WorldWideScience

Sample records for multi-epoch imaging polarimetry

  1. MULTI-EPOCH IMAGING POLARIMETRY OF THE SiO MASERS IN THE EXTENDED ATMOSPHERE OF THE MIRA VARIABLE TX CAM

    International Nuclear Information System (INIS)

    Kemball, Athol J.; Diamond, Philip J.; Gonidakis, Ioannis; Mitra, Modhurita; Yim, Kijeong; Pan, K.-C.; Chiang, H.-F.

    2009-01-01

    We present a time series of synoptic images of the linearly polarized v = 1, J = 1-0 SiO maser emission toward the Mira variable, TX Cam. These data comprise 43 individual epochs at an approximate biweekly sampling over an optical pulsation phase range of φ = 0.68 to φ = 1.82. The images have an angular resolution of ∼500 μas and were obtained using the Very Long Baseline Array (VLBA), operating in the 43 GHz band in spectral-line, polarization mode. We have previously published the total intensity time series for this pulsation phase range; this paper serves to present the linearly polarized image sequence and an associated animation representing the evolution of the linear polarization morphology over time. We find a predominantly tangential polarization morphology, a high degree of persistence in linear polarization properties over individual component lifetimes, and stronger linear polarization in the inner projected shell than at larger projected shell radii. We present an initial polarization proper motion analysis examining the possible dynamical influence of magnetic fields in component motions in the extended atmospheres of late-type, evolved stars.

  2. Chimenea and other tools: Automated imaging of multi-epoch radio-synthesis data with CASA

    Science.gov (United States)

    Staley, T. D.; Anderson, G. E.

    2015-11-01

    In preparing the way for the Square Kilometre Array and its pathfinders, there is a pressing need to begin probing the transient sky in a fully robotic fashion using the current generation of radio telescopes. Effective exploitation of such surveys requires a largely automated data-reduction process. This paper introduces an end-to-end automated reduction pipeline, AMIsurvey, used for calibrating and imaging data from the Arcminute Microkelvin Imager Large Array. AMIsurvey makes use of several component libraries which have been packaged separately for open-source release. The most scientifically significant of these is chimenea, which implements a telescope-agnostic algorithm for automated imaging of pre-calibrated multi-epoch radio-synthesis data, of the sort typically acquired for transient surveys or follow-up. The algorithm aims to improve upon standard imaging pipelines by utilizing iterative RMS-estimation and automated source-detection to avoid so called 'Clean-bias', and makes use of CASA subroutines for the underlying image-synthesis operations. At a lower level, AMIsurvey relies upon two libraries, drive-ami and drive-casa, built to allow use of mature radio-astronomy software packages from within Python scripts. While targeted at automated imaging, the drive-casa interface can also be used to automate interaction with any of the CASA subroutines from a generic Python process. Additionally, these packages may be of wider technical interest beyond radio-astronomy, since they demonstrate use of the Python library pexpect to emulate terminal interaction with an external process. This approach allows for rapid development of a Python interface to any legacy or externally-maintained pipeline which accepts command-line input, without requiring alterations to the original code.

  3. Multi-epoch VLBA Imaging of 20 New TeV Blazars: Apparent Jet Speeds

    Science.gov (United States)

    Piner, B. Glenn; Edwards, Philip G.

    2018-01-01

    We present 88 multi-epoch Very Long Baseline Array (VLBA) images (most at an observing frequency of 8 GHz) of 20 TeV blazars, all of the high-frequency-peaked BL Lac (HBL) class, that have not been previously studied at multiple epochs on the parsec scale. From these 20 sources, we analyze the apparent speeds of 43 jet components that are all detected at four or more epochs. As has been found for other TeV HBLs, the apparent speeds of these components are relatively slow. About two-thirds of the components have an apparent speed that is consistent (within 2σ) with no motion, and some of these components may be stationary patterns whose apparent speed does not relate to the underlying bulk flow speed. In addition, a superluminal tail to the apparent speed distribution of the TeV HBLs is detected for the first time, with eight components in seven sources having a 2σ lower limit on the apparent speed exceeding 1c. We combine the data from these 20 sources with an additional 18 sources from the literature to analyze the complete apparent speed distribution of all 38 TeV HBLs that have been studied with very long baseline interferometry at multiple epochs. The highest 2σ apparent speed lower limit considering all sources is 3.6c. This suggests that bulk Lorentz factors of up to about 4, but probably not much higher, exist in the parsec-scale radio-emitting regions of these sources, consistent with estimates obtained in the radio by other means such as brightness temperatures. This can be reconciled with the high Lorentz factors estimated from the high-energy data if the jet has velocity structures consisting of different emission regions with different Lorentz factors. In particular, we analyze the current apparent speed data for the TeV HBLs in the context of a model with a fast central spine and a slower outer layer.

  4. Laser Imaging Polarimetry of Nacre.

    Science.gov (United States)

    Jones, Joshua A; Metzler, Rebecca A; D'Addario, Anthony J; Burgess, Carrie; Regan, Brian; Spano, Samantha; Cvarch, Ben A; Galvez, Enrique J

    2018-03-25

    Nacre is a complex biomaterial made of aragonite-tablet bricks and organic mortar that is considerably resilient against breakage. Nacre has been studied with a wide range of laboratory techniques, leading to understanding key fundamentals, and informing the creation of bio-inspired materials. In this article we present an optical polarimetric technique to investigate nacre, taking advantage of the translucence and birefringence of its micro-components. We focus our study on three classes of mollusks that have nacreous shells: bivalve (Pinctada fucata), gastropod (Haliotis asisina and Haliotis rufescens) and cephalopod (Nautilus pompilius). We sent polarized light from a laser through thin samples of nacre and did imaging polarimetry of the transmitted light. We observed clear distinctions between the structures of bivalve and gastropod, due to the spatial variation of their birefringence. The patterns for cephalopod were more similar to bivalve than gastropod. Bleaching of the samples disrupted the transmitted light. Subsequent refilling of the bivalve and gastropod nacre samples with oil produced optical patterns similar to those of unbleached samples. In cephalopod samples we found that bleaching produced irreversible changes in the optical pattern. This article is protected by copyright. All rights reserved.

  5. Polarimetry

    Science.gov (United States)

    Nagendra, K. N.; Bagnulo, Stefano; Centeno, Rebecca; Jesús Martínez González, María.

    2015-08-01

    Preface; 1. Solar and stellar surface magnetic fields; 2. Future directions in astrophysical polarimetry; 3. Physical processes; 4. Instrumentation for astronomical polarimetry; 5. Data analysis techniques for polarization observations; 6. Polarization diagnostics of atmospheres and circumstellar environments; 7. Polarimetry as a tool for discovery science; 8. Numerical modeling of polarized emission; Author index.

  6. The Imaging X-ray Polarimetry Explorer (IXPE

    Directory of Open Access Journals (Sweden)

    Martin C. Weisskopf

    Full Text Available The Imaging X-ray Polarimetry Explorer (IXPE expands observation space by simultaneously adding polarization to the array of X-ray source properties currently measured (energy, time, and location. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially in systems under extreme physical conditions. Keywords: X-ray astronomy, X-ray polarimetry, X-ray imaging

  7. Stokes polarimetry imaging of dog prostate tissue

    Science.gov (United States)

    Kim, Jihoon; Johnston, William K., III; Walsh, Joseph T., Jr.

    2010-02-01

    Prostate cancer is the second leading cause of death in the United States in 2009. Radical prostatectomy (complete removal of the prostate) is the most common treatment for prostate cancer, however, differentiating prostate tissue from adjacent bladder, nerves, and muscle is difficult. Improved visualization could improve oncologic outcomes and decrease damage to adjacent nerves and muscle important for preservation of potency and continence. A novel Stokes polarimetry imaging (SPI) system was developed and evaluated using a dog prostate specimen in order to examine the feasibility of the system to differentiate prostate from bladder. The degree of linear polarization (DOLP) image maps from linearly polarized light illumination at different visible wavelengths (475, 510, and 650 nm) were constructed. The SPI system used the polarization property of the prostate tissue. The DOLP images allowed advanced differentiation by distinguishing glandular tissue of prostate from the muscular-stromal tissue in the bladder. The DOLP image at 650 nm effectively differentiated prostate and bladder by strong DOLP in bladder. SPI system has the potential to improve surgical outcomes in open or robotic-assisted laparoscopic removal of the prostate. Further in vivo testing is warranted.

  8. Mueller matrix polarimetry imaging for breast cancer analysis (Conference Presentation)

    Science.gov (United States)

    Gribble, Adam; Vitkin, Alex

    2017-02-01

    Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its biological composition, both structural and functional. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. However, determination of the Mueller matrix requires tissue analysis under many different states of polarized light; a time consuming and measurement intensive process. Here we address this limitation with a new rapid polarimetry system, and use this polarimetry platform to investigate a variety of tissue changes associated with breast cancer. We have recently developed a rapid polarimetry imaging platform based on four photoelastic modulators (PEMs). The PEMs generate fast polarization modulations that allow the complete sample Mueller matrix to be imaged over a large field of view, with no moving parts. This polarimetry system is then demonstrated to be sensitive to a variety of tissue changes that are relevant to breast cancer. Specifically, we show that changes in depolarization can reveal tumor margins, and can differentiate between viable and necrotic breast cancer metastasized to the lymph nodes. Furthermore, the polarimetric property of linear retardance (related to birefringence) is dependent on collagen organization in the extracellular matrix. These findings indicate that our polarimetry platform may have future applications in fields such as breast cancer diagnosis, improving the speed and efficacy of intraoperative pathology, and providing prognostic information that may be beneficial for guiding treatment.

  9. Denoising imaging polarimetry by adapted BM3D method.

    Science.gov (United States)

    Tibbs, Alexander B; Daly, Ilse M; Roberts, Nicholas W; Bull, David R

    2018-04-01

    In addition to the visual information contained in intensity and color, imaging polarimetry allows visual information to be extracted from the polarization of light. However, a major challenge of imaging polarimetry is image degradation due to noise. This paper investigates the mitigation of noise through denoising algorithms and compares existing denoising algorithms with a new method, based on BM3D (Block Matching 3D). This algorithm, Polarization-BM3D (PBM3D), gives visual quality superior to the state of the art across all images and noise standard deviations tested. We show that denoising polarization images using PBM3D allows the degree of polarization to be more accurately calculated by comparing it with spectral polarimetry measurements.

  10. Multispectral Stokes polarimetry for dermatoscopic imaging

    Science.gov (United States)

    Castillejos, Y.; Martínez-Ponce, Geminiano; Mora-Nuñez, Azael; Castro-Sanchez, R.

    2015-12-01

    Most of skin pathologies, including melanoma and basal/squamous cell carcinoma, are related to alterations in external and internal order. Usually, physicians rely on their empirical expertise to diagnose these ills normally assisted with dermatoscopes. When there exists skin cancer suspicion, a cytology or biopsy is made, but both laboratory tests imply an invasive procedure. In this regard, a number of non-invasive optical techniques have been proposed recently to improve the diagnostic certainty and assist in the early detection of cutaneous cancer. Herein, skin optical properties are derived with a multispectral polarimetric dermatoscope using three different illumination wavelength intervals centered at 470, 530 and 635nm. The optical device consist of two polarizing elements, a quarter-wave plate and a linear polarizer, rotating at a different angular velocity and a CCD array as the photoreceiver. The modulated signal provided by a single pixel in the acquired image sequence is analyzed with the aim of computing the Stokes parameters. Changes in polarization state of selected wavelengths provide information about the presence of skin pigments such as melanin and hemoglobin species as well as collagen structure, among other components. These skin attributes determine the local physiology or pathology. From the results, it is concluded that optical polarimetry will provide additional elements to dermatologists in their diagnostic task.

  11. Experimental evidence for partial spatial coherence in imaging Mueller polarimetry.

    Science.gov (United States)

    Ossikovski, Razvigor; Arteaga, Oriol; Yoo, Sang Hyuk; Garcia-Caurel, Enric; Hingerl, Kurt

    2017-11-15

    We demonstrate experimentally the validity of the partial spatial coherence formalism in Mueller polarimetry and show that, in a finite spatial resolution experiment, the measured response is obtained through convolving the theoretical one with the instrument function. The reported results are of primary importance for Mueller imaging systems.

  12. Imaging Polarimetry in Age-Related Macular Degeneration

    Science.gov (United States)

    Miura, Masahiro; Yamanari, Masahiro; Iwasaki, Takuya; Elsner, Ann E.; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki

    2010-01-01

    PURPOSE To evaluate the birefringence properties of eyes with age-related macular degeneration (AMD). To compare the information from two techniques—scanning laser polarimetry (GDx) and polarization-sensitive spectral-domain optical coherence tomography (OCT)—and investigate how they complement each other. METHODS The authors prospectively examined the eyes of two healthy subjects and 13 patients with exudative AMD. Using scanning laser polarimetry, they computed phase-retardation maps, average reflectance images, and depolarized light images. To obtain polarimetry information with improved axial resolution, they developed a fiber-based, polarization-sensitive, spectral-domain OCT system and measured the phase retardation associated with birefringence in the same eyes. RESULTS Both GDx and polarization-sensitive spectral-domain optical coherence tomography detected abnormal birefringence at the locus of exudative lesions. Polarization-sensitive, spectral-domain OCT showed that in the old lesions with fibrosis, phase-retardation values were significantly larger than in the new lesions (P = 0.020). Increased scattered light and altered polarization scramble were associated with portions of the lesions. CONCLUSIONS GDx and polarization-sensitive spectral-domain OCT are complementary in probing birefringence properties in exudative AMD. Polarimetry findings in exudative AMD emphasized different features and were related to the progression of the disease, potentially providing a noninvasive tool for microstructure in exudative AMD. PMID:18515594

  13. Coherence imaging spectro-polarimetry for magnetic fusion diagnostics

    International Nuclear Information System (INIS)

    Howard, J

    2010-01-01

    This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

  14. IXPE - The Imaging X-Ray Polarimetry Explorer

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer Mission that will be proposed in response to NASA's upcoming Announcement of Opportunity. IXPE will transform our understanding of the most energetic and exotic astrophysical objects, especially neutron stars and black holes, by measuring the linear polarization of astronomical objects as a function of energy, time and, where relevant, position. As the first dedicated polarimetry observatory IXPE will add a new dimension to the study of cosmic sources, enlarging the observational phase space and providing answers to fundamental questions. IXPE will feature x-ray optics fabricated at NASA/MSFC and gas pixel focal plane detectors provided by team members in Italy (INAF and INFN). This presentation will give an overview of the proposed IXPE mission, detailing the payload configuration, the expected sensitivity, and a typical observing program.

  15. The Imaging X-Ray Polarimetry Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Ramsey, Brian; O’Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffita, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; hide

    2016-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  16. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  17. IXPE the Imaging X-ray Polarimetry Explorer

    Science.gov (United States)

    Soffitta, Paolo

    2017-08-01

    IXPE, the Imaging X-ray Polarimetry Explorer, has been selected as a NASA SMEX mission to be flown in 2021. It will perform polarimetry resolved in energy, in time and in angle as a break-through in High Energy Astrophysics. IXPE promises to 're-open', after 40 years, a window in X-ray astronomy adding two more observables to the usual ones. It will directly measure the geometrical parameters of many different classes of sources eventually breaking possible degeneracies. The probed angular scales (30") are capable of producing the first X-ray polarization maps of extended objects with scientifically relevant sensitivity. This will permit mapping the magnetic fields in Pulsar Wind Nebulae and Super-Nova Remnants at the acceleration sites of 10-100 TeV electrons. Additionally, it will probe vacuum birefringence effects in systems with magnetic fields far larger than those reachable with experiments on Earth. The payload of IXPE consists of three identical telescopes with mirrors provided by MSFC/NASA. The focal plane is provided by ASI with IAPS/INAF responsible for the overall instrument that includes detector units that are provided by INFN. ASI also provides, in kind, the Malindi Ground Station. LASP is responsible for the Mission Operation Center while the Science Operation Center is at MSFC. The operations phase lasts at least two years. All the data including those related to polarization will be made available quickly to the general user. In this paper we present the mission, its payload and we discuss a few examples of astrophysical targets.

  18. Astronomical Polarimetry with the RIT Polarization Imaging Camera

    Science.gov (United States)

    Vorobiev, Dmitry V.; Ninkov, Zoran; Brock, Neal

    2018-06-01

    In the last decade, imaging polarimeters based on micropolarizer arrays have been developed for use in terrestrial remote sensing and metrology applications. Micropolarizer-based sensors are dramatically smaller and more mechanically robust than other polarimeters with similar spectral response and snapshot capability. To determine the suitability of these new polarimeters for astronomical applications, we developed the RIT Polarization Imaging Camera to investigate the performance of these devices, with a special attention to the low signal-to-noise regime. We characterized the device performance in the lab, by determining the relative throughput, efficiency, and orientation of every pixel, as a function of wavelength. Using the resulting pixel response model, we developed demodulation procedures for aperture photometry and imaging polarimetry observing modes. We found that, using the current calibration, RITPIC is capable of detecting polarization signals as small as ∼0.3%. The relative ease of data collection, calibration, and analysis provided by these sensors suggest than they may become an important tool for a number of astronomical targets.

  19. XIPE the X-Ray Imaging Polarimetry Explorer

    Science.gov (United States)

    Soffitta, Paolo; Barcons, Xavier; Bellazzini, Ronaldo; Braga, Joao; Costa, Enrico; Fraser, George W.; Gburek, Szymon; Huovelin, Juhani; Matt, Giorgio; Pearce, Mark; hide

    2013-01-01

    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 in the 210 keV band in 105 s for pointed observations, and 0.6 for an X10 class solar flare in the 1535 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14

  20. Gamma-Ray Instrument for Polarimetry, Spectroscopy and Imaging (GIPSI)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Inderhees, S. E; Phlips, B. F; Graham, B. L

    1996-01-01

    .... Gamma-ray polarimetry in the energy band around 60-300 keV is an interesting area of high energy astrophysics where observations have not been possible with the technologies employed in current and past space missions...

  1. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    Science.gov (United States)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  2. Calibration of EFOSC2 Broadband Linear Imaging Polarimetry

    Science.gov (United States)

    Wiersema, K.; Higgins, A. B.; Covino, S.; Starling, R. L. C.

    2018-03-01

    The European Southern Observatory Faint Object Spectrograph and Camera v2 is one of the workhorse instruments on ESO's New Technology Telescope, and is one of the most popular instruments at La Silla observatory. It is mounted at a Nasmyth focus, and therefore exhibits strong, wavelength and pointing-direction-dependent instrumental polarisation. In this document, we describe our efforts to calibrate the broadband imaging polarimetry mode, and provide a calibration for broadband B, V, and R filters to a level that satisfies most use cases (i.e. polarimetric calibration uncertainty 0.1%). We make our calibration codes public. This calibration effort can be used to enhance the yield of future polarimetric programmes with the European Southern Observatory Faint Object Spectrograph and Camera v2, by allowing good calibration with a greatly reduced number of standard star observations. Similarly, our calibration model can be combined with archival calibration observations to post-process data taken in past years, to form the European Southern Observatory Faint Object Spectrograph and Camera v2 legacy archive with substantial scientific potential.

  3. Polarization information processing and software system design for simultaneously imaging polarimetry

    Science.gov (United States)

    Wang, Yahui; Liu, Jing; Jin, Weiqi; Wen, Renjie

    2015-08-01

    Simultaneous imaging polarimetry can realize real-time polarization imaging of the dynamic scene, which has wide application prospect. This paper first briefly illustrates the design of the double separate Wollaston Prism simultaneous imaging polarimetry, and then emphases are put on the polarization information processing methods and software system design for the designed polarimetry. Polarization information processing methods consist of adaptive image segmentation, high-accuracy image registration, instrument matrix calibration. Morphological image processing was used for image segmentation by taking dilation of an image; The accuracy of image registration can reach 0.1 pixel based on the spatial and frequency domain cross-correlation; Instrument matrix calibration adopted four-point calibration method. The software system was implemented under Windows environment based on C++ programming language, which realized synchronous polarization images acquisition and preservation, image processing and polarization information extraction and display. Polarization data obtained with the designed polarimetry shows that: the polarization information processing methods and its software system effectively performs live realize polarization measurement of the four Stokes parameters of a scene. The polarization information processing methods effectively improved the polarization detection accuracy.

  4. IXPE: The Imaging X-ray Polarimetry Explorer, Implementing a Dedicated Polarimetry Mission

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    Only a few experiments have conducted x-ray polarimetry of cosmic sources since Weisskopf et al confirmed the 19% polarization of the Crab Nebula with the Orbiting Solar Observatory (OSO-8) in the 70's center dot The challenge is to measure a faint polarized component against a background of non-polarized signal (as well as the other, typical background components) center dot Typically, for a few % minimum detectable polarization, 106 photons are required. center dot So, a dedicated mission is vital with instruments that are designed specifically to measure polarization (with minimal systematic effects) Over the proposed mission life (2- 3 years), IXPE will first survey representative samples of several categories of targets: magnetars, isolated pulsars, pulsar wind nebula and supernova remnants, microquasars, active galaxies etc. The survey results will guide detailed follow-up observations. Precise calibration of IXPE is vital to ensuring sensitivity goals are met. The detectors will be characterized in Italy, and then a full calibration of the complete instrument will be performed at MSFC's stray light facility. Polarized flux at different energies Heritage: X-ray Optics at MSFC polarimetry mission.

  5. Imaging Stars by Performing Full-Stokes Optical Interferometric Polarimetry

    Directory of Open Access Journals (Sweden)

    Nicholas M. Elias II

    2012-03-01

    Full Text Available Optical interferometry and polarimetry have separately provided new insights into stellar astronomy, especially in the fields of fundamental parameters and atmospheric models. We present: scientific justifications for “full-Stokes” optical interferometric polarimetry (OIP; updated instrument requirements; preliminary beam combiner designs; polarimeter design; end-to-end OIP data reduction; and realistic reimaged full-Stokes models of Be stars with a suitable number of telescopes plus noise sources. All of this work represents preliminary research to construct an OIP beam combiner.

  6. Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    Science.gov (United States)

    Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony; hide

    2018-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.

  7. The Reel Deal: Interpreting HST Multi-Epoch Movies of YSO Jets.

    Science.gov (United States)

    Frank, Adam

    2010-09-01

    The goal of this proposal is to bring the theoretical interpretation of Young Stellar Object jets and their environments to a new level of realism. We propose to build on the results of a successful Cycle 16 observing proposal that has obtained 3rd epoch images of HH jets. We will use Adaptive Mesh Refinement MHD simulations {developed by our team} to carry forward a detailed program of modeling and interpretation of the time-dependent behavior revealed in the new, extended multi-epoch data set. Only with the third epoch observations can we explore forces: i.e. accelerations, decelerations and structural changes to develop an accurate understanding of physical processes occurring in hypersonic, magnetized jet flows. Our studies will allow us to characterize the jets and, therefore, make the crucial link with jet central engines. We note an innovative feature of our project is its link with laboratory astrophysical experiments of jets. Our analysis of the observations will be used to determine future laboratory experiments which will explore A?clumpyA? jet propagation issues.

  8. The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. C.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2017-03-10

    High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in H α and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.

  9. Imaging polarimetry for the characterisation of exoplanets and protoplanetary discs : scientific and technical challenges

    NARCIS (Netherlands)

    Juan Ovelar, Maria de

    2013-01-01

    The study of exoplanets and the protoplanetary discs in which they form is a very challenging task. In this thesis we present several studies in which we investigate the potential of imaging polarimetry at visible and near-infrared wavelengths to reveal the characteristics of these objects and

  10. Smear correction of highly variable, frame-transfer CCD images with application to polarimetry.

    Science.gov (United States)

    Iglesias, Francisco A; Feller, Alex; Nagaraju, Krishnappa

    2015-07-01

    Image smear, produced by the shutterless operation of frame-transfer CCD detectors, can be detrimental for many imaging applications. Existing algorithms used to numerically remove smear do not contemplate cases where intensity levels change considerably between consecutive frame exposures. In this report, we reformulate the smearing model to include specific variations of the sensor illumination. The corresponding desmearing expression and its noise properties are also presented and demonstrated in the context of fast imaging polarimetry.

  11. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Budavári, Tamás; Szalay, Alexander S. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Loredo, Thomas J. [Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States)

    2017-03-20

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small image patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.

  12. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    International Nuclear Information System (INIS)

    Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.

    2017-01-01

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small image patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.

  13. Single-shot polarimetry imaging of multicore fiber.

    Science.gov (United States)

    Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé

    2016-05-01

    We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.

  14. ON THE COMBINATION OF IMAGING-POLARIMETRY WITH SPECTROPOLARIMETRY OF UPPER SOLAR ATMOSPHERES DURING SOLAR ECLIPSES

    International Nuclear Information System (INIS)

    Qu, Z. Q.; Deng, L. H.; Dun, G. T.; Chang, L.; Zhang, X. Y.; Cheng, X. M.; Qu, Z. N.; Xue, Z. K.; Ma, L.; Allington-Smith, J.; Murray, G.

    2013-01-01

    We present results from imaging polarimetry (IP) of upper solar atmospheres during a total solar eclipse on 2012 November 13 and spectropolarimetry of an annular solar eclipse on 2010 January 15. This combination of techniques provides both the synoptic spatial distribution of polarization above the solar limb and spectral information on the physical mechanism producing the polarization. Using these techniques together we demonstrate that even in the transition region, the linear polarization increases with height and can exceed 20%. IP shows a relatively smooth background distribution in terms of the amplitude and direction modified by solar structures above the limb. A map of a new quantity that reflects direction departure from the background polarization supplies an effective technique to improve the contrast of this fine structure. Spectral polarimetry shows that the relative contribution to the integrated polarization over the observed passband from the spectral lines decreases with height while the contribution from the continuum increases as a general trend. We conclude that both imaging and spectral polarimetry obtained simultaneously over matched spatial and spectral domains will be fruitful for future eclipse observations

  15. Imaging X-Ray Polarimetry Explorer Mission Attitude Determination and Control Concept

    Science.gov (United States)

    Bladt, Jeff; Deininger, William D.; Kalinowski, William C.; Boysen, Mary; Bygott, Kyle; Guy, Larry; Pentz, Christina; Seckar, Chris; Valdez, John; Wedmore, Jeffrey; hide

    2018-01-01

    The goal of the Imaging X-Ray Polarimetry Explorer (IXPE) Mission is to expand understanding of high-energy astrophysical processes and sources, in support of NASA's first science objective in Astrophysics: "Discover how the universe works." X-ray polarimetry is the focus of the IXPE science mission. Polarimetry uniquely probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. The IXPE Observatory consists of Spacecraft and Payload modules. The Payload includes three polarization sensitive, X-ray detector units (DU), each paired with its corresponding grazing incidence mirror module assemblies (MMA). A deployable boom provides the correct separation (focal length) between the DUs and MMAs. These Payload elements are supported by the IXPE Spacecraft. A star tracker is mounted directly with the deployed Payload to minimize alignment errors between the star tracker line of sight (LoS) and Payload LoS. Stringent pointing requirements coupled with a flexible structure and a non-collocated attitude sensor-actuator configuration requires a thorough analysis of control-structure interactions. A non-minimum phase notch filter supports robust control loop stability margins. This paper summarizes the IXPE mission science objectives and Observatory concepts, and then it describes IXPE attitude determination and control implementation. IXPE LoS pointing accuracy, control loop stability, and angular momentum management are discussed.

  16. POLARIMETRY WITH THE GEMINI PLANET IMAGER: METHODS, PERFORMANCE AT FIRST LIGHT, AND THE CIRCUMSTELLAR RING AROUND HR 4796A

    International Nuclear Information System (INIS)

    Perrin, Marshall D.; Duchene, Gaspard; Graham, James R.; Kalas, Paul G.; Millar-Blanchaer, Max; Fitzgerald, Michael P.; Chilcote, Jeffrey; Wiktorowicz, Sloane J.; Dillon, Daren; Gavel, Donald; Macintosh, Bruce; Bauman, Brian; Cardwell, Andrew; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; De Rosa, Robert J.; Doyon, René; Dunn, Jennifer; Erikson, Darren

    2015-01-01

    We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point-spread function (PSF) subtraction via differential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI's advanced adaptive optics system reveals the disk clearly even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side ≳ 9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Based on a synthesis of the total and polarized intensities, we now believe that the west side is closer to us, contrary to most prior interpretations. Forward scattering by relatively large silicate dust particles leads to the strong polarized intensity on the west side, and the ring must be slightly optically thick in order to explain the lower brightness in total intensity there. These findings suggest that the ring is geometrically narrow and dynamically cold, perhaps shepherded by larger bodies in the same manner as Saturn's F ring

  17. Classification of agricultural fields using time series of dual polarimetry TerraSAR-X images

    Directory of Open Access Journals (Sweden)

    S. Mirzaee

    2014-10-01

    Full Text Available Due to its special imaging characteristics, Synthetic Aperture Radar (SAR has become an important source of information for a variety of remote sensing applications dealing with environmental changes. SAR images contain information about both phase and intensity in different polarization modes, making them sensitive to geometrical structure and physical properties of the targets such as dielectric and plant water content. In this study we investigate multi temporal changes occurring to different crop types due to phenological changes using high-resolution TerraSAR-X imagers. The dataset includes 17 dual-polarimetry TSX data acquired from June 2012 to August 2013 in Lorestan province, Iran. Several features are extracted from polarized data and classified using support vector machine (SVM classifier. Training samples and different features employed in classification are also assessed in the study. Results show a satisfactory accuracy for classification which is about 0.91 in kappa coefficient.

  18. Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization.

    Science.gov (United States)

    Gladish, James C; Duncan, Donald D

    2017-01-20

    Herein, we discuss the remote assessment of the subwavelength organizational structure of a medium. Specifically, we use spectral imaging polarimetry, as the vector nature of polarized light enables it to interact with optical anisotropies within a medium, while the spectral aspect of polarization is sensitive to small-scale structure. The ability to image these effects allows for inference of spatial structural organization parameters. This work describes a methodology for revealing structural organization by exploiting the Stokes/Mueller formalism and by utilizing measurements from a spectral imaging polarimeter constructed from liquid crystal variable retarders and a liquid crystal tunable filter. We provide results to validate the system and then show results from measurements on a mineral sample.

  19. SAR Polarimetry

    Science.gov (United States)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  20. Near-infrared imaging polarimetry of bipolar nebulae: Pt. 1

    International Nuclear Information System (INIS)

    Minchin, N.R.; Hough, J.H.; McCall, A.; Burton, M.G.; McCaughrean, M.J.; Aspin, C.; Bailey, J.A.; Axon, D.J.; Sato, Shuji

    1991-01-01

    New high-spatial-resolution polarization images of the BN-KL region of OMC-1 from 1.25-3.6 μm are presented. At the longer wavelengths these show a centro-symmetric polarization vector pattern, centred mainly on IRc2, and high degrees of polarization across the nebula, confirming that the diffuse nebulosity is dominated by the scattering of radiation, mainly from IRc2. Degrees of polarization, position angles and magnitudes are given for the observable IRc sources. These are discussed. (author)

  1. Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)

    2017-10-20

    Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.

  2. Optimal Design of an Achromatic Angle-Insensitive Phase Retarder Used in MWIR Imaging Polarimetry

    International Nuclear Information System (INIS)

    Guo-Guo, Kang; Qiao-Feng, Tan; Guo-Fan, Jin

    2009-01-01

    Dielectric gratings with period in the range from λ/10 to λ/4 with λ being the illumination wavelength not only exclude higher order diffractions but also exhibit strong dispersion of effective indices which are proportional to the wavelength. Moreover, they are insensitive to the incident angle of the illumination wave. With these features, we can design a true zero-order achromatic and angle-insensitive phase retarder which can be used as the polarization state analyzer in middle wave infrared (MWIR) imaging polarimetry. A design method using effective medium theory is described, and the performance of the designed phase retarder is evaluated by rigorous coupled wave analysis theory. The calculation results demonstrate that the retardance deviates from 45° by < ±1.6° within a field of view ±10° over the MWIR bandwidth (3–5 μm). (fundamental areas of phenomenology (including applications))

  3. Precise Absolute Astrometry from the VLBA Imaging and Polarimetry Survey at 5 GHz

    Science.gov (United States)

    Petrov, L.; Taylor, G. B.

