WorldWideScience

Sample records for multi-fickian moisture transport

  1. Implementation of sorption hysteresis in multi-Fickian moisture transport

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Svensson, Staffan

    2007-01-01

    In the cellular structure of wood, bound-water diffusion and water-vapor diffusion interact via sorption in a complex moisture-transportation system. At low relative humidities, moisture transport may be modeled by a Fickian diffusion equation with a good approximation. At higher relative......-35% in moisture content. Hence, for a precise moisture content computation, sorption hysteresis must be taken into account. The present paper explains the relation between sorption hysteresis and multi-Fickian moisture transport, and clarifies how models for the two phenomena are coupled. To illustrate...

  2. A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Damkilde, Lars; Svensson, Staffan

    2007-01-01

    This paper presents a study and a refinement of the sorption rate model in a so-called multi-Fickian or multi-phase model. This type of model describes the complex moisture transport system in wood, which consists of separate water vapor and bound-water diffusion interacting through sorption...... sorption allow a simplification of the system to be modeled by a single Fickian diffusion equation. To determine the response of the system, the sorption rate model is essential. Here the function modeling the moisture-dependent adsorption rate is investigated based on existing experiments on thin wood...

  3. Moisture Transport in Wood

    DEFF Research Database (Denmark)

    Astrup, Thomas; Hansen, Kurt Kielsgaard; Hoffmeyer, Preben

    2005-01-01

    Modelling of moisture transport in wood is of great importance as most mechanical and physical properties of wood depend on moisture content. Moisture transport in porous materials is often described by Ficks second law, but several observations indicate that this does not apply very well to wood....... Recently at the Technical University of Denmark, Department of Civil Engineering, a new model for moisture transport in wood has been developed. The model divides the transport into two phases, namely water vapour in the cell lumens and bound water in the cell walls....

  4. Numerical analysis of coupled water transport in wood with a focus on the coupling parameter sorption

    DEFF Research Database (Denmark)

    Hozjan, T.; Turk, G.; Rodman, U.

    2011-01-01

    This paper presents a study of sorption rate function in a so-called multi-Fickian or multi-phase model. This model describes the complex moisture transport system in wood, which consists of separate water-vapour and bound-water diffusion interacting through sorption. In the numerical example inf...... influence of the sorption rate function on water transport is presented. It can be seen that the sorption rate function has a noticeable influence on coupled water transport in wood....

  5. Moisture transport in coated wood

    NARCIS (Netherlands)

    Meel, P.A. van; Erich, S.J.F.; Huinink, H.P.; Kopinga, K.; Jong, J. DE; Adan, O.C.G.

    2011-01-01

    Moisture accumulation inside wood causes favorable conditions for decay. Application of a coating alters the moisture sorption of wood and prevents accumulation of moisture. This paper presents the results of a nuclear magnetic resonance (NMR) study on the influence of a coating on the moisture

  6. Moisture transport and equilibrium in organic coatings

    NARCIS (Netherlands)

    Wel, van der G.K.; Adan, O.C.G.

    2000-01-01

    Improving coating performance in regard of protection of substrates and structures against moisturerelated degradation requires detailed knowledge of underlying transport mechanisms. In this paper a review is given on transport and equilibrium sorption of moisture in polymer films and organic

  7. Heat and Moisture transport of socks

    Science.gov (United States)

    Komárková, P.; Glombíková, V.; Havelka, A.

    2017-10-01

    Investigating the liquid moisture transport and thermal properties is essential for understanding physiological comfort of clothes. This study reports on an experimental investigation of moisture management transport and thermal transport on the physiological comfort of commercially available socks. There are subjective evaluation and objective measurements. Subjective evaluation of the physiological comfort of socks is based on individual sensory perception of probands during and after physical exertion. Objective measurements were performed according to standardized methods using Moisture Management tester for measuring the humidity parameters and C-term TCi analyzer for thermal conductivity and thermal effusivity. The obtained values of liquid moisture transport and thermal properties were related to the material composition and structure of the tested socks. In summary, these results show that objective measurement corresponds with probands feelings.

  8. Field experiments on airborne moisture transport

    NARCIS (Netherlands)

    Oldengarm, J.; Gids, W.F. de

    1990-01-01

    Within the framework of the Dutch participation in the IEA Annex XIV “Condensation” field experiments have been carried out to study airbome moisture transport in realistic circumstances. The experiments were done in an unoccupied 3-story dwelling in Leidschendam in the Netherlands. Some of the

  9. The Effect of Temperature on Moisture Transport in Concrete.

    Science.gov (United States)

    Wang, Yao; Xi, Yunping

    2017-08-09

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.

  10. Moisture transport over the brick/mortar interface

    NARCIS (Netherlands)

    Brocken, H.J.P.; Pel, L.

    1995-01-01

    The moisture transport in brick, mortar that was cured separately, and combined brick/mortar samples was studied using NMR. The experimental results show that the mortar is less permeable if it is cured bonded to the brick instead of cured separately. Models of the moisture transport are usually

  11. Non-isothermal Moisture Transport Through Insulation Materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10K...... and given humidity gradient over the sample. The resulting moisture ux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed....... On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The diferent results gave, however, diverging...

  12. Soil-moisture transport in arid site vadose zones

    International Nuclear Information System (INIS)

    Isaacson, R.E.; Brownell, L.E.; Nelson, R.W.; Roetman, E.L.

    1974-01-01

    Soil-moisture transport processes in the arid soils of the United States Atomic Energy Commission's Hanford site are being evaluated. The depth of penetration of meteoric precipitation has been determined by profiling fall-out tritium at two locations where the water table is about 90 m below ground surface. In situ temperatures and water potentials were measured with temperature transducers and thermocouple psychrometers at the same location to obtain thermodynamic data for identifying the factors influencing soil-moisture transport. Neutron probes are being used to monitor soil-moisture changes in two lysimeters, three metres in diameter by 20 metres deep. The lysimeters are also equipped to measure pressure, temperature and relative humidity as a function of depth and time. Theoretical models based on conservation of momentum expressions are being developed to analyse non-isothermal soil-moisture transport processes. Future work will be concerned with combining the theoretical and experimental work and determining the amount of rainfall required to cause migration of soil-moisture to the water table. (author)

  13. Stochastic Models for the Kinematics of Moisture Transport and Condensation in Homogeneous Turbulent Flows

    OpenAIRE

    O'Gorman, Paul A.; Schneider, Tapio

    2006-01-01

    The transport of a condensing passive scalar is studied as a prototype model for the kinematics of moisture transport on isentropic surfaces. Condensation occurs whenever the scalar concentration exceeds a specified local saturation value. Since condensation rates are strongly nonlinear functions of moisture content, the mean moisture flux is generally not diffusive. To relate the mean moisture content, mean condensation rate, and mean moisture flux to statistics of the advecting velocity fie...

  14. The heat and moisture transport properties of wet porous media

    International Nuclear Information System (INIS)

    Wang, B.X.; Fang, Z.H.; Yu, W.P.

    1989-01-01

    Existing methods for determining heat and moisture transport properties in porous media are briefly reviewed, and their merits and deficiencies are discussed. Emphasis is placed on research in developing new transient methods undertaken in China during the recent years. An attempt has been made to relate the coefficients in the heat and mass transfer equations with inherent properties of the liquid and matrix and then to predict these coefficients based on limited measurements

  15. Moisture transport properties of mortar and mortar joint: A NMR study

    OpenAIRE

    Brocken, H.J.P.; Adant, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick laying, curing conditions of mortar in mortar joint differ from curing conditions of separately cured mortar. Consequently, the moisture transport properties of mortar joint differ. In addition to the ...

  16. Moisture transport properties of mortar and mortar joint: a NMR study

    OpenAIRE

    Brocken, H.J.P.; Adan, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick laying, curing conditions of mortar in mortar joint differ from curing conditions of separately cured mortar. Consequently, the moisture transport properties of mortar joint differ. In addition to the ...

  17. Analysis on the moment method for determining the moisture transport properties in porous media

    International Nuclear Information System (INIS)

    Wang, B.X.; Fang, Z.H.

    1987-01-01

    The authors discuss a new unsteady-state method proposed for determining the moisture transport properties in wet porous media. It is based on measurement of the change in moment of gravity caused by the moisture migration. In addition to its high-speed performance, this method may get rid of the difficulty in determination of a changing moisture content or moisture distribution. On this basis, two particular procedures are contrived: a constant heat source method for determining the thermal mass diffusivity and an instantaneous moisture source method for determining the moisture diffusivity

  18. Moisture dependence of radon transport in concrete : Measurements and modeling

    NARCIS (Netherlands)

    Cozmuta, [No Value; van der Graaf, ER; de Meijer, RJ

    2003-01-01

    The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release

  19. Moisture transport properties of mortar and mortar joint: A NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Adant, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick

  20. Moisture transport properties of mortar and mortar joint: a NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.; Adan, O.C.G.; Pel, L.

    1997-01-01

    The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick

  1. THE INFLUENCE OF RAW MATERIAL ON THE LIQUID MOISTURE TRANSPORT THROUGH KNITTED FABRIC

    Directory of Open Access Journals (Sweden)

    COLDEA Alina

    2014-05-01

    Full Text Available The comfort is undoubtedly the most important human attribute depends upon the moisture transport which in turn depends on the moisture transport behavior of the knitted fabric. Moisture transport is the transfer of liquid water capillary interstices of the yarns and depends on the wettability of fiber surfaces, as well as the structure of the yarn and fabric. Because of its good water absorption property, cotton is often used for next-to-skin wear such as t-shirts, underwear, socks. All these are known as ``moisture management`` which means the ability of a textile fabric to transport moisture away from the skin to the garment’s outer surface in multi-dimensions and it is one of the key performance criteria in today’s apparel industry since it has a significant effect on the human perception of moisture sensations. In order to study, plated knitted fabric for socks were knitted as plated single jersey in the same production conditions, from different types of yarns, produced in different yarn counts (Ne 20, Ne 24, Ne 30 and different raw material. (cotton, bamboo, soybean, polyester, viscose. Were chose two different density on circular knitting machine. The liquid moisture management of the samples was measured in order to determinate moisture transport index. Was study also the influence of raw material and fabric structure related to the moisture transport index. According to the obtained results, it was found that some of the knitted fabrics used in this study have goodmoisture management capability.

  2. Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport

    Science.gov (United States)

    Pan, Chen; Zhu, Bin; Gao, Jinhui; Kang, Hanqing; Zhu, Tong

    2018-02-01

    Despite the importance of the Tibetan Plateau (TP) to the surrounding water cycle, the moisture sources of the TP remain uncertain. In this study, the moisture sources of the TP are quantitatively identified based on a 33-year simulation with a horizontal resolution of 1.9° × 2.5° using the Community Atmosphere Model version 5.1 (CAM5.1), in which atmospheric water tracer technology is incorporated. Results demonstrate that the major moisture sources differ over the southern TP (STP) and northern TP (NTP). During the winter, Africa, the TP, and India are the dominant source regions, contributing nearly half of the water vapour over the STP. During the summer, the tropical Indian Ocean (TIO) supplies 28.5 ± 3.6% of the water vapour over the STP and becomes the dominant source region. The dominant moisture source regions of the water vapour over the NTP are Africa (19.0 ± 2.8%) during the winter and the TP (25.8 ± 2.4%) during the summer. The overall relative contribution of each source region to the precipitation is similar to the contribution to the water vapour over the TP. Like most models, CAM5.1 generally overestimates the precipitation over the TP, yielding uncertainty in the absolute contributions to the precipitation. Composite analyses exhibit significant variations in the TIO-supplied moisture transport and precipitation over the STP during the summer alongside anomalous TP heating. This relationship between moisture transport from the TIO and the TP heating primarily involves the dynamic change in the TIO-supplied moisture flux, which further controls the variation in the TIO-contributed precipitation over the STP.

  3. A neutron moisture system on nickel mineral transport rubber belt

    International Nuclear Information System (INIS)

    Jia Wenbao; Su Tongling; Zhang Xiaomin

    2000-01-01

    A method of density-thickness joint compensation was developed to make the on-line measurement of moisture for moving irregular mineral materials. At the same time, the materials' thickness, as a weighted factor, was chosen to modify the prompt moisture in a fixed time and improve the accuracy of measuring moisture. The experimental data show that the measurement accuracy is better than 5% for a thickness of > 2 cm and a moisture of > 6%. The system has been running on the spot for about three months, with a result accorded with that by the stoving-weighing method

  4. The modulation of oceanic moisture transport by the hemispheric annular modes

    Directory of Open Access Journals (Sweden)

    Raquel eNieto

    2014-07-01

    Full Text Available Leaving aside the contribution made by recycling, it is the main oceanic moisture sources that are responsible for most of the precipitation that falls on the continents. The transport of moisture from these sources can be affected by large-scale variability according to the hemispheric annular modes. The influence of the two dominant modes of extratropical winter climate: the Northern and the Southern Annular Modes (NAM and SAM are herein investigated to assess how they affect the transport of moisture from the major oceanic moisture sources. A Lagrangian model was used, together with ERA-Interim reanalysis data (1979-2012, and differences between the composites of the six strongest higher and lower events observed for both phases of the two modes for the period were analysed. The method is able to reproduce the general pattern of known variations for both annular patterns. Lower values of the NAM Index are associated with the displacement of the storm track towards tropical latitudes. Thus, moisture transport is enhanced from the Northern Pacific towards the northeastern basin and from the Northern Atlantic and Mediterranean towards southern Europe. On the other hand, during higher values of NAM, moisture transport is favoured from the Northern Pacific towards eastern Asia, and moisture transport is enhanced from the Northern Atlantic towards the Caribbean Sea. In the Southern Hemisphere, during higher values of SAM more moisture is transported from the Atlantic and Indian oceanic sources southwards and eastwards than during the opposite phase. In this SAM phase it is also noted by an enhancement of moisture transport from the Coral Sea and Southern Pacific sources towards the Indian Ocean/West Pacific Warm Pool. Southeastern South America received more moisture from the Pacific and Atlantic sources during years with a lower SAM, episodes which also favoured the influx of moisture from the Southern Atlantic towards Africa, causing monsoon

  5. Theoretical analysis of moisture transport in wood as an open porous hygroscopic material

    DEFF Research Database (Denmark)

    Hozjan, Tomaz; Svensson, Staffan

    2010-01-01

    Moisture transport in an open porous hygroscopic material such as wood is a complex system of coupled processes. For seasoned wood in natural climate three fully coupled processes active in the moisture transport are readily identified: (1) diffusion of vapor in pores; (2) phase change from one...... state to another, also called moisture sorption; and (3) diffusion of bound water in wood tissue (in the cell wall). A mathematical model for predicting moisture transport in wood for a given condition must at least consider the dominating active processes simultaneously to be considered accurate...... of the three processes on the outcome of the coupled model. Least significant is the bound water diffusion. Based on the results from the sensitivity analyses, a simplified model for moisture transport in wood is proposed....

  6. Moisture transport and Atmospheric circulation in the Arctic

    Science.gov (United States)

    Woods, Cian; Caballero, Rodrigo

    2013-04-01

    Cyclones are an important feature of the Mid-Latitudes and Arctic Climates. They are a main transporter of warm moist energy from the sub tropics to the poles. The Arctic Winter is dominated by highly stable conditions for most of the season due to a low level temperature inversion caused by a radiation deficit at the surface. This temperature inversion is a ubiquitous feature of the Arctic Winter Climate and can persist for up to weeks at a time. The inversion can be destroyed during the passage of a cyclone advecting moisture and warming the surface. In the absence of an inversion, and in the presence of this warm moist air mass, clouds can form quite readily and as such influence the radiative processes and energy budget of the Arctic. Wind stress caused by a passing cyclones also has the tendency to cause break-up of the ice sheet by induced rotation, deformation and divergence at the surface. For these reasons, we wish to understand the mechanisms of warm moisture advection into the Arctic from lower latitudes and how these mechanisms are controlled. The body of work in this area has been growing and gaining momentum in recent years (Stramler et al. 2011; Morrison et al. 2012; Screen et al. 2011). However, there has been no in depth analysis of the underlying dynamics to date. Improving our understanding of Arctic dynamics becomes increasingly important in the context of climate change. Many models agree that a northward shift of the storm track is likely in the future, which could have large impacts in the Arctic, particularly the sea ice. A climatology of six-day forward and backward trajectories starting from multiple heights around 70 N is constructed using the 22 year ECMWF reanalysis dataset (ERA-INT). The data is 6 hourly with a horizontal resolution of 1 degree on 16 pressure levels. Our methodology here is inspired by previous studies examining flow patterns through cyclones in the mid-latitudes. We apply these earlier mid-latitude methods in the

  7. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    Science.gov (United States)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind

  8. The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland

    Science.gov (United States)

    Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye

    2018-06-01

    The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can

  9. Internal and external moisture transport resistance during non-stationary adsorption of moisture into wood

    OpenAIRE

    Bučar, Bojan

    2007-01-01

    The assumption that non-stationary sorption processes associated with wood canbe evaluated by analysis of their transient system response to the disturbance developed is undoubtedly correct. In general it is, in fact, possible to obtain by time analysis of the transient phenomenon - involving the transition into an arbitrary new state of equilibrium - all data required for a credible evaluation of the observed system. Evaluation of moisture movement during drying or moistening requires determ...

  10. Seasonal variations of stable isotope in precipitation and moisture transport at Yushu,eastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precipitation δ 18O at Yushu, eastern Tibetan Plateau, shows strong fluctuation and lack of clear seasonality. The seasonal pattern of precipitation stable isotope at Yushu is apparently different from either that of the southwest monsoon region to the south or that of the inland region to the north. This different seasonal pattern probably reflects the shift of different moisture sources. In this paper, we present the spatial comparison of the seasonal patterns of precipitation δ 18O, and calculate the moisture transport flux by using the NCAR/NCEP reanalysis data. This allows us to discuss the relation between moisture transport flux and precipitation δ 18O. This study shows that both the southwest monsoon from south and inland air mass transport from north affected the seasonal precipitation δ 18O at Yushu, eastern Tibetan Plateau. Southwest monsoon brings the main part of the moisture, but southwest transport flux is weaker than in the southern part of the Tibetan Plateau. However, contribution of the inland moisture from north or local evaporation moisture is enhanced. The combined effect is the strong fluctuation of summer precipitation δ 18O at Yushu and comparatively poor seasonality.

  11. Atmospheric rivers moisture transport from a Lagrangian perspective

    Science.gov (United States)

    Ramos, A. M.; Nieto, R.; Tomé, R.; Gimeno, L.; Trigo, R. M.; Liberato, M. L. R.; Lavers, D. A.

    2015-12-01

    An automated atmospheric rivers (ARs) detection algorithm is used for the North Atlantic Ocean Basin allowing the identification of the major ARs that affected western European coasts between 1979 and 2014 over the winter half-year (October to March). The entire west coast of Europe was divided into five domains, namely, the Iberian Peninsula (9.75° W; 36-43.75° N), France (4.5° W; 43.75-50° N), UK (4.5° W; 50-59° N), southern Scandinavia and the Netherlands (5.25° E; 50-59° N), and northern Scandinavia (5.25° E; 59-70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main sources of moisture that reach each domain. The Lagrangian dataset used was obtained from the FLEXPART model global simulation from 1979 to 2012, where the atmosphere was divided into approximately 2.0 million parcels, and it was forced by ERA-Interim reanalysis on a 1° latitude-longitude grid. Results show that, in general, for all regions considered, the major climatological source of moisture extends along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N), to each sink region, with the nearest coast to each sink region always appearing as a local maximum of evaporation. In addition, during the AR events, the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the moisture sources is found when the sink region is positioned at higher latitudes. In conclusion, the results confirm the advection of moisture linked to ARs from subtropical ocean areas, but also the existence of a tropical one, and the mid-latitude sources further the analysed longitude along the North Atlantic is located eastward.

  12. Quantifying moisture transport in cementitious materials using neutron radiography

    Science.gov (United States)

    Lucero, Catherine L.

    A portion of the concrete pavements in the US have recently been observed to have premature joint deterioration. This damage is caused in part by the ingress of fluids, like water, salt water, or deicing salts. The ingress of these fluids can damage concrete when they freeze and expand or can react with the cementitious matrix causing damage. To determine the quality of concrete for assessing potential service life it is often necessary to measure the rate of fluid ingress, or sorptivity. Neutron imaging is a powerful method for quantifying fluid penetration since it can describe where water has penetrated, how quickly it has penetrated and the volume of water in the concrete or mortar. Neutrons are sensitive to light atoms such as hydrogen and thus clearly detect water at high spatial and temporal resolution. It can be used to detect small changes in moisture content and is ideal for monitoring wetting and drying in mortar exposed to various fluids. This study aimed at developing a method to accurately estimate moisture content in mortar. The common practice is to image the material dry as a reference before exposing to fluid and normalizing subsequent images to the reference. The volume of water can then be computed using the Beer-Lambert law. This method can be limiting because it requires exact image alignment between the reference image and all subsequent images. A model of neutron attenuation in a multi-phase cementitious composite was developed to be used in cases where a reference image is not available. The attenuation coefficients for water, un-hydrated cement, and sand were directly calculated from the neutron images. The attenuation coefficient for the hydration products was then back-calculated. The model can estimate the degree of saturation in a mortar with known mixture proportions without using a reference image for calculation. Absorption in mortars exposed to various fluids (i.e., deionized water and calcium chloride solutions) were investigated

  13. Chloride transport in mortar at low moisture concentration

    NARCIS (Netherlands)

    Taher, A.; Zanden, van der A.J.J.; Brouwers, H.J.H.

    2014-01-01

    Chloride penetration into cementitious structures with a steel reinforcement results in corrosion of the steel. Concrete columns of bridges, which are in frequent contact with sea water, are an example of these structures. Understanding the chloride transport in cementitious materials can lead to

  14. A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent

    Science.gov (United States)

    Gimeno-Sotelo, Luis; Nieto, Raquel; Vázquez, Marta; Gimeno, Luis

    2018-05-01

    In this study we use the term moisture transport for precipitation for a target region as the moisture coming to this region from its major moisture sources resulting in precipitation over the target region (MTP). We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is statistically significant and consistent with changes in the vertically integrated moisture fluxes and frequency of circulation types. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognised in relation to enhanced Arctic precipitation throughout the year in the present climate.

  15. Analytical analysis of soil-moisture and trace-contaminant transport

    International Nuclear Information System (INIS)

    Larson, N.M.; Reeves, M.

    1976-03-01

    A transport model is presented which predicts the coupled movement of both water and trace contaminants through a layered and unsaturated soil-moisture zone. In order to achieve computation speeds suitable for watershed implementations, moisture properties are approximated as exponential functions of pressure head, and lateral flows are treated as sinks in a basically vertical one-dimensional analysis. In addition, only advection by the Darcy-flow velocities and linear adsorption by the soil matrix are considered in depicting movement of the trace contaminant. Formal solution of the resulting transport equations is obtained through use of both eigenfunction-expansion and coordinate-transformation methods. Numerical solution is effected by means of a program written in FORTRAN IV and implemented on an IBM 360/91 computer. Two example calculations illustrate both strengths and weaknesses of our model

  16. Transport of radioactive droplet moisture from a source in a nuclear power plant spray pond

    International Nuclear Information System (INIS)

    Elokhin, A.P.

    1995-01-01

    In addition to a change in the microclimate in the region surrounding a nuclear power plant resulting from the emission of vapor form a cooling tower, evaporation of water from the water surface of a cooling pond or a spray pond, in the latter case direct radioactive contamination of the underlying surface around the nuclear power plant can also occur due to discharge of process water (radioactive) into the pond and its transport in the air over a certain distance in the form of droplet moisture. A typical example may be the situation at the Zaporozhe nuclear power plant in 1986 when accidental discharge of process water into the cooling pond occurred. Below we present a solution for the problem of transport of droplet moisture taking into account its evaporation, which may be used to estimate the scale of radioactive contamination of the locality

  17. Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

    Science.gov (United States)

    Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2018-05-01

    The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.

  18. North Atlantic Oscillation and moisture transport towards the Iberian Peninsula during winter

    Science.gov (United States)

    Ordóñez, Paulina; Liberato, Margarida L. R.; Gouveia, Célia; Trigo, Ricardo M.

    2013-04-01

    The North Atlantic Oscillation (NAO) is the major source of interannual variability in winter precipitation over the Iberian Peninsula (IP). Recent works have identified the most important sources of moisture that supply the IP during different seasons of the year, including the nearby western Mediterranean and the tropical-subtropical North Atlantic corridor that extends from the Gulf of Mexico to the IP, and the IP itself (Gimeno et al., 2010). However, although rainfall is directly related to the moisture supply, the relationship between the water vapor transported towards IP and the NAO phase remains unclear. In this work the moisture transport towards IP was analyzed using a Lagrangian diagnosis method, which relies on the Lagrangian particle dispersion model FLEXPART. This methodology computes budgets of evaporation minus precipitation (E-P) by evaluating changes in the specific humidity along back-trajectories. Here we have computed (for each day) the evolution of moisture of the particles bound for Iberia up to 10 days prior to their arrival. The analysis was constrained to the winter (DJF) season, responsible for the largest fraction of precipitation, for the 20 years of ECMWF Reanalyses ERA40 dataset from 1980 to 2000. The contribution of the NAO phase on the water budgets is examined using composites of the obtained (E - P) fields for the 5 most extreme positive and negative NAO years of the study period. Results confirm that the IP is dominated by positive (negative) E-P anomalies during positive (negative) NAO phase. Additionally an anomalous water vapor sink (source) region located approximately over the Gulf Stream is found during positive (negative) NAO phase. Gimeno L., Nieto R., Trigo R.M. , Vicente-Serrano S.M, Lopes-Moreno J.I., (2010) "Where does the Iberian Peninsula moisture come from? An answer based on a Lagrangian approach". J. Hydrometeorology, 11, 421-436 DOI: 10.1175/2009JHM1182.1.

  19. Analysis of moisture transport between connected enclosures under a forced thermal gradient

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Joshy, Salil; Ambat, Rajan

    2016-01-01

    and humidity control solutions. While high fidelity CFD codes are too time consuming due to computational effort/time, the well-known Resistor-Capacitor (RC) approach has much lower calculation time and is more efficient to use in enclosures without too complex geometry in their interior. Thus, the objective...... of this paper is to build an in-house code based on the RC approach for simulating coupled heat and mass transport. The developed code is used for simulating moisture transport between two boxes/enclosures having different temperatures, connected with a tube of known geometry. It has also the capability...

  20. The impacts of moisture transport on drifting snow sublimation in the saltation layer

    Directory of Open Access Journals (Sweden)

    N. Huang

    2016-06-01

    Full Text Available Drifting snow sublimation (DSS is an important physical process related to moisture and heat transfer that happens in the atmospheric boundary layer, which is of glaciological and hydrological importance. It is also essential in order to understand the mass balance of the Antarctic ice sheets and the global climate system. Previous studies mainly focused on the DSS of suspended snow and ignored that in the saltation layer. Here, a drifting snow model combined with balance equations for heat and moisture is established to simulate the physical DSS process in the saltation layer. The simulated results show that DSS can strongly increase humidity and cooling effects, which in turn can significantly reduce DSS in the saltation layer. However, effective moisture transport can dramatically weaken the feedback effects. Due to moisture advection, DSS rate in the saltation layer can be several orders of magnitude greater than that of the suspended particles. Thus, DSS in the saltation layer has an important influence on the distribution and mass–energy balance of snow cover.

  1. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards.

    Science.gov (United States)

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner

    2011-01-01

    Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.

  2. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    Directory of Open Access Journals (Sweden)

    Philipp Comanns

    2011-04-01

    Full Text Available Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus, the Arabian toadhead agama (Phrynocephalus arabicus and the Texas horned lizard (Phrynosoma cornutum. All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water.

  3. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    Science.gov (United States)

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang

    2011-01-01

    Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432

  4. Moisture transport from the Atlantic to the Pacific basin and its response to North Atlantic cooling and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Ingo [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States)

    2010-08-15

    Atmospheric moisture transport from the Atlantic to the Pacific basin plays an important role in regulating North Atlantic salinity and thus the strength of the thermohaline circulation. Potential changes in the strength of this moisture transport are investigated for two different climate-change scenarios: North Atlantic cooling representative of Heinrich events, and increased greenhouse gas (GHG) forcing. The effect of North Atlantic cooling is studied using a coupled regional model with comparatively high resolution that successfully simulates Central American gap winds and other important aspects of the region. Cooler North Atlantic sea surface temperature (SST) in this model leads to a regional decrease of atmospheric moisture but also to an increase in wind speed across Central America via an anomalous pressure gradient. The latter effect dominates, resulting in a 0.13 Sv (1 Sv = 10{sup 6} m{sup 3} s{sup -1}) increase in overall moisture transport to the Pacific basin. In fresh water forcing simulations with four different general circulation models, the wind speed effect is also present but not strong enough to completely offset the effect of moisture decrease except in one model. The influence of GHG forcing is studied using simulations from the Intergovernmental Panel on Climate Change archive. In these simulations atmospheric moisture increases globally, resulting in an increase of moisture transport by 0.25 Sv from the Atlantic to Pacific. Thus, in both scenarios, moisture transport changes act to stabilize the thermohaline circulation. The notion that the Andes effectively block moisture transport from the Atlantic to the Pacific basin is not supported by the simulations and atmospheric reanalyses examined here. This indicates that such a blocking effect does not exist or else that higher resolution is needed to adequately represent the steep orography of the Andes. (orig.)

  5. The role of moisture transport between ground and atmosphere in global change

    International Nuclear Information System (INIS)

    Rind, D.; Rosenzweig, C.; Stieglitz, M.

    1997-01-01

    Projections of the effect of climate change on future water availability are examined by reviewing the formulations used to calculate moisture transport between the ground and the atmosphere. General circulation models and climate change impact models have substantially different formulations for evapotranspiration, so their projections of future water availability often disagree, even though they use the same temperature and precipitation forecasts. General circulation models forecast little change in tropical and subtropical water availability, while impact models show severe water and agricultural shortages. A comparison of observations and modeling techniques shows that the parameterizations in general circulation models likely lead to an underestimate of the impacts of global warming on soil moisture and vegetation. Such errors would crucially affect the temperature and precipitation forecasts used in impact models. Some impact model evaporation formulations are probably more appropriate than those in general circulation models, but important questions remain. More observations are needed, especially in the vicinity of forests, to determine appropriate parameterizations

  6. Quantitative diagnosis of moisture sources and transport pathways for summer precipitation over the mid-lower Yangtze River Basin

    Science.gov (United States)

    Wang, Ning; Zeng, Xin-Min; Guo, Wei-Dong; Chen, Chaohui; You, Wei; Zheng, Yiqun; Zhu, Jian

    2018-04-01

    Using a moisture tracking model with 32-year reanalysis data and station precipitation observations, we diagnosed the sources of moisture for summer (June 1-August 31) precipitation in mid-lower reaches of the Yangtze River Basin (YRB). Results indicate the dominant role of oceanic evaporation compared to terrestrial evapotranspiration, and the previously overlooked southern Indian Ocean, as a source region, is found to contribute more moisture than the well-known Arabian Sea or Bay of Bengal. Terrestrial evapotranspiration appears to be important for summer precipitation, especially in early June when moisture contribution is more than 50%. The terrestrial contribution then decreases and is generally less than 40% after late June. The Indian Ocean is the most important oceanic source before mid-July, with its largest contribution during the period of heavy precipitation, while the Pacific Ocean becomes the more important oceanic source after mid-July. To quantitatively analyze paths of moisture transport to YRB, we proposed the Trajectory Frequency Method. The most intense branch of water vapor transport to YRB stretches from the Arabian Sea through the Bay of Bengal, the Indochina Peninsula, the South China Sea, and South China. The other main transport branches are westerly moisture fluxes to the south of the Tibetan Plateau, cross-equatorial flows north of Australia, and separate branches located in the north and equatorial Pacific Ocean. Significant intraseasonal variability for these branches is presented. Additionally, the importance of the South China Sea for moisture transport to YRB, especially from the sea areas, is emphasized.

  7. Changes in atmospheric rivers and moisture transport over the Northeast Pacific and western North America in response to ENSO diversity

    Science.gov (United States)

    Kim, Hye-Mi; Zhou, Yang; Alexander, Michael A.

    2017-03-01

    The year-to-year changes in atmospheric rivers (ARs) and moisture transport over the northeast Pacific and western North America are investigated during December to February (DJF) from 1979/80 to 2015/16. Changes in AR frequency, intensity, and landfall characteristics are compared between three ENSO phases: central Pacific El Niño (CPEN), eastern Pacific El Niño (EPEN), and La Niña (NINA). During EPEN events, the subtropical jet extends to the south and east with an anomalous cyclonic flow around a deeper Aleutian Low. More moisture is transported towards North America and AR frequency is increased over western North America. In CPEN events, the Aleutian low shifts further southward relative to its position in EPEN, resulting in an increase in the frequency and intensity of landfalling ARs over the southwestern US. In NINA events, the landfalling AR frequency is reduced associated with anomalous anticyclonic circulation over the eastern North Pacific. We diagnose the contribution of multiple factors to the seasonal mean moisture transport using moisture budgets. During the three ENSO phases, the change in low-frequency circulation (dynamical process) is the leading contributor to the seasonal mean moisture flux divergence, while the contributions of the synoptic anomalies and the change in moisture anomaly (thermodynamic process) are not significant along the west coast of North America.

  8. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process

    International Nuclear Information System (INIS)

    Aiki, Toyohiko; Kumazaki, Kota

    2012-01-01

    From civil engineering point of view it is very important to construct and analyze a mathematical model for a mechanism of concrete carbonation process. On this subject there are several mathematical results concerned with a one-dimensional model, in which hysteresis effects are neglected. Our aim is to give a model with hysteresis effects appearing in carbonation process. In this paper, as the first step of this research we focus only on moisture transport in the process and propose an initial boundary value problem for a system of partial differential equations as a mathematical model. Also, we give results on the existence of a solution to the problem, globally in time and the uniqueness in only one-dimensional case without proofs.

  9. Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Nalli, Nicholas R.; Barnet, Christopher D.; Reale, Tony; Liu, Quanhua; Morris, Vernon R.; Spackman, J. Ryan; Joseph, Everette; Tan, Changyi; Sun, Bomin; Tilley, Frank; Leung, L. Ruby; Wolfe, Daniel

    2016-12-01

    This paper examines the performance of satellite sounder atmospheric vertical moisture proles (AVMP) under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs) and Pacific Ocean moisture conveyer belts (MCBs) commonly referred to as atmospheric rivers (ARs), both of these being mesoscale to synoptic meteorological phenomena within the vicinity of subtropical Hadley subsidence zones. Operational AVMP environmental data records retrieved from the Suomi National Polar-orbiting Partnership (SNPP) NOAA-Unique Combined Atmospheric Processing System (NUCAPS) are collocated with dedicated radiosonde observations (RAOBs) obtained from ocean-based intensive field campaigns; these RAOBs provide uniquely independent correlative truth data not assimilated into numerical weather prediction models for satellite sounder validation over open ocean. Using these marine-based data, we empirically assess the performance of the operational NUCAPS AVMP product for detecting and resolving these tropospheric moisture features over otherwise RAOB-sparse regions.

  10. The Tokar Gap Jet: Regional Circulation, Diurnal Variability, and Moisture Transport Based on Numerical Simulations

    KAUST Repository

    Davis, Shannon R.

    2015-05-14

    The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.

  11. The Impacts of Atmospheric Moisture Transportation on Warm Sector Torrential Rains over South China

    Directory of Open Access Journals (Sweden)

    Shuixin Zhong

    2017-06-01

    Full Text Available Warm Sector Torrential Rains (WSTRs occurring during the outbreak of the monsoon in May of 2015 in South China were studied using surface automatic weather observational data, sounding, European Centre for Medium-Range Weather Forecasts Reanalysis interim Data (ERA-interim, satellite and radar data, and a four-level nested grid simulation with the finest grid spacing of 1 km using the Weather Research and Forecasting model (WRF. The results show that the extreme precipitation event, which had maximum rainfall amounts of 406.3 mm in 10 h and 542.2 mm in 24 h on 20 May 2015, and was characterized by its rapid development and its highly concentrated and long duration of heavy rainfall, occurred over the trumpet-shaped topography of Haifeng. The simulation results indicated that the South China Sea (SCS atmospheric moisture transportation (AMT was crucial in triggering the precipitation of the WSTR over South China. The simulation of the WSTR was conducted by using the total energy-mass flux scheme (TEMF, which provided a reasonable simulation of the circulation and the vertical profile in the Planetary Boundary Layer (PBL as well as the estimation of the precipitation. The AMT, which extends from the Beibu Gulf and the South China Sea to the coastal areas and provides Shanwei with a considerable amount of moisture in the boundary layer, and the effects within the PBL, which include orographic effects, an extra low-level jet, and a high-energy tongue characterized by a high-potential pseudo-equivalent temperature tongue with a warm and moist southwesterly wind, were the important large-scale factors causing the WSTR.

  12. Indian Monsoon Low-Pressure Systems Feed Up-and-Over Moisture Transport to the Southwestern Tibetan Plateau

    Science.gov (United States)

    Dong, Wenhao; Lin, Yanluan; Wright, Jonathon S.; Xie, Yuanyu; Xu, Fanghua; Xu, Wenqing; Wang, Yan

    2017-11-01

    As an integral part of the South Asian summer monsoon system, monsoon low-pressure systems (LPSs) bring large amounts of precipitation to agrarian north and central India during their passage across the subcontinent. In this study, we investigate the role of LPSs in supplying moisture from north and central India to the southwestern Tibetan Plateau (SWTP) and quantify the contribution of these systems to summer rainfall over the SWTP. The results show that more than 60% of total summer rainfall over the SWTP is related to LPS occurrence. LPSs are associated with a 15% rise in average daily rainfall and a 10% rise in rainy days over the SWTP. This relationship is maintained primarily through up-and-over transport, in which convectively lifted moisture over the Indian subcontinent is swept over the SWTP by southwesterly winds in the middle troposphere. LPSs play two roles in supplying up-and-over moisture transport. First, these systems elevate large amounts of water vapor and condensed water to the midtroposphere. Second, the circulations associated with LPSs interact with the background westerlies to induce southwesterly flow in the midtroposphere, transporting elevated moisture and condensate over the Himalayan Mountains. Our findings indicate that LPSs are influential in extending the northern boundary of the South Asian monsoon system across the Himalayas into the interior of the SWTP. The strength of this connection depends on both LPS characteristics and the configuration of the midtropospheric circulation, particularly the prevailing westerlies upstream of the SWTP.

  13. EFFECT OF SANDSTONE ANISOTROPY ON ITS HEAT AND MOISTURE TRANSPORT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Jan Fořt

    2015-09-01

    Full Text Available Each type of natural stone has its own geological history, formation conditions, different chemical and mineralogical composition, which influence its possible anisotropy. Knowledge in the natural stones anisotropy represents crucial information for the process of stone quarrying, its correct usage and arrangement in building applications. Because of anisotropy, many natural stones exhibit different heat and moisture transport properties in various directions. The main goal of this study is to analyse several anisotropy indices and their effect on heat transport and capillary absorption. For the experimental determination of the anisotropy effect, five types of sandstone coming from different operating quarries in the Czech Republic are chosen. These materials are often used for restoration of culture heritage monuments as well as for other building applications where they are used as facing slabs, facade panels, decoration stones, paving, etc. For basic characterization of studied materials, determination of their bulk density, matrix density and total open porosity is done. Chemical composition of particular sandstones is analysed by X-Ray Fluorescence. Anisotropy is examined by the non-destructive measurement of velocity of ultrasonic wave propagation. On the basis of ultrasound testing data, the relative anisotropy, total anisotropy and anisotropy coefficient are calculated. Then, the measurement of thermal conductivity and thermal diffusivity in various directions of samples orientation is carried out. The obtained results reveal significant differences between the parameters characterizing the heat transport in various directions, whereas these values are in accordance with the indices of anisotropy. Capillary water transport is described by water absorption coefficient measured using a sorption experiment, which is performed for distilled water and 1M NaCl water solution.  The measured data confirm the effect of anisotropy which is

  14. Evaluation of the Free Volume Theory to Predict Moisture Transport and Quality Changes During Broccoli Drying

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Boxtel, van A.J.B.

    2011-01-01

    Moisture diffusion in porous broccoli florets and stalks is modeled using the free volume and Maxwell-Eucken theories. These theories are based on the mobility of water and concern the variation of the effective diffusion coefficient for a wide range of temperature and moisture content during

  15. Evaluation of the free volume theory to predict moisture transport and quality changes during broccoli drying

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Boxtel, van A.J.B.

    2010-01-01

    Abstract: Moisture diffusion in porous broccoli florets and stalks is modeled by using the free volume and Maxwell-Eucken theories. These theories are based on the mobility of water and show the variation of the effective diffusion coefficient for a wide range of temperatures and moisture content of

  16. A new Model Applicable for Finite Element Simulations of Moisture Transport in Wood

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Svensson, Staffan; Damkilde, Lars

    2006-01-01

    The moisture content in wood near the surface depends not only on the current relative humidity in the ambient air but also on preceeding variations. This hysteresis phenomenon of sorption implies in worst case that the moisture content for a given relative humidity may deviate 30-35%. Current...

  17. The influence of the pore structure on the moisture transport in lime plaster-brick systems as studied by NMR

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Pel, L.; Kunecký, Jiří; Slížková, Zuzana

    2017-01-01

    Roč. 142, July (2017), s. 395-409 ISSN 0950-0618 R&D Projects: GA MŠk(CZ) LO1219 Keywords : drying * moisture transport * NMR * pore water distribution * plaster * brick * lime * metakaolin * water-repellent * linseed oil Subject RIV: AL - Art, Architecture, Cultural Heritage OBOR OECD: Materials engineering Impact factor: 3.169, year: 2016 http://www.sciencedirect.com/science/article/pii/S0950061817304543

  18. Soil moisture transport during the 1974--1975 and 1975--1976 water years

    International Nuclear Information System (INIS)

    Last, G.V.; Easley, P.G.; Brown, D.J.

    1976-12-01

    The rate and direction of soil moisture movement in Hanford sediments were determined for the 1974-1975 and 1975-1976 water years. The data for these determinations was obtained from two large lysimeters located on the 200 area plateau near the center of the Hanford Reservation. During the 1974-75 water year, meteoric moisture percolated to a depth of 2.5 meters with a peak moisture content of 10.5 volume-percent. This percolation envelope was eliminated by evaporation during the hot dry summer of 1975. The 1975-76 water year had only 70 percent of the normal precipitation, thus the percolation envelope was small and penetrated to a depth of only two meters. However, in spite of this shallow depth and low volume of moisture, the percolation envelope was not eliminated by the end of the water year because of lower seasonal temperatures and higher humidity during the drying season. Moisture content of sediments in the 4-18 meter depth range showed no relative change throughout the two water years, and no moisture accumulated at the bottom of the lysimeters, which indicates there is no deep percolation of meteoric moisture at this site, and no recharge to the ground water

  19. Moisture transport properties of brick – comparison of exposed, impregnated and rendered brick

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Bjarløv, Søren Peter; Peuhkuri, Ruut

    2016-01-01

    In regards to internal insulation of preservation worthy brick façades, external moisture sources, such as wind-driven rain exposure, inevitably has an impact on moisture conditions within the masonry construction. Surface treatments, such as hydrophobation or render, may remedy the impacts...... of external moisture. In the present paper the surface absorption of liquid water on masonry façades of untreated, hydrophobated and rendered brick, are determined experimentally and compared. The experimental work focuses on methods that can be applied on-site, Karsten tube measurements. These measurements...... are supplemented with results from laboratory measurements of water absorption coefficient by partial immersion. Based on obtained measurement results, simulations are made with external liquid water loads for determination of moisture conditions within the masonry of different surface treatments. Experimental...

