aperture imaging system, a very small synthetic F-number which is much smaller than 1.0 is achieved by increasing optical gain with multiple lenses. It is verified by simulation that the effective noise normalized by optical gain in the peak of noise histogram is reduced from 1.38e⁻ to 0.48 e⁻ in a 3 × 3-aperture system using low-noise CMOS image sensors based on folding-integration and cyclic column ADCs. In the experiment, a prototype 3 × 3-aperture camera, where each aperture has 200 × 200 pixels and an imaging lens with a focal length of 3.0 mm and F-number of 3.0, is developed. Under a low-light condition, in which the maximum average signal is 11e⁻ per aperture, the RTS and dark current white defects are removed and the peak signal-to-noise ratio (PSNR) of the image is increased by 6.3 dB.

  13. Frame-less image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system

    International Nuclear Information System (INIS)

    Gibbs, I.C.

    2006-01-01

    The Cyberknife TM is an image-guided robotic radiosurgery system. The image guidance system includes a kilo-voltage X-ray imaging source and amorphous silica detectors. The radiation delivery device is a mobile X-band linear accelerator mounted onto a robotic arm. Through a highly complex interplay between the image guidance system, an automated couch, and the high-speed linear accelerator, near real-time tracking of the target is achieved. The Cyberknife TM gained Federal Drug Administration clearance in the United States in 2001 for treatment of tumors 'anywhere in the body where radiation treatment is indicated'. Because the Cyberknife TM system does not rely on rigid fixation of a stereotactic frame, tumors outside of the intracranial compartment, even those tumors that move with respiration can be treated with a similar degree of ease as intracranial targets. A description of the Cyberknife TM technology and a review of some of the current intracranial and extracranial applications are detailed herein. (author)

  14. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    International Nuclear Information System (INIS)

    Rolison, L; Samant, S; Baciak, J; Jordan, K

    2016-01-01

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  15. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rolison, L; Samant, S; Baciak, J; Jordan, K [University of Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  16. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    Science.gov (United States)

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  17. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    International Nuclear Information System (INIS)

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-01-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse

  18. Infill Panels and the tube connection in timber frames

    NARCIS (Netherlands)

    Leijten, A.J.M.; Jorissen, A.J.M.; Hoenderkamp, J.C.D.

    2012-01-01

    In recent years timber infill panels have been proposed for multi-story column-beam frame structures with the aim to substitute the stabilizing function of column-beam moment connections. The preliminary study reported in this paper considers a column-beam timber frame where stability is assured by

  19. Lateral Stiffness of Timber Frames with CLT Infill Panels

    NARCIS (Netherlands)

    Leijten, A.J.M.; Jorissen, A.J.M.; Hoenderkamp, J.C.D.; Haddad, Y.M.

    2011-01-01

    In recent years timber infill panels have been proposed for multi-story column-beam frame structures with the aim to substitute the stabilizing function of column-beam moment connections. The preliminary study reported in this paper considers a column-beam timber frame where stability is assured by

  20. Energy integration on multi-periods and multi-usages for hybrid electric and thermal powertrains

    International Nuclear Information System (INIS)

    Dimitrova, Zlatina; Maréchal, François

    2015-01-01

    The improvement of the efficiency of vehicle energy systems promotes an active search to find innovative solutions during the design process. This requires more accurate modeling of complex systems, which offers new ways to improve the design efficiency of energy systems. The vehicle is a highly dynamic system. The size and the efficiency of the convertors are dependent on the dynamic driving profile. In order to increase the energy efficiency, using energy integration techniques, an adapted methodology is required to choose the best points for the integrated system design. The idea is to clusterize the dynamic profile on typical multi-periods of the vehicle use. The energy system design is then optimized for these typical multi-periods. In this article a new methodology is applied on hybrid electric vehicles, in order to define the energy integrated powertrain configuration of the vehicle. The energy recovery potential of a single stage Organic Rankine Cycle for a thermal engine in combination with a hybrid electric powertrain is assessed for different drive cycles profiles and comfort situations. After the energy integration, a multi-objective optimization is applied to define the optimal design of a hybrid electric vehicle with a waste heat recovery system. - Highlights: • K-means algorithm transforms the dynamic driving profile on static multi-periods. • The clusters represent the typical powertrain use and size the heat recovery utility. • The maximal heat recovery potential on thermal powertrains is 11% for urban driving. • The maximal heat recovery potential on hybrid electric powertrains is 5%. • Engine downsizing increases heat recovery potential on hybrid electric powertrains

  1. Prospects of India's energy and emissions for a long time frame

    International Nuclear Information System (INIS)

    Rout, Ullash K.