    2011-01-01

    We present accurate positions for 857 sources derived from the astrometric analysis of 16 eleven-hour experiments from the Very Long Baseline Array imaging and polarimetry survey at 5 GHz (VIPS). Among the observed sources, positions of 430 objects were not previously determined at milliarcsecond-level accuracy. For 95% of the sources the uncertainty of their positions ranges from 0.3 to 0.9 mas, with a median value of 0.5 mas. This estimate of accuracy is substantiated by the comparison of positions of 386 sources that were previously observed in astrometric programs simultaneously at 2.3/8.6 GHz. Surprisingly, the ionosphere contribution to group delay was adequately modeled with the use of the total electron content maps derived from GPS observations and only marginally affected estimates of source coordinates.

  4. PRECISE ABSOLUTE ASTROMETRY FROM THE VLBA IMAGING AND POLARIMETRY SURVEY AT 5 GHz

    International Nuclear Information System (INIS)

    Petrov, L.; Taylor, G. B.

    2011-01-01

    We present accurate positions for 857 sources derived from the astrometric analysis of 16 eleven-hour experiments from the Very Long Baseline Array imaging and polarimetry survey at 5 GHz (VIPS). Among the observed sources, positions of 430 objects were not previously determined at milliarcsecond-level accuracy. For 95% of the sources the uncertainty of their positions ranges from 0.3 to 0.9 mas, with a median value of 0.5 mas. This estimate of accuracy is substantiated by the comparison of positions of 386 sources that were previously observed in astrometric programs simultaneously at 2.3/8.6 GHz. Surprisingly, the ionosphere contribution to group delay was adequately modeled with the use of the total electron content maps derived from GPS observations and only marginally affected estimates of source coordinates.

  5. SOFIA MID-INFRARED IMAGING AND CSO SUBMILLIMETER POLARIMETRY OBSERVATIONS OF G034.43+00.24 MM1

    International Nuclear Information System (INIS)

    Jones, T. J.; Gordon, Michael; Shenoy, Dinesh; Gehrz, R. D.; Vaillancourt, John E.; Krejny, M.

    2016-01-01

    We present 11.1 to 37.1 μ m imaging observations of the very dense molecular cloud core MM1 in G034.43+00.24 using FORCAST on SOFIA and submillimeter (submm) polarimetry using SHARP on the Caltech Submillimeter Observatory. We find that at the spatial resolution of SOFIA, the point-spread function (PSF) of MM1 is consistent with being a single source, as expected based on millimeter (mm) and submm observations. The spectral energy distributions (SEDs) of MM1 and MM2 have a warm component at the shorter wavelengths not seen in mm and submm SEDs. Examination of H(1.65 μ m) stellar polarimetry from the Galactic Plane Infrared Polarization Survey shows that G034 is embedded in an external magnetic field aligned with the Galactic Plane. The SHARP polarimetry at 450 μ m shows a magnetic field geometry in the vicinity of MM1 that does not line up with either the Galactic Plane or the mean field direction inferred from the CARMA interferometric polarization map of the central cloud core, but is perpendicular to the long filament in which G034 is embedded. The CARMA polarimetry does show evidence for grain alignment in the central region of the cloud core, and thus does trace the magnetic field geometry near the embedded Class 0 YSO.

  6. First Near-infrared Imaging Polarimetry of Young Stellar Objects in the Circinus Molecular Cloud

    Science.gov (United States)

    Kwon, Jungmi; Nakagawa, Takao; Tamura, Motohide; Hough, James H.; Choi, Minho; Kandori, Ryo; Nagata, Tetsuya; Kang, Miju

    2018-02-01

    We present the results of near-infrared (NIR) linear imaging polarimetry in the J, H, and K s bands of the low-mass star cluster-forming region in the Circinus Molecular Cloud Complex. Using aperture polarimetry of point-like sources, positive detection of 314, 421, and 164 sources in the J, H, and K s bands, respectively, was determined from among 749 sources whose photometric magnitudes were measured. For the source classification of the 133 point-like sources whose polarization could be measured in all 3 bands, a color–color diagram was used. While most of the NIR polarizations of point-like sources are well-aligned and can be explained by dichroic polarization produced by aligned interstellar dust grains in the cloud, 123 highly polarized sources have also been identified with some criteria. The projected direction on the sky of the magnetic field in the Cir-MMS region is indicated by the mean polarization position angles (70°) of the point-like sources in the observed region, corresponding to approximately 1.6× 1.6 pc2. In addition, the magnetic field direction is compared with the outflow orientations associated with Infrared Astronomy Satellite sources, in which two sources were found to be aligned with each other and one source was not. We also show prominent polarization nebulosities over the Cir-MMS region for the first time. Our polarization data have revealed one clear infrared reflection nebula (IRN) and several candidate IRNe in the Cir-MMS field. In addition, the illuminating sources of the IRNe are identified with near- and mid-infrared sources.

  7. THE LEGACY OF SCUPOL: 850 μm IMAGING POLARIMETRY FROM 1997 TO 2005

    International Nuclear Information System (INIS)

    Matthews, Brenda C.; McPhee, Christie A.; Fissel, Laura M.; Curran, Rachel L.

    2009-01-01

    SCUPOL, the polarimeter for SCUBA on the James Clerk Maxwell Telescope, was the most prolific thermal imaging polarimeter built to date. Between 1997 and 2005, observations of 104 regions were made at 850 μm in the mapping mode. The instrument has produced ∼50 refereed journal publications, and that number is still growing. We have systematically re-reduced all imaging polarimetry made in the standard 'jiggle-map' mode from the SCUBA archive (2800+ individual observations) to produce a catalog of SCUPOL images and tables. We present the results of our analysis with figures and data tables produced for all 83 regions where significant polarization was detected. In addition, the reduced data cubes and data tables can be accessed online. In many cases, the data included in this paper have been previously published elsewhere. However, this publication includes unpublished data sets, in whole or in part, toward 39 regions, including cores in ρ Ophiuchus, Orion's OMC-2 region, several young stellar objects, and the galaxy M87.

  8. ARECIBO MULTI-EPOCH H I ABSORPTION MEASUREMENTS AGAINST PULSARS: TINY-SCALE ATOMIC STRUCTURE

    International Nuclear Information System (INIS)

    Stanimirovic, S.; Weisberg, J. M.; Pei, Z.; Tuttle, K.; Green, J. T.

    2010-01-01

    We present results from multi-epoch neutral hydrogen (H I) absorption observations of six bright pulsars with the Arecibo telescope. Moving through the interstellar medium (ISM) with transverse velocities of 10-150 AU yr -1 , these pulsars have swept across 1-200 AU over the course of our experiment, allowing us to probe the existence and properties of the tiny-scale atomic structure (TSAS) in the cold neutral medium (CNM). While most of the observed pulsars show no significant change in their H I absorption spectra, we have identified at least two clear TSAS-induced opacity variations in the direction of B1929+10. These observations require strong spatial inhomogeneities in either the TSAS clouds' physical properties themselves or else in the clouds' galactic distribution. While TSAS is occasionally detected on spatial scales down to 10 AU, it is too rare to be characterized by a spectrum of turbulent CNM fluctuations on scales of 10 1 -10 3 AU, as previously suggested by some work. In the direction of B1929+10, an apparent correlation between TSAS and interstellar clouds inside the warm Local Bubble (LB) indicates that TSAS may be tracing the fragmentation of the LB wall via hydrodynamic instabilities. While similar fragmentation events occur frequently throughout the ISM, the warm medium surrounding these cold cloudlets induces a natural selection effect wherein small TSAS clouds evaporate quickly and are rare, while large clouds survive longer and become a general property of the ISM.

  9. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique

    International Nuclear Information System (INIS)

    Smith, R. J.

    2010-01-01

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an ∼1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n e >10 19 -10 20 cm -3 and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.

  10. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements.

    Science.gov (United States)

    Lin, L; Ding, W X; Brower, D L

    2014-11-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  11. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    International Nuclear Information System (INIS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2014-01-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved

  12. High-Contrast Near-Infrared Imaging Polarimetry of the Protoplanetary Disk around RY Tau

    Science.gov (United States)

    Takami, Michihiro; Karr, Jennifer L.; Hashimoto, Jun; Kim, Hyosun; Wisenewski, John; Henning, Thomas; Grady, Carol; Kandori, Ryo; Hodapp, Klaus W.; Kudo, Tomoyuki; hide

    2013-01-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (approx. 0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  13. HIGH-CONTRAST NEAR-INFRARED IMAGING POLARIMETRY OF THE PROTOPLANETARY DISK AROUND RY TAU

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Michihiro; Karr, Jennifer L.; Kim, Hyosun; Chou, Mei-Yin [Institute of Astronomy and Astrophysics, Academia Sinica. P.O. Box 23-141, Taipei 10617, Taiwan (China); Hashimoto, Jun; Kandori, Ryo; Kusakabe, Nobuhiko; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wisniewski, John [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Henning, Thomas; Brandner, Wolfgang [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 North A' ohoku Place, Hilo, HI 96720 (United States); Kudo, Tomoyuki [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Itoh, Yoichi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson AZ 85721 (United States); Abe, Lyu, E-mail: hiro@asiaa.sinica.edu.tw [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d' Azur, 28 Avenue Valrose, F-06108 Nice Cedex 2 (France); and others

    2013-08-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at the H band at a high resolution ({approx}0.''05) for the first time, using Subaru/HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  14. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.

    Science.gov (United States)

    Alali, Sanaz; Gribble, Adam; Vitkin, I Alex

    2016-03-01

    A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.

  15. MULTI-EPOCH OBSERVATIONS OF HD 69830: HIGH-RESOLUTION SPECTROSCOPY AND LIMITS TO VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Beichman, C. A.; Tanner, A. M.; Bryden, G.; Akeson, R. L.; Ciardi, D. R. [NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Lisse, C. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Boden, A. F. [Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125 (United States); Dodson-Robinson, S. E.; Salyk, C. [University of Texas, Astronomy Department, Austin, TX 78712 (United States); Wyatt, M. C., E-mail: chas@pop.jpl.nasa.gov [Institute of Astronomy, University of Cambridge, Cambridge, CB3 0HA (United Kingdom)

    2011-12-10

    The main-sequence solar-type star HD 69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5%-7% (1{sigma} per spectral element) on the variability of the dust spectrum over 1 year, 3.3% (1{sigma}) on the broadband disk emission over 4 years, and 33% (1{sigma}) on the broadband disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher signal-to-noise spectra do not confirm our previously claimed detection of H{sub 2}O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD 69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a {approx}1 AU location for the emitting material.

  16. Multi-band, multi-epoch observations of the transiting warm Jupiter WASP-80b

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Akihiko; Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Kawashima, Yui; Ikoma, Masahiro; Kurosaki, Kenji [Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033 (Japan); Narita, Norio; Nishiyama, Shogo; Takahashi, Yasuhiro H.; Nagayama, Shogo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Onitsuka, Masahiro; Baba, Haruka; Ryu, Tsuguru [The Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ita, Yoshifusa; Onozato, Hiroki [Astronomical Institute, Graduate School of Science, Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Hirano, Teruyuki; Kawauchi, Kiyoe [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Hori, Yasunori [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Nagayama, Takahiro [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, and National Astronomical Observatory of Japan (Japan); Kawai, Nobuyuki, E-mail: afukui@oao.nao.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1, Oookayama, Meguro, Tokyo 152-8551 (Japan); and others

    2014-08-01

    WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-epoch transit observations of WASP-80b by using three ground-based telescopes covering from optical (g', R{sub c}, and I{sub c} bands) to near-infrared (NIR; J, H, and K{sub s} bands) wavelengths. We observe 5 primary transits, each in 3 or 4 different bands simultaneously, obtaining 17 independent transit light curves. Combining them with results from previous works, we find that the observed transmission spectrum is largely consistent with both a solar abundance and thick cloud atmospheric models at a 1.7σ discrepancy level. On the other hand, we find a marginal spectral rise in the optical region compared to the NIR region at the 2.9σ level, which possibly indicates the existence of haze in the atmosphere. We simulate theoretical transmission spectra for a solar abundance but hazy atmosphere, finding that a model with equilibrium temperature of 600 K can explain the observed data well, having a discrepancy level of 1.0σ. We also search for transit timing variations, but find no timing excess larger than 50 s from a linear ephemeris. In addition, we conduct 43 day long photometric monitoring of the host star in the optical bands, finding no significant variation in the stellar brightness. Combined with the fact that no spot-crossing event is observed in the five transits, our results confirm previous findings that the host star appears quiet for spot activities, despite the indications of strong chromospheric activities.

  17. THE OPTICAL VARIABILITY OF SDSS QUASARS FROM MULTI-EPOCH SPECTROSCOPY. II. COLOR VARIATION

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hengxiao; Gu, Minfeng, E-mail: hxguo@shao.ac.cn, E-mail: gumf@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2016-05-01

    We investigated the optical/ultraviolet (UV) color variations for a sample of 2169 quasars based on multi-epoch spectroscopy in the Sloan Digital Sky Survey data releases seven (DR7) and nine (DR9). To correct the systematic difference between DR7 and DR9 due to the different instrumental setup, we produced a correction spectrum by using a sample of F-stars observed in both DR7 and DR9. The correction spectrum was then applied to quasars when comparing the spectra of DR7 with DR9. In each object, the color variation was explored by comparing the spectral index of the continuum power-law fit on the brightest spectrum with the faintest one, and also by the shape of their difference spectrum. In 1876 quasars with consistent color variations from two methods, we found that most sources (1755, ∼94%) show the bluer-when-brighter (BWB) trend, and the redder-when-brighter (RWB) trend is detected in only 121 objects (∼6%). The common BWB trend is supported by the composite spectrum constructed from bright spectra, which is bluer than that from faint spectra, and also by the blue composite difference spectrum. The correction spectrum is proven to be highly reliable by comparing the composite spectrum from corrected DR9 and original DR7 spectra. Assuming that the optical/UV variability is triggered by fluctuations, the RWB trend can likely be explained if the fluctuations occur first in the outer disk region, and the inner disk region has not yet fully responded when the fluctuations are being propagated inward. In contrast, the common BWB trend implies that the fluctuations likely more often happen first in the inner disk region.

  18. Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey

    Science.gov (United States)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.

    2010-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.

  19. CHARACTERISTICS OF GAMMA-RAY LOUD BLAZARS IN THE VLBA IMAGING AND POLARIMETRY SURVEY

    International Nuclear Information System (INIS)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C. S.; Reeves, R.; Richards, J. L.; Cotter, G.

    2011-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong γ-ray emission. At lower flux levels, radio flux density does not directly correlate with γ-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the γ-ray loud and quiet FSRQs can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the γ-ray loud FSRQs are fundamentally different from the γ-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for γ-ray loud AGNs.

  20. Characteristics of Gamma-ray Loud Blazars in the VLBA Imaging and Polarimetry Survey

    Science.gov (United States)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C. S.; Reeves, R.; Richards, J. L.; Cotter, G.

    2011-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong γ-ray emission. At lower flux levels, radio flux density does not directly correlate with γ-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the γ-ray loud and quiet FSRQs can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the γ-ray loud FSRQs are fundamentally different from the γ-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for γ-ray loud AGNs.

  1. Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry

    International Nuclear Information System (INIS)

    Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao; Karr, Jennifer L.; Chapillon, Edwige; Tang, Ya-Wen; Muto, Takayuki; Dong, Ruobing; Hashimoto, Jun; Kusakabe, Nobuyuki; Akiyama, Eiji; Kwon, Jungmi; Itoh, Youchi; Carson, Joseph; Follette, Katherine B.; Mayama, Satoshi; Sitko, Michael; Janson, Markus; Grady, Carol A.; Kudo, Tomoyuki

    2014-01-01

    We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.

  2. Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao; Karr, Jennifer L.; Chapillon, Edwige; Tang, Ya-Wen [Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan, ROC (China); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Dong, Ruobing [Nuclear Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Hashimoto, Jun [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St. Norman, OK 73019 (United States); Kusakabe, Nobuyuki; Akiyama, Eiji; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Itoh, Youchi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Sayo, Hyogo 679-5313 (Japan); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Sitko, Michael [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Janson, Markus [Astrophysics Research Center, Queen' s University Belfast, BT7 1NN (United Kingdom); Grady, Carol A. [Eureka Scientific, 2452 Delmer Suite 100, Oakland, CA 96402 (United States); Kudo, Tomoyuki, E-mail: hiro@asiaa.sinica.edu.tw [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); and others

    2014-11-01

    We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.

  3. Electric field and temperature in a target induced by a plasma jet imaged using Mueller polarimetry

    NARCIS (Netherlands)

    Slikboer, E.T.; Sobota, A.; Guaitella, O.; Garcia-Caurel, E.

    2018-01-01

    Mueller polarimetry is used to investigate the behavior of an electro optic target (BSO crystal) under exposure of guided ionization waves produced by an atmospheric pressure plasma jet. For the first time, this optical technique is time resolved to obtain the complete Mueller matrix of the sample

  4. XIPE, the X-ray imaging polarimetry explorer: Opening a new window in the X-ray sky

    Science.gov (United States)

    Soffitta, Paolo; XIPE Collaboration

    2017-11-01

    XIPE, the X-ray Imaging Polarimetry Explorer, is a candidate ESA fourth medium size mission, now in competitive phase A, aimed at time-spectrally-spatially-resolved X-ray polarimetry of a large number of celestial sources as a breakthrough in high energy astrophysics and fundamental physics. Its payload consists of three X-ray optics with a total effective area larger than one XMM mirror but with a low mass and of three Gas Pixel Detectors at their focus. The focal length is 4 m and the whole satellite fits within the fairing of the Vega launcher without the need of an extendable bench. XIPE will be an observatory with 75% of the time devoted to a competitive guest observer program. Its consortium across Europe comprises Italy, Germany, Spain, United Kingdom, Switzerland, Poland, Sweden Until today, thanks to a dedicated experiment that dates back to the '70, only the Crab Nebula showed a non-zero polarization with large significance [1] in X-rays. XIPE, with its innovative detector, promises to make significative measurements on hundreds of celestial sources.

  5. Laser polarimetry

    International Nuclear Information System (INIS)

    Goldstein, D.H.

    1989-01-01

    Polarimetry, or transmission ellipsometry, is an important experimental technique for the determination of polarization properties of bulk materials. In this technique, source radiation of known polarization is passed through bulk samples to determine, for example, natural or induced birefringence and dichroism. The laser is a particularly appropriate source for this technique because of its monochromaticity, collimation, and radiant intensity. Lasers of many different wavelengths in different spectral regions are now available. Laser polarimetry can be done in any of these wavelength regions where polarizing elements are available. In this paper, polarimetry is reviewed with respect to applications, sources used, and polarization state generator and analyzer configurations. Scattering ellipsometry is also discussed insofar as the forward scattering measurement is related to polarimetry. The authors then describe an infrared laser polarimeter which we have designed and constructed. This instrument can operate over large wavelength regions with only a change in source. Polarization elements of the polarimeter are in a dual rotating retarder configuration. Computer controlled rotary stages and computer monitored detectors automate the data collection. The Mueller formulation is used to process the polarization information. Issues and recent progress with this instrument are discussed

  6. Stellar Polarimetry

    CERN Document Server

    Clarke, David

    2009-01-01

    Written by an experienced teacher and author, this must-have source for work with polarimetric equipment and polarimetry in astronomy conveys the knowledge of the technology and techniques needed to measure and interpret polarizations. As such, this monograph offers a brief introduction and refresher, while also covering in detail statistics and data treatment as well as telescope optics. For astronomers, physicists and those working in the optical industry.

  7. Probing Hypergiant Mass Loss with Adaptive Optics Imaging and Polarimetry in the Infrared: MMT-Pol and LMIRCam Observations of IRC +10420 and VY Canis Majoris

    Science.gov (United States)

    Shenoy, Dinesh P.; Jones, Terry J.; Packham, Chris; Lopez-Rodriguez, Enrique

    2015-07-01

    We present 2-5 μm adaptive optics (AO) imaging and polarimetry of the famous hypergiant stars IRC +10420 and VY Canis Majoris. The imaging polarimetry of IRC +10420 with MMT-Pol at 2.2 μ {m} resolves nebular emission with intrinsic polarization of 30%, with a high surface brightness indicating optically thick scattering. The relatively uniform distribution of this polarized emission both radially and azimuthally around the star confirms previous studies that place the scattering dust largely in the plane of the sky. Using constraints on scattered light consistent with the polarimetry at 2.2 μ {m}, extrapolation to wavelengths in the 3-5 μm band predicts a scattered light component significantly below the nebular flux that is observed in our Large Binocular Telescope/LMIRCam 3-5 μm AO imaging. Under the assumption this excess emission is thermal, we find a color temperature of ˜500 K is required, well in excess of the emissivity-modified equilibrium temperature for typical astrophysical dust. The nebular features of VY CMa are found to be highly polarized (up to 60%) at 1.3 μm, again with optically thick scattering required to reproduce the observed surface brightness. This star’s peculiar nebular feature dubbed the “Southwest Clump” is clearly detected in the 3.1 μm polarimetry as well, which, unlike IRC +10420, is consistent with scattered light alone. The high intrinsic polarizations of both hypergiants’ nebulae are compatible with optically thick scattering for typical dust around evolved dusty stars, where the depolarizing effect of multiple scatters is mitigated by the grains’ low albedos. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  8. A HIGH-RESOLUTION, MULTI-EPOCH SPECTRAL ATLAS OF PECULIAR STARS INCLUDING RAVE, GAIA , AND HERMES WAVELENGTH RANGES

    International Nuclear Information System (INIS)

    Tomasella, Lina; Munari, Ulisse; Zwitter, Tomaz

    2010-01-01

    We present an Echelle+CCD, high signal-to-noise ratio, high-resolution (R = 20,000) spectroscopic atlas of 108 well-known objects representative of the most common types of peculiar and variable stars. The wavelength interval extends from 4600 to 9400 A and includes the RAVE, Gaia, and HERMES wavelength ranges. Multi-epoch spectra are provided for the majority of the observed stars. A total of 425 spectra of peculiar stars, which were collected during 56 observing nights between 1998 November and 2002 August, are presented. The spectra are given in FITS format and heliocentric wavelengths, with accurate subtraction of both the sky background and the scattered light. Auxiliary material useful for custom applications (telluric dividers, spectrophotometric stars, flat-field tracings) is also provided. The atlas aims to provide a homogeneous database of the spectral appearance of stellar peculiarities, a tool useful both for classification purposes and inter-comparison studies. It could also serve in the planning and development of automated classification algorithms designed for RAVE, Gaia, HERMES, and other large-scale spectral surveys. The spectrum of XX Oph is discussed in some detail as an example of the content of the present atlas.

  9. Multi-epoch analysis of the X-ray spectrum of the active galactic nucleus in NGC 5506

    Science.gov (United States)

    Sun, Shangyu; Guainazzi, Matteo; Ni, Qingling; Wang, Jingchun; Qian, Chenyang; Shi, Fangzheng; Wang, Yu; Bambi, Cosimo

    2018-05-01

    We present a multi-epoch X-ray spectroscopy analysis of the nearby narrow-line Seyfert I galaxy NGC 5506. For the first time, spectra taken by Chandra, XMM-Newton, Suzaku, and NuSTAR - covering the 2000-2014 time span - are analyzed simultaneously, using state-of-the-art models to describe reprocessing of the primary continuum by optical thick matter in the AGN environment. The main goal of our study is determining the spin of the supermassive black hole (SMBH). The nuclear X-ray spectrum is photoelectrically absorbed by matter with column density ≃ 3 × 1022 cm-2. A soft excess is present at energies lower than the photoelectric cut-off. Both photo-ionized and collisionally ionized components are required to fit it. This component is constant over the time-scales probed by our data. The spectrum at energies higher than 2 keV is variable. We propose that its evolution could be driven by flux-dependent changes in the geometry of the innermost regions of the accretion disk. The black hole spin in NGC ,5506 is constrained to be 0.93± _{ 0.04 }^{0.04} at 90% confidence level for one interesting parameter.

  10. Scanning laser topography and scanning laser polarimetry: comparing both imaging methods at same distances from the optic nerve head.

    Science.gov (United States)

    Kremmer, Stephan; Keienburg, Marcus; Anastassiou, Gerasimos; Schallenberg, Maurice; Steuhl, Klaus-Peter; Selbach, J Michael

    2012-01-01

    To compare the performance of scanning laser topography (SLT) and scanning laser polarimetry (SLP) on the rim of the optic nerve head and its surrounding area and thereby to evaluate whether these imaging technologies are influenced by other factors beyond the thickness of the retinal nerve fiber layer (RNFL). A total of 154 eyes from 5 different groups were examined: young healthy subjects (YNorm), old healthy subjects (ONorm), patients with normal tension glaucoma (NTG), patients with open-angle glaucoma and early glaucomatous damage (OAGE) and patients with open-angle glaucoma and advanced glaucomatous damage (OAGA). SLT and SLP measurements were taken. Four concentric circles were superimposed on each of the images: the first one measuring at the rim of the optic nerve head (1.0 ONHD), the next measuring at 1.25 optic nerve head diameters (ONHD), at 1.5 ONHD and at 1.75 ONHD. The aligned images were analyzed using GDx/NFA software. Both methods showed peaks of RNFL thickness in the superior and inferior segments of the ONH. The maximum thickness, registered by the SLT device was at the ONH rim where the SLP device tended to measure the lowest values. SLT measurements at the ONH were influenced by other tissues besides the RNFL like blood vessels and glial tissues. SLT and SLP were most strongly correlated at distances of 1.25 and 1.5 ONHD. While both imaging technologies are valuable tools in detecting glaucoma, measurements at the ONH rim should be interpreted critically since both methods might provide misleading results. For the assessment of the retinal nerve fiber layer we would like to recommend for both imaging technologies, SLT and SLP, measurements in 1.25 and 1.5 ONHD distance of the rim of the optic nerve head.

  11. Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry.

    Science.gov (United States)

    Patty, C H Lucas; Luo, David A; Snik, Frans; Ariese, Freek; Buma, Wybren Jan; Ten Kate, Inge Loes; van Spanning, Rob J M; Sparks, William B; Germer, Thomas A; Garab, Győző; Kudenov, Michael W

    2018-06-01

    Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Aspects of Radar Polarimetry

    OpenAIRE

    LÜNEBURG, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  13. Precision electron polarimetry

    International Nuclear Information System (INIS)

    Chudakov, E.

    2013-01-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry

  14. Recent Advances In Radar Polarimetry And Polarimetric SAR Interferometry

    Science.gov (United States)

    2007-02-01

    progressing from “Classical X- Ray -Shadow-graphy” toward “functional Magnetic Resonant Imaging (fMRI)”. Classical Amplitude-Only Radar & SAR, and “Scalar...Chipman, R. A, and J. W. Morris, eds. 1990, Polarimetry: Radar, Infrared, Visible, Ultraviolet, X- Ray , Proc. SPIE-1317 ( also see SPIE Proc. 891... Oldenburg Verlag, Munich 1999, 88 p. [173] Mott, H. and W-M. Boerner, 1992, editors, “Radar Polarimetry, SPIE’s Annual Mtg., Polarimetry Conference

  15. THE MULTI-EPOCH NEARBY CLUSTER SURVEY: TYPE Ia SUPERNOVA RATE MEASUREMENT IN z {approx} 0.1 CLUSTERS AND THE LATE-TIME DELAY TIME DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Sand, David J.; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Bildfell, Chris; Pritchet, Chris [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria BC V8W 3P6 (Canada); Zaritsky, Dennis; Just, Dennis W.; Herbert-Fort, Stephane [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Sivanandam, Suresh [Dunlap Institute for Astronomy and Astrophysics, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mahdavi, Andisheh, E-mail: dsand@lcogt.net [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States)

    2012-02-20

    We describe the Multi-Epoch Nearby Cluster Survey, designed to measure the cluster Type Ia supernova (SN Ia) rate in a sample of 57 X-ray selected galaxy clusters, with redshifts of 0.05 < z < 0.15. Utilizing our real-time analysis pipeline, we spectroscopically confirmed twenty-three cluster SNe Ia, four of which were intracluster events. Using our deep Canada-France-Hawaii Telescope/MegaCam imaging, we measured total stellar luminosities in each of our galaxy clusters, and we performed detailed supernova (SN) detection efficiency simulations. Bringing these ingredients together, we measure an overall cluster SN Ia rate within R{sub 200} (1 Mpc) of 0.042{sup +0.012}{sub -0.010}{sup +0.010}{sub -0.008} SNuM (0.049{sup +0.016}{sub -0.014}{sup +0.005}{sub -0.004} SNuM) and an SN Ia rate within red-sequence galaxies of 0.041{sup +0.015}{sub -0.015}{sup +0.005}{sub -0.010} SNuM (0.041{sup +0.019}{sub -0.015}{sup +0.005}{sub -0.004} SNuM). The red-sequence SN Ia rate is consistent with published rates in early-type/elliptical galaxies in the 'field'. Using our red-sequence SN Ia rate, and other cluster SN measurements in early-type galaxies up to z {approx} 1, we derive the late-time (>2 Gyr) delay time distribution (DTD) of SN Ia assuming a cluster early-type galaxy star formation epoch of z{sub f} = 3. Assuming a power-law form for the DTD, {Psi}(t){proportional_to}t{sup s} , we find s = -1.62 {+-} 0.54. This result is consistent with predictions for the double degenerate SN Ia progenitor scenario (s {approx} -1) and is also in line with recent calculations for the double detonation explosion mechanism (s {approx} -2). The most recent calculations of the single degenerate scenario DTD predicts an order-of-magnitude drop-off in SN Ia rate {approx}6-7 Gyr after stellar formation, and the observed cluster rates cannot rule this out.

  16. Space-based Coronagraphic Imaging Polarimetry of the TW Hydrae Disk: Shedding New Light on Self-shadowing Effects

    Science.gov (United States)

    Poteet, Charles A.; Chen, Christine H.; Hines, Dean C.; Perrin, Marshall D.; Debes, John H.; Pueyo, Laurent; Schneider, Glenn; Mazoyer, Johan; Kolokolova, Ludmilla

    2018-06-01

    We present Hubble Space Telescope Near-Infrared Camera and Multi-Object Spectrometer coronagraphic imaging polarimetry of the TW Hydrae protoplanetary disk. These observations simultaneously measure the total and polarized intensity, allowing direct measurement of the polarization fraction across the disk. In accord with the self-shadowing hypothesis recently proposed by Debes et al., we find that the total and polarized intensity of the disk exhibits strong azimuthal asymmetries at projected distances consistent with the previously reported bright and dark ring-shaped structures (∼45–99 au). The sinusoidal-like variations possess a maximum brightness at position angles near ∼268°–300° and are up to ∼28% stronger in total intensity. Furthermore, significant radial and azimuthal variations are also detected in the polarization fraction of the disk. In particular, we find that regions of lower polarization fraction are associated with annuli of increased surface brightness, suggesting that the relative proportion of multiple-to-single scattering is greater along the ring and gap structures. Moreover, we find strong (∼20%) azimuthal variation in the polarization fraction along the shadowed region of the disk. Further investigation reveals that the azimuthal variation is not the result of disk flaring effects, but is instead from a decrease in the relative contribution of multiple-to-single scattering within the shadowed region. Employing a two-layer scattering surface, we hypothesize that the diminished contribution in multiple scattering may result from shadowing by an inclined inner disk, which prevents direct stellar light from reaching the optically thick underlying surface component.

  17. Optical image security using Stokes polarimetry of spatially variant polarized beam

    Science.gov (United States)

    Fatima, Areeba; Nishchal, Naveen K.

    2018-06-01

    We propose a novel security scheme that uses vector beam characterized by the spatially variant polarization distribution. A vector beam is so generated that its helical components carry tailored phases corresponding to the image/images that is/are to be encrypted. The tailoring of phase has been done by employing the modified Gerchberg-Saxton algorithm for phase retrieval. Stokes parameters for the final vector beam is evaluated and is used to construct the ciphertext and one of the keys. The advantage of the proposed scheme is that it generates real ciphertext and keys which are easier to transmit and store than complex quantities. Moreover, the known plaintext attack is not applicable to this system. As a proof-of-concept, simulation results have been presented for securing single and double gray-scale images.