  20. Understanding the role of moisture transport on the dry bias in indian monsoon simulations by CFSv2

    Science.gov (United States)

    Sahana, A. S.; Pathak, Amey; Roxy, M. K.; Ghosh, Subimal

    2018-02-01

    We analyse the bias present in the Indian Summer Monsoon Rainfall (ISMR), as simulated by Climate Forecast System Model 2 (CFSv2), the operational model used for monsoon forecasts in India. In the simulations, the precipitation intensity is redistributed within the ITCZ band with southward shifts of precipitation maxima. We observe weakening of maximum intensity of precipitation over the region between 20°N and 14°N. In the simulations by CFSv2, there exists two rain bands: the northern one located slightly southward compared to reanalysis dataset and the southern one over the equator with intensified precipitation. This results in dry bias over land and wet bias over the ocean. We use a Dynamic Recycling Model, based on Lagrangian approach, to investigate the role of various moisture sources in generating these biases. We find that, the dry bias during June exists due to the delayed monsoon onset and reduced moisture flow from the Arabian Sea. As the monsoon progresses, deficiency in the simulated contributions from South Indian Ocean becomes the key source of bias. The reduced supply of moisture from oceanic sources is primarily attributed to the weaker northward transport of moisture flux from the Southern Ocean, associated with a weaker southward energy flux. Inefficiency of the model in simulating the heating in Tibetan plateau during the pre-monsoon period leads to this reduced cross equatorial energy flow. We also find that, towards the end of monsoon season, moisture contributions from land sources namely, Ganga Basin and North-Eastern forests become significant and underestimations of the same in the simulations by CFSv2 result into biases over Central and Eastern India.

  1. Soil-gas phase transport and structure parameters for soils under different management regimes and at two moisture levels

    DEFF Research Database (Denmark)

    Eden, Marie; Møldrup, Per; Schjønning, Per

    2012-01-01

    Measurements of diffusive and convective gas transport parameters can be used to describe soil functional architecture and reveal key factors for soil structure development. Undisturbed 100-cm(3) soil samples were sampled at the Long-term Research on Agricultural Systems experiment located...... displayed markedly lower D-P/D-0 values at similar air-filled porosity, illustrating soil structure effects on D-P/D-0. The Currie tortuosity-connectivity parameter, X=Log(D-P/D-0)/Log(epsilon), decreased with increasing bulk density in the intact samples at both moisture conditions, suggesting less...

  2. Graphene: Polymer composites as moisture barrier and charge transport layer toward solar cell applications

    Science.gov (United States)

    Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu

    2018-05-01

    Graphene: polymer composite based electrically conducting films are realized by a facile solution processable method. Ultraviolet Photoelectron Spectroscopy (UPS) measurements on the composite films, reveal a low work function of reduced graphene oxide (rGO) obtained from hydrazine hydrate reduction of graphene oxide (GO). We suggest that the low work function could potentially make rGO: PMMA composite suitable for electron conducting layer in perovskite solar cells in place of traditionally used expensive PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) layer. Further, we demonstrate from the gravimetric experiments conducted on rGO: PMMA films, that the same coating is also resistant to moisture permeation. This latter property can be used to realize a protective coating layer for perovskite films, which are prone to moisture induced degradation. Thus, dual functionality of rGO-PMMA films is demonstrated towards integration with perovskite solar cells. Architecture of perovskite solar cell based on these concepts is proposed.

  3. A two-phase moisture transport model accounting for sorption hysteresis in layered porous building constructions

    DEFF Research Database (Denmark)

    Johannesson, Björn; Janz, Mårten

    2009-01-01

    Building constructions most commonly consists of layered porous materials such as masonry on bricks. The moisture distribution and its variations due to change in surrounding environment is of special interest in such layered construction since materials adsorb different amounts of water and exhi......Building constructions most commonly consists of layered porous materials such as masonry on bricks. The moisture distribution and its variations due to change in surrounding environment is of special interest in such layered construction since materials adsorb different amounts of water....... The model is developed by carefully examining the mass balance postulates for the two considered constituents together with appropriate and suitable constitutive assumptions. A test example is solved by using an implemented implicit finite element code which uses a modified Newton-Raphson scheme to tackle...

  4. Two-dimensional model of coupled heat and moisture transport in frost-heaving soils

    International Nuclear Information System (INIS)

    Guymon, G.L.; Berg, R.L.; Hromadka, T.V.

    1984-01-01

    A two-dimensional model of coupled heat and moisture flow in frost-heaving soils is developed based upon well known equations of heat and moisture flow in soils. Numerical solution is by the nodal domain integration method which includes the integrated finite difference and the Galerkin finite element methods. Solution of the phase change process is approximated by an isothermal approach and phenomenological equations are assumed for processes occurring in freezing or thawing zones. The model has been verified against experimental one-dimensional freezing soil column data and experimental two-dimensional soil thawing tank data as well as two-dimensional soil seepage data. The model has been applied to several simple but useful field problems such as roadway embankment freezing and frost heaving

  5. Determination of moisture in coal, in the case of discontinuous transport, using condensers

    Energy Technology Data Exchange (ETDEWEB)

    Prieto-Fernandez, Ismael; Luengo-Garcia, Juan-Carlos; Alonso, Manuela [Area Maquinas y Motores Termicos, Universidad de Oviedo, Campus Universitario, 33203 , Asturias Gijon (Spain)

    2002-02-20

    The need for a rapid method of determining the technological characteristics of coal has been increasing in the last decades. The coal industry demands methods of coal analysis on a rapid and reasonably accurate basis. In this report, a non-conventional system for moisture analysis of thermal coal, based on capacitance techniques, is proposed. A device for non-continuous analysis based on this technique is designed and developed. Such device simulates a cylindrical condenser, in which coal acts as the dielectric material. The device is used to measure moisture content in coals. The results from the statistical analyses and conclusions are presented. Also, on-site potential use of capacitance techniques is shown.

  6. Spatiotemporal Variance of Global Horizontal Moisture Transport and the Influence of Strong ENSO Events Using ERA-Interim Reanalysis

    Science.gov (United States)

    Kutta, E. J.; Hubbart, J. A.; Svoma, B. M.; Eichler, T. P.; Lupo, A. R.

    2016-12-01

    El Nino-Southern Oscillation (ENSO) is well documented as a leading source of seasonal to inter-annual variations in global weather and climate. Strong ENSO events have been shown to alter the location and magnitude of Hadley and Walker circulations that maintain equilibrium at tropical latitudes and regulate moisture transport into mid-latitude storm tracks. Broad impacts associated with ENSO events include anomalous regional precipitation (ARP) and temperature patterns and subsequent impacts to socioeconomic and human health systems. Potential socioeconomic and human health impacts range from regional changes in water resources and agricultural productivity to local storm water management, particularly in rapidly urbanizing watersheds. Evidence is mounting to suggest that anthropogenic climate change will increase the frequency of heavy precipitation events, which compounds impacts of ARP patterns associated with strong El Nino events. Therefore, the need exists to identify common regional patterns of spatiotemporal variance of horizontal moisture flux (HMF) during months (Oct-Feb) associated with the peak intensity (Oceanic Nino Index [ONI]) of the three strongest El Nino (ONI > µ + 2σ) and La Nina (ONI hourly resolution before taking the density weighted vertical average. Long term means (LTM; 1979-2015) were quantified and the influence of strong ENSO events was assessed by quantifying deviations from the LTM for each respective covariance property during months associated with the selected ENSO events. Results reveal regions of statistically significant (CI = 0.05) differences from the LTM for the vertically integrated HMF and each covariance quantity. Broader implications of this work include potential for improved seasonal precipitation forecasts at regional scales and subsequent improvements to local water resource management. There is potential for future work objectively comparing these results with output from Earth System Models to improve

  7. Global well-posedness for passively transported nonlinear moisture dynamics with phase changes

    Science.gov (United States)

    Hittmeir, Sabine; Klein, Rupert; Li, Jinkai; Titi, Edriss S.

    2017-10-01

    We study a moisture model for warm clouds that has been used by Klein and Majda (2006 Theor. Comput. Fluid Dyn. 20 525-551) as a basis for multiscale asymptotic expansions for deep convective phenomena. These moisture balance equations correspond to a bulk microphysics closure in the spirit of Kessler (1969 Meteorol. Monogr. 10 1-84) and Grabowski and Smolarkiewicz (1996 Mon. Weather Rev. 124 487-97), in which water is present in the gaseous state as water vapor and in the liquid phase as cloud water and rain water. It thereby contains closures for the phase changes condensation and evaporation, as well as the processes of autoconversion of cloud water into rainwater and the collection of cloud water by the falling rain droplets. Phase changes are associated with enormous amounts of latent heat and therefore provide a strong coupling to the thermodynamic equation. In this work we assume the velocity field to be given and prove rigorously the global existence and uniqueness of uniformly bounded solutions of the moisture model with viscosity, diffusion and heat conduction. To guarantee local well-posedness we first need to establish local existence results for linear parabolic equations, subject to the Robin boundary conditions on the cylindric type of domains under consideration. We then derive a priori estimates, for proving the maximum principle, using the Stampacchia method, as well as the iterative method by Alikakos (1979 J. Differ. Equ. 33 201-25) to obtain uniform boundedness. The evaporation term is of power law type, with an exponent in general less or equal to one and therefore making the proof of uniqueness more challenging. However, these difficulties can be circumvented by introducing new unknowns, which satisfy the required cancellation and monotonicity properties in the source terms.

  8. Ionic Diffusion and Kinetic Homogeneous Chemical Reactions in the Pore Solution of Porous Materials with Moisture Transport

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2009-01-01

    Results from a systematic continuum mixture theory will be used to establish the governing equations for ionic diffusion and chemical reactions in the pore solution of a porous material subjected to moisture transport. The theory in use is the hybrid mixture theory (HMT), which in its general form......’s law of diffusion and the generalized Darcy’s law will be used together with derived constitutive equations for chemical reactions within phases. The mass balance equations for the constituents and the phases together with the constitutive equations gives the coupled set of non-linear differential...... general description of chemical reactions among constituents is described. The Petrov – Galerkin approach are used in favour of the standard Galerkin weighting in order to improve the solution when the convective part of the problem is dominant. A modified type of Newton – Raphson scheme is derived...

  9. Using the internal stress concept to assess the importance of moisture sorption-induced swelling on the moisture transport through the glassy HPMC films

    NARCIS (Netherlands)

    Laksmana, Fesia L.; Kok, Paul J.A. Hartman; Frijlink, Henderik W.; Vromans, Herman; Van der Voort Maarschalk, Kees

    2008-01-01

    The purpose of this research was to elucidate the significance of the changes in the mechanical and the volumetric properties on the moisture diffusivity through the polymer films. The internal stress concept was adapted and applied to estimate the relative impact of these property changes on the

  10. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Science.gov (United States)

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  11. Uranium (VI) Sorption and Transport in Unsaturated, Subsurface Hanford Site Sediments - Effect of Moisture Content and Sediment Texture: Final Report for Subtask 2b

    International Nuclear Information System (INIS)

    Gamerdinger, A.P.; Resch, C.T.; Kaplan, D.I.

    1998-01-01

    A series of experiments were conducted in fiscal year 1998 at the Pacific Northwest National Laboratory as part of the Immobilized Low-Activity Waste-Performance Assessment. These experiments evaluated the sorption and transport of uranium, U(VI), under conditions of partial moisture saturation that are relevant to arid region burial sites and vadose-zone far-field conditions at the Hanford Site. The focus was on measuring breakthrough curves (from which distribution coefficient [K d ] values can be calculated) for U(W) in three Hanford Site sediments that represent different texture classes in two unsaturated moisture conditions. Previous research showed that K d values measured during transport in unsaturated sediments varied with moisture saturation

  12. Finite element simulation of moisture movement and solute transport in a large caisson

    International Nuclear Information System (INIS)

    Huyakorn, P.S.; Jones, B.G.; Parker, J.C.; Wadsworth, T.D.; White, H.O. Jr.

    1987-01-01

    The results of the solute transport experiments performed on compacted, crushed Bandelier Tuff in caisson B of the experimental cluster described by DePoorter (1981) are simulated. Both one- and three-dimensional simulations of solute transport have been performed using two selected finite element codes. Results of bromide and iodide tracer experiments conducted during near-steady flow conditions have been analyzed for pulse additions made on December 6, 1984, and followed over a period of up to 60 days. In addition, a pulse addition of nonconservative strontium tracer on September 28, 1984, during questionably steady flow conditions has been analyzed over a period of 240 days. One-dimensional finite element flow and transport simulations were carried out assuming the porous medium to be homogeneous and the injection source uniformly distributed. To evaluate effects of the nonuniform source distribution and also to investigate effects of inhomogeneous porous medium properties, three dimensional finite element analyses of transport were carried out. Implications of the three-dimensional effects for the design and analysis of future tracer studies are discussed

  13. Application of thermal neutron radiography for the mass transport of moisture through freezing soil

    International Nuclear Information System (INIS)

    Clark, M.A.

    1989-04-01

    This thesis reports on the development of a technique to evaluate hydraulic conductivities in a soil (Snowcal) subject to freezing conditions. The technique draws on three distinctly different disciplines, Nuclear Physics, Soil Physics and Remote Sensing to provide a non-destructive and reliable evaluation of hydraulic conductivity throughout a freezing test. Thermal neutron radiography is used to provide information on local water/ice contents at anytime throughout the test. The experimental test rig is designed so that the soil matrix can be radiated by a neutron beam, from a nuclear reactor, to obtain radiographs. The radiographs can then be interpreted, following a process of remote sensing image enhancement, to yield information on relative water/ice contents. Interpretation of the radiographs is accommodated using image analysis equipment capable of distinguishing between 256 shades of grey. Remote sensing image enhancing techniques are then employed to develop false colour images which show the movement of water and development of ice lenses in the soil. Instrumentation is incorporated in the soil in the form of psychrometer/thermocouples, to record water potential, electrical resistance probes to enable ice and water to be differentiated on the radiographs and thermocouples to record the temperature gradient. Water content determinations are made from the enhanced images and plotted against potential measurements to provide the moisture characteristic for the soil. With relevant mathematical theory pore water distributions are obtained and combined with water content data to give hydraulic conductivities. The values for hydraulic conductivity in the saturated soil and at the frozen fringe are compared with established values for silts and silty-sands. The values are in general agreement and, with refinement, this non-destructive technique could afford useful information on a whole range of soils. (author)

  14. Solid waste leach characteristics and contaminant-sediment interactions Volume 2: Contaminant transport under unsaturated moisture contents

    International Nuclear Information System (INIS)

    Lindenmeier, C.W.; Serne, R.J.; Conca, J.L.

    1995-09-01

    The objectives of this report and subsequent volumes include describing progress on (1) development and optimization of experimental methods to quantify the release of contaminants from solid wastes and their subsequent interactions with unsaturated sediments and (2) the creation of empirical data that become input parameters to performance assessment (PA) analyses for future Hanford Site disposal units and baseline risk assessments for inactive and existing solid waste disposal units. For this report, efforts focused on developing methodologies to evaluate contaminant transport in Trench 8 (W-5 Burial Ground) sediments under unsaturated (vadose zone) conditions. To accomplish this task, a series of flow-through column tests were run using standard saturated column systems, Wierenga unsaturated column systems (both commercial and modified), and the Unsaturated Flow Apparatus (UFA). The reactants investigated were 85 Sr, 236 U, and 238 U as reactive tracers, and tritium as a non-reactive tracer. Results indicate that for moderately unsaturated conditions (volumetric water contents >50 % of saturation), the Wierenga system performed reasonably well such that long water residence times (50-147 h) were achieved, and reasonably good steady-state flow conditions were maintained. The major drawbacks in using this system for reactive tracer work included (1) the inability to achieve reproducible and constant moisture content below 50% of saturation, (2) the four to six month time required to complete a single test, and (3) the propensity for mechanical failure resulting from laboratory power outages during the prolonged testing period

  15. Warm–dry collocation of recent drought in southwestern China tied to moisture transport and climate warming

    International Nuclear Information System (INIS)

    Dai Xin-Gang; Liu Ye; Wang Ping

    2015-01-01

    This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in situ observations in China, and ERA-interim reanalysis are used to study the characteristics of the drought and the associated mechanism. Recent precipitation trends show a pattern of “Northern wetting and Southern drying”, similar to the anti-phase of the climate pattern prevailing during 1980–2000 in mainland China; southwestern China incurred a severe drought during 2009–2013. Wavelet analysis reveals that the drought coincides with a warm–dry phase of temperature and precipitation on a period of about 20 years and beyond 100 years, where contributions account for 43% and 57% of the deficiency of the precipitation, averaged for 2003–2012, respectively. A further investigation reveals that the drought results chiefly from the decline of the southwestern monsoon MT toward southwestern China, in addition to mid-latitude circulation changes, which leads to more blockings near the Ural Mountains and the Sea of Okhotsk in the rainy season and negative anomalies around Lake Baikal and northeast China in the dry season. These anomalies are likely to be correlated with global sea surface temperature changes and need to be studied further. (paper)

  16. Implementation of Fully Coupled Heat and Mass Transport Model to Determine Temperature and Moisture State at Elevated Temperatures

    DEFF Research Database (Denmark)

    Pecenko, R.; Hozjan, Tomaz; Svensson, Staffan

    2014-01-01

    The aim of this study is to present precise numerical formulation to determine temperature and moisture state of timber in the situation prior pyrolysis. The strong formulations needed for an accurate description of the physics are presented and discussed as well as their coupling terms. From...

  17. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work...

  18. Understanding Dry Bias in the Simulations of Indian Monsoon by CFSv2 Through Analysis of Moisture Transport

    Science.gov (United States)

    Saheer, Sahana; Pathak, Amey; Mathew, Roxy; Ghosh, Subimal

    2016-04-01

    Simulations of Indian Summer Monsoon (ISM) with its seasonal and subseasonal characteristics is highly crucial for predictions/ projections towards sustainable agricultural planning and water resources management. The Climate forecast system version 2 (CFSv2), the state of the art coupled climate model developed by National Center for Environmental Prediction (NCEP), is evaluated here for the simulations of ISM. Even though CFSv2 is a fully coupled ocean-atmosphere-land model with advanced physics, increased resolution and refined initialization, its ISM simulations/ predictions/ projections, in terms of seasonal mean and variability are not satisfactory. Numerous works have been done for verifying the CFSv2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO)-monsoon interactions. Underestimation of JJAS precipitation over the Indian land mass is one of the major drawbacks of CFSv2. ISM gets the moisture required to maintain the precipitation from different oceanic and land sources. In this work, we find the fraction of moisture supplied by different sources in the CFSv2 simulations and the findings are compared with observed fractions. We also investigate the possible variations in the moisture contributions from these different sources. We suspect that the deviation in the relative moisture contribution from different sources to various sinks over the monsoon region has resulted in the observed dry bias. We also find that over the Arabian Sea region, which is the key moisture source of ISM, there is a premature built up of specific humidity during the month of May and a decline during the later months of JJAS. This is also one of the reasons for the underestimation of JJAS mean precipitation.

  19. Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements

    Directory of Open Access Journals (Sweden)

    Y. González

    2016-04-01

    Full Text Available We present two years of in situ measurements of water vapour (H2O and its isotopologue ratio (δD, the standardized ratio between H216O and HD16O, made at two remote mountain sites on Tenerife in the subtropical North Atlantic. We show that the data – if measured during night-time – are well representative for the lower/middle free troposphere. We use the measured H2O-δD pairs, together with dust measurements and back trajectory modelling for analysing the moisture pathways to this region. We can identify four principally different transport pathways. The air mass transport from high altitudes and high latitudes shows two different scenarios. The first scenario brings dry air masses to the stations, as the result of condensation events occurring at low temperatures. The second scenario brings humid air masses to the stations, due to cross-isentropic mixing with lower-level and more humid air during transport since last condensation (LC. The third pathway is transportation from lower latitudes and lower altitudes, whereby we can identify rain re-evaporation as an occasional source of moisture. The fourth pathway is linked to the African continent, where during summer, dry convection processes over the Sahara very effectively inject humidity from the boundary layer to higher altitudes. This so-called Saharan Air Layer (SAL is then advected westward over the Atlantic and contributes to moisten the free troposphere. We demonstrate that the different pathways leave distinct fingerprints on the measured H2O-δD pairs.

  20. Moisture dynamics in building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Peuhkuri, R.

    2003-07-01

    The overall scope of this Thesis 'Moisture dynamics in building envelopes' has been to characterise how the various porous insulation materials investigated performed hygro thermally under conditions similar to those in a typical building envelope. As a result of the changing temperature and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. (au)

  1. Interzonal air and moisture transport through large horizontal openings in a full-scale two-story test-hut: Part 2 - CFD study

    Energy Technology Data Exchange (ETDEWEB)

    Vera, S. [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec (Canada); Department of Construction Engineering and Management, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, San Agustin building, 3rd floor, Campus San Joaquin, Macul, Santiago 6904411 (Chile); Fazio, P.; Rao, J. [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec (Canada)

    2010-03-15

    The aim of this paper is to study the air and moisture transport through a large horizontal opening in a full-scale two-story test-hut with mixed ventilation by means of computational fluid dynamics (CFD) simulations. CFD allows extending the experimental study presented in the companion paper and overcoming some limitations of experimental data. More than 80 cases were simulated for conditions similar to those tested experimentally and for additional ventilation rates and temperature difference between the two rooms. CFD simulations were performed in Airpak and the indoor zero-equation turbulence model was used. The CFD model was extensively validated with the distributions of air speed, temperature and humidity ratio measured across the two rooms, as well as with the measured interzonal mass airflows through the horizontal opening. CFD simulation results show that temperature difference between the two rooms and ventilation rate strongly influence the interzonal mass airflows through the opening when the upper room is colder than the lower room, while warm convective air currents from the baseboard heater and from the moisture source placed in the lower room cause upward mass airflows when the upper room is warmer than the lower room. Finally, empirical relationships between the upward mass airflow and the temperature difference between the two rooms are developed. (author)

  2. A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air.

    Science.gov (United States)

    Wissler, Eugene H; Havenith, George

    2009-03-01

    Overall resistances for heat and vapor transport in a multilayer garment depend on the properties of individual layers and the thickness of any air space between layers. Under uncomplicated, steady-state conditions, thermal and mass fluxes are uniform within the garment, and the rate of transport is simply computed as the overall temperature or water concentration difference divided by the appropriate resistance. However, that simple computation is not valid under cool ambient conditions when the vapor permeability of the garment is low, and condensation occurs within the garment. Several recent studies have measured heat and vapor transport when condensation occurs within the garment (Richards et al. in Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002; Havenith et al. in J Appl Physiol 104:142-149, 2008). In addition to measuring cooling rates for ensembles when the skin was either wet or dry, both studies employed a flat-plate apparatus to measure resistances of individual layers. Those data provide information required to define the properties of an ensemble in terms of its individual layers. We have extended the work of previous investigators by developing a rather simple technique for analyzing heat and water vapor transport when condensation occurs within a garment. Computed results agree well with experimental results reported by Richards et al. (Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002) and Havenith et al. (J Appl Physiol 104:142-149, 2008). We discuss application of the method to human subjects for whom the rate of sweat secretion, instead of the partial pressure of water on the skin, is specified. Analysis of a more complicated five-layer system studied by Yoo and Kim (Text Res J 78:189-197, 2008) required an iterative computation based on principles defined in this paper.

  3. Moisture conditions in buildings

    DEFF Research Database (Denmark)

    Rode, Carsten

    2012-01-01

    Growth of mould requires the presence of moisture at a certain high level. In a heated indoor environment such moisture levels occur only if there is a reason for the moisture supply. Such moisture can come from the use of the building, because of malfunctioning constructions, or it can be the re......Growth of mould requires the presence of moisture at a certain high level. In a heated indoor environment such moisture levels occur only if there is a reason for the moisture supply. Such moisture can come from the use of the building, because of malfunctioning constructions, or it can...

  4. Skin moisturization mechanisms: new data.

    Science.gov (United States)

    Bonté, F

    2011-05-01

    The main function of the skin is to protect the body against exogenous substances and excessive water loss. The skin barrier is located in the outermost layer of the skin, called the stratum corneum, which is composed of corneocytes, originating from the keratinocytes differentiation process, embedded in organized complex lipid domains. Moisturizing of the skin is recognized as the first anti-aging skin care. Skin moisturization is essential for its appearance, protection, complexion, softness and the reinforcement of its barrier properties against deleterious and exogenous environmental factors. The intrinsic water binding capacity of skin is not only due to the complex natural moisturizing factor present in corneocytes, but also to hyaluronic acid and a regulated water transport within the skin. Recent data shows that the water movements between the cells at the different levels of the epidermis are due to dedicated water and glycerol transport proteins named aquaporins. Their role in the skin moisturization is completed by corneodesmosomes and tight junctions. Water and pH are now shown to be of prime importance in the regulation of the epidermal enzymes linked to corneocytes desquamation and lipid synthesis. Furthermore, the level of moisturization of the skin is important in its protection against repeated exposure to various irritant agents or phenomena such as very frequent washing with strong tensioactive materials. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Moisture in Crawl Spaces

    Science.gov (United States)

    Anton TenWolde; Samuel V. Glass

    2013-01-01

    Crawl space foundations can be designed and built to avoid moisture problems. In this article we provide a brief overview of crawl spaces with emphasis on the physics of moisture. We review trends that have been observed in the research literature and summarize cur-rent recommendations for moisture control in crawl spaces.

  6. Identification of Tropical-Extratropical Interactions and Extreme Precipitation Events in the Middle East based on Potential Vorticity and Moisture Transport

    KAUST Repository

    de Vries, A. J.; Ouwersloot, H. G.; Feldstein, S. B.; Riemer, M.; El Kenawy, A. M.; McCabe, Matthew; Lelieveld, J.

    2017-01-01

    ) intrusion reaches deep into the subtropics and forces an incursion of high poleward vertically integrated water vapor transport (IVT) into the Middle East. This study presents an object-based identification method for extreme precipitation events based

  7. Microcomputerized neutron moisture gauge

    International Nuclear Information System (INIS)

    Liu Shengkang; Mei Yu

    1987-01-01

    A microcomputerized neutron moisture gauge is introduced. This gauge consists of a neutron moisture sensor and instruments. It is developed from the neutron moisture gauge for concrete mixer. A TECH-81 single card microcomputer is used for count, computation and display. It has the function of computing compensated quantity of sand. It can acquire the data from several neutron sensors by the multichanneling sampling, therefore it can measure moisture values of sand in several hoppers simultaneously. The precision of the static state calibration curve is 0.24% wt. The error limits of the dynamic state check is < 0.50% wt

  8. Moisture transfer across the interface between brick and mortar joint

    OpenAIRE

    Derluyn, Hannelore; Moonen, Peter; Carmeliet, Jan

    2008-01-01

    This paper reports on experimental and modelling work on moisture transport in masonry, with special attention to the liquid transport across the interface between brick and mortar joint. Experiments and simulations reveal that two aspects need to be taken into account: (1) the dependence of moisture transport properties on the curing of the mortar; (2) the presence of a hydraulic interface resistance between brick and mortar. The resistance is due to imperfect contact between brick and morta...

  9. Determination of the moisture capacity of porous building materials

    NARCIS (Netherlands)

    Carmeliet, J.

    2002-01-01

    The moisture capacity, which is required to solve the isothermal moisture transport equation, is generally expressed by parametric functions covering both the hygroscopic and over-hygroscopic regime. The modality or number of analytical functions needed to describe the corresponding pore volume

  10. an intermediate moisture meat

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... traditional SM muscle without compromising quality. ... technique is intermediate moisture food processing. ... Traditionally, most tsire suya producers use ..... quality of Chinese purebred and European X Chinese crossbred ...

  11. CPC Soil Moisture

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists of a file containing 1/2 degree monthly averaged soil moisture water height equivalents for the globe from 1948 onwards. Values are...

  12. Buffer moisture protection system

    International Nuclear Information System (INIS)

    Ritola, J.; Peura, J.

    2013-11-01

    With the present knowledge, bentonite blocks have to be protected from the air relative humidity and from any moisture leakages in the environment that might cause swelling of the bentonite blocks during the 'open' installation phase before backfilling. The purpose of this work was to design the structural reference solution both for the bottom of the deposition hole and for the buffer moisture protection and dewatering system with their integrated equipment needed in the deposition hole. This report describes the Posiva's reference solution for the buffer moisture protection system and the bottom plate on basis of the demands and functional requirements set by long-term safety. The reference solution with structural details has been developed in research work made 2010-2011. The structural solution of the moisture protection system has not yet been tested in practice. On the bottom of the deposition hole a copper plate which protects the lowest bentonite block from the gathered water is installed straight to machined and even rock surface. The moisture protection sheet made of EPDM rubber is attached to the copper plate with an inflatable seal. The upper part of the moisture protection sheet is fixed to the collar structures of the lid which protects the deposition hole in the disposal tunnel. The main function of the moisture protection sheet is to protect bentonite blocks from the leaking water and from the influence of the air humidity at their installation stage. The leaking water is controlled by the dewatering and alarm system which has been integrated into the moisture protection liner. (orig.)

  13. Identification of Tropical-Extratropical Interactions and Extreme Precipitation Events in the Middle East based on Potential Vorticity and Moisture Transport

    KAUST Repository

    de Vries, A. J.

    2017-12-26

    Extreme precipitation events in the otherwise arid Middle East can cause flooding with dramatic socioeconomic impacts. Most of these events are associated with tropical-extratropical interactions, whereby a stratospheric potential vorticity (PV) intrusion reaches deep into the subtropics and forces an incursion of high poleward vertically integrated water vapor transport (IVT) into the Middle East. This study presents an object-based identification method for extreme precipitation events based on the combination of these two larger-scale meteorological features. The general motivation for this approach is that precipitation is often poorly simulated in relatively coarse weather and climate models, whereas the synoptic-scale circulation is much better represented. The algorithm is applied to ERA-Interim reanalysis data (1979-2015) and detects 90% (83%) of the 99th (97.5th) percentile of extreme precipitation days in the region of interest. Our results show that stratospheric PV intrusions and IVT structures are intimately connected to extreme precipitation intensity and seasonality. The farther south a stratospheric PV intrusion reaches, the larger the IVT magnitude, and the longer the duration of their combined occurrence, the more extreme the precipitation. Our algorithm detects a large fraction of the climatological rainfall amounts (40-70%), heavy precipitation days (50-80%), and the top 10 extreme precipitation days (60-90%) at many sites in southern Israel and the northern and western parts of Saudi Arabia. This identification method provides a new tool for future work to disentangle teleconnections, assess medium-range predictability and improve understanding of climatic changes of extreme precipitation in the Middle East and elsewhere.

  14. Identification of Tropical-Extratropical Interactions and Extreme Precipitation Events in the Middle East Based On Potential Vorticity and Moisture Transport

    Science.gov (United States)

    de Vries, A. J.; Ouwersloot, H. G.; Feldstein, S. B.; Riemer, M.; El Kenawy, A. M.; McCabe, M. F.; Lelieveld, J.

    2018-01-01

    Extreme precipitation events in the otherwise arid Middle East can cause flooding with dramatic socioeconomic impacts. Most of these events are associated with tropical-extratropical interactions, whereby a stratospheric potential vorticity (PV) intrusion reaches deep into the subtropics and forces an incursion of high poleward vertically integrated water vapor transport (IVT) into the Middle East. This study presents an object-based identification method for extreme precipitation events based on the combination of these two larger-scale meteorological features. The general motivation for this approach is that precipitation is often poorly simulated in relatively coarse weather and climate models, whereas the synoptic-scale circulation is much better represented. The algorithm is applied to ERA-Interim reanalysis data (1979-2015) and detects 90% (83%) of the 99th (97.5th) percentile of extreme precipitation days in the region of interest. Our results show that stratospheric PV intrusions and IVT structures are intimately connected to extreme precipitation intensity and seasonality. The farther south a stratospheric PV intrusion reaches, the larger the IVT magnitude, and the longer the duration of their combined occurrence, the more extreme the precipitation. Our algorithm detects a large fraction of the climatological rainfall amounts (40-70%), heavy precipitation days (50-80%), and the top 10 extreme precipitation days (60-90%) at many sites in southern Israel and the northern and western parts of Saudi Arabia. This identification method provides a new tool for future work to disentangle teleconnections, assess medium-range predictability, and improve understanding of climatic changes of extreme precipitation in the Middle East and elsewhere.

  15. Multilayer moisture barrier

    Science.gov (United States)

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  16. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  17. Calibration of moisture monitors

    International Nuclear Information System (INIS)

    Gutierrez, R.L.

    1979-02-01

    A method for calibrating an aluminum oxide hygrometer against an optical chilled mirror dew-point hygrometer has been established. A theoretical cross-point line of dew points from both hygrometers and a maximum moisture content of 10 ppM/sub v/ are used to define an area for calibrating the sensor probes of the aluminum oxide hygrometer

  18. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  19. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  20. Moisture Metrics Project

    Energy Technology Data Exchange (ETDEWEB)

    Schuchmann, Mark

    2011-08-31

    the goal of this project was to determine the optimum moisture levels for biomass processing for pellets commercially, by correlating data taken from numerous points in the process, and across several different feedstock materials produced and harvested using a variety of different management practices. This was to be done by correlating energy consumption and material through put rates with the moisture content of incoming biomass ( corn & wheat stubble, native grasses, weeds, & grass straws), and the quality of the final pellet product.This project disseminated the data through a public website, and answering questions form universities across Missouri that are engaged in biomass conversion technologies. Student interns from a local university were employed to help collect data, which enabled them to learn firsthand about biomass processing.

  1. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  2. On-line moisture analysis

    CERN Document Server

    Cutmore, N G

    2002-01-01

    Measurement of the moisture content of iron ore has become a key issue for controlling moisture additions for dust suppression. In most cases moisture content is still determined by manual or automatic sampling of the ore stream, followed by conventional laboratory analysis by oven drying. Although this procedure enables the moisture content to be routinely monitored, it is too slow for control purposes. This has generated renewed interest in on-line techniques for the accurate and rapid measurement of moisture in iron ore on conveyors. Microwave transmission techniques have emerged over the past 40 years as the dominant technology for on-line measurement of moisture in bulk materials, including iron ores. Alternative technologies have their limitations. Infra-red analysers are used in a variety of process industries, but rely on the measurement of absorption by moisture in a very thin surface layer. Consequently such probes may be compromised by particle size effects and biased presentation of the bulk mater...

  3. SOIL moisture data intercomparison

    Science.gov (United States)

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre

    2016-04-01

    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  4. On-line moisture analysis

    International Nuclear Information System (INIS)

    Cutmore, N.G.; Mijak, D.G

    2002-01-01

    Measurement of the moisture content of iron ore has become a key issue for controlling moisture additions for dust suppression. In most cases moisture content is still determined by manual or automatic sampling of the ore stream, followed by conventional laboratory analysis by oven drying. Although this procedure enables the moisture content to be routinely monitored, it is too slow for control purposes. This has generated renewed interest in on-line techniques for the accurate and rapid measurement of moisture in iron ore on conveyors. Microwave transmission techniques have emerged over the past 40 years as the dominant technology for on-line measurement of moisture in bulk materials, including iron ores. Alternative technologies have their limitations. Infra-red analysers are used in a variety of process industries, but rely on the measurement of absorption by moisture in a very thin surface layer. Consequently such probes may be compromised by particle size effects and biased presentation of the bulk material. Nuclear-based analysers measure the total hydrogen content in the sample and do not differentiate between free and combined moisture. Such analysers may also be sensitive to material presentation and elemental composition. Very low frequency electromagnetic probes, such as capacitance or conductance probes, operate in the frequency region where the DC conductivity dominates much of the response, which is a function not only of moisture content but also of ionic composition and chemistry. These problems are overcome using microwave transmission techniques, which also have the following advantages, as a true bulk moisture analysis is obtained, because a high percentage of the bulk material is analysed; the moisture estimate is mostly insensitive to any biased presentation of moisture, for example due to stratification of bulk material with different moisture content and because no physical contact is made between the sensor and the bulk material. This is

  5. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  6. Moisture content measurement in paddy

    Science.gov (United States)

    Klomklao, P.; Kuntinugunetanon, S.; Wongkokua, W.

    2017-09-01

    Moisture content is an important quantity for agriculture product, especially in paddy. In principle, the moisture content can be measured by a gravimetric method which is a direct method. However, the gravimetric method is time-consuming. There are indirect methods such as resistance and capacitance methods. In this work, we developed an indirect method based on a 555 integrated circuit timer. The moisture content sensor was capacitive parallel plates using the dielectric constant property of the moisture. The instrument generated the output frequency that depended on the capacitance of the sensor. We fitted a linear relation between periods and moisture contents. The measurement results have a standard uncertainty of 1.23 % of the moisture content in the range of 14 % to 20 %.

  7. The method of predicting the process of condensation of moisture and hydrate formation in the gas pipeline

    OpenAIRE

    Хвостова, Олена Вікторівна

    2014-01-01

    The problem of ensuring the required value of one of the natural gas quality indicators during its transportation to the consumer - moisture content is considered in the paper. The method for predicting possible moisture condensation and hydrate formation processes in gas pipelines considering mixing gas flows with different moisture content was developed.Predicting the moisture condensation and hydrate formation in gas pipelines is an actual task since a timely prevention of these processes ...

  8. Neutron moisture measurement in materials

    International Nuclear Information System (INIS)

    Thony, J.L.

    1985-01-01

    This method is generally used for soil moisture determination but also for moisture in building materials. After a review of neutron interaction with matter (elastic and inelastic scattering, radiative capture and absorption with emission of charged particles) and of the equipment (source, detector and counting), gravimetric and chemical calibration are described and accuracy of measurement is discussed. 5 refs [fr

  9. Moisture relationships in composting processes

    NARCIS (Netherlands)

    Richard, T.L.; Veeken, A.H.M.

    2002-01-01

    Moisture is a key environmental factor that affects many aspects of the composting process. Biodegradation kinetics are affected by moisture through changes in oxygen diffusion, water potential and water activity, and microbial growth rates. These relationships are made more complex by the dynamic

  10. Moisture Management in an Active Sportswear: Techniques and Evaluation—A Review Article

    Science.gov (United States)

    Senthilkumar, Mani; Sampath, M. B.; Ramachandran, T.

    2012-10-01

    Moisture management property is an important aspect of any fabric meant for active sportswear, which decides the comfort level of that fabric. Every human being sweats during different kinds of activities. An important feature of any fabric is how it transports this water out of the body, so as to make the wearer feel comfortable. This paper reports the concept of moisture management, various production techniques and evaluation of the moisture management characteristics on fabrics for active sportswear.

  11. Moisture-induced stresses in glulam frames

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Gislason, Oskar V

    2016-01-01

    by hand. Accordingly, there is a need for advanced computer tools to study how the long-term stress behaviour of timber structures is affected by creep and cyclic variations in climate. A beam model to simulate the overall hygro-mechanical and visco-elastic behaviour of (inhomogeneous) glulam structures...... is presented. A two-dimensional transient, non-linear moisture transport model for wood is also developed and linked with this beam model. The combined models are used to study the long-term deformations and stresses in a curved frame structure exposed to both mechanical loading and cyclic climate conditions...

  12. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    Science.gov (United States)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  13. Automatic coal sampling for thermoelectric power plants; some remarks on moisture

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, M.

    1983-06-01

    Some problems associated with automatic coal sampling are discussed, in particular the change in moisture content during transport to sampling station. The moisture level is reduced by crushing and air exposure. Possible solutions to the problems are outlined: reducing exposure to air; reducing the degree of pulverisation; and use of special crushing equipment.

  14. A Study of Moisture Induced Material Loss of Hot Mix Asphalt (HMA)

    Science.gov (United States)

    2017-10-31

    Maine Department of Transportation has noticed the partial or complete loss of material within 2-3 years of construction in the traffic wheel path in the presence of moisture in few of their mixes. Regularly used moisture susceptibility tests are una...

  15. Numerical Analysis of Moisture Flow and Concrete Cracking by means of Lattice Type Models

    NARCIS (Netherlands)

    Jankovic, D.; Küntz, M.; Van Mier, J.G.M.

    2001-01-01

    Modelling of fluid-flow and the resulting effects on shrinkage and microcracking by means of a combination of two lattice models are presented. For the moisture transport, a Lattice Gas Automaton (LGA) is adopted since it can effectively model moisture loss, whereas for cracking simulation a Lattice

  16. Evaluation of standard methods for collecting and processing fuel moisture samples

    Science.gov (United States)

    Sally M. Haase; José Sánchez; David R. Weise

    2016-01-01

    A variety of techniques for collecting and processing samples to determine moisture content of wildland fuels in support of fire management activities were evaluated. The effects of using a chainsaw or handsaw to collect samples of largediameter wood, containers for storing and transporting collected samples, and quick-response ovens for estimating moisture content...

  17. Understanding natural moisturizing mechanisms: implications for moisturizer technology.

    Science.gov (United States)

    Chandar, Prem; Nole, Greg; Johnson, Anthony W

    2009-07-01

    Dry skin and moisturization are important topics because they impact the lives of many individuals. For most individuals, dry skin is not a notable concern and can be adequately managed with current moisturizing products. However, dry skin can affect the quality of life of some individuals because of the challenges of either harsh environmental conditions or impaired stratum corneum (SC) dry skin protection processes resulting from various common skin diseases. Dry skin protection processes of the SC, such as the development of natural moisturizing factor (NMF), are complex, carefully balanced, and easily perturbed. We discuss the importance of the filaggrin-NMF system and the composition of NMF in both healthy and dry skin, and also reveal new insights that suggest the properties required for a new generation of moisturizing technologies.

  18. Subcellular Electrical Measurements as a Function of Wood Moisture Content

    Science.gov (United States)

    Samuel L. Zelinka; José L. Colon Quintana; Samuel V. Glass; Joseph E. Jakes; Alex C. Wiedenhoeft

    2015-01-01

    The percolation model developed by Zelinka et al. was based upon macroscale measurements of the electrical conductivity and implicitly treats the wood material as homogenous. The transport mechanism proposed by Jakes et al. depends upon a moisture induced glass transition occurring in the hemicelluloses. This theory suggests that there are likely differences in the...

  19. Managing soil moisture on waste burial sites

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.