    2011-01-01

    For any nation, sector-wise forecasts of energy demand and emissions are becoming valuable elements in devising its national and international policies relating to energy security, local environment, and global climate change. It is in this context that this work attempts to forecast India's possible energy demands and emissions adopting a key indicator approach on least cost generation expansion optimization methodology for a long time frame. This study developed key indicators for useful-energy demand for end-use sectors such as industry, commerce, and residence. Key indicators for transport sector and non-energy use sectors were developed on transport mobility demand and end-use fuel demand. The main drivers of these key indicators are socio-economic parameters. This work was conducted in a linear programmed (LP) TIMES G5 model on TIMES modeling framework for model horizon of 1990-2100. By the end of the 21st-century, India's energy demands are projected to be about 1825 Mtoe of primary energy, 1263 Mtoe of final energy consumption, 4840 TWh of electricity generations, 723 Mtoe of energy import, and 4414 Mt of CO 2 emissions. - Highlights: → This work is carried out for India. → It is a long horizon study. → Sectoral energy demand and emissions are projected in this work.

  2. Robust Manhattan Frame Estimation From a Single RGB-D Image

    KAUST Repository

    Bernard Ghanem; Heilbron, Fabian Caba; Niebles, Juan Carlos; Thabet, Ali Kassem

    2015-01-01

    This paper proposes a new framework for estimating the Manhattan Frame (MF) of an indoor scene from a single RGB-D image. Our technique formulates this problem as the estimation of a rotation matrix that best aligns the normals of the captured scene to a canonical world axes. By introducing sparsity constraints, our method can simultaneously estimate the scene MF, the surfaces in the scene that are best aligned to one of three coordinate axes, and the outlier surfaces that do not align with any of the axes. To test our approach, we contribute a new set of annotations to determine ground truth MFs in each image of the popular NYUv2 dataset. We use this new benchmark to experimentally demonstrate that our method is more accurate, faster, more reliable and more robust than the methods used in the literature. We further motivate our technique by showing how it can be used to address the RGB-D SLAM problem in indoor scenes by incorporating it into and improving the performance of a popular RGB-D SLAM method.

  3. Robust Manhattan Frame Estimation From a Single RGB-D Image

    KAUST Repository

    Bernard Ghanem

    2015-06-02

    This paper proposes a new framework for estimating the Manhattan Frame (MF) of an indoor scene from a single RGB-D image. Our technique formulates this problem as the estimation of a rotation matrix that best aligns the normals of the captured scene to a canonical world axes. By introducing sparsity constraints, our method can simultaneously estimate the scene MF, the surfaces in the scene that are best aligned to one of three coordinate axes, and the outlier surfaces that do not align with any of the axes. To test our approach, we contribute a new set of annotations to determine ground truth MFs in each image of the popular NYUv2 dataset. We use this new benchmark to experimentally demonstrate that our method is more accurate, faster, more reliable and more robust than the methods used in the literature. We further motivate our technique by showing how it can be used to address the RGB-D SLAM problem in indoor scenes by incorporating it into and improving the performance of a popular RGB-D SLAM method.

  4. Depth estimation of features in video frames with improved feature matching technique using Kinect sensor

    Science.gov (United States)

    Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun

    2012-10-01

    Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.

  5. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  6. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  7. Multichannel imager for littoral zone characterization

    Science.gov (United States)

    Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary

    2010-04-01

    This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.