  18. Stellar photometry and polarimetry

    International Nuclear Information System (INIS)

    Golay, M.; Serkowski, K.

    1976-01-01

    A critical review of progress made in stellar photometry and polarimetry over the period 1973-1975 is presented. Reports of photometric measurements from various observatories throughout the world are summarized. The summary of work on stellar polarimetry lists the review papers, the catalogues and lists of standard stars, and descriptions of new observing techniques. (B.R.H.)

  19. Imaging VLBI polarimetry data from Active Galactic Nuclei using the Maximum Entropy Method

    Directory of Open Access Journals (Sweden)

    Coughlan Colm P.

    2013-12-01

    Full Text Available Mapping the relativistic jets emanating from AGN requires the use of a deconvolution algorithm to account for the effects of missing baseline spacings. The CLEAN algorithm is the most commonly used algorithm in VLBI imaging today and is suitable for imaging polarisation data. The Maximum Entropy Method (MEM is presented as an alternative with some advantages over the CLEAN algorithm, including better spatial resolution and a more rigorous and unbiased approach to deconvolution. We have developed a MEM code suitable for deconvolving VLBI polarisation data. Monte Carlo simulations investigating the performance of CLEAN and the MEM code on a variety of source types are being carried out. Real polarisation (VLBA data taken at multiple wavelengths have also been deconvolved using MEM, and several of the resulting polarisation and Faraday rotation maps are presented and discussed.

  20. Polarimetry of random fields

    Science.gov (United States)

    Ellis, Jeremy

    On temporal, spatial and spectral scales which are small enough, all fields are fully polarized. In the optical regime, however, instantaneous fields can rarely be examined, and, instead, only average quantities are accessible. The study of polarimetry is concerned with both the description of electromagnetic fields and the characterization of media a field has interacted with. The polarimetric information is conventionally presented in terms of second order field correlations which are averaged over the ensemble of field realizations. Motivated by the deficiencies of classical polarimetry in dealing with specific practical situations, this dissertation expands the traditional polarimetric approaches to include higher order field correlations and the description of fields fluctuating in three dimensions. In relation to characterization of depolarizing media, a number of fourth-order correlations are introduced in this dissertation. Measurements of full polarization distributions, and the subsequent evaluation of Stokes vector element correlations and Complex Degree of Mutual Polarization demonstrate the use of these quantities for material discrimination and characterization. Recent advancements in detection capabilities allow access to fields near their sources and close to material boundaries, where a unique direction of propagation is not evident. Similarly, there exist classical situations such as overlapping beams, focusing, or diffusive scattering in which there is no unique transverse direction. In this dissertation, the correlation matrix formalism is expanded to describe three dimensional electromagnetic fields, providing a definition for the degree of polarization of such a field. It is also shown that, because of the dimensionality of the problem, a second parameter is necessary to fully describe the polarimetric properties of three dimensional fields. Measurements of second-order correlations of a three dimensional field are demonstrated, allowing the

  1. Magnetic fields and star formation: evidence from imaging polarimetry of the Serpens Reflection Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; Draper, P W; Scarrott, S M

    1987-08-01

    CCD imaging of the Serpens bipolar reflection nebula shows it to be surrounded by dark material having spiral density structure. Multi-colour polarization mapping also reveals details of the surrounding magnetic field, indicating that this also has spiral structure. These observations are discussed along with current ideas about the role of magnetic fields during star formation. An interpretation involving the non-axisymmetric magnetically braked collapse of a protostellar cloud is proposed and a resulting magnetic field configuration is described which can account for the observations. Evidence is also discussed for the formation of a binary star system within the nebula, resulting from the fragmentation of a magnetized protostellar disc.

  2. ASTROPOP: ASTROnomical Polarimetry and Photometry pipeline

    Science.gov (United States)

    Campagnolo, Julio C. N.

    2018-05-01

    AstroPoP reduces almost any CCD photometry and image polarimetry data. For photometry reduction, the code performs source finding, aperture and PSF photometry, astrometry calibration using different automated and non-automated methods and automated source identification and magnitude calibration based on online and local catalogs. For polarimetry, the code resolves linear and circular Stokes parameters produced by image beam splitter or polarizer polarimeters. In addition to the modular functions, ready-to-use pipelines based in configuration files and header keys are also provided with the code. AstroPOP was initially developed to reduce the IAGPOL polarimeter data installed at Observatório Pico dos Dias (Brazil).

  3. Imaging and polarimetry of the Galactic Centre in the near-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J; Hough, J H; Axon, D J

    1984-06-01

    Infrared images of the Galactic Centre with 2.25 arcsec resolution have been obtained at wavelengths of 1.64 ..mu..m (H), 2.2 ..mu..m (K), 3.8 ..mu..m (L') and 4.8 ..mu..m (M). From these, the positions, magnitudes and colours for 35 sources have been measured. The observed sources can be divided into two classes: those whose colours are typical of reddened stars and those with much redder colours which dominate at 3.8 and 4.8 ..mu..m whose infrared radiation is due to dust emission. Polarization measurements for a number of the brighter sources have been made at J, H, and K. Most of the sources with stellar colours show wavelength dependence typical of interstellar polarization with polarizations at K of about 6 per cent.

  4. Imaging and polarimetry of the Galactic Centre in the near-infrared

    International Nuclear Information System (INIS)

    Bailey, J.; Hough, J.H.; Axon, D.J.

    1984-01-01

    Infrared images of the Galactic Centre with 2.25 arcsec resolution have been obtained at wavelengths of 1.64 μm (H), 2.2 μm (K), 3.8 μm (L') and 4.8 μm (M). From these, the positions, magnitudes and colours for 35 sources have been measured. The observed sources can be divided into two classes: those whose colours are typical of reddened stars and those with much redder colours which dominate at 3.8 and 4.8 μm whose infrared radiation is due to dust emission. Polarization measurements for a number of the brighter sources have been made at J, H, and K. Most of the sources with stellar colours show wavelength dependence typical of interstellar polarization with polarizations at K of about 6 per cent. (author)

  5. Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    Science.gov (United States)

    Yang, Yi; Hashimoto, Jun; Hayashi, Saeko S.; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; hide

    2016-01-01

    By performing non-masked polarization imaging with Subaru HiCIAO, polarized scattered light from the inner region of the disk around the GGTau A system was successfully detected in the H band, with a spatial resolution of approximately0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, these mimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies,the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation 100 au) young binary systems.

  6. Spectral line polarimetry with a channeled polarimeter.

    Science.gov (United States)

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  7. Resonance γ-ray polarimetry

    International Nuclear Information System (INIS)

    Gonser, U.; Fischer, H.

    1981-01-01

    The topics are: Intensity and polarization of radiation in Moessbauer transitions, hyperfine interactions in 57 Fe, polarized γ-rays, polarimetry, γ-ray rotation polarimeters, Birefringence polarimetry. (WL)

  8. HIGH ENERGY HADRON POLARIMETRY

    International Nuclear Information System (INIS)

    BUNCE, G.

    2007-01-01

    Proton polarimetry at RHIC uses the interference of electromagnetic (EM) and hadronic scattering amplitudes. The EM spin-flip amplitude for protons is responsible for the proton's anomalous magnetic moment, and is large. This then generates a significant analyzing power for small angle elastic scattering. RHIC polarimetry has reached a 5% uncertainty on the beam polarization, and seem capable of reducing this uncertainty further. Polarized neutron beams ax also interesting for RHIC and for a polarized electron-polarized proton/ion collider in the fume. In this case, deuterons, for example, have a very small anomalous magnetic moment, making the approach used for protons impractical. Although it might be possible to use quasielastic scattering from the protons in the deuteron to monitor the polarization. 3-He beams can provide polarized neutrons, and do have a large anomalous magnetic moment, making a similar approach to proton polarimetry possible

  9. HUBBLE SPACE TELESCOPE PRE-PERIHELION ACS/WFC IMAGING POLARIMETRY OF COMET ISON (C/2012 S1) AT 3.81 AU

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Dean C.; Mutchler, Max; Hammer, Derek [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Videen, Gorden; Sitko, Michael L.; Yanamandra-Fisher, Padmavati A. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Zubko, Evgenij; Muinonen, Karri [Department of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland); Shkuratov, Yuriy; Kaydash, Vadim G. [Astronomical Institute of V. N. Karazin University, Kharkov, 61058 (Ukraine); Knight, Matthew M. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Lisse, Carey M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States)

    2014-01-10

    We present polarization images of Comet ISON (C/2012 S1) taken with the Hubble Space Telescope (HST) on UTC 2013 May 8 (r {sub h} = 3.81 AU, Δ = 4.34 AU), when the phase angle was α ≈ 12.°16. This phase angle is approximately centered in the negative polarization branch for cometary dust. The region beyond 1000 km (∼0.32 arcsec ≈ 6 pixels) from the nucleus shows a negative polarization amplitude of p% ∼ –1.6%. Within 1000 km of the nucleus, the polarization position angle rotates to be approximately perpendicular to the scattering plane, with an amplitude p% ∼ +2.5%. Such positive polarization has been observed previously as a characteristic feature of cometary jets, and we show that Comet ISON does indeed harbor a jet-like feature. These HST observations of Comet ISON represent the first visible light, imaging polarimetry with subarcsecond spatial resolution of a Nearly Isotropic Comet beyond 3.8 AU from the Sun at a small phase angle. The observations provide an early glimpse of the properties of the cometary dust preserved in this Oort-Cloud comet.

  10. MULTI-EPOCH VERY LONG BASELINE ARRAY OBSERVATIONS OF THE COMPACT WIND-COLLISION REGION IN THE QUADRUPLE SYSTEM Cyg OB2 no. 5

    Energy Technology Data Exchange (ETDEWEB)

    Dzib, Sergio A.; Rodriguez, Luis F.; Loinard, Laurent; Ortiz-Leon, Gisela N.; Araudo, Anabella T. [Centro de Radiostronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58089 (Mexico); Mioduszewski, Amy J., E-mail: s.dzib@crya.unam.mx [National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2013-02-15

    We present multi-epoch Very Long Base Array observations of the compact wind-collision region in the Cyg OB2 no. 5 system. These observations confirm the arc-shaped morphology of the emission reported earlier. The total flux as a function of time is roughly constant when the source is 'on', but falls below the detection limit as the wind-collision region approaches periastron in its orbit around the contact binary at the center of the system. In addition, at one of the 'on' epochs, the flux drops to about a fifth of its average value. We suggest that this apparent variation could result from the inhomogeneity of the wind that hides part of the flux rather than from an intrinsic variation. We measured a trigonometrical parallax, for the most compact radio emission of 0.61 {+-} 0.22 mas, corresponding to a distance of 1.65 {sup +0.96} {sub -0.44} kpc, in agreement with recent trigonometrical parallaxes measured for objects in the Cygnus X complex. Using constraints on the total mass of the system and orbital parameters previously reported in the literature, we obtain two independent indirect measurements of the distance to the Cyg OB2 no. 5 system, both consistent with 1.3-1.4 kpc. Finally, we suggest that the companion star responsible for the wind interaction, yet undetected, is of spectral type between B0.5 and O8.

  11. MULTI-EPOCH VERY LONG BASELINE ARRAY OBSERVATIONS OF THE COMPACT WIND-COLLISION REGION IN THE QUADRUPLE SYSTEM Cyg OB2 no. 5

    International Nuclear Information System (INIS)

    Dzib, Sergio A.; Rodríguez, Luis F.; Loinard, Laurent; Ortiz-León, Gisela N.; Araudo, Anabella T.; Mioduszewski, Amy J.

    2013-01-01

    We present multi-epoch Very Long Base Array observations of the compact wind-collision region in the Cyg OB2 no. 5 system. These observations confirm the arc-shaped morphology of the emission reported earlier. The total flux as a function of time is roughly constant when the source is 'on', but falls below the detection limit as the wind-collision region approaches periastron in its orbit around the contact binary at the center of the system. In addition, at one of the 'on' epochs, the flux drops to about a fifth of its average value. We suggest that this apparent variation could result from the inhomogeneity of the wind that hides part of the flux rather than from an intrinsic variation. We measured a trigonometrical parallax, for the most compact radio emission of 0.61 ± 0.22 mas, corresponding to a distance of 1.65 +0.96 –0.44 kpc, in agreement with recent trigonometrical parallaxes measured for objects in the Cygnus X complex. Using constraints on the total mass of the system and orbital parameters previously reported in the literature, we obtain two independent indirect measurements of the distance to the Cyg OB2 no. 5 system, both consistent with 1.3-1.4 kpc. Finally, we suggest that the companion star responsible for the wind interaction, yet undetected, is of spectral type between B0.5 and O8.

  12. Visual Evoked Potential and Magnetic Resonance Imaging are More Effective Markers of Multiple Sclerosis Progression than Laser Polarimetry with Variable Corneal Compensation.

    Science.gov (United States)

    Kantorová, Ema; Ziak, Peter; Kurča, Egon; Koyšová, Mária; Hladká, Mária; Zeleňák, Kamil; Michalik, Jozef

    2014-01-01

    The aim of our study was to assess the role of laser polarimetry and visual evoked potentials (VEP) as potential biomarkers of disease progression in multiple sclerosis (MS). A total of 41 patients with MS (82 eyes) and 22 age-related healthy volunteers (44 eyes) completed the study. MS patients were divided into two groups, one (ON) with a history of optic neuritis (17 patients, 34 eyes) and another group (NON) without it (24 patients, 48 eyes). The MS patients and controls underwent laser polarimetry (GDx) examination of the retinal nerve fiber layer (RNFL). In the MS group, we also examined: Kurtzke "expanded disability status scale" (EDSS), the duration of the disorder, VEP - latency and amplitude, and conventional brain magnetic resonance imaging (MRI). Our results were statistically analyzed using ANOVA, Mann-Whitney, and Spearman correlation analyses. In the MS group, brain atrophy and new T2 brain lesions in MRI correlated with both VEP latencies and amplitudes. Separate comparisons revealed VEP latency testing to be less sensitive in ON than in NON-patients. In ON patients, VEP amplitudes correlated mildly with brain atrophy (r = -0.15) and strongly with brain new MRI lesions (r = -0.8). In NON-patients, highly significant correlation of new MRI brain lesions with VEP latencies (r = 0.63, r = 0.6) and amplitudes (r = -0.3, r = -4.2) was found. EDSS also correlated with brain atrophy in this group (r = 0.5). Our study did not find a correlation of GDx measures with MRI tests. The GDx method was not able to detect whole brain demyelinization and the degeneration process, but was only able to reveal the involvement of optic nerves in ON and NON-patients. In our study, we found that both methods (VEP and GDx) can be used for the detection of optic nerve damage, but VEP was found to be superior in evaluating whole brain demyelinization and axonal degeneration. Both VEP and MRI, but not GDx, have an important role in monitoring

  13. Tissue polarimetry: concepts, challenges, applications, and outlook.

    Science.gov (United States)

    Ghosh, Nirmalya; Vitkin, I Alex

    2011-11-01

    Polarimetry has a long and successful history in various forms of clear media. Driven by their biomedical potential, the use of the polarimetric approaches for biological tissue assessment has also recently received considerable attention. Specifically, polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) in order to enhance contrast and to improve tissue imaging resolution. Moreover, the intrinsic tissue polarimetry characteristics contain a wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium-like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. In order to realize the potential of the polarimetric approaches for tissue imaging and characterization/diagnosis, a number of researchers are thus pursuing innovative solutions to these challenges. In this review paper, we summarize these and other issues pertinent to the polarized light methodologies in tissues. Specifically, we discuss polarized light basics, Stokes-Muller formalism, methods of polarization measurements, polarized light modeling in turbid media, applications to tissue imaging, inverse analysis for polarimetric results quantification, applications to quantitative tissue assessment, etc.

  14. THE MULTI-EPOCH NEARBY CLUSTER SURVEY: TYPE Ia SUPERNOVA RATE MEASUREMENT IN z ∼ 0.1 CLUSTERS AND THE LATE-TIME DELAY TIME DISTRIBUTION

    International Nuclear Information System (INIS)

    Sand, David J.; Graham, Melissa L.; Bildfell, Chris; Pritchet, Chris; Zaritsky, Dennis; Just, Dennis W.; Herbert-Fort, Stéphane; Hoekstra, Henk; Sivanandam, Suresh; Foley, Ryan J.; Mahdavi, Andisheh

    2012-01-01

    We describe the Multi-Epoch Nearby Cluster Survey, designed to measure the cluster Type Ia supernova (SN Ia) rate in a sample of 57 X-ray selected galaxy clusters, with redshifts of 0.05 200 (1 Mpc) of 0.042 +0.012 –0.010 +0.010 –0.008 SNuM (0.049 +0.016 –0.014 +0.005 –0.004 SNuM) and an SN Ia rate within red-sequence galaxies of 0.041 +0.015 –0.015 +0.005 –0.010 SNuM (0.041 +0.019 –0.015 +0.005 –0.004 SNuM). The red-sequence SN Ia rate is consistent with published rates in early-type/elliptical galaxies in the 'field'. Using our red-sequence SN Ia rate, and other cluster SN measurements in early-type galaxies up to z ∼ 1, we derive the late-time (>2 Gyr) delay time distribution (DTD) of SN Ia assuming a cluster early-type galaxy star formation epoch of z f = 3. Assuming a power-law form for the DTD, Ψ(t)∝t s , we find s = –1.62 ± 0.54. This result is consistent with predictions for the double degenerate SN Ia progenitor scenario (s ∼ –1) and is also in line with recent calculations for the double detonation explosion mechanism (s ∼ –2). The most recent calculations of the single degenerate scenario DTD predicts an order-of-magnitude drop-off in SN Ia rate ∼6-7 Gyr after stellar formation, and the observed cluster rates cannot rule this out.

  15. Compton Polarimetry at ELSA

    International Nuclear Information System (INIS)

    Hillert, Wolfgang; Aurand, Bastian; Wittschen, Juergen

    2009-01-01

    Part of the future polarization program performed at the Bonn accelerator facility ELSA will rely on precision Compton polarimetry of the stored transversely polarized electron beam. Precise and fast polarimetry poses high demands on the light source and the detector which were studied in detail performing numerical simulations of the Compton scattering process. In order to experimentally verify these calculations, first measurements were carried out using an argon ion laser as light source and a prototype version of a counting silicon microstrip detector. Calculated and measured intensity profiles of backscattered photons are presented and compared, showing excellent agreement. Background originating from beam gas radiation turned out to be the major limitation of the polarimeter performance. In order to improve the situation, a new polarimeter was constructed and is currently being set up. Design and expected performance of this polarimeter upgrade are presented.

  16. TPCs in high-energy astronomical polarimetry

    International Nuclear Information System (INIS)

    Black, J K

    2007-01-01

    High-energy astrophysics has yet to exploit the unique and important information that polarimetry could provide, largely due to the limited sensitivity of previously available polarimeters. In recent years, numerous efforts have been initiated to develop instruments with the sensitivity required for astronomical polarimetry over the 100 eV to 10 GeV band. Time projection chambers (TPCs), with their high-resolution event imaging capability, are an integral part of some of these efforts. After a brief overview of current astronomical polarimeter development efforts, the role of TPCs will be described in more detail. These include TPCs as photoelectric X-ray polarimeters and TPCs as components of polarizationsensitive Compton and pair-production telescopes

  17. THE TYPE II SUPERNOVA RATE IN z {approx} 0.1 GALAXY CLUSTERS FROM THE MULTI-EPOCH NEARBY CLUSTER SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M. L.; Sand, D. J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Bildfell, C. J.; Pritchet, C. J. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria BC V8W 3P6 (Canada); Zaritsky, D.; Just, D. W.; Herbert-Fort, S. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hoekstra, H. [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Sivanandam, S. [Dunlap Institute for Astronomy and Astrophysics, 50 St. George St., Toronto, ON M5S 3H4 (Canada); Foley, R. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-07-01

    We present seven spectroscopically confirmed Type II cluster supernovae (SNe II) discovered in the Multi-Epoch Nearby Cluster Survey, a supernova survey targeting 57 low-redshift 0.05 < z < 0.15 galaxy clusters with the Canada-France-Hawaii Telescope. We find the rate of Type II supernovae within R{sub 200} of z {approx} 0.1 galaxy clusters to be 0.026{sup +0.085}{sub -0.018}(stat){sup +0.003}{sub -0.001}(sys) SNuM. Surprisingly, one SN II is in a red-sequence host galaxy that shows no clear evidence of recent star formation (SF). This is unambiguous evidence in support of ongoing, low-level SF in at least some cluster elliptical galaxies, and illustrates that galaxies that appear to be quiescent cannot be assumed to host only Type Ia SNe. Based on this single SN II we make the first measurement of the SN II rate in red-sequence galaxies, and find it to be 0.007{sup +0.014}{sub -0.007}(stat){sup +0.009}{sub -0.001}(sys) SNuM. We also make the first derivation of cluster specific star formation rates (sSFR) from cluster SN II rates. We find that for all galaxy types the sSFR is 5.1{sup +15.8}{sub -3.1}(stat) {+-} 0.9(sys) M{sub Sun} yr{sup -1} (10{sup 12} M{sub Sun }){sup -1}, and for red-sequence galaxies only it is 2.0{sup +4.2}{sub -0.9}(stat) {+-} 0.4(sys) M{sub Sun} yr{sup -1} (10{sup 12} M{sub Sun }){sup -1}. These values agree with SFRs measured from infrared and ultraviolet photometry, and H{alpha} emission from optical spectroscopy. Additionally, we use the SFR derived from our SNII rate to show that although a small fraction of cluster Type Ia SNe may originate in the young stellar population and experience a short delay time, these results do not preclude the use of cluster SN Ia rates to derive the late-time delay time distribution for SNe Ia.

  18. IOT Overview Polarimetry

    Science.gov (United States)

    Ageorges, N.

    This contribution concentrates on the polarimetric modes offered by different instruments at ESO. In the introduction, I will demonstrate the importance of polarimetry, the kind of science it permits to achieve and list the instruments which offer these modes. Sects. 2 and 3 will present the involved modes in more details as well as the currently related calibrations, as part of the calibration plans.ESO does not offer any pure polarimetric instrument. As a consequence the polarimetric modes are just one (or more) mode(s) of the given instruments. Polarimetric modes might be mentioned in the related IOT but are not followed up thoroughly as is e.g. spectroscopy.

  19. Point Source Polarimetry with the Gemini Planet Imager: Sensitivity Characterization with T5.5 Dwarf Companion HD 19467 B

    OpenAIRE

    Jensen-Clem, Rebecca; Millar-Blanchaer, Max; Mawet, Dimitri; Graham, James R.; Wallace, J. Kent; Macintosh, Bruce; Hinkley, Sasha; Wiktorowicz, Sloane J.; Perrin, Marshall D.; Marley, Mark S.; Fitzgerald, Michael P.; Oppenheimer, Rebecca; Ammons, S. Mark; Rantakyro, Fredrik T.; Marchis, Franck

    2016-01-01

    © 2016. The American Astronomical Society. All rights reserved. Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now b...

  20. Near-IR High-Resolution Imaging Polarimetry of the SU Aur Disk: Clues for Tidal Tails?

    Science.gov (United States)

    De Leon, Jerome; Michihiro, Takami; Karr, Jennifer; Hashimoto, Jun; Kudo, Tomoyuki; Sitko, Michael; Mayama, Satoshi; Kusakabe, Nobuyuki; Grady, Carol A.; McElwain, Michael W.

    2015-01-01

    We present new high-resolution (approximately 0.09) H-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0.15 (approximately 20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of approximately 90 AU, an inclination of approximately 35 deg from the plane of the sky, and an approximate PA of 15 deg for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2. 5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1 (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.

  1. Point Source Polarimetry with the Gemini Planet Imager: Sensitivity Characterization with T5.5 Dwarf Companion HD 19467 B

    Science.gov (United States)

    Jensen-Clem, Rebecca; Millar-Blanchaer, Max; Mawet, Dimitri; Graham, James R.; Wallace, J. Kent; Macintosh, Bruce; Hinkley, Sasha; Wiktorowicz, Sloane J.; Perrin, Marshall D.; Marley, Mark S.; hide

    2016-01-01

    Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of pCL99:73% less than 1:7%. We discuss our results in the context of T dwarf cloud models and photometric variability.

  2. Polarimetry of uncoupled light on the NIF.

    Science.gov (United States)

    Turnbull, D; Moody, J D; Michel, P; Ralph, J E; Divol, L

    2014-11-01

    Polarimetry has been added to the full aperture backscatter diagnostic on the NIF. Wollaston prisms are used to sample a small region of a beam's backscatter, effectively separating it into two linear polarizations, one of which is parallel to the incident beam. A time-averaged measurement of each polarization is obtained by imaging the separated spots off of a scatter plate. Results have improved understanding of crossed beam energy transfer, glint, and sidescatter, and motivated plans to upgrade to a time-resolved polarimeter measuring the full Stokes vector.

  3. Recovering a hidden polarization by ghost polarimetry.

    Science.gov (United States)

    Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang

    2018-02-15

    By exploiting polarization correlations of light from a broadband fiber-based amplified spontaneous emission source we succeed in reconstructing a hidden polarization in a ghost polarimetry experiment in close analogy to ghost imaging and ghost spectroscopy. Thereby, an original linear polarization state in the object arm of a Mach-Zehnder interferometer configuration which has been camouflaged by a subsequent depolarizer is recovered by correlating it with light from a reference beam. The variation of a linear polarizer placed inside the reference beam results in a Malus law type second-order intensity correlation with high contrast, thus measuring a ghost polarigram.

  4. Polarimetry of uncoupled light on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D., E-mail: turnbull2@llnl.gov; Moody, J. D.; Michel, P.; Ralph, J. E.; Divol, L. [National Ignition Facility and Photon Science, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15

    Polarimetry has been added to the full aperture backscatter diagnostic on the NIF. Wollaston prisms are used to sample a small region of a beam's backscatter, effectively separating it into two linear polarizations, one of which is parallel to the incident beam. A time-averaged measurement of each polarization is obtained by imaging the separated spots off of a scatter plate. Results have improved understanding of crossed beam energy transfer, glint, and sidescatter, and motivated plans to upgrade to a time-resolved polarimeter measuring the full Stokes vector.

  5. Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager

    Science.gov (United States)

    Vadawale, S. V.; Chattopadhyay, T.; Mithun, N. P. S.; Rao, A. R.; Bhattacharya, D.; Vibhute, A.; Bhalerao, V. B.; Dewangan, G. C.; Misra, R.; Paul, B.; Basu, A.; Joshi, B. C.; Sreekumar, S.; Samuel, E.; Priya, P.; Vinod, P.; Seetha, S.

    2018-01-01

    The Crab pulsar is a typical example of a young, rapidly spinning, strongly magnetized neutron star that generates broadband electromagnetic radiation by accelerating charged particles to near light speeds in its magnetosphere1. Details of this emission process so far remain poorly understood. Measurement of polarization in X-rays, particularly as a function of pulse phase, is thought to be a key element necessary to unravel the mystery of pulsar radiation2-4. Such measurements are extremely difficult, however: to date, Crab is the only pulsar to have been detected in polarized X-rays5-8 and the measurements have not been sensitive enough to adequately reveal the variation of polarization characteristics across the pulse7. Here, we present the most sensitive measurement to date of polarized hard X-ray emission from the Crab pulsar and nebula in the 100-380 keV band, using the Cadmium-Zinc-Telluride Imager9 instrument on-board the Indian astronomy satellite AstroSat10. We confirm with high significance the earlier indication6,7 of a strongly polarized off-pulse emission. However, we also find a variation in polarization properties within the off-pulse region. In addition, our data hint at a swing of the polarization angle across the pulse peaks. This behaviour cannot be fully explained by the existing theoretical models of high-energy emission from pulsars.

  6. Assessment of capabilities of multiangle imaging photo-polarimetry for atmospheric correction in presence of absorbing aerosols

    Science.gov (United States)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F. C.; Diner, D. J.

    2015-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard

  7. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry.

    Science.gov (United States)

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-12-01

    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.

  8. New opportunities for astronomical polarimetry

    International Nuclear Information System (INIS)

    Hough, J.H.

    2007-01-01

    Polarimetry has played an important role in many areas of astronomy, through the direct production of polarized flux in synchrotron and cyclotron radiation and the polarized emission from a medium of aligned dust grains (dichroic emission), and its production in secondary processes such as scattering and selective absorption in a medium of aligned grains (dichroic absorption). Future polarimetry at optical and infrared wavelengths, with the new generation of large telescopes and the use of adaptive optics, will provide important advances from the nearby universe to very high redshifts

  9. Heterodyne polarimetry technology for inspection of critical dimensions

    Directory of Open Access Journals (Sweden)

    Protopopov V.

    2010-06-01

    Full Text Available Heterodyne polarimetry is based on the analysis of phases and polarization states of two frequency shifted cross-polarized waves, generated by Zeeman lasers and their analogs [1]. In semiconductor industry, manufacturing of memory chips depends on the width and aspect ratio of a great number of identical parallel vertical and horizontal word and bit address lines. Such a structure may be considered as a wire grid polarizer for visible optics, and it is reasonable to expect that polarimetry techniques may be efficient for detecting tiny variations in this type of structures on masks and wafers. Currently, both imaging and non-imaging modalities are considered as complementary inspection technologies. The talk will focus on instrumentation, theory, and experimental results of two different inspection tools: scanning polarimeters for mapping variations of critical dimensions over lithography masks and semiconductor wafers, and polarization-controlled dual-channel heterodyne microscope with super-resolution capabilities.

  10. New methods for precision Moeller polarimetry*

    International Nuclear Information System (INIS)

    Gaskell, D.; Meekins, D.G.; Yan, C.

    2007-01-01

    Precision electron beam polarimetry is becoming increasingly important as parity violation experiments attempt to probe the frontiers of the standard model. In the few GeV regime, Moeller polarimetry is well suited to high-precision measurements, however is generally limited to use at relatively low beam currents (<10 μA). We present a novel technique that will enable precision Moeller polarimetry at very large currents, up to 100 μA. (orig.)

  11. Polarimetry and spectroscopy of the "oxygen flaring" DQ Herculis-like nova: V5668 Sagittarii (2015)

    Science.gov (United States)

    Harvey, E. J.; Redman, M. P.; Darnley, M. J.; Williams, S. C.; Berdyugin, A.; Piirola, V. E.; Fitzgerald, K. P.; O'Connor, E. G. P.

    2018-03-01

    ". Conclusions: V5668 Sgr (2015) was a remarkable nova of the DQ Her class. Changes in absolute polarimetric and spectroscopic multi-epoch observations lead to interpretations of physical characteristics of the nova's evolving outflow. The high densities that were found early-on combined with knowledge of the system's behaviour at other wavelengths and polarimetric measurements strongly suggest that the visual "cusps" are due to radiative shocks between fast and slow ejecta that destroy and create dust seed nuclei cyclically.

  12. Visual evoked potential and magnetic resonance imaging are more effective markers of multiple sclerosis progression than laser polarimetry with variable corneal compensation

    Directory of Open Access Journals (Sweden)

    Ema eKantorová

    2014-01-01

    Full Text Available Backround: The aim of our study was to assess the role of laser polarimetry and visual evoked potentials as potential biomarkers of disease progression in multiple sclerosis (MS. Participants: A total of 41 patients with MS (82 eyes and 22 age-related healthy volunteers (44 eyes completed the study. MS patients were divided into two groups, one (ON with a history of optic neuritis (17 patients, 34 eyes and another group (NON without it (24 patients, 48 eyes. The MS patients and controls underwent laser polarimetry (GDx examination of the retinal nerve fibre layer (RNFL. In the MS group we also examined: Kurtzke Expanded disability status scale (EDSS, the duration of the disorder, visual evoked potentials (VEP – latency and amplitude – and conventional brain MRI. Results: In the MS group, brain atrophy and new T2 brain lesions in MRI correlated with both VEP latencies and amplitudes. Separate comparisons revealed VEP latency testing to be less sensitive in ON than in NON patients. In ON patients, VEP amplitudes correlated mildly with brain atrophy (r =-0.15 and strongly with brain new MRI lesions (r = -0.8. In NON patients, highly significant correlation of new MRI brain lesions with VEP latencies (r = 0.63, r = 0.6, and amplitudes ( r = -0.3, r = -4.2 was found. EDSS also correlated with brain atrophy in this group (r = 0.5. Our study did not find a correlation of GDx measures with MRI tests. The GDx method was not able to detect whole brain demyelinisation and the degeneration process, but was only able to reveal the involvement of optic nerves in ON and NON patients.Conclusions: In our study, we found that both methods (VEP and GDx can be used for detection of optic nerve damage, but VEP was found to be superior in evaluating whole brain demyelinisation and axonal degeneration. Both VEP and MRI, but not GDx, have an important role in monitoring disease progression in MS patients, independent of the ON history.