    1991-11-01

    Shallow land burial is a common method of disposing of industrial, municipal, and low-level radioactive waste. The exclusion of water from buried wastes is a primary objective in designing and managing waste disposal sites. If wastes are not adequately isolated, water from precipitation may move through the landfill cover and into the wastes. The presence of water in the waste zone may promote the growth of plant roots to that depth and result in the transport of toxic materials to above-ground foliage. Furthermore, percolation of water through the waste zone may transport contaminants into ground water. This report presents results from a field study designed to assess the the potential for using vegetation to deplete soil moisture and prevent water from reaching buried wastes at the Idaho National Engineering Laboratory (INEL). Our results show that this approach may provide an economical means of limiting the intrusion of water on waste sites

  20. Compact RFID Enabled Moisture Sensor

    Directory of Open Access Journals (Sweden)

    U. H. Khan

    2016-09-01

    Full Text Available This research proposes a novel, low-cost RFID tag sensor antenna implemented using commercially available Kodak photo-paper. The aim of this paper is to investigate the possibility of stable, RFID centric communication under varying moisture levels. Variation in the frequency response of the RFID tag in presence of moisture is used to detect different moisture levels. Combination of unique jaw shaped contours and T-matching network is used for impedance matching which results in compact size and minimal ink consumption. Proposed tag is 1.4 × 9.4 cm2 in size and shows optimum results for various moisture levels upto 45% in FCC band with a bore sight read range of 12.1 m.

  1. Determining seed moisture in Quercus

    Science.gov (United States)

    F. T. Bonner

    1974-01-01

    The air-oven method with drying times 7 to 8 hours shorter than those now prescribed in the ISTA rules proved adequate for determining moisture contents in acorns of several North American oaks. Schedules of 8 hours at 105°C for Quercus muehlenbergii and 9 hours at 105°C for Q.shumardii and Q.nigra gave moisture contents within three percentage points of those obtained...

  2. Use of moisture induced stress testing to evaluate stripping potential of hot mix asphalt (HMA).

    Science.gov (United States)

    2012-07-01

    Stripping of hot mix asphalt (HMA) in the field is an ongoing issue for many Departments of Transportation : (DOTs). A leading cause of stripping is hydraulic scouring. The Moisture Induced Stress Tester (MIST) is a recently : developed technology th...

  3. Experimental study of dynamic effects in moisture transfer in building materials

    DEFF Research Database (Denmark)

    Janssen, Hans; Scheffler, Gregor Albrecht; Plagge, Rudolf

    2016-01-01

    transfer in building materials, similar to moisture transfer in soils, is not free of dynamic effects. The findings imply that the widely accepted static theory for moisture storage in porous media is not generally valid and should be corrected for the occurrences of dynamic effects. Considering......In relation to moisture storage in porous materials, it is often assumed that the process dynamics do not affect the moisture retention. There is mounting evidence though that this notion is incorrect: various studies demonstrate that the moisture retention is influenced by the (de)saturation rates...... of the moisture transfer processes involved. The available evidence primarily stems from imbibition and drainage experiments on soils however, and compared to many other porous media, these tests consider rather permeable materials with relatively dominant liquid transport at comparatively large (de...

  4. Exchange of moisture between atmosphere and ground regarding tritium transfer

    International Nuclear Information System (INIS)

    Bunnenberg, C.

    1980-09-01

    Two measuring equipment have been developed in the framework of this study which fulfill important conditions to avoid microclimatic interferences during measurement by using site-specific ground samples and embedding these in the ground surface. The beta-absorption lysimeter allows the detection of a minimum deposit height of 0.001 mm in a 1 mm sample layer. The conductivity moisture probe is to measure the moisture diffusion within the first 80 mm of the upper ground with a vertical spacial resolution of 2 mm. It is possible to measure a minimum water content increase of 0.02 wt% per 2 mm ground layer using this probe. The influences of single microclimatic parameter on condensation and evaporation were investigated and a transport equation was developed. Investigations in the Negev proved the application ability of the measuring equipment. The application of the transport equation showed very good agreement with the measured values. When the ground surface starts to cool in the afternoon, there is a countercurrent moisture transport from the atmosphere and the deeper ground layers which lead to a higher water content in the upper ground layer. At about 50 mm depth there is an overlapping layer of the two moisture flows which remains almost constant over the 24 h cycle. This exchange zone of atmospheric humidity and ground water must be paid great attention with regard to HTO transfer. (orig./HP) [de

  5. 7 CFR 52.3185 - Moisture limits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Moisture limits. 52.3185 Section 52.3185 Agriculture... United States Standards for Grades of Dried Prunes Moisture, Uniformity of Size, Defects § 52.3185 Moisture limits. Dried prunes shall not exceed the moisture limits for the applicable grades and kind and...

  6. Moisture Sorption in Porous Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2007-01-01

    pressure and weight data can be "translated" to pore geometry by known physical relationships. In this context, analytical descriptions are important which can relate moisture condensation in pore structures to ambient vapor pressure. Such a description, the extended BET-relation, is presented...... physical parameters, the so-called BET-parameters: The heat property factor, C, and the pore surface, SBET (derived from the so-called uni-molecular moisture content uBET). A software ‘SORP07’ has been developed to handle any calculations made in the paper. For readers who have a special interest...... in the subject considered this software is available on request to the author. Keywords: Porous materials, moisture, adsorption, desorption, BET-parameters....

  7. The effect of changing ambient humidity on moisture condition in timber elements

    DEFF Research Database (Denmark)

    Hozjan, Tomaẑ; Turk, Goran; Srpĉiĉ, Stanislav

    2012-01-01

    a fully coupled transport model including a model for the influential sorption hysteresis of wood is used. The coupled model accounts for both vapor transport in pores and bound water transport in wood tissue. Moisture state history influences relationship between moisture state of wood and air humidity......This paper deals with the effect of the changing ambient humidity on moisture conditions in timber elements. The naturally varying humidity is possible to model as a relative combination of different harmonic cycles, with different periods and amplitudes. For the determination of the moisture field......, it must therefore be taken into account. In order to include history dependency, a hysteresis model is used here. Results from numerical calculations for timber specimen exposed to combined daily and annually cyclic variation of outside humidity are presented. Copyright © (2012) by WCTE 2012 Committee....

  8. Increase of Steam Moisture in the BWR-Facility KKP 1

    International Nuclear Information System (INIS)

    Noack, Volker

    2002-01-01

    Main steam moisture in a BWR facility is determined by steam quality at core outlet and efficiency of steam separators and steam dryers. Transport of water with steam is accompanied by transport of radionuclides out of RPV resulting in enhanced radiation level in the main steam system. A remarkable increase of main steam moisture started at KKP 1 in 1997. In the following years increase of steam outlet moisture started at lower and lower core mass flow rates. Dose rate in main steam system increased simultaneously. Core mass flow rate and thus thermal power had to be reduced during stretch out operation to keep the main steam moisture below the specified boundary of 0.2 %. This boundary also guarantees, that radiological exposure remains far below approved values. The increase of main steam moisture corresponds with the application of low leakage core loading. Low leakage core loading results in enhanced steam generation in the center and in reduced steam generation in the outer zones of the core. It can be shown, that the uneven steam generation in the core became stronger over the years. Therefore, steam quality at inlet of the outer steam separators was getting lower. This resulted in higher carry over of water in this steam separators and steam dryers, thus explaining the increasing main steam moisture. KKP 1 started in 2000 with spectral shift operation. As one should expect, this resulted in reduced steam moisture. It remains the question of steam moisture in case of stretch out operation. Countermeasures are briefly discussed. (authors)

  9. Moisture exposure to different layers in organic light-emitting diodes and the effect on electroluminescence characteristics

    International Nuclear Information System (INIS)

    Liao, L. S.; Tang, C. W.

    2008-01-01

    Moisture effect on electroluminescence characteristics, including current density versus voltage, luminance versus voltage, luminous efficiency versus current density, dark spot formation, and operational stability of organic light-emitting diodes, has been systematically investigated by exposing each layer of the devices to moisture at room temperature. Moisture has a different effect on each of the interfaces or surfaces, and the influence increases as exposure time increases. There is a slight effect on the electroluminescence characteristics after the anode surface has been exposed to moisture. However, severe luminance decrease, dark spot formation, and operational stability degradation take place after the light-emitting layer or the electron-transporting layer is exposed to moisture. It is also demonstrated that the effect of moisture can be substantially reduced if the exposure to moisture is in a dark environment

  10. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture

    Science.gov (United States)

    Nelson, S.; Schmutz, P. P.

    2017-12-01

    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  11. Tracing changes in atmospheric moisture supply to the drying Southwest China

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Precipitation over Southwest China (SWC significantly decreased during 1979–2013. The months from July to September (JAS contributed the most to the decrease in precipitation. By tracing moisture sources of JAS precipitation over the SWC region, it is found that most moisture originates in regions from the northern Indian Ocean to SWC and from South China Sea to SWC. The major moisture contributing area is divided into an extended west region, SWC, and an extended east region. The extended west region is mainly influenced by the South Asian summer monsoon (SASM and the westerlies, while the extended east region is mainly influenced by the East Asian summer monsoon (EASM. The extended west, SWC, and extended east regions contribute 48.2, 15.5, and 24.5 % of the moisture for the SWC precipitation, respectively. Moisture supply from the extended west region decreased at a rate of −7.9 mm month−1 decade−1, whereas that from the extended east increased at a rate of 1.4 mm month−1 decade−1, resulting in an overall decrease in moisture supply. Further analysis reveals that the decline of JAS precipitation is mainly caused by change in the seasonal-mean component rather than the transient component of the moisture transport over the SWC region. In addition, the dynamic processes (i.e., changes in wind rather than the thermodynamic processes (i.e., changes in specific humidity are dominant in affecting the seasonal-mean moisture transport. A prevailing easterly anomaly of moisture transport that weakened moisture supply from the Indian Ocean is to a large extent responsible for the precipitation decrease over the SWC region.

  12. Measurement of soil moisture using gypsum blocks

    DEFF Research Database (Denmark)

    Friis Dela, B.

    the building. Consequently, measuring the moisture of the surrounding soil is of great importance for detecting the source of moisture in a building. Up till now, information has been needed to carry out individual calibrations for the different types of gypsum blocks available on the market and to account......For the past 50 years, gypsum blocks have been used to determine soil moisture content. This report describes a method for calibrating gypsum blocks for soil moisture measurements. Moisture conditions inside a building are strongly influenced by the moisture conditions in the soil surrounding...

  13. One-dimensional scanning of moisture in heated porous building materials with NMR.

    Science.gov (United States)

    van der Heijden, G H A; Huinink, H P; Pel, L; Kopinga, K

    2011-02-01

    In this paper we present a new dedicated NMR setup which is capable of measuring one-dimensional moisture profiles in heated porous materials. The setup, which is placed in the bore of a 1.5 T whole-body scanner, is capable of reaching temperatures up to 500 °C. Moisture and temperature profiles can be measured quasi simultaneously with a typical time resolution of 2-5 min. A methodology is introduced for correcting temperature effects on NMR measurements at these elevated temperatures. The corrections are based on the Curie law for paramagnetism and the observed temperature dependence of the relaxation mechanisms occurring in porous materials. Both these corrections are used to obtain a moisture content profile from the raw NMR signal profile. To illustrate the methodology, a one-sided heating experiment of concrete with a moisture content in equilibrium with 97% RH is presented. This kind of heating experiment is of particular interest in the research on fire spalling of concrete, since it directly reveals the moisture and heat transport occurring inside the concrete. The obtained moisture profiles reveal a moisture peak building up behind the boiling front, resulting in a saturated layer. To our knowledge the direct proof of the formation of a moisture peak and subsequent moisture clogging has not been reported before. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  15. Variation in seasonal moisture content

    Science.gov (United States)

    John E. Phelps

    1992-01-01

    Several properties of wood are affected by moisture content-weight, fuel value, electrical conductivity, strength, and shrinkage. Differences in these properties are commonly observed in wood in service. For example, a green 2 X 4 weighs more than a kiln-dried 2 X 4, dried wood burns more easily and hotter than green wood, etc.

  16. Modeling moisture ingress through simplified concrete crack geometries

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Michel, Alexander; Geiker, Mette Rica

    2011-01-01

    , considered to have two parts; 1) a coalesced crack length which behaves as a free-surface for moisture ingress, and 2) an isolated microcracking length which resists ingress similarly to the bulk material. Transport model results are compared to experimental results from steel fibre reinforced concrete wedge......This paper introduces a numerical model for ingress in cracked steel fibre reinforced concrete. Details of a simplified crack are preset in the model’s geometry using the cracked hinge model (CHM). The total crack length estimated using the CHM was, based on earlier work on conventional concrete...... on moisture ingress. Results from the transport model indicate the length of the isolated microcracks was approximately 19 mm for the investigated concrete composition....

  17. Moisture damage susceptibility of asphalt mixtures: Experimental characterization and modelling

    OpenAIRE

    Varveri, A.

    2017-01-01

    A well-functioning, long-lasting and safe highway infrastructure network ensures the mobility of people and facilitates the transport of goods, promoting thus environmental, economic, and social sustainability. The development of sustainable highway infrastructure requires, among other activities, the construction of pavement systems with enhanced durability. Moisture damage in asphalt pavements is associated with inferior performance, unexpected failures and reduced service life. All of thes...

  18. The moisture conditions of nuclear reactor concrete containment walls - an example for a BWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, L.O.; Johansson, P. [Lund Institute of Technology, Laboratory of Building Materials, PO Box 118, 221 00 Lund (Sweden)

    2006-07-01

    A method is presented on how to quantify the moisture conditions of nuclear concrete containment walls. The method is based on first quantifying the boundary conditions at the outer and inner surfaces and then describing the moisture fixation and moisture transport within the concrete wall. The temperature and humidity conditions of the outdoor air and of the air close to the wall surfaces are monitored for a period of time and the vapour contents in the different points are compared. From the differences between the vapour contents the sources of moisture are identified and quantified. The previous and future climatic conditions are then predicted. An example is given for the conditions in the containment walls at Barsebaeck nuclear power plant, where moisture measurements have been performed in situ and on samples taken from the walls. (authors)

  19. Interior moisture design loads for residences

    Science.gov (United States)

    Anton TenWolde; Iain S. Walker

    2001-01-01

    This paper outlines a methodology to obtain design values for indoor boundary conditions for moisture design calculations for residences. This is part of a larger effort by ASHRAE Standard Project Committee 160P, Design Criteria for Moisture Control in Buildings, to formulate criteria for moisture design loads, analysis techniques, and material and building performance...

  20. 7 CFR 868.207 - Moisture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Moisture. 868.207 Section 868.207 Agriculture... Application of Standards § 868.207 Moisture. Water content in rough rice as determined by an approved device..., “approved device” shall include the Motomco Moisture Meter and any other equipment that is approved by the...

  1. 7 CFR 868.258 - Moisture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Moisture. 868.258 Section 868.258 Agriculture... Governing Application of Standards § 868.258 Moisture. Water content in brown rice for processing as... purpose of this paragraph, “approved device” shall include the Motomco Moisture Meter and any other...

  2. Absolute moisture sensing for cotton bales

    Science.gov (United States)

    With the recent prevalence of moisture restoration systems in cotton gins, more and more gins are putting moisture back into the bales immediately before the packaging operation. There are two main reasons for this recent trend, the first is that it has been found that added moisture at the bale pre...

  3. Nematode survival in relation to soil moisture

    NARCIS (Netherlands)

    Simons, W.R.

    1973-01-01

    Established nematode populations are very persistent in the soil. It is known that they need sufficient soil moisture for movement, feeding and reproduction (fig. 5), and that there are adverse soil moisture conditions which they cannot survive. The influence of soil moisture on survival

  4. Moisture relations and physical properties of wood

    Science.gov (United States)

    Samuel V. Glass; Samuel L. Zelinka

    2010-01-01

    Wood, like many natural materials, is hygroscopic; it takes on moisture from the surrounding environment. Moisture exchange between wood and air depends on the relative humidity and temperature of the air and the current amount of water in the wood. This moisture relationship has an important influence on wood properties and performance. Many of the challenges of using...

  5. Opto-thermal moisture content and moisture depth profile measurements in organic materials

    NARCIS (Netherlands)

    Xiao, P.; Guo, X.; Cui, Y.Y.; Imhof, R.; Bicanic, D.D.

    2004-01-01

    Opto-thermal transient emission radiometry(OTTER) is a infrared remote sensing technique, which has been successfully used in in vivo skin moisture content and skin moisture depth profiling measurements.In present paper, we extend this moisture content measurement capability to analyze the moisture

  6. Influence of vapor-mass flux on simultaneous heat and moisture transfer in unsaturated porous media

    International Nuclear Information System (INIS)

    Hartley, J.G.; Boo, J.H.

    1987-01-01

    This paper evaluates the validity of neglecting vapor transport by moisture content gradients (VMG) and liquid transport by temperature gradients (LTG) in coupled heat and moisture transfer in moist porous media. A review of previous work reveals discrepancies between model predictions and experimental data. The results presented here show that these discrepancies result from neglecting VMG. The governing equations which describe the coupled heat and moisture transfer are solved numerically for an infinite slab of an unsaturated porous medium, and existing experimental and empirical data for a moist sandy silt soil are used. Predicted moisture content distributions during dry-out and drying rates are found to be significantly affected by VMG. Accurate results can be obtained when VMG is neglected in the energy equation provided that it is retained in the mass conservation equation

  7. Evaluation of Assimilated SMOS Soil Moisture Data for US Cropland Soil Moisture Monitoring

    Science.gov (United States)

    Yang, Zhengwei; Sherstha, Ranjay; Crow, Wade; Bolten, John; Mladenova, Iva; Yu, Genong; Di, Liping

    2016-01-01

    Remotely sensed soil moisture data can provide timely, objective and quantitative crop soil moisture information with broad geospatial coverage and sufficiently high resolution observations collected throughout the growing season. This paper evaluates the feasibility of using the assimilated ESA Soil Moisture Ocean Salinity (SMOS)Mission L-band passive microwave data for operational US cropland soil surface moisture monitoring. The assimilated SMOS soil moisture data are first categorized to match with the United States Department of Agriculture (USDA)National Agricultural Statistics Service (NASS) survey based weekly soil moisture observation data, which are ordinal. The categorized assimilated SMOS soil moisture data are compared with NASSs survey-based weekly soil moisture data for consistency and robustness using visual assessment and rank correlation. Preliminary results indicate that the assimilated SMOS soil moisture data highly co-vary with NASS field observations across a large geographic area. Therefore, SMOS data have great potential for US operational cropland soil moisture monitoring.

  8. development and testing of a capacitive digital soil moisture metre

    African Journals Online (AJOL)

    user

    soil moisture meter using the NE555 timer and micro controller as a major electronic component ... relationship between the moisture content process and the digital soil moisture meter. ..... the moisture contents showing that the infiltration of.

  9. Predicting moisture state of timber members in a continuously varying climate

    DEFF Research Database (Denmark)

    Svensson, Staffan; Turk, Goran; Hozjan, Tomaz

    2011-01-01

    A prerequisite for a sensible estimate of moisture induced stresses in timber members is an accurate prediction of the members’ moisture states during their service life. There are, however, an infinite number of possible moisture states for an arbitrary timber member in a natural varying climate...... the realizations were made, are based on a fully coupled transport model including a model for the influential sorption hysteresis of wood. A format containing required information suitable for assessing the “moisture” action on timber members is proposed. In addition it is illustrated how a model of high...

  10. Model for Anomalous Moisture Diffusion through a Polymer-Clay Nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2003-01-01

    Experimental data are reported on moisture diffusion and the elastoplastic response of an intercalated nanocomposite with vinyl ester resin matrix and montmorillonite clay filler at room temperature. Observations in diffusion tests showed that water transport in the neat resin is Fickian, whereas...... platelets. Constitutive equations are developed for moisture diffusion through and the elastoplastic behavior of a nanocomposite. Adjustable parameters in these relations are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical...

  11. A model for anomalous moisture diffusion through a polymer-clay nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2002-01-01

    Experimental data are reported on moisture diffusion and the elastoplastic response in uniaxial tensile tests of an intercalated nanocomposite with vinyl ester resin matrix and montmorillonite clay filler at room temperature. Observations in diffusion tests show that the moisture transport...... diffusion through a nanocomposite and for its elastoplastic behavior. Adjustable parameters in these relations are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical simulation....

  12. An injected gamma-tracer method for soil-moisture movement investigations in arid zones

    International Nuclear Information System (INIS)

    Nair, A.R.; Navada, S.V.; Rao, S.M.

    1980-01-01

    A method for the in-situ determination of soil-moisture transport rates using K 3 60 Co(CN) 6 is discussed. The tracer compares well with tritiated water in laboratory investigations and the results obtained in limited field studies are very encouraging. The method promises to be of specific interest in arid-zone investigations where the soil-moisture fluxes in liquid and vapour phases could cause complications for tritium tracer data interpretation. (author)

  13. Factors influencing moisture analysis in the 3013 destructive examination surveillance program

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-24

    Thermogravimetric analysis of a solid sample with mass spectrometry (TGA-MS) of the evolved gas is used in the destructive examination (DE) portion of the Integrated Surveillance Program to quantify the moisture content of the material stored in a 3013 container. As with any measurement determined from a small sample, the collection, storage, transportation, and handling of the sample can affect its ability to represent the properties of the bulk material. During the course of the DE program, questions have periodically arisen concerning the ability of the moisture sample to reflect reliably the actual moisture content of the entire material stored in the 3013 container. Most concerns are related to the ability to collect a representative sample and to preserve the moisture content of the sample between collection and analysis. Recent delays in analysis caused by maintenance issues with the TGA-MS instrument presented a unique opportunity to document and quantify the effects various factors have on the TGA-MS moisture measurement. This report will use recent data to document the effects that current sample collection and handling practices have on the TGA-MS moisture measurement. Some suggestions will be made which could improve the current sample collection and handling practices for the TGA-MS moisture measurement so that the analytical results more accurately reflect the moisture content of the material stored in the 3013 container.

  14. Factors influencing moisture analysis in the 3013 destructive examination surveillance program

    International Nuclear Information System (INIS)

    Scogin, J. H.

    2017-01-01

    Thermogravimetric analysis of a solid sample with mass spectrometry (TGA-MS) of the evolved gas is used in the destructive examination (DE) portion of the Integrated Surveillance Program to quantify the moisture content of the material stored in a 3013 container. As with any measurement determined from a small sample, the collection, storage, transportation, and handling of the sample can affect its ability to represent the properties of the bulk material. During the course of the DE program, questions have periodically arisen concerning the ability of the moisture sample to reflect reliably the actual moisture content of the entire material stored in the 3013 container. Most concerns are related to the ability to collect a representative sample and to preserve the moisture content of the sample between collection and analysis. Recent delays in analysis caused by maintenance issues with the TGA-MS instrument presented a unique opportunity to document and quantify the effects various factors have on the TGA-MS moisture measurement. This report will use recent data to document the effects that current sample collection and handling practices have on the TGA-MS moisture measurement. Some suggestions will be made which could improve the current sample collection and handling practices for the TGA-MS moisture measurement so that the analytical results more accurately reflect the moisture content of the material stored in the 3013 container.

  15. Thermal–moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhi; Zhang, Mingli; Ma, Wei; Wu, Qingbai; Niu, Fujun; Yu, Qihao; Fan, Zhaosheng; Sun, Zhizhong

    2014-09-01

    Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layer is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.

  16. Moisture performance of building materials: From material characterization to building simulation using the Moisture Buffer Value concept

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, Marc Olivier [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil); LEPTAB, University of La Rochelle, La Rochelle, 17042 Cedex 1 (France); Mendonca, Katia Cordeiro [Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, PUC-PR/CCET, Curitiba, PR 80215-901 (Brazil)

    2009-02-15

    Predicting the indoor air relative humidity evolution is of great importance to evaluate people thermal comfort, perceived air quality and energy consumption. In building environments, porous materials of the envelope and furniture act on the indoor air humidity by reducing its variations. Solving the physical processes involved inside the porous materials requires the knowledge of the material hygrothermal properties that needs multiple and, for some of them, time-consuming experimental procedures. Recently, both the NORDTEST Project and Japanese Industrial Standard described a new Moisture Buffer Capacity index that accounts for surrounding air vapor concentration variation. The Moisture Buffer Value (MBV) indicates the amount of water vapor that is transported in or out of a material, during a certain period of time, when the vapor concentration of the surrounding air varies. The MBV evaluation requires only one experimental procedure and its value permits a direct comparison of the building materials moisture performance. However, two limitations can be distinguished: first, no relation between the MBV and the usual material hygrothermal properties has been clearly identified and second, no model has been proposed to actually use the MBV in building simulation. The present study aims to solve these two problems. First, the MBV fundamentals are introduced and discussed; followed by its relation with the usual material properties. Then, a lumped model for building simulation, whose parameters can be determined from the MBV experimental procedure, is described. To finish, examples of the use of this MBV-based lumped model for moisture prediction in buildings are presented. (author)

  17. Moisture transfer in concrete elements under thermal gradients

    International Nuclear Information System (INIS)

    Lien, H.P.; Wittmann, F.H.

    1995-01-01

    A realistic simulation of the coupled heat- and mass transfer in concrete elements requires detailed knowledge of the dominant transfer mechanisms. Depending on the the local temperatures and moisture content, a description in terms of diffusion or Darcy flow respectively is appropriate. However, a simultaneous application of these fundamental physical transfer mechanisms necessary when subjecting concrete elements to wide-ranging temperature distributions. With rising temperatures, continuing hydration also influences the moisture distribution in a increasingly important manner in addition to the transport phenomena. The description of the relevant transport process can be handled by thermodynamic concepts and, in general, the resulting time-space evolution of the state variables in described in terms of coupled nonlinear partial differential equations. A numerical model of the coupled heat-and mass transfer as influenced by continuing hydration with a temperature-dependent reaction rate is presented, and the simulation of the hygral transfer is compared with experimentally determined moisture distributions obtained on a prestressed concrete vessel under thermal gradients. (author). 14 refs., 10 figs

  18. Inverse analyses of effective diffusion parameters relevant for a two-phase moisture model of cementitious materials

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Johannesson, Björn; Wadsö, Lars

    2018-01-01

    Here we present an inverse analyses approach to determining the two-phase moisture transport properties relevant to concrete durability modeling. The purposed moisture transport model was based on a continuum approach with two truly separate equations for the liquid and gas phase being connected...... test, and, (iv) capillary suction test. Mass change over time, as obtained from the drying test, the two different cup test intervals and the capillary suction test, was used to obtain the effective diffusion parameters using the proposed inverse analyses approach. The moisture properties obtained...

  19. Characterization and variability of the main oceanic sources of moisture

    Science.gov (United States)

    Castillo Rodriguez, R.; Nieto, R.; Gimeno, L.; Drumond, A.

    2012-04-01

    Transport of water vapor in the atmosphere from regions of net evaporation to regions of net precipitation is an important part of the hydrological cycle. The aim of this study is to track variations of atmospheric moisture along 10-days trajectories of air masses to identify where continental regions are affected by precipitation originating from specific oceanic regions. The proceeding was based on the method developed by Stohl and James 2004, 2005, which used the Lagrangian particle dispersion model FLEXPART v8.0 and reanalysis data ERA-40 from the European Centre for Medium-Range Weather Forecast (ECMWF). These source regions, selecting according to the largest values of divergence of the vertically integrated moisture flux are: India, North and South Pacific, North and South Atlantic oceans, Mexico-Caribbean, the Mediterranean, the Arabian, the Coral and the Red seas, as well as the Agulhas (in the waters surrounding South Africa) and the Zanzibar Current regions. And they were defined based on the threshold of 750 mm/yr. We investigated the moisture sinks associated with each one of these evaporative sources for a period of 21 years (1980-2000) in a seasonal scale using correlations and the statistical mean. In addition, we characterized the influence of the El Niño-Southern Oscillation over the transport of moisture from the source regions selected with the composites technique from the month of june to the month of may over the years 1984-1985, 1988-1989, 1995-1996, 1998-1999, 1999-2000 in the Niña phase and 1982-1983, 1986-1987, 1991-1992, 1994-1995, 1997-1998 in the Niño phase.

  20. Effect of moisture content of concrete on water uptake

    International Nuclear Information System (INIS)

    Rucker-Gramm, P.; Beddoe, R.E.

    2010-01-01

    The penetration of water and non-polar hexane in Portland cement mortar prisms with different initial moisture contents was investigated using nuclear magnetic resonance ( 1 H NMR). The amount of water in gel pores strongly affects the penetration of water in much larger capillary pores. Water penetration is reduced by the self-sealing effect as characterized by non-√t dependence of capillary uptake and penetration depth. This is explained by the ongoing redistribution of water from capillaries into gel pores which results in internal swelling and loss of continuity of the capillary pore system; a correlation was observed between the amount of redistributed water and departure from √t behaviour. A descriptive model is used to explain the dependence of water uptake and penetration on moisture content. For increasing initial moisture contents up to a critical value equivalent to equilibrium with a relative humidity between 65 and 80%, less penetrating water is able to redistribute. Thus more penetrating water is in larger capillaries with less viscous resistance; uptake and penetration depth increase. Above the critical initial moisture content, uptake and penetration depth decrease towards zero. This is explained by (a) an overall reduction in capillary pressure because transport takes places in fewer and larger pores and (b) an increase in viscous resistance due to the connection of penetrating capillary water with pores already containing water. Less capillary pore space is available for transport. The surface region of concrete placed in contact with water is not instantaneously saturated. Water content increases with time depending on the degree of surface saturation. A new transition coefficient for capillary suction γ is defined for the calculation of surface flux.

  1. Modeling soil moisture memory in savanna ecosystems

    Science.gov (United States)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  2. Moisture sorption isotherms of dehydrated whey proteins

    OpenAIRE

    Suzana Rimac Brnčić; Vesna Lelas; Zoran Herceg; Marija Badanjak

    2010-01-01

    Moisture sorption isotherms describe the relation between the moisture content of the dry material (food) and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as...

  3. Moisture Conditions in Passive House Wall Constructions

    OpenAIRE

    Gullbrekken, Lars; Geving, Stig; Time, Berit; Andresen, Inger

    2015-01-01

    Buildings for the future, i.e zero emission buildings and passive houses, will need well insulated building envelopes, which includes increased insulation thicknesses for roof, wall and floor constructions. Increased insulation thicknesses may cause an increase in moisture levels and thereby increased risk of mold growth. There is need for increased knowledge about moisture levels in wood constructions of well insulated houses, to ensure robust and moisture safe solutions. Monitoring of w...

  4. Portable neutron moisture gage for the moisture determination of structure parts

    International Nuclear Information System (INIS)

    Harnisch, M.

    1985-01-01

    For determining the moisture of structure parts during building or before repairing a portable neutron moisture gage consisting of a neutron probe and pulse analyzer has been developed. The measuring process, calibration, and prerequisites of application are briefly discussed

  5. Moisture accumulation in a building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Forest, T.W.; Checkwitch, K.

    1988-09-01

    In a large number of cases, the failure of a building envelope can be traced to the accumulation of moisture. In a cold winter climate, characteristic of the Canadian prairies, moisture is deposited in the structure by the movement of warm, moist air through the envelope. Tests on the moisture accumulation in a building envelope were initiated in a test house at an Alberta research facility during the 1987/88 heating season. The indoor moisture generation rate was measured and compared with the value inferred from the measured air infiltration rate. With the flue open, the moisture generation rate was approximately 5.5 kg/d of which 0.7 kg/d entered the building envelope; the remainder was exhausted through the flue. With the flue blocked, the moisture generation rate decreased to 3.4 kg/d, while the amount of moisture migrating through the envelope increased to 4.0 kg/d. The moisture accumulation in wall panels located on the north and south face of the test house was also monitored. Moisture was allowed to enter the wall cavity via a hole in the drywall. The fiberglass insulation remained dry throughout the test period. The moisture content of the exterior sheathing of the north panel increased to a maximum of 18% wt in the vicinity of the hole, but quickly dried when the ambient temperatures increased towards the end of the season. The south panel showed very little moisture accumlation due to the effects of solar radiation. 14 refs., 9 figs.

  6. Comparison of salt solution and air drying methods for moisture fixation in highly porous building materials

    DEFF Research Database (Denmark)

    Antonov, Yovko Ivanov; Jensen, Rasmus Lund; Møldrup, Per

    2017-01-01

    In recent years, research has identified some bio-based, porous building materials as good or excellent regulators of moisture in buildings. The ability of a material to absorb, release and store moisture is described by vapour sorption isotherms. It is necessary input to simulations of indoor...... building materials by a standardized testing method, using saturated salt solutions. Furthermore, results from the standard method are compared to values of moisture content for the same materials, obtained by air-drying at different relative humidity. This is done with the aim to compare the findings from...... the two methods with respect to time and repeatability of the results. Derived isotherms are further used as direct input in the building simulation software BSim, which is capable of predicting indoor environment parameters by solving coupled, transient heat and moisture transport equations using finite...

  7. SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Mogensen, Mogens Bjerg

    2011-01-01

    The cause of the degradation effect of moisture during operation of LSM cathode based SOFCs has been investigated by means of a detailed impedance characterization on LSM:YSZ composite cathode based SOFCs. Further the role of YSZ as cathode composite material was studied by measurements on SOFCs...... with a LSM:CGO composite cathode on a CGO interdiffusion barrier layer. It was found that both types of cathodes showed similar electrochemical characteristics towards the presence of moisture during operation. Upon addition and removal of moisture in the fed air the impedance study showed a change...... in the high frequency cathode arc, which is associated with the charge transport/transfer at the LSM/YSZ interface. On prolonged operation with the presence of moisture an ongoing increase in the high frequency cathode arc resulted in a permanent loss of cathode/electrolyte contact and thus increase...

  8. Probing bias reduction to improve comparability of lint cotton water and moisture contents at moisture equilibrium

    Science.gov (United States)

    The Karl Fischer Titration (KFT) reference method is specific for water in lint cotton and was designed for samples conditioned to moisture equilibrium, thus limiting its biases. There is a standard method for moisture content – weight loss – by oven drying (OD), just not for equilibrium moisture c...

  9. Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products

    Science.gov (United States)

    The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...

  10. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    KAUST Repository

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra Belur

    2016-01-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA’s Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected

  11. Measuring the spatial variation in surface moisture on a coastal beach with an infra-red terrestrial laser scanner

    Science.gov (United States)

    Smit, Yvonne; Donker, Jasper; Ruessink, Gerben

    2016-04-01

    Coastal sand dunes provide essential protection against marine flooding. Consequently, dune erosion during severe storms has been studied intensively, resulting in well-developed erosion models for use in scientific and applied projects. Nowadays there is growing awareness that similarly advanced knowledge on dune recovery and growth is needed to predict future dune development. For this reason, aeolian sand transport from the beach into the dunes has to be investigated thoroughly. Surface moisture is a major factor limiting aeolian transport on sandy beaches. By increasing the velocity threshold for sediment entrainment, pick-up rates reduce and the fetch length increases. Conventional measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content required to study the effects on aeolian transport. Here we present a new method for detecting surface moisture at high temporal and spatial resolution using the RIEGL VZ-400 terrestrial laser scanner (TLS). Because this TLS operates at a wavelength near a water absorption band (1550 nm), TLS reflectance is an accurate parameter to measure surface soil moisture over its full range. Three days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric soil moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0% - 25%). This relation holds to about 80 m from the TLS. Within this distance the TLS typically produces O(106-107) data points, which we averaged into soil moisture maps with a 0.25x0.25 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. As the next step in our research, we will analyze the obtained maps to determine which processes affect the spatial and

  12. Measuring spatial and temporal variation in surface moisture on a coastal beach with a near-infrared terrestrial laser scanner

    Science.gov (United States)

    Smit, Yvonne; Ruessink, Gerben; Brakenhoff, Laura B.; Donker, Jasper J. A.

    2018-04-01

    Wind-alone predictions of aeolian sand deposition on the most seaward coastal dune ridge often exceed measured deposition substantially. Surface moisture is a major factor limiting aeolian transport on sandy beaches, but existing measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content. Here, we present a new method for detecting surface moisture at high temporal and spatial resolution using a near-infrared terrestrial laser scanner (TLS), the RIEGL VZ-400. Because this TLS operates at a wavelength (1550 nm) near a water absorption band, TLS reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric surface moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0%-25%), with a correlation-coefficient squared of 0.85 and a root-mean-square error of 2.7%. This relation holds between 20 and 60 m from the TLS. Within this distance the TLS typically produces O (106-107) data points, which we averaged into surface moisture maps with a 1 × 1 m resolution. This grid size largely removes small reflectance disturbances induced by, for example, footprints or tire tracks, while retaining larger scale moisture trends.

  13. Moisture related test protocols for HVS testing

    CSIR Research Space (South Africa)

    Denneman, E

    2008-10-01

    Full Text Available outcomes of HVS tests where the moisture condition of the pavement or specific layers in the pavement is under investigation for a specific test. Practical guidance is then provided on the potential systems (how to manage the moisture – hardware) as well...

  14. Irrigation scheduling using soil moisture sensors

    Science.gov (United States)

    Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...

  15. 7 CFR 868.307 - Moisture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Moisture. 868.307 Section 868.307 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.307 Moisture. Water content in milled rice as determined by an FGIS approved...

  16. Integrated Heat Air & Moisture Modeling and control

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2007-01-01

    The paper presents a recently developed Heat Air & Moisture Laboratory in SimuLink. The simulation laboratory facilitates the integration of the following models: (1) a whole building model; (2) Heating Venting and Air-Conditioning and primary systems; (3) 2D indoor airflow, 3D Heat Air & Moisture

  17. Microwave moisture sensing of wet bales

    Science.gov (United States)

    Sensing of moisture in very wet lint bales is unique due to the fact that moisture distribution is typically non-uniform and can in some instances be highly localized. This issue is even further complicated by the use of a sensor that reads only a portion of the bale and/or with a sensor that provid...

  18. Microwave bale moisture sensing: Field trial

    Science.gov (United States)

    A microwave moisture measurement technique was developed for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This research conducted a field trial to test the sensor in a commercial...

  19. Microwave bale moisture sensing: Field trial continued

    Science.gov (United States)

    A microwave moisture measurement technique was developed at the USDA, ARS Cotton Production and Processing Research Unit for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This res...

  20. Logging effects on soil moisture losses

    Science.gov (United States)

    Robert R. Ziemer

    1978-01-01

    Abstract - The depletion of soil moisture within the surface 15 feet by an isolated mature sugar pine and an adjacent uncut forest in the California Sierra Nevada was measured by the neutron method every 2 weeks for 5 consecutive summers. Soil moisture recharge was measured periodically during the intervening winters. Groundwater fluctuations within the surface 50...

  1. 46 CFR 154.1715 - Moisture control.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Moisture control. 154.1715 Section 154.1715 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... § 154.1715 Moisture control. When a vessel is carrying sulfur dioxide, the master shall ensure that: (a...

  2. Multiscale soil moisture estimates using static and roving cosmic-ray soil moisture sensors

    Science.gov (United States)

    McJannet, David; Hawdon, Aaron; Baker, Brett; Renzullo, Luigi; Searle, Ross

    2017-12-01

    Soil moisture plays a critical role in land surface processes and as such there has been a recent increase in the number and resolution of satellite soil moisture observations and the development of land surface process models with ever increasing resolution. Despite these developments, validation and calibration of these products has been limited because of a lack of observations on corresponding scales. A recently developed mobile soil moisture monitoring platform, known as the rover, offers opportunities to overcome this scale issue. This paper describes methods, results and testing of soil moisture estimates produced using rover surveys on a range of scales that are commensurate with model and satellite retrievals. Our investigation involved static cosmic-ray neutron sensors and rover surveys across both broad (36 × 36 km at 9 km resolution) and intensive (10 × 10 km at 1 km resolution) scales in a cropping district in the Mallee region of Victoria, Australia. We describe approaches for converting rover survey neutron counts to soil moisture and discuss the factors controlling soil moisture variability. We use independent gravimetric and modelled soil moisture estimates collected across both space and time to validate rover soil moisture products. Measurements revealed that temporal patterns in soil moisture were preserved through time and regression modelling approaches were utilised to produce time series of property-scale soil moisture which may also have applications in calibration and validation studies or local farm management. Intensive-scale rover surveys produced reliable soil moisture estimates at 1 km resolution while broad-scale surveys produced soil moisture estimates at 9 km resolution. We conclude that the multiscale soil moisture products produced in this study are well suited to future analysis of satellite soil moisture retrievals and finer-scale soil moisture models.

  3. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  4. MOISTURE-BUFFERING CHARACTERISTICS OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Young Cheol Choi

    2016-05-01

    Full Text Available The humidity level of indoor air is an important factor influencing the air quality and energy consumption of buildings, as well as the durability of building components. Indoor humidity levels depend on several factors, such as moisture sources, air flow, and the adsorption/desorption properties of materials. The moisture-buffering characteristics of building materials that are in contact with indoor air may help moderate the variations of indoor humidity, especially in the summer and winter. In this study, the moisture adsorption/desorption properties of building materials were investigated experimentally and numerically. These properties can be used to characterize the ability of building materials to exchange moisture with the indoor environment. This study indicates that a building material surface resistivity was the main factor creating variations of moisture buffering.

  5. Effect of Initial Moisture on the Adsorption and Desorption Equilibrium Moisture Contents of Polished Rice

    OpenAIRE

    Murata, Satoshi; Amaratunga, K.S.P.; Tanaka, Fumihiko; Hori, Yoshiaki; 村田, 敏; 田中, 史彦; 堀, 善昭

    1993-01-01

    The moisture adsorption and desorption properties for polished rice have been measured using a dynamic ventilatory method. Air temperatures of 10,20,30 and 40℃, relative humidities of 50,60,70,80 and 90%, and five levels of initial moisture contents ranging approximately from 8% to 19% d.b. were used to obtain moisture content data. The value of equilibrium moisture content for each initial moisture content at the range of air condition was determined by a method of nonlinear least squares. R...

  6. A model to predict moisture conditions in concrete reactor containments

    International Nuclear Information System (INIS)

    Ahs, M.; Nilsson, L.O.; Poyet, S.; L'Hostis, V.

    2015-01-01

    Moisture has an impact in many of the degradation mechanisms that appear in the structures of a nuclear power plant. Moisture conditions in a reactor containment wall have been simulated by using a hygro-thermal model of drying concrete. Methods to estimate the temperature dependency of the sorption isotherms and moisture transport properties is suggested and applied in the model. This temperature dependency is included as there is a temperature gradient present through the containment wall. The hygro-thermal model was applied on a full scale 3D model of a real reactor containment building and the concrete relative humidity has been computed at 4 different moments: 1, 10, 20 and 30 years. The results show that the major part of the concrete is not dried at all even after 30 years of operation. It is also clear that the temperature distribution inside the whole concrete volume is affected by the variable boundary conditions. It was concluded that the suggested hygro-thermal model was appropriate to use as a method to estimate the existing conditions in a PWR reactor containment wall

  7. MoisturEC: A New R Program for Moisture Content Estimation from Electrical Conductivity Data.

    Science.gov (United States)

    Terry, Neil; Day-Lewis, Frederick D; Werkema, Dale; Lane, John W

    2018-03-06

    Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data-analysis tools are needed to "translate" geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user-friendly tools are required to fully capitalize on the potential of geophysical information for soil-moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two- and three-dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  8. MoisturEC: a new R program for moisture content estimation from electrical conductivity data

    Science.gov (United States)

    Terry, Neil; Day-Lewis, Frederick D.; Werkema, Dale D.; Lane, John W.

    2018-01-01

    Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data‐analysis tools are needed to “translate” geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user‐friendly tools are required to fully capitalize on the potential of geophysical information for soil‐moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two‐ and three‐dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach.