  8. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    Science.gov (United States)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  9. Multi-perspective analysis of China's energy supply security

    International Nuclear Information System (INIS)

    Geng, Jiang-Bo; Ji, Qiang

    2014-01-01

    China's energy supply security has faced many challenges such as the drastic change of the international energy environment and the domestic energy situation and so on. This paper constructs a multi-dimensional indicator system for the main risks deriving from four aspects to evaluate the situation of China's energy supply security and analyze its evolution characteristics from 1994 to 2011. The results indicate that the situation of China's energy supply security generally presented a downtrend during 1994–2008, as a result of increasing international energy market monopoly and high volatility of international crude oil prices. After 2008, the overall level of China's energy supply security has improved to the level of 2003, which is attributed to the relatively stable international energy environment as well as the effective implementation of energy policies. - Highlights: • A multi-dimensional index system for energy supply security is constructed. • The dynamic influences of external and internal risks are analyzed. • China's energy supply security presents a downward trend during 1994–2008. • The level of China's energy supply security has improved since 2009

  10. Multi-functional energy plantation; Multifunktionella bioenergiodlingar

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lund Univ. (Sweden). Environmental and Energy Systems Studies; Berndes, Goeran; Fredriksson, Fredrik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physical Resource Theory; Kaaberger, Tomas [Ecotraffic, Goeteborg (Sweden)

    2002-02-01

    There exists a significant potential for utilising perennial energy plantations in protecting and restoring polluted water and land resources in Sweden. By optimising the design, location and management, several additional environmental services could be obtained which will increase the value of the energy plantations, thereby improving future market conditions for biomass. Multi-functional energy plantations (mainly Salix but also energy grass) can be divided into two categories, those designed for dedicated environmental services (e.g. vegetation filters for wastewater and sewage sludge treatment and shelter belts against soil erosion), and those generating more general benefits (e.g. soil carbon accumulation, increased soil fertility, cadmium removal and increased hunting potential). The practical potential of those two categories is estimated to be equivalent to up to 3% and more than 20% of the total Swedish arable land, respectively. The regional conditions of utilising multi-functional plantations vary, however, with the best possibilities in densely populated areas dominated by farmland. The economic value of multi-functional plantations is normally highest for those designed for dedicated environmental services. Purification of wastewater has the highest value, which could exceed the production cost in conventional Salix plantations, followed by treatment of polluted drainage water in vegetation filters and buffer zones (equivalent to more than half of the production cost), recirculation of sewage sludge (around half of the production cost), erosion control (around one fourth) and increased hunting potential (up to 15% of the production cost). The value of increased hunting potential varies due to nearness to larger cities and in which part of Sweden the plantation is located. The economic value of cadmium removal and increased soil fertility is equivalent to a few percent of the production cost, but the value of cadmium removal might increase in the

  11. A Novel Multi-View-Angle Range Images Generation Method for Measurement of Complicated Polyhedron in 3D Space

    Directory of Open Access Journals (Sweden)

    Deming Kong

    2017-01-01

    Full Text Available A new kind of generation method is proposed in this paper to acquire range images for complicated polyhedron in 3D space from a series of view angles. In the proposed generation method, concept of three-view drawing in mechanical cartography is introduced into the range image generation procedure. Negative and positive directions of x-, y-, and z-axes are selected as the view angles to generate the range images for complicated polyhedron in 3D space. Furthermore, a novel iterative operation of mathematical morphology is proposed to ensure that satisfactory range images can be generated for the polyhedron from all the selected view angles. Compared with the existing method based on single view angle and interpolation operation, structure features contained in surface of the complicated polyhedron can be represented more consistently with the reality by using the proposed multi-view-angle range images generation method. The proposed generation method is validated by using an experiment.

  12. Multi-look polarimetric SAR image filtering using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper

    2000-01-01

    Based on a previously published algorithm capable of estimating the radar cross-section in synthetic aperture radar (SAR) intensity images, a new filter is presented utilizing multi-look polarimetric SAR images. The underlying mean covariance matrix is estimated from the observed sample covariance...

  13. OBJECT-ORIENTED CHANGE DETECTION BASED ON MULTI-SCALE APPROACH

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2016-06-01

    Full Text Available The change detection of remote sensing images means analysing the change information quantitatively and recognizing the change types of the surface coverage data in different time phases. With the appearance of high resolution remote sensing image, object-oriented change detection method arises at this historic moment. In this paper, we research multi-scale approach for high resolution images, which includes multi-scale segmentation, multi-scale feature selection and multi-scale classification. Experimental results show that this method has a stronger advantage than the traditional single-scale method of high resolution remote sensing image change detection.