  13. An Overview of X-Ray Polarimetry of Astronomical Sources

    Directory of Open Access Journals (Sweden)

    Martin C. Weisskopf

    2018-03-01

    Full Text Available We review the history of astronomical X-ray polarimetry based on the author’s perspective, beginning with early sounding-rocket experiments by Robert Novick at Columbia University and his team, of which the author was a member. After describing various early techniques for measuring X-ray polarization, we discuss the polarimeter aboard the Orbiting Solar Observatory 8 (OSO-8 and its scientific results. Next, we describe the X-ray polarimeter to have flown aboard the ill-fated original Spectrum-X mission, which provided important lessons on polarimeter design, systematic effects, and the programmatics of a shared focal plane. We conclude with a description of the Imaging X-ray Polarimetry Explorer (IXPE and its prospective scientific return. IXPE, a partnership between NASA and ASI, has been selected as a NASA Astrophysics Small Explorers Mission and is currently scheduled to launch in April of 2021.

  14. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope

    DEFF Research Database (Denmark)

    Leloudas, Giorgos; Maund, Justyn R.; Gal-Yam, Avishay

    2017-01-01

    We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropol......We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between -20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs...... of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us...

  15. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  16. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    International Nuclear Information System (INIS)

    Davies, A.; Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H.

    2014-01-01

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry

  17. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam.

    Science.gov (United States)

    Davies, A; Haberberger, D; Boni, R; Ivancic, S; Brown, R; Froula, D H

    2014-11-01

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  18. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A., E-mail: adavies@lle.rochester.edu; Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  19. Cosmic polarimetry in magnetoactive plasmas

    CERN Document Server

    Giovannini, Massimo

    2009-01-01

    Polarimetry of the Cosmic Microwave Background (CMB) represents one of the possible diagnostics aimed at testing large-scale magnetism at the epoch of the photon decoupling. The propagation of electromagnetic disturbances in a magnetized plasma leads naturally to a B-mode polarization whose angular power spectrum is hereby computed both analytically and numerically. Combined analyses of all the publicly available data on the B-mode polarization are presented, for the first time, in the light of the magnetized $\\Lambda$CDM scenario. Novel constraints on pre-equality magnetism are also derived in view of the current and expected sensitivities to the B-mode polarization.

  20. Radar Polarimetry and Interferometry (La polarimetrie et l'interferometrie radar) (CD-ROM)

    National Research Council Canada - National Science Library

    Keydel, W; Boerner, W. M; Pottier, E; Lee, J. S; Ferro-Famil, L; Hellmann, M; Cloude, S. R

    2005-01-01

    ...: Scientists and engineers already engaged in the fields of radar surveillance, reconnaissance and scattering measurements, for instance, generally gain their specialist knowledge in both polarimetry...

  1. EIC Electron Beam Polarimetry Workshop Summary

    International Nuclear Information System (INIS)

    Lorenzon, W.

    2008-01-01

    A summary of the Precision Electron Beam Polarimetry Workshop for a future Electron Ion Collider (EIC) is presented. The workshop was hosted by the University of Michigan Physics Department in Ann Arbor on August 23-24, 2007 with the goal to explore and study the electron beam polarimetry issues associated with the EIC to achieve sub-1% precision in polarization determination. Ideas are being presented that were exchanged among experts in electron polarimetry and source and accelerator design to examine existing and novel electron beam polarization measurement schemes

  2. Polarimetry of SN 2014J in M82 as a Probe of Its Dusty Environment

    Science.gov (United States)

    Wang, Lifan

    2014-10-01

    Late time polarimetry can effectively probe the circumstellar (CS) dust environment of SNe Ia. We propose to acquire imaging polarimetry of SN 2014J at three epochs between 200-400 days after the SN explosion. The delayed light from optical maximum may be scattered into the line of sight and reveal the scattering dust through polarization. Light echoes from interstellar dust at very large distances (> 10pc) from the SN will not be highly polarized in these observations due to the small scattering angle involved. Polarimetry at late time is thus an unambegeous probe of CS dust very close to the SN (at distances ~ 1 light year). Observations of the illusive CS matter is critical in constraining the progenitor systems of SNIa.

  3. Determination of foveal location using scanning laser polarimetry.

    Science.gov (United States)

    VanNasdale, Dean A; Elsner, Ann E; Weber, Anke; Miura, Masahiro; Haggerty, Bryan P

    2009-03-25

    The fovea is the retinal location responsible for our most acute vision. There are several methods used to localize the fovea, but the fovea is not always easily identifiable. Landmarks used to determine the foveal location are variable in normal subjects and localization becomes even more difficult in instances of retinal disease. In normal subjects, the photoreceptor axons that make up the Henle fiber layer are cylindrical and the radial orientation of these fibers is centered on the fovea. The Henle fiber layer exhibits form birefringence, which predictably changes polarized light in scanning laser polarimetry imaging. In this study 3 graders were able to repeatably identify the fovea in 35 normal subjects using near infrared image types with differing polarization content. There was little intra-grader, inter-grader, and inter-image variability in the graded foveal position for 5 of the 6 image types examined, with accuracy sufficient for clinical purposes. This study demonstrates that scanning laser polarimetry imaging can localize the fovea by using structural properties inherent in the central macula.

  4. Monitoring informal settlements using SAR polarimetry

    CSIR Research Space (South Africa)

    Kleynhans, W

    2012-10-01

    Full Text Available for settlement mapping and detection has remained largely unexplored in Southern Africa. The objective of this study is to investigate the possible role that SAR polarimetry could play in the monitoring of informal settlements....

  5. Polarimetry of stars and planetary systems

    National Research Council Canada - National Science Library

    Kolokolova, Ludmilla; Hough, James; Levasseur-Regourd, Anny-Chantal

    2015-01-01

    "Summarizing the striking advances of the last two decades, this reliable introduction to modern astronomical polarimetry provides a comprehensive review of state-of-the-art techniques, models and research methods...

  6. Moller Polarimetry with Atomic Hydrogen Targets

    International Nuclear Information System (INIS)

    Chudakov, Eugene; Luppov, V.

    2012-01-01

    A proposal to use polarized atomic hydrogen gas as the target for electron beam polarimetry based on the Moller scattering is described. Such a gas, stored in an ultra-cold magnetic trap, would provide a target of practically 100% polarized electrons. It is conceivable to reach a ∼0.3% systematic accuracy of the beam polarimetry with such a target. Feasibility studies for the CEBAF electron beam have been performed

  7. 2. Interferometry and polarimetry. 2.1. Principle of interferometry and polarimetry

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Okajima, Shigeki

    2000-01-01

    Laser interferometry and polarimetry are useful diagnostics for measuring electron density and the internal magnetic field distribution in the plasma. In this section, principles of interferometry and polarimetry and their applications to plasma diagnostics on LHD (section 2.2) and JT-60 (section 2.3) are descried. (author)

  8. Scanning laser polarimetry in glaucoma.

    Science.gov (United States)

    Dada, Tanuj; Sharma, Reetika; Angmo, Dewang; Sinha, Gautam; Bhartiya, Shibal; Mishra, Sanjay K; Panda, Anita; Sihota, Ramanjit

    2014-11-01

    Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL). White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP) are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far.

  9. Corneal polarimetry after LASIK refractive surgery

    Science.gov (United States)

    Bueno, Juan M.; Berrio, Esther; Artal, Pablo

    2006-01-01

    Imaging polarimetry provides spatially resolved information on the polarization properties of a system. In the case of the living human eye, polarization could be related to the corneal biomechanical properties, which vary from the normal state as a result of surgery or pathologies. We have used an aberro-polariscope, which we recently developed, to determine and to compare the spatially resolved maps of polarization parameters across the pupil between normal healthy and post-LASIK eyes. The depolarization distribution is not uniform across the pupil, with post-surgery eyes presenting larger levels of depolarization. While retardation increases along the radius in normal eyes, this pattern becomes irregular after LASIK refractive surgery. The maps of slow axis also differ in normal and post-surgery eyes, with a larger disorder in post-LASIK eyes. Since these changes in polarization indicate subtle structural modifications of the cornea, this approach can be useful in a clinical environment to follow the biomechanical and optical changes of the cornea after refractive surgery or for the early diagnosis of different corneal pathologies.

  10. Intrinsic coincident linear polarimetry using stacked organic photovoltaics.

    Science.gov (United States)

    Roy, S Gupta; Awartani, O M; Sen, P; O'Connor, B T; Kudenov, M W

    2016-06-27

    Polarimetry has widespread applications within atmospheric sensing, telecommunications, biomedical imaging, and target detection. Several existing methods of imaging polarimetry trade off the sensor's spatial resolution for polarimetric resolution, and often have some form of spatial registration error. To mitigate these issues, we have developed a system using oriented polymer-based organic photovoltaics (OPVs) that can preferentially absorb linearly polarized light. Additionally, the OPV cells can be made semitransparent, enabling multiple detectors to be cascaded along the same optical axis. Since each device performs a partial polarization measurement of the same incident beam, high temporal resolution is maintained with the potential for inherent spatial registration. In this paper, a Mueller matrix model of the stacked OPV design is provided. Based on this model, a calibration technique is developed and presented. This calibration technique and model are validated with experimental data, taken with a cascaded three cell OPV Stokes polarimeter, capable of measuring incident linear polarization states. Our results indicate polarization measurement error of 1.2% RMS and an average absolute radiometric accuracy of 2.2% for the demonstrated polarimeter.

  11. Polarimetry and physics of Be star envelopes

    International Nuclear Information System (INIS)

    Coyne, G.V.; McLean, I.S.

    1982-01-01

    A review of the most recent developments in polarization studies of Be stars is presented. New polarization techniques for high-resolution spectropolarimetry and for near infrared polarimetry are described and a wide range of new observations are discussed. These include broad-band, intermediate-band and multichannel observations of the continuum polarization of Be stars in the wavelength interval 0.3-2.2 microns, high resolution (0.5 A) line profile polarimetry of a few stars and surveys of many stars for the purposes of statistical analyses. The physical significance of the observational material is discussed in the light of recent theoretical models. Emphasis is placed on the physical and geometrical parameters of Be star envelopes which polarimetry helps to determine. (Auth.)

  12. 2. Interferometry and polarimetry. 2.3. Polarimetry on JT-60U

    International Nuclear Information System (INIS)

    Kawano, Yasunori

    2000-01-01

    In order to establish an electron density measurement method with high reliability and stability for magnetic-confinement fusion devices, studies on infrared polarimetry have been carried out in JT-60U. Electron density measurement based on tangential Faraday rotation has been verified using a CO 2 laser polarimeter developed for JT-60U. In this article, basic ideas of studies, results from polarimetry experiments, and suggestions for future devices are presented. (author)

  13. Investigation of the capability of the Compact Polarimetry mode to Reconstruct Full Polarimetry mode using RADARSAT2 data

    Directory of Open Access Journals (Sweden)

    S. Boularbah

    2012-06-01

    Full Text Available Recently, there has been growing interest in dual-pol systems that transmit one polarization and receive two polarizations. Souyris et al. proposed a DP mode called compact polarimetry (CP which is able to reduce the complexity, cost, mass, and data rate of a SAR system while attempting to maintain many capabilities of a fully polarimetric system. This paper provides a comparison of the information content of full quad-pol data and the pseudo quad-pol data derived from compact polarimetric SAR modes. A pseudo-covariance matrix can be reconstructed following Souyris’s approach and is shown to be similar to the full polarimetric (FP covariance matrix. Both the polarimetric signatures based on the kennaugh matrix and the Freeman and Durden decomposition in the context of this compact polarimetry mode are explored. The Freeman and Durden decomposition is used in our study because of its direct relationship to the reflection symmetry. We illustrate our results by using the polarimetric SAR images of Algiers city in Algeria acquired by the RadarSAT2 in C-band.

  14. Internal stress analysis by acoustic polarimetry

    International Nuclear Information System (INIS)

    Rouge, Jean; Robert, Andre

    The associated improvements of acoustics and electronics allow the field of applications relative to the ultrasonic methods to be extended to the non destructive control of materials and structures. Thus, the acoustical polarimetry is a new method allowing the measurement in orientation and intensity of residual or induced internal stresses in metals or other materials [fr

  15. 3He polarimetry in the HERMES experiment

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    We describe two polarimetry techniques used in the HERMES experiment. They are both based on the principle of measuring the rate and circular polarization of photons emitted from excited states of target atoms and can be used together to directly access information regarding the target atoms which interact with the beam. copyright 1998 American Institute of Physics

  16. The intertwined history of polarimetry and ellipsometry

    International Nuclear Information System (INIS)

    Azzam, R.M.A.

    2011-01-01

    Ellipsometry and reflection polarimetry are almost synonymous. Therefore it is not surprising that ellipsometry and polarimetry share a common history which is that of optical polarization. The discoveries in the late 1600s by Bartholinus and Huyghens of double refraction by Iceland spar and the unusual properties of the twin beams thus generated presented insurmountable difficulties for the entrenched corpuscular-ray theory of Newton and caused research on polarization to remain stagnant in the 1700s. Major breakthroughs came in the early 1800s when Malus discovered polarization of light by reflection and his cosine-squared law and Fresnel and Arago enunciated their laws of interference of polarized light that helped establish the transverse vector nature of luminous vibrations. Important further research immediately followed on optical rotatory power by Arago, Biot, and Pasteur that ushered fundamental and practical applications of polarimetry in chemistry and biology. Fresnel deserves to be recognized as a founder of ellipsometry by virtue of his laws of reflection of polarized light at interfaces between dissimilar media and his identification and production of circular and elliptical polarization. The later part of the 19th century witnessed significant discoveries of magneto-optic and electro-optic effects by Faraday, Kerr, and Pockels that greatly enriched polarization optics and physics. The 1896 discovery of the Zeeman effect launched the exciting field of solar polarimetry. The 1864 crown achievement of Maxwell's electromagnetic (EM) theory provided a unified framework for the analysis of polarization phenomena across the entire EM spectrum.

  17. Moeller polarimetry with atomic hydrogen targets

    International Nuclear Information System (INIS)

    Chudakov, E.; Luppov, V.

    2005-01-01

    A novel proposal of using polarized atomic hydrogen gas, stored in an ultra-cold magnetic trap, as the target for electron beam polarimetry based on Moeller scattering is discussed. Such a target of practically 100% polarized electrons could provide a superb systematic accuracy of about 0.5% for beam polarization measurements. Feasibility studies for the CEBAF electron beam have been performed. (orig.)

  18. RFI detected by kurtosis and polarimetry

    DEFF Research Database (Denmark)

    Balling, Jan E.; Søbjærg, Sten Schmidl; Kristensen, Steen Savstrup

    2012-01-01

    of the kurtosis method. An RFI detection scheme combining kurtosis and polarimetry has been evaluated, and it has been established that the two methods complement each other well. Following the addition of a digital filter bank to the radiometer system, a new RFI detection scheme has been developed and tested...

  19. Photometry and polarimetry of Nova Andromedae 1986

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Sen; Mikami, Yoshitaka; Kondo, Masayuki

    1988-01-01

    We have carried out photometry of Nova Andromedae 1986 and find that it should be classified as a fast nova. We have also made polarimetry simultaneously at six wavelengths between 0.36-0.70 ..mu..m. The polarization increased between 2 and 22 days after the light maximum showing that dust formation was associated with the nova explosion.

  20. Review of the emerging role of optical polarimetry in characterization of pathological myocardium.

    Science.gov (United States)

    Ahmad, Iftikhar

    2017-10-01

    Myocardial infarction (MI), a cause of significant morbidity and mortality, is typically followed by microstructural alterations where the necrotic myocardium is steadily replaced with a collagen scar. Engineered remodeling of the fibrotic scar via stem cell regeneration has been shown to improve/restore the myocardium function after MI. Nevertheless, the heterogeneous nature of the scar patch may impair the myocardial electrical integrity, leading to the formation of arrhythmogenesis. Radiofrequency ablation (RFA) offers an effective treatment for focal arrhythmias where local heating generated via electric current at specific spots in the myocardium ablate the arrhythmogenic foci. Characterization of these myocardial pathologies (i.e., infarcted, stem cell regenerated, and RFA-ablated myocardial tissues) is of potential clinical importance. Optical polarimetry, the use of light to map and characterize the polarization signatures of a sample, has emerged as a powerful imaging tool for structural characterization of myocardial tissues, exploiting the underlying highly fibrous tissue nature. This study aims to review the recent progress in optical polarimetry pertaining to the characterization of myocardial pathologies while describing the underlying biological rationales that give rise to the optical imaging contrast in various pathologies of the myocardium. Future possibilities of and challenges to optical polarimetry in cardiac imaging clinics are also discussed. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Stokes-vector and Mueller-matrix polarimetry [Invited].

    Science.gov (United States)

    Azzam, R M A

    2016-07-01

    This paper reviews the current status of instruments for measuring the full 4×1 Stokes vector S, which describes the state of polarization (SOP) of totally or partially polarized light, and the 4×4 Mueller matrix M, which determines how the SOP is transformed as light interacts with a material sample or an optical element or system. The principle of operation of each instrument is briefly explained by using the Stokes-Mueller calculus. The development of fast, automated, imaging, and spectroscopic instruments over the last 50 years has greatly expanded the range of applications of optical polarimetry and ellipsometry in almost every branch of science and technology. Current challenges and future directions of this important branch of optics are also discussed.

  2. Stellar and solar X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Novick, R [Columbia Univ., New York (USA)

    1975-12-01

    The scientific motivation for X-ray polarimetry is discussed with particular emphasis on the information that might be obtained on the binary X-ray pulsars in addition to a number of other classes of objects including solar flares. Detailed discussions are given for Thomson-scattering and Bragg-crystal polarimeters with numerical estimates for the sensitivity of various existing and proposed instruments.

  3. NEAR-INFRARED CIRCULAR AND LINEAR POLARIMETRY OF MONOCEROS R2

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jungmi; Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, 113-0033 (Japan); Hough, James H. [University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Nagata, Tetsuya [Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kusakabe, Nobuhiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-09-01

    We have conducted simultaneous JHK{sub s}-band imaging circular and linear polarimetry of the Monoceros R2 (Mon R2) cluster. We present results from deep and wide near-infrared linear polarimetry of the Mon R2 region. Prominent and extended polarized nebulosities over the Mon R2 field are revisited, and an infrared reflection nebula associated with the Mon R2 cluster and two local reflection nebulae, vdB 67 and vdB 69, is detected. We also present results from deep imaging circular polarimetry in the same region. For the first time, the observations show relatively high degrees of circular polarization (CP) in Mon R2, with as much as approximately 10% in the K{sub s} band. The maximum CP extent of a ring-like nebula around the Mon R2 cluster is approximately 0.60 pc, while that of a western nebula, around vdB 67, is approximately 0.24 pc. The extended size of the CP is larger than those seen in the Orion region around IRc2, while the maximum degree of CP of ∼10% is smaller than those of ∼17% seen in the Orion region. Nonetheless, both the CP size and degree of this region are among the largest in our infrared CP survey of star-forming regions. We have also investigated the time variability of the degree of the polarization of several infrared sources and found possible variations in three sources.

  4. Optimising polarised neutron scattering measurements--XYZ and polarimetry analysis

    International Nuclear Information System (INIS)

    Cussen, L.D.; Goossens, D.J.

    2002-01-01

    The analytic optimisation of neutron scattering measurements made using XYZ polarisation analysis and neutron polarimetry techniques is discussed. Expressions for the 'quality factor' and the optimum division of counting time for the XYZ technique are presented. For neutron polarimetry the optimisation is identified as analogous to that for measuring the flipping ratio and reference is made to the results already in the literature

  5. Optimising polarised neutron scattering measurements--XYZ and polarimetry analysis

    CERN Document Server

    Cussen, L D

    2002-01-01

    The analytic optimisation of neutron scattering measurements made using XYZ polarisation analysis and neutron polarimetry techniques is discussed. Expressions for the 'quality factor' and the optimum division of counting time for the XYZ technique are presented. For neutron polarimetry the optimisation is identified as analogous to that for measuring the flipping ratio and reference is made to the results already in the literature.

  6. Radar Polarimetry: Theory, Analysis, and Applications

    Science.gov (United States)

    Hubbert, John Clark

    The fields of radar polarimetry and optical polarimetry are compared. The mathematics of optic polarimetry are formulated such that a local right handed coordinate system is always used to describe the polarization states. This is not done in radar polarimetry. Radar optimum polarization theory is redeveloped within the framework of optical polarimetry. The radar optimum polarizations and optic eigenvalues of common scatterers are compared. In addition a novel definition of an eigenpolarization state is given and the accompanying mathematics is developed. The polarization response calculated using optic, radar and novel definitions is presented for a variety of scatterers. Polarimetric transformation provides a means to characterize scatters in more than one polarization basis. Polarimetric transformation for an ensemble of scatters is obtained via two methods: (1) the covariance method and (2) the instantaneous scattering matrix (ISM) method. The covariance method is used to relate the mean radar parameters of a +/-45^circ linear polarization basis to those of a horizontal and vertical polarization basis. In contrast the ISM method transforms the individual time samples. Algorithms are developed for transforming the time series from fully polarimetric radars that switch between orthogonal states. The transformed time series are then used to calculate the mean radar parameters of interest. It is also shown that propagation effects do not need to be removed from the ISM's before transformation. The techniques are demonstrated using data collected by POLDIRAD, the German Aerospace Research Establishment's fully polarimetric C-band radar. The differential phase observed between two copolar states, Psi_{CO}, is composed of two phases: (1) differential propagation phase, phi_{DP}, and (2) differential backscatter phase, delta. The slope of phi_{DP } with range is an estimate of the specific differential phase, K_{DP}. The process of estimating K_{DP} is complicated when

  7. Multi-wavelength Polarimetry of the GF9-2 YSO

    Science.gov (United States)

    Clemens, Dan P.; El-Batal, Adham M.; Montgomery, Jordan; Kressy, Sophia; Schroeder, Genevieve; Pillai, Thushara

    2018-06-01

    Our new SOFIA/HAWC+ 214 μm polarimetry of the cloud core containing the young stellar object GF9-2 (IRAS 20503+6006, aka L1082C) has been combined with deep near-infrared H- and K-band polarimetry of the cloud's core, obtained with the Mimir instrument. Additionally, Planck 870 μm and published optical polarimetry are included to provide context at larger size scales. We follow the direction and structure of the plane-of-sky magnetic field from the smallest physical scales (~10 arcsec or 4,000 AU) traced by SOFIA/HAWC+ to the Mimir field of view (10 arcmin, or 1.3 pc) and compare the B-field orientation with that of a faint reflection nebula seen in WISE and Spitzer images. The importance, or lack thereof, for the B-field in this naescent star-forming region is assessed through estimates of the Mass-to-Flux (M/Φ) ratio.This work has been supported by NSF AST14-12269, NASA NNX15AE51G, and USRA/SOF 04-0014 grants

  8. Polarimetry and Photometry of Gamma-Ray Bursts with RINGO2

    Science.gov (United States)

    Steele, I. A.; Kopač, D.; Arnold, D. M.; Smith, R. J.; Kobayashi, S.; Jermak, H. E.; Mundell, C. G.; Gomboc, A.; Guidorzi, C.; Melandri, A.; Japelj, J.

    2017-07-01

    We present a catalog of early-time (˜ {10}2-{10}4 s) photometry and polarimetry of all gamma-ray burst (GRB) optical afterglows observed with the RINGO2 imaging polarimeter on the Liverpool Telescope. Of the 19 optical afterglows observed, the following nine were bright enough to perform photometry and attempt polarimetry: GRB 100805A, GRB 101112A, GRB 110205A, GRB 110726A, GRB 120119A, GRB 120308A, GRB 120311A, GRB 120326A, and GRB 120327A. We present multiwavelength light curves for these 9 GRBs, together with estimates of their optical polarization degrees and/or limits. We carry out a thorough investigation of detection probabilities, instrumental properties, and systematics. Using two independent methods, we confirm previous reports of significant polarization in GRB 110205A and 120308A, and report the new detection of P={6}-2+3% in GRB101112A. We discuss the results for the sample in the context of the reverse- and forward-shock afterglow scenario, and show that GRBs with detectable optical polarization at early time have clearly identifiable signatures of reverse-shock emission in their optical light curves. This supports the idea that GRB ejecta contain large-scale magnetic fields, and it highlights the importance of rapid-response polarimetry.

  9. NEAR-INFRARED POLARIMETRY OF A NORMAL SPIRAL GALAXY VIEWED THROUGH THE TAURUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Clemens, Dan P.; Cashman, L. R.; Pavel, M. D.

    2013-01-01

    Few normal galaxies have been probed using near-infrared polarimetry, even though it reveals magnetic fields in the cool interstellar medium better than either optical or radio polarimetry. Deep H-band (1.6 μm) linear imaging polarimetry toward Taurus serendipitously included the galaxy 2MASX J04412715+2433110 with adequate sensitivity and resolution to map polarization across nearly its full extent. The observations revealed the galaxy to be a steeply inclined (∼75°) disk type with a diameter, encompassing 90% of the Petrosian flux, of 4.2 kpc at a distance of 53 Mpc. Because the sight line passes through the Taurus Molecular Cloud complex, the foreground polarization needed to be measured and removed. The foreground extinction A V of 2.00 ± 0.10 mag and reddening E(H – K) of 0.125 ± 0.009 mag were also assessed and removed, based on analysis of Two Micron All Sky Survey, UKIRT Infrared Deep Sky Survey, Spitzer, and Wide-field Infrared Survey Explorer photometry using the Near-Infrared Color Excess, NICE-Revisited, and Rayleigh-Jeans Color Excess methods. Corrected for the polarized foreground, the galaxy polarization values range from 0% to 3%. The polarizations are dominated by a disk-parallel magnetic field geometry, especially to the northeast, while either a vertical field or single scattering of bulge light produces disk-normal polarizations to the southwest. The multi-kiloparsec coherence of the magnetic field revealed by the infrared polarimetry is in close agreement with short-wavelength radio synchrotron observations of edge-on galaxies, indicating that both cool and warm interstellar media of disk galaxies may be threaded by common magnetic fields.

  10. Forward modeling of JET polarimetry diagnostic

    International Nuclear Information System (INIS)

    Ford, Oliver; Svensson, J.; Boboc, A.; McDonald, D. C.

    2008-01-01

    An analytical Bayesian inversion of the JET interferometry line integrated densities into density profiles and associated uncertainty information, is demonstrated. These are used, with a detailed model of plasma polarimetry, to predict the rotation and ellipticity for the JET polarimeter. This includes the lateral channels, for over 45,000 time points over 1313 JET pulses. Good agreement with measured values is shown for a number of channels. For the remaining channels, the requirement of a more detailed model of the diagnostic is demonstrated. A commonly used approximation for the Cotton-Mouton effect on the lateral channels is also evaluated.

  11. Neutron electric form factor via recoil polarimetry

    International Nuclear Information System (INIS)

    Richard Madey; Andrei Semenov; Simon Taylor; Aram Aghalaryan; Erick Crouse; Glen MacLachlan; Bradley Plaster; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Razmik Asaturyan; O. Baker; Alan Baldwin; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Wonick Seo; Neven Simicevic; Gregory Smith; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2003-01-01

    The ratio of the electric to the magnetic form factor of the neutron, G En /G Mn , was measured via recoil polarimetry from the quasielastic d((pol-e),e(prime)(pol-n)p) reaction at three values of Q 2 [viz., 0.45, 1.15 and 1.47 (GeV/c) 2 ] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G En follows the Galster parameterization up to Q 2 = 1.15 (GeV/c) 2 and appears to rise above the Galster parameterization at Q 2 = 1.47 (GeV/c) 2

  12. Electron polarimetry at low energies in Hall C at JLab

    International Nuclear Information System (INIS)

    Gaskell, D.

    2013-01-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered

  13. Laser Compton polarimetry at JLab and MAMI. A status report

    International Nuclear Information System (INIS)

    Diefenbach, J.; Imai, Y.; Han Lee, J.; Maas, F.; Taylor, S.

    2007-01-01

    For modern parity violation experiments it is crucial to measure and monitor the electron beam polarization continuously. In the recent years different high-luminosity concepts, for precision Compton backscattering polarimetry, have been developed, to be used at modern CW electron beam accelerator facilities. As Compton backscattering polarimetry is free of intrinsic systematic uncertainties, it can be a superior alternative to other polarimetry techniques such as Moeller and Mott scattering. State-of-the-art high-luminosity Compton backscattering designs currently in use and under development at JLab and Mainz are compared to each other. The latest results from the Mainz A4 Compton polarimeter are presented. (orig.)

  14. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.

    Science.gov (United States)

    Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K

    2011-06-10

    Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.

  15. Long-Term Multi-Band and Polarimetric View of Mkn 421: Motivations for an Integrated Open-Data Platform for Blazar Optical Polarimetry

    Directory of Open Access Journals (Sweden)

    Ulisses Barres de Almeida

    2017-11-01

    Full Text Available In this work, by making use of the large software and database resources made available through online facilities such as the ASI Science Data Center (ASDC, we present a novel approach to the modelling of blazar emission whereby the multi-epoch SED for Mkn 421 is modelled considering, in a self-consistent way, the temporal lags between bands (both in short and long-timescales. These are obtained via a detailed cross-correlation analysis, spanning data from radio to VHE gamma-rays from 2008 to 2015. In addition to that, long-term optical polarisation data is used to aid and complement our physical interpretation of the state and evolution of the source. Blazar studies constitute a clear example that astrophysics is becoming increasingly dominated by “big data”. Specific questions, such as the interpretation of polarimetric information—namely the evolution of the polarisation degree (PD and specially the polarisation angle (PA of a source—are very sensitive to the density of data coverage. Improving data accessibility and integration, in order to respond to these necessities, is thus extremely important and has a potentially large impact for blazar science. For this reason, we present also the project to create an open-access database for optical polarimetry, aiming to circumvent the issues raised above, by integrating long-term optical polarisation information on a number sources from several observatories and data providers in a consistent way. The platform, to be launched by the end of 2017 is built as part of the Brazilian Science Data Center (BSDC, a project hosted at CBPF, in Rio de Janeiro, and developed with the support of the Italian Space Agency (ASI and ICRANet. The BSDC is Virtual Observatory-compliant and is built in line with “Open Universe”, a global space science open-data initiative to be launched in November under the auspices of the United Nations.

  16. Principal Component Analysis In Radar Polarimetry

    Directory of Open Access Journals (Sweden)

    A. Danklmayer

    2005-01-01

    Full Text Available Second order moments of multivariate (often Gaussian joint probability density functions can be described by the covariance or normalised correlation matrices or by the Kennaugh matrix (Kronecker matrix. In Radar Polarimetry the application of the covariance matrix is known as target decomposition theory, which is a special application of the extremely versatile Principle Component Analysis (PCA. The basic idea of PCA is to convert a data set, consisting of correlated random variables into a new set of uncorrelated variables and order the new variables according to the value of their variances. It is important to stress that uncorrelatedness does not necessarily mean independent which is used in the much stronger concept of Independent Component Analysis (ICA. Both concepts agree for multivariate Gaussian distribution functions, representing the most random and least structured distribution. In this contribution, we propose a new approach in applying the concept of PCA to Radar Polarimetry. Therefore, new uncorrelated random variables will be introduced by means of linear transformations with well determined loading coefficients. This in turn, will allow the decomposition of the original random backscattering target variables into three point targets with new random uncorrelated variables whose variances agree with the eigenvalues of the covariance matrix. This allows a new interpretation of existing decomposition theorems.