  9. Relationships between δ18O in summer precipitation and temperature and moisture trajectories at Muztagata, western China

    Institute of Scientific and Technical Information of China (English)

    YU; Wusheng; YAO; Tandong; TIAN; Lide; LI; Zhen; SUN; Weizhen; WANG; Yu

    2006-01-01

    Based on summer observations of stable isotope of precipitation at Muztagata, western China, during 2002―2003, this paper presents the relationship between δ18O in precipitation and air temperature, and discusses the effect of moisture transport on δ18O in precipitation. Results show that air temperature correlates positively with δ18O in precipitation, and the temperature effect controls the δ18O of precipitation in this area. The Muztagata region exhibits high δ18O values in summer precipitation, similar to those shown at stations in adjacent regions. According to the results of our model set up to trace the moisture trajectories, the westerlies and local moisture circulation contribute to variations of oxygen isotopes in precipitation. In addition, the impacts of the moisture transport distance, the moisture transport level, and the incursion of the polar air mass also influence the variations of δ18O in precipitation. The moisture origins and transport mechanisms also contribute to the variation of δ18O in precipitation at Muztagata.

  10. NOAA Soil Moisture Products System (SMOPS) Daily Blended Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Soil Moisture Operational Products System (SMOPS) combines soil moisture retrievals from multiple satellite sensors to provide a global soil moisture map with...

  11. Quantifying Time Dependent Moisture Storage and Transport Properties

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut H

    2003-01-01

    This paper describes an experimental and numerical approach to quantify the time dependence of sorption mechanisms for some hygroscopic building - mostly insulation - materials. Some investigations of retarded sorption and non-Fickian phenomena, mostly on wood, have given inspiration to the present...

  12. Heat and Moisture Transport in the Atmospheric Boundary Layer.

    Science.gov (United States)

    1987-01-05

    21112, ITTA, 1,2,3 4 2 2 2 2 2 13 10 1-13 3 hr 3 KW-lUC3,&/I F3C-3-7641691; 3 -1 5935-519-3562 :10WIMR, M111, 02.00216, 123 I. . . . . . 3 41 6 AISA ...the user to have previously edited this tape it a set oif output 4,,;: m,,re than one time have been written on it. Control is now returned to T( )P

  13. Surface moisture estimation in urban areas

    Science.gov (United States)

    Jiang, Yitong

    Surface moisture is an important parameter because it modifies urban microclimate and surface layer meteorology. The primary objectives of this paper are: 1) to analyze the impact of surface roughness from buildings on surface moisture in urban areas; and 2) to quantify the impact of surface roughness resulting from urban trees on surface moisture. To achieve the objectives, two hypotheses were tested: 1) the distribution of surface moisture is associated with the structural complexity of buildings in urban areas; and 2) The distribution and change of surface moisture is associated with the distribution and vigor of urban trees. The study area is Indianapolis, Indiana, USA. In the part of the morphology of urban trees, Warren Township was selected due to the limitation of tree inventory data. To test the hypotheses, the research design was made to extract the aerodynamic parameters, such as frontal areas, roughness length and displacement height of buildings and trees from Terrestrial and Airborne LiDAR data, then to input the aerodynamic parameters into the urban surface energy balance model. The methodology was developed for comparing the impact of aerodynamic parameters from LiDAR data with the parameters that were derived empirically from land use and land cover data. The analytical procedures are discussed below: 1) to capture the spatial and temporal variation of surface moisture, daily and hourly Land Surface Temperature (LST) were downscaled from 4 km to 1 km, and 960 m to 30 m, respectively, by regression between LST and various components that impact LST; 2) to estimate surface moisture, namely soil moisture and evapotranspiration (ET), land surfaces were classified into soil, vegetation, and impervious surfaces, using Linear Spectral Mixture Analysis (LSMA); 3) aerodynamic parameters of buildings and trees were extracted from Airborne and Terrestrial LiDAR data; 4) the Temperature-Vegetation-Index (TVX) method, and the Two-Source-Energy-Balance (TSEB

  14. Development of a neutron moisture gauge

    International Nuclear Information System (INIS)

    Prasad, A.S.

    1979-01-01

    A neutron moisture gauge fabricated for measuring the moisture content of coke is described. It has an americium-beryllium source placed beside a boron coated neutron counter which is a slow neutron detector. The fast neutrons emitted by the radioactive source are slowed down by the hydrogen nuclei present in the material either as bound hydrogen or as a hydrogen of the water. Measure of the slowed down i.e. thermal neutrons (their density) is proportional to the total hydrogen content of the material. The instrument is installed as an ''on-line'' measuring device to estimate the moisture content of coke at the weighing hopper feeding the skip car. The accuracy of measurement is dependent on the moisture content, i.e. higher accuracy is obtained for higher moisture content. At low moisture content, the effect of the bound hydrogen other than that of the water on low moisture readings is pronounced. Effect of bulk density on the accuracy of measurement is not very significant as long as the coke size is constant. The error is in the range of +- 1.1%. (M.G.B.)

  15. Moisture monitoring and control system engineering study

    International Nuclear Information System (INIS)

    Carpenter, K.E.; Fadeff, J.G.

    1995-01-01

    During the past 50 years, a wide variety of chemical compounds have been placed in the 149 single-shell tanks (SSTS) on the Hanford Site. A concern relating to chemical stability, chemical control, and safe storage of the waste is the potential for propagating reactions as a result of ferrocyanide-oxidizer and organic-oxidizer concentrations in the SSTS. Propagating reactions in fuel-nitrate mixtures are precluded if the amounts of fuel and moisture present in the waste are within specified limits. Because most credible ignition sources occur near the waste surface, the main emphasis of this study is toward monitoring and controlling moisture in the top 14 cm (5.5 in.) of waste. The purpose of this engineering study is to recommend a moisture monitoring and control system for use in SSTs containing sludge and saltcake. This study includes recommendations for: (1) monitoring and controlling moisture in SSTs; (2) the fundamental design criteria for a moisture monitoring and control system; and (3) criteria for the deployment of a moisture monitoring and control system in hanford Site SSTs. To support system recommendations, technical bases for selecting and using a moisture monitoring and control system are presented. Key functional requirements and a conceptual design are included to enhance system development and establish design criteria

  16. The influence of moisture content on the water vapour resistance of surface coated spruce

    DEFF Research Database (Denmark)

    Engelund, E.T.; Ulriksen, L.; Hansen, Kurt Kielsgaard

    2005-01-01

    Two series of cup tests are carried out. The first series is performed on spruce specimens having moisture transport in either radial direction (R-direction) or in tangential direction (T-direction). The T-direction tests are made as wet cup tests having 93 %RH inside the cups, while the R-direct...

  17. Cone penetrometer moisture probe acceptance test report

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1996-01-01

    This Acceptance Test Report (ATR) documents the results of WHC-SD-WM-ATP-146 (Prototype Cone Penetrometer Moisture Probe Acceptance Test Procedure) and WHC-SD-WM-ATP-145 (Cone Penetrometer Moisture Probe Acceptance Test Procedure). The master copy of WHC-SD-WM-ATP-145 can be found in Appendix A and the master copy of WHC-SD-WM-ATP-146 can be found in Appendix B. Also included with this report is a matrix showing design criteria of the cone penetrometer moisture probe and the verification method used (Appendix C)

  18. Design of Moisture Content Detection System

    Science.gov (United States)

    Wang, W. C.; Wang, L.

    In this paper, a method for measuring the moisture content of grain was presented based on single chip microcomputer and capacitive sensor. The working principle of measuring moisture content is introduced and a concentric cylinder type of capacitive sensor is designed, the signal processing circuits of system are described in details. System is tested in practice and discussions are made on the various factors affecting the capacitive measuring of grain moisture based on the practical experiments, experiment results showed that the system has high measuring accuracy and good controlling capacity.

  19. Digital radioisotope moisture-density meter

    International Nuclear Information System (INIS)

    Bychvarov, N.; Vankov, I.; Dimitrov, L.

    1982-01-01

    The primary information from the detectors of a combined radioisotope moisture-density meter is obtained as pulses, their counting rate being functionally dependent on the humidity per unit volume and the wet density. However, most practical cases demand information on the moisture per unit weight and the mass density of the dry skeleton. The paper describes how the proposed electronic circuit processes the input primary information to obtain the moisture in weight % and the mass density of the dry skeleton in g/cm 3 . (authors)

  20. Coal Moisture Estimation in Power Plant Mills

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; Pedersen, Tom S.

    2009-01-01

    Knowledge of moisture content in raw coal feed to a power plant coal mill is of importance for efficient operation of the mill. The moisture is commonly measured approximately once a day using offline chemical analysis methods; however, it would be advantageous for the dynamic operation...... of the plant if an on-line estimate were available. In this paper we such propose an on-line estimator (an extended Kalman filter) that uses only existing measurements. The scheme is tested on actual coal mill data collected during a one-month operating period, and it is found that the daily measured moisture...

  1. Soil moisture content with global warming

    International Nuclear Information System (INIS)

    Vinnikov, K.Ya.

    1990-01-01

    The potential greenhouse-gas-induced changes in soil moisture, particularly the desiccation of the Northern Hemisphere contents in summer, are discussed. To check the conclusions based on climate models the authors have used long-term measurements of contemporary soil moisture in the USSR and reconstructions of soil moisture for the last two epochs that were warmer than the present, namely, the Holocene optimum, 5,000-6,000 years ago, and the last interglacial, about 125,000 years ago. The analysis shows that there is a considerable disagreement between the model results and the empirical data

  2. MoisturEC: an R application for geostatistical estimation of moisture content from electrical conductivity data

    Science.gov (United States)

    Terry, N.; Day-Lewis, F. D.; Werkema, D. D.; Lane, J. W., Jr.

    2017-12-01

    Soil moisture is a critical parameter for agriculture, water supply, and management of landfills. Whereas direct data (as from TDR or soil moisture probes) provide localized point scale information, it is often more desirable to produce 2D and/or 3D estimates of soil moisture from noninvasive measurements. To this end, geophysical methods for indirectly assessing soil moisture have great potential, yet are limited in terms of quantitative interpretation due to uncertainty in petrophysical transformations and inherent limitations in resolution. Simple tools to produce soil moisture estimates from geophysical data are lacking. We present a new standalone program, MoisturEC, for estimating moisture content distributions from electrical conductivity data. The program uses an indicator kriging method within a geostatistical framework to incorporate hard data (as from moisture probes) and soft data (as from electrical resistivity imaging or electromagnetic induction) to produce estimates of moisture content and uncertainty. The program features data visualization and output options as well as a module for calibrating electrical conductivity with moisture content to improve estimates. The user-friendly program is written in R - a widely used, cross-platform, open source programming language that lends itself to further development and customization. We demonstrate use of the program with a numerical experiment as well as a controlled field irrigation experiment. Results produced from the combined geostatistical framework of MoisturEC show improved estimates of moisture content compared to those generated from individual datasets. This application provides a convenient and efficient means for integrating various data types and has broad utility to soil moisture monitoring in landfills, agriculture, and other problems.

  3. STATUS REPORT FOR MOISTURE EFFECTS ON COMPACTION OF FIBERBOARD IN A 9975 SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Stefek, T.; Daugherty, W.; Estochen, E.

    2011-06-23

    Compaction of lower layers in the fiberboard overpack has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and the behavior of the fiberboard during transport. In laboratory tests, higher moisture content has been shown to correspond to higher total compaction of fiberboard material, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted over a period of six months to acquire immediate and cumulative changes in geometric data for various moisture levels. Currently, one sample set has undergone a complete dynamic test regimen, while testing of another set is still in-progress. The dynamic input, data acquisition, test effects on sample dynamic parameters, and interim results from this test program are summarized and compared to regulatory specifications for dynamic loading. This will provide a basis from which to evaluate the impact of moisture and fiberboard compaction on the safety basis for transportation (Safety Analysis Report for Packaging) and storage (facility Documented Safety Analysis) at the Savannah River Site (SRS).

  4. Moisture Buffer Value of Building Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut; Time, Berit

    2007-01-01

    When building materials are in contact with indoor air they have some effect to moderate the variations of indoor humidity in occupied buildings. But so far there has been a lack of a standardized quantity to characterize the moisture buffering capability of materials. It has been the objective o...... is a test protocol which expresses how materials should be tested for determination of their Moisture Buffer Value. Finally, the paper presents some of the results of a Round Robin Test on various typical building materials that has been carried out in the project....... of a recent Nordic project to define such a quantity, and to declare it in the form of a NORDTEST method. The Moisture Buffer Value is the figure that has been developed in the project as a way to appraise the moisture buffer effect of materials, and the value is described in the paper. Also explained...

  5. Moisture Control Guidance for Commercial and Public ...

    Science.gov (United States)

    This document provides guidance to designers, construction mangers, and building operation/maintenance managers to improve IEQ and reduce risks of encountering IEQ problems due to insufficient moisture control. EPA will be producing a document entitled

  6. Moisture separator reheaters for nuclear power plants

    International Nuclear Information System (INIS)

    Miyoshi, Michizo; Yonemura, Katsutoshi

    1974-01-01

    In the light water reactor plants using BWRS or PWRS, the pressure and temperature of steam at the inlet of turbines are low, and the steam is moist, as compared with the case of thermal power plants. Therefore, moisture separator/reheaters are used between high and low pressure turbines. The steam from a high pressure turbine enters a manifold, and goes zigzag through vertical plate separator elements, its moisture is removed from the steam. Then, after being reheated with the steam bled from the high pressure turbine and directly from a reactor, the steam is fed into a low pressure turbine. The development and test made on the components of a moisture separaotr/reheater and the overall model experiment are described together with the mechanism of moisture separation and reheating. (Mori, K.)

  7. Global characterization of surface soil moisture drydowns

    Science.gov (United States)

    McColl, Kaighin A.; Wang, Wei; Peng, Bin; Akbar, Ruzbeh; Short Gianotti, Daniel J.; Lu, Hui; Pan, Ming; Entekhabi, Dara

    2017-04-01

    Loss terms in the land water budget (including drainage, runoff, and evapotranspiration) are encoded in the shape of soil moisture "drydowns": the soil moisture time series directly following a precipitation event, during which the infiltration input is zero. The rate at which drydowns occur—here characterized by the exponential decay time scale τ—is directly related to the shape of the loss function and is a key characteristic of global weather and climate models. In this study, we use 1 year of surface soil moisture observations from NASA's Soil Moisture Active Passive mission to characterize τ globally. Consistent with physical reasoning, the observations show that τ is lower in regions with sandier soils, and in regions that are more arid. To our knowledge, these are the first global estimates of τ—based on observations alone—at scales relevant to weather and climate models.

  8. Moisture-driven fracture in solid wood

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur; Olesen, John Forbes

    2011-01-01

    Moisture-induced fractures in solid timber create considerable problems for both building industries and sawmills. Cracks caused by kiln-drying of solid timber are extremely difficult to predict. This paper reports on experiments concerned with methods of reducing cracks in wood and with the crac......Moisture-induced fractures in solid timber create considerable problems for both building industries and sawmills. Cracks caused by kiln-drying of solid timber are extremely difficult to predict. This paper reports on experiments concerned with methods of reducing cracks in wood...... process, suggesting that sealing the ends of timber logs while in the green moisture state could considerably reduce the development of end-cracks. The initial moisture content and the shrinkage properties of the wood varied markedly from pith to bark. The importance of taking material inhomogeneities...... into account when modelling crack propagation in solid wood is emphasized. © 2011 Taylor & Francis....

  9. Moisture Transfer in Ventilated Facade Structures

    Directory of Open Access Journals (Sweden)

    Olshevskyi Vyacheslav

    2016-01-01

    Full Text Available This article discusses the phenomenon of moisture transfer in the designs of ventilated facades (VF. The main ways of moisture transfer are defined. The negative factors connected with moisture accumulation and excessive moistening of insulation are given. The physical processes occurring in the gap of the building envelope due to saturation of air with water vapor are described. The dependence of the intensity of the mass transfer on the air velocity in the layer is considered. Much attention is paid to the selection of the optimum design of the facade, namely a system with or without grooved lines. The dependence of velocity and temperature on the width of the ventilated gap is established empirically for the constructions with open and closed grooves. Expediency of a design without grooves to effectively remove moisture is determined.

  10. The deterioration of intermediate moisture foods

    Science.gov (United States)

    Labruza, T. P.

    1971-01-01

    Deteriorative reactions are low and food quality high if intermediate moisture content of a food is held at a water activity of 0.6 to 0.75. Information is of interest to food processing and packaging industry.

  11. Advanced moisture modeling of polymer composites.

    Science.gov (United States)

    2014-04-01

    Long term moisture exposure has been shown to affect the mechanical performance of polymeric composite structures. This reduction : in mechanical performance must be considered during product design in order to ensure long term structure survival. In...

  12. Nuclear Magnetic Resonance Trackbed Moisture Sensor System

    Science.gov (United States)

    2018-02-01

    In this initial phase, conducted from March 2015 through December 2016, Vista Clara and its subcontractor Zetica Rail successfully developed and tested a man-portable, non-invasive spot-check nuclear magnetic resonance (NMR) moisture sensor that dire...

  13. Passive microwave remote sensing of soil moisture

    International Nuclear Information System (INIS)

    Jackson, T.J.; Schmugge, T.J.

    1986-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive microwave soil moisture sensors currently considered for space operation are in the range 10–20 km. The most useful frequency range for soil moisture sensing is 1–5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations

  14. Moisture sorption isotherms of dehydrated whey proteins

    Directory of Open Access Journals (Sweden)

    Suzana Rimac Brnčić

    2010-03-01

    Full Text Available Moisture sorption isotherms describe the relation between the moisture content of the dry material (food and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as monolayer value of two commercial powdered whey protein isolates before and after tribomechanical micronisation and enzymatic hydrolysis, respectively. At the same time it was necessary to evaluate the best moisture sorption isotherm equation to fit the experimental data. The equilibrium moisture contents in investigated samples were determined using standard gravimetric method at 20 °C. The range of water activities was 0.11 to 0.75. The monolayer moisture content was estimated from sorption data using Brunauer-Emmett-Teller (BET and Guggenheim-Anderson-de Boer (GAB models. The results have shown that tribomechanically treated whey protein isolates as well as protein hydrolizates had lower monolayer moisture content values as well as higher corresponding water activity. Therefore, in spite of the fact that they have lower moisture content, they can be storage at higher relative humidity compared to untreated samples. BET model gave better fit to experimental sorption data for a water activity range from 0.11-0.54, while GAB model gave the closest fit for a water activity to 0.75.

  15. Radar for Measuring Soil Moisture Under Vegetation

    Science.gov (United States)

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  16. An overview of the measurements of soil moisture and modeling of moisture flux in FIFE

    Science.gov (United States)

    Wang, J. R.

    1992-01-01

    Measurements of soil moisture and calculations of moisture transfer in the soil medium and at the air-soil interface were performed over a 15-km by 15-km test site during FIFE in 1987 and 1989. The measurements included intensive soil moisture sampling at the ground level and surveys at aircraft altitudes by several passive and active microwave sensors as well as a gamma radiation device.

  17. Dampness and Moisture Problems in Norwegian Homes

    Directory of Open Access Journals (Sweden)

    Rune Becher

    2017-10-01

    Full Text Available The occurrence of dampness and mold in the indoor environment is associated with respiratory-related disease outcomes. Thus, it is pertinent to know the magnitude of such indoor environment problems to be able to estimate the potential health impact in the population. In the present study, the moisture damage in 10,112 Norwegian dwellings was recorded based on building inspection reports. The levels of moisture damage were graded based on a condition class (CC, where CC0 is immaculate and CC1 acceptable (actions not required, while CC2 and CC3 indicate increased levels of damage that requires action. Of the 10,112 dwellings investigated, 3125 had verified moisture or mold damage. This amounts to 31% of the surveyed dwellings. Of these, 27% had CC2 as the worst grade, whereas 4% had CC3 as the worst grade level. The room types and building structures most prone to moisture damage were (in rank order crawl spaces, basements, un-insulated attics, cooling rooms, and bathrooms. The high proportion of homes with moisture damage indicate a possible risk for respiratory diseases in a relatively large number of individuals, even if only the more extensive moisture damages and those located in rooms where occupants spend the majority of their time would have a significant influence on adverse health effects.

  18. Space-time modeling of soil moisture

    Science.gov (United States)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  19. Understanding moisture recycling for atmospheric river management in Amazonian communities

    Science.gov (United States)

    Weng, Wei; Luedeke, Matthias; Zemp, Delphine-Clara; Lakes, Tobia; Pradhan, Prajal; Kropp, Juergen

    2017-04-01

    The invisible atmospheric transports of moisture have recently attracted more research efforts into understanding their structures, processes involved and their function as an ecosystem service. Current attention has been focused on larger scale analysis such as studying global or continental level moisture recycling. Here we applied a water balance model to backtrack the flying river that sustains two local communities in the Colombian and Peruvian Amazon where vulnerable communities rely highly on the rainfall for agricultural practices. By utilising global precipitation (TRMM Multisatillite Precipitation Analysis; TMPA) and evapotranspiration products (Moderate Resolution Imaging Spectroradiometer MODIS, MOD16ET) as input data in the present modelling experiments to compensate the sparse ground observation data in these regions, the moisture recycling process targeting the two amazonian communities which has not yet been explored quantitatively has been shown. The TMPA was selected because of its proved comparativeness with observation data in its precipitation estimations over Amazon regions while the MOD16ET data was chosen for being validated by previous studies in the Amazon basin and for reported good performance. In average, 45.5 % of the precipitation occurring to Caquetá region in Colombia is of terrestrial origin from the South American continent while 48.2% of the total rainfall received by Peruvian Yurimaguas is also from the South American land sources. The spatial distribution of the precipitationsheds (defined previously as the upwind contribution of evapotranspiration to a specific location's precipitation) shows transboundary and transnational shares in the moisture contributors of the precipitation for both regions. An interesting reversed upstream-downstream roles can be observed when the upstream regions in traditional watershed thinking become downstream areas considering precipitationsheds and flying rivers. Strong seasonal variations are

  20. Investigations for determining temperature, pressure and moisture distributions in concrete at high temperatures

    International Nuclear Information System (INIS)

    Weber, A.; Kamp, C.L.

    1987-01-01

    The paper gives a report on the test program. The main objective of the tests was the determination of the temperature and moisture fields decisive for the corrosion conditions, which are built up behind the liner in the range of the heated concrete. The determination of transport characteristics of the concrete are another objective. Small concrete specimens are used to determine the following data: Thermal conductivity, heat capacity, diffusion coefficient for liquid water, steam and air, steam sorption therms. The chemical shrinkage of the concrete as a function of moisture and temperature is being evaluated by means of tests and calculations. (orig./HP)

  1. 40 CFR 75.37 - Missing data procedures for moisture.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Missing data procedures for moisture... data procedures for moisture. (a) The owner or operator of a unit with a continuous moisture monitoring system shall substitute for missing moisture data using the procedures of this section. (b) Where no...

  2. Drying and control of moisture content and dimensional changes

    Science.gov (United States)

    Richard Bergman

    2010-01-01

    The discussion in this chapter is concerned with moisture content determination, recommended moisture content values, drying methods, methods of calculating dimensional changes, design factors affecting such changes in structures, and moisture content control during transit, storage, and construction. Data on green moisture content, fiber saturation point, shrinkage,...

  3. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    KAUST Repository

    Singh, Gurjeet

    2016-05-05

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA’s Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. Modelo numérico do transporte de água e soluto no solo: I - simulação da distribuição de umidade Numerical model for water and solute transport in the soil: I - simulation of the moisture distribution

    Directory of Open Access Journals (Sweden)

    Marcus M. Corrêa

    2006-03-01

    Full Text Available As equações diferenciais do movimento de água e do transporte de soluto em solo não saturado, considerando-se a existência de extração pela planta, foram resolvidas utilizando a técnica diferenças finitas. Para a implementação do modelo desenvolveu-se um programa em linguagem Delphi, denominado SIMASS-C - SImulação do Movimento de Água e Soluto no Solo, considerando-se a presença de Cultura. O modelo fornece, em diferentes tempos, os valores de umidade, do potencial matricial, do fluxo da água e da concentração de soluto ao longo do perfil do solo. Obtém-se, ainda, como resultados de saída, o crescimento e a densidade das raízes, o índice de área foliar e a evapotranspiração da cultura. Para testar o modelo desenvolvido conduziu-se um experimento em casa de vegetação, onde 42 colunas de solo foram montadas em tubo de PVC rígido. Em cada coluna, a cultura do milho foi semeada e durante 30 dias após a germinação, a umidade do solo e o desenvolvimento da cultura foram monitorados. Os resultados experimentais mostraram, ao nível de probabilidade de 90%, que o modelo SIMASS-C foi preciso em simular o transporte de água no solo.The differential equations that govern the water flow and the solute transport in an unsaturated soil, considering the water extraction by plants were solved using the finite difference method. A computer model named SIMASS-C (Simulation of the water and solute transport in the soil considering water extraction was developed using Delphi language. The model allows to calculate the water content, matric potential, water flux and solute concentration through the soil profile. Besides that, the model output gives the growth and the density of the roots, the leaf area index and the crop evapotranspiration. To test the model, an experiment was conducted in a green house using 42 soil columns made of PVC tubes. In each column, corn was seeded and during 30 days after the emergence the soil water

  5. The Sources of Moisture in the Sand Dunes – The Example of the Western Sahara Dune Field

    Directory of Open Access Journals (Sweden)

    Żmudzka Elwira

    2014-09-01

    Full Text Available Climatic and meteorological conditions may limit the aeolian transport within barchans. An explanation of that issue was the main goal of the investigation held in Western Sahara dune fields located around Tarfaya and Laâyoune. Particular attention was paid to the factors causing the moisture content rising of the sand dune surface layer, which could influence the wind threshold shear velocity in the aeolian transport. The wetted surface layer of sand, when receiving moisture from precipitation or suspensions, reduces the aeolian transport, even in case of wind velocity above 4-5 m s-1. Fog and dew condensation does not affect the moisture of deeper sand layers, what occurs after rainfall.

  6. Quality Assurance of Rice and Paddy Moisture Measurements in Thailand

    Science.gov (United States)

    Sinhaneti, T.; Keawprasert, T.; Puuntharo, P.; Triarun, W.

    2017-10-01

    A bilateral comparison in moisture measurement between the National Institute of Metrology Thailand (NIMT) and the Central Bureau of Weights and Measures (CBWM) was organized for quality assuring of rice and paddy moisture measurement in Thailand. The bilateral comparison was conducted by using the same batch of sample and moisture meter as transfer device. It consisted of two parts: moisture measurement in rice and in paddy. A rice moisture meter belonging to CBWM and rice standards prepared at the nominal moisture content of 10 %, 12 %, 14 % and 16 % at NIMT, were used for rice moisture comparison, while a paddy moisture meter belonging to NIMT and paddy standards prepared at the nominal moisture content of 12 %, 14 %, 16 % and 18 % at CBWM, were used for paddy moisture comparison. Both laboratories measured the moisture content of a sample by using the standard method in ISO 712 and used that sample to calibrate a moisture meter by means of the method based on ISO 7700-1. Since the moisture content of the sample can change during the comparison, correction values in moisture content between the standard value and the reading value from the moisture meter are used as calibration results for the comparison evaluation. For the rice moisture comparison, differences in the correction value measured by the two laboratories vary from 0.18 % to 0.46 %, with their combined comparison uncertainty of 0.37 % (k= 2). The main contribution to the difference comes from the standard values from both laboratories differing from 0.27 % to 0.53 %, as the rice standard was found to drift in moisture content less than 0.05 %. Similarly to the rice moisture comparison, differences in the correction value for the paddy moisture measurement range from 0.08 % to 0.56 % with the combined comparison uncertainty of 0.38 % (k = 2), whereas the stability in moisture content of the paddy sample at NIMT was found to be within 0.12 %.

  7. Effects of moisture barrier and initial moisture content on the storage ...

    African Journals Online (AJOL)

    The two factors examined were moisture barrier at three levels namely: thick lining, thin lining and non-lining. The other factor included initial moisture content of the produce, namely, turgid and partially wilted. Partial wilting of the produce was achieved by exposing freshly harvested materials at ambient temperature to dry ...

  8. Effectiveness of modified 1-hour air-oven moisture methods for determining popcorn moisture

    Science.gov (United States)

    Two of the most commonly used approved grain moisture air-oven reference methods are the air oven method ASAE S352.2, which requires long heating time (72-h) for unground samples, and the AACC 44-15.02 air-oven method, which dries a ground sample for 1 hr, but there is specific moisture measurement ...

  9. Structure of the urban moisture field

    International Nuclear Information System (INIS)

    Sisterson, D.L.; Dirks, R.A.

    1975-01-01

    In the 26 July 1974 case study in St. Louis as a part of Project METROMEX, aircraft and surface network stations were used to determine specific humidity and potential temperature patterns near the surface and at two levels within the mixing layer. From the data acquired at these three levels, three-dimensional analyses of the moisture fields in the mixing layer were constructed. The mesoscale dry regions observed throughout the mixing layer correspond to the more impervious surfaces of the urban area. From energy budget considerations, latent heat fluxes are small over these impervious surfaces owing to the large runoff of precipitation and the lack of moisture retention capabilities. Hence, urbanization obviously alters the local energy budget. Surface boundary layer conditions are determined by heat and moisture fluxes. A new internal boundary layer within the city is formed after the breakdown of the radiation inversion in order to compensate for the alteration of sensible heat and latent heat energies. Hence, isolated semistagnant urban air is replenished by moisture only as quickly as evapotranspiration from impervious surfaces will allow. The city surface, therefore, is not a sink of moisture, but rather a reduced source relative to rural areas

  10. Moisture sorption of Thai red curry powder

    Directory of Open Access Journals (Sweden)

    Sudathip Inchuen

    2009-12-01

    Full Text Available Moisture sorption study was conducted on Thai red curry powder prepared by two different drying methods, viz. microwave and hot-air drying. Moisture sorption isotherms of the red curry powder at 30 C and water activity in the range of 0.113-0.970 were determined by a static gravimetric method. The isotherms exhibited Type III behaviour. The moisture sorption data were fitted to several sorption models and a non-linear regression analysis method was used to evaluate the constants of the sorption equations. The fit was evaluated using the coefficient of determination (R2, the reduced chi-square (2 and the root mean square error (RMSE. The GAB model followed by the Lewiski-3 model gave the best fit to the experimental data. The monolayer moisture content, taken as the safe minimum moisture level in the red curry powder, was determined using the BET equation and was found to range between 0.080 - 0.085 gram water per gram dry matter.

  11. Fuel cell water transport

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  12. A Lagrangian analysis of the moisture budget over the Fertile Crescent during two intense drought episodes

    Science.gov (United States)

    Salah, Zeinab; Nieto, Raquel; Drumond, Anita; Gimeno, Luis; Vicente-Serrano, Sergio M.

    2018-05-01

    The Fertile Crescent (FC) region comprises the east coast of the Mediterranean Sea and the northern part of the Arabian Peninsula. The FC suffered two severe drought episodes separated by a 7-year period, in 1998-2000 and 2007-2009, which are considered the most severe episodes to hit the region in the last 50 years. A Lagrangian model (FLEXPART) and ERA-Interim data (with a 1° × 1° lat-long resolution) were used to identify for the first time the climatological sources of moisture for the FC and their characteristics. Variability and the source-receptor relationships, concerning their contribution to the precipitation, and the implications regarding the transport of moisture changes over the FC, during the wet season (October-May) from 1980 to 2014 were analysed. The main climatological moisture sources during this period were determined to be the FC itself, the eastern Mediterranean Sea, the Red Sea, the Persian Gulf, the Arabian Sea, the Caspian and Black Seas, and the central and western parts of the Mediterranean Sea. The analysis showed higher anomalous conditions in the moisture transport from some moisture sources during the two outstanding drought episodes. The key feature of the wet seasons during these episodes was a deficit in the moisture losses over the studied area related to the FC itself, the Red and Arabian Seas sources, followed and to a lesser extent by the eastern Mediterranean Sea over the northern part of the FC region. Nevertheless, the moisture supply deficit from the sources was much greater during the 2007-2009 drought event. The SPEI index at large scales (24 months) showed that the 2007-2009 episode was part of longer-term drought conditions that had been developing over the previous months, reinforcing the drought severity given recycling processes attributed to the FC. During the two extreme drought episodes, the mountainous terrain over the northern and eastern FC suffered the highest precipitation deficits, and these areas are

  13. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    Science.gov (United States)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    product by averaging model results from the 1 km2 grid within the remote sensing footprint. Overall 440 (AMSR-E, SMOS) to 680 (ASCAT) timeseries were compared to the aggregated SWAP model results, providing valuable information on the uncertainty of satellite soil moisture at the proper support. Our results show that temporal dynamics are best captured by ASCAT resulting in an average correlation of 0.72 with the model, while ASMR-E (0.41) and SMOS (0.42) are less capable of representing these dynamics. Standard deviations found for ASCAT and SMOS are low, 0.049 and 0.051m3m-3 respectively, while AMSR-E has a higher value of 0.062m3m-3. All standard deviations are higher than the average model uncertainty of 0.017m3m-3. All satellite products show a negative bias compared to the model results, with the largest value for SMOS. Satellite uncertainty is not found to be significantly related to topography, but is found to increase in densely vegetated areas. In general AMSR-E has most difficulties capturing soil moisture dynamics in Spain, while SMOS and mainly ASCAT have a fair to good performance. However, all products contain valuable information about the near-surface soil moisture over Spain. Van Dam, J.C., 2000, Field scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies. Ph.D. thesis, Wageningen University

  14. Transport Statistics - Transport - UNECE

    Science.gov (United States)

    Sustainable Energy Statistics Trade Transport Themes UNECE and the SDGs Climate Change Gender Ideas 4 Change UNECE Weekly Videos UNECE Transport Areas of Work Transport Statistics Transport Transport Statistics About us Terms of Reference Meetings and Events Meetings Working Party on Transport Statistics (WP.6

  15. Patterns of Precipitation and Streamflow Responses to Moisture Fluxes during Atmospheric Rivers

    Science.gov (United States)

    Henn, B. M.; Wilson, A. M.; Asgari Lamjiri, M.; Ralph, M.

    2017-12-01

    Precipitation from landfalling atmospheric rivers (ARs) have been shown to dominate the hydroclimate of many parts of the world. ARs are associated with saturated, neutrally-stable profiles in the lower atmosphere, in which forced ascent by topography induces precipitation. Understanding the spatial and temporal variability of precipitation over complex terrain during AR-driven precipitation is critical for accurate forcing of distributed hydrologic models and streamflow forecasts. Past studies using radar wind profilers and radiosondes have demonstrated predictability of precipitation rates based on upslope water vapor flux over coastal terrain, with certain levels of moisture flux exhibiting the greatest influence on precipitation. Additionally, these relationships have been extended to show that streamflow in turn responds predictably to upslope vapor flux. However, past studies have focused on individual pairs of profilers and precipitation gauges; the question of how orographic precipitation in ARs is distributed spatially over complex terrain, at different topographic scales, is less well known. Here, we examine profiles of atmospheric moisture transport from radiosondes and wind profilers, against a relatively dense network of precipitation gauges, as well as stream gauges, to assess relationships between upslope moisture flux and the spatial response of precipitation and streamflow. We focus on California's Russian River watershed in the 2016-2017 cool season, when regular radiosonde launches were made at two locations during an active sequence of landfalling ARs. We examine how atmospheric water vapor flux results in precipitation patterns across gauges with different topographic relationships to the prevailing moisture-bearing winds, and conduct a similar comparison of runoff volume response from several unimpaired watersheds in the upper Russian watershed, taking into account antecedent soil moisture conditions that influence runoff generation. Finally

  16. FINAL REPORT FOR MOISTURE EFFECTS ON COMPACTION OF FIBERBOARD IN A 9975 SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Stefek, T.; Daugherty, W.; Estochen, E.

    2013-09-17

    Compaction of lower layers in the fiberboard assembly has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and the behavior of the fiberboard during transport. In laboratory tests of cane fiberboard, higher moisture content has been shown to correspond to higher total compaction, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction compared to a static load. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted to acquire immediate and cumulative changes in geometric data for various moisture levels. Two sample sets have undergone a complete dynamic test regimen, one set for 27 weeks, and the second set for 47 weeks. The dynamic input, data acquisition, test effects on sample dynamic parameters, and results from this test program are summarized and compared to regulatory specifications for dynamic loading. Compaction of the bottom fiberboard layers due to the accumulation of moisture is one possible cause of an increase in the axial gap at the top of the package. The net compaction of the bottom layers will directly add to the axial gap. The moisture which caused this compaction migrated from the middle region of the fiberboard assembly (which is typically the hottest). This will cause the middle region to shrink axially, which will also contribute directly to the axial gap. Measurement of the axial gap provides a screening tool for identifying significant change in the fiberboard condition. The data in this report provide a basis to evaluate the impact of moisture and fiberboard compaction on 9975 package performance

  17. Moisture buffer capacity of different insulation materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2004-01-01

    . In the isothermal tests the material samples were exposed to the same change in the relative humidity of the ambient air on both sides, while the samples were exposed to variations in relative humidity only on the cold side in the non-isothermal tests. The results of these rather different measurement principles...... lead to more durable constructions. In this paper, a large range of very different thermal insulation materials have been tested in specially constructed laboratory facilities to determine their moisture buffer capacity. Both isothermal and nonisothermal experimental set-ups have been used...... are discussed, and different ways are presented how to determine the moisture buffer capacity of the materials using partly standard material parameters and partly parameters determined from the actual measurements. The results so far show that the determination of moisture buffer capacity is very sensitive...

  18. Moisture Forecast Bias Correction in GEOS DAS

    Science.gov (United States)

    Dee, D.

    1999-01-01

    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.

  19. Distributed fiber optic moisture intrusion sensing system

    Science.gov (United States)

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  20. Experimental evidence and modelling of drought induced alternative stable soil moisture states

    Science.gov (United States)

    Robinson, David; Jones, Scott; Lebron, Inma; Reinsch, Sabine; Dominguez, Maria; Smith, Andrew; Marshal, Miles; Emmett, Bridget

    2017-04-01

    The theory of alternative stable states in ecosystems is well established in ecology; however, evidence from manipulation experiments supporting the theory is limited. Developing the evidence base is important because it has profound implications for ecosystem management. Here we show evidence of the existence of alternative stable soil moisture states induced by drought in an upland wet heath. We used a long-term (15 yrs) climate change manipulation experiment with moderate sustained drought, which reduced the ability of the soil to retain soil moisture by degrading the soil structure, reducing moisture retention. Moreover, natural intense droughts superimposed themselves on the experiment, causing an unexpected additional alternative soil moisture state to develop, both for the drought manipulation and control plots; this impaired the soil from rewetting in winter. Our results show the coexistence of three stable states. Using modelling with the Hydrus 1D software package we are able to show the circumstances under which shifts in soil moisture states are likely to occur. Given the new understanding it presents a challenge of how to incorporate feedbacks, particularly related to soil structure, into soil flow and transport models?

  1. A study of quantitative radiography for moisture content distributions in plant

    International Nuclear Information System (INIS)

    Kawabata, Y.; Hino, M.; Horie, T.

    2003-01-01

    Vacuum pre-cooling in cut flower or perishable vegetables industry are used for protecting from the deterioration of the perishables during transportation. Some improvements of the pre-cooling way, however, are required for a bruise in plant on the way of handling. Neutron radiography is suitable to detect and observe the bruise in plant, especially, moisture content distributions in leaves, flowers and stalks. Neutron spectrum in irradiation neutron beams is required for obtaining quantitative moisture contents in plant. The neutron spectrum measurements for determination of effective cross-section of water are carried out at CN-3 experimental hole of Kyoto University Reactor (KUR) by time of flight method. Moisture content distributions in leaves of chrysanthemum, before and after the vacuum pre-cooling are measured by cold neutron radiography at the experimental hole. The local decreases of moisture contents caused by a bruise on the surface of the leaves are measured quantitatively by the cold neutron radiography. The quantitative changes of the moisture content in the leaves are able to read out from the cold neutron radiography image. (M. Suetake)

  2. UNDERGROUND AIR DUCT TO CONTROL RISING MOISTURE IN HISTORIC BUILDINGS: IMPROVED DESIGN AND ITS DRYING EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Jiří Pazderka

    2017-10-01

    Full Text Available The underground air ducts along peripheral walls of a building are a remediation method, which principle is to enable an air flow along the moist building structure’s surface to allow a sufficient evaporation of moisture from the structure. This measure reduces the water transport (rising moisture into the higher parts of the wall where the high water content in masonry is undesirable. Presently, underground air ducts are designed as masonry structures, which durability in contact with ground moisture is limited. The article describes a new design of an underground air duct, which is based on specially shaped concrete blocks (without wet processes, because the blocks are completely precast. The air duct from concrete blocks is situated completely below the ground surface (exterior or below the floor (interior. Thanks to this, the system is invisible and does not disturb the authentic look of rehabilitated historic buildings. The efficiency of the air duct technical solution was verified by the results of tests (based on the measured moisture values conducted on a laboratory model. The experimental study showed that the moisture in the masonry equipped with the presented underground air duct had decreased considerably compared to the reference sample, namely by 43 % on average. The experimental study was numerically validated through numerical simulations performed with the program WUFI 2D.

  3. Development of nuclear density and moisture gauges

    International Nuclear Information System (INIS)

    Zhu Huaian; Zhu Dichen; Jiang Yulan; Yin Xiling; Li Jianwen; Cheng Jianbing; Yan Haiqing

    1993-01-01

    The model MT5012 nuclear density and moisture gauge is an advanced portable meter to inspect the compactness of a highway roadbed and pavement foundation. It has perfect functions and the advantage of quickness, accuracy and non-destruction. It is also applicable to civil engineering, such as railway, airport and embankment. The model MT5022 nuclear density and moisture gauge is a mobile meter for continuous inspection and control of the compactness of a highway and pavement foundation. It can be installed on road roller, wheelbarrow and other traffic machines while working, and is more efficient than the portable ones

  4. Soil moisture in sessile oak forest gaps

    Science.gov (United States)

    Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter

    2015-04-01

    By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.

  5. Neutron moisture monitoring (NMM) and moisture contents in the Green River, Utah, UMTRA disposal cell

    International Nuclear Information System (INIS)

    1992-06-01

    This report provides the basis for the US Department of Energy's (DOE) request to discontinue neutron moisture monitoring (NMM) at the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) disposal cell and decommission the neutron access holes. After 3 years of monitoring the disposal cell, the DOE has determined that the NMM method is not suitable for determining changes in moisture content in the disposal cell. Existing tailings moisture contents in the disposal cell result in a low seepage flux. The combination of a low seepage flux and geochemical retardation by foundation materials underneath the disposal cell ensures that the proposed US Environmental Protection Agency (EPA) groundwater protection standards will not be exceeded within the design life of the disposal cell. To assess the effectiveness of the NMM method for monitoring moisture contents In the disposal cell at Green River, the DOE subsequently conducted a field study and a review of historical and new literature. The literature review allowed the DOE to identify performance criteria for the NMM method. Findings of these studies suggest that: The NMM method is not sensitive to the low moisture contents found in the disposal cell.; there is an insufficient range of moisture contents in the disposal cell to develop a field calibration curve relating moisture content to neutron counts; it is not possible to collect NMM data from the disposal cell that meet data quality objectives for precision and accuracy developed from performance criteria described in the literature

  6. Errors in the calculation of sub-soil moisture probe by equivalent moisture content technique

    International Nuclear Information System (INIS)

    Lakshmipathy, A.V.; Gangadharan, P.