  14. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  15. Motion analysis for duplicate frame removal in wireless capsule endoscope

    Science.gov (United States)

    Lee, Hyun-Gyu; Choi, Min-Kook; Lee, Sang-Chul

    2011-03-01

    Wireless capsule endoscopy (WCE) has been intensively researched recently due to its convenience for diagnosis and extended detection coverage of some diseases. Typically, a full recording covering entire human digestive system requires about 8 to 12 hours for a patient carrying a capsule endoscope and a portable image receiver/recorder unit, which produces 120,000 image frames on average. In spite of the benefits of close examination, WCE based test has a barrier for quick diagnosis such that a trained diagnostician must examine a huge amount of images for close investigation, normally over 2 hours. The main purpose of our work is to present a novel machine vision approach to reduce diagnosis time by automatically detecting duplicated recordings caused by backward camera movement, typically containing redundant information, in small intestine. The developed technique could be integrated with a visualization tool which supports intelligent inspection method, such as automatic play speed control. Our experimental result shows high accuracy of the technique by detecting 989 duplicate image frames out of 10,000, equivalently to 9.9% data reduction, in a WCE video from a real human subject. With some selected parameters, we achieved the correct detection ratio of 92.85% and the false detection ratio of 13.57%.

  16. Multi-scale modelling and numerical simulation of electronic kinetic transport

    International Nuclear Information System (INIS)

    Duclous, R.

    2009-11-01

    This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms

  17. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    Science.gov (United States)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  18. Quantitative functional optical imaging of the human skin using multi-spectral imaging

    International Nuclear Information System (INIS)

    Kainerstorfer, J. M.

    2010-01-01

    Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is

  19. Evaluation of multi-gated myocardial perfusion imaging in various heart diseases

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Toshitake; Kozuka, Takahiro

    1980-01-01

    Multi-gated myocardial perfusion imaging were studied in a hundred cases of various heart diseases. In normal cases, ED ES images showed thinning and thickening of wall motion respectively to compare with static images. In the myocardial infarction cases, the dynamic changes of wall motion was decreased at infarcted areas in all cases. In congestive cardiomyopathy, the change of wall motion is smaller than normal cases in all cases, while in hypertrophic cardiomyopathy, the change is not so hyperdynamic to compare with normal cases and by multi-gated images, asymmetric hypertrophy was clearly detected in HCM than static images. In conclusion, these methods were useful to detect the myocardial contraction stage in various heart diseases. (author)

  20. A 20 Mfps high frame-depth CMOS burst-mode imager with low power in-pixel NMOS-only passive amplifier

    Science.gov (United States)

    Wu, L.; San Segundo Bello, D.; Coppejans, P.; Craninckx, J.; Wambacq, P.; Borremans, J.

    2017-02-01

    This paper presents a 20 Mfps 32 × 84 pixels CMOS burst-mode imager featuring high frame depth with a passive in-pixel amplifier. Compared to the CCD alternatives, CMOS burst-mode imagers are attractive for their low power consumption and integration of circuitry such as ADCs. Due to storage capacitor size and its noise limitations, CMOS burst-mode imagers usually suffer from a lower frame depth than CCD implementations. In order to capture fast transitions over a longer time span, an in-pixel CDS technique has been adopted to reduce the required memory cells for each frame by half. Moreover, integrated with in-pixel CDS, an in-pixel NMOS-only passive amplifier alleviates the kTC noise requirements of the memory bank allowing the usage of smaller capacitors. Specifically, a dense 108-cell MOS memory bank (10fF/cell) has been implemented inside a 30μm pitch pixel, with an area of 25 × 30μm2 occupied by the memory bank. There is an improvement of about 4x in terms of frame depth per pixel area by applying in-pixel CDS and amplification. With the amplifier's gain of 3.3, an FD input-referred RMS noise of 1mV is achieved at 20 Mfps operation. While the amplification is done without burning DC current, including the pixel source follower biasing, the full pixel consumes 10μA at 3.3V supply voltage at full speed. The chip has been fabricated in imec's 130nm CMOS CIS technology.