  17. Monte Carlo evaluation of a CZT 3D spectrometer suitable for a Hard X- and soft-γ rays polarimetry balloon borne experiment

    DEFF Research Database (Denmark)

    Caroli, E.; De Cesare, G.; Curado da Silva, R. M.

    2015-01-01

    will be to provide high sensitivity for polarimetric measurements. In this framework, we have presented the concept of a small high-performance imaging spectrometer optimized for polarimetry between 100 and 600 keV suitable for a stratospheric balloon-borne payload and as a pathfinder for a future satellite mission....... The detector with 3D spatial resolution is based on a CZT spectrometer in a highly segmented configuration designed to operate simultaneously as a high performance scattering polarimeter. Herein, we report results of a Monte Carlo study devoted to optimize the configuration of the detector for polarimetry...

  18. Mueller matrix polarimetry for the characterization of complex ...

    Indian Academy of Sciences (India)

    Scattering; polarization; Mueller matrix; wave propagation in random media; ... Initial biomedical applications of this novel general method for polarimetry analysis in random media are also presented. ... Pramana – Journal of Physics | News.

  19. Mueller matrix polarimetry for the characterization of complex ...

    Indian Academy of Sciences (India)

    Initial biomedical applications of this novel general method for polarimetry ... erable current research interest as optical methods can facilitate non-invasive and quantitative ..... effects of all constituent sample was thus available. Table 1 shows ...

  20. The 3D Morphology of VY Canis Majoris II: Polarimetry and the Line-of-Sight Distribution of the Ejecta

    OpenAIRE

    Jones, Terry Jay; Humphreys, Roberta M.; Helton, L. Andrew; Gui, Changfeng; Huang, Xiang

    2007-01-01

    We use imaging polarimetry taken with the HST/ACS/HRC to explore the three dimensional structure of the circumstellar dust distribution around the red supergiant VY Canis Majoris. The polarization vectors of the nebulosity surrounding VY CMa show a strong centro-symmetric pattern in all directions except directly East and range from 10% - 80% in fractional polarization. In regions that are optically thin, and therefore likely have only single scattering, we use the fractional polarization and...

  1. Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications.

    Science.gov (United States)

    Manhas, Sandeep; Vizet, Jérémy; Deby, Stanislas; Vanel, Jean-Charles; Boito, Paola; Verdier, Mireille; De Martino, Antonello; Pagnoux, Dominique

    2015-02-09

    A novel technique to measure the full 4 × 4 Mueller matrix of a sample through an optical fiber is proposed, opening the way for endoscopic applications of Mueller polarimetry for biomedical diagnosis. The technique is based on two subsequent Mueller matrices measurements: one for characterizing the fiber only, and another for the assembly of fiber and sample. From this differential measurement, we proved theoretically that the polarimetric properties of the sample can be deduced. The proof of principle was experimentally validated by measuring various polarimetric parameters of known optical components. Images of manufactured and biological samples acquired by using this approach are also presented.

  2. Viability of exploiting L-shell fluorescence for X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, M C; Elsner, R F; Ramsey, B D [National Aeronautics and Space Administration, Huntsville, AL (USA). Space Sciences Lab.; Sutherland, P G [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Physics

    1985-05-15

    It has been suggested that one may build an X-ray polarimeter by exploiting the polarization dependence of the angular distribution of L-shell fluorescence photons. In this paper we examine, theoretically, the sensitivity of this approach to polarimetry. We apply our calculations to several detection schemes using imaging proportional counters that would have direct application in X-ray astronomy. We find, however, that the sensitivity of this method for measuring X-ray polarization is too low to be of use for other than laboratory applications.

  3. On the viability of exploiting L-shell fluorescence for X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, M C; Elsner, R F; Ramsey, B D; Sutherland, P G

    1985-05-15

    It has been suggested that one may build an X-ray polarimeter by exploiting the polarization dependence of the angular distribution of L-shell fluorescence photons. In this paper we examine, theoretically, the sensitivity of this approach to polarimetry. We apply our calculations to several detection schemes using imaging proportional counters that would have direct application in X-ray astronomy. We find, however, that the sensitivity of this method for measuring X-ray polarization is too low to be of use for other than laboratory applications. (orig.).

  4. Mapping the Upper Subsurface of MARS Using Radar Polarimetry

    Science.gov (United States)

    Carter, L. M.; Rincon, R.; Berkoski, L.

    2012-01-01

    Future human exploration of Mars will require detailed knowledge of the surface and upper several meters of the subsurface in potential landing sites. Likewise, many of the Planetary Science Decadal Survey science goals, such as understanding the history of Mars climate change, determining how the surface was altered through processes like volcanism and fluvial activity, and locating regions that may have been hospitable to life in the past, would be significantly advanced through mapping of the upper meters of the surface. Synthetic aperture radar (SAR) is the only remote sensing technique capable of penetrating through meters of material and imaging buried surfaces at high (meters to tens-of-meters) spatial resolution. SAR is capable of mapping the boundaries of buried units and radar polarimetry can provide quantitative information about the roughness of surface and subsurface units, depth of burial of stratigraphic units, and density of materials. Orbital SAR systems can obtain broad coverage at a spatial scale relevant to human and robotic surface operations. A polarimetric SAR system would greatly increase the safety and utility of future landed systems including sample caching.

  5. K-space polarimetry of bullseye plasmon antennas.

    Science.gov (United States)

    Osorio, Clara I; Mohtashami, Abbas; Koenderink, A Femius

    2015-04-30

    Surface plasmon resonators can drastically redistribute incident light over different output wave vectors and polarizations. This can lead for instance to sub-diffraction sized nanoapertures in metal films that beam and to nanoparticle antennas that enable efficient conversion of photons between spatial modes, or helicity channels. We present a polarimetric Fourier microscope as a new experimental tool to completely characterize the angle-dependent polarization-resolved scattering of single nanostructures. Polarimetry allows determining the full Stokes parameters from just six Fourier images. The degree of polarization and the polarization ellipse are measured for each scattering direction collected by a high NA objective. We showcase the method on plasmonic bullseye antennas in a metal film, which are known to beam light efficiently. We find rich results for the polarization state of the beamed light, including complete conversion of input polarization from linear to circular and from one helicity to another. In addition to uncovering new physics for plasmonic groove antennas, the described technique projects to have a large impact in nanophotonics, in particular towards the investigation of a broad range of phenomena ranging from photon spin Hall effects, polarization to orbital angular momentum transfer and design of plasmon antennas.

  6. NICMOS POLARIMETRY OF 'POLAR-SCATTERED' SEYFERT 1 GALAXIES

    International Nuclear Information System (INIS)

    Batcheldor, D.; Robinson, A.; Axon, D. J.; Young, S.; Quinn, S.; Smith, J. E.; Hough, J.; Alexander, D. M.

    2011-01-01

    The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 μm imaging polarimetry of six 'polar-scattered' Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus ( 2μm ) is consistent with the average for the optical spectrum(θ v ), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC 3227. In both NGC 4593 and Mrk 766, there is a large difference between θ 2μm and θ v off-nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC 4593, but there is no clear explanation in the case of the strongly polarized Mrk 766. Lastly, in Mrk 1239, a large change (∼60 0 ) in θ 2 μ m between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2 μm, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 μm emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission.

  7. POET: a SMEX mission for gamma ray burst polarimetry

    Science.gov (United States)

    McConnell, Mark L.; Baring, Matthew; Bloser, Peter; Dwyer, Joseph F.; Emslie, A. Gordon; Ertley, Camden D.; Greiner, Jochen; Harding, Alice K.; Hartmann, Dieter H.; Hill, Joanne E.; Kaaret, Philip; Kippen, R. M.; Mattingly, David; McBreen, Sheila; Pearce, Mark; Produit, Nicolas; Ryan, James M.; Ryde, Felix; Sakamoto, Takanori; Toma, Kenji; Vestrand, W. Thomas; Zhang, Bing

    2014-07-01

    Polarimeters for Energetic Transients (POET) is a mission concept designed to t within the envelope of a NASA Small Explorer (SMEX) mission. POET will use X-ray and gamma-ray polarimetry to uncover the energy release mechanism associated with the formation of stellar-mass black holes and investigate the physics of extreme magnetic ields in the vicinity of compact objects. Two wide-FoV, non-imaging polarimeters will provide polarization measurements over the broad energy range from about 2 keV up to about 500 keV. A Compton scatter polarimeter, using an array of independent scintillation detector elements, will be used to collect data from 50 keV up to 500 keV. At low energies (2{15 keV), data will be provided by a photoelectric polarimeter based on the use of a Time Projection Chamber for photoelectron tracking. During a two-year baseline mission, POET will be able to collect data that will allow us to distinguish between three basic models for the inner jet of gamma-ray bursts.

  8. Space- and Ground-based Coronal Spectro-Polarimetry

    Science.gov (United States)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  9. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Leloudas, Giorgos; Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Maund, Justyn R. [The Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Pursimo, Tapio [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Hsiao, Eric [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Malesani, Daniele; De Ugarte Postigo, Antonio [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Patat, Ferdinando [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-03-01

    We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between −20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us to determine that this increase (from ∼0.54% to ≳1.10%) coincides in time with rapid changes that took place in the optical spectrum. We conclude that the supernova underwent a “phase transition” at around +20 days, when the photospheric emission shifted from an outer layer, dominated by natal C and O, to a more aspherical inner core, dominated by freshly nucleosynthesized material. This two-layered model might account for the characteristic appearance and properties of Type I superluminous supernovae.

  10. Monitoring temporal microstructural variations of skeletal muscle tissues by multispectral Mueller matrix polarimetry

    Science.gov (United States)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2017-02-01

    Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.

  11. Use of Mueller matrix polarimetry and optical coherence tomography in the characterization of cervical collagen anisotropy.

    Science.gov (United States)

    Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Gonzalez, Mariacarla; Holness, Nola; Gomes, Jefferson; Jung, Ranu; Gandjbakhche, Amir; Chernomordik, Viktor V; Ramella-Roman, Jessica C

    2017-08-01

    Preterm birth (PTB) presents a serious medical health concern throughout the world. There is a high incidence of PTB in both developed and developing countries ranging from 11% to 15%, respectively. Recent research has shown that cervical collagen orientation and distribution changes during pregnancy may be useful in predicting PTB. Polarization imaging is an effective means to measure optical anisotropy in birefringent materials, such as the cervix's extracellular matrix. Noninvasive, full-field Mueller matrix polarimetry (MMP) imaging methodologies, and optical coherence tomography (OCT) imaging were used to assess cervical collagen content and structure in nonpregnant porcine cervices. We demonstrate that the highly ordered structure of the nonpregnant porcine cervix can be observed with MMP. Furthermore, when utilized ex vivo, OCT and MMP yield very similar results with a mean error of 3.46% between the two modalities. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Use of Mueller matrix polarimetry and optical coherence tomography in the characterization of cervical collagen anisotropy

    Science.gov (United States)

    Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Gonzalez, Mariacarla; Holness, Nola; Gomes, Jefferson; Jung, Ranu; Gandjbakhche, Amir; Chernomordik, Viktor V.; Ramella-Roman, Jessica C.

    2017-08-01

    Preterm birth (PTB) presents a serious medical health concern throughout the world. There is a high incidence of PTB in both developed and developing countries ranging from 11% to 15%, respectively. Recent research has shown that cervical collagen orientation and distribution changes during pregnancy may be useful in predicting PTB. Polarization imaging is an effective means to measure optical anisotropy in birefringent materials, such as the cervix's extracellular matrix. Noninvasive, full-field Mueller matrix polarimetry (MMP) imaging methodologies, and optical coherence tomography (OCT) imaging were used to assess cervical collagen content and structure in nonpregnant porcine cervices. We demonstrate that the highly ordered structure of the nonpregnant porcine cervix can be observed with MMP. Furthermore, when utilized ex vivo, OCT and MMP yield very similar results with a mean error of 3.46% between the two modalities.

  13. Calibration Errors in Interferometric Radio Polarimetry

    Science.gov (United States)

    Hales, Christopher A.

    2017-08-01

    Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.

  14. Polarimetry at a Future Linear Collider - How Precise?

    International Nuclear Information System (INIS)

    Woods, Michael B

    2000-01-01

    At a future linear collider, a polarized electron beam will play an important role in interpreting new physics signals. Backgrounds to a new physics reaction can be reduced by choice of the electron polarization state. The origin of a new physics reaction can be clarified by measuring its polarization-dependence. This paper examines some options for polarimetry with an emphasis on physics issues that motivate how precise the polarization determination needs to be. In addition to Compton polarimetry, the possibility of using Standard Model asymmetries, such as the asymmetry in forward W-pairs, is considered as a possible polarimeter. Both e + e - and e + e - collider modes are considered

  15. Infrared polarimetry and photometry of BL Lac objects. 3

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, P A; Brand, P W.J.L. [Edinburgh Univ. (UK). Dept. of Astronomy; Impey, C D [Hawaii Univ., Honolulu (USA). Inst. for Astronomy; Williams, P M [UKIRT, Hilo, HI (USA)

    1984-10-15

    The data presented here is part of a continuing monitoring programme of BL lac objects with J, H and K photometry and polarimetry. A total of 30 BL Lac objects have now been observed photometrically. Infrared polarimetry has also been obtained for 24 of these objects. The sample is sufficiently large to examine statistically, and several important correlations have emerged. Internight variations and wavelength dependence of polarization indicate that BL Lac objects, as a class, may be understood in terms of a relatively simple two-component model.

  16. Electron track reconstruction and improved modulation for photoelectric X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tenglin [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Zeng, Ming, E-mail: zengming@tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Feng, Hua [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Cang, Jirong [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Li, Hong; Zhang, Heng [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Zeng, Zhi; Cheng, Jianping; Ma, Hao; Liu, Yinong [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China)

    2017-06-21

    The key to photoelectric X-ray polarimetry is the determination of the emission direction of photoelectrons. Because of the low mass of an electron, the ionisation trajectory is not straight and the useful information needed for polarimetry is stored mostly in the initial part of the track where less energy is deposited. We present a new algorithm, based on the shortest path problem in graph theory, to reconstruct the 2D electron track from the measured image that is blurred due to transversal diffusion along drift and multiplication in the gas chamber. Compared with previous methods based on moment analysis, this algorithm allows us to identify the photoelectric interaction point more accurately and precisely for complicated tracks resulting from high energy photons or low pressure chambers. This leads to a better position resolution and a higher degree of modulation toward high energy X-rays. The new algorithm is justified using simulations and measurements with the gas pixel detector (GPD), and it should also work for other polarimetric techniques such as a time projection chamber (TPC). As the improvement is restricted in the high energy band, this new algorithm shows limited improvement for the sensitivity of GPD polarimeters, but it may have a larger potential for low-pressure TPC polarimeters.

  17. New results from optical polarimetry of Saturn's rings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P E; Kemp, J C; King, R; Parker, T E; Barbour, M S [Oregon Univ., Eugene (USA). Dept. of Physics

    1980-01-10

    Linear polarimetry of Saturn's rings, obtained through the period of the 1979 opposition, is presented. The polarisation clearly correlates in direction with the plane containing the Sun, planet and Earth, but not the ring plane. The results are consistent with local scattering on the surface of individual ring bodies, covered with frost.

  18. CNI polarimetry and the hadronic spin dependence of pp scattering

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1996-01-01

    Methods for limiting the size of hadronic spin-flip in the Coulomb- Nuclear Interference. region are critically assessed. This work was presented at the High Energy Polarimetry Workshop in Amsterdam, Sept. 9, 1996 and the RHIC Spin Collaboration meeting in Marseille, Sept. 17, 1996

  19. Characterization of photonic structures using visible and infrared polarimetry

    Directory of Open Access Journals (Sweden)

    Kral Z.

    2010-06-01

    Full Text Available Photonic Crystals are materials with a spatial periodic variation of the refractive index on the wavelength scale. This confers these materials interesting photonic properties such as the existence of photonic bands and forbidden photon frequency ranges, the photonic band gaps. Among their applications it is worth mentioning the achievement of low-threshold lasers and high-Q resonant cavities. A particular case of the Photonic Crystals is well-known and widely studied since a long time: the periodic thin film coatings. The characterization of thin film coatings is a classical field of study with a very well established knowledge. However, characterization of 2D and 3D photonic crystals needs to be studied in detail as it poses new problems that have to be solved. In this sense, Polarimetry is a specially suited tool given their inherent anisotropy: photonic bands depend strongly on the propagation direction and on polarization. In this work we show how photonic crystal structures can be characterized using polarimetry equipment. We compare the numerical modeling of the interaction of the light polarization with the photonic crystal with the polarimetry measurements. With the S-Matrix formalism, the Mueller matrix of a Photonic Crystal for a given wavelength, angle of incidence and propagation direction can be obtained. We will show that useful information from polarimetry (and also from spectrometry can be obtained when multivariate spectra are considered. We will also compare the simulation results with Polarimetry measurements on different kinds of samples: macroporous silicon photonic crystals in the near-IR range and Laser-Interference-Lithography nanostructured photoresist.

  20. 16th International Workshop on Polarized Sources, Targets, and Polarimetry (PSTP 2015)

    CERN Document Server

    2015-01-01

    The Workshop on Polarized Sources, Targets and Polarimetry has been a tradition for more than 20 years, moving between Europe, USA and Japan. The XVIth International Workshop on Polarized Sources, Targets and Polarimetry (PSTP 2015) will take place at the Ruhr-University of Bochum, Germany. The workshop addresses the physics and technological challenges related to polarized gas/solid targets, polarized electron/positron/ion/neutron sources, polarimetry and their applications. will be published in Proceedings of Science

  1. CCD polarimetry as a probe of regions of recent-star formation

    Energy Technology Data Exchange (ETDEWEB)

    Draper, P W

    1988-01-01

    Chapter 1 of this thesis details the incorporation of a Charged-Coupled Device (CCD) detector system with the Durham Imaging Polarimeter. The details include the physical characteristics of the device and the electronics and software associated with the device control and data storage. Chapter 2 of this work describes fully how suitable corrections for this effect can be made, and derives first-order results. The CCD performance is examined in comparison with the detector used previously and hence the veracity of the new results is established. Chapter 3 is a relevant summary of the status of the astronomy of the immediate regions of recent-star formation. Chapter 4 describes multicolor polarimetry of NGC2261/R Mon covering the period 1979 to 1986. The data conclusively prove that the polarization of R Mon must be due to effects close to R Mon (approx.14 astronomical units).

  2. A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry

    Science.gov (United States)

    Hunter, Stanley D.; Bloser, Peter F.; Depaola, Gerardo; Dion, Michael P.; DeNolfo, Georgia A.; Hanu, Andrei; Iparraguirre, Marcos; Legere, Jason; Longo, Francesco; McConnell, Mark L.; hide

    2014-01-01

    We describe the science motivation and development of a pair production telescope for medium-energy (approximately 5-200 Mega electron Volts) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (approximately 0.6 deg at 70 Mega electron Volts), continuum sensitivity comparable with the Fermi-LAT front detector (is less than 3 x 10(exp -6) Mega electron Volts per square centimeter per second at 70 Mega electron Volts), and minimum detectable polarization less than 10% for a 10 milliCrab source in 10(exp 6) s.

  3. Polarimetry of 600 pulsars from observations at 1.4 GHz with the Parkes radio telescope

    Science.gov (United States)

    Johnston, Simon; Kerr, Matthew

    2018-03-01

    Over the past 13 yr, the Parkes radio telescope has observed a large number of pulsars using digital filter bank backends with high time and frequency resolution and the capability for Stokes recording. Here, we use archival data to present polarimetry data at an observing frequency of 1.4 GHz for 600 pulsars with spin-periods ranging from 0.036 to 8.5 s. We comment briefly on some of the statistical implications from the data and highlight the differences between pulsars with high and low spin-down energy. The data set, images and table of properties for all 600 pulsars are made available in a public data archive maintained by the CSIRO.

  4. X-ray polarimetry and new prospects in high-energy astrophysics

    International Nuclear Information System (INIS)

    Sgrò, C.

    2016-01-01

    Polarimetry is universally recognized as one of the new frontiers in X-ray astrophysics. It is a powerful tool to investigate a variety of astrophysical processes, as well as a mean to study fundamental physics in space. A renewed interest is testified by dedicated missions approved for phase A by ESA and NASA. The main advance is the availability of a gas pixel detector that is able to add polarization measurement to imaging and spectroscopy, and can be used at the focus of a conventional X-ray optics. The detector exploits the photoelectric effect in gas and a finely segmented ASIC as a collecting anode. In this work I will describe in detail the experimental technique and the detector concept, and illustrate the scientific prospects of these new missions.

  5. OPTICAL I-BAND LINEAR POLARIMETRY OF THE MAGNETAR 4U 0142+61 WITH SUBARU

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongxiang; Tziamtzis, Anestis [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Tanaka, Yasuyuki T.; Kawabata, Koji S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Wang, Chen [National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Beijing 100012 (China); Fukazawa, Yasushi; Itoh, Ryosuke [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-12-01

    Magnetars are known to have optical and/or infrared (IR) emission, but the origin of the emission is not well understood. In order to fully study their emission properties, we have carried out for the first time optical linear polarimetry of the magnetar 4U 0142+61, which has been determined from different observations to have a complicated broadband spectrum over optical and IR wavelengths. From our I-band imaging polarimetric observation, conducted with the 8.2-m Subaru telescope, we determine the degree of linear polarization to be P = 1.0 ± 3.4%, or P ≤ 5.6% (90% confidence level). Considering models that were suggested for optical emission from magnetars, we discuss the implications of our result. The upper limit measurement indicates that, differing from radio pulsars, magnetars probably would not have strongly polarized optical emission if the emission arises from their magnetosphere as suggested.

  6. Sensitivity study of a proposed polarimetry diagnostic on ASDEX upgrade

    International Nuclear Information System (INIS)

    Callaghan, H.P.; McCarthy, P.J.

    1994-09-01

    ASDEX-Upgrade currently uses FIR interferometry (DCN, 195 μm) as a technique for measuring line integrated electron density along eight chords of the plasma cross-section. A polarimetry diagnostic based on Faraday rotation using the existing setup would yield ∫ n e B.dl along the same chords which, in combination with the ∫ n e dl measurements, would provide additional information about the poloidal magnetic field. This would be helpful for reconstructing the q(ψ) profile, which is difficult to recover from external magnetic measurements alone. A sensitivity study to determine the effectiveness of adding polarimetry to ASDEX Upgrade is carried out using function parameterization on a simulated equilibrium database, together with a database of randomly chosen density profiles with four degrees of freedom. The robustness of the recovery in the presence of measurement noise and the effects of plasma birefringence are taken into account. (orig.)

  7. Polarimetry concept based on heavy crystal hadron calorimeter

    Science.gov (United States)

    Keshelashvili, I.; Müller, F.; Mchedlishvili, D.; JEDI Collaboration

    2017-11-01

    In the ongoing JEDI (Jülich Electric Dipole moment Investigations) project, the essential point will be to measure a tiny beam polarization change over an extended period of time. The particle scarcity in the polarized deuteron or proton beams and the required slow extraction rate puts tough experimental constrains on the polarimetry. For the EDM measurements, a dedicated high precision polarimeter is required. To fulfill specifications, a fast, dense, high resolution (energy and time), and radioactive hard novel crystal scintillating material is required. LYSO crystals are supposed to be used as an ideal scintillating material for this kind of detector. The LYSO crystal PMT and SiPM readout, with a FADC based system is under development. The first proton and deuteron beam test of the prototypes are presented here. In this paper, the new polarimetry concept and preliminary results from first proton and deuteron beam time are presented.

  8. A review of plasma polarimetry (theory and techniques)

    International Nuclear Information System (INIS)

    Segre, S. E.

    1997-11-01

    A review of plasma polarimetry is presented. First the theory is discussed in general, exact analytic solutions of the polarization evolution equation are presented and then approximate analytic solutions. Numerical integration of the evolution equation is also discussed. The design of experiments is then considered, with special attention to the techniques of polarization modulation (both progressive and alternating modulation). Different alternative configurations are described for progressive modulation which are of special interest because they can be realized in the far infrared and because they allow a measurement of phases rather than amplitudes. The effects of refraction are then considered. Finally, the combination of polarimetry and interferometry on the same instrument is discussed, including the effects of polarization modulation

  9. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    Science.gov (United States)

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  10. Infrared polarimetry and photometry of BL Lac objects. 2

    Energy Technology Data Exchange (ETDEWEB)

    Impey, C D [Hawaii Univ., Honolulu (USA). Inst. for Astronomy; Brand, P W.J.L. [Edinburgh Univ. (UK). Dept. of Astronomy; Wolstencroft, R D [Royal Observatory, Edinburgh (UK); Williams, P M [United Kingdom Infrared Telescope Unit, Hilo, Hawaii (USA)

    1984-07-15

    Photometry and polarimetry in the JHK wavebands have now been obtained for 25 BL Lac objects. Several new objects have been monitored for periods of up to five days, and accumulated data is sufficient for a statistical analysis of polarization properties. The selection effects operating on this sample are examined first. A power-law spectrum is consistent with the spectra of all but three objects. A number of important new results are reported.

  11. Infrared polarimetry and photometry of BL Lac objects

    International Nuclear Information System (INIS)

    Impey, C.D.; Williams, P.M.

    1984-01-01

    Photometry and polarimetry in the JHK wavebands have now been obtained for 25 BL Lac objects. Several new objects have been monitored for periods of up to five days, and accumulated data is sufficient for a statistical analysis of polarization properties. The selection effects operating on this sample are examined first. A power-law spectrum is consistent with the spectra of all but three objects. A number of important new results are reported. (author)

  12. A search for changing look quasars in second epoch imaging

    Science.gov (United States)

    Findlay, Joseph; Myers, Adam; McGreer, Ian

    2018-01-01

    Over nearly two decades, the Sloan Digital Sky Survey has compiled a catalog of over half a million confirmed quasars. During that period approximately ten percent of these objects have been spectroscopically observed in two or more epochs over baselines of ten or more years. This led recently to the discovery of the largest change in luminosity ever before observed in a quasar. The dimming emission was a reflection of very significant changes in continuum and broad line properties, the source had effectively transitioned from a Type I quasar to a Type II AGN. Since then several more "changing look" quasars have been discovered in multi-epoch SDSS spectroscopy. Among them are objects with rising and falling luminosities, appearing and disappearing broad lines. The origin of this behavior is still very uncertain, currently favored is the scenario in which an accreting black hole is simply starved of fuel. Other plausible scenarios include flaring due to stellar tidal disruption close to the black hole or large changes in accretion flow, which can occur during transitions between radiatively efficient and inefficient accretion regimes. Monitoring of larger numbers of changing look quasars will help to elucidate these ideas.In this poster, we report on the progress of a pilot study in which we hope to learn how to select changing look quasars in multi-epoch imaging. This will allow us to take advantage of the entire SDSS quasar catalog rather than just the ten percent of objects with multi-epoch spectroscopy. Comparing archival SDSS and more recent Legacy Survey imaging over ten-year baselines we select objects whose photometry is consistent with the large changes in luminosity expected in changing look quasars. We aim to build up a catalog of both transitioned and transitioning objects for future monitoring.

  13. Using polarimetry to detect and characterize Jupiter-like extrasolar planets

    NARCIS (Netherlands)

    Stam, D.M.; Hovenier, J.W.; Waters, L.B.F.M.

    2004-01-01

    Using numerical simulations of flux and polarization spectra of visible to near-infrared starlight reflected by Jupiter-like extrasolar planets, we show that polarimetry can be used both for the detection and for the characterization of extrasolar planets. Polarimetry is valuable for detection

  14. Evaluation of a hybrid photon counting pixel detector for X-ray polarimetry

    International Nuclear Information System (INIS)

    Michel, T.; Durst, J.

    2008-01-01

    It has already been shown in literature that X-ray sensitive CCDs can be used to measure the degree of linear polarization of X-rays using the effect that photoelectrons are emitted with a non-isotropic angular distribution in respect to the orientation of the electric field vector of impinging photons. Up to now hybrid semiconductor pixel detectors like the Timepix-detector have never been used for X-ray polarimetry. The main reason for this is that the pixel pitch is large compared to CCDs which results in a much smaller analyzing power. On the other hand, the active thickness of the sensor layer can be larger than in CCDs leading to an increased efficiency. Therefore hybrid photon counting pixel detectors may be used for imaging and polarimetry at higher photon energies. For irradiation with polarized X-ray photons we were able to measure an asymmetry between vertical and horizontal double hit events in neighboring pixels of the hybrid photon counting Timepix-detector at room temperature. For the specific spectrum used in our experiment an average polarization asymmetry of (0.96±0.02)% was measured. Additionally, the Timepix-detector with its spectroscopic time-over-threshold-mode was used to measure the dependence of the polarization asymmetry on energy deposition in the detector. Polarization asymmetries between 0.2% at 29 keV and 3.4% at 78 keV energy deposition were determined. The results can be reproduced with our EGS4-based Monte-Carlo simulation

  15. Diagnostic capability of scanning laser polarimetry with and without enhanced corneal compensation and optical coherence tomography.

    Science.gov (United States)

    Benítez-del-Castillo, Javier; Martinez, Antonio; Regi, Teresa

    2011-01-01

    To compare the abilities of the current commercially available versions of scanning laser polarimetry (SLP) and optical coherence tomography (OCT), SLP-variable corneal compensation (VCC), SLP-enhanced corneal compensation (ECC), and high-definition (HD) OCT, in discriminating between healthy eyes and those with early-to-moderate glaucomatous visual field loss. Healthy volunteers and patients with glaucoma who met the eligibility criteria were consecutively enrolled in this prospective, cross-sectional, observational study. Subjects underwent complete eye examination, automated perimetry, SLP-ECC, SLP-VCC, and HD-OCT. Scanning laser polarimetry parameters were recalculated in 90-degree segments (quadrants) in the calculation circle to be compared. Areas under the receiver operating characteristic curve (AUROCs) were calculated for every parameter in order to compare the ability of each imaging modality to differentiate between normal and glaucomatous eyes. Fifty-five normal volunteers (mean age 59.1 years) and 33 patients with glaucoma (mean age 63.8 years) were enrolled. Average visual field mean deviation was -6.69 dB (95% confidence interval -8.07 to -5.31) in the glaucoma group. The largest AUROCs were associated with nerve fiber indicator (0.880 and 0.888) for the SLP-VCC and SLP-ECC, respectively, and with the average thickness in the HD-OCT (0.897). The best performing indices for the SLP-VCC, SLP-ECC, and HD OCT gave similar AUROCs, showing moderate diagnostic accuracy in patients with early to moderate glaucoma. Further studies are needed to evaluate the ability of these technologies to discriminate between normal and glaucomatous eyes.

  16. MULTI-WAVELENGTH POLARIMETRY AND SPECTRAL STUDY OF THE M87 JET DURING 2002–2008

    Energy Technology Data Exchange (ETDEWEB)

    Avachat, Sayali S.; Perlman, Eric S. [Department of Physics and Space Sciences, 150 W. University Boulevard, Florida Institute of Technology, Melbourne, FL 32901 (United States); Adams, Steven C. [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30605 (United States); Cara, Mihai; Sparks, William B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Owen, Frazer [National Radio Astronomy Observatory, Array Operations Center, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)

    2016-11-20

    We present a multi-wavelength polarimetric and spectral study of the M87 jet obtained at sub-arcsecond resolution between 2002 and 2008. The observations include multi-band archival VLA polarimetry data sets along with Hubble Space Telescope ( HST ) imaging polarimetry. These observations have better angular resolution than previous work by factors of 2–3 and in addition, allow us to explore the time domain. These observations envelop the huge flare in HST-1 located 0.″86 from the nucleus. The increased resolution enables us to view more structure in each knot, showing several resolved sub-components. We also see apparent helical structure in the polarization vectors in several knots, with polarization vectors turning either clockwise or counterclockwise near the flux maxima in various places as well as showing filamentary undulations. Some of these characteristics are correlated with flux and polarization maxima while others are not. We also examine the total flux and fractional polarization and look for changes in both radio and optical since the observations of Perlman et al. (1999) and test them against various models based on shocks and instabilities in the jet. Our results are broadly consistent with previous spine-sheath models and recollimation shock models; however, they require additional combinations of features to explain the observed complexity, e.g., shearing of magnetic field lines near the jet surface and compression of the toroidal component near shocks. In particular, in many regions we find apparently helical features both in total flux and polarization. We discuss the physical interpretation of these features.