    1982-01-01

    The size of the soil sample required to obtain the saturation response, with a neutron moisture probe is quite large and this poses practical problems of handling and mixing large amounts of samples for absolute laboratory calibration. Hydrogenous materials are used as a substitute for water in the equivalent moisture content technique, for calibration of soil moisture probes. In this it is assumed that only hydrogen of the bulk sample is responsible for the slowing down of fast neutrons and the slow neutron countrate is correlated to equivalent water content by considering the hydrogen density of sample. It is observed that the higher atomic number elements present in water equivalent media also affect the response of the soil moisture probe. Hence calculations, as well as experiments, were undertaken to know the order of error introduced by this technique. The thermal and slow neutron flux distribution around the BF 3 counter of a sub-soil moisture probe is calculated using three group diffusion theory. The response of the probe corresponding to different equivalent moisture content of hydrogenous media, is calculated taking into consideration the effective length of BF 3 counter. Soil with hydrogenous media such as polyethylene, sugar and water are considered for calculation, to verify the suitability of these materials as substitute for water during calibration of soil moisture probe. Experiments were conducted, to verify the theoretically calculated values. (author)

  7. Water table and the neutron moisture meter

    Energy Technology Data Exchange (ETDEWEB)

    Visvalingam, M [Hull Univ. (UK). Geography Dept.

    1975-12-01

    Measurements with a neutron moisture meter at Westlands, near Hull, showed count rates at capillary saturation to be within the error limits of count rates at full saturation. However, the saturation profiles in themselves were interesting as they indicated not only the zonation of the soil but also differences in drainable porosity when compared to count-rate profiles at the end of November.

  8. Analysis of Joint Masonry Moisture Content Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States)

    2015-10-01

    Adding insulation to the interior side of walls of masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw, have known solutions, but wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated versus non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  9. Mechanically controlled moisture removal from greenhouses

    NARCIS (Netherlands)

    Campen, J.B.; Kempkes, F.L.K.; Bot, G.P.A.

    2009-01-01

    The object of this study was to design and test a system capable of dehumidifying air in a greenhouse when a thermal screen is in use. Dehumidification is required to reduce the risk of fungal diseases and prevent physiological disorders. The most common procedure used to remove moisture from a

  10. Localized leak detection utilizing moisture sensitive tape

    International Nuclear Information System (INIS)

    Riddle, P.

    1984-01-01

    Moisture sensitive tape (MST) has been used in various nuclear power plants to detect leaks in reactor piping systems. The sensor assembly consists of MST, transponder, and sensor carrier, and is installed on the exterior of thermal insulation. The components, applications, installation, and purchasing information are discussed in the paper

  11. SOME MOISTURE DEPENDENT THERMAL PROPERTIES AND ...

    African Journals Online (AJOL)

    The thermal heat conductivity, specific heat capacity, thermal heat diffusivity and bulk density of Prosopis africana seeds were determined as a function of moisture content. Specific heat capacity was measured by the method of mixture while the thermal heat conductivity was measured by the guarded hot plate method.

  12. Effect of moisture on tuff stone degradation

    NARCIS (Netherlands)

    Lubelli, B.A.; Nijland, T.G.

    2016-01-01

    Tuff stone elements with a large length/width ratio often suffer damage in the form of cracks parallel to the surface and spalling of the outer layer. The response of tuff to moisture might be a reason for this behaviour. This research aimed at verifying if differential dilation between parts with

  13. Effect of moisture on tuffstone weathering

    NARCIS (Netherlands)

    Lubelli, B.A.; Nijland, T.G.; Tolboom, H.J.

    2017-01-01

    Tuffstone elements with a large length/width ratio, as e.g. mullions, often suffer damage in the form of cracks parallel to the surface and spalling of the outer layer. The response of tuff to moisture might be a reason for this behaviour. This research aimed at verifying if a differential dilation

  14. Nuclear radiation moisture gauge calibration standard

    International Nuclear Information System (INIS)

    1977-01-01

    A hydrophobic standard for calibrating nuclear radiation moisture gauges is described. Each standard has physical characteristics and dimensions effective for representing to a nuclear gauge undergoing calibration, an infinite mass of homogeneous hydrogen content. Calibration standards are discussed which are suitable for use with surface gauges and with depth gauges. (C.F.)

  15. Moisture Content Monitoring of a Timber Footbridge

    Directory of Open Access Journals (Sweden)

    Niclas Björngrim

    2016-03-01

    Full Text Available Construction of modern timber bridges has greatly increased during the last 20 years in Sweden. Wood as a construction material has several advantageous properties, e.g., it is renewable, sustainable, and aesthetically pleasing, but it is also susceptible to deterioration. To protect wood from deterioration and ensure the service life, the wood is either treated or somehow covered. This work evaluates a technology to monitor the moisture content in wood constructions. Monitoring the moisture content is important both to verify the constructive protection and for finding areas with elevated levels of moisture which might lead to a microbiological attack of the wood. In this work, a timber bridge was studied. The structure was equipped with six wireless sensors that measured the moisture content of the wood and the relative humidity every hour. Data for 744 days of the bridge are presented in this paper. Results show that the technology used to monitor the bridge generally works; however, there were issues due to communication problems and malfunction of sensors. This technology is promising for monitoring the state of wood constructions, but a more reliable sensor technology is warranted continuous remote monitoring of wood bridges over long periods of time.

  16. Moisture movements in render on brick wall

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Munch, Thomas Astrup; Thorsen, Peter Schjørmann

    2003-01-01

    A three-layer render on brick wall used for building facades is studied in the laboratory. The vertical render surface is held in contact with water for 24 hours simulating driving rain while it is measured with non-destructive X-ray equipment every hour in order to follow the moisture front...

  17. Nuclear radiation moisture gauge calibration standard

    International Nuclear Information System (INIS)

    Berry, R.L.

    1981-01-01

    A hydrophobic standard for calibrating radiation moisture gauges is described. This standard has little or no affinity for water and accordingly will not take up or give off water under ambient conditions of fluctuating humidity in such a manner as to change the hydrogen content presented to a nuclear gauge undergoing calibration. (O.T.)

  18. Soil moisture and temperature algorithms and validation

    Science.gov (United States)

    Passive microwave remote sensing of soil moisture has matured over the past decade as a result of the Advanced Microwave Scanning Radiometer (AMSR) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...

  19. Moisture management properties of plain knitted fabrics made of natural and regenerated cellulose fibres

    Directory of Open Access Journals (Sweden)

    Novaković Milada S.

    2015-01-01

    Full Text Available Moisture management is a complicated process which is known to be influenced by a variety of fabric characteristics such as fibre nature (hydrophilic or hydrophobic, porosity and thickness. There are different aspects of the moisture management properties of textile materials since water transport in textile materials can be in the form of liquid and vapour. The ability of textile materials to transfer water vapour allows the human body to keep thermal balance due to evaporation. With stronger physical activity of a person when the body produces a large amount of heat, the skin perspiration increases (in order to regulate the body temperature and liquid sweat should be taken from the skin, otherwise it will worsen the sense of comfort. The aim of this research was to investigate the factors influencing moisture management properties of plain knitted fabrics at the three scale levels, i.e. microscopic (fibre type, mesoscopic (yarn geometry and macroscopic (fabric porosity levels. Plain knitted fabrics were produced from the two-assembled hemp, cotton and viscose yarns under controlled conditions so as to be comparable in basic construction characteristics, but varying in yarns geometry. Evaporative resistance test reflecting vapour transport and water distribution test reflecting liquid transport in the knitted fabrics were conducted. To determine the statistical importance of the results, analysis of variance (ANOVA was applied. As a consequence of the geometry and deformation behaviour of the fibres used and spinning techniques applied, the yarns differed in both packing density and surface geometry, thus determining the pore distribution. Due to loose structure of the cotton yarn, the cotton knitted fabric was characterised by the lowest free open surface (macroporosity exhibiting the lowest both water vapour and liquid permeability. Although having the highest macroporosity, the water vapour and liquid transport capability of the hemp knitted

  20. Diagnosis of the Tropical Moisture Exports to the Mid-Latitudes and the Role of Atmospheric Steering in the Extreme Precipitation

    Directory of Open Access Journals (Sweden)

    Mengqian Lu

    2017-12-01

    Full Text Available Three river basins, i.e., the Yangtze river, the Mississippi river and the Loire river, were presented as case studies to explore the association among atmospheric circulations, moisture exports and extreme precipitations in the mid-latitudes. The major moisture source regions in the tropics for the three river basins are first identified using the Tropical Moisture Exports (TMEs dataset. The space-time characteristics of their respective moisture sources are presented. Then, the trajectory curve clustering analysis is applied to the TMEs tracks originating from the identified source regions during each basin’s peak TMEs activity and flood seasons. Our results show that the moisture tracks for each basin can be categorized into 3 or 4 clusters with distinct spatial trajectory features. Our further analysis on these clustered trajectories reveals that the contributions of moisture release from different clusters are associated with their trajectory features and travel speeds. In order to understand the role of associated atmospheric steering, daily composites of the geopotential heights anomalies and the vertical integral of moisture flux anomalies from 7 days ahead to the extreme precipitation days (top 5% are examined. The evolutions of the atmospheric circulation patterns and the moisture fluxes are both consistent with the TMEs tracks that contribute more moisture releases to the study regions. The findings imply that atmospheric steering plays an important role in the moisture transport and release, especially for the extreme precipitations. We also find that the association between TMEs moisture release and precipitation is nonlinear. The extreme precipitation is associated with high TMEs moisture release for all of the three study regions.

  1. Moisture availability limits subalpine tree establishment.

    Science.gov (United States)

    Andrus, Robert A; Harvey, Brian J; Rodman, Kyle C; Hart, Sarah J; Veblen, Thomas T

    2018-03-01

    In the absence of broad-scale disturbance, many temperate coniferous forests experience successful seedling establishment only when abundant seed production coincides with favorable climate. Identifying the frequency of past establishment events and the climate conditions favorable for seedling establishment is essential to understanding how climate warming could affect the frequency of future tree establishment events and therefore future forest composition or even persistence of a forest cover. In the southern Rocky Mountains, USA, research on the sensitivity of establishment of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa)-two widely distributed, co-occurring conifers in North America-to climate variability has focused on the alpine treeline ecotone, leaving uncertainty about the sensitivity of these species across much of their elevation distribution. We compared annual germination dates for >450 Engelmann spruce and >500 subalpine fir seedlings collected across a complex topographic-moisture gradient to climate variability in the Colorado Front Range. We found that Engelmann spruce and subalpine fir established episodically with strong synchrony in establishment events across the study area. Broad-scale establishment events occurred in years of high soil moisture availability, which were characterized by above-average snowpack and/or cool and wet summer climatic conditions. In the recent half of the study period (1975-2010), a decrease in the number of fir and spruce establishment events across their distribution coincided with declining snowpack and a multi-decadal trend of rising summer temperature and increasing moisture deficits. Counter to expected and observed increases in tree establishment with climate warming in maritime subalpine forests, our results show that recruitment declines will likely occur across the core of moisture-limited subalpine tree ranges as warming drives increased moisture deficits. © 2018 by the

  2. Calibration technique for the neutron surface moisture measurement system

    International Nuclear Information System (INIS)

    Watson, W.T.; Shreve, D.C.

    1996-01-01

    A technique for calibrating the response of a surface neutron moisture measurement probe to material moisture concentration has been devised. Tests to ensure that the probe will function in the expected in-tank operating environment are also outlined

  3. Analysis and optimal design of moisture sensor for rice grain moisture measurement

    Science.gov (United States)

    Jain, Sweety; Mishra, Pankaj Kumar; Thakare, Vandana Vikas

    2018-04-01

    The analysis and design of a microstrip sensor for accurate determination of moisture content (MC) in rice grains based on oven drying technique, this technique is easy, fast and less time-consuming to other techniques. The sensor is designed with low insertion loss, reflection coefficient and maximum gain is -35dB and 5.88dB at 2.68GHz as well as discussed all the parameters such as axial ratio, maximum gain, smith chart etc, which is helpful for analysis the moisture measurement. The variation in percentage of moisture measurement with magnitude and phase of transmission coefficient is investigated at selected frequencies. The microstrip moisture sensor consists of one layer: substrate FR4, thickness 1.638 is simulated by computer simulated technology microwave studio (CST MWS). It is concluded that the proposed sensor is suitable for development as a complete sensor and to estimate the optimum moisture content of rice grains with accurately, sensitivity, compact, versatile and suitable for determining the moisture content of other crops and agriculture products.

  4. Removal of clay by stingless bees: load size and moisture selection.

    Science.gov (United States)

    Costa-Pereira, Raul

    2014-09-01

    Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis) collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  5. Removal of clay by stingless bees: load size and moisture selection

    Directory of Open Access Journals (Sweden)

    RAUL COSTA-PEREIRA

    2014-09-01

    Full Text Available Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  6. The study of high precision neutron moisture gauge

    International Nuclear Information System (INIS)

    Liu Shengkang; Bao Guanxiong; Sang Hai; Zhu Yuzhen

    1993-01-01

    The principle, structure and calibration experiment of the high precision neutron moisture gauge (insertion type) are described. The gauge has been appraised. The precision of the measuring moisture of coke is lower than 0.5%, and the range of the measuring moisture is 2%-12%. The economic benefit of the gauge application is good

  7. 7 CFR 51.2561 - Average moisture content.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Average moisture content. 51.2561 Section 51.2561... STANDARDS) United States Standards for Grades of Shelled Pistachio Nuts § 51.2561 Average moisture content. (a) Determining average moisture content of the lot is not a requirement of the grades, except when...

  8. Origin and fate of atmospheric moisture over continents

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C.

    2010-01-01

    There has been a long debate on the extent to which precipitation relies on terrestrial evaporation (moisture recycling). In the past, most research focused on moisture recycling within a certain region only. This study makes use of new definitions of moisture recycling to study the complete process

  9. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  10. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  11. Integrated Heat, Air and Moisture Modeling and Simulation in Hamlab, Reference: A41-T3-NL-05-2

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2005-01-01

    This paper gives an overview of recent developments and results of a new integrated heat, air and moisture (HAM) modeling toolkit in Matlab named HAMLab. The recent developments include integration of a whole building model with building systems and controllers, 2D/3D HAM transport in constructions

  12. Instrument for measuring moisture in wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Werme, L

    1980-06-01

    A method to determine the moisture content in wood chips, in batch and on-line, has been investigated. The method can be used for frozen and non frozen chips. Samples of wood chips are thawn and dryed with microwaves. During the drying the sample is weighed continously and the rate of drying is measured. The sample is dried t 10 percent moisture content. The result is extrapolated to the drying rate zero. The acccuracy at the method is 1.6 to 1.7 percent for both frozen and non frozen chips. The accuracy of the method is considered acceptable, but sofisticated sampling equipment is necessary. This makes the method too complex to make the instrument marketable.

  13. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  14. Neutron moisture gaging of agricultural soil

    International Nuclear Information System (INIS)

    Pospisil, S.; Janout, Z.; Kovacik, M.

    1987-01-01

    The design is described of a neutron moisture gage which consists of a measuring probe, neutron detector, small electronic recording device and a 241 Am-Be radionuclide source. The neutron detector consists of a surface barrier semiconductor silicon detector and a conversion layer of lithium fluoride. The detection of triton which is the reaction product of lithium with neutrons by the silicon detector is manifested as a voltage pulse. The detector has low sensitivity for fast neutrons and for gamma radiation and is suitable for determining moisture values in large volume samples. Verification and calibration measurements were carried out of chernozem, brown soil and podzolic soils in four series. The results are tabulated. Errors of measurement range between 0.8 to 1.0%. The precision of measurement could be improved by the calibration of the device for any type of soil. (E.S.). 4 tabs., 6 refs., 5 figs

  15. Effects of atmospheric moisture on rock resistivity.

    Science.gov (United States)

    Alvarez, R.

    1973-01-01

    This study examines the changes in resistivity of rock samples as induced by atmospheric moisture. Experiments were performed on samples of hematitic sandstone, pyrite, and galena. The sandstone underwent a change in resistivity of four orders of magnitude when it was measured in a vacuum of 500 ntorr and in air of 37% relative humidity. Pyrite and galena showed no variations in resistivity when they were measured under the same conditions. These results, plus others obtained elsewhere, indicate that rocks of the resistive type are affected in their electrical properties by atmospheric moisture, whereas rocks of the conductive type are not. The experimental evidence obtained is difficult to reconcile with a model of aqueous electrolytic conduction on the sample surface. It is instead suggested that adsorbed water molecules alter the surface resistivity in a manner similar to that observed in semiconductors and insulators.

  16. NASA Soil Moisture Active Passive (SMAP) Applications

    Science.gov (United States)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  17. Seven methods to measure ground moisture

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The correct irrigation methods are of great importance to the deciduous fruit grower. The article discusses seven methods for the measuring of ground humidity. These methods are based on gravimetry, electric resistance, gamma attenuation, neutron humidity measurement, tensiometers and a study of the correlation between ground humidity and water evaporation. At this stage, the last technique is regarded as the most practicle method. Neutron moisture gages might be used if adhered to the regulations of NUCOR

  18. Analysis of Joist Masonry Moisture Content Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States)

    2015-10-08

    There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  19. Automated Greenhouse : Temperature and soil moisture control

    OpenAIRE

    Attalla, Daniela; Tannfelt Wu, Jennifer

    2015-01-01

    In this thesis an automated greenhouse was built with the purpose of investigating the watering system’s reliability and if a desired range of temperatures can be maintained. The microcontroller used to create the automated greenhouse was an Arduino UNO. This project utilizes two different sensors, a soil moisture sensor and a temperature sensor. The sensors are controlling the two actuators which are a heating fan and a pump. The heating fan is used to change the temperature and the pump is ...

  20. Process for treating moisture laden coal fines

    Science.gov (United States)

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  1. Evaluation of the moisture sources in two extreme landfalling atmospheric river events using an Eulerian WRF tracers tool

    Science.gov (United States)

    Eiras-Barca, Jorge; Dominguez, Francina; Hu, Huancui; Garaboa-Paz, Daniel; Miguez-Macho, Gonzalo

    2017-12-01

    A new 3-D tracer tool is coupled to the WRF model to analyze the origin of the moisture in two extreme atmospheric river (AR) events: the so-called Great Coastal Gale of 2007 in the Pacific Ocean and the Great Storm of 1987 in the North Atlantic. Results show that between 80 and 90 % of moisture advected by the ARs, and a high percentage of the total precipitation produced by the systems have a tropical origin. The tropical contribution to precipitation is in general above 50 % and largely exceeds this value in the most affected areas. Local convergence transport is responsible for the remaining moisture and precipitation. The ratio of tropical moisture to total moisture is maximized as the cold front arrives on land. Vertical cross sections of the moisture content suggest that the maximum in tropical humidity does not necessarily coincide with the low-level jet (LLJ) of the extratropical cyclone. Instead, the amount of tropical humidity is maximized in the lowest atmospheric level in southern latitudes and can be located above, below or ahead of the LLJ in northern latitudes in both analyzed cases.

  2. Evaluation of the moisture sources in two extreme landfalling atmospheric river events using an Eulerian WRF tracers tool

    Directory of Open Access Journals (Sweden)

    J. Eiras-Barca

    2017-12-01

    Full Text Available A new 3-D tracer tool is coupled to the WRF model to analyze the origin of the moisture in two extreme atmospheric river (AR events: the so-called Great Coastal Gale of 2007 in the Pacific Ocean and the Great Storm of 1987 in the North Atlantic. Results show that between 80 and 90 % of moisture advected by the ARs, and a high percentage of the total precipitation produced by the systems have a tropical origin. The tropical contribution to precipitation is in general above 50 % and largely exceeds this value in the most affected areas. Local convergence transport is responsible for the remaining moisture and precipitation. The ratio of tropical moisture to total moisture is maximized as the cold front arrives on land. Vertical cross sections of the moisture content suggest that the maximum in tropical humidity does not necessarily coincide with the low-level jet (LLJ of the extratropical cyclone. Instead, the amount of tropical humidity is maximized in the lowest atmospheric level in southern latitudes and can be located above, below or ahead of the LLJ in northern latitudes in both analyzed cases.

  3. SMOS validation of soil moisture and ocen salinity (SMOS) soil moisture over watershed networks in the U.S.

    Science.gov (United States)

    Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors and a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. A thorough validation must b...

  4. Anthropogenic warming exacerbates European soil moisture droughts

    Science.gov (United States)

    Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.

    2018-05-01

    Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.

  5. Moisture Buffer Effect and its Impact on Indoor Environment

    DEFF Research Database (Denmark)

    Zhang, Mingjie; Qin, Menghao; Chen, Zhi

    2017-01-01

    The moisture buffer effect of building materials may have great influence on indoor hygrothermal environment. In order to characterize the moisture buffering ability of materials, the basic concept of moisture buffer value (MBV) is adopted. Firstly, a theoretical correction factor is introduced...... in this paper. The moisture uptake/release by hygroscopic materials can be calculated with the factor and the basic MBV. Furthermore, the validation of the correction factor is carried out. The impact of moisture buffering on indoor environment is assessed by using numerical simulations. The results show...

  6. Simple grain moisture content determination from microwave measurements

    International Nuclear Information System (INIS)

    Kraszewski, A.W.; Trabelsi, S.; Nelson, S.O.

    1998-01-01

    Moisture content of wheat, Triticum aestivum L., is expressed as a function of the ratio of microwave attenuation and phase shift, measured at 16.8 GHz, and grain temperature. Validation of the calibration equation indicated that moisture content was obtained with an uncertainty less than +/- 0.45% moisture at the 95% confidence level, independent of density variation, at temperatures from -1 degree C to 42 degrees C, and moisture contents from 10% to 19%. Moisture determination does not depend on the layer thickness of the wheat norits bulk density. No differences between two wheat cultivars were observed in the measurement data

  7. A Literature Review on the Study of Moisture in Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-25

    This literature review covers the main chemical and physical interactions between moisture and the polymer matrix. Fickian versus Non-Fickian diffusion behaviors are discussed in approximating the characteristics of moisture sorption. Also, bound water and free water sorbed in polymers are distinguished. Methods to distinguish between bound and free water include differential scanning calorimetry, infrared spectroscopy, and time-domain nuclear magnetic resonance spectroscopy. The difference between moisture sorption and water sorption is considered, as well as the difficulties associated with preventing moisture sorption. Furthermore, specific examples of how moisture sorption influences polymers include natural fiber-polymer composites, starch-based biodegradable thermoplastics, and thermoset polyurethane and epoxies.

  8. CFD modelling of moisture interactions between air and constructions

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Woloszyn, Monika; Hohota, Raluca

    2005-01-01

    There is a strong demand for accurate moisture modelling since moisture poses a risk for both the constructions and the indoor climate. Thus, in this investigation there is special focus on moisture modelling. The paper describes a new model based on a CFD tool that is enhanced to include both...... detailed modelling of airflows in rooms and heat and moisture transfer in walls by applying them as fluid walls. In a 3D configuration the impact of different boundary conditions are investigated and the results are discussed. The changes of boundary conditions that are studied are velocity, moisture...

  9. New method measures moisture and true dry mass

    International Nuclear Information System (INIS)

    Frank, H.

    The moisture content of wood can be determined by measuring the nuclear magnetic resonance of free water hydrogen atoms in wood. Nanassy studied NMR curves for six types of wood and obtained the calibration curve by reducing the moisture content in steps by 4% moisture down to ca. 1% moisture and then by gradually wetting the wood. The initial material was fresh wood. For each step he measured the intensity of the free water hydrogen signal. If the sample weight is known the dry matter content (dry weight) and moisture content of the sample can be derived from the measured NMR signal. (J.P.)

  10. Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil Moisture

    Directory of Open Access Journals (Sweden)

    Bert Veenendaal

    2009-12-01

    Full Text Available Passive microwave remote sensing is one of the most promising techniques for soil moisture retrieval. However, the inversion of soil moisture from brightness temperature observations is not straightforward, as it is influenced by numerous factors such as surface roughness, vegetation cover, and soil texture. Moreover, the relationship between brightness temperature, soil moisture and the factors mentioned above is highly non-linear and ill-posed. Consequently, Artificial Neural Networks (ANNs have been used to retrieve soil moisture from microwave data, but with limited success when dealing with data different to that from the training period. In this study, an ANN is tested for its ability to predict soil moisture at 1 km resolution on different dates following training at the same site for a specific date. A novel approach that utilizes information on the variability of soil moisture, in terms of its mean and standard deviation for a (sub region of spatial dimension up to 40 km, is used to improve the current retrieval accuracy of the ANN method. A comparison between the ANN with and without the use of the variability information showed that this enhancement enables the ANN to achieve an average Root Mean Square Error (RMSE of around 5.1% v/v when using the variability information, as compared to around 7.5% v/v without it. The accuracy of the soil moisture retrieval was further improved by the division of the target site into smaller regions down to 4 km in size, with the spatial variability of soil moisture calculated from within the smaller region used in the ANN. With the combination of an ANN architecture of a single hidden layer of 20 neurons and the dual-polarized brightness temperatures as input, the proposed use of variability and sub-region methodology achieves an average retrieval accuracy of 3.7% v/v. Although this accuracy is not the lowest as comparing to the research in this field, the main contribution is the ability of ANN in

  11. Optical transparency of paper as a function of moisture content with applications to moisture measurement.

    Science.gov (United States)

    Forughi, A F; Green, S I; Stoeber, B

    2016-02-01

    Accurate measurement of the moisture content of paper is essential in papermaking and is also important in some paper-based microfluidic devices. Traditional measurement techniques provide very limited spatiotemporal resolution and working range. This article presents a novel method for moisture content measurement whose operating principle is the strong correlation between the optical transparency of paper and its moisture content. Spectrographic and microscopic measurement techniques were employed to characterize the relation of moisture content and relative transparency of four types of paper: hardwood chemi-thermomechanical pulp paper, Northern bleached softwood kraft paper, unbleached softwood kraft paper, and General Electric(®) Whatman™ grade 1 chromatography paper. It was found that for all paper types, the paper transparency increased monotonically with the moisture content (as the ratio of the mass-of-water to the mass-of-dry-paper increased from 0% to 120%). This significant increase in relative transparency occurred due to the refractive index matching role of water in wet paper. It is further shown that mechanical loading of the paper has little impact on the relative transparency, for loadings that would be typical on a paper machine. The results of two transient water absorption experiments are presented that show the utility and accuracy of the technique.

  12. Arctic temperature and moisture trends during the past 2000 years - Progress from multiproxy-paleoclimate data compilations

    Science.gov (United States)

    Kaufman, Darrell; Routson, Cody; McKay, Nicholas; Beltrami, Hugo; Jaume-Santero, Fernando; Konecky, Bronwen; Saenger, Casey

    2017-04-01

    Instrumental climate data and climate-model projections show that Arctic-wide surface temperature and precipitation are positively correlated. Higher temperatures coincide with greater moisture by: (1) expanding the duration and source area for evaporation as sea ice retracts, (2) enhancing the poleward moisture transport, and (3) increasing the water-vapor content of the atmosphere. Higher temperature also influences evaporation rate, and therefore precipitation minus evaporation (P-E), the climate variable often sensed by paleo-hydroclimate proxies. Here, we test whether Arctic temperature and moisture also correlate on centennial timescales over the Common Era (CE). We use the new PAGES2k multiproxy-temperature dataset along with a first-pass compilation of moisture-sensitive proxy records to calculate century-scale composite timeseries, with a focus on longer records that extend back through the first millennium CE. We present a new Arctic borehole temperature reconstruction as a check on the magnitude of Little Ice Age cooling inferred from the proxy records, and we investigate the spatial pattern of centennial-scale variability. Similar to previous reconstructions, v2 of the PAGES2k proxy temperature dataset shows that, prior to the 20th century, mean annual Arctic-wide temperature decreased over the CE. The millennial-scale cooling trend is most prominent in proxy records from glacier ice, but is also registered in lake and marine sediment, and trees. In contrast, the composite of moisture-sensitive (primarily P-E) records does not exhibit a millennial-scale trend. Determining whether fluctuations in the mean state of Arctic temperature and moisture were in fact decoupled is hampered by the difficulty in detecting a significant trend within the relatively small number of spatially heterogeneous multi-proxy moisture-sensitive records. A decoupling of temperature and moisture would indicate that evaporation had a strong counterbalancing effect on precipitation

  13. The role of rock moisture on regulating hydrologic and solute fluxes in the critical zone

    Science.gov (United States)

    Rempe, D. M.; Druhan, J. L.; Hahm, W. J.; Wang, J.; Murphy, C.; Cargill, S.; Dietrich, W. E.; Tune, A. K.

    2017-12-01

    In environments where the vadose zone extends below the soil layer into underlying weathered bedrock, the water held in the weathering -generated pores can be an important source of moisture to vegetation. The heterogeneous distribution of pore space in weathered bedrock, furthermore, controls the subsurface water flowpaths that dictate how water is partitioned in the critical zone (CZ) and evolves geochemically. Here, we present the results of direct monitoring of the fluxes of water and solutes through the deep CZ using a novel vadose zone monitoring system (VMS) as well as geophysical logging and sampling in a network of deep wells across a steep hillslope in Northern California. At our study site (Eel River CZO), multi-year monitoring reveals that a significant fraction of incoming rainfall (up to 30%) is seasonally stored in the fractures and matrix of the upper 12 m of weathered bedrock as rock moisture. Intensive geochemical and geophysical observations distributed from the surface to the depth of unweathered bedrock indicate that the seasonal addition and depletion of rock moisture has key implications for hydrologic and geochemical processes. First, rock moisture storage provides an annually consistent water storage reservoir for use by vegetation during the summer, which buffers transpiration fluxes against variability in seasonal precipitation. Second, because the timing and magnitude of groundwater recharge and streamflow are controlled by the annual filling and drainage of the rock moisture, rock moisture regulates the partitioning of hydrologic fluxes. Third, we find that rock moisture dynamics—which influence the myriad geochemical and microbial processes that weather bedrock—strongly correspond with the observed vertical weathering profile. As a result of the coupling between chemical weathering reactions and hydrologic fluxes, the geochemical composition of groundwater and streamflow is influenced by the temporal dynamics of rock moisture. Our

  14. Significance of the air moisture source on the stable isotope composition of the precipitation in Hungary

    Science.gov (United States)

    Czuppon, György; Bottyán, Emese; Krisztina, Krisztina; Weidinger, Tamás; Haszpra, László

    2017-04-01

    regions has systematically higher d-excess values than that originated in the Atlantic sector, independently from the absolute value which apparently changes from station to station. The precipitation fraction attributed to the Northern European sector has also relatively elevated d-excess values that might be related to the cold-season domination of moisture transport from this region. Thanks for the financial support of the National Research, Development and Innovation Office (project No. OTKA NK 101664, SNN118205/ARRS:N1-0054, PD 121387). György Czuppon also thanks for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

  15. Moisture management, energy density and fuel quality in forest fuel supply chains

    Energy Technology Data Exchange (ETDEWEB)

    Tahvanainen, T. [Joensuu Science Park Ltd., Joensuu (Finland); Sikanen, L. [Joensuu Univ. (Finland); Roser, D. [Finnish Forest Research Inst., Joensuu (Finland)

    2009-07-01

    This presentation provided tools for reducing the moisture content (MC) in wood chips, as moisture is one of the main quality factors for woody biomass, along with energy density and cleanness. The amount of water in solid wood fuels has a considerable effect on transportation efficiency, combustion efficiency and emissions. Under favourable storage conditions, MC can be decreased from typical fresh cut 50-55 per cent to 20-30 per cent in relatively short periods of storing by natural or artificial drying. Minor modifications can boost natural drying in fuel wood supply chains. This natural drying effect can have significant effects on the total energy efficiency and emissions of supply chains. The effect of improved packing density on transportation phase was discussed along with the need to control chip purity and size distribution. A procedure developed at the University of Joensuu and in the Finnish Forest Research Institute was used to estimate transportation costs and emissions according to transportation fleet and MC of the transported fuel. tabs., figs.

  16. Effect of Moisture Content on Mechanical Properties and Terminal Velocity of Berberis

    Directory of Open Access Journals (Sweden)

    E Velayati

    2011-09-01

    Full Text Available The study of mechanical properties of Berberis not only is useful for design and optimization of transportation, processing and packaging equipment but also can prevent mechanical injuries and losses. In this study force, deformation, energy and toughness were measured at different moisture content levels including 70-76, 45-50, 25-30 and 7-10 percent (w.b.. The decrease of moisture content caused increasing rupture force from 1.387 to 2.679 N, decreasing shape deformation from 3.387 to 2.413mm, increasing toughness from 4.297 to 8.220 J/cm3 and decreasing rupture energy from 0.921 to 0.661mJ. Effects of loading speed, force orientation and their interaction were investigated on just fresh Berberis fruit. It was indicated that only force orientation was effective on all investigated properties except toughness. The moisture content was identified as an effective parameter on terminal velocity. It decreased from 9 to 4.5 m/s with decrease of moisture content from 76 to 7 percent (w.b..

  17. Analysis of soil moisture memory from observations in Europe

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-08-01

    Soil moisture is known to show distinctive persistence characteristics compared to other quantities in the climate system. As soil moisture is governing land-atmosphere feedbacks to a large extent, its persistence can provide potential to improve seasonal climate predictions. So far, many modeling studies have investigated the nature of soil moisture memory, with consistent, but model-dependent results. This study investigates soil moisture memory in long-term observational records based on data from five stations across Europe. We investigate spatial and seasonal variations in soil moisture memory and identify their main climatic drivers. Also, we test an existing framework and introduce an extension thereof to approximate soil moisture memory and evaluate the contributions of its driving processes. At the analyzed five sites, we identify the variability of initial soil moisture divided by that of the accumulated forcing over the considered time frame as a main driver of soil moisture memory that reflects the impact of the precipitation regime and of soil and vegetation characteristics. Another important driver is found to be the correlation of initial soil moisture with subsequent forcing that captures forcing memory as it propagates to the soil and also land-atmosphere interactions. Thereby, the role of precipitation is found to be dominant for the forcing. In contrast to results from previous modeling studies, the runoff and evapotranspiration sensitivities to soil moisture are found to have only a minor influence on soil moisture persistence at the analyzed sites. For the central European sites, the seasonal cycles of soil moisture memory display a maximum in late summer and a minimum in spring. An opposite seasonal cycle is found at the analyzed site in Italy. High soil moisture memory is shown to last up to 40 days in some seasons at most sites. Extremely dry or wet states of the soil tend to increase soil moisture memory, suggesting enhanced prediction

  18. CPAC moisture study: Phase 1 report on the study of optical spectra calibration for moisture

    International Nuclear Information System (INIS)

    Veltkamp, D.

    1993-01-01

    This report discusses work done to investigate the feasibility of using optical spectroscopic methods, combined with multivariate Partial Least Squares (PLS) calibration modeling, to quantitatively predict the moisture content of the crust material in Hanford's waste tank materials. Experiments were conducted with BY-104 simulant material for the 400--1100 nm (VIS), 1100--2500 (NIR), and 400-4000 cm -1 (IR) optical regions. The test data indicated that the NIR optical region, with a single PLS calibration factor, provided the highest accuracy response (better than 0.5 wt %) over a 0--25 wt % moisture range. Issues relating to the preparation of moisture samples with the BY-104 materials and the potential implementation within hot cell and waste tanks are also discussed. The investigation of potential material interferences, including physical and chemical properties, and the scaled demonstration of fiber optic and camera types of applications with simulated waste tanks are outlined as future work tasks

  19. Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

    Science.gov (United States)

    Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.

    2011-01-01

    The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.

  20. The performance assessment impacts of disposal of high-moisture, low-level radioactive waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    Crowe, B.M.; Hansen, W.; Hechnova, A.; Voss, C.; Waters, R.; Sully, M.; Levitt, D.

    1999-01-01

    A panel of independent scientists was convened by the Department of Energy to assess the performance impacts of disposal of low-level radioactive waste from the Fernald Environmental Management Project. This waste stream was involved in a transportation incident in December 1997. A resulting outgrowth of investigations of the transportation incident was the recognition that the waste was transported and disposed in stress-fractured metal boxes and some of the waste contained excess moisture (high volumetric water contents). The panel was charged with determining whether disposal of this waste in the Area 5 radioactive waste management site on the Nevada Test Site has impacted the conclusions of the completed performance assessment. Three questions were developed by the panel to assess performance impacts: (1) the performance impacts of reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) the performance impacts of excess moisture. No performance or subsidence impacts were noted from disposal of the Fernald waste. The impacts of excess moisture were assessed through simulation modeling of the movement of moisture in the vadose zone assuming high water contents (wet waste) for different percentages of the waste inventory. No performance impacts were noted for either the base-case scenario (ambient conditions) or a scenario involving subsidence and flooding of the waste cells. The absence of performance impacts results form the extreme conservatism used in the Area 5-performance assessment and the robust nature of the disposal site

  1. Moisture distribution measurements in adhesive-bonded composites using the D (3He,p)4 He reaction

    International Nuclear Information System (INIS)

    Schulte, R.L.; Deiasi, R.J.

    1981-01-01

    Adhesive bonding of composite materials for many aircraft components offers a distinct advantage in weight and cost reduction compared to similar structures that have been joined by riveting. However, the long term performance of adhesive-bonded components depends on the degree and rate of moisture absorption by the adhesive in the service environment. To investigate the rate and the mechanism of water transport in adhesive-bonded composite materials, a nuclear reaction analysis method based on the D( 3 He,p) 4 He reaction is used to measure the moisture distributions. Samples of graphite/epoxy composite materials were bonded with an epoxy adhesive and isothermally conditioned in a controlled D 2 O environment at 70% relative humidity and 77 0 C for various exposure times. The moisture profiles were measured along the adhesive (adhesive scan) as well as through the thickness of the bonded joint (transverse scan). The dimensions of the probing beam were 125 μm x 125 μm for the adhesive scan and 25 μ x 200 μm for the transverse scan. Absolute deuterium concentrations were determined by comparison of the proton yield from the composite/adhesive to that from reference standards. Calculations from diffusion models of water transport based on parameters determined from bulk measurement techniques are compared to the measured profile and the agreement indicates that classical Fickian diffusion describes the transport of moisture in these materials

  2. Soil moisture memory at sub-monthly time scales

    Science.gov (United States)

    Mccoll, K. A.; Entekhabi, D.

    2017-12-01

    For soil moisture-climate feedbacks to occur, the soil moisture storage must have `memory' of past atmospheric anomalies. Quantifying soil moisture memory is, therefore, essential for mapping and characterizing land-atmosphere interactions globally. Most previous studies estimate soil moisture memory using metrics based on the autocorrelation function of the soil moisture time series (e.g., the e-folding autocorrelation time scale). This approach was first justified by Delworth and Manabe (1988) on the assumption that monthly soil moisture time series can be modelled as red noise. While this is a reasonable model for monthly soil moisture averages, at sub-monthly scales, the model is insufficient due to the highly non-Gaussian behavior of the precipitation forcing. Recent studies have shown that significant soil moisture-climate feedbacks appear to occur at sub-monthly time scales. Therefore, alternative metrics are required for defining and estimating soil moisture memory at these shorter time scales. In this study, we introduce metrics, based on the positive and negative increments of the soil moisture time series, that can be used to estimate soil moisture memory at sub-monthly time scales. The positive increments metric corresponds to a rapid drainage time scale. The negative increments metric represents a slower drying time scale that is most relevant to the study of land-atmosphere interactions. We show that autocorrelation-based metrics mix the two time scales, confounding physical interpretation. The new metrics are used to estimate soil moisture memory at sub-monthly scales from in-situ and satellite observations of soil moisture. Reference: Delworth, Thomas L., and Syukuro Manabe. "The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate." Journal of Climate 1, no. 5 (May 1, 1988): 523-47. doi:10.1175/1520-0442(1988)0012.0.CO;2.

  3. Moisture monitoring in large diameter boreholes

    International Nuclear Information System (INIS)

    Tyler, S.

    1985-01-01

    The results of both laboratory and field experiments indicate that the neutron moisture gauge traditionally used in soil physics experiments can be extended for use in large diameter (up to 15 cm) steel-cased boreholes with excellent results. This application will permit existing saturated zone monitoring wells to be used for unsaturated zone monitoring of recharge, redistribution and leak detection from waste disposal facilities. Its applicability to large diameter cased wells also gives the soil physicist and ground-water hydrologist and new set of monitoring points in the unsaturated zone to study recharge and aquifer properties. 6 refs., 6 figs., 2 tabs

  4. On moisture migration in a heated concrete

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    1985-10-01

    Transient moisture migration in a slab of porous concrete being heated at one surface was analyzed with consideration of evaporation and condensation effects. Analysis was made in the existence of non-condensable fluid (air). Since partial differential equations which describe the total system are very complicated, the existence of similar solution is assumed under the condition of low dry-wet interface temperature. Then, partial differential equations were transformed into ordinary differential equations. Solutions were obtained for two boundary conditions of a permeable outer surface and a impermeable outer surface. (author)

  5. Moisture transfer in a concrete slab

    International Nuclear Information System (INIS)

    Huang, C.L.D.; Siang, H.H.; Kirmser, P.G.

    1979-01-01

    A diffusion theory with a linear or a nonlinear coefficient of diffusivity is insufficient for the characterization of the drying behaviour of hydrated concrete slabs. A general mathematical model, based on nonequilibrium, irreversible flows of heat and mass, yields a set of nonlinear partial differential equations of parabolic type. Implicit finite difference calculations for a concrete slab yield moisture, temperature, and pressure histories as well as global average drying rates. Graphs show that during the pendular state of dessication, diffusion, capillary, and evaporation-condensation processes are the governing mechanisms in drying. (orig.)

  6. A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS Soil Moisture: Retrieval Ensembles

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2015-12-01

    Full Text Available Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV bias correction method for Soil Moisture and Ocean Salinity (SMOS soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration. In contrast, the existing method of Cumulative Distribution Function (CDF matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area and Niger (dry and sandy bare soils, it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs decreased from 0.1248 m3/m3 for CDF matching to 0.0678 m3/m3 for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m3/m3 for CDF matching to 0.045 m3/m3 for the ensemble approach.

  7. Effective moisture diffusivity, moisture sorption, thermo-physical properties and infrared drying kinetics of germinated paddy

    Directory of Open Access Journals (Sweden)

    Supawan Tirawanichakul

    2014-02-01

    Full Text Available Temperature and relative humidity (RH dependence of moisture sorption phenomena for agricultural products provide valuable information related to the thermodynamics of the system. So the equilibrium moisture contents (EMC, effective moisture diffusivity (Deff and thermo-physical properties in terms of void fraction, specific heat capacity, and the apparent density of germinated non-waxy Suphanburi 1 paddy were evaluated. Five commonly cited EMC equations were fitted to the experimental data among temperatures of 40-60°C correlating with RH of 0-90%. The results showed that the modified GAB equation was the best function for describing experimental results while those evaluated thermo-physical properties depended on moisture content. To determine drying kinetics model, the simulated values using Midilli et al. (2002 model and Page’s model was the best fitting to exact drying kinetics values for infrared (IR and hot air (HA drying, respectively. Finally, the Deff value of paddy dried with IR and HA sources were also evaluated and the calculated Deff value of both HA and IR drying was in order of 10-9 m2/s.