  1. A forgotten argument by Gordon uniquely selects Abraham's tensor as the energy-momentum tensor for the electromagnetic field in homogeneous, isotropic matter

    International Nuclear Information System (INIS)

    Antoci, S.; Mihich, L.

    1997-01-01

    Given the present status of the problem of the electromagnetic energy tensor in matter, there is perhaps use in recalling a forgotten argument given in 1923 by W. Gordon. Let us consider a material medium which is homogeneous and isotropic when observed in its rest frame. For such a medium, Gordon's argument allows to reduce the above-mentioned problem to an analogous one, defined in a general relativistic vacuum. For the latter problem the form of the Lagrangian is known already, hence the determination of the energy tensor is a straightforward matter. One just performs the Hamiltonian derivative of the Lagrangian chosen in this way with respect to the true metric g ik . Abraham's tensor is thus selected as the electromagnetic energy tensor for a medium which is homogeneous and isotropic in its rest frame

  2. Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations

    Directory of Open Access Journals (Sweden)

    Nah-Oak Song

    2015-08-01

    Full Text Available We propose an optimal electric energy management of a cooperative multi-microgrid community with sequentially coordinated operations. The sequentially coordinated operations are suggested to distribute computational burden and yet to make the optimal 24 energy management of multi-microgrids possible. The sequential operations are mathematically modeled to find the optimal operation conditions and illustrated with physical interpretation of how to achieve optimal energy management in the cooperative multi-microgrid community. This global electric energy optimization of the cooperative community is realized by the ancillary internal trading between the microgrids in the cooperative community which reduces the extra cost from unnecessary external trading by adjusting the electric energy production amounts of combined heat and power (CHP generators and amounts of both internal and external electric energy trading of the cooperative community. A simulation study is also conducted to validate the proposed mathematical energy management models.

  3. Deep multi-scale convolutional neural network for hyperspectral image classification

    Science.gov (United States)

    Zhang, Feng-zhe; Yang, Xia

    2018-04-01

    In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.

  4. Obstacles in energy security: An analysis of congressional and presidential framing in the United States

    International Nuclear Information System (INIS)

    Below, Amy

    2013-01-01

    Despite decades of policymaking, the U.S. has only recently made significant strides in becoming a more energy secure nation. With a focus on the executive and legislative branches, this paper investigates two possible political obstacles to achieve this policy goal. The first question it asks is whether or not the two branches have been defining energy security in the same way. As the concept itself has no universal definition, it is possible that the branches have been focusing on different aspects of the term. Results from a content analysis of presidential speeches and congressional hearings suggest that no such division has occurred. The subsequent question asks whether or not the two branches, in tandem, are providing the foundation for sound policy. Results suggest that Congress and presidents have defined and discussed energy security in a generally balanced, comprehensive and internally non-conflictual way. What policy emerges from these discussions should be the subject of future research. -- Highlights: •A content-analysis of congressional hearings and presidential speeches was conducted. •Executive and legislative branches have been generally unified in how they frame the issue of energy security. •Both have avoided overreliance on sensationalized frames. •Both do not focus enough attention on energy efficiency and intensity

  5. Selective interferometric imaging of internal multiples

    KAUST Repository

    Zuberi, M. A H

    2013-01-01

    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not reproduce such scattering in the Green’s function. If properly imaged, internal multiples (and internally-scattered energy) can enhance the seismic image and illuminate areas otherwise neglected or poorly imaged by conventional single-scattering approaches. Conventionally, in order to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we develop a three-step procedure, which images the first-order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model: We first back-propagate the recorded surface data using the background Green’s function, then cross-correlate the back-propagated data with the recorded data and finally cross-correlate the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples and is almost free of the single-scattering recorded energy. This image can be added to the conventional single-scattering image, obtained e.g. from Kirchhoff migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering only demonstrates the effectiveness of the approach.