  17. Passive millimeter wave differential interference contrast polarimetry

    Science.gov (United States)

    Bernacki, Bruce E; Kelly, James F; Sheen, David M; Tedeschi, Jonathan R; Hall, Thomas E; Hatchell, Brian K; Valdez, Patrick; McMakin, Douglas L

    2014-04-29

    Differential polarization imaging systems include an axicon configured to provide a displacement of ray bundles associated with different image patches. The displaced ray bundles are directed to antenna horns and orthomode transducers so as to provide outputs correspond to orthogonal linear states of polarization (SOPs). The outputs are directed to a differential radiometer so that Stokes parameter differences between image patches can be obtained. The ray bundle displacements can be selected to correspond to a mechanical spacing of antenna horns. In some examples, ray bundle displacement corresponds to a displacement less than the diffraction limit.

  18. Put X-Ray Polarimetry on the MAP!

    Science.gov (United States)

    Weisskopf, Martin C.

    2013-01-01

    With Prof. R. Novick and others at the Columbia Astrophysics Laboratory I help found the field of X-ray polarimetry in the early 1970s. Currently I have more experience with the design, construction, calibration, and space flight of such instruments than anyone on the planet. The early probing beginnings saw only one definitive measurement (that of the integrated low-energy X-ray emission from the Crab Nebula sans pulsar) and a number of upper limits. The limited success did nevertheless inspire a number of detailed theoretical calculations, concentrating at first on neutron stars and black holes showing how precise measurements (e.g. degree of polarization and position angle as a function of pulse phase) would provide definitive limitations on otherwise equally plausible theoretical models. Over time the theoretical foundation has grown (e.g. the proceedings of the X-Ray Polarimetry Workshop held at SLAC in 2004). I will outline these foundations. It is important to understand the history of X-ray polarimetry beyond the early excitement. A polarimeter was at the focus of the original Einstein mission but was dropped during the restructuring. A polarimeter was successfully proposed (R. Novick PI, I was a Co-I) and built for the original Spectrum-X mission. During the years before the cancellation of Spectrum-X, the potential flight of this device stood in the way of other space flights for polarimeters --- "let us wait and see what it finds". This was unfortunate as there were a number of reasons why that polarimeter should not have been flown on the mission. Perhaps the most significant (but not only) reason was that a shared focal plane provided very little observing time. This is an extremely important point in considering the Roadmap. It is doubtful that there many 100%-polarized sources and so the "signal" is more typically a small fraction of the source flux. Thus, the source itself provides a substantial background, making continuum polarimetry even more

  19. XIPE: the x-ray imaging polarimetry explorer

    DEFF Research Database (Denmark)

    Soffitta, P.; R., Bellazzini; Bozzo, E.

    2016-01-01

    Downloading of the abstract is permitted for personal use only. See: http://dx.doi.org/10.1117/12.2233046......Downloading of the abstract is permitted for personal use only. See: http://dx.doi.org/10.1117/12.2233046...

  20. Learning From Nature: Biomimetic Polarimetry for Imaging in Obscuring Environments

    Energy Technology Data Exchange (ETDEWEB)

    VanderLaan, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kemme, Shanalyn A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index systematically, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement in circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.

  1. GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Greiner, J.; Mannheim, K.; Hudec, René; Mészáros, A.

    2012-01-01

    Roč. 34, č. 2 (2012), s. 551-582 ISSN 0922-6435 Institutional research plan: CEZ:AV0Z10030501 Keywords : compton and pair creation telescope * gamma-ray bursts * nucleosynthesis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.969, year: 2012

  2. Protoplanetary disks studied with 2-Dimensional imaging polarimetry

    International Nuclear Information System (INIS)

    Hajjar, R.; Bastien, P.

    2000-01-01

    Full text: This paper describes a method devised to determine density profiles of disks around Young Stellar Objects (YSOs), since this is crucial for the determination of the possible creation of planets based on theories of the proto solar nebula. It is based on the determination of the position of null polarization points in maps of YSOs as a function of wavelength. This information is interpreted in terms of variation in optical depth then converted to densities based on opacity tables for published grain models. This method has been used on a number of YSOs, namely HL Tau, the archetypal low mass T tauri protostar and showed a density profile compatible with previous models based on the spectral energy distribution of T Tauri stars. We will also explore the possibility of combining this method with millimeter and submillimeter data in order to better constraint grain models circumstellar matter distribution around YSOs

  3. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto

    2017-02-08

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

  4. Compact Polarimetry in a Low Frequency Spaceborne Context

    Science.gov (United States)

    Truong-Loi, M-L.; Freeman, A.; Dubois-Fernandez, P.; Pottier, E.

    2011-01-01

    Compact polarimetry has been shown to be an interesting alternative mode to full polarimetry when global coverage and revisit time are key issues. It consists on transmitting a single polarization, while receiving on two. Several critical points have been identified, one being the Faraday rotation (FR) correction and the other the calibration. When a low frequency electromagnetic wave travels through the ionosphere, it undergoes a rotation of the polarization plane about the radar line of sight for a linearly polarized wave, and a simple phase shift for a circularly polarized wave. In a low frequency radar, the only possible choice of the transmit polarization is the circular one, in order to guaranty that the scattering element on the ground is illuminated with a constant polarization independently of the ionosphere state. This will allow meaningful time series analysis, interferometry as long as the Faraday rotation effect is corrected for the return path. In full-polarimetric (FP) mode, two techniques allow to estimate the FR: Freeman method using linearly polarized data, and Bickel and Bates theory based on the transformation of the measured scattering matrix to a circular basis. In CP mode, an alternate procedure is presented which relies on the bare surface scattering properties. These bare surfaces are selected by the conformity coefficient, invariant with FR. This coefficient is compared to other published classifications to show its potential in distinguishing three different scattering types: surface, doublebounce and volume. The performances of the bare surfaces selection and FR estimation are evaluated on PALSAR and airborne data. Once the bare surfaces are selected and Faraday angle estimated over them, the correction can be applied over the whole scene. The algorithm is compared with both FP techniques. In the last part of the paper, the calibration of a CP system from the point of view of classical matrix transformation methods in polarimetry is

  5. A counting silicon microstrip detector for precision compton polarimetry

    CERN Document Server

    Doll, D W; Hillert, W; Krüger, H; Stammschroer, K; Wermes, N

    2002-01-01

    A detector for the detection of laser photons backscattered off an incident high-energy electron beam for precision Compton polarimetry in the 3.5 GeV electron stretcher ring ELSA at Bonn University has been developed using individual photon counting. The photon counting detector is based on a silicon microstrip detector system using dedicated ASIC chips. The produced hits by the pair converted Compton photons are accumulated rather than individually read out. A transverse profile displacement can be measured with mu m accuracy rendering a polarization measurement of the order of 1% on the time scale of 10-15 min possible.

  6. European X-ray spectroscopy and polarimetry payload for Spacelab

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, R D; Whitcomb, G [European Space Research and Technology Centre, Noordwijk (Netherlands); Brinkman, A C [Space Research Laboratory, Utrecht, The Netherlands; Beuermann, K [Max-Planck-Institut fuer Physik und Astrophysik, Garching/Muenchen (Germany, F.R.). Inst. fuer Extraterrestrische Physik; Culhane, J L [University Coll., London (UK). Mullard Space Science Lab.; Griffiths, R [Leicester Univ. (UK); Manno, V [ESA Headquarters, Paris, France; Rocchia, R [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1976-08-01

    A group of instruments for X-ray spectroscopy and polarimetry studies of a number of cosmic X-ray sources is being designed for possible use on Spacelab. Large area Bragg spectrometers and polarimeters for photon energies above 2 keV are described. For the energy range below 2 keV, both dispersive and non-dispersive spectrometers are employed at the common focus of a nested array of paraboloids. Following a brief outline of the scientific background to the mission, the properties of the individual instruments are discussed.

  7. Gas Pixel Detectors for low energy X-ray polarimetry

    International Nuclear Information System (INIS)

    Spandre, Gloria

    2007-01-01

    Gas Pixel Detectors are position-sensitive proportional counters in which a complete integration between the gas amplification structure and the read-out electronics has been reached. Various generation of Application-Specific Integrated Circuit (ASIC) have been designed in deep submicron CMOS technology to realize a monolithic device which is at the same time the charge collecting electrode and the analog amplifying and charge measuring front-end electronics. The experimental response of a detector with 22060 pixels at 80 μm pitch to polarized and un-polarized X-ray radiation is shown and the application of this device for Astronomical X-ray Polarimetry discussed

  8. Lessons Learned from Six Decades of Radio Polarimetry

    Science.gov (United States)

    Wiesemeyer, Helmut; Güsten, R.; Kreysa, E.; Menten, K. M.; Morris, D.; Paubert, G.; Pillai, T.; Sievers, A.; Thum, C.

    2018-01-01

    The characterization of polarized emission from continuum radiation and spectral lines across large-scale galactic and extragalactic fields is a typical application of single-dish telescopes, from radio to far-infrared wavelengths. Despite its high analytical value, in many cases polarimetry was added to the design specifications of telescopes and their frontends only in advanced development stages. While in some situations the instrumental contamination of the Stokes parameters can be corrected, this becomes increasingly difficult for extended fields. This contribution summarizes the current situation at mm/submm telescopes. Strategies for post-observing polarization calibration are presented as well as methods to optimize the components in the beam path.

  9. Linear Polarimetry with γ→e+e− Conversions

    Directory of Open Access Journals (Sweden)

    Denis Bernard

    2017-11-01

    Full Text Available γ -rays are emitted by cosmic sources by non-thermal processes that yield either non-polarized photons, such as those from π 0 decay in hadronic interactions, or linearly polarized photons from synchrotron radiation and the inverse-Compton up-shifting of these on high-energy charged particles. Polarimetry in the MeV energy range would provide a powerful tool to discriminate among “leptonic” and “hadronic” emission models of blazars, for example, but no polarimeter sensitive above 1 MeV has ever been flown into space. Low-Z converter telescopes such as silicon detectors are developed to improve the angular resolution and the point-like sensitivity below 100 MeV. We have shown that in the case of a homogeneous, low-density active target such as a gas time-projection chamber (TPC, the single-track angular resolution is even better and is so good that in addition the linear polarimetry of the incoming radiation can be performed. We actually characterized the performance of a prototype of such a telescope on beam. Track momentum measurement in the tracker would enable calorimeter-free, large effective area telescopes on low-mass space missions. An optimal unbiased momentum estimate can be obtained in the tracker alone based on the momentum dependence of multiple scattering, from a Bayesian analysis of the innovations of Kalman filters applied to the tracks.

  10. The Growth of Interest in Astronomical X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Frédéric Marin

    2018-03-01

    Full Text Available Astronomical X-ray polarimetry was first explored in the end of the 1960s by pioneering rocket instruments. The craze arising from the first discoveries of stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters to early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled with long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000s, observing astronomical X-ray polarization has become feasible, and scientists are now ready to explore our high-energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (rockets, balloons, and satellites will create new observational opportunities. Interest in astronomical X-ray polarimetry field has thus been renewed, and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of this interest.

  11. Portable Imaging Polarimeter and Imaging Experiments; TOPICAL

    International Nuclear Information System (INIS)

    PHIPPS, GARY S.; KEMME, SHANALYN A.; SWEATT, WILLIAM C.; DESCOUR, M.R.; GARCIA, J.P.; DERENIAK, E.L.

    1999-01-01

    Polarimetry is the method of recording the state of polarization of light. Imaging polarimetry extends this method to recording the spatially resolved state of polarization within a scene. Imaging-polarimetry data have the potential to improve the detection of manmade objects in natural backgrounds. We have constructed a midwave infrared complete imaging polarimeter consisting of a fixed wire-grid polarizer and rotating form-birefringent retarder. The retardance and the orientation angles of the retarder were optimized to minimize the sensitivity of the instrument to noise in the measurements. The optimal retardance was found to be 132(degree) rather than the typical 90(degree). The complete imaging polarimeter utilized a liquid-nitrogen cooled PtSi camera. The fixed wire-grid polarizer was located at the cold stop inside the camera dewar. The complete imaging polarimeter was operated in the 4.42-5(micro)m spectral range. A series of imaging experiments was performed using as targets a surface of water, an automobile, and an aircraft. Further analysis of the polarization measurements revealed that in all three cases the magnitude of circular polarization was comparable to the noise in the calculated Stokes-vector components

  12. Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure.

    Science.gov (United States)

    Metzler, Rebecca A; Jones, Joshua A; D'Addario, Anthony J; Galvez, Enrique J

    2017-02-01

    The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata . Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.

  13. General formalism for partial spatial coherence in reflection Mueller matrix polarimetry.

    Science.gov (United States)

    Ossikovski, Razvigor; Hingerl, Kurt

    2016-09-01

    Starting from the first principles, we derive the expressions governing partially coherent Mueller matrix reflection polarimetry on spatially inhomogeneous samples. These are reported both in their general form and in the practically important specific form for two juxtaposed media.

  14. Analytic expressions for polarimetry in plasma with large Cotton endash Mouton or Faraday effects

    International Nuclear Information System (INIS)

    Segre, S.E.

    1996-01-01

    Analytic expressions for plasma polarimetry are derived for the case when either the Cotton endash Mouton effect or the Faraday effect is large while the other effect is small. copyright 1996 American Institute of Physics

  15. Two-lens spectrometer for. beta. polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Holdsworth, D; Paul, D [Toronto Univ., Ontario (Canada). Dept. of Physics

    1984-06-01

    A test spectrometer has been built having four degrees of freedom which have been varied to optimize the transmission in a configuration in which the image distance is large compared to the object distance. Iron-clad magnets of 15 cm effective inside diameter were used. Within the limits of the primary magnet field, the optimized transmission T (%. of 4..pi.. sr) increases as the source is advanced through the magnet towards the polarimeter, approximately as T=5.1 exp(zsub(s)/10.5), where zsub(s) is in cm, measured from the position of peak axial field. When the source-image distance is 1.8 m the optimum separation of the peak axial fields of the magnets is 67+-1 cm and the spectrometer transmission is the same for parallel or antiparallel fields. When operating in the optimum configuration, the spectrometer accepts particles with initial trajectories from 18/sup 0/ to 42/sup 0/ relative to the axis and delivers them at the target with half-angle of convergence less than 4.1/sup 0/.

  16. Comparison of particle size measurements of some aqueous suspensions by laser polarimetry and dynamic light scattering

    International Nuclear Information System (INIS)

    Chirikov, S N

    2016-01-01

    The results of the size distributions measurements of the particles of aqueous suspensions of ZnO, CuO, TiO 2 , and BaTiO 3 by methods of laser polarimetry and dynamic light scattering are considered. These measurements are compared with the results obtained by electron microscopy. It is shown that a laser polarimetry method gives more accurate results for size parameter values more than 1-2. (paper)

  17. Polarimetry of coherent bremsstrahlung by analysis of the photon energy spectrum

    International Nuclear Information System (INIS)

    Darbinyan, S.; Hakobyan, H.; Jones, R.; Sirunyan, A.; Vartapetian, H.

    2005-01-01

    A method of coherent bremsstrahlung (CB) polarimetry based on the analysis of the shape of the photon energy spectrum is presented. The influence of a number of uncertainty sources, including the choice of atomic form-factors, has been analyzed. For a CB source consisting of a diamond radiator and multi-GeV electrons, an absolute accuracy of polarimetry at the level of 0.01-0.02 is attainable

  18. A Study of Laser System Requirements for Application in Beam Diagnostics And Polarimetry at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, S.; Delerue, N.; Foster, B.; Howell, D.F.; Peach, K.; Quelch, G.; Qureshi, M.; Reichold, A.; /Oxford U.; Hirst, G.; Ross, I.; /Rutherford; Urakawa, J.; /KEK,; Soskov, V.; Variola, A.; Zomer, F.; /Orsay, LAL; Blair, G.A.; Boogert, S.T.; Boorman, G.; Bosco, A.; Driouichi, C.; Karataev, P.; /Royal Holloway, U. of London; Brachmann,; /SLAC

    2007-02-12

    Advanced laser systems will be essential for a range of diagnostics devices and polarimetry at the ILC. High average power, high beam quality, excellent stability and reliability will be crucial in order to deliver the information required to attain the necessary ILC luminosity as well as for efficient polarimetry. The key parameters are listed together with the R & D required to achieve the necessary laser system performance.

  19. Optical polarimetry of star-forming regions

    Energy Technology Data Exchange (ETDEWEB)

    Gledhill, T M

    1987-01-01

    The polarimetric investigation of nebulosity associated with loss-mass pre-main sequence (PMS) stellar objects is detailed. Three regions of on-going star formation are considered, specifically, the Haro 6-5 and the HL/XZ Tau systems - both associated with dark clouds in the Taurus complex - and the PV Cephei nebulosity near NGC7023. In each region the imaging observations suggest bipolarity in the optical structure of the nebulosity, and the polarimetric data are used to determine the locations of the illuminating sources. Evidence is found for the association of circumstellar discs of obscuration with the PMS objects Haro 6-5A (FS Tau), Haro 6-5B, HL Tau, and PV Cephei. In each case the polarimetric data suggest that the local magnetic field has played an important role in the evolution of the star and the circumstellar material. Examination of the source-region polarization maps suggests that at least one of the objects considered is surrounded by a dust grain-aligning magnetic field with a predominantly toroidal geometry in the plane of the circumstellar disc. Implications for current theories of outflow acceleration and cloud evolution are discussed.

  20. eXTP: Enhanced X-Ray Timing and Polarimetry Mission

    Science.gov (United States)

    Zhang, S. N.; Feroci, M.; Santangelo, A.; Dong, Y. W.; Feng, H.; Lu, F. J.; Nandra, K.; Wang, Z. S.; Zhang, S.; Bozzo, E.; hide

    2016-01-01

    eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of approx. 0.9 m(exp. 2) and 0.6 m(exp. 2) at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering less than 180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of approx. 3.4 m(exp. 2), between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) - a set of 2 X-ray telescope, for a total effective area of 250 cm(exp. 2) at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese

  1. MeV Mott polarimetry at Jefferson Lab

    International Nuclear Information System (INIS)

    Steigerwald, M.

    2001-01-01

    In the recent past, Mott polarimetry has been employed only at low electron beam energies (≅100 keV). Shortly after J. Sromicki demonstrated the first Mott scattering experiment on lead foils at 14 MeV (MAMI, 1994), a high energy Mott scattering polarimeter was developed at Thomas Jefferson National Accelerator Facility (5 MeV, 1995). An instrumental precision of 0.5% was achieved due to dramatic improvement in eliminating the background signal by means of collimation, shielding, time of flight and coincidence methods. Measurements for gold targets between 0.05 μm and 5 μm for electron energies between 2 and 8 MeV are presented. A model was developed to explain the depolarization effects in the target foils due to double scattering. The instrumental helicity correlated asymmetries were measured to smaller than 0.1%

  2. Polarimetry of ST LMi (CW1103+254)

    Energy Technology Data Exchange (ETDEWEB)

    Cropper, M

    1986-10-15

    White-light simultaneous photometry and linear and circular polarimetry is presented for the AM Her type variable ST LMi. Linear polarization evident throughout the faint phase is tentatively attributed to electron scattering from gas in the accretion column at heights greater than 5 Rsub(wd) above the surface. The values of inclination and magnetic dipole offset are revised to take into account the height and extent of the cyclotron emission regions which are also determined. A model of two closely connected emitting regions is proposed to account for the asymmetries observed in the light curve and polarization data for this and other AM Her systems. The size of the soft X-ray pole cap is calculated. Various parameters such as masses, accretion rates and luminosities are calculated for the system.

  3. Infrared polarimetry and photometry of BL Lac objects

    Energy Technology Data Exchange (ETDEWEB)

    Impey, C D; Brand, P W.J.L. [Edinburgh Univ. (UK); Wolstencroft, R D; Williams, P M [Royal Observatory, Edinburgh (UK)

    1982-07-01

    Infrared polarimetry and photometry have been obtained for a sample of 18 BL Lac objects. The data covers a period of one year and is part of a continuing monitoring programme; all observations were in the J,H and K wavebands. Large and variable degrees of polarization are a common property of the sample. Two BL Lac objects show wavelength-dependent polarization, with the polarization increasing towards shorter wavelengths, and two objects show evidence for position angle rotations over a five-day period. The relationship between changes in polarized and total flux is also discussed. The BL Lac objects cover an enormous range of infrared luminosity; the three most luminous having Lsub(IR) > 10/sup 46/ erg s/sup -1/ and the other end of the range having infrared luminosities similar to normal elliptical galaxies. These are the first published infrared polarimetric observations for eight of the sample.

  4. Plasma polarimetry for large Cotton--Mouton and Faraday effects

    International Nuclear Information System (INIS)

    Segre, S.E.

    1995-01-01

    A formalism is presented for treating plasma polarimetry when both the Cotton--Mouton and the Faraday effects are large. For this general case it is shown that, for each measuring chord, up to nine parameters related to the plasma can be determined, instead of the usual single Faraday rotation. These parameters can be measured by a convenient modulation of the polarization state of the input radiation, and they can be used in the reconstruction of the magnetohydrodynamic equilibrium. Thus, the potential of the polarimetric diagnostic can be significantly increased, and the range of plasma conditions where the latter can be used, is extended. The importance of refraction is discussed. copyright 1995 American Institute of Physics

  5. High-Sensitivity AGN Polarimetry at Sub-Millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    Ivan Martí-Vidal

    2017-10-01

    Full Text Available The innermost regions of radio loud Active Galactic Nuclei (AGN jets are heavily affected by synchrotron self-absorption, due to the strong magnetic fields and high particle densities in these extreme zones. The only way to overcome this absorption is to observe at sub-millimeter wavelengths, although polarimetric observations at such frequencies have so far been limited by sensitivity and calibration accuracy. However, new generation instruments such as the Atacama Large mm/sub-mm Array (ALMA overcome these limitations and are starting to deliver revolutionary results in the observational studies of AGN polarimetry. Here we present an overview of our state-of-the-art interferometric mm/sub-mm polarization observations of AGN jets with ALMA (in particular, the gravitationally-lensed sources PKS 1830−211 and B0218+359, which allow us to probe the magneto-ionic conditions at the regions closest to the central black holes.

  6. Circular polarimetry of the magnetic compact binary AM Herculis

    Energy Technology Data Exchange (ETDEWEB)

    Piirola, V; Vilhu, O; Tuominen, I

    1982-01-01

    Circular polarimetry in the red and simultaneous photometric observations in the UBVRI bands during the period June 1 to 3, 1981, of AM Herculis are discussed. Peak value of negative circular polarization (- 15 %) is stronger than observed in 1976 to 1979. Variations in the shape of the polarization and light curves occur from night to night. Positive crossover and reversal of the sign of the circular polarization are only marginal. Long term changes in polarization may be partly due to precession of the axis of rotation of the white dwarf about the binary axis. However, the duration of the phase interval where circular polarization remains close to zero changes on a time scale of days, casting doubt on precession models. The changing shape and position of the accretion columns with respect to the magnetic axis could explain short term variations. (ESA)

  7. Optimization of polarimetry sensitivity for X-ray CCD

    CERN Document Server

    Hayashida, K; Tsunemi, H; Hashimoto, Y; Ohtani, M

    1999-01-01

    X-ray polarimetry with CCD has been performed using a polarized X-ray beam from an electron impact X-ray source. The standard data reduction method employing double-pixel events yields the modulation factor M of 0.14 at 27 keV and 0.24 at 43 keV for the 12 mu m pixel size CCD chip. We develop a new data reduction method, in which multi-pixel events are employed, and which approximates the charge spread as an oval shape. We optimize the reduction parameters, so that we improve the P sub m sub i sub n (minimum detectable polarization degree) by factor of three from the value obtained through the usual double-pixel event method.

  8. Pulsed polarimetry progress on the LANL MSX magnetized shock experiment

    Science.gov (United States)

    Smith, R. J.; Intrator, T. P.; Weber, T. E.; Hutchinson, T. M.; Boguski, J. C.

    2013-10-01

    The UW pulsed polarimeter is a Lidar Thomson scattering diagnostic that can also provide measurements of the internal distribution of B| | as well as ne and Te for Magnetized High Energy Density targets with cm resolution. Scattering has now been observed in MSX and mirror issues that interrupted the last campaign have been corrected. Subsidiary diagnostics are being developed along side to aid in calibration. Fiber optic pulsed polarimetry is also being explored as both measurements can be performed simultaneously with the one instrument. The fiber sensing would allow measurements of modest fields using an internal cladded fiber. Progress in these directions will be presented. This work is supported by DOE Office of Fusion Energy Sciences.

  9. Microwave polarimetry system in the CDX-U tokamak

    International Nuclear Information System (INIS)

    Hwang, Y.S.; Fredriksen, A.; Qin, H.; Forest, C.B.; Ono, M.

    1995-01-01

    An existing microwave interferometer system is modified to add the capability of polarimetry in the CDX-U tokamak. Though this interferometer system can scan vertically and radially, only the vertical view channel is modified to accomodate Faraday rotation measurements, with its radial scanning capability preserved. For our relatively long microwave wavelength, the signal amplitude variation due to refraction is more important than effects due to vibration. An amplitude independent design of Faraday rotation diagnostics has been developed. By using a linearly polarized beam as input and putting a rotating polarizer in the beam after the plasma, birefringency effects are minimized. A digital phase detection technique has been developed for better resolution of the Faraday rotation angle

  10. A quartz Cherenkov detector for polarimetry at the ILC

    International Nuclear Information System (INIS)

    Vauth, Annika

    2014-09-01

    At the proposed International Linear Collider (ILC), the use of polarised electron and positron beams is a key ingredient of the physics program. A measurement of the polarisation with a yet unprecedented precision of δP / P =0.25% is required. To achieve this, Compton polarimeter measurements in front of and behind the collision point are foreseen. In this thesis, a novel concept for a detector for ILC polarimetry is introduced to eliminate one of the dominating systematics limiting the previous best measurement of beam polarisation: a detector using quartz as Cherenkov medium could increase the tolerance against non-linear photodetector responses. The high refractive index of quartz results in a higher Cherenkov light yield compared to conventional Cherenkov gases. This could allow single-peak resolution in the Cherenkov photon spectra produced by the Compton electrons at the polarimeters. The detailed simulation studies presented in this work imply that such single-peak resolution is possible. Considerations for the choice of a suitable detector geometry are discussed. A four-channel prototype has been constructed and successfully operated in a first testbeam campaign at the DESY testbeam, confirming simulation predictions. Although further studies have to be considered to quantify all aspects of the detector response, the findings of the analysis of the data from the first testbeam are promising with regards to reaching the desired light yield. In the final part of this thesis, the application of a detector concept allowing single-peak resolution to the polarisation measurement at the ILC is examined. Two of the main sources of systematic uncertainties on the polarimeter measurements are detector non-linearities and misalignments. The performance of the suggested quartz detector concept in Monte Carlo studies promises a control of these systematics which meets the precision requirements for ILC polarimetry.

  11. Polarimetry Microlensing of Close-in Planetary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sajadian, Sedighe [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Hundertmark, Markus, E-mail: s.sajadian@cc.iut.ac.ir [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany)

    2017-04-01

    A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When the lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.

  12. Polarimetry Microlensing of Close-in Planetary Systems

    International Nuclear Information System (INIS)

    Sajadian, Sedighe; Hundertmark, Markus

    2017-01-01

    A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When the lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.

  13. Retinal degeneration in progressive supranuclear palsy measured by optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Stemplewitz, Birthe; Kromer, Robert; Vettorazzi, Eik; Hidding, Ute; Frings, Andreas; Buhmann, Carsten

    2017-07-13

    This cross-sectional study compared the retinal morphology between patients with progressive supranuclear palsy (PSP) and healthy controls. (The retinal nerve fiber layer (RNFL) around the optic disc and the retina in the macular area of 22 PSP patients and 151 controls were investigated by spectral domain optical coherence tomography (SD-OCT). Additionally, the RNFL and the nerve fiber index (NFI) were measured by scanning laser polarimetry (SLP). Results of RNFL measurements with SD-OCT and SLP were compared to assess diagnostic discriminatory power. Applying OCT, PSP patients showed a smaller RNFL thickness in the inferior nasal and inferior temporal areas. The macular volume and the thickness of the majority of macular sectors were reduced compared to controls. SLP data showed a thinner RNFL thickness and an increase in the NFI in PSP patients. Sensitivity and specificity to discriminate PSP patients from controls were higher applying SLP than SD-OCT. Retinal changes did not correlate with disease duration or severity in any OCT or SLP measurement. PSP seems to be associated with reduced thickness and volume of the macula and reduction of the RNFL, independent of disease duration or severity. Retinal imaging with SD-OCT and SLP might become an additional tool in PSP diagnosis.

  14. Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry.

    Science.gov (United States)

    Reiser, Karen; Stoller, Patrick; Knoesen, André

    2017-06-01

    Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated from the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.

  15. Pulsed Polarimetry and magnetic sensing on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Smith, R. J.; Hutchinson, T. M.; Weber, T. E.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    MSX is uniquely positioned to generate the conditions for collision-less magnetized supercritical shocks with Alvenic Mach numbers (MA) of the order 10 and higher. Significant operational strides have been made in forming plasmas over wide parameter ranges: (Te + Ti) of 10-200 eV, average neof 5-60×10+21 m-3, speeds up to 150 km/s and fields up to 1T with a highest plasma flow MA of 5 to date. The MSX plasma is unique in regards to large plasma size of 10 cm and average β higher than 0.8 making the FRC and the magnetized shock structure candidates for the application of Pulsed Polarimetry, a polarization sensitive Lidar technique. The shock dynamics are presently being investigated using internal probes, interferometry and imaging. Internal probe results and an assessment of the shock parameters will dictate the use of the UW pulsed polarimeter system in which internal ne, Teand B are to be measured. Recent results will be presented. Supported by DOE Office of Fusion Energy Sciences Funding DE-FOA-0000755.

  16. Optical biopsy of tissue with Mueller polarimetry: theory and experiments (Conference Presentation)

    Science.gov (United States)

    Novikova, Tatiana; Meglinski, Igor; Garcia-Caurel, Enric; Bykov, Alexander; Rehbinder, Jean; Deby, Stanislas; Vizet, Jérémy; Pierangelo, Angelo; Moreau, François; Validire, Pierre; Benali, Abdelali; Gayet, Brice; Teig, Benjamin; Nazac, André; Ossikovski, Razvigor

    2017-02-01

    The rise of optical biopsy as an alternative to classical biopsy is dictated by ongoing technological progress: any type of measurements has to be fast, precise, non-invasive and implemented in-vivo. The use of polarized light for optical biopsy has a long history. As Mueller-Stokes formalism provides the most complete description of polarized light interaction with any type of sample (even depolarizing one) we explored the capabilities of in-house multi-wavelength Mueller imaging polarimeter for the detection of pre-malignancy and malignancy. Our studies were performed with both scattering phantom tissues (in transmission configuration) and specimens of human colon and uterine cervix (in backscattering configuration). For the interpretation of measurement results we decomposed Mueller matrix of a sample into product of elementary Mueller matrices of homogeneous diattenuator, retarder, and depolarizer. This phenomenological approach does not require the exact solution of Maxwell equations and provides the "effective" values of polarimetric properties of sample. Exploring differential Mueller matrix formalism for fluctuating medium we showed that depolarization in homogeneous turbid medium varied parabolically with the pathlength of transmitted light, while the standard deviation of elementary polarization properties of medium depends linearly on the concentration of scatterers. Neither scattering phantoms nor human tissue possessed any measurable diattenuation in backscattering configuration. The polarimetric images of tissue depolarization power, scalar birefringence and orientation of optical axis were compared with the analysis of histological slides. The spectral dependence of depolarization power and scalar birefringence values ascertained the potential of imaging Mueller polarimetry to discriminate healthy and diseased tissue zones.