  8. Digital neutron moisture meter for moisture determination in the cokes and building materials

    International Nuclear Information System (INIS)

    Chibovski, R.; Igel'ski, A.; Kiyanya, K.; Kiyanya, S.; Mnikh, Eh.; Sledzevski, R.; Verba, V.

    1979-01-01

    Description is given of the digital neutron moisture gage for measuring water content in coke or in dry building materials. The device can work independently with indication of the results to personnel carrying out control operation and adjustment of the process or as a part of an automated control system with supplying the results of measurements in a form of analogous signals or electric pulses in the preselected code. The moisture gage described consists of two units: measuring probes with containers and the desk with power supply and the system for digital processing of a radiometric signal. The measuring probe consists of the asotopic fast neutrons source; helium proportional counter of slow neutrons and a pulse amplifier. The probe is mounted in the bunker with the material measured and is located inside the protective tube made of the weare-resistant material. To obtain high accuracy of measurements and to obtain the measuring instrument's reading immediately in the units of moisture measurement, the digizal converter circuit for radiometric signals processing is used. The The digital converter circuit cited, can be applied to any calibration dependence of linear type with initial value. The block diagram of the device is given. The device described permits to measure the moisture content in the metallurgy coks and in the building materials in one minute and with the error not more than 0.5% [ru

  9. Australian Soil Moisture Field Experiments in Support of Soil Moisture Satellite Observations

    Science.gov (United States)

    Kim, Edward; Walker, Jeff; Rudiger, Christopher; Panciera, Rocco

    2010-01-01

    Large-scale field campaigns provide the critical fink between our understanding retrieval algorithms developed at the point scale, and algorithms suitable for satellite applications at vastly larger pixel scales. Retrievals of land parameters must deal with the substantial sub-pixel heterogeneity that is present in most regions. This is particularly the case for soil moisture remote sensing, because of the long microwave wavelengths (L-band) that are optimal. Yet, airborne L-band imagers have generally been large, heavy, and required heavy-lift aircraft resources that are expensive and difficult to schedule. Indeed, US soil moisture campaigns, have been constrained by these factors, and European campaigns have used non-imagers due to instrument and aircraft size constraints. Despite these factors, these campaigns established that large-scale soil moisture remote sensing was possible, laying the groundwork for satellite missions. Starting in 2005, a series of airborne field campaigns have been conducted in Australia: to improve our understanding of soil moisture remote sensing at large scales over heterogeneous areas. These field data have been used to test and refine retrieval algorithms for soil moisture satellite missions, and most recently with the launch of the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, to provide validation measurements over a multi-pixel area. The campaigns to date have included a preparatory campaign in 2005, two National Airborne Field Experiments (NAFE), (2005 and 2006), two campaigns to the Simpson Desert (2008 and 2009), and one Australian Airborne Cal/val Experiment for SMOS (AACES), just concluded in the austral spring of 2010. The primary airborne sensor for each campaign has been the Polarimetric L-band Microwave Radiometer (PLMR), a 6-beam pushbroom imager that is small enough to be compatible with light aircraft, greatly facilitating the execution of the series of campaigns, and a key to their success. An

  10. Using lamb waves tomonitor moisture absorption thermally fatigues composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sun; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-06-15

    Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

  11. Moisture dependence of positron annihilation rates in molecular substances

    International Nuclear Information System (INIS)

    Singh, J.J.; Holt, W.H.

    1982-01-01

    Positron annihilation rates have been studied in polymers and graphite-polymer composites as a function of their moisture content. The annihilation rates have been found to increase linearly with increasing moisture content in epoxies and polyamides, whereas no definite trends have been observed in polyimides. These experimental results have been used as the basis for the calculation of moisture content of several polymeric test specimens. For example, the directly measured moisture content of a Kevlar specimen was 45.5 + or - 5.0% of saturation value, whereas the moisture content on the basis of the decrease in positron lifetime was calculated to be 46.5 + or - 3.5%. Similarly, the directly measured moisture content of a graphite-epoxy composite (55 v/o fiber) was 19.2 + or - 0.6% of saturation value as opposed to a calculated value of 16.0 + or - 5.0%

  12. Moisture dependence of positron annihilation rates in molecular substances

    International Nuclear Information System (INIS)

    Singh, J.J.; Holt, W.H.; Mock, W. Jr.

    1982-01-01

    Positron annihilation rates have been studied in polymers and graphite-polymer composites as a function of their moisture content. The annihilation rates have been found to increase linearly with increasing moisture content in epoxies and polyamides, whereas no definite trends have been observed in the polymides. These experimental results have been used as the basis for the calculation of moisture content of several polymeric test specimens. For example, the directly measured moisture content of a Kevlar/epoxy specimen (55 v/o fiber) was 45.5 +- 5.0% of saturation value, whereas the moisture content on the basis of the decrease in positron lifetime was calculated to be 46.5 +- 3.5%. Similarly, the directly measured moisture content of a graphite/epoxy composite (55 v/o fiber) was 19.2 +- 0.6% of saturation value as opposed to a calculated value of 16.0 +- 5.0%. (orig.)

  13. Use of passive microwave remote sensing to monitor soil moisture

    International Nuclear Information System (INIS)

    Wigneron, J.P.; Schmugge, T.; Chanzy, A.; Calvet, J.C.; Kerr, Y.

    1998-01-01

    Surface soil moisture is a key variable to describe the water and energy exchanges at the land surface/atmosphere interface. However, soil moisture is highly variable both spatially and temporally. Passive microwave remotely sensed data have great potential for providing estimates of soil moisture with good temporal repetition (on a daily basis) and at regional scale (∼ 10 km). This paper reviews the various methods for remote sensing of soil moisture from microwave radiometric systems. Potential applications from both airborne and spatial observations are discussed in the fields of agronomy, hydrology and meteorology. Emphasis in this paper is given to relatively new aspects of microwave techniques and of temporal soil moisture information analysis. In particular, the aperture synthesis technique allows us now to a address the soil moisture information needs on a global basis, from space instruments. (author) [fr

  14. Qualitative and quantitative assessment of interior moisture buffering by enclosures

    DEFF Research Database (Denmark)

    Janssen, Hans; Roels, Staf

    2009-01-01

    The significance of interior humidity in attaining sustainable, durable, healthy and comfortable buildings is increasingly recognised. Given their significant interaction, interior humidity appraisals need a qualitative and/or quantitative assessment of interior moisture buffering. While the effe......The significance of interior humidity in attaining sustainable, durable, healthy and comfortable buildings is increasingly recognised. Given their significant interaction, interior humidity appraisals need a qualitative and/or quantitative assessment of interior moisture buffering. While...... the effective moisture penetration depth and effective capacitance models allow quantified assessment, their reliance on the ‘moisture penetration depth’ necessitates comprehensive material properties and hampers their application to multi-dimensional interior objects. On the other hand, while various recently...... an alternative basis for quantitative evaluation of interior moisture buffering by the effective moisture penetration depth and effective capacitance models. The presented methodology uses simple and fast measurements only and can also be applied to multimaterial and/or multidimensional interior elements....

  15. The neutronic method for measuring soil moisture

    International Nuclear Information System (INIS)

    Couchat, Ph.

    1967-01-01

    The three group diffusion theory being chosen as the most adequate method for determining the response of the neutron soil moisture probe, a mathematical model is worked out using a numerical calculation programme with Fortran IV coding. This model is fitted to the experimental conditions by determining the effect of different parameters of measuring device: channel, fast neutron source, detector, as also the soil behaviour under neutron irradiation: absorbers, chemical binding of elements. The adequacy of the model is tested by fitting a line through the image points corresponding to the couples of experimental and theoretical values, for seven media having different chemical composition: sand, alumina, line stone, dolomite, kaolin, sandy loam, calcareous clay. The model chosen gives a good expression of the dry density influence and allows α, β, γ and δ constants to be calculated for a definite soil according to the following relation which gives the count rate of the soil moisture probe: N = (α ρ s +β) H v +γ ρ s + δ. (author) [fr

  16. L-band HIgh Spatial Resolution Soil Moisture Mapping using SMALL UnManned Aerial Systems

    Science.gov (United States)

    Dai, E.; Venkitasubramony, A.; Gasiewski, A. J.; Stachura, M.; Elston, J. S.; Walter, B.; Lankford, D.; Corey, C.

    2017-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 provided new passive global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions of 36 km. However, there exists a need for measurements of soil moisture on much smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters. Compared with other methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site and Yuma Colorado Irrigation Research Foundation (IRF) site in 2015 and 2016, respectively, using LDCR Revision A and Tempest sUAS. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. LDCR Revision B has been built and integrated into SuperSwift sUAS and additional field experiments will be performed at IRF in 2017. In Revision B the IF signal is sampled at 80 MS/s to enable digital correlation and RFI mitigation capabilities, in addition to analog correlation. [1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C

  17. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Daniel Glenn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jennings, Terry L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-17

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automated dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data also

  18. Quasi-geostrophic dynamics in the presence of moisture gradients

    OpenAIRE

    Monteiro, Joy M.; Sukhatme, Jai

    2016-01-01

    The derivation of a quasi-geostrophic (QG) system from the rotating shallow water equations on a midlatitude beta-plane coupled with moisture is presented. Condensation is prescribed to occur whenever the moisture at a point exceeds a prescribed saturation value. It is seen that a slow condensation time scale is required to obtain a consistent set of equations at leading order. Further, since the advecting wind fields are geostrophic, changes in moisture (and hence, precipitation) occur only ...

  19. Optimization on Measurement Method for Neutron Moisture Meter

    International Nuclear Information System (INIS)

    Gong Yalin; Wu Zhiqiang; Li Yanfeng; Wang Wei; Song Qingfeng; Liu Hui; Wei Xiaoyun; Zhao Zhonghua

    2010-01-01

    When the water in the measured material is nonuniformity, the measured results of the neutron moisture meter in the field may have errors, so the measured errors of the moisture meter associated with the water nonuniformity in material were simulated by Monte Carlo method. A new measurement method of moisture meter named 'transmission plus scatter' was put forward. The experiment results show that the new measurement method can reduce the error even if the water in the material is nonuniformity. (authors)

  20. Effects of moisture content on some physical properties of red ...

    African Journals Online (AJOL)

    The physical properties of red pepper seed were evaluated as a function of moisture content. The average length, width and thickness were 4.46, 3.66 and 0.79 mm, respectively, at 7.27% d.b. moisture content. In the moisture range of 7.27 to 20.69% dry basis (d.b.), studies on rewetted red pepper seed showed that the ...

  1. Use of Ultrasonic Technology for Soil Moisture Measurement

    Science.gov (United States)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.

    1997-01-01

    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  2. Surface Moisture Measurement System Operation and Maintenance Manual

    International Nuclear Information System (INIS)

    Ritter, G.A.; Pearce, K.L.; Stokes, T.L.

    1995-12-01

    This operations and maintenance manual addresses deployment, equipment and field hazards, operating instructions, calibration verification, removal, maintenance, and other pertinent information necessary to safely operate and store the Surface Moisture Measurement System (SMMS) and Liquid Observation Well Moisture Measurement System (LOWMMS). These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  3. Propagation of soil moisture memory into the climate system

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-04-01

    Soil moisture is known for its integrative behaviour and resulting memory characteristics. Associated anomalies can persist for weeks or even months into the future, making initial soil moisture an important potential component in weather forecasting. This is particularly crucial given the role of soil moisture for land-atmosphere interactions and its impacts on the water and energy balances on continents. We present here an analysis of the characteristics of soil moisture memory and of its propagation into runoff and evapotranspiration in Europe, based on available measurements from several sites across the continent and expanding a previous analysis focused on soil moisture [1]. We identify the main drivers of soil moisture memory at the analysed sites, as well as their role for the propagation of soil moisture persistence into runoff and evapotranspiration memory characteristics. We focus on temporal and spatial variations in these relationships and identify seasonal and latitudinal differences in the persistence of soil moisture, evapotranspiration and runoff. Finally, we assess the role of these persistence characteristics for the development of agricultural and hydrological droughts. [1] Orth and Seneviratne: Analysis of soil moisture memory from observations in Europe; submitted to J. Geophysical Research.

  4. Propagation of soil moisture memory to runoff and evapotranspiration

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-10-01

    As a key variable of the land-climate system soil moisture is a main driver of runoff and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence) characteristics. Also for runoff many studies report distinct low frequency variations that represent a memory. Using data from over 100 near-natural catchments located across Europe we investigate in this study the connection between soil moisture memory and the respective memory of runoff and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalized by precipitation) and evapotranspiration (normalized by radiation) on soil moisture are fitted using runoff observations. The model therefore allows to compute memory of soil moisture, runoff and evapotranspiration on catchment scale. We find considerable memory in soil moisture and runoff in many parts of the continent, and evapotranspiration also displays some memory on a monthly time scale in some catchments. We show that the memory of runoff and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of runoff and evapotranspiration to soil moisture. Furthermore we find that the coupling strengths of runoff and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  5. Moisture sorption isotherms and thermodynamic properties of bovine leather

    Science.gov (United States)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  6. Experiments on moisture form of concrete and adhesion of paints

    International Nuclear Information System (INIS)

    Kita, Daizo; Sumino, Masahiro

    1975-01-01

    It is necessary for radiation-resisting paints to adhere tightly to concrete in order to exhibit superior effects. As adhesion of paints to concrete is greatly affected by moisture content of concrete, this content is checked severely in the field. However, it may be considered that adhesion will be affected by the form of the moisture in the concrete also. Therefore, experiments were conducted with mortar to investigate the interrelations between pF-moisture content, moisture form and adhesion of paint. The following results were obtained: 1) Adhesion of paint becomes stronger as moisture content falls. 2) Adhesion strength of paint rises sharply until moisture content falls to a pF-value of 5.5 after which the strength is increased gradually until moisture content reaches pF of 7.0. 3) The pF-moisture content of 5.5 varies greatly depending on the mix proportions of mortar, but the form of moisture in such cases remains fixed and unchanged. (auth.)

  7. Influence of moisture content on radon diffusion in soil

    International Nuclear Information System (INIS)

    Singh, M.; Ramola, R.C.; Singh, S.; Virk, H.S.

    1990-01-01

    Radon diffusion from soil has been studied as a function of the moisture content of the soil. A few simple experiments showed that up to a certain moisture content the radon diffusion increased with increasing moisture. A sharp rise in radon concentration occurred as the moisture was increased from the completely dry state to 13% water by weight. The radon flux was measured for columns of dry, moist and water saturated soil. The highest flux came from the column filled with moist soil. Water saturated soil gave the lowest flux because of the much lower diffusion coefficient of radon through water. (author)

  8. Measured moisture in buildings and adverse health effects: a review.

    Science.gov (United States)

    Mendell, Mark J; Macher, Janet M; Kumagai, Kazukiyo

    2018-04-23

    It has not yet been possible to quantify dose-related health risks attributable to indoor dampness or mold (D/M), to support the setting of health-related limits for D/M. An overlooked target for assessing D/M is moisture in building materials, the critical factor allowing microbial growth. A search for studies of quantified building moisture and occupant health effects identified three eligible studies. Two studies assessed associations between measured wall moisture content and respiratory health in the UK. Both reported dose-related increases in asthma exacerbation with higher measured moisture, with one study reporting an adjusted odds ratio (OR) of 7.0 for night-time asthma symptoms with higher bedroom moisture. The third study assessed relationships between infrared camera-determined wall moisture and atopic dermatitis in South Korea, reporting an adjusted OR of 14.5 for water-damaged homes and moderate or severe atopic dermatitis. Measuring building moisture has, despite extremely limited available findings, potential promise for detecting unhealthy D/M in homes and merits more research attention. Further research to validate these findings should include measured "water activity," which directly assesses moisture availability for microbial growth. Ultimately, evidence-based, health-related thresholds for building moisture, across specific materials and measurement devices, could better guide assessment and remediation of D/M in buildings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Moisture Management for High R-Value Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Schumacher, C. [Building Science Corporation, Somerville, MA (United States); Lukachko, A. [Building Science Corporation, Somerville, MA (United States)

    2013-11-01

    This report explains the moisture-related concerns for high R-value wall assemblies and discusses past Building America research work that informs this study. In this project, hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones. The modeling program assessed the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage; the report presents results of the study.

  10. Moisture ingress into electronics enclosures under isothermal conditions

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based......The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture...

  11. A biomimic thermal fabric with high moisture permeability

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2013-01-01

    Full Text Available Moisture comfort is an essential factor for functional property of thermal cloth, especially for thick thermal cloth, since thick cloth may hinder effective moisture permeation, and high moisture concentration in the micro-climate between skin and fabric would cause cold feeling. Here, we report a biomimic thermal fabric with excellent warm retention and moisture management properties. In this fabric, the warp yarn system constructs many tree-shaped channel nets in the thickness direction of the fabric. Experimental result indicates that the special hierarchic configuration of warp yarns endows the biomimic thermal fabric with a better warm retention and water vapor management properties compared with the traditional fabrics.

  12. Development of the neutron technology for measuring the moisture content in China

    International Nuclear Information System (INIS)

    Zhao Jingwu; Liu Shengkang; Zhang Zhiping

    2011-01-01

    According to measuring mode (in-hopper, surface, sampling neutron moisture gauge), the development and application of neutron moisture gauge in china were introduced, which include the following course from only measuring moisture content of soil to monitoring moisture content of farmland and saving water for irrigating farmland, from measuring moisture content of pellet to coke and coal material, from only measuring moisture content to computerized neutron moisture gauges with density compensation and o f high precision. (authors)

  13. Moisture measurement in the iron and steel industry: experience with nuclear moisture measurements in coke, and studies of infrared moisture measurement of iron ore mixtures

    International Nuclear Information System (INIS)

    Beumer, J.A.; Wouters, M.

    1976-01-01

    In the heavy iron-making industry there are several processes for which it is necessary to measure on-line the moisture content of certain process materials, especially in the field of iron ore preparation and blast furnace practice. Two examples are given. (1) Experience with nuclear moisture-measurements in coke covers a period of ten years in which eight measuring systems have been installed in the weighing hoppers of blast furnaces. The standard deviation is about 0.7% moisture in the range 0 to 15% moisture. The way the method is used, the safety measures and the difficulties encountered, especially the effect on recalibration of neutron-absorbing materials in photomultipliers are described. (2) The application of infrared absorption to the study of moisture measurment or iron ore mixtures is described. With an ore mixture for pellets manufacture, a rather dark ore mixture, problems have arisen concerning the sensitivity. The reference and measuring wavelengths now in use are 2.51 and 2.95 μm. In this case the absorption of the energy is rather high. The results may be improved by using quartz optics instead of the normal Pyrex ones, as the cut-off wavelength of Pyrex is about 3 μm. Variations due to colour and specific surface have been studied. As the accuracy required is +- 0.1% moisture in the range 8 to 12% moisture, these variations need to be eliminated. (author)

  14. Calibration of neutron moisture gauges and their ability to spatially determine soil water content in environmental studies

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Martinez, J.L.; Langhorst, G.J.

    1994-10-01

    Several neutron moisture gauges were calibrated, and their ability to spatially determine soil water content was evaluated. In 1982, the midpoint of sensitivity of each neutron probe to the detection of hydrogen was determined, as well as the radius of investigation of each probe in crushed Bandelier Tuff with varying water contents. After determining the response of one of the moisture gauges to changes in soil water at the soil-air interface, a neutron transport model was successfully calibrated to predict spatial variations in soil water content. The model was then used to predict various shapes and volumes of crushed Bandelier Tuff interrogated by the neutron moisture gauge. From 1991 through 1994, six neutron moisture gauges were calibrated for soil water determinations in a local topsoil and crushed Bandelier Tuff, as well as for a sample of fine sand and soils from a field experiment at Hill Air Force Base. Statistical analysis of the calibration results is presented and summarized, and a final summary of practical implications for future neutron moisture gauge studies at Los Alamos is included

  15. [Effects of Soil Moisture on Phytoremediation of As-Containinated Soils Using As-Hyperaccumulator Pteris vittata L].

    Science.gov (United States)

    Liu, Qiu-xin; Yan, Xiu-lan; Liao, Xiao-yong; Lin, Long-yong; Yang, Jing

    2015-08-01

    A pot experiment was carried out to study the effects of soil moisture on the growth and arsenic uptake of As-hyperaccumulator Pteris vittata L. The results showed that the remediation efficiency of As was the highest when the soil moisture was between 35%-45%. P. vittata grew best under 45% water content, and its aboveground and underground plant dry weights were 2.95 g x plant(-1) and 11.95 g x plant(-1), respectively; the arsenic concentration in aboveground and roots was the highest under 35% water content, and 40% content was the best for accumulation of arsenic in P. vittata. Moreover, controlling the soil moisture to 35%-45% enhanced the conversion of As(V) to As(III) in aboveground plant, and promoted arsenic detoxification in P. vittata. These above results showed that soil moisture played an important role in the absorption and transport of arsenic by P. vittata. The results of this study can provide important guidance for the large-scale planting of P. vittata and the moisture management measures in engineering application.

  16. Radiometric measurement of ceramic material moisture

    International Nuclear Information System (INIS)

    Kominek, A.; Sojka, J.; Votava, P.

    1975-01-01

    Water content measurement using a neutron moisture meter has a long tradition in the CSSR. The method of water content determination using neutron and gamma radiation was developed by the Research Institute of Building Materials in Brno for a number of materials, as e.g. coke, brown coal semi-coke, anthracite, glass sand, dolomite, soda, gravel, aggregates, cement sludge, slag, brick clay, intermediate products of the ceramics industry, refractory building materials, etc. The water content measurement of ceramic materials for the manufacture of wall tiles was performed in a special equipment by detection of the slowed-down neutrons with an accuracy of +-0.6% water (within the range from 5 to 11%) and of materials for the manufacture of floor tiles by means of neutron and gamma radiation with an accuracy of +-0.4% water (within the range from 5 to 8%). (author)

  17. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  18. Moisture-induced caking of beverage powders.

    Science.gov (United States)

    Chávez Montes, Edgar; Santamaría, Nadia Ardila; Gumy, Jean-Claude; Marchal, Philippe

    2011-11-01

    Beverage powders can exhibit caking during storage due to high temperature and moisture conditions, leading to consumer dissatisfaction. Caking problems can be aggravated by the presence of sensitive ingredients. The caking behaviour of cocoa beverage powders, with varying amounts of a carbohydrate sensitive ingredient, as affected by climate conditions was studied in this work. Sorption isotherms of beverage powders were determined at water activities (a(w) ) ranging from 0.1 to 0.6 in a moisture sorption analyser by gravimetry and fitted to the Brunauer-Emmett-Teller (BET) or the Guggenheim-Anderson-de Boer (GAB) equation. Glass transition temperatures (T(g) ) at several a(w) were analysed by differential scanning calorimetry and fitted to the Gordon-Taylor equation. Deduced T(g) = f(a(w) ) functions helped to identify stability or caking zones. Specific experimental methods, based on the analysis of mechanical properties of powder cakes formed under compression, were used to quantify the degree of caking. Pantry tests complemented this study to put in evidence the visual perception of powder caking with increasing a(w) . The glass transition approach was useful to predict the risks of caking but was limited to products where T(g) can be measured. On the other hand, quantification of the caking degree by analysis of mechanical properties allowed estimation of the extent of degradation for each product. This work demonstrated that increasing amounts of a carbohydrate sensitive ingredient in cocoa beverages negatively affected their storage stability. Copyright © 2011 Society of Chemical Industry.

  19. Research summary: characterization of radionuclide and moisture movement through arid region sediments

    International Nuclear Information System (INIS)

    Gee, G.W.; Jones, T.L.; Rai, D.

    1981-09-01

    This project has the task of understanding the movement of moisture and radionuclides under arid region conditions. This understanding will be used to maximize the isolation of low level waste from the environment. Specific objectives include: field monitoring of moisture and radionuclide transport at an arid region site; assessment of the interaction of radionuclides with unsaturated soils in arid regions; evaluation of radionuclide transport in unsaturated soils by appropriate mathematical models; and assessment of the importance of upward migration of radionuclides by evaporation and diffusion processes. The Burial Waste Test Facility (BWTF) located near Richland, Washington, on the Department of Energy (DOE) Hanford Site has been monitored for water content and radionuclide transport for the past two years. Tritium movement has been observed to depths of 7.6 m in both irrigated and nonirrigated lysimeters. Laboratory tests were conducted to determine how leachate from uranium tailings interacts with geologic materials. Acid leach tailings and tailings solution and geologic materials typical of mill site tailing pits were physically and chemically characterized. Investigation was made of the sorption characteristics of heavy metals and radionuclides on the geologic materials under low and neutral pH conditions. From solubility tests conducted at Pacific Northwest Laboratory, thermodynamic considerations predicted that for the Eh-pH range of natural aqueous environment, the dominant species of Pu is likely to be Pu(V) in relatively oxidizing environments and Pu(III) in reducing environments. Radionuclide transport through unsaturated media was investigated by using two solute transport models to describe the transport of tritium and strontium-85 in laboratory columns. A new approach was used to analyze radon emissions from uranium mill tailings

  20. The error analysis of coke moisture measured by neutron moisture gauge

    International Nuclear Information System (INIS)

    Tian Huixing

    1995-01-01

    The error of coke moisture measured by neutron method in the iron and steel industry is analyzed. The errors are caused by inaccurate sampling location in the calibration procedure on site. By comparison, the instrument error and the statistical fluctuation error are smaller. So the sampling proportion should be increased as large as possible in the calibration procedure on site, and a satisfied calibration effect can be obtained on a suitable size hopper

  1. Sources of Sahelian-Sudan moisture: Insights from a moisture-tracing atmospheric model

    Science.gov (United States)

    Salih, Abubakr A. M.; Zhang, Qiong; Pausata, Francesco S. R.; Tjernström, Michael

    2016-07-01

    The summer rainfall across Sahelian-Sudan is one of the main sources of water for agriculture, human, and animal needs. However, the rainfall is characterized by large interannual variability, which has attracted extensive scientific efforts to understand it. This study attempts to identify the source regions that contribute to the Sahelian-Sudan moisture budget during July through September. We have used an atmospheric general circulation model with an embedded moisture-tracing module (Community Atmosphere Model version 3), forced by observed (1979-2013) sea-surface temperatures. The result suggests that about 40% of the moisture comes with the moisture flow associated with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and originates from Guinea Coast, central Africa, and the Western Sahel. The Mediterranean Sea, Arabian Peninsula, and South Indian Ocean regions account for 10.2%, 8.1%, and 6.4%, respectively. Local evaporation and the rest of the globe supply the region with 20.3% and 13.2%, respectively. We also compared the result from this study to a previous analysis that used the Lagrangian model FLEXPART forced by ERA-Interim. The two approaches differ when comparing individual regions, but are in better agreement when neighboring regions of similar atmospheric flow features are grouped together. Interannual variability with the rainfall over the region is highly correlated with contributions from regions that are associated with the ITCZ movement, which is in turn linked to the Atlantic Multidecadal Oscillation. Our result is expected to provide insights for the effort on seasonal forecasting of the rainy season over Sahelian Sudan.

  2. Use of Edible Laminate Layers in Intermediate Moisture Food Rations to Inhibit Moisture Migration

    Science.gov (United States)

    2016-04-29

    Strike Ration and Meal, Ready-to- Eat (MRE), moisture migration from one part of a component (e.g., sandwich filling) to another (e.g., bread...to improve sensory qualities in commercial products. For example, edible films are currently used in frozen pizza, in microwave dinners , in ready...to- eat ice cream novelties, and as a replacement for seaweed in sushi. 2  These edible barriers are not directly applicable to military uses, so

  3. Effects of neutron source type on soil moisture measurement

    Science.gov (United States)

    Irving Goldberg; Norman A. MacGillivray; Robert R. Ziemer

    1967-01-01

    A number of radioisotopes have recently become commercially available as alternatives to radium-225 in moisture gauging devices using alpha-neutron sources for determining soil moisture, for well logging, and for other industrial applications in which hydrogenous materials are measured.

  4. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  5. An integrated GIS application system for soil moisture data assimilation

    Science.gov (United States)

    Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang

    2014-11-01

    The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.

  6. The global distribution and dynamics of surface soil moisture

    Science.gov (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  7. Effects of moisture on the mechanical properties of glass fibre ...

    Indian Academy of Sciences (India)

    Unknown

    of moisture absorption and correlating with the mechanical properties, it was observed that the ..... where F is the flux of moisture molecules crossing a unit ... 300. 400. 500. 600. 700 wt% of nascent fibre loading. 63.50. 55.75. 48.48. 38.63.

  8. Determination of moisture in bagasse by neutron reflection

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Suarez, J.C.

    1990-01-01

    For the first time in Cuba organic samples were analyzed by neutron reflection method. The feasibility of this method to determinate the moisture grade in sugar cane bagasse is fixed. From 0 to 50w% moisture grade with 2-3% relative accuracy can be determinated using 10m. measuring time. 7 refs

  9. Evaluating ESA CCI Soil Moisture in East Africa

    Science.gov (United States)

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R.; Wang, Shugong; Peters-Lidard, Christa D.; Verdin, James P.

    2016-01-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASAs Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R greater than 0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

  10. development and testing of a capacitive digital soil moisture metre

    African Journals Online (AJOL)

    This paper presents a low cost, simple digital soil moisture meter, working on the principle of dielectric. A digital soil moisture meter using the NE555 timer and micro controller as a major electronic component was developed and tested, which display its output in a range of 0.0 to 99% on the 7-segment displayed unit.

  11. Brown Boveri moves to fourth generation MSRs [moisture separator reheaters

    International Nuclear Information System (INIS)

    Boeckh, P. von

    1987-01-01

    The fourth, space saving, generation of moisture separator reheaters from Brown Boveri and Cie (BBC) consists of two types of high velocity moisture separators, 'Mops' and 'Scrups', and the small size reheater, 'Road' . The design of the unit is described, together with operational experience. (author)

  12. Hysteresis of soil temperature under different soil moisture and ...

    African Journals Online (AJOL)

    ... in a solar greenhouse. The objective of this study was to find a simple method to estimate the hysteresis of soil temperature under three soil moisture and two fertilizer levels in solar greenhouse conditions with tomato crop (Lycopersicon esculentum Mill). The results show that the soil moisture had no significant effects on ...

  13. Integrating an embedded system in a microwave moisture meter

    Science.gov (United States)

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  14. Integrating an Embedded System within a Microwave Moisture Meter

    Science.gov (United States)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  15. MOISTURE IN COTTON BY THE KARL FISCHER TITRATION REFERENCE METHOD

    Science.gov (United States)

    Moisture is a critical parameter that influences many aspects of cotton fiber from harvesting and ginning to various fiber properties. Because of their importance, reference moisture methods that are more accurate than the existing oven-drying techniques and relatively easy to generate results are ...

  16. Variability of soil moisture and its relationship with surface albedo

    Indian Academy of Sciences (India)

    Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76° 59′E longitude and 8° 30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed.

  17. Effects of moisture on the mechanical properties of glass fibre ...

    Indian Academy of Sciences (India)

    However, the properties were relatively inferior when treated with boiling water for longer hours attributing to ingress of moisture by capillary action through the interface between the fibre and the resin matrix. Considering the rates of moisture absorption and correlating with the mechanical properties, it was observed that the ...

  18. Influence of moisture stress on growth, dry matter yield and ...

    African Journals Online (AJOL)

    The effects of moisture stress were evaluated in four Indigofera species (I. amorphoides, I. arrecta, I. coerulea and I. vicioides) using a pot experiment under glasshouse conditions. The aim was to examine the influence of moisture-deficit stress on physiological attributes and performance of the four Indigofera species.

  19. 24 CFR 3285.204 - Ground moisture control.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Ground moisture control. 3285.204 Section 3285.204 Housing and Urban Development Regulations Relating to Housing and Urban Development... moisture control. (a) Vapor retarder. If the space under the home is to be enclosed with skirting or other...

  20. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  1. Influence of Inherent Moisture Content on the Deformation ...

    African Journals Online (AJOL)

    Influence of Inherent Moisture Content on the Deformation. Properties of Coconut Tissues During Mechanical Oil. Expression. *J. J. Mpagalile1 and B. Clarke2. 1Department of ... The study confirmed that moisture content has an important role in the deformation of coconut ..... A micro penetration technique for mechanical.

  2. Short Communications Sand moisture as a factor determining depth ...

    African Journals Online (AJOL)

    1993-11-05

    Nov 5, 1993 ... The depths to which the animals burrow are, at least partly. determined by the moisture gradient in the sand. They are, however, incapable of burrowing into totally dry sand. Animals alter their position in the sand in response to changes in moisture content so as to ensure exposure to suitable conditions.

  3. Moisture Management for High R-Value Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  4. Equilibrium relative humidity as a tool to monitor seed moisture

    Science.gov (United States)

    Robert P. Karrfalt

    2010-01-01

    The importance of seed moisture in maintaining high seed viability is well known. The seed storage chapters in the Tropical Tree Seed Manual (Hong and Ellis 2003) and the Woody Plant Seed Manual (Bonner 2008a) give a detailed discussion and many references on this point. Working with seeds in an operational setting requires a test of seed moisture status. It is...

  5. Use of soil moisture sensors for irrigation scheduling

    Science.gov (United States)

    Various types of soil moisture sensing devices have been developed and are commercially available for water management applications. Each type of soil moisture sensors has its advantages and shortcomings in terms of accuracy, reliability, and cost. Resistive and capacitive based sensors, and time-d...

  6. A Technical Design Approach to Soil Moisture Content Measurement

    African Journals Online (AJOL)

    Soil moisture is an important type of data in many fields; ranging from agriculture to environmental monitoring. Three soil samples were collected at definite proportions to represent the three basic soil types (sandy, loamy and clay soils). The moisture contents of these soil samples were analyzed using the thermogravimetric ...

  7. Moisture Sorption in Artificially aged wood-plastic composites

    Science.gov (United States)

    B. Kristoffer Segerholm; Rebecca E. Ibach; Magnus E.P. Wålinder

    2012-01-01

    Moisture sorption in wood-plastic composites (WPCs) affects their durability and dimensional stability. In certain outdoor exposures, the moisture properties of WPCs are altered due to e.g. cracks induced by swelling and shrinkage of the components, as well as UV degradation or biological attack. The aim of this work was to study the effect of different artificial...

  8. A new method of determining moisture gradient in wood

    Science.gov (United States)

    Zhiyong Cai

    2008-01-01

    Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...

  9. Soil moisture remote sensing: State of the science

    Science.gov (United States)

    Satellites (e.g., SMAP, SMOS) using passive microwave techniques, in particular at L band frequency, have shown good promise for global mapping of near-surface (0-5 cm) soil moisture at a spatial resolution of 25-40 km and temporal resolution of 2-3 days. C- and X-band soil moisture records date bac...

  10. Length and time scales of atmospheric moisture recycling

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.

    2011-01-01

    It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to

  11. Continuous moisture measurement in metallurgical coke with automatic charge correction

    International Nuclear Information System (INIS)

    Watzke, H.; Mehlhose, D.

    1981-01-01

    A process control system has been developed for automatic batching of the coke amount necessary for metallurgical processes taking into account the moisture content. The measurement is performed with a neutron moisture gage consisting of an Am-Be neutron source and a BF 3 counter. The output information of the counter is used for computer-controlled batching

  12. Microwave moisture meter for in-shell almonds.

    Science.gov (United States)

    Determining almond kernel moisture content while still in the shell is important for both almond growers and processors. A dielectric method was developed for almond kernel moisture determination from dielectric measurements on in-shell almonds at a single microwave frequency. A sample holder was fi...

  13. 7 CFR 801.6 - Tolerances for moisture meters.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for moisture meters. 801.6 Section 801.6 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... FOR GRAIN INSPECTION EQUIPMENT § 801.6 Tolerances for moisture meters. (a) The maintenance tolerances...

  14. On-line determination of moisture in coal and coke

    International Nuclear Information System (INIS)

    Cutmore, N.G.; Sowerby, B.D.

    1987-01-01

    The CSIRO Division of Mineral Engineering is developing various techniques for the on-line determination of moisture in coal and coke, and some instruments are now commercially available. These techniques permit accurate and rapid determination of moisture in materials directly on conveyor belts or in bins. The most promising techniques for direct on-belt measurement of moisture in coal are capacitance and microwave transmission. A non-contacting under-belt capacitance and gamma-ray backscatter technique has determined moisture in coal to better than 0.5 wt% in field tests. CSIRO is developing a fast neutron and gamma-ray transmission technique, which is proving very accurate in laboratory tests. This technique overcomes many of the limitations of thermal neutrons moisture gauges

  15. Moisture ingress into electronics enclosures under isothermal conditions

    International Nuclear Information System (INIS)

    Staliulionis, Ž.; Jabbari, M.; Hattel, J. H.

    2016-01-01

    The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based on a 1D quasi-steady state (QSS) approximation for Fick’s second law. This QSS approach is also described with an electrical analogy which gives a fast tool in modelling of the moisture response. The same QSS method is applied to ambient water vapour variations. The obtained results are compared to an analytical solution and very good agreement is found.

  16. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  17. Guidelines on the prevention of built-in moisture

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.

    2014-01-01

    As a result of built-in-moisture, a number of buildings in Denmark were attacked by moulds even before the users moved in. Therefore, the Danish Building Regulations have since 2008 stipulated that building structures and materials must not, on moving in, have a moisture content that is liable...... the execution phase and the building’s capacity to withstand moisture. It also specifies how moisture should be dealt with in the general quality assurance system of the building industry. The Danish guideline is compared with similar guidelines and tools in other Nordic countries. The education of moisture...... specialists is emphasised and it is questioned whether a voluntary guideline will have the desired effect....

  18. Footprint Characteristics of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring

    Science.gov (United States)

    Schrön, Martin; Köhli, Markus; Zreda, Marek; Dietrich, Peter; Zacharias, Steffen

    2015-04-01

    Cosmic-ray neutron sensing is a unique and an increasingly accepted method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources are quickly mixed in a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights into probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact on calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.

  19. Moisture Content Numerical Simulation on Structural Damage of Hot Mix Asphaltic Pavement

    Science.gov (United States)

    Abejide, O. S.; Mostafa, M. M. H.

    2017-06-01

    Considering the merits of road transportation in the economy and communication activities of the modern societies, it is imperative to design a safe, stable, efficient and cost effective road that will lead to increased economic development and growth of the South African nation. Although, the overarching effect of failed roads has in many ways led to increased travel time, loss of life and property; leading to reduced driver control on failed road sections (riding quality). Thus, time rate delamination of flexible pavement is a major focus of this study. Since structural collapse in a flexible pavement structure is caused by the evolution of different types of damage mechanisms; fatigue cracking, advanced crushing, temperature variation, and delamination. The effect of moisture content on HMA was analysed. The analysis from the multi-layered elastic model indicates that increase in moisture content in the underlying layer of HMA pavement results to increase in the strain of the individual layers and culminates to a decrease in the structural carrying capacity of the pavement with respect to number of load cycles that can be carried on the HMA pavement. This study shows a clear relationship between the moisture/saturation coefficient and the Elastic Modulus of the underlying geometric material layer properties of the pavement during the service life of the pavement.

  20. Free-Tropospheric Moisture Convergence and Tropical Convective Regimes

    Science.gov (United States)

    Masunaga, H.

    2014-12-01

    It is known that quiescent periods with only shallow cumuli prevalent are frequently observed even in the deep Tropics, which is considered from the climatological perspectives as an area harboring vigorous deep convection. It is argued in this work that the free-tropospheric (FT) moisture convergence is a crucial factor for separating the stable maintenance of isolated shallow cumuli in the quiescent periods from the self-sustaining growth of organized convective systems in the dynamic periods over tropical oceans. The analysis is based on a variety of satellite measurements including Aqua AIRS T and q soundings and QuikSCAT surface wind, composited with reference to the time before or after the occurrence of precipitating clouds detected by TRMM PR. The FT moisture convergence and updraft moisture flux at cloud base are then derived from this dataset under large-scale moisture budget constraint (see Figure). Free-tropospheric precipitation efficiency (FTPE), or the ratio of precipitation to updraft moisture flux at cloud base, is introduced as a measure of convective intensity (rather than the population) over the large-scale domain. The following hypothesis is discussed in light of the analysis results. Isolated shallow cumuli would stay shallow when large-scale FT moisture is diverging (although moisture is weakly converging when integrated over the whole troposphere) since an increase in cumulus population would be counteracted by an additional moisture divergence in the FT. When large-scale FT convergence is positive, in contrast, developing clouds would induce a more moisture input and allow an unstable growth to a highly organized convective system. Zero FT moisture convergence may serve as the neutrality separating the negative feedback acting in the quiescent regime from the positive feedback instrumental for the dynamic regime.

  1. Drought monitoring with soil moisture active passive (SMAP) measurements

    Science.gov (United States)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  2. Understanding the bias between moisture content by oven drying and water content by Karl Fischer titration at moisture equilibrium

    Science.gov (United States)

    Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...

  3. Predicting temperature and moisture distributions in conditioned spaces using the zonal approach

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, K.C. [Parana Pontifical Catholic Univ., Curitiba (Brazil); Wurtz, E.; Inard, C. [La Rochelle Univ., La Rochelle, Cedex (France). LEPTAB

    2005-07-01

    Moisture interacts with building elements in a number of different ways that impact upon building performance, causing deterioration of building materials, as well as contributing to poor indoor air quality. In humid climates, moisture represents one of the major loads in conditioned spaces. It is therefore important to understand and model moisture transport accurately. This paper discussed an intermediate zonal approach to building a library of data in order to predict whole hygrothermal behavior in conditioned rooms. The zonal library included 2 models in order to consider building envelope moisture buffering effects as well as taking into account the dynamic aspect of jet airflow in the zonal method. The zonal library was then applied to a case study to show the impact of external humidity on the whole hygrothermal performance of a room equipped with a vertical fan-coil unit. The proposed theory was structured into 3 groups representing 3 building domains: indoor air; envelope; and heating, ventilation and air conditioning (HVAC) systems. The indoor air sub-model related to indoor air space, where airflow speed was considered to be low. The envelope sub-model related to the radiation exchanges between the envelope and its environment as well as to the heat and mass transfers through the envelope material. The HVAC system sub-model referred to the whole system including equipment, control and specific airflow from the equipment. All the models were coupled into SPARK, where the resulting set of non-linear equations were solved simultaneously. A case study of a large office conditioned by a vertical fan-coil unit with a rectangular air supply diffuser was presented. Details of the building's external and internal environment were provided, as well as convective heat and mass transfer coefficients and temperature distributions versus time. Results of the study indicated that understanding building material moisture buffering effects is as important as

  4. High moisture airtight storage of barley and triticale: Effect of moisture level and grain processing on nitrogen and phosphorus solubility

    DEFF Research Database (Denmark)

    Ton Nu, Mai Anh; Blaabjerg, Karoline; Labouriau, Rodrigo

    2015-01-01

    The aim of this study was to evaluate the effect of storage time, grain processing (whole vs. rolled) and the combination of phytase, xylanase, β-glucanase and protease on nitrogen (N) and phosphorus (P) solubility during high moisture airtight (HMA) storage of barley and triticale at various...... moisture levels (20, 23, 26 and 29% moisture) and to compare HMA storage of cereals with dry storage for 49 days. Dry stored barley and triticale (10 and 13% moisture, respectively) were kept in 10 L plastic buckets for 0 and 49 days. HMA stored cereals were kept in airtight bags (400 g per bag) at 15 °C......) in HMA storage at 29% moisture to a greater extent compared with dry storage (P levels increased P solubility (rolled barley, whole and rolled triticale) and N solubility (whole and rolled triticale) linearly and decreased Phytate P:Total P (rolled barley) linearly...