  6. Exploring coherent phenomena and energy discrimination in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Thomas

    2011-05-04

    Conventional X-ray imaging is based on the generation of photons in materials that are selected for different applications according to their densities, dimensions, and atomic numbers. The photons produced in these targets are commonly detected by measuring the integrated amount of energy released in films or digital imaging systems. This thesis aims at extending these two paradigms. First, it is shown that the use of single-crystalline, i.e. well-ordered targets, can significantly soften photon spectra created by megavoltage electrons when compared to usual targets. The reason for this is an effect called ''coherent bremsstrahlung''. It is shown that this type of radiation bears the potential of increasing the quality of megavoltage images and reducing radiation dose for image guided radiotherapy. Second, new spectroscopic pixel detectors of the Medipix2 family operated with cadmium telluride sensors are characterised and thus potential benefits and difficulties for X-ray imaging are investigated. Besides describing in detail how to calibrate these detectors, emphasis is placed on determining their energy responses, modulation transfer functions, and detective quantum efficiencies. Requirements for photon counting megavoltage imaging are discussed. The detector systems studied are finally used to perform spectral computed tomography and to illustrate the benefits of energy discrimination for coherent scatter imaging. (orig.)

  7. Exploring coherent phenomena and energy discrimination in X-ray imaging

    International Nuclear Information System (INIS)

    Koenig, Thomas

    2011-01-01

    Conventional X-ray imaging is based on the generation of photons in materials that are selected for different applications according to their densities, dimensions, and atomic numbers. The photons produced in these targets are commonly detected by measuring the integrated amount of energy released in films or digital imaging systems. This thesis aims at extending these two paradigms. First, it is shown that the use of single-crystalline, i.e. well-ordered targets, can significantly soften photon spectra created by megavoltage electrons when compared to usual targets. The reason for this is an effect called ''coherent bremsstrahlung''. It is shown that this type of radiation bears the potential of increasing the quality of megavoltage images and reducing radiation dose for image guided radiotherapy. Second, new spectroscopic pixel detectors of the Medipix2 family operated with cadmium telluride sensors are characterised and thus potential benefits and difficulties for X-ray imaging are investigated. Besides describing in detail how to calibrate these detectors, emphasis is placed on determining their energy responses, modulation transfer functions, and detective quantum efficiencies. Requirements for photon counting megavoltage imaging are discussed. The detector systems studied are finally used to perform spectral computed tomography and to illustrate the benefits of energy discrimination for coherent scatter imaging. (orig.)

  8. Time delay control of power converters: Mixed frame and stationary-frame variants

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P.C.; Tang, Y.

    2008-01-01

    In this paper, a mixed-frame and a stationary-frame time delay current controller are proposed for high precision reference tracking and disturbance rejection of power converters. In particular, the controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a time delay control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure can be proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed time delay controllers function by introducing multiple resonant peaks at only those harmonic frequencies...

  9. Multi-compartment microscopic diffusion imaging

    OpenAIRE

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2016-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microsco...

  10. Public opinion on energy development: The interplay of issue framing, top-of-mind associations, and political ideology

    International Nuclear Information System (INIS)

    Clarke, Christopher E.; Hart, Philip S.; Schuldt, Jonathon P.; Evensen, Darrick T.N.; Boudet, Hilary S.; Jacquet, Jeffrey B.; Stedman, Richard C.

    2015-01-01

    In this article, we examine framing effects regarding unconventional oil and gas extraction using hydraulic fracturing (or fracking): an issue involving considerable controversy over potential impacts as well as terminology used to describe it. Specifically, we explore how two commonly used terms to describe this issue – fracking or shale oil or gas development – serve as issue frames and influence public opinion. Extending existing research, we suggest that these frames elicit different top-of-mind associations that reflect positive or negative connotations and resonate with people's political ideology. These associations, in turn, help explain direct and indirect framing effects on support/opposition as well as whether these effects differ by political ideology. Results of a split-ballot, national U.S. survey (n=1000) reveal that people are more supportive of the energy extraction process when it is referred to as shale oil or gas development versus fracking, and this relationship is mediated by greater perceptions of benefit versus risk. Political ideology did not moderate these effects. Further analysis suggests that these findings are partly explained by the tendency to associate fracking more with negative thoughts and impacts and shale oil or gas development more with positive thoughts and impacts. However, these associations also did not vary by political ideology. We discuss implications for communicating risk regarding energy development. -- Highlights: •How an issue is presented (“framed”) influences how people perceive it. •We applied this premise to oil/gas extraction via hydraulic fracturing (fracking). •We examined two commonly used frames: fracking and shale oil or gas development. •People viewed the former less favorably irrespective of political ideology. •We discuss implications for communicating about energy development impacts