  17. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination.

    Science.gov (United States)

    Qi, Ji; He, Honghui; Lin, Jianyu; Dong, Yang; Chen, Dongsheng; Ma, Hui; Elson, Daniel S

    2018-04-01

    Tissue-depolarization and linear-retardance are the main polarization characteristics of interest for bulk tissue characterization, and are normally interpreted from Mueller polarimetry. Stokes polarimetry can be conducted using simpler instrumentation and in a shorter time. Here, we use Stokes polarimetric imaging with circularly polarized illumination to assess the circular-depolarization and linear-retardance properties of tissue. Results obtained were compared with Mueller polarimetry in transmission and reflection geometry, respectively. It is found that circular-depolarization obtained from these 2 methods is very similar in both geometries, and that linear-retardance is highly quantitatively similar for transmission geometry and qualitatively similar for reflection geometry. The majority of tissue circular-depolarization and linear-retardance image information (represented by local image contrast features) obtained from Mueller polarimetry is well preserved from Stokes polarimetry in both geometries. These findings can be referred to for further understanding tissue Stokes polarimetric data, and for further application of Stokes polarimetry under the circumstances where short acquisition time or low optical system complexity is a priority, such as polarimetric endoscopy and microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2008-01-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B pol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T e , n e , and B || along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n e B || product and higher n e and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  19. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    Science.gov (United States)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  20. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry.

    Science.gov (United States)

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-08-10

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.

  1. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry

    Directory of Open Access Journals (Sweden)

    Yang Dong

    2016-08-01

    Full Text Available Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.

  2. The Three-Dimensional Morphology of VY Canis Majoris. II. Polarimetry and the Line-of-Sight Distribution of the Ejecta

    Science.gov (United States)

    Jones, Terry Jay; Humphreys, Roberta M.; Helton, L. Andrew; Gui, Changfeng; Huang, Xiang

    2007-06-01

    We use imaging polarimetry taken with the HST Advanced Camera for Surveys High Resolution Camera to explore the three-dimensional structure of the circumstellar dust distribution around the red supergiant VY Canis Majoris. The polarization vectors of the nebulosity surrounding VY CMa show a strong centrosymmetric pattern in all directions except directly east and range from 10% to 80% in fractional polarization. In regions that are optically thin, and therefore likely to have only single scattering, we use the fractional polarization and photometric color to locate the physical position of the dust along the line of sight. Most of the individual arclike features and clumps seen in the intensity image are also features in the fractional polarization map. These features must be distinct geometric objects. If they were just local density enhancements, the fractional polarization would not change so abruptly at the edge of the feature. The location of these features in the ejecta of VY CMa using polarimetry provides a determination of their three-dimensional geometry independent of, but in close agreement with, the results from our study of their kinematics (Paper I). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  3. A Space-Based Observational Strategy for Hydrogen Cosmology Using Dynamic Polarimetry and Pattern Recognition

    Science.gov (United States)

    Burns, Jack O.; Nhan, Bang; Bradley, Richard F.; Tauscher, Keith A.; Rapetti, David; Switzer, Eric

    2018-06-01

    The redshifted 21-cm monopole is expected to be a powerful probe of the epoch of the first stars and galaxies (10 polarimetry that separates the polarized foreground from the unpolarized 21-cm signal. Initial results from a ground-based prototype called the Cosmic Twilight Polarimeter will be described which tentatively reveal the presence of the expected polarization signature from the foreground. Dynamic polarimetry, when combined with sophisticated pattern recognition techniques based on training sets, machine learning, and statistical information criteria offer promise for precise extraction of the 21-cm spectrum. We describe a new SmallSat mission concept, the Dark Ages Polarimetry Pathfinder (DAPPer), that will utilize these novel approaches for extending the recent detection of a 78 MHz signal down to lower frequencies where we can uniquely probe evidence for the first stars and dark matter.

  4. Two-photon Microscopy and Polarimetry for Assessment of Myocardial Tissue Organization

    Science.gov (United States)

    Archambault-Wallenburg, Marika

    Optical methods can provide useful tissue characterization tools. For this project, two-photon microscopy and polarized light examinations (polarimetry) were used to assess the organizational state of myocardium in healthy, infarcted, and stem-cell regenerated states. Two-photon microscopy visualizes collagen through second-harmonic generation and myocytes through two-photon excitation autofluorescence, providing information on the composition and structure/organization of the tissue. Polarimetry measurements yield a value of linear retardance that can serve as an indicator of tissue anisotropy, and with a dual-projection method, information about the anisotropy axis orientation can also be extracted. Two-photon microscopy results reveal that stem-cell treated tissue retains more myocytes and structure than infarcted myocardium, while polarimetry findings suggest that the injury caused by temporary ligation of a coronary artery is less severe and more diffuse that than caused by a permanent ligation. Both these methods show potential for tissue characterization.

  5. Toward the detection of exoplanet transits with polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, Sloane J. [NASA Sagan Fellow. (United States); Laughlin, Gregory P., E-mail: sloanew@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-11-01

    In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the 90° scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio R {sub p}/R {sub *}, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with the POLISH2 polarimeter at the Lick Observatory Shane 3 m telescope. We conclude that unmodeled telescope systematic effects prevented polarimetric detection of this event. We outline a roadmap for further refinements of exoplanet polarimetry, whose eventual success will require a further factor of ten reduction in systematic noise.

  6. Polarimetry and spectrophotometry of the massive close binary DH Cephei

    International Nuclear Information System (INIS)

    Corcoran, M.F.

    1988-01-01

    DH Cep is a massive and close binary and a member of the young open cluster NGC 7380. Spectroscopically, this system is double-lined, classified as type O6 + O6. Photometrically, the system has been known to show small light variations phase-locked to the radial-velocity variations; these light variations characterize the star as an ellipsoidal variable. Four-color linear polarimetry, archival UV spectra taken by IUE and x-ray measures obtained by the Einstein satellite provide the first detailed analysis of this important system. Polarization measures demonstrate the (largely non-phase locked) variability of the circum-binary scattering environment, identify the scattering medium as electrons and indicate a large-scale change in the intrinsic polarization of the system. UV spectral analysis is used to determine the composite photospheric temperature, the component masses and spectral classifications, the degree of mass loss, and the distribution of interstellar matter along the line of sight to the binary. Measures obtained by the Einstein satellite of the x-ray emission from the system indicate that DH Cep is a strong source of hard x-rays. A model of the binary is developed

  7. RADIO POLARIMETRY SIGNATURES OF STRONG MAGNETIC TURBULENCE IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Stroman, Wendy; Pohl, Martin

    2009-01-01

    We discuss the emission and transport of polarized radio-band synchrotron radiation near the forward shocks of young shell-type supernova remnants, for which X-ray data indicate a strong amplification of turbulent magnetic field. Modeling the magnetic turbulence through the superposition of waves, we calculate the degree of polarization and the magnetic polarization direction which is at 90 deg. to the conventional electric polarization direction. We find that isotropic strong turbulence will produce weakly polarized radio emission even in the absence of internal Faraday rotation. If anisotropy is imposed on the magnetic-field structure, the degree of polarization can be significantly increased, provided internal Faraday rotation is inefficient. Both for shock compression and a mixture with a homogeneous field, the increase in polarization degree goes along with a fairly precise alignment of the magnetic-polarization angle with the direction of the dominant magnetic-field component, implying tangential magnetic polarization at the rims in the case of shock compression. We compare our model with high-resolution radio polarimetry data of Tycho's remnant. Using the absence of internal Faraday rotation we find a soft limit for the amplitude of magnetic turbulence, δB ∼ 0 . An alternative viable scenario involves anisotropic turbulence with stronger amplitudes in the radial direction, as was observed in recent Magnetohydrodynamics simulations of shocks propagating through a medium with significant density fluctuations.

  8. Optical polarimetry of KIC 8462852 in 2017 May-August

    Science.gov (United States)

    Steele, I. A.; Copperwheat, C. M.; Jermak, H. E.; Kennedy, G. M.; Lamb, G. P.

    2018-01-01

    We present optical polarimetry in the period of 2017 May-August of the enigmatic `dipping' star KIC 8462852. During that period, three ˜1 per cent photometric dips were reported by other observers. We measured the average absolute polarization of the source, and find no excess or unusual polarization compared to a nearby comparison star. We place tight upper limits on any change in the degree of polarization of the source between epochs in-dip and out-of-dip of <0.1 per cent (8500 Å) and <0.2 per cent (7050 Å and 5300 Å). How our limits are interpreted depends on the specific model being considered. If the whole stellar disc were covered by material with an optical depth of ˜0.01, then the fractional polarization introduced by this material must be less than 10-20 per cent. While our non-detection does not constrain the comet scenario, it predicts that even modest amounts of dust that have properties similar to Solar system comets may be detectable. We note that the sensitivity of our method scales with the depth of the dip. Should a future ˜20 per cent photometric dip be observed (as was previously detected by Kepler), our method would constrain any induced polarization associated with any occulting material to 0.5-1.0 per cent.

  9. Polarimetry and Schlieren diagnostics of underwater exploding wires

    Science.gov (United States)

    Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2009-11-01

    Nondisturbing laser-probing polarimetry (based on the Faraday and Kerr effects) and Schlieren diagnostics were used in the investigation of underwater electrical wire explosion. Measuring the polarization plane rotation angle of a probing laser beam due to the Faraday effect allows one to determine an axially resolved current flowing through the exploding wire, unlike commonly used current probes. This optical method of measuring current yields results that match those obtained using a current viewing resistor within an accuracy of 10%. The same optical setup allows simultaneous space-resolved measurement of the electric field using the Kerr effect. It was shown that the maximal amplitude of the electric field in the vicinity of the high-voltage electrode is ˜80 kV/cm and that the radial electric field is <1 MV/cm during the wire explosion. Finally, it was shown that the use of Schlieren diagnostics allows one to obtain qualitatively the density distribution behind the shock wave front, which is important for the determination of the energy transfer from the discharge channel to the generated water flow.

  10. Polarimetry and Schlieren diagnostics of underwater exploding wires

    International Nuclear Information System (INIS)

    Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2009-01-01

    Nondisturbing laser-probing polarimetry (based on the Faraday and Kerr effects) and Schlieren diagnostics were used in the investigation of underwater electrical wire explosion. Measuring the polarization plane rotation angle of a probing laser beam due to the Faraday effect allows one to determine an axially resolved current flowing through the exploding wire, unlike commonly used current probes. This optical method of measuring current yields results that match those obtained using a current viewing resistor within an accuracy of 10%. The same optical setup allows simultaneous space-resolved measurement of the electric field using the Kerr effect. It was shown that the maximal amplitude of the electric field in the vicinity of the high-voltage electrode is ∼80 kV/cm and that the radial electric field is <1 MV/cm during the wire explosion. Finally, it was shown that the use of Schlieren diagnostics allows one to obtain qualitatively the density distribution behind the shock wave front, which is important for the determination of the energy transfer from the discharge channel to the generated water flow.

  11. Stokes polarimetry probe for skin lesion evaluation: preliminary results

    Science.gov (United States)

    Louie, Daniel C.; Tchvialeva, Lioudmilla; Kalia, Sunil; Lui, Harvey; Lee, Tim K.

    2018-02-01

    This paper reports on the design of a prototype in-vivo Stokes polarimetry probe for skin lesion evaluation, and preliminary results from skin phantom and clinical trials of this device. The probe releases a single millisecond-long pulse from a laser diode with either linear or circular polarization. It then captures the resulting backscattered far-field polarization speckle and calculates the Stokes parameters. This probe was designed with three novel innovations in mind. First, the Stokes vector is captured quickly, using low-cost components without the use of moving parts. Second, a compact collimated laser diode was used as the light source. Third, the device and detector geometry were designed to produce and capture a uniform speckle field. In the first clinical trial of this device, measurements were taken from a variety of skin lesions, both cancerous and benign. The Stokes vector was measured and used to calculate the degree of polarization (DOP), the azimuth angle, and the ellipticity angle of the polarization ellipse for two input light polarizations. Among other findings, the DOP for circular polarized input light was consistently lower than the DOP for linear polarized input light. These findings indicate the potential for a fast and low-cost in-vivo skin cancer screening tool, and encourages the continuing development of this probe's techniques.

  12. Algorithm for polarimetry data inversion, consistent with other measuring techniques in tokamak plasma

    International Nuclear Information System (INIS)

    Kravtsov, Y.A.; Kravtsov, Y.A.; Chrzanowski, J.; Mazon, D.

    2011-01-01

    New procedure for plasma polarimetry data inversion is suggested, which fits two parameter knowledge-based plasma model to the measured parameters (azimuthal and ellipticity angles) of the polarization ellipse. The knowledge-based model is supposed to use the magnetic field and electron density profiles, obtained from magnetic measurements and LIDAR data on the Thomson scattering. In distinction to traditional polarimetry, polarization evolution along the ray is determined on the basis of angular variables technique (AVT). The paper contains a few examples of numerical solutions of these equations, which are applicable in conditions, when Faraday and Cotton-Mouton effects are simultaneously strong. (authors)

  13. Parity assignments in 140Ce up to 7 MeV using Compton polarimetry

    International Nuclear Information System (INIS)

    Buessing, M. A.; Elvers, M.; Endres, J.; Hasper, J.; Zilges, A.; Fritzsche, M.; Lindenberg, K.; Mueller, S.; Savran, D.; Sonnabend, K.

    2008-01-01

    Parity quantum numbers of J=1 states up to 7 MeV in the region of the Pygmy Dipole Resonance in 140 Ce were determined model independently by combining the methods of Nuclear Resonance Fluorescence and Compton polarimetry. For the first time the well-established method of Compton polarimetry was applied at such high energies. The experiment was performed using a fourfold segmented HPGe clover detector for the detection of the scattered photons. For all investigated dipole transitions asymmetries are found which correspond to negative parity of the excited states

  14. Monte Carlo study of the effective Sherman function for electron polarimetry

    International Nuclear Information System (INIS)

    Drągowski, M.; Włodarczyk, M.; Weber, G.; Ciborowski, J.; Enders, J.; Fritzsche, Y.; Poliszczuk, A.

    2016-01-01

    The PEBSI Monte Carlo simulation was upgraded towards usefulness for electron Mott polarimetry. The description of Mott scattering was improved and polarisation transfer in Møller scattering was included in the code. An improved agreement was achieved between the simulation and available experimental data for a 100 keV polarised electron beam scattering off gold foils of various thicknesses. The dependence of the effective Sherman function on scattering angle and target thickness, as well as the method of finding optimal conditions for Mott polarimetry measurements were analysed.

  15. SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories

    Science.gov (United States)

    Zhang, M.; Collioud, A.; Charlot, P.

    2018-02-01

    We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.

  16. Analysis of the Origin of Atypical Scanning Laser Polarimetry Patterns by Polarization-Sensitive Optical Coherence Tomography

    Science.gov (United States)

    Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Hirn, Cornelia; Vass, Clemens; Hitzenberger, Christoph K.

    2010-01-01

    Purpose To analyze the physical origin of atypical scanning laser polarimetry (SLP) patterns. To compare polarization-sensitive optical coherence tomography (PS-OCT) scans to SLP images. To present a method to obtain pseudo-SLP images by PS-OCT that are free of atypical artifacts. Methods Forty-one eyes of healthy subjects, subjects with suspected glaucoma, and patients with glaucoma were imaged by SLP (GDx VCC) and a prototype spectral domain PS-OCT system. The PS-OCT system acquires three-dimensional (3D) datasets of intensity, retardation, and optic axis orientation simultaneously within 3 seconds. B-scans of intensity and retardation and en face maps of retinal nerve fiber layer (RNFL) retardation were derived from the 3D PS-OCT datasets. Results were compared with those obtained by SLP. Results Twenty-two eyes showed atypical retardation patterns, and 19 eyes showed normal patterns. From the 22 atypical eyes, 15 showed atypical patterns in both imaging modalities, five were atypical only in SLP images, and two were atypical only in PS-OCT images. In most (15 of 22) atypical cases, an increased penetration of the probing beam into the birefringent sclera was identified as the source of atypical patterns. In such cases, the artifacts could be eliminated in PS-OCT images by depth segmentation and exclusion of scleral signals. Conclusions PS-OCT provides deeper insight into the contribution of different fundus layers to SLP images. Increased light penetration into the sclera can distort SLP retardation patterns of the RNFL. PMID:19036999

  17. Retinal nerve fiber layer measurements by scanning laser polarimetry with enhanced corneal compensation in healthy subjects.

    Science.gov (United States)

    Rao, Harsha L; Venkatesh, Chirravuri R; Vidyasagar, Kelli; Yadav, Ravi K; Addepalli, Uday K; Jude, Aarthi; Senthil, Sirisha; Garudadri, Chandra S

    2014-12-01

    To evaluate the (i) effects of biological (age and axial length) and instrument-related [typical scan score (TSS) and corneal birefringence] parameters on the retinal nerve fiber layer (RNFL) measurements and (ii) repeatability of RNFL measurements with the enhanced corneal compensation (ECC) protocol of scanning laser polarimetry (SLP) in healthy subjects. In a cross-sectional study, 140 eyes of 73 healthy subjects underwent RNFL imaging with the ECC protocol of SLP. Linear mixed modeling methods were used to evaluate the effects of age, axial length, TSS, and corneal birefringence on RNFL measurements. One randomly selected eye of 48 subjects from the cohort underwent 3 serial scans during the same session to determine the repeatability. Age significantly influenced all RNFL measurements. RNFL measurements decreased by 1 µm for every decade increase in age. TSS affected the overall average RNFL measurement (β=-0.62, P=0.003), whereas residual anterior segment retardance affected the superior quadrant measurement (β=1.14, P=0.01). Axial length and corneal birefringence measurements did not influence RNFL measurements. Repeatability, as assessed by the coefficient of variation, ranged between 1.7% for the overall average RNFL measurement and 11.4% for th nerve fiber indicator. Age significantly affected all RNFL measurements with the ECC protocol of SLP, whereas TSS and residual anterior segment retardance affected the overall average and the superior average RNFL measurements, respectively. Axial length and corneal birefringence measurements did not influence any RNFL measurements. RNFL measurements had good intrasession repeatability. These results are important while evaluating the change in structural measurements over time in glaucoma patients.

  18. Near-infrared Polarimetry of the Outflow Source AFGL 6366S: Detection of Circular Polarization

    Science.gov (United States)

    Kwon, Jungmi; Nakagawa, Takao; Tamura, Motohide; Hough, James H.; Kandori, Ryo; Choi, Minho; Kang, Miju; Cho, Jungyeon; Nakajima, Yasushi; Nagata, Tetsuya

    2018-07-01

    We have carried out near-infrared circular and linear imaging polarimetry of the AFGL 6366S region. There is one large infrared reflection nebula associated with the AFGL 6366S cluster and one small infrared reflection nebula associated with AFGL 6366S NE. Prominent and extended polarized nebulosities over the AFGL 6366S cluster field are found to be composed of several components and local nebula peaks, and those nebulosities are illuminated by at least three sources, which is roughly consistent with a previous study. However, the detailed linear polarization patterns and their degrees differ from the earlier study. The brightest regions of the nebulae are illuminated by the IRAS/WISE source. In addition, we report the first detection of circular polarization (CP) in the reflection nebula associated with AFGL 6366S. The CP is as large as approximately 4% in the K s band, and the maximum CP extent is approximately 0.45 pc, which is comparable to that for the largest CP regions known to date, such as Orion and Mon R2, although the CP degrees are much smaller. The CP pattern is mostly quadrupolar, and its morphology resembles the shape of the C18O dense core. Therefore, the CP region is probably illuminated by the IRAS/WISE source and its polarization is amplified by the dichroic absorption of the dense core associated with the cluster. This is the ninth source whose degrees of CPs are measured to be greater than 3%, suggesting that large and extended infrared CP regions are common among mid- to high-mass young stellar objects.

  19. Near-infrared polarimetry of the edge-on galaxy NGC 891

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, J. D.; Clemens, D. P., E-mail: montgojo@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2014-05-01

    The edge-on galaxy NGC 891 was probed using near-infrared (NIR) imaging polarimetry in the H band (1.6 μm) with the Mimir instrument on the 1.8 m Perkins Telescope. Polarization was detected with a signal-to-noise ratio greater than three out to a surface brightness of 18.8 mag arcsec{sup –2}. The unweighted average and dispersion in polarization percentage (P) across the full disk were 0.7% and 0.3%, respectively, and the same quantities for polarization position angle (P.A.) were 12° and 19°, respectively. At least one polarization null point, where P falls nearly to zero, was detected in the northeast disk but not the southwest disk. Several other asymmetries in P between the northern and southern disk were found and may be related to spiral structure. Profiles of P and P.A. along the minor axis of NGC 891 suggest a transition from magnetic (B) field tracing dichroic polarization near the disk mid-plane to scattering dominated polarization off the disk mid-plane. A comparison between NIR P.A. and radio (3.6 cm) synchrotron polarization P.A. values revealed similar B-field orientations in the central-northeast region, which suggests that the hot plasma and cold, star-forming interstellar medium may share a common B-field. Disk-perpendicular polarizations previously seen at optical wavelengths are likely caused by scattered light from the bright galaxy center and are unlikely to be tracing poloidal B-fields in the outer disk.

  20. Atypical retardation patterns in scanning laser polarimetry are associated with low peripapillary choroidal thickness.

    Science.gov (United States)

    Tornow, Ralf P; Schrems, Wolfgang A; Bendschneider, Delia; Horn, Folkert K; Mayer, Markus; Mardin, Christian Y; Lämmer, Robert

    2011-09-29

    Scanning laser polarimetry (SLP) results can be affected by an atypical retardation pattern (ARP). One reason for an ARP is the birefringence of the sclera. The purpose of this study was to investigate the influence of the peripapillary choroidal thickness (pChTh) on the occurrence of ARP. One hundred ten healthy subjects were investigated with SLP and spectral domain OCT. pChTh was measured in B-scan images at 768 positions using semiautomatic software. Values were averaged to 32 sectors and the total peripapillary mean. Subjects were divided into four groups according to the typical scan score (TSS) provided by the GDxVCC: group 1 TSS, 100; group 2 TSS, 90-99; group 3 TSS, 80-89; group 4 TSS, <80. Mean pChTh (± SD) in 110 healthy subjects was 141 μm (±49 μm). There was a significant correlation between pChTh and TSS (r = 0.608; P < 0.001). In TSS groups 1 to 4, mean pChTh was 168 μm (±38 μm), 148 μm (± 48 μm), 119 μm (±35 μm), and 92 (±42 μm). Mean pChTh of TSS groups 3 and 4 was significantly lower than that of TSS group 1 (P < 0.001). Low values of TSS resulting from the appearance of ARP in SLP are associated with low peripapillary choroidal thickness. Reduced choroidal thickness may result in an increased amount of confounding light getting to the SLP light detectors.

  1. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.

    Science.gov (United States)

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui

    2017-10-31

    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  2. A Green Fabry-Perot Cavity for Jefferson Lab Hall A Compton Polarimetry

    International Nuclear Information System (INIS)

    Rakhman, Abdurahim; Souder, Paul; Nanda, Sirish

    2009-01-01

    A green laser (CW, 532 nm) based Fabry-Perot cavity for high precision Compton Polarimetry is under development in Hall A of the Jefferson Laboratory. In this paper, we present the principle and the preliminary studies for our test cavity.

  3. Homodyne chiral polarimetry for measuring thermo-optic refractive index variations.

    Science.gov (United States)

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2015-10-10

    Novel reflection-type homodyne chiral polarimetry is proposed for measuring the refractive index variations of a transparent plate under thermal impact. The experimental results show it is a simple and useful method for providing accurate measurements of refractive index variations. The measurement can reach a resolution of 7×10-5.

  4. Retinal nerve fiber layer assessment by scanning laser polarimetry and standardized photography

    NARCIS (Netherlands)

    Niessen, A. G.; van den Berg, T. J.; Langerhorst, C. T.; Greve, E. L.

    1996-01-01

    To determine whether, in a clinical setting, scanning laser polarimetry and retinal nerve fiber layer photography provide equivalent information on the retinal nerve fiber layer. We prospectively studied 60 patients with glaucoma or ocular hypertension and 24 healthy subjects. With scanning laser

  5. Experimental test of far-infrared polarimetry for Faraday rotation measurements on the TFR 600 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Soltwisch, H [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Plasmaphysik; Association Euratom-Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)); Equipe, T F.R. [Association Euratom-CEA sur la Fusion, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Recherches sur la Fusion Controlee

    1981-09-01

    The results are reported on the feasibility of using far-infrared polarimetry for Faraday rotation diagnostic measurements on the TRF Tokamak. Precise quantitative results were not obtained but a satisfactory agreement with a simple theoretical model leads to a good understanding of the experimental limitations of the method.

  6. Algebraic invariants for reflection Mueller polarimetry via uncompensated double pass illumination-collection optics.

    Science.gov (United States)

    Ossikovski, Razvigor; Vizet, Jérémy

    2016-07-01

    We report on the identification of the two algebraic invariants inherent to Mueller matrix polarimetry measurements performed through double pass illumination-collection optics (e.g., an optical fiber or an objective) of unknown polarimetric response. The practical use of the invariants, potentially applicable to the characterization of nonreciprocal media, is illustrated on experimental examples.

  7. K-band polarimetry of an Sgr A* flare with a clear sub-flare structure

    Czech Academy of Sciences Publication Activity Database

    Meyer, L.; Schödel, R.; Eckart, A.; Karas, Vladimír; Dovčiak, Michal; Duschl, W.J.

    2006-01-01

    Roč. 458, č. 2 (2006), L25-L28 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole physics * polarimetry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.971, year: 2006

  8. Use of $\\Lambda_{b}$ Polarimetry in Top Quark Spin-Correlation Functions

    CERN Document Server

    Nelson, C A

    2001-01-01

    Due to the absence of hadronization effects and the large top mass, top quark decay will be uniquely sensitive to fundamental electroweak physics at the Tevatron, at the LHC, and at a future linear collider. A complete measurement of the four helicity amplitudes in top decay is possible by the combined use of Lambda_b and W polarimetry in stage-two spin-correlation functions (S2SC). In this paper, the most general Lorentz-invariant decay density matrix is obtained for the decay sequence (t --> W b) where (b --> l nu c) and (W --> l nu), and likewise for the CP-conjugate mode. These density matrices are expressed in terms of b-polarimetry helicity parameters which enable a unique determination of the relative phases among the helicity amplitudes. Thereby, S2SC distributions and single-sided distributions are expressed in terms of these parameters. The four b-polarimetry helicity parameters involving the A(-1,-1/2) amplitude are considered in detail. Lambda_b polarimetry signatures will not be suppressed in top...

  9. Near-infrared polarimetry as a tool for testing properties of accreting supermassive black holes

    Czech Academy of Sciences Publication Activity Database

    Zamaninasab, M.; Eckart, A.; Dovčiak, Michal; Karas, Vladimír; Schoedel, R.; Witzel, G.; Sabha, N.; García-Marín, M.; Kunneriath, D.; Muzic, K.; Straubmeier, C.; Valencia-S, M.; Zensus, J. A.

    2011-01-01

    Roč. 413, č. 1 (2011), s. 322-332 ISSN 0035-8711 R&D Projects: GA ČR GA205/07/0052 Institutional research plan: CEZ:AV0Z10030501 Keywords : polarimetry * black holes * relativity * galactic centre Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.900, year: 2011

  10. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  11. New Methods for Landslide Identification and Mapping Using SAR Polarimetry Obtained During the PacRim 2000 Mission in Taiwan

    National Research Council Canada - National Science Library

    Czuchlewski, Kristina R; Weissel, Jeffrey K; Lee, Jong-Sen

    2005-01-01

    We reanalyze PacRim 2000 L-band AIRSAR polarimetry collected over the western foothills of central Taiwan a year after the September 20, 1999 ChiChi earthquake, which produced more than 10,000 landslide...

  12. Orbital parameters of extrasolar planets derived from polarimetry

    Science.gov (United States)

    Fluri, D. M.; Berdyugina, S. V.

    2010-03-01

    Context. Polarimetry of extrasolar planets becomes a new tool for their investigation, which requires the development of diagnostic techniques and parameter case studies. Aims: Our goal is to develop a theoretical model which can be applied to interpret polarimetric observations of extrasolar planets. Here we present a theoretical parameter study that shows the influence of the various involved parameters on the polarization curves. Furthermore, we investigate the robustness of the fitting procedure. We focus on the diagnostics of orbital parameters and the estimation of the scattering radius of the planet. Methods: We employ the physics of Rayleigh scattering to obtain polarization curves of an unresolved extrasolar planet. Calculations are made for two cases: (i) assuming an angular distribution for the intensity of the scattered light as from a Lambert sphere and for polarization as from a Rayleigh-type scatterer; and (ii) assuming that both the intensity and polarization of the scattered light are distributed according to the Rayleigh law. We show that the difference between these two cases is negligible for the shapes of the polarization curves. In addition, we take the size of the host star into account, which is relevant for hot Jupiters orbiting giant stars. Results: We discuss the influence of the inclination of the planetary orbit, the position angle of the ascending node, and the eccentricity on the linearly polarized light curves both in Stokes Q/I and U/I. We also analyze errors that arise from the assumption of a point-like star in numerical modeling of polarization as compared to consistent calculations accounting for the finite size of the host star. We find that errors due to the point-like star approximation are reduced with the size of the orbit, but still amount to about 5% for known hot Jupiters. Recovering orbital parameters from simulated data is shown to be very robust even for very noisy data because the polarization curves react

  13. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph

    2011-10-15

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e{sup +}e{sup -} {yields} {chi}{chi}{gamma}, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb{sup -1}, the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of {delta} P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the

  14. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    International Nuclear Information System (INIS)

    Bartels, Christoph

    2011-10-01

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e + e - → χχγ, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb -1 , the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of δ P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the required precision. At ILC, these

  15. Possible accuracy of the Cotton-Mouton polarimetry in a sheared toroidal plasma conversion

    International Nuclear Information System (INIS)

    Kravtsov, Y.A.; Chrzanowski, J.

    2011-01-01

    The Cotton-Mouton effect in the sheared plasma with helical magnetic lines is studied, using the equation for the complex amplitude ratio (CAR). A simple model for helical magnetic lines in plasma of toroidal configuration is suggested. Equation for CAR is solved perturbatively, treating the shear angle variations as a small perturbation, caused by the spiral form of the magnetic lines. It is shown that the uncertainty of the polarization measurements in the toroidal plasma with a spiral form of the magnetic lines does not exceed 1.0-2.0%, which determines the limiting accuracy of the Cotton-Mouton polarimetry. It is furthermore pointed out that the method of a priori subtraction of the '' sheared '' term may significantly improve the accuracy of the Cotton-Mouton polarimetry. (authors)

  16. Circular polarimetry of EXO 033319-2554.2 - a new eclipsing AM Herculis star

    International Nuclear Information System (INIS)

    Berriman, G.; Smith, P.S.