  5. Effect of a mechanical damage on permeability and moisture diffusivity of concrete

    International Nuclear Information System (INIS)

    Picandet, V.

    2001-12-01

    The effect of a mechanical damage on transfer parameters of concrete is an original point of view on the coupling between damage and durability. The studied transfer parameters, permeability and moisture diffusivity, allow to characterize the transport ability of a porous media to convey gases or water (liquid and vapour). The theoretical framework of the measurement of these parameters and its applications to concrete is pointed out. The experimental studies are carried on three types of concrete: ordinary concrete, high performance concrete, and high performance steel fiber reinforced concrete. Two kinds of damage are considered and generated in samples: - A continuous damage of the medium, obtained by cyclic uniaxial loading. It is characterized by a loss of stiffness and results in a diffuse microcracking.- A discrete or localised damage, obtained by a diametrical compression of cylindrical specimens. It is characterized by the presence of identifiable and measurable cracks. Measurements of gas permeability are taken using a constant head, Cembureau type, permeameter. For cracked samples, the procedure and analysis of the results are changed in order to make the evaluation of their gas and water permeability. The simple imbibition and positive head imbibition are the disturbances of the moisture equilibrium, which allow the evaluation of the material diffusivity. The local moisture contents of the specimen are measured using a gamma-ray attenuation method. The analysis of profiles using Boltzmann's transformation leads to the moisture diffusivity and then to the water permeability coefficients. Measurements of gas and water permeability are compared in both cases of considered damage. In the first case, a damage - permeability relationship dependent on the fluid of percolation but valid for all concrete types studied could be worked out. (author)

  6. Regulation of Microbial Herbicide Transformation by Coupled Moisture and Oxygen Dynamics in Soil

    Science.gov (United States)

    Marschmann, G.; Pagel, H.; Uksa, M.; Streck, T.; Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    The key processes of herbicide fate in agricultural soils are well-characterized. However, most of these studies are from batch experiments that were conducted under optimal aerobic conditions. In order to delineate the processes controlling herbicide (i.e., phenoxy herbicide 2-methyl-4-chlorophenoxyacetic acid, MCPA) turnover in soil under variable moisture conditions, we conducted a state-of-the-art soil column experiment, with a highly instrumented automated soil column system, under constant and oscillating water table regimes. In this system, the position of the water table was imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The soil samples were collected from a fertilized, arable and carbon-limited agricultural field site in Germany. The efflux of CO2 was determined from headspace gas measurements as an integrated signal of microbial respiration activity. Moisture and oxygen profiles along the soil column were monitored continuously using high-resolution moisture content probes and luminescence-based Multi Fiber Optode (MuFO) microsensors, respectively. Pore water and solid-phase samples were collected periodically at 8 depths and analyzed for MCPA, dissolved inorganic and organic carbon concentrations as well as the abundance of specific MCPA-degrading bacteria. The results indicated a clear effect of the water table fluctuations on CO2 fluxes, with lower fluxes during imbibition periods and enhanced CO2 fluxes after drainage. In this presentation, we focus on the results of temporal changes in the vertical distribution of herbicide, specific herbicide degraders, organic carbon concentration, moisture content and oxygen. We expect that the high spatial and temporal resolution of measurements from this experiment will allow robust calibration of a reactive transport model for the soil columns, with subsequent identification and quantification of rate limiting processes of

  7. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  8. An introduction to NH-A neutron earth base moisture gage

    International Nuclear Information System (INIS)

    Zhu Huaian; Jiang Yulan; Yin Xilin; Yu Peiying; Luo Pinjie

    1988-01-01

    NH-A neutron earth base moisture gage is an accurate instrument which can measure earth moisture rapidly and non-destructively and display moisture results immediately. The deviation is estimated at ±0.012g/cm

  9. Moisture distribution in sludges based on different testing methods

    Institute of Scientific and Technical Information of China (English)

    Wenyi Deng; Xiaodong Li; Jianhua Yan; Fei Wang; Yong Chi; Kefa Cen

    2011-01-01

    Moisture distributions in municipal sewage sludge, printing and dyeing sludge and paper mill sludge were experimentally studied based on four different methods, i.e., drying test, thermogravimetric-differential thermal analysis (TG-DTA) test, thermogravimetricdifferential scanning calorimetry (TG-DSC) test and water activity test. The results indicated that the moistures in the mechanically dewatered sludges were interstitial water, surface water and bound water. The interstitial water accounted for more than 50% wet basis (wb) of the total moisture content. The bond strength of sludge moisture increased with decreasing moisture content, especially when the moisture content was lower than 50% wb. Furthermore, the comparison among the four different testing methods was presented.The drying test was advantaged by its ability to quantify free water, interstitial water, surface water and bound water; while TG-DSC test, TG-DTA test and water activity test were capable of determining the bond strength of moisture in sludge. It was found that the results from TG-DSC and TG-DTA test are more persuasive than water activity test.

  10. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    Science.gov (United States)

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  11. Moisture content analysis of covered uranium mill tailings

    International Nuclear Information System (INIS)

    Mayer, D.W.; Beedlow, P.A.; Cadwell, L.L.

    1981-12-01

    The use of vegetation and rock covers to stabilize uranium mill tailings cover systems is being investigated by Pacific Northwest Laboratory. A modeling study of moisture movement through the tailings and cover layers was initiated to determine the effect of the stabilizing techniques. The cover system was simulated under climatic conditions occurring at Grand Junction, Colorado. The cover consisted of a layer of wet clay/gravel mix followed by a capillary barrier of washed rock and a surface layer of fill soil. Vegetation and rock were used to stabilize the surface layer. The simulation yielded moisture content and moisture storage values for the tailings and cover system along with information about moisture losses due to evaporation, transpiration, and drainage. The study demonstrates that different surface stabilization treatments lead to different degrees of moisture retention in the covered tailings pile. The evapotranspiration from vegetation can result in a relatively stable moisture content. Rock covers, however, may cause drainage to occur because they reduce evaporation and lead to a subsequent increase in moisture content. It is important to consider these effects when designing a surface stabilization treatment. Drainage may contribute to a groundwater pollution problem. A surface treatment that allows the cover system to dry out can increase the risk of atmospheric contamination through elevated radon emission rates

  12. Package selection for moisture protection for solid, oral drug products.

    Science.gov (United States)

    Waterman, Kenneth C; MacDonald, Bruce C

    2010-11-01

    This review describes how best to select the appropriate packaging options for solid, oral drug products based on both chemical and physical stability, with respect to moisture protection. This process combines an accounting for the initial moisture content of dosage form components, moisture transfer into (out of) packaging based on a moisture vapor transfer rate (MVTR), and equilibration between drug products and desiccants based on their moisture sorption isotherms to provide an estimate of the instantaneous relative humidity (RH) within the packaging. This time-based RH is calculationally combined with a moisture-sensitive Arrhenius equation (determined using the accelerated stability assessment program, ASAP) to predict the drug product's chemical stability over time as a function of storage conditions and packaging options. While physical stability of dosage forms with respect to moisture has been less well documented, a process is recommended based on the threshold RH at which changes (e.g., dosage form dissolution, tablet hardness, drug form) become problematic. The overall process described allows packaging to be determined for a drug product scientifically, with the effect of any changes to storage conditions or packaging to be explicitly accounted for. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Moisture damage and asthma: a birth cohort study.

    Science.gov (United States)

    Karvonen, Anne M; Hyvärinen, Anne; Korppi, Matti; Haverinen-Shaughnessy, Ulla; Renz, Harald; Pfefferle, Petra I; Remes, Sami; Genuneit, Jon; Pekkanen, Juha

    2015-03-01

    Excess moisture and visible mold are associated with increased risk of asthma. Only a few studies have performed detailed home visits to characterize the extent and location of moisture damage and mold growth. Structured home inspections were performed in a birth cohort study when the children were 5 months old (on average). Children (N = 398) were followed up to the age of 6 years. Specific immunoglobulin E concentrations were determined at 6 years. Moisture damage and mold at an early age in the child's main living areas (but not in bathrooms or other interior spaces) were associated with the risk of developing physician-diagnosed asthma ever, persistent asthma, and respiratory symptoms during the first 6 years. Associations with asthma ever were strongest for moisture damage with visible mold in the child's bedroom (adjusted odds ratio: 4.82 [95% confidence interval: 1.29-18.02]) and in the living room (adjusted odds ratio: 7.51 [95% confidence interval: 1.49-37.83]). Associations with asthma ever were stronger in the earlier part of the follow-up and among atopic children. No consistent associations were found between moisture damage with or without visible mold and atopic sensitization. Moisture damage and mold in early infancy in the child's main living areas were associated with asthma development. Atopic children may be more susceptible to the effects of moisture damage and mold. Copyright © 2015 by the American Academy of Pediatrics.

  14. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  15. Shelf stable intermediate moisture fruit cubes using radiation technology

    International Nuclear Information System (INIS)

    Mishra, Bibhuti B.; Saxena, Sudhanshu; Gautam, Satyendra; Chander, Ramesh; Sharma, Arun

    2009-01-01

    A process has been developed to prepare shelf stable ready-to-eat (RTE) intermediate moisture pineapple slices and papaya cubes using radiation technology. The combination of hurdles including osmotic dehydration, blanching, infrared drying, and gamma radiation dose of 1 kGy successfully reduced the microbial load to below detectable limit. The shelf life of the intermediate moisture pineapple slices and papaya cubes was found to be 40 days at ambient temperature (28 ± 2 deg C). The control samples spoiled within 6 days. The RTE intermediate moisture fruit products were found to have good texture, colour and sensory acceptability during this 40 days storage. (author)

  16. Use of moisture probes in building materials industry

    International Nuclear Information System (INIS)

    Hanke, L.

    A neutron probe to be built in the production line was developed for monitoring moisture content of bulk materials and suspensions of all types in the building material industry. The probe is dust- and external moisture-protected. The probe measuring capacity is about 100 l, the mean measurement error is +- 0.008 g water per 1 cm 3 , which for fine sand represents an error of +- 0.3%. The probe is connected via a cable to a measuring instrument showing an electrical value proportional to the measured material moisture content. (Z.M.)

  17. Moisture buffering and its consequence in whole building hygrothermal modeling

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2008-01-01

    Moisture absorption and desorption of materials in contact with indoor air of buildings can be used as a passive, i.e., nonmechanical, way to moderate the variation of indoor humidity. This phenomenon, which is recognized as,moisture buffering', could potentially be used as an attractive feature...... for ventilation if indoor humidity is a parameter for controlling ventilation rate, 2. it is possible to improve the perceived acceptability of indoor air, as judged by the temperature and humidity of the air, by using moisture buffering to control the indoor humidity. The results of the whole building...

  18. Water transport in desert alluvial soil

    International Nuclear Information System (INIS)

    Kearl, P.M.

    1982-04-01

    Safe storage of radioactive waste buried in an arid alluvial soil requires extensive site characterization of the physical process influencing moisture movement which could act as a transport medium for the migration of radionuclides. The field portion of this study included an infiltration plot instrumented with thermocouple psychrometers and neturon moisture probe access holes. Baseline information shows a zone of higher moisture content at approximately 1.5 m (5 ft) in depth. A sprinkler system simulated a 500-year precipitation event. Results revealed water penetrated the soil to 0.9 m (2.9 ft). Due to the low moisture content, vapor transport was primarily responsible for water movement at this depth. Temperature gradients are substantially responsible for vapor transport by preferentially sorting water-vapor molecules from the surrounding air by using the soil as a molecular sieve. Adsorbed and capillary water vapor pressure increases in response to a temperature increase and releases additional water to the soil pore atmosphere to be diffused away

  19. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-01-01

    This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

  20. Investigation of moisture-induced embrittlement of iron aluminides. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alven, D.A.; Stoloff, N.S. [Rensselaer Polytechnic Inst., Troy, NY (United States). Materials Engineering Dept.

    1997-06-05

    Iron-aluminum alloys with 28 at.% Al and 5 at.% Cr were shown to be susceptible to hydrogen embrittlement by exposure to both gaseous hydrogen and water vapor. This study examined the effect of the addition of zirconium and carbon on the moisture-induced hydrogen embrittlement of an Fe{sub 3}Al,Cr alloy through the evaluation of tensile properties and fatigue crack growth resistance in hydrogen gas and moisture-bearing air. Susceptibility to embrittlement was found to vary with the zirconium content while the carbon addition was found to only affect the fracture toughness. Inherent fatigue crack growth resistance and fracture toughness, as measured in an inert environment, was found to increase with the addition of 0.5 at.% Zr. The combined addition of 0.5 at.% Zr and carbon only increased the fracture toughness. The addition of 1 at.% Zr and carbon was found to have no effect on the crack growth rate when compared to the base alloy. Susceptibility to embrittlement in moisture-bearing environments was found to decrease with the addition of 0.5 at.% Zr. In gaseous hydrogen, the threshold value of the Zr-containing alloys was found to increase above that found in the inert environment while the crack growth resistance was much lower. By varying the frequency of fatigue loading, it was shown that the corrosion fatigue component of the fatigue crack growth rate in an embrittling environment displays a frequency dependence. Hydrogen transport in iron aluminides was shown to occur primarily by a dislocation-assisted transport mechanism. This mechanism, in conjunction with fractography, indicates that the zirconium-containing precipitates act as traps for the hydrogen that is carried along by the dislocations through the lattice.

  1. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  2. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D. [IBACOS, Inc., Pittsburgh, PA (United States); Shaffer, M. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  3. New calibration algorithms for dielectric-based microwave moisture sensors

    Science.gov (United States)

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  4. Effects of moisture content and heat treatment on peroxide value ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... moisture content and reduced with increasing roasting duration. Analysis of ... Within the studied range, 13 h was the minimum OS recorded while maximum were 63.3 h.

  5. Moisture dependence of positron annihilation spectra in nylon-6

    International Nuclear Information System (INIS)

    Singh, J.J.; Clair, T.L.S.; Holt, W.H.; Mock, W. Jr.

    1984-01-01

    Positron annihilation time spectra have been measured in nylon-6 specimens as a function of their moisture content. The measured average longlife component lifetime values are: 1722 +- 47 ps (dry), 1676 +- 40 ps (14.6% saturation value), 1718 +- 26 ps (29.3% saturation value), 1720 +- 35 ps (50% of saturation value), 1857 +- 35 ps (78.1% of saturation value) and 1936 +- 57 ps (saturated). It is noted that the longlife component lifetime at first decreases and then increases with increasing moisture content in the specimens. This behavior is quite different from that observed in earlier studies of various epoxy, polyamide, and polyimide materials, where the longlife component lifetime decreased linearly with increasing moisture content. The longlife component intensity on the other hand, decreases steadily as the moisture content increases from 0 to 100% of the saturation value. A possible explanation for these anomalous features is discussed. (orig.)

  6. Molecular Sensors for Moisture Detection by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Renz, F.; Souza, P. A. de; Klingelhoefer, G.; Goodwin, H. A.

    2002-01-01

    A parameter of importance in various industrial and commercial applications is sensitivity to moisture. A new class of molecular sensors which enable the qualitative and quantitative determination of air moisture (high selectivity and sensitivity) by application of Moessbauer spectroscopy as the probe technique has been investigated. The electronic properties of the iron-containing sensor depend upon the presence of moisture which is taken up by it and this process is accompanied by a change in electronic spin ground state which can be detected by Moessbauer spectroscopy. The sensor is suitable for in-field and industrial application using the recently developed Moessbauer spectrometer MIMOS II. Possible suitability for the detection of moisture in extraterrestrial environments is considered.

  7. Full scale tests of moisture buffer capacity of wall materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2005-01-01

    that are harmful such as growth of house dust mites, surface condensation and mould growth. Therefore a series of experiments has been carried out in a full scale test facility to determine the moisture buffer effect of interior walls of cellular concrete and plaster board constructions. For the cellular concrete......Moisture buffer capacity of hygroscopic materials can be used to moderate peaks in the relative humidity (RH) of indoor air as well as moisture content variations in building materials and furnishing. This can help to ensure healthier indoor environments by preventing many processes...... of the changes of moisture content in specimens of the wall composites exposed to the same environment. It was found that the finishes had a big impact on the buffer performance of the underlying materials. Even though the untreated cellular concrete had a very high buffer capacity, the effect was strongly...

  8. Variability of Moisture Retention and Hydrophobicity Among Biochars

    Science.gov (United States)

    This research identifies factors and mechanisms that control changes in moisture retention when biochars produced from different feedstocks and under different heat treatment temperatures are mixed with fine sand. While substantial experimental research has been conducted on the ...

  9. Fermentation characteristics and nutritive value of low moisture ...

    African Journals Online (AJOL)

    Fermentation characteristics and nutritive value of low moisture silage made from mature bermudagrass ( C. dactylon ) and switchgrass ( P. virgatum ) in mixture with alfalfa ( M. sativa ) or treated with urea and plantain ( Musa AAB )

  10. Climate Prediction Center (CPC) Palmer Drought and Crop Moisture Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate Prediction Center (CPC) Palmer Drought Severity and Crop Moisture Indices are computed for the 344 U.S. Climate Divisions on a weekly basis based on a...

  11. Use of nondestructive evaluation to detect moisture in flexible pavements.

    Science.gov (United States)

    2006-01-01

    The purpose of this study was to identify the currently available nondestructive evaluation technology that holds the greatest potential to detect moisture in flexible pavements and then apply the technology in multiple locations throughout Virginia....

  12. IR transmittance of moisture-resistant germanate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bocharova, T.V.; Karapetyan, G.O. [St. Petersburg State Technical Univ. (Russian Federation)

    1995-05-01

    The objective of this work was to study the infrared spectra of gallogermante glasses and develop methods of improving their moisture resistance while retaining transparency. The ion exchange properties had been previously investigated.

  13. Determination of moisture in fiber reinforced composites using pulsed NMR

    International Nuclear Information System (INIS)

    Matzkanin, G.A.

    1982-01-01

    Nuclear magnetic resonance (NMR) signals from hydrogen atoms in two organic matrix composite systems subjected to environmental conditioning at 51.6 C (125 F) and 95% relative humidity were examined. The composites were 8 ply, + or - 45 deg laminates fabricated from SP 250 resin/S2 glass fiber and Reliabond 9350 resin/Kevlar 49 fiber. Free induction decay NMR signals from the composite specimens consisted of a large amplitude, fast decaying component associated with hydrogen in rigid polymer molecules and a lower amplitude, slower decaying component associated with hydrogen in the mobile absorbed moisture molecules. The absorbed moisture NMR signals consists of distinct multiple components which were attributed to moisture in various states of molecular binding. Particularly complex free induction decay signals were observed from Kevlar composite as well as from Kevlar fiber. Good correlation was obtained between the NMR signal amplitude and the dry weight moisture percentage for both composite systems. Results of destructive tensile tests were examined

  14. Moisture dependence of positron lifetime in Kevlar-49

    Science.gov (United States)

    Singh, Jag J.; Holt, William H.; Mock, Willis, Jr.

    1984-01-01

    Because of filamentary character of Kevlar-49 aramid fibers, there is some concern about the moisture uptake and its effect on plastic composites reinforced with Kevlar-49 fibers. As part of continuing studies of positron lifetime in polymers, we have measured positron lifetime spectra in Kevlar-49 fibers as a function of their moisture content. The long lifetime component intensities are rather low, being only of the order of 2-3 percent. The measured values of long component lifetimes at various moisture levels in the specimens are as follows: 2072 +/- 173 ps (dry); 2013 +/- 193 ps (20.7 percent saturation); 1665 +/- 85 ps (25.7 percent saturation); 1745 +/- 257 ps (32.1 percent saturation); and 1772 +/- 217 ps (100 percent saturation). It is apparent that the long component lifetime at first decreases and then increases as the specimen moisture content increases. These results have been compared with those inferred from Epon-815 and Epon-815/K-49 composite data.

  15. Soil Moisture for Western Russia and The Ukraine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset, DSI-6411 is comprised of soil moisture data and the accompanying information for the agricultural regions of Western Russia (west of ~ 60E) and The...

  16. Development of density and moisture gauge by nuclear techniques

    International Nuclear Information System (INIS)

    Mangelaviraj, V.; Karasuddhi, P.; Banchornthevakal, V.; Punyachaiya, S.

    1981-08-01

    A combined soil moisture/density gauge using nuclear technique was developed. Simultaneous density and moisture measurements can take place by means of gamma and neutron sources which are attached to the moisture probe. Backscattered gamma radiation giving information on density is detected by a G.M. counter while slow neutron radiation containing moisture information is detected by a boron-lined proportional counter. The instrument makes use of a 30 mCi americium 241-beryllium neutron source and a 10 mCi cesium 137 gamma source. The instrument was calibrated using soil and sand filled in a 200 litre-barrel in laboratory and field work which was carried out to check the correctness of the calibration curves. (author)

  17. Effects of ageing and moisture content on thermal properties of ...

    African Journals Online (AJOL)

    Effects of ageing and moisture content on thermal properties of cassava roots ... after harvest coupled with non-‐availability of acceptable storage alternatives. ... the properties simultaneously based on the transient line heat source method.

  18. Soil moisture determination with Tesla NZK 203 neutron gage

    International Nuclear Information System (INIS)

    Hally, J.

    1977-01-01

    Soil moisture was measured using the NZK 203 neutron probe manufactured by Tesla Premysleni. The individual measuring sites were spaced at a distance of 100 m. The NZK 203 set consists of a NPK 202 moisture gage and a NSK 301 scintillation detector and features the following specifications: moisture density measuring range 20 to 500 kg/m 3 , 241 Am-Be fast neutron source having a neutron flux of 7.5x10 4 n.sec -1 +-10%, operating temperature -10 to +45 degC. The measured counting rate was primarily affected by the statistical fluctuation of ionizing radiation and by instrument instability. In order that these effects should be limited each measurement was repeated 10 times with the optimum measurement time at an interval of 20 to 100 sec. The NZK 203 Tesla set was proven to be suitable for rapid and reproducible determination of moisture profiles. (J.P.)

  19. Laboratory evaluation of resistance to moisture damage in asphalt mixtures

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Abu El-Maaty Behiry

    2013-09-01

    Full Text Available Moisture damage in asphalt mixtures refers to loss in strength and durability due to the presence of water. Egypt road network is showing severe deterioration such as raveling and stripping because the bond between aggregates and asphalt film is broken due to water intrusion. To minimize moisture damage, asphalt mixes are investigated to evaluate the effect of air voids, degree of saturation, media of attack and the conditioning period. Two medias of attack are considered and two anti-stripping additives are used (hydrated lime and Portland cement. The retained Marshall stability and tensile strength ratio are calculated to determine the resistance to moisture damage. The results showed that both lime and cement could increase Marshall stability, resilient modulus, tensile strength and resistance to moisture damage of mixtures especially at higher condition periods. Use of hydrated lime had better results than Portland cement.

  20. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.

    Science.gov (United States)

    Ambebe, Titus F; Dang, Qing-Lai

    2009-11-01

    White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations (ambient: 360 micromol mol(-1) and elevated: 720 micromol mol(-1)), three soil temperatures (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three moisture regimes (low: 30-40%; intermediate: 45-55% and high: 60-70% field water capacity) in greenhouses. In situ gas exchange and chlorophyll fluorescence were measured after 2 months of treatments. Net photosynthetic rate (A(n)) of seedlings grown under the intermediate and high moisture regimes increased from low to intermediate T(soil) and then decreased to high T(soil). There were no significant differences between the low and high T(soil), with the exception that A(n) was significantly higher under high than low T(soil) at the high moisture regime. No significant T(soil) effect on A(n) was observed at the low moisture regime. The intermediate T(soil) increased stomatal conductance (g(s)) only at intermediate and high but not at low moisture regime, whereas there were no significant differences between the low and high T(soil) treatments. Furthermore, the difference in g(s) between the intermediate and high T(soil) at high moisture regime was not statistically significant. The low moisture regime significantly reduced the internal to ambient CO2 concentration ratio at all T(soil). There were no significant individual or interactive effects of treatment on maximum carboxylation rate of Rubisco, light-saturated electron transport rate, triose phosphate utilization or potential photochemical efficiency of photosystem II. The results of this study suggest that soil moisture condition should be taken into account when predicting the responses of white birch to soil warming.

  1. Edible moisture barriers: how to assess of their potential and limits in food products shelf-life extension?

    Science.gov (United States)

    Bourlieu, C; Guillard, V; Vallès-Pamiès, B; Guilbert, S; Gontard, N

    2009-05-01

    Control of moisture transfer inside composite food products or between food and its environment remains today a major challenge in food preservation. A wide rage of film-forming compounds is now available and facilitates tailoring moisture barriers with optimized functional properties. Despite these huge potentials, a realistic assessment of the film or coating efficacy is still critical. Due to nonlinear water sorption isotherms, water-dependent diffusivities, and variations of physical state, modelling transport phenomena through edible barriers is complex. Water vapor permeability can hardly be considered as an inherent property of films and only gives a relative indication of the barrier efficacy. The formal or mechanistic models reported in literature that describe the influence of testing conditions on the barrier properties of edible films are reviewed and discussed. Most of these models have been validated on a narrow range of conditions. Conversely, few original predictive models based on Fick's Second Law have been developed to assess shelf-life extension of food products including barriers. These models, assuming complex and realistic hypothesis, have been validated in various model foods. The development of nondestructive methods of moisture content measurement should speed up model validation and allow a better comprehension of moisture transfer through edible films.

  2. Predicting moisture and economic value of solid forest fuel piles for improving the profitability of bioenergy use

    Science.gov (United States)

    Lauren, Ari; Kinnunen, Jyrki-Pekko; Sikanen, Lauri

    2016-04-01

    Bioenergy contributes 26 % of the total energy use in Finland, and 60 % of this is provided by solid forest fuel consisting of small stems and logging residues such as tops, branches, roots and stumps. Typically the logging residues are stored as piles on site before transporting to regional combined heat and power plants for combustion. Profitability of forest fuel use depends on smart control of the feedstock. Fuel moisture, dry matter loss, and the rate of interest during the storing are the key variables affecting the economic value of the fuel. The value increases with drying, but decreases with wetting, dry matter loss and positive rate of interest. We compiled a simple simulation model computing the moisture change, dry matter loss, transportation costs and present value of feedstock piles. The model was used to predict the time of the maximum value of the stock, and to compose feedstock allocation strategies under the question: how should we choose the piles and the combustion time so that total energy yield and the economic value of the energy production is maximized? The question was assessed concerning the demand of the energy plant. The model parameterization was based on field scale studies. The initial moisture, and the rates of daily moisture change and dry matter loss in the feedstock piles depended on the day of the year according to empirical field measurements. Time step of the computation was one day. Effects of pile use timing on the total energy yield and profitability was studied using combinatorial optimization. Results show that the storing increases the pile maximum value if the natural drying onsets soon after the harvesting; otherwise dry matter loss and the capital cost of the storing overcome the benefits gained by drying. Optimized timing of the pile use can improve slightly the profitability, based on the increased total energy yield and because the energy unit based transportation costs decrease when water content in the biomass is

  3. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  4. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  5. The neutron probe and the detection of soil moisture

    International Nuclear Information System (INIS)

    Luft, G.; Morgenschweis, G.

    1981-01-01

    The authors present a brief outline of the direct and indirect field methods used at present in soil moisture measurement; particularly the advantages and disadvantages of neutron diffusion measurement are illustrated by means of various types of instruments available. The recently developed Wellingford Neutron Moisture Probe IH II, used for hydrological and pedohydrological fieldwork respectively, is presented and the first test results concerning the handling, measuring time, measured volume and layer thickness are discussed. (orig.) [de

  6. SHRINKAGE AND MOISTURE LOSS OF DRIED MELON SEEDS ...

    African Journals Online (AJOL)

    Samples of 100g clean, mature, freshly washed melon seeds were dried at intervals of 1/4, 1/2, 1 and 2h in an air-oven at 60O C. The experiments were carried out with five different bulk samples of melon seeds. The moisture content of the seeds at each drying stage was determined. The moisture loss in grams per ...

  7. Development of an Objective High Spatial Resolution Soil Moisture Index

    Science.gov (United States)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  8. Determination of moisture content in hard coals using microwave meter

    International Nuclear Information System (INIS)

    Chrusciel, E.; Kopec, M.; Turek, B.

    1989-01-01

    The results of hard-coal moisture-content measurements, performed with the aid of the ZAM-WILMER microwave meter are presented. Over 80 ground coal samples, weighing 1.5 kg (approx.) each, were examined. The moisture content values ranged from 0 to 15 wt%, with the mean standard error being equal to 0.8 wt%. 5 refs., 2 figs., 1 tab. (author)

  9. Green tea moisturizer improves skin hydration in elderly

    OpenAIRE

    Oentarini Tjandra; Linda J Wijayadi; Marcella E Rumawas

    2018-01-01

    BACKGROUND Dry skin is a major skin health problem in elderly. Green tea, which has an antioxidant effect, has recently been used as an active ingredient in moisturizing creams; yet the effect has not been well studied. This study compares the skin hydration effect of green tea and vitamin E moisturizer among elderly. METHODS This quasi-experimental study involved 60 elderly living in Tresna Werda Budi Mulia 4 Social Institution, Jakarta. Using the Runve HL 611 skin analyzer, skin c...

  10. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  11. Quantifying soil moisture impacts on light use efficiency across biomes.

    Science.gov (United States)

    Stocker, Benjamin D; Zscheischler, Jakob; Keenan, Trevor F; Prentice, I Colin; Peñuelas, Josep; Seneviratne, Sonia I

    2018-06-01

    Terrestrial primary productivity and carbon cycle impacts of droughts are commonly quantified using vapour pressure deficit (VPD) data and remotely sensed greenness, without accounting for soil moisture. However, soil moisture limitation is known to strongly affect plant physiology. Here, we investigate light use efficiency, the ratio of gross primary productivity (GPP) to absorbed light. We derive its fractional reduction due to soil moisture (fLUE), separated from VPD and greenness changes, using artificial neural networks trained on eddy covariance data, multiple soil moisture datasets and remotely sensed greenness. This reveals substantial impacts of soil moisture alone that reduce GPP by up to 40% at sites located in sub-humid, semi-arid or arid regions. For sites in relatively moist climates, we find, paradoxically, a muted fLUE response to drying soil, but reduced fLUE under wet conditions. fLUE identifies substantial drought impacts that are not captured when relying solely on VPD and greenness changes and, when seasonally recurring, are missed by traditional, anomaly-based drought indices. Counter to common assumptions, fLUE reductions are largest in drought-deciduous vegetation, including grasslands. Our results highlight the necessity to account for soil moisture limitation in terrestrial primary productivity data products, especially for drought-related assessments. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Monitoring Moisture Damage Propagation in GFRP Composites Using Carbon Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Sabagh

    2017-03-01

    Full Text Available Glass fiber reinforced polymer (GFRP composites are widely used in infrastructure applications including water structures due to their relatively high durability, high strength to weight ratio, and non-corrosiveness. Here we demonstrate the potential use of carbon nanoparticles dispersed during GFRP composite fabrication to reduce water absorption of GFRP and to enable monitoring of moisture damage propagation in GFRP composites. GFRP coupons incorporating 2.0 wt % carbon nanofibers (CNFs and 2.0 wt % multi-wall carbon nanotubes (MWCNTs were fabricated in order to study the effect of moisture damage on mechanical properties of GFRP. Water absorption tests were carried out by immersing the GFRP coupons in a seawater bath at two temperatures for a time period of three months. Effects of water immersion on the mechanical properties and glass transition temperature of GFRP were investigated. Furthermore, moisture damage in GFRP was monitored by measuring the electrical conductivity of the GFRP coupons. It was shown that carbon nanoparticles can provide a means of self-sensing that enables the monitoring of moisture damage in GFRP. Despite the success of the proposed technique, it might not be able to efficiently describe moisture damage propagation in GFRP beyond a specific threshold because of the relatively high electrical conductivity of seawater. Microstructural investigations using Fourier Transform Infrared (FTIR explained the significance of seawater immersion time and temperature on the different levels of moisture damage in GFRP.

  13. Water activity reduction of intermediate moisture yellowstrip trevally (Selaroides leptolepis

    Directory of Open Access Journals (Sweden)

    Phomajun, P.

    2005-05-01

    Full Text Available Water activity reduction of intermediate moisture yellowstrip trevally was studied. The optimal time (8, 12, 16, 20 hrs. for curing marinade was investigated. The effects of different humectants (glycerol, sorbitol, lactitol, glucose syrup at 50% w/w of curing ingredients were compared. Results showed that moisture content and water activity of cured yellowstrip trevally decreased as curing time increased (p0.05. However, the hardness of intermediate moisture Yellowstrip trevally, determined by texture analyzer, decreased. Hardness, shear force, L a b value of sample added with various humectants were lower than those of the control (p0.05. The glycerol-added samples had the highest overall acceptability score and were higher than control, whereas the glucose syrup-added samples had the lowest score. Moisture content of the samples with the addition of various humectants was higher than that of the control (18.28 %. The samples added with glycerol retained the highest moisture (24.94%. The adsorption isotherm studies showed that the equilibrium moisture of sample added with glycerol was higher than that added with lactitol.

  14. Characterization of seeds with different moisture content by photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Pacheco, Arturo; Hernandez Aguilar, Claudia; Marinez Ortiz, Efrain [Instituto Politecnico Nacional, Sepi-Esime, Zacatenco. Unidad Profesional ' Adolfo Lopez Mateos' . Col. Lindavista. Mexico D.F., CP 07738 (Mexico); Cruz-Orea, Alfredo; Ayala-Maycotte, Esther, E-mail: fartur@hotmail.co [Departamento de Fisica, CINVESTAV - IPN, A. P. 14-740, Mexico D.F., C.P. 07360 (Mexico)

    2010-03-01

    Photoacoustic (PA) technique has important applications for material characterization and nondestructive evaluation of opaque solid materials. PA microscopy allows the acquisition of information of samples with inhomogeneous structures as agricultural seeds. A determining factor for seed safe storage is their moisture content. Seeds stored at high moisture content exhibit increased respiration, heating, and fungal invasion resulting in poor seed vigor and viability. Low moisture content, in the seed to be stored, is the best prevention for these problems. In this study, Photoacoustic Microscopy (PAM) was used to characterize seeds with different moisture content. In the PAM experimental setup the photoacoustic cell and its sensor, an electret microphone, are mounted on an x-y stage of mobile axes, with spatial resolution of 70 {mu}m. The excitation light source is a fiber coupled laser diode, at 650 nm wavelength, modulated in intensity at 1 Hz of frequency, by the reference oscillator of a lock-in amplifier. By using a microscope objective the laser beam was focused on the seed surface. The resolution was enough to obtain differences in the obtained images, which are dependent on the moisture content. This method, to study differences in the seed moisture content, is nondestructive and could be useful for a sustainable Agriculture.

  15. Calibration of quantitative neutron radiography method for moisture measurement

    International Nuclear Information System (INIS)

    Nemec, T.; Jeraj, R.

    1999-01-01

    Quantitative measurements of moisture and hydrogenous matter in building materials by neutron radiography (NR) are regularly performed at TRIGA Mark II research of 'Jozef Stefan' Institute in Ljubljana. Calibration of quantitative method is performed using standard brick samples with known moisture content and also with a secondary standard, plexiglas step wedge. In general, the contribution of scattered neutrons to the neutron image is not determined explicitly what introduces an error to the measured signal. Influence of scattered neutrons is significant in regions with high gradients of moisture concentrations, where the build up of scattered neutrons causes distortion of the moisture concentration profile. In this paper detailed analysis of validity of our calibration method for different geometrical parameters is presented. The error in the measured hydrogen concentration is evaluated by an experiment and compared with results obtained by Monte Carlo calculation with computer code MCNP 4B. Optimal conditions are determined for quantitative moisture measurements in order to minimize the error due to scattered neutrons. The method is tested on concrete samples with high moisture content.(author)

  16. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    Science.gov (United States)

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  17. Optimum moisture levels for biodegradation of mortality composting envelope materials.

    Science.gov (United States)

    Ahn, H K; Richard, T L; Glanville, T D

    2008-01-01

    Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.

  18. A simplified model of saltcake moisture distribution. Letter report

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1995-09-01

    This letter report describes the formulation of a simplified model for finding the moisture distribution in a saltcake waste profile that has been stabilized by pumping out the drainable interstitial liquid. The model is based on assuming that capillarity mainly governs the distribution of moisture in the porous saltcake waste. A stead upward flow of moisture driven by evaporation from the waste surface is conceptualized to occur for isothermal conditions. To obtain hydraulic parameters for unsaturated conditions, the model is calibrated or matched to the relative saturation distribution as measured by neutron probe scans. The model is demonstrated on Tanks 104-BY and 105-TX as examples. A value of the model is that it identifies the key physical parameters that control the surface moisture content in a waste profile. Moreover, the model can be used to estimate the brine application rate at the waste surface that would raise the moisture content there to a safe level. Thus, the model can be applied to help design a strategy for correcting the moisture conditions in a saltcake waste tank

  19. Influence of the nature of interfaces on the capillary transport in layered materials

    DEFF Research Database (Denmark)

    Derluyn, Hannelore; Janssen, Hans; Carmeliet, Jan

    2011-01-01

    This paper presents an experimental and quantitative analysis of capillary transport across the interface brick–mortar joint in masonry. Moisture profiles are measured with X-ray projection. The influence of curing conditions is analyzed by considering three types of mortars: cured in a mould......, between capillary wet and dry bricks. A decrease in moisture inflow for the mortars cured between bricks is measured. The pore structure and the moisture transport properties of mortar change significantly due to water extraction from the initially wet mortar to the bricks during curing. Numerical...... simulations reveal the existence of a hydraulic interface resistance between brick and wet/dry cured mortar....

  20. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  1. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    Science.gov (United States)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.

    2018-05-01

    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.

  2. Soil moisture storage and hillslope stability

    Directory of Open Access Journals (Sweden)

    A. Talebi

    2007-09-01

    Full Text Available Recently, we presented a steady-state analytical hillslope stability model to study rain-induced shallow landslides. This model is based on kinematic wave dynamics of saturated subsurface storage and the infinite slope stability assumption. Here we apply the model to investigate the effect of neglecting the unsaturated storage on the assessment of slope stability in the steady-state hydrology. For that purpose we extend the hydrological model to compute the soil pore pressure distribution over the entire flow domain. We also apply this model for hillslopes with non-constant soil depth to compare the stability of different hillslopes and to find the critical slip surface in hillslopes with different geometric characteristics. In order to do this, we incorporate more complex approaches to compute slope stability (Janbu's non-circular method and Bishop's simplified method in the steady-state analytical hillslope stability model. We compare the safety factor (FS derived from the infinite slope stability method and the more complex approach for two cases: with and without the soil moisture profile in the unsaturated zone. We apply this extended hillslope stability model to nine characteristic hillslope types with three different profile curvatures (concave, straight, convex and three different plan shapes (convergent, parallel, divergent. Overall, we find that unsaturated zone storage does not play a critical role in determining the factor of safety for shallow and deep landslides. As a result, the effect of the unsaturated zone storage on slope stability can be neglected in the steady-state hydrology and one can assume the same bulk specific weight below and above the water table. We find that steep slopes with concave profile and convergent plan shape have the least stability. We also demonstrate that in hillslopes with non-constant soil depth (possible deep landslides, the ones with convex profiles and convergent plan shapes have

  3. Study on the optimal moisture adding rate of brown rice during germination by using segmented moisture conditioning method.

    Science.gov (United States)

    Cao, Yinping; Jia, Fuguo; Han, Yanlong; Liu, Yang; Zhang, Qiang

    2015-10-01

    The aim of this study was to find out the optimal moisture adding rate of brown rice during the process of germination. The process of water addition in brown rice could be divided into three stages according to different water absorption speeds in soaking process. Water was added with three different speeds in three stages to get the optimal water adding rate in the whole process of germination. Thus, the technology of segmented moisture conditioning which is a method of adding water gradually was put forward. Germinated brown rice was produced by using segmented moisture conditioning method to reduce the loss of water-soluble nutrients and was beneficial to the accumulation of gamma aminobutyric acid. The effects of once moisture adding amount in three stages on the gamma aminobutyric acid content in germinated brown rice and germination rate of brown rice were investigated by using response surface methodology. The optimum process parameters were obtained as follows: once moisture adding amount of stage I with 1.06 %/h, once moisture adding amount of stage II with 1.42 %/h and once moisture adding amount of stage III with 1.31 %/h. The germination rate under the optimum parameters was 91.33 %, which was 7.45 % higher than that of germinated brown rice produced by soaking method (84.97 %). The content of gamma aminobutyric acid in germinated brown rice under the optimum parameters was 29.03 mg/100 g, which was more than two times higher than that of germinated brown rice produced by soaking method (12.81 mg/100 g). The technology of segmented moisture conditioning has potential applications for studying many other cereals.

  4. Robust design of microelectronics assemblies against mechanical shock, temperature and moisture effects of temperature, moisture and mechanical driving forces

    CERN Document Server

    Wong, E-H

    2015-01-01

    Robust Design of Microelectronics Assemblies Against Mechanical Shock, Temperature and Moisture discusses how the reliability of packaging components is a prime concern to electronics manufacturers. The text presents a thorough review of this important field of research, providing users with a practical guide that discusses theoretical aspects, experimental results, and modeling techniques. The authors use their extensive experience to produce detailed chapters covering temperature, moisture, and mechanical shock induced failure, adhesive interconnects, and viscoelasticity. Useful progr

  5. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.