  11. Multi-scale Gaussian representation and outline-learning based cell image segmentation

    Science.gov (United States)

    2013-01-01

    Background High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. Methods We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. Results and conclusions We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks. PMID:24267488

  12. Integration of multi-modality imaging for accurate 3D reconstruction of human coronary arteries in vivo

    International Nuclear Information System (INIS)

    Giannoglou, George D.; Chatzizisis, Yiannis S.; Sianos, George; Tsikaderis, Dimitrios; Matakos, Antonis; Koutkias, Vassilios; Diamantopoulos, Panagiotis; Maglaveras, Nicos; Parcharidis, George E.; Louridas, George E.

    2006-01-01

    In conventional intravascular ultrasound (IVUS)-based three-dimensional (3D) reconstruction of human coronary arteries, IVUS images are arranged linearly generating a straight vessel volume. However, with this approach real vessel curvature is neglected. To overcome this limitation an imaging method was developed based on integration of IVUS and biplane coronary angiography (BCA). In 17 coronary arteries from nine patients, IVUS and BCA were performed. From each angiographic projection, a single end-diastolic frame was selected and in each frame the IVUS catheter was interactively detected for the extraction of 3D catheter path. Ultrasound data was obtained with a sheath-based catheter and recorded on S-VHS videotape. S-VHS data was digitized and lumen and media-adventitia contours were semi-automatically detected in end-diastolic IVUS images. Each pair of contours was aligned perpendicularly to the catheter path and rotated in space by implementing an algorithm based on Frenet-Serret rules. Lumen and media-adventitia contours were interpolated through generation of intermediate contours creating a real 3D lumen and vessel volume, respectively. The absolute orientation of the reconstructed lumen was determined by back-projecting it onto both angiographic planes and comparing the projected lumen with the actual angiographic lumen. In conclusion, our method is capable of performing rapid and accurate 3D reconstruction of human coronary arteries in vivo. This technique can be utilized for reliable plaque morphometric, geometrical and hemodynamic analyses

  13. A novel algorithm of super-resolution image reconstruction based on multi-class dictionaries for natural scene

    Science.gov (United States)

    Wu, Wei; Zhao, Dewei; Zhang, Huan

    2015-12-01

    Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.

  14. Spontaneous Lorentz violation and the long-range gravitational preferred-frame effect

    International Nuclear Information System (INIS)

    Graesser, Michael L.; Jenkins, Alejandro; Wise, Mark B.

    2005-01-01

    Lorentz-violating operators involving Standard Model fields are tightly constrained by experimental data. However, bounds are more model-independent for Lorentz violation appearing in purely gravitational couplings. The spontaneous breaking of Lorentz invariance by the vacuum expectation value of a vector field selects a universal rest frame. This affects the propagation of the graviton, leading to a modification of Newton's law of gravity. We compute the size of the long-range preferred-frame effect in terms of the coefficients of the two-derivative operators in the low-energy effective theory that involves only the graviton and the Goldstone bosons

  15. Radical advancement in multi-spectral imaging for autonomous vehicles (UAVs, UGVs, and UUVs) using active compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Brian F.; Bagwell, Brett E.; Wick, David Victor

    2007-01-01

    The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.

  16. An Indoor Slam Method Based on Kinect and Multi-Feature Extended Information Filter

    Science.gov (United States)

    Chang, M.; Kang, Z.

    2017-09-01

    Based on the frame of ORB-SLAM in this paper the transformation parameters between adjacent Kinect image frames are computed using ORB keypoints, from which priori information matrix and information vector are calculated. The motion update of multi-feature extended information filter is then realized. According to the point cloud data formed by depth image, ICP algorithm was used to extract the point features of the point cloud data in the scene and built an observation model while calculating a-posteriori information matrix and information vector, and weakening the influences caused by the error accumulation in the positioning process. Furthermore, this paper applied ORB-SLAM frame to realize autonomous positioning in real time in interior unknown environment. In the end, Lidar was used to get data in the scene in order to estimate positioning accuracy put forward in this paper.