    Science.gov (United States)

    Keys, Patrick W; Wang-Erlandsson, Lan; Gordon, Line J

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized

  6. Chamber transport

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2001-01-01

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system

  7. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  8. Moisture measurements in building materials with microwaves; Rakennusmateriaalien kosteusmittauksia mikroaalloilla

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, H.; Rudolph, M.; Schaurich, D.; Wiggenhauser, H. [VTT Building Technology, Espoo (Finland). Construction and Facility Management

    1998-12-01

    In order to assess the condition and evaluate the reliability of buildings and structures, it is essential to establish the moisture condition of the floor and other structural elements of the building. NDT-methods are increasingly being used for such moisture measurements because they do not cause any damage to the building under investigation. Microwave transmission is one of the NDT-methods and has been in use for several years. In this report, the applicability of the microwave method for measuring moisture in different building materials was investigated. This method has been successfully used at BAM for repeated moisture measurements in brick and sandstone material. This project also included other materials, such as concrete, sand, gravel, insulation and wood. At the same time, information was gathered about in situ moisture determination of building materials with a microwave moisture measuring system. The equipment used in this research has been developed at BAM over the last few years. The method requires two parallel boreholes in the specimen in which two microwave antennae can be moved. The moisture content in the material can be calculated from the microwave intensity transmitted between the two boreholes. Moisture profiles along the boreholes can be obtained by moving the antennae in steps along the length of the boreholes and taking measurements at each step. Special care must be taken while drilling the holes for the antennae, as this process must not affect the moisture condition in the specimen, and the boreholes must be made as parallel to each other as possible. The microwave frequencies used in the laboratory measurements ranged from 8 to 16,5 GHz in steps of 0,5 GHz. The diameters of the antennae were between 7 and 9 mm, and of the boreholes between 8 and 12 mm. Except for the concrete specimen, all the specimens were measured using plastic tubes in the boreholes. The moisture content measured by the microwave technique was verified by the

  9. Assessment of the SMAP Passive Soil Moisture Product

    Science.gov (United States)

    Chan, Steven K.; Bindlish, Rajat; O'Neill, Peggy E.; Njoku, Eni; Jackson, Tom; Colliander, Andreas; Chen, Fan; Burgin, Mariko; Dunbar, Scott; Piepmeier, Jeffrey; hide

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational Level 2 soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 kilometer Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 cubic meter per cubic meter unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 cubic meter per cubic meter.

  10. Automatic determination of moisture content in biofuels based on NIR-measurements; Automatisk fukthaltsbestaemning av biobraenslen med NIR-metoden

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Wiklund, Sven Erik [AaF-Process AB, Stockholm (Sweden); Karlsson, Mikael; Tryzell, Robert [Bestwood AB, Sundbyberg (Sweden)

    2005-07-01

    delivery point some kind of automatic fuel sampling is needed, either based on extraction of fuel samples or through probe measurements directly in the bulk. The first alternative would result in a minor addition to the type of mechanical fuel sampling equipment already today used at some installations. The second alternative would be a simplified probe based on optical fibre that measure over the surface of or directly in the bulk. The mechanical equipment needed for the later alternative should be possible to implement at a lower cost compared with the mechanical sampling systems used today. There are also other alternatives for the integration of a NIR-instrument for the measurements of moisture content in fuel, e.g. measurements over transportation band for fuel feeding to day silo or from day silo to boiler. This would result in a possibility to even out unwanted fluctuations in fuel moisture content and are easy to implement since no extra equipment for fuel sampling is needed.

  11. Physically plausible prescription of land surface model soil moisture

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  12. Comparing soil moisture memory in satellite observations and models

    Science.gov (United States)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the

  13. Microwave radiometric measurements of soil moisture in Italy

    Directory of Open Access Journals (Sweden)

    G. Macelloni

    2003-01-01

    Full Text Available Within the framework of the MAP and RAPHAEL projects, airborne experimental campaigns were carried out by the IFAC group in 1999 and 2000, using a multifrequency microwave radiometer at L, C and X bands (1.4, 6.8 and 10 GHz. The aim of the experiments was to collect soil moisture and vegetation biomass information on agricultural areas to give reliable inputs to the hydrological models. It is well known that microwave emission from soil, mainly at L-band (1.4 GHz, is very well correlated to its moisture content. Two experimental areas in Italy were selected for this project: one was the Toce Valley, Domodossola, in 1999, and the other, the agricultural area of Cerbaia, close to Florence, where flights were performed in 2000. Measurements were carried out on bare soils, corn and wheat fields in different growth stages and on meadows. Ground data of soil moisture (SMC were collected by other research teams involved in the experiments. From the analysis of the data sets, it has been confirmed that L-band is well related to the SMC of a rather deep soil layer, whereas C-band is sensitive to the surface SMC and is more affected by the presence of surface roughness and vegetation, especially at high incidence angles. An algorithm for the retrieval of soil moisture, based on the sensitivity to moisture of the brightness temperature at C-band, has been tested using the collected data set. The results of the algorithm, which is able to correct for the effect of vegetation by means of the polarisation index at X-band, have been compared with soil moisture data measured on the ground. Finally, the sensitivity of emission at different frequencies to the soil moisture profile was investigated. Experimental data sets were interpreted by using the Integral Equation Model (IEM and the outputs of the model were used to train an artificial neural network to reproduce the soil moisture content at different depths. Keywords: microwave radiometry, soil moisture

  14. Compact polarimetric synthetic aperture radar for monitoring soil moisture condition

    Science.gov (United States)

    Merzouki, A.; McNairn, H.; Powers, J.; Friesen, M.

    2017-12-01

    Coarse resolution soil moisture maps are currently operationally delivered by ESA's SMOS and NASA's SMAP passive microwaves sensors. Despite this evolution, operational soil moisture monitoring at the field scale remains challenging. A number of factors contribute to this challenge including the complexity of the retrieval that requires advanced SAR systems with enhanced temporal revisit capabilities. Since the launch of RADARSAT-2 in 2007, Agriculture and Agri-Food Canada (AAFC) has been evaluating the accuracy of these data for estimating surface soil moisture. Thus, a hybrid (multi-angle/multi-polarization) retrieval approach was found well suited for the planned RADARSAT Constellation Mission (RCM) considering the more frequent relook expected with the three satellite configuration. The purpose of this study is to evaluate the capability of C-band CP data to estimate soil moisture over agricultural fields, in anticipation of the launch of RCM. In this research we introduce a new CP approach based on the IEM and simulated RCM CP mode intensities from RADARSAT-2 images acquired at different dates. The accuracy of soil moisture retrieval from the proposed multi-polarization and hybrid methods will be contrasted with that from a more conventional quad-pol approach, and validated against in situ measurements by pooling data collected over AAFC test sites in Ontario, Manitoba and Saskatchewan, Canada.

  15. Determining moisture content in pasta by vibrational spectroscopy.

    Science.gov (United States)

    Czaja, Tomasz; Kuzawińska, Ewelina; Sobota, Aldona; Szostak, Roman

    2018-02-01

    Pasta aside from bread is the most consumed cereal-based product in the world. Its taste and cooking ease makes it the basis of many cuisines. The pasta dough formed by mixing flour and water is extruded through an extrusion die to mould the appropriate pasta form and is dried to obtain a stable product. The concentration of moisture in the pasta dough is a one of key parameters determining the final quality of the product. Monitoring the moisture content of pasta after extrusion is also critically important. It enables a selection of suitable drying conditions that ensure the appropriate parameters of pasta, such as texture, color and taste, are met. A method for the quantitative determination of moisture content in pasta dough and in pasta based on the partial least squares treatment of infrared spectra registered using a single-reflection attenuated total reflectance diamond accessory is described. Results of a similar quality were found using models derived from near infrared spectra obtained in a diffuse reflectance mode and slightly worse based on Raman spectra. Relative standard errors of prediction calculated for moisture quantification by ATR/NIR/Raman techniques amounted to 2.54/3.16/5.56% and 2.15/3.32/5.67%, for calibration and validation sets, respectively. The proposed procedures can be used for fast and efficient pasta moisture quantification and may replace the current, more laborious methods used. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Science.gov (United States)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  17. Development and evaluation of the MTVDI for soil moisture monitoring

    Science.gov (United States)

    Zhu, Wenbin; Lv, Aifeng; Jia, Shaofeng; Sun, Liang

    2017-06-01

    Several parameterization schemes have been developed to retrieve the soil moisture information involved in the remotely sensed surface temperature-vegetation index (Ts - VI) space. However, most of them are performed with the constraint of the dry edge of the Ts - VI space to define the maximum water stressed conditions. In view of the subjectivity and uncertainty involved in the determination of the dry edge, a new index termed as the Modified Temperature-Vegetation Dryness Index (MTVDI) was developed in this paper to reduce the reliance of the parameterization scheme on the dry edge. In the parameterization scheme of MTVDI, isopleth lines of soil moisture involved in the feature space were retrieved by the temperature-vegetation index method, and only the maximum surface temperature of bare soil (Tsmax) was indispensable in the definition of maximum water stressed conditions. For evaluation purpose, the MTVDI was demonstrated in the Southern Great Plains region of the U.S. and was compared with two other traditional soil moisture indexes developed under the constraint of dry edge. The comparison confirmed the effectivity of the MTVDI in monitoring the spatial pattern and seasonal variation of soil moisture. Our analyses also suggest that Tsmax, the only parameter needed in the definition of maximum water stressed conditions, can be retrieved directly from the parameterization scheme itself. Therefore, the retrieval of MTVDI can be performed independent of the dry edge, which is a significant improvement to the traditional parameterization schemes of soil moisture from the Ts - VI feature space.

  18. Downscaling Coarse Scale Microwave Soil Moisture Product using Machine Learning

    Science.gov (United States)

    Abbaszadeh, P.; Moradkhani, H.; Yan, H.

    2016-12-01

    Soil moisture (SM) is a key variable in partitioning and examining the global water-energy cycle, agricultural planning, and water resource management. It is also strongly coupled with climate change, playing an important role in weather forecasting and drought monitoring and prediction, flood modeling and irrigation management. Although satellite retrievals can provide an unprecedented information of soil moisture at a global-scale, the products might be inadequate for basin scale study or regional assessment. To improve the spatial resolution of SM, this work presents a novel approach based on Machine Learning (ML) technique that allows for downscaling of the satellite soil moisture to fine resolution. For this purpose, the SMAP L-band radiometer SM products were used and conditioned on the Variable Infiltration Capacity (VIC) model prediction to describe the relationship between the coarse and fine scale soil moisture data. The proposed downscaling approach was applied to a western US basin and the products were compared against the available SM data from in-situ gauge stations. The obtained results indicated a great potential of the machine learning technique to derive the fine resolution soil moisture information that is currently used for land data assimilation applications.

  19. Use of digital images to estimate soil moisture

    Directory of Open Access Journals (Sweden)

    João F. C. dos Santos

    Full Text Available ABSTRACT The objective of this study was to analyze the relation between the moisture and the spectral response of the soil to generate prediction models. Samples with different moisture contents were prepared and photographed. The photographs were taken under homogeneous light condition and with previous correction for the white balance of the digital photograph camera. The images were processed for extraction of the median values in the Red, Green and Blue bands of the RGB color space; Hue, Saturation and Value of the HSV color space; and values of the digital numbers of a panchromatic image obtained from the RGB bands. The moisture of the samples was determined with the thermogravimetric method. Regression models were evaluated for each image type: RGB, HSV and panchromatic. It was observed the darkening of the soil with the increase of moisture. For each type of soil, a model with best fit was observed and to use these models for prediction purposes, it is necessary to choose the model with best fit in advance, according to the soil characteristics. Soil moisture estimation as a function of its spectral response by digital image processing proves promising.

  20. Mechanisms of deterioration of intermediate moisture food systems

    Science.gov (United States)

    Labuza, T. P.

    1972-01-01

    A study of shelf stability in intermediate moisture foods was made. Major efforts were made to control lipid oxidation and nonenzymatic browning. In order to determine means of preventing these reactions, model systems were developed having the same water activity content relationship of intermediate moisture foods. Models were based on a cellulose-lipid and protein-lipid system with glycerol added as the humectant. Experiments with both systems indicate that lipid oxidation is promoted significantly in the intermediate moisture range. The effect appeared to be related to increased mobility of either reactants or catalysts, since when the amount of water in the system reached a level where capillary condensation occurred and thus free water was present, the rates of oxidation increased. With added glycerol, which is water soluble and thus increases the amount of mobile phase, the increase in oxidation rate occurs at a lower relative humidity. The rates of oxidation were maximized at 61% RH and decreased again at 75% RH probably due to dilution. No significant non-enzymatic browning occurred in the protein-lipid systems. Prevention of oxidation by the use of metal chelating agents was enhanced in the cellulose system, whereas, with protein present, the lipid soluble chain terminating antioxidants (such as BHA) worked equally as well. Preliminary studies of foods adjusted to the intermediate moisture range bear out the results of oxidation in model systems. It can be concluded that for most fat containing intermediate moisture foods, rancidity will be the reaction most limiting stability.

  1. Length and time scales of atmospheric moisture recycling

    Directory of Open Access Journals (Sweden)

    R. J. van der Ent

    2011-03-01

    Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.

  2. Impact of Soil Moisture Initialization on Seasonal Weather Prediction

    Science.gov (United States)

    Koster, Randal D.; Suarez, Max J.; Houser, Paul (Technical Monitor)

    2002-01-01

    The potential role of soil moisture initialization in seasonal forecasting is illustrated through ensembles of simulations with the NASA Seasonal-to-Interannual Prediction Project (NSIPP) model. For each boreal summer during 1997-2001, we generated two 16-member ensembles of 3-month simulations. The first, "AMIP-style" ensemble establishes the degree to which a perfect prediction of SSTs would contribute to the seasonal prediction of precipitation and temperature over continents. The second ensemble is identical to the first, except that the land surface is also initialized with "realistic" soil moisture contents through the continuous prior application (within GCM simulations leading up to the start of the forecast period) of a daily observational precipitation data set and the associated avoidance of model drift through the scaling of all surface prognostic variables. A comparison of the two ensembles shows that soil moisture initialization has a statistically significant impact on summertime precipitation and temperature over only a handful of continental regions. These regions agree, to first order, with regions that satisfy three conditions: (1) a tendency toward large initial soil moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture, and (3) a strong sensitivity of precipitation to evaporation. The degree to which the initialization improves forecasts relative to observations is mixed, reflecting a critical need for the continued development of model parameterizations and data analysis strategies.

  3. Relating coccidioidomycosis (valley fever) incidence to soil moisture conditions.

    Science.gov (United States)

    Coopersmith, E J; Bell, J E; Benedict, K; Shriber, J; McCotter, O; Cosh, M H

    2017-04-17

    Coccidioidomycosis (also called Valley fever) is caused by a soilborne fungus, Coccidioides spp. , in arid regions of the southwestern United States. Though some who develop infections from this fungus remain asymptomatic, others develop respiratory disease as a consequence. Less commonly, severe illness and death can occur when the infection spreads to other regions of the body. Previous analyses have attempted to connect the incidence of coccidioidomycosis to broadly available climatic measurements, such as precipitation or temperature. However, with the limited availability of long-term, in situ soil moisture data sets, it has not been feasible to perform a direct analysis of the relationships between soil moisture levels and coccidioidomycosis incidence on a larger temporal and spatial scale. Utilizing in situ soil moisture gauges throughout the southwest from the U.S. Climate Reference Network and a model with which to extend those estimates, this work connects periods of higher and lower soil moisture in Arizona and California between 2002 and 2014 to the reported incidence of coccidioidomycosis. The results indicate that in both states, coccidioidomycosis incidence is related to soil moisture levels from previous summers and falls. Stated differently, a higher number of coccidioidomycosis cases are likely to be reported if previous bands of months have been atypically wet or dry, depending on the location.

  4. Observer Based Fault Detection and Moisture Estimating in Coal Mill

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2008-01-01

    In this paper an observer-based method for detecting faults and estimating moisture content in the coal in coal mills is presented. Handling of faults and operation under special conditions, such as high moisture content in the coal, are of growing importance due to the increasing...... requirements to the general performance of power plants. Detection  of faults and moisture content estimation are consequently of high interest in the handling of the problems caused by faults and moisture content. The coal flow out of the mill is the obvious variable to monitor, when detecting non-intended drops in the coal...... flow out of the coal mill. However, this variable is not measurable. Another estimated variable is the moisture content, which is only "measurable" during steady-state operations of the coal mill. Instead, this paper suggests a method where these unknown variables are estimated based on a simple energy...

  5. Experience of Implementing Moisture Sorption Control in Historical Archives

    Directory of Open Access Journals (Sweden)

    P. Zítek

    2006-01-01

    Full Text Available This paper deals with a novel approach to inhibiting the harmful impact of moisture sorption in old art works and historical exhibits preserved in remote historic buildings that are in use as depositories or exhibition rooms for cultural heritage collections. It is a sequel to the previous work presented in [2], where the principle of moisture sorption stabilization was explained. Sorption isotherm investigations and EMC control implementation in historical buildings not provided with heating are the main concern in this paper. The proposed microclimate adjustment consists in leaving the interior temperature to run almost its spontaneous yearly cycle, while the air humidity is maintained in a specific relationship to the current interior temperature. The interior air humidity is modestly adjusted to protect historical exhibits and art works from harmful variations in the content of absorbed moisture, which would otherwise arise owing to the interior temperature drifts. Since direct measurements of moisture content are not feasible, the air humidity is controlled via a model-based principle. Two long-term implementations of the proposed microclimate control have already proved that it can permanently maintain a constant moisture content in the preserved exhibits. 

  6. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    Science.gov (United States)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  7. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    Science.gov (United States)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  8. Real-time measurements of temperature, pressure and moisture profiles in High-Performance Concrete exposed to high temperatures during neutron radiography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toropovs, N., E-mail: nikolajs.toropovs@rtu.lv [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Lo Monte, F. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Wyrzykowski, M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Weber, B. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Sahmenko, G. [Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Vontobel, P. [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Felicetti, R. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Lura, P. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); ETH Zürich, Institute for Building Materials (IfB), Zürich (Switzerland)

    2015-02-15

    High-Performance Concrete (HPC) is particularly prone to explosive spalling when exposed to high temperature. Although the exact causes that lead to spalling are still being debated, moisture transport during heating plays an important role in all proposed mechanisms. In this study, slabs made of high-performance, low water-to-binder ratio mortars with addition of superabsorbent polymers (SAP) and polypropylene fibers (PP) were heated from one side on a temperature-controlled plate up to 550 °C. A combination of measurements was performed simultaneously on the same sample: moisture profiles via neutron radiography, temperature profiles with embedded thermocouples and pore pressure evolution with embedded pressure sensors. Spalling occurred in the sample with SAP, where sharp profiles of moisture and temperature were observed. No spalling occurred when PP-fibers were introduced in addition to SAP. The experimental procedure described here is essential for developing and verifying numerical models and studying measures against fire spalling risk in HPC.

  9. X-ray and visible light transmission as two-dimensional, full-field moisture-sensing techniques: A preliminary comparison

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Glass, R.J.

    1992-01-01

    Two independent high-resolution moisture-sensing techniques, x-ray absorption and light transmission, have been developed for use in two-dimensional, thin-slab experimental systems. The techniques yield full-field measurement capabilities with exceptional resolution of moisture content in time and space. These techniques represent powerful tools for the experimentalist to investigate processes governing unsaturated flow and transport through fractured and nonfractured porous media. Evaluation of these techniques has been accomplished by direct comparison of data obtained by means of the x-ray and light techniques as well as comparison with data collected by gravimetric and gamma-ray densitometry techniques. Results show excellent agreement between data collected by the four moisture-content measurement techniques. This program was established to support the Yucca Mountain Site Characterization Project

  10. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NARCIS (Netherlands)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture

  11. Estimating soil hydraulic properties from soil moisture time series by inversion of a dual-permeability model

    Science.gov (United States)

    Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate

    2017-04-01

    Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials

  12. Moisture Sources and Large-Scale Dynamics Associated with a Flash Flood Event in Portugal

    Science.gov (United States)

    Liberato, Margarida L. R.; Ramos, Alexandre M.; Trigo, Ricardo M.; Trigo, Isabel F.; María Durán-Quesada, Ana; Nieto, Raquel; Gimeno, Luis

    2013-04-01

    On 18-19 November 1983, the region of Lisbon, in Portugal, was affected by a heavy precipitation event, soon followed by flash flooding, urban inundations and a burst of landslides around Lisbon [Zêzere et al., 2005] causing considerable infrastructure damage and human fatalities. With a total of 95.6 mm in 24 h observed at the longest serving station in Portugal (Lisbon's Dom Luiz Observatory), this was the rainiest day during the twentieth century and one of the rainiest registered since 1864. We found that this event was triggered by the transport of tropical and subtropical moisture associated with an extratropical cyclone. The low favored a large stream of (sub) tropical air that extended over more than 10° of latitude and across the North Atlantic Ocean, carrying a large amount of moisture originally from lower latitudes, a so-called atmospheric river. The stationary position of the jet stream along the East Atlantic Ocean through Iberia caused a strong enhancement of the precipitation associated with the moist air. A Lagrangian analysis of the transport of moisture in the Euro-Atlantic sector was performed based on the methodology developed by Stohl and James [2004, 2005], using the FLEXPART model. This Lagrangian methodology was employed to show that the evaporative sources for the precipitation falling over the area of Lisbon were distributed over large sectors of the tropical-subtropical North Atlantic Ocean and included a significant contribution from the (sub) tropics. This study [Liberato et al., 2012] aims to provide an example of the application of distinct Lagrangian techniques to achieve a better understanding of the relation between extratropical cyclones and the occurrence of a heavy precipitation event on the Iberian Peninsula. Acknowledgments: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) Programme and by national funds

  13. Large-scale circulation associated with moisture intrusions into the Arctic during winter

    Science.gov (United States)

    Woods, Cian; Caballero, Rodrigo; Svensson, Gunilla

    2014-05-01

    Observations during recent decades show that there is a greater near surface warming occurring in the Arctic, particularly during winter, than at lower latitudes. Understanding the mechanisms controlling surface temperature in the Arctic is therefore an important priority in climate research. The surface energy budget is a key proximate control on Arctic surface temperature. During winter, insolation is low or absent and the atmospheric boundary layer is typically very stable, limiting turbulent hear exchange, so that the surface energy budget is almost entirely governed by longwave radiation. The net surface longwave radiation (NetLW) at this time has a strikingly bimodal distribution: conditions oscillate between a 'radiatively clear' state with rapid surface heat loss and a "moist cloudy" state with NetLW ˜ 0 W m-2. Each state can persist for days or weeks at a time but transitions between them happen in a matter of hours. This distribution of NetLW has important implications for the Arctic climate, as even a small shift in the frequency of occupancy of each state would be enough to significantly affect the overall surface energy budget and thus winter sea ice thickness. The clear and cloudy states typically occur during periods of relatively high and low surface pressure respectively, suggesting a link with synoptic-scale dynamics. This suggestion is consistent with previous studies indicating that the formation of low-level and mid-level clouds over the Arctic Ocean is typically associated with cyclonic activity and passing frontal systems . More recent work has shown that intense filamentary moisture intrusion events are a common feature in the Arctic and can induce large episodic increases of longwave radiation into the surface. The poleward transport of water vapor across 70N during boreal winter is examined in the ERA-Interim reanalysis product and 16 of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, focusing on intense moisture

  14. CPAC optical moisture monitoring: Characterization of composition and physical effects on moisture determination Task 2A report

    International Nuclear Information System (INIS)

    Veltkamp, D.J.

    1994-01-01

    The impact of particle size and chemical composition variations on determination of tank simulant moisture from near infrared (NIR) optical spectra are presented. This work shows particle size and chemical variations will impact moisture predictions from NIR spectra. However, the prediction errors can be minimized if calibration models are built with samples containing these variations as interferents. Prior work showed the NIR spectral region (1100 to 2500 nm) could be used to predict moisture content of BY-104 tank simulant with a standard error less of approximately 0.5 wt%. Particle size will increase moisture prediction error if calibration-models do not include the same particle size ranges as unknown samples. A combined particle size model with 0-420 x10 -6 m, 420-841 x 10 -6 m, and 841 x 10 -6 m-2 mm diameter particles predicted 0.59, 0.34 nd 0.23 wt% errors respectively for samples containing only these size ranges and 0.80 wt% error for a samples with all particle size ranges. Chemical composition would also increase moisture prediction error if calibration model samples chemically differ from unknown samples. For a BY-104 simulant, increases in NaOH, NaAlO 2 , Na 2 SiO 3 , and Na 3 PO 4 produced moisture predictions that were lower than the actual moisture levels while increases in FE(NO 3 ) 3 , Ca(NO 3 ) 2 , and Mg (NO 3 ) 2 resulted in a higher than actual moisture prediction. Systematic changes in the NIR spectra could be observed for these families of materials. When all of the composition variations were included in a single model, the model had a moisture prediction error of 1.41 wt% as compared to a 2.96 wt% error without model changes. This work shows a calibration model based on a single set of tightly controlled experimental conditions will tend to have somewhat larger prediction errors when applied to samples collected with variations outside of such conditions

  15. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models

    Science.gov (United States)

    Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang

    1995-01-01

    Soil moisture observations in sites with natural vegetation were made for several decades in the former Soviet Union at hundreds of stations. In this paper, the authors use data from six of these stations from different climatic regimes, along with ancillary meteorological and actinometric data, to demonstrate a method to validate soil moisture simulations with biosphere and bucket models. Some early and current general circulation models (GCMs) use bucket models for soil hydrology calculations. More recently, the Simple Biosphere Model (SiB) was developed to incorporate the effects of vegetation on fluxes of moisture, momentum, and energy at the earth's surface into soil hydrology models. Until now, the bucket and SiB have been verified by comparison with actual soil moisture data only on a limited basis. In this study, a Simplified SiB (SSiB) soil hydrology model and a 15-cm bucket model are forced by observed meteorological and actinometric data every 3 h for 6-yr simulations at the six stations. The model calculations of soil moisture are compared to observations of soil moisture, literally 'ground truth,' snow cover, surface albedo, and net radiation, and with each other. For three of the stations, the SSiB and 15-cm bucket models produce good simulations of seasonal cycles and interannual variations of soil moisture. For the other three stations, there are large errors in the simulations by both models. Inconsistencies in specification of field capacity may be partly responsible. There is no evidence that the SSiB simulations are superior in simulating soil moisture variations. In fact, the models are quite similar since SSiB implicitly has a bucket embedded in it. One of the main differences between the models is in the treatment of runoff due to melting snow in the spring -- SSiB incorrectly puts all the snowmelt into runoff. While producing similar soil moisture simulations, the models produce very different surface latent and sensible heat fluxes, which

  16. A soil moisture network for SMOS validation in Western Denmark

    DEFF Research Database (Denmark)

    Bircher, Simone; Skou, N.; Jensen, Karsten Høgh

    2012-01-01

    network was established in the Skjern River Catchment, Denmark. The objectives of this article are to describe a method to implement a network suited for SMOS validation, and to present sample data collected by the network to verify the approach. The design phase included (1) selection of a single SMOS...... between the north-east and south-west were found to be small. A first comparison between the 0–5 cm network averages and the SMOS soil moisture (level 2) product is in range with worldwide validation results, showing comparable trends for SMOS retrieved soil moisture (R2 of 0.49) as well as initial soil......). Based on these findings, the network performs according to expectations and proves to be well-suited for its purpose. The discrepancies between network and SMOS soil moisture will be subject of subsequent studies...

  17. Moisture imaging of a camphor tree by neutron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.; Karakama, Isamu; Sakura, Tsuguo; Matsubayashi, Masashi

    1998-01-01

    Moisture distribution of a camphor tree was presented. A 23 year old camphor tree was downed at university forest and a wood disk, about 1 cm in width, was lumbered out from the breast height of the tree. The wood disk as well as a newly developing branch of the tree were irradiated with thermal neutrons at an atomic reactor installed at Japan Atomic Energy Research Institute. The total flux of thermal neutron was 3.0 x 10 9 n/cm 2 . Water specific images of the disk and a branch were presented with high resolution, which was estimated to be about 16 μm. In the case of wood disk, moisture decreasing manner while drying was also shown through neutron image. Neutron images showed that the moisture decreasing rate in sapwood was similar to that of heartwood. (author)

  18. Multifrequency passive microwave remote sensing of soil moisture and roughness

    International Nuclear Information System (INIS)

    Paloscia, S.; Pampaloni, P.; Chiarantini, L.; Coppo, P.; Gagliani, S.; Luzi, G.

    1993-01-01

    The accuracy achievable in the surface soil moisture measurement of rough bare and vegetated soils, typical of the Italian landscape, has been investigated by using microwave experimental data collected by means of a multi-band sensor package (L, X, Ka and infrared bands). The thickness of soil that mainly affects the emission at the three microwave frequencies has been assessed. The sensitivity of L band emission to the moisture content of a soil layer about 5 cm thick has been confirmed, as well as the attenuation effect due to the surface roughness and presence of vegetation. A correction criterion based on the sensitivity to roughness and crop parameters of the highest frequencies (X and Ka bands) is proposed in order to increase the precision in soil moisture measurements

  19. Investigation on Moisture and Indoor Environment in Eight Danish Houses

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Jensen, Rasmus Lund; Nørgaard, Jesper

    2011-01-01

    then need to be ventilated actively either by natural or mechanical ventilation. Increased focus on energy reduction together with requirements for e.g. thermal comfort indoors may lead to reduced indoor air quality and moisture problems which in turn may cause mould problems. This paper describes...... an investigation of the indoor air quality, relative humidity and air change rate in eight Danish houses. The houses were selected as they are all having recurrent problems with condensation on the windows. The houses were built between 1930 and 2007. Some of them have been only slightly renovated where others......, to indoor air quality in terms of CO2 concentration, and to the use of the house in terms of the level of the relative humidity and indoor moisture excess. Furthermore, the moisture production in the houses was estimated and compared to values provided in the literature. A better indoor air quality...

  20. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  1. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  2. Fiber Optic Thermo-Hygrometers for Soil Moisture Monitoring.

    Science.gov (United States)

    Leone, Marco; Principe, Sofia; Consales, Marco; Parente, Roberto; Laudati, Armando; Caliro, Stefano; Cutolo, Antonello; Cusano, Andrea

    2017-06-20

    This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil.

  3. Model Based Control of Moisture Sorption in a Historical Interior

    Directory of Open Access Journals (Sweden)

    P. Zítek

    2005-01-01

    Full Text Available This paper deals with a novel scheme for microclimate control in historical exhibition rooms, inhibiting moisture sorption phenomena that are inadmissible from the preventive conservation point of view. The impact of air humidity is the most significant harmful exposure for a great deal of the cultural heritage deposited in remote historical buildings. Leaving the interior temperature to run almost its spontaneous yearly cycle, the proposed non-linear model-based control protects exhibits from harmful variations in moisture content by compensating the temperature drifts with an adequate adjustment of the air humidity. Already implemented in a medieval interior since 1999, the proposed microclimate control has proved capable of permanently maintaining constant a desirable moisture content in organic or porous materials in the interior of a building. 

  4. Towards an integrated soil moisture drought monitor for East Africa

    Directory of Open Access Journals (Sweden)

    W. B. Anderson

    2012-08-01

    Full Text Available Drought in East Africa is a recurring phenomenon with significant humanitarian impacts. Given the steep climatic gradients, topographic contrasts, general data scarcity, and, in places, political instability that characterize the region, there is a need for spatially distributed, remotely derived monitoring systems to inform national and international drought response. At the same time, the very diversity and data scarcity that necessitate remote monitoring also make it difficult to evaluate the reliability of these systems. Here we apply a suite of remote monitoring techniques to characterize the temporal and spatial evolution of the 2010–2011 Horn of Africa drought. Diverse satellite observations allow for evaluation of meteorological, agricultural, and hydrological aspects of drought, each of which is of interest to different stakeholders. Focusing on soil moisture, we apply triple collocation analysis (TCA to three independent methods for estimating soil moisture anomalies to characterize relative error between products and to provide a basis for objective data merging. The three soil moisture methods evaluated include microwave remote sensing using the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E sensor, thermal remote sensing using the Atmosphere-Land Exchange Inverse (ALEXI surface energy balance algorithm, and physically based land surface modeling using the Noah land surface model. It was found that the three soil moisture monitoring methods yield similar drought anomaly estimates in areas characterized by extremely low or by moderate vegetation cover, particularly during the below-average 2011 long rainy season. Systematic discrepancies were found, however, in regions of moderately low vegetation cover and high vegetation cover, especially during the failed 2010 short rains. The merged, TCA-weighted soil moisture composite product takes advantage of the relative strengths of each method, as judged by the

  5. Horizontal and vertical variability of soil moisture in savanna ecosystems

    Science.gov (United States)

    Caylor, K.; D'Odorico, P.; Rodriguez-Iturbe, I.

    2004-12-01

    Soil moisture is a key hydrological variable that mediates the interactions between climate, soil, and vegetation dynamics in water-limited ecosystems. Because of the importance of water limitation in savannas, a number of theoretical models of tree-grass coexistence have been developed which differ in their underlying assumptions about the ways in which trees and grasses access and use soil moisture. However, clarification of the mechanisms that allow savanna vegetation to persist as a mixture of grasses and trees remains a vexing problem in both hydrological and vegetation science. A particular challenge is the fact that the spatial pattern of vegetation is both a cause and effect of variation in water availability in semiarid ecosystems. At landscape to regional scales, climatic and geologic constraints on soil moisture availability are primary determinants of vegetation structural pattern. However, at local to landscape scales the patchy vegetation structural mosaic serves to redistribute the availability of soil moisture in ways that have important consequences for structural dynamics and community composition. In this regard, the emerging field of ecohydrology is well suited to investigate questions concerning couplings between the patchy structural mosaic of savanna vegetation and the kinds self-organizing dynamics known to exist in other light and nutrient-limited vegetation systems. Here we address the role of patchy vegetation structure through the use of a lumped model of soil moisture dynamics that accounts for the effect of tree canopy on the lateral and vertical distribution of soil moisture. The model includes mechanisms for the drying of the ground surface due to soil evaporation in the sites with no tree cover, and for the lateral water uptake due to root invading areas with no canopy cover located in the proximity of trees. The model, when applied to a series of sites along a rainfall gradient in southern Africa, is able to explain the cover

  6. Control of final moisture content of food products baked in continuous tunnel ovens

    Science.gov (United States)

    McFarlane, Ian

    2006-02-01

    There are well-known difficulties in making measurements of the moisture content of baked goods (such as bread, buns, biscuits, crackers and cake) during baking or at the oven exit; in this paper several sensing methods are discussed, but none of them are able to provide direct measurement with sufficient precision. An alternative is to use indirect inferential methods. Some of these methods involve dynamic modelling, with incorporation of thermal properties and using techniques familiar in computational fluid dynamics (CFD); a method of this class that has been used for the modelling of heat and mass transfer in one direction during baking is summarized, which may be extended to model transport of moisture within the product and also within the surrounding atmosphere. The concept of injecting heat during the baking process proportional to the calculated heat load on the oven has been implemented in a control scheme based on heat balance zone by zone through a continuous baking oven, taking advantage of the high latent heat of evaporation of water. Tests on biscuit production ovens are reported, with results that support a claim that the scheme gives more reproducible water distribution in the final product than conventional closed loop control of zone ambient temperatures, thus enabling water content to be held more closely within tolerance.

  7. Observational evidence for the relationship between spring soil moisture and June rainfall over the Indian region

    Science.gov (United States)

    KanthaRao, B.; Rakesh, V.

    2018-05-01

    Understanding the relationship between gradually varying soil moisture (SM) conditions and monsoon rainfall anomalies is crucial for seasonal prediction. Though it is an important issue, very few studies in the past attempted to diagnose the linkages between the antecedent SM and Indian summer monsoon rainfall. This study examined the relationship between spring (April-May) SM and June rainfall using observed data during the period 1979-2010. The Empirical Orthogonal Function (EOF) analyses showed that the spring SM plays a significant role in June rainfall over the Central India (CI), South India (SI), and North East India (NEI) regions. The composite anomaly of the spring SM and June rainfall showed that excess (deficit) June rainfall over the CI was preceded by wet (dry) spring SM. The anomalies in surface-specific humidity, air temperature, and surface radiation fluxes also supported the existence of a positive SM-precipitation feedback over the CI. On the contrary, excess (deficit) June rainfall over the SI and NEI region were preceded by dry (wet) spring SM. The abnormal wet (dry) SM over the SI and NEI decreased (increased) the 2-m air temperature and increased (decreased) the surface pressure compared to the surrounding oceans which resulted in less (more) moisture transport from oceans to land (negative SM-precipitation feedback over the Indian monsoon region).

  8. Moisture and textural variations in unsaturated soils/sediments near the Hanford Wye barricade

    International Nuclear Information System (INIS)

    Heller, P.R.; Gee, G.W.; Myers, D.A.

    1985-03-01

    During November and December 1983, soil samples were collected by Pacific Northwest Laboratory for hydrologic characterization of the partially saturated (vadose) zone sediments from five wells drilled near the Hanford Wye barricade, about 15 km northwest of Richland, Washington. The samples were taken from each of five boreholes in 1.5-m segments down to the water table or to a depth where further drilling became impossible, whichever was deeper. The samples were collected and handled in such a manner as to minimize water loss through evaporation. The field moisture content was determined for each sample, and for three of the five boreholes the water potential at the field moisture content was also measured. Other characterization included textural analysis, water retention characteristics, hydraulic conductivity, and soil chemistry. From the laboratory data, travel time (i.e., the time necessary for water to move a distance of 43 m, from the soil surface to the ground water) estimates were calculated: they range from 600 years for annual water influx rates that ranged from 0.5 to 5.0 cm/yr. The soil properties determined in this study will aid in modeling the transport of water and chemicals (e.g., radionuclides) to the ground water at the Hanford site

  9. The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation

    Directory of Open Access Journals (Sweden)

    Danica Ciric

    2018-04-01

    Full Text Available Moisture transport from its sources to surrounding continents is one of the most relevant topics in hydrology, and its role in extreme events is crucial for understanding several processes such as intense precipitation and flooding. In this study, we considered the Mediterranean Sea as the main water source and estimated its contribution to the monthly climatological and extreme precipitation events over the surrounding continental areas. To assess the effect of the Mediterranean Sea on precipitation, we used the Multi-Source Weighted-Ensemble Precipitation (MSWEP database to characterize precipitation. The Lagrangian dispersion model known as FLEXPART was used to estimate the moisture contribution of this source. This contribution was estimated by tracking particles that leave the Mediterranean basin monthly and then calculating water loss (E − P < 0 over the continental region, which was modelled by FLEXPART. The analysis was conducted using data from 1980 to 2015 with a spatial resolution of 0.25°. The results showed that, in general, the spatial pattern of the Mediterranean source’s contribution to precipitation, unlike climatology, is similar during extreme precipitation years in the regions under study. However, while the Mediterranean Sea is usually not an important source of climatological precipitation for some European regions, it is a significant source during extreme precipitation years.

  10. Transport phenomena

    International Nuclear Information System (INIS)

    Kirczenow, G.; Marro, J.

    1974-01-01

    Some simple remarks on the basis of transport theory. - Entropy, dynamics and scattering theory. - Response, relaxation and fluctuation. - Fluctuating hydrodynamics and renormalization of susceptibilities and transport coefficients. - Irreversibility of the transport equations. - Ergodic theory and statistical mechanics. - Correlation functions in Heisenberg magnets. - On the Enskog hard-sphere kinetic eqquation and the transport phenomena of dense simple gases. - What can one learn from Lorentz models. - Conductivity in a magnetic field. - Transport properties in gases in presence of external fields. - Transport properties of dilute gases with internal structure. (orig.) [de

  11. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  12. Moisture diffusivity in structure of random fractal fiber bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fanglong, E-mail: zhufanglong_168@163.com [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); The Chinese People' s Armed Police Forces Academy, Langfan City (China); Zhou, Yu; Feng, Qianqian [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); Xia, Dehong [School of Mechanical Engineering, University of Science and Technology, Beijing (China)

    2013-11-08

    A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.

  13. The Effect of Moisture Content on Physical Properties of Berberis

    Directory of Open Access Journals (Sweden)

    E Velayati

    2011-03-01

    Full Text Available In order to enhance the mechanization level of harvest and post-harvest operations of Berberis fruit, as one of the major and local crops of south Khorasan province, some of its physical properties were investigated. Different dimensions, geometrical mean diameter, sphericity, surface area, mass of thousand fruit, true density, bulk density, porosity, static coefficient of friction and the repose angles were determined. The properties and the effect of moisture content on them were studied by the completely randomized designs statistical method. Analysis of data indicated that the change of moisture content caused significant difference (P

  14. The effect of salinity and moisture stress on pea plant

    International Nuclear Information System (INIS)

    Abdalla, A.Abd-El Ghany

    1985-01-01

    Four experiments were carried out in the green house in Inchas, Atomic Energy Establishment, to study the effect os salinity and moisture stress on pea plants. Salinity experiments were conducted in 1981/1982, 1982/1983 and 1983/1984 seasons to study the effect of NaCl and/or CaC l 2 as single or mixed salts and radiation combined with salinity. Water stress studies were conducted in 1983/1984 growing season to investigate the effect of soil moisture stress on growth, yield and water use efficiency

  15. Applications of moisture monitoring using TAUPE-sensors

    International Nuclear Information System (INIS)

    Koeniger, F.

    2007-01-01

    TAUPE as a moisture sensor has been developed in cooperation with Technology Transfer Division in Forschungszentrum Karlsruhe since 1996. These sensors can be used to monitor moisture in a variety of materials, using time domain or frequency domain techniques. Major applications are large area supervision of landfill sealings, determination of the snow water equivalent, e.g. in the project SNOWPOWER for the forecasting of the amount of water for energy production in storage lakes and, as a new project, continuous monitoring of groundwater level in the flood plane of river Rhine. (orig.)

  16. Surface moisture measurement system hardware acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  17. System design description for surface moisture measurement system (SMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F.

    1996-09-23

    The SMMS has been developed to measure moisture in the top few centimeters of tank waste. The SMMS development was initiated by the preliminary findings of SAR-033, and does not necessarily fulfill any established DQO. After the SAR-033 is released, if no significant changes are made, moisture measurements in the organic waste tanks will rapidly become a DQO. The SMMS was designed to be installed in any 4 inch or larger riser, and to allow maximum adjustability for riser lengths, and is used to deploy a sensor package on the waste surface within a 6 foot radius about the azimuth. The first sensor package will be a neutron probe.

  18. Photoprotection in moisturizers and daily-care products.

    Science.gov (United States)

    Seite, S; Fourtanier, A; Rougier, A

    2010-10-01

    During usual daily activities, an appropriate protection against solar UV exposure should prevent clinical, cellular and molecular changes potentially leading to photoaging. In skin areas regularly exposed to sun, UV-damage is superimposed to tissue degeneration resulting from chronological aging. It is, therefore, important to know if moisturizers and daily-care products containing UVA absorbers combined with UVB ones are able to prevent these skin damages. This review will summarize clinical studies evaluating this topic. These studies demonstrate that broad-spectrum protection in moisturizers or daily-care products can prevent the "silent" sub-erythemal cumulative effects of UVR from inadvertent sun exposure.

  19. Surface moisture measurement system hardware acceptance test procedure

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1996-01-01

    The purpose of this acceptance test procedure is to verify that the mechanical and electrical features of the Surface Moisture Measurement System are operating as designed and that the unit is ready for field service. This procedure will be used in conjunction with a software acceptance test procedure, which addresses testing of software and electrical features not addressed in this document. Hardware testing will be performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  20. Evaluation of skin moisturizer effects using terahertz time domain imaging

    Science.gov (United States)

    Martinez-Meza, L. H.; Rojas-Landeros, S. C.; Castro-Camus, E.; Alfaro-Gomez, M.

    2018-02-01

    We use terahertz time domain imaging for the evaluation of the effects of skin-moisturizers in vivo. We evaluate three principal substances used in commercial moisturizers: glycerin, hyaluronic acid and lanolin. We image the interaction of the forearm with each of the substances taking terahertz spectra at sequential times. With this, we are able to measure the effect of the substances on the hydration level of the skin in time, determining the feasibility of using THz imaging for the evaluation of the products and their effects on the hydration levels of the skin.