  17. AN INDOOR SLAM METHOD BASED ON KINECT AND MULTI-FEATURE EXTENDED INFORMATION FILTER

    Directory of Open Access Journals (Sweden)

    M. Chang

    2017-09-01

    Full Text Available Based on the frame of ORB-SLAM in this paper the transformation parameters between adjacent Kinect image frames are computed using ORB keypoints, from which priori information matrix and information vector are calculated. The motion update of multi-feature extended information filter is then realized. According to the point cloud data formed by depth image, ICP algorithm was used to extract the point features of the point cloud data in the scene and built an observation model while calculating a-posteriori information matrix and information vector, and weakening the influences caused by the error accumulation in the positioning process. Furthermore, this paper applied ORB-SLAM frame to realize autonomous positioning in real time in interior unknown environment. In the end, Lidar was used to get data in the scene in order to estimate positioning accuracy put forward in this paper.

  18. Multi-agent based distributed control architecture for microgrid energy management and optimization

    International Nuclear Information System (INIS)

    Basir Khan, M. Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-01-01

    Highlights: • A new multi-agent based distributed control architecture for energy management. • Multi-agent coordination based on non-cooperative game theory. • A microgrid model comprised of renewable energy generation systems. • Performance comparison of distributed with conventional centralized control. - Abstract: Most energy management systems are based on a centralized controller that is difficult to satisfy criteria such as fault tolerance and adaptability. Therefore, a new multi-agent based distributed energy management system architecture is proposed in this paper. The distributed generation system is composed of several distributed energy resources and a group of loads. A multi-agent system based decentralized control architecture was developed in order to provide control for the complex energy management of the distributed generation system. Then, non-cooperative game theory was used for the multi-agent coordination in the system. The distributed generation system was assessed by simulation under renewable resource fluctuations, seasonal load demand and grid disturbances. The simulation results show that the implementation of the new energy management system proved to provide more robust and high performance controls than conventional centralized energy management systems.

  19. Frames and semi-frames

    International Nuclear Information System (INIS)

    Antoine, Jean-Pierre; Balazs, Peter

    2011-01-01

    Loosely speaking, a semi-frame is a generalized frame for which one of the frame bounds is absent. More precisely, given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with a bounded inverse. We study mostly upper semi-frames, both in the continuous and discrete case, and give some remarks for the dual situation. In particular, we show that reconstruction is still possible in certain cases.

  20. Fourier Analysis of Single-Shot Dual-Energy X-ray Imaging Characteristics

    International Nuclear Information System (INIS)

    Kim, Jun Woo; Kim, Dong Woon; Kim, Ho Kyung

    2016-01-01

    The sandwich detector was realized by stacking two scintillator-based flat-panel detectors (FPDs) between which an intermediate copper (Cu) filter layer was placed to further enhance spectral energy separation. As a result, the proper selection of filter material and its thickness could be a trade-off between the extent of energy separation (hence, DE image quality) and image noise due to reduction in the number of x-ray quanta reaching the rear FPD. Although the conventional kVp-switching dual-shot method showed better image qualities than the single-shot method because of larger spectral energy separation, the motion-artifact-free DE image with reasonably good image quality was a potential prospect of the single-shot method. For the reliable and better use of the sandwich detector for specific imaging applications, the sandwich detector should be optimally designed with a proper selection of scintillator material and thickness in each detector layer (i.e. the front and rear detectors), and aforementioned intermediate filter material and thickness. It is noted that glue is used to adhere the fragile photodiode array onto the ceramic substrate and these glue patterns are apparent in the rear and DE images. The glue pattern in the rear image comes from the front FPD. Unlike the conventional ESF as shown in Fig. 3(a), the ESF obtained from the subtracted image showed an enhancement as shown in Fig. 3(b). Consequently, the MTF obtained from the subtraction ESF showed a bandpass filter characteristic, as shown in Fig. 3(c), unlike the conventional low-pass filter characteristic (i.e., monotonic decrease of MTF value with increasing the spatial frequency). This MTF characteristic is due to the subtraction of two images with different spatial resolving powers (i.e., different thicknesses of phosphors between the front and rear detectors) as can be seen in unsharp masking digital image processing, which subtracts Gaussian-blurred image from the original image