    1988-01-01

    This Letter presents circular polarimetry that unequivocally identifies EXO 033319-2554.2 as only the third eclipsing AM Her star and brings the total number of AM Her stars now identified to 14. The orbital period is 126.4 minutes, as previously reported, and defines a new short-period edge to the period gap seen in all classes of cataclysmic variable stars. EXO 033319-2554.2 shows 2.5 mag deep eclipses of the predominantly accreting magnetic pole on the white dwarf. Before the eclipse, the pole rotates into the line of sight and shows white-light circular polarization, due to cyclotron radiation, that reaches values as high as 10 percent. There is some evidence that the second pole is emitting cyclotron radiation too. How high time resolution photometry, linear polarimetry, and spectroscopy will be of great value in understanding this system. 17 references

  17. Measuring Pancharatnam's relative phase for SO(3) evolutions using spin polarimetry

    International Nuclear Information System (INIS)

    Larsson, Peter; Sjoeqvist, Erik

    2003-01-01

    In polarimetry, a superposition of internal quantal states is exposed to a single Hamiltonian and information about the evolution of the quantal states is inferred from projection measurements on the final superposition. In this framework, we here extend the polarimetric test of Pancharatnam's relative phase for spin-(1/2) proposed by Wagh and Rakhecha [Phys. Lett. A 197, 112 (1995)] to spin j≥1 undergoing noncyclic SO(3) evolution. We demonstrate that the output intensity for higher spin values is a polynomial function of the corresponding spin-(1/2) intensity. We further propose a general method to extract the noncyclic SO(3) phase and visibility by rigid translation of two π/2 spin flippers. Polarimetry on higher spin states may in practice be done with spin polarized atomic beams

  18. Optimal distribution of integration time for intensity measurements in degree of linear polarization polarimetry.

    Science.gov (United States)

    Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie

    2016-04-04

    We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.

  19. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    Science.gov (United States)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  20. Circular polarimetry of EXO 033319-2554.2 - A new eclipsing AM Herculis star

    Science.gov (United States)

    Berriman, Graham; Smith, Paul S.

    1988-01-01

    This Letter presents circular polarimetry that unequivocally identifies EXO 033319-2554.2 as only the third eclipsing AM Her star and brings the total number of AM Her stars now identified to 14. The orbital period is 126.4 minutes, as previously reported, and defines a new short-period edge to the period gap seen in all classes of cataclysmic variable stars. EXO 033319-2554.2 shows 2.5 mag deep eclipses of the predominantly accreting magnetic pole on the white dwarf. Before the eclipse, the pole rotates into the line of sight and shows white-light circular polarization, due to cyclotron radiation, that reaches values as high as 10 percent. There is some evidence that the second pole is emitting cyclotron radiation too. How high time resolution photometry, linear polarimetry, and spectroscopy will be of great value in understanding this system.

  1. Internal Magnetic Field, Temperature and Density Measurements on Magnetized HED plasmas using Pulsed Polarimetry

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2016-01-01

    The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high-beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.

  2. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    International Nuclear Information System (INIS)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-01-01

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces

  3. Summary of the XIII International Workshop on Polarized Sources, Targets and Polarimetry

    Science.gov (United States)

    Rathmann, F.

    2011-01-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. The present meeting took place in Ferrara, Italy, and was organized by the University of Ferrara. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session decicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighboring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  4. PST 2009: XIII International Workshop on Polarized Sources Targets and Polarimetry

    Science.gov (United States)

    Lenisa, Paolo

    2011-05-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. In 2009 the meeting took place in Ferrara, Italy, and was organized by the University of Ferrara and INFN. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session dedicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighbouring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  5. Internal Magnetic Field, Temperature and Density Measurements on Magnetized HED plasmas using Pulsed Polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Roger J. [Univ. of Washington, Seattle, WA (United States)

    2016-10-20

    The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high-beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.

  6. Robustness of average Stokes polarimetry characterization of digitally addressed parallel-aligned LCoS displays

    OpenAIRE

    Martínez Guardiola, Francisco Javier; Márquez Ruiz, Andrés; Gallego Rico, Sergi; Ortuño Sánchez, Manuel; Francés Monllor, Jorge; Beléndez Vázquez, Augusto; Pascual Villalobos, Inmaculada

    2014-01-01

    Parallel-aligned liquid crystal on silicon (PA-LCoS) displays have become the most attractive spatial light modulator device for a wide range of applications, due to their superior resolution and light efficiency, added to their phase-only capability. Recently we proposed a novel polarimetric method, based on Stokes polarimetry, enabling the characterization of their linear retardance and the magnitude of their associated phase fluctuations, if existent, as it happens in most of digital backp...

  7. Systematic comparison between line integrated densities measured with interferometry and polarimetry at JET

    International Nuclear Information System (INIS)

    Brombin, M.; Zilli, E.; Giudicotti, L.; Boboc, A.; Murari, A.

    2009-01-01

    A systematic comparison between the line integrated electron density derived from interferometry and polarimetry at JET has been carried out. For the first time the reliability of the measurements of the Cotton-Mouton effect has been analyzed for a wide range of main plasma parameters and the possibility to evaluate the electron density directly from polarimetric data has been studied. The purpose of this work is to recover the interferometric data with the density derived from the measured Cotton-Mouton effect, when the fringe jump phenomena occur. The results show that the difference between the line integrated electron density from interferometry and polarimetry is with one fringe (1.143x10 19 m -2 ) for more than 90% of the cases. It is possible to consider polarimetry as a satisfactory alternative method to interferometry to measure the electron density and it could be used to recover interferometric signal when a fringe jumps occurs, preventing difficulties for the real-time control of many experiments at the JET machine.

  8. Multi-epoch intranight optical monitoring of eight radio-quiet BL Lac candidates

    Science.gov (United States)

    Kumar, P.; Gopal-Krishna; Stalin, C. S.; Chand, H.; Srianand, R.; Petitjean, P.

    2017-10-01

    For a new sample of eight weak-line quasars (WLQs) we report a sensitive search in 20 intranight monitoring sessions, for blazar-like optical flux variations on hour-like and longer time-scale (day/month/year-like). The sample consists exclusively of the WLQs that are not radio-loud and either have been classified as 'radio-weak probable BL Lac candidates' and/or are known to have exhibited at least one episode of large, blazar-like optical variability. Whereas only a hint of intranight variability is seen for two of these WLQs, J104833.5+620305.0 (z = 0.219) and J133219.6+622715.9 (z = 3.15), statistically significant internight variability at a few per cent level is detected for three of the sources, including the radio-intermediate WLQ J133219.6+622715.9 (z = 3.15) and the well-known bona fide radio-quiet WLQs J121221.5+534128.0 (z = 3.10) and WLQ J153259.9-003944.1 (z = 4.62). In the rest frame, this variability is intraday and in the far-ultraviolet band. On the time-scale of a decade, we find for three of the WLQs large brightness changes, amounting to 1.655 ± 0.009, 0.163 ± 0.010 and 0.144 ± 0.018 mag, for J104833.5+620305.0, J123743.1+630144.9 and J232428.4+144324.4, respectively. Whereas the latter two are confirmed radio-quiet WLQs, the extragalactic nature of J104833.5+620305.0 remains to be well established, thanks to the absence of any feature(s) in its available optical spectra. This study forms a part of our ongoing campaign of intranight optical monitoring of radio-quiet WLQs, in order to improve the understanding of this enigmatic class of active galactic nuclei and to look among them for a possible tiny, elusive population of radio-quiet BL Lacs.

  9. Size and Shape of Chariklo from Multi-epoch Stellar Occultations

    Science.gov (United States)

    Leiva, R.; Sicardy, B.; Camargo, J. I. B.; Ortiz, J.-L.; Desmars, J.; Bérard, D.; Lellouch, E.; Meza, E.; Kervella, P.; Snodgrass, C.; Duffard, R.; Morales, N.; Gomes-Júnior, A. R.; Benedetti-Rossi, G.; Vieira-Martins, R.; Braga-Ribas, F.; Assafin, M.; Morgado, B. E.; Colas, F.; De Witt, C.; Sickafoose, A. A.; Breytenbach, H.; Dauvergne, J.-L.; Schoenau, P.; Maquet, L.; Bath, K.-L.; Bode, H.-J.; Cool, A.; Lade, B.; Kerr, S.; Herald, D.

    2017-10-01

    We use data from five stellar occultations observed between 2013 and 2016 to constrain Chariklo’s size and shape, and the ring reflectivity. We consider four possible models for Chariklo (sphere, Maclaurin spheroid, triaxial ellipsoid, and Jacobi ellipsoid), and we use a Bayesian approach to estimate the corresponding parameters. The spherical model has a radius R = 129 ± 3 km. The Maclaurin model has equatorial and polar radii a=b={143}-6+3 {km} and c={96}-4+14 {km}, respectively, with density {970}-180+300 {kg} {{{m}}}-3. The ellipsoidal model has semiaxes a={148}-4+6 {km}, b={132}-5+6 {km}, and c={102}-8+10 {km}. Finally, the Jacobi model has semiaxes a = 157 ± 4 km, b = 139 ± 4 km, and c = 86 ± 1 km, and density {796}-4+2 {kg} {{{m}}}-3. Depending on the model, we obtain topographic features of 6-11 km, typical of Saturn icy satellites with similar size and density. We constrain Chariklo’s geometric albedo between 3.1% (sphere) and 4.9% (ellipsoid), while the ring I/F reflectivity is less constrained between 0.6% (Jacobi) and 8.9% (sphere). The ellipsoid model explains both the optical light curve and the long-term photometry variation of the system, giving a plausible value for the geometric albedo of the ring particles of 10%-15%. The derived mass of Chariklo of 6-8 × 1018 kg places the rings close to 3:1 resonance between the ring mean motion and Chariklo’s rotation period. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  10. Polarimetric imaging of retinal disease by polarization sensitive SLO

    Science.gov (United States)

    Miura, Masahiro; Elsner, Ann E.; Iwasaki, Takuya; Goto, Hiroshi

    2015-03-01

    Polarimetry imaging is used to evaluate different features of the macular disease. Polarimetry images were recorded using a commercially- available polarization-sensitive scanning laser opthalmoscope at 780 nm (PS-SLO, GDx-N). From data sets of PS-SLO, we computed average reflectance image, depolarized light images, and ratio-depolarized light images. The average reflectance image is the grand mean of all input polarization states. The depolarized light image is the minimum of crossed channel. The ratio-depolarized light image is a ratio between the average reflectance image and depolarized light image, and was used to compensate for variation of brightness. Each polarimetry image is compared with the autofluorescence image at 800 nm (NIR-AF) and autofluorescence image at 500 nm (SW-AF). We evaluated four eyes with geographic atrophy in age related macular degeneration, one eye with retinal pigment epithelium hyperplasia, and two eyes with chronic central serous chorioretinopathy. Polarization analysis could selectively emphasize different features of the retina. Findings in ratio depolarized light image had similarities and differences with NIR-AF images. Area of hyper-AF in NIR-AF images showed high intensity areas in the ratio depolarized light image, representing melanin accumulation. Areas of hypo-AF in NIR-AF images showed low intensity areas in the ratio depolarized light images, representing melanin loss. Drusen were high-intensity areas in the ratio depolarized light image, but NIR-AF images was insensitive to the presence of drusen. Unlike NIR-AF images, SW-AF images showed completely different features from the ratio depolarized images. Polarization sensitive imaging is an effective tool as a non-invasive assessment of macular disease.

  11. Atypical birefringence pattern and the diagnostic ability of scanning laser polarimetry with enhanced corneal compensation in glaucoma.

    Science.gov (United States)

    Rao, Harsha L; Yadav, Ravi K; Begum, Viquar U; Addepalli, Uday K; Senthil, Sirisha; Choudhari, Nikhil S; Garudadri, Chandra S

    2015-03-01

    To evaluate the effect of typical scan score (TSS), when within the acceptable limits, on the diagnostic performance of retinal nerve fibre layer (RNFL) parameters with the enhanced corneal compensation (ECC) protocol of scanning laser polarimetry (SLP) in glaucoma. In a cross-sectional study, 203 eyes of 160 glaucoma patients and 140 eyes of 104 control subjects underwent RNFL imaging with the ECC protocol of SLP. TSS was used to quantify atypical birefringence pattern (ABP) images. Influence of TSS on the diagnostic ability of SLP parameters was evaluated by receiver operating characteristic (ROC) regression models after adjusting for the effect of disease severity [based on mean deviation (MD)] on standard automated perimetry). Diagnostic abilities of all RNFL parameters of SLP increased when the TSS values were higher. This effect was statistically significant for TSNIT (coefficient: 0.08, p<0.001) and inferior average parameters (coefficient: 0.06, p=0.002) but not for nerve fibre indicator (NFI, coefficient: 0.03, p=0.21). In early glaucoma (MD of -5 dB), predicted area under ROC curve (AUC) for TSNIT average parameter improved from 0.642 at a TSS of 90 to 0.845 at a TSS of 100. In advanced glaucoma (MD of -15 dB), AUC for TSNIT average improved from 0.832 at a TSS of 90 to 0.947 at 100. Diagnostic performances of TSNIT and inferior average RNFL parameters with ECC protocol of SLP were significantly influenced by TSS even when the TSS values were within the acceptable limits. Diagnostic ability of NFI was unaffected by TSS values. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. POLARIMETRY AND THE HIGH-ENERGY EMISSION MECHANISMS IN QUASAR JETS: THE CASE OF PKS 1136-135

    Energy Technology Data Exchange (ETDEWEB)

    Cara, Mihai; Perlman, Eric S. [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901 (United States); Uchiyama, Yasunobu [SLAC/KIPAC, Stanford University, 2575 Sand Hill Road, M/S 209, Menlo Park, CA 94025 (United States); Cheung, Chi C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Coppi, Paolo S. [Yale University, Department of Astronomy, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Worrall, Diana M.; Birkinshaw, Mark [Department of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Sparks, William B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marshall, Herman L. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Stawarz, Lukasz [Institute of Space Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-Ku, Sagamihara, Kanagawa 252-5210 (Japan); Begelman, Mitchell C. [Department of Astrophysical and Planetary Sciences, UCB 391, University of Colorado, Boulder, CO 80309-0391 (United States); O' Dea, Christopher P. [Laboratory for Multiwavelength Astrophysics, School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Dr., Rochester, NY 14623-5603 (United States); Baum, Stefi A. [Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY 14623-5604 (United States)

    2013-08-20

    Since the discovery of kiloparsec-scale X-ray emission from quasar jets, the physical processes responsible for their high-energy emission have been poorly defined. A number of mechanisms are under active debate, including synchrotron radiation, inverse-Comptonized cosmic microwave background (IC/CMB) emission, and other Comptonization processes. In a number of cases, the optical and X-ray emission of jet regions are inked by a single spectral component, and in those, high-resolution multi-band imaging and polarimetry can be combined to yield a powerful diagnostic of jet emission processes. Here we report on deep imaging photometry of the jet of PKS 1136-135 obtained with the Hubble Space Telescope. We find that several knots are highly polarized in the optical, with fractional polarization {Pi} > 30%. When combined with the broadband spectral shape observed in these regions, this is very difficult to explain via IC/CMB models, unless the scattering particles are at the lowest-energy tip of the electron energy distribution, with Lorentz factor {gamma} {approx} 1, and the jet is also very highly beamed ({delta} {>=} 20) and viewed within a few degrees of the line of sight. We discuss both the IC/CMB and synchrotron interpretation of the X-ray emission in the light of this new evidence, presenting new models of the spectral energy distribution and also the matter content of this jet. The high polarizations do not completely rule out the possibility of IC/CMB optical-to-X-ray emission in this jet, but they do strongly disfavor the model. We discuss the implications of this finding, and also the prospects for future work.

  13. POLARIMETRY AND THE HIGH-ENERGY EMISSION MECHANISMS IN QUASAR JETS: THE CASE OF PKS 1136–135

    International Nuclear Information System (INIS)

    Cara, Mihai; Perlman, Eric S.; Uchiyama, Yasunobu; Cheung, Chi C.; Coppi, Paolo S.; Georganopoulos, Markos; Worrall, Diana M.; Birkinshaw, Mark; Sparks, William B.; Marshall, Herman L.; Stawarz, Lukasz; Begelman, Mitchell C.; O'Dea, Christopher P.; Baum, Stefi A.

    2013-01-01

    Since the discovery of kiloparsec-scale X-ray emission from quasar jets, the physical processes responsible for their high-energy emission have been poorly defined. A number of mechanisms are under active debate, including synchrotron radiation, inverse-Comptonized cosmic microwave background (IC/CMB) emission, and other Comptonization processes. In a number of cases, the optical and X-ray emission of jet regions are inked by a single spectral component, and in those, high-resolution multi-band imaging and polarimetry can be combined to yield a powerful diagnostic of jet emission processes. Here we report on deep imaging photometry of the jet of PKS 1136–135 obtained with the Hubble Space Telescope. We find that several knots are highly polarized in the optical, with fractional polarization Π > 30%. When combined with the broadband spectral shape observed in these regions, this is very difficult to explain via IC/CMB models, unless the scattering particles are at the lowest-energy tip of the electron energy distribution, with Lorentz factor γ ∼ 1, and the jet is also very highly beamed (δ ≥ 20) and viewed within a few degrees of the line of sight. We discuss both the IC/CMB and synchrotron interpretation of the X-ray emission in the light of this new evidence, presenting new models of the spectral energy distribution and also the matter content of this jet. The high polarizations do not completely rule out the possibility of IC/CMB optical-to-X-ray emission in this jet, but they do strongly disfavor the model. We discuss the implications of this finding, and also the prospects for future work

  14. Non-conventional procedure of polarimetry data inversion in conditions of comparable Faraday and Cotton-Mouton effects

    International Nuclear Information System (INIS)

    Kravtsov, Yu.A.; Chrzanowski, J.; Mazon, D.

    2011-01-01

    A new procedure for inverting plasma polarimetry data is proposed in this paper. The procedure is based on the fit between a two parameter knowledge-based plasma model, which is using both magnetic and Thompson scattering data, and the polarimetric measurements. In turn the polarimetry system is assumed to measure two angular parameters of polarization: its azimuthal and ellipticity angles. The inversion procedure under consideration is based on the angular variables technique (AVT), describing evolution of the angular parameters of polarization ellipse in weakly anisotropic plasma. Generally inversion procedure can be applied both for weak and significant Faraday and Cotton-Mouton effects. For weak polarimetric effects inversion procedure shows the results of traditional polarimetry.

  15. Accurate 3He polarimetry using the Rb Zeeman frequency shift due to the Rb-3He spin-exchange collisions

    International Nuclear Information System (INIS)

    Romalis, M.V.; Cates, G.D.

    1998-01-01

    We describe a method of 3 He polarimetry relying on the polarization-dependent frequency shift of the Rb Zeeman resonance. Our method is ideally suited for on-line measurements of the 3 He polarization produced by spin-exchange optical pumping. To calibrate the frequency shift we performed an accurate measurement of the imaginary part of the Rb- 3 He spin-exchange cross section in the temperature range typical for spin-exchange optical pumping of 3 He. We also present a detailed study of possible systematic errors in the frequency shift polarimetry. copyright 1998 The American Physical Society

  16. The MESA polarimetry chain and the status of its double scattering polarimeter

    International Nuclear Information System (INIS)

    Aulenbacher, K.; Bartolomé, P. Aguar; Molitor, M.; Tioukine, V.

    2013-01-01

    We plan to have two independent polarimetry systems at MESA based on totally different physical processes. A first one tries to minimize the systematic uncertainties in double polarized Mo/ller scattering, which is to be achieved by stored hydrogen atoms in an atomic trap (Hydro-Mo/ller-Polarimeter). The other one relies on the equality of polarizing and analyzing power which allows to measure the effective analyzing power of a polarimeter with very high accuracy. Since the status of Hydro-Mo/ller is presented in a separate paper we concentrate on the double scattering polarimeter in this article

  17. EUV polarimetry for thin film and surface characterization and EUV phase retarder reflector development.

    Science.gov (United States)

    Gaballah, A E H; Nicolosi, P; Ahmed, Nadeem; Jimenez, K; Pettinari, G; Gerardino, A; Zuppella, P

    2018-01-01

    The knowledge and the manipulation of light polarization state in the vacuum ultraviolet and extreme ultraviolet (EUV) spectral regions play a crucial role from materials science analysis to optical component improvements. In this paper, we present an EUV spectroscopic ellipsometer facility for polarimetry in the 90-160 nm spectral range. A single layer aluminum mirror to be used as a quarter wave retarder has been fully characterized by deriving the optical and structural properties from the amplitude component and phase difference δ measurements. The system can be suitable to investigate the properties of thin films and optical coatings and optics in the EUV region.

  18. Modulation polarimetry of full internal reflection, broken by diamond-like films

    Directory of Open Access Journals (Sweden)

    Maksimenko L. S.

    2013-02-01

    Full Text Available This article presents research results on diamond-like films produced under different technological conditions. The parameter ρ — polarization difference — has been introduced. It has been found from spectral features of the parameter ρ that the interaction of electromagnetic radiation with the electronic system of specimens, which occurs in the used spectral range, consists of local and polariton surface resonances, differing in frequencies and times of relaxations. The autors concluded that the correlation in resonance intensity is defined by the structural characteristics of the specimens. These results show that modulation polarimetry is a perspective technique for diagnostics of the structural homogeneity of composite nanocluster films.

  19. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    Science.gov (United States)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  20. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry.

    Science.gov (United States)

    Hudnut, Alexa W; Babaei, Behzad; Liu, Sonya; Larson, Brent K; Mumenthaler, Shannon M; Armani, Andrea M

    2017-10-01

    Characterizing the mechanical behavior of living tissue presents an interesting challenge because the elasticity varies by eight orders of magnitude, from 50Pa to 5GPa. In the present work, a non-destructive optical fiber photoelastic polarimetry system is used to analyze the mechanical properties of resected samples from porcine liver, kidney, and pancreas. Using a quasi-linear viscoelastic fit, the elastic modulus values of the different organ systems are determined. They are in agreement with previous work. In addition, a histological assessment of compressed and uncompressed tissues confirms that the tissue is not damaged during testing.

  1. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  2. Mueller matrix polarimetry on a Young's double-slit experiment analog.

    Science.gov (United States)

    Arteaga, Oriol; Ossikovski, Razvigor; Kuntman, Ertan; Kuntman, Mehmet A; Canillas, Adolf; Garcia-Caurel, Enric

    2017-10-01

    In this Letter we describe an experiment in which coherent light is sent through a calcite crystal that separates the photons by their polarization. The two beams are then let to superpose, and this recombined beam is used to measure the Mueller matrix of the system. Results are interpreted according to our recent formalism of coherent superposition in material media. This is the first experimental implementation of a Young's experiment with complete polarimetry, and it is demonstrated that our method can be used for the experimental synthesis of optical devices with on-demand optical properties.

  3. Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations.

    Science.gov (United States)

    Aschaffenburg, Daniel J; Williams, Michael R C; Schmuttenmaer, Charles A

    2016-05-07

    Terahertz time-domain spectroscopic polarimetry has been used to measure the polarization state of all spectral components in a broadband THz pulse upon transmission through generalized anisotropic media consisting of two-dimensional arrays of lithographically defined Archimedean spirals. The technique allows a full determination of the frequency-dependent, complex-valued transmission matrix and eigenpolarizations of the spiral arrays. Measurements were made on a series of spiral array orientations. The frequency-dependent transmission matrix elements as well as the eigenpolarizations were determined, and the eigenpolarizations were found be to elliptically corotating, as expected from their symmetry. Numerical simulations are in quantitative agreement with measured spectra.

  4. Bench test results on a new technique for far-infrared polarimetry

    International Nuclear Information System (INIS)

    Barry, S.; Nieswand, C.; Prunty, S.L.; Mansfield, H.M.; O'Leary, P.

    1996-11-01

    The results of bench tests performed on a new method of combined interferometry/polarimetry for the magnetic field reconstruction of tokamak plasmas is presented. In particular, the sensitivity obtained in the polarimetric measurement shows the feasibility of Faraday rotation determination approaching a precision of ±0.2 o . The method is based on an optically pumped far-infrared (FIR) laser with a rotating polarization where both the interferometric and polarimetric information is determined from phase measurements. Specific sources which introduce disturbances in the optical arrangement and which can limit the attainment of the polarimetric precision, mentioned above, are discussed. (author) 4 figs., 6 refs

  5. Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry

    International Nuclear Information System (INIS)

    Escoffier, S.; Bertin, P.Y.; Brossard, M.; Burtin, E.; Cavata, C.; Colombel, N.; Jager, C.W. de; Delbart, A.; Lhuillier, D.; Marie, F.; Mitchell, J.; Neyret, D.; Pussieux, T.

    2005-01-01

    A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6GeV and a beam current of 40μA, a total relative uncertainty of 1.5% is typically achieved within 40min of data taking. Under the same conditions monitoring of the polarization is accurate at a level of 1%. These unprecedented results make Compton polarimetry an essential tool for modern parity-violation experiments, which require very accurate electron beam polarization measurements

  6. Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation

    Science.gov (United States)

    Medeiros, Felipe A.; Alencar, Luciana M.; Zangwill, Linda M.; Bowd, Christopher; Vizzeri, Gianmarco; Sample, Pamela A.; Weinreb, Robert N.

    2010-01-01

    Purpose To evaluate the ability of scanning laser polarimetry with variable corneal compensation to detect progressive retinal nerve fiber layer (RNFL) loss in glaucoma patients and patients suspected of having the disease. Methods This was an observational cohort study that included 335 eyes of 195 patients. Images were obtained annually with the GDx VCC scanning laser polarimeter, along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. The median follow-up time was 3.94 years. Progression was determined using commercial software for SAP and by masked assessment of optic disc stereophotographs performed by expert graders. Random coefficient models were used to evaluate the relationship between RNFL thickness measurements over time and progression as determined by SAP and/or stereophotographs. Results From the 335 eyes, 34 (10%) showed progression over time by stereophotographs and/or SAP. Average GDx VCC measurements decreased significantly over time for both progressors as well as non-progressors. However, the rate of decline was significantly higher in the progressing group (−0.70 μm/year) compared to the non-progressing group (−0.14 μm/year; P = 0.001). Black race and male sex were significantly associated with higher rates of RNFL loss during follow-up. Conclusions The GDx VCC scanning laser polarimeter was able to identify longitudinal RNFL loss in eyes that showed progression in optic disc stereophotographs and/or visual fields. These findings suggest that this technology could be useful to detect and monitor progressive disease in patients with established diagnosis of glaucoma or suspected of having the disease. PMID:19029038

  7. PROMPT: Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Reichart, D.; Nysewander, M.; Moran, J. [North Carolina Univ., Chapel Hill (United States). Department of Physics and Astronomy] (and others)

    2005-07-15

    Funded by $1.2M in grants and donations, we are now building PROMPT at CTIO. When completed in late 2005, PROMPT will consist of six 0.41-meter diameter Ritchey-Chretien telescopes on rapidly slewing mounts that respond to GRB alerts within seconds, when the afterglow is potentially extremely bright. Each mirror and camera coating is being optimized for a different wavelength range and function, including a NIR imager, two red-optimized imager, a blue-optimized imager, an UV-optimized imager, and an optical polarimeter. PROMPT will be able to identify high-redshift events by dropout and distinguish these events from the similar signatures of extinction. In this way, PROMPT will act a distance-finder scope for spectroscopic follow up on the larger 4.1-meter diameter SOAR telescope, which is also located at CTIO. When not chasing GRBs, PROMPT serves broader educational objectives across the state of north Carolina. Enclosure construction and the first two telescopes are now complete and functioning: PROMPT observed Swift's first GRB in December 2004. We upgrade from two to four telescope in February 2005 and from four to six telescopes in mid-2005.

  8. Solution of the inverse problem of polarimetry for deterministic objects on the base of incomplete Mueller matrices

    CERN Document Server

    Savenkov, S M

    2002-01-01

    Using the Mueller matrix representation in the basis of the matrices of amplitude and phase anisotropies, a generalized solution of the inverse problem of polarimetry for deterministic objects on the base of incomplete Mueller matrices, which have been measured by method of three input polarization, is obtained.

  9. Solution of the inverse problem of polarimetry for deterministic objects on the base of incomplete Mueller matrices

    International Nuclear Information System (INIS)

    Savenkov, S.M.; Oberemok, Je.A.

    2002-01-01

    Using the Mueller matrix representation in the basis of the matrices of amplitude and phase anisotropies, a generalized solution of the inverse problem of polarimetry for deterministic objects on the base of incomplete Mueller matrices, which have been measured by method of three input polarization, is obtained

  10. Polarimetry based partial least square classification of ex vivo healthy and basal cell carcinoma human skin tissues.

    Science.gov (United States)

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ikram, Masroor

    2016-06-01

    Optical polarimetry was employed for assessment of ex vivo healthy and basal cell carcinoma (BCC) tissue samples from human skin. Polarimetric analyses revealed that depolarization and retardance for healthy tissue group were significantly higher (ppolarimetry together with PLS statistics hold promise for automated pathology classification. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    International Nuclear Information System (INIS)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca

    2014-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  12. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion.

    Science.gov (United States)

    Pirnstill, Casey W; Malik, Bilal H; Gresham, Vincent C; Coté, Gerard L

    2012-09-01

    Over the past 35 years considerable research has been performed toward the investigation of noninvasive and minimally invasive glucose monitoring techniques. Optical polarimetry is one noninvasive technique that has shown promise as a means to ascertain blood glucose levels through measuring the glucose concentrations in the anterior chamber of the eye. However, one of the key limitations to the use of optical polarimetry as a means to noninvasively measure glucose levels is the presence of sample noise caused by motion-induced time-varying corneal birefringence. In this article our group presents, for the first time, results that show dual-wavelength polarimetry can be used to accurately detect glucose concentrations in the presence of motion-induced birefringence in vivo using New Zealand White rabbits. In total, nine animal studies (three New Zealand White rabbits across three separate days) were conducted. Using the dual-wavelength optical polarimetric approach, in vivo, an overall mean average relative difference of 4.49% (11.66 mg/dL) was achieved with 100% Zone A+B hits on a Clarke error grid, including 100% falling in Zone A. The results indicate that dual-wavelength polarimetry can effectively be used to significantly reduce the noise due to time-varying corneal birefringence in vivo, allowing the accurate measurement of glucose concentration in the aqueous humor of the eye and correlating that with blood glucose.

  13. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  14. Detecting strain in birefringent materials using spectral polarimetry

    Science.gov (United States)

    Garner, Harold R. (Inventor); Ragucci, Anthony J. (Inventor); Cisar, Alan J. (Inventor); Huebschman, Michael L. (Inventor)

    2010-01-01

    A method, computer program product and system for analyzing multispectral images from a plurality of regions of birefringent material, such as a polymer film, using polarized light and a corresponding polar analyzer to identify differential strain in the birefringent material. For example, the birefringement material may be low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene, polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinylidene chloride, polyester, nylon, or cellophane film. Optionally, the method includes generating a real-time quantitative strain map.

  15. Determination of Lactose Concentration in Milk Serum by Refractometry and Polarimetry

    Directory of Open Access Journals (Sweden)

    Rodica Căpriță

    2014-05-01

    Full Text Available The research had in view to evaluate and compare two instrumental techniques used for the determination of milk lactose. Refractometric and polarimetric measurements were carried out on milk serum obtained after precipitation of casein by two different methods: by acidification of milk to its isoelectric point (E1, and by using copper sulphate and potassium ferrocyanide (E2. The average lactose content measured by refractometry was 5.469±0.256g% for method E1 and 5.852±0.218g% for method E2. The obtained average lactose values measured by polarimetry were higher both for E1 (5.613±0.253g% and E2 (5.910±0.224g% methods, due to the interference with other optically active components. The experimental data revealed a high correlation between the results obtained by refractometry and polarimetry (r = 0.8712 when casein precipitation was performed by potentiometric titration until pH = 4.6, at 25°C with 2N acetic acid (method E1.

  16. Stokes-Mueller matrix polarimetry technique for circular dichroism/birefringence sensing with scattering effects.

    Science.gov (United States)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-04-01

    A surface plasmon resonance (SPR)-enhanced method is proposed for measuring the circular dichroism (CD), circular birefringence (CB), and degree of polarization (DOP) of turbid media using a Stokes–Mueller matrix polarimetry technique. The validity of the analytical model is confirmed by means of numerical simulations. The simulation results show that the proposed detection method enables the CD and CB properties to be measured with a resolution of 10 ? 4 refractive index unit (RIU) and 10 ? 5 ?? RIU , respectively, for refractive indices in the range of 1.3 to 1.4. The practical feasibility of the proposed method is demonstrated by detecting the CB/CD/DOP properties of glucose–chlorophyllin compound samples containing polystyrene microspheres. It is shown that the extracted CB value decreases linearly with the glucose concentration, while the extracted CD value increases linearly with the chlorophyllin concentration. However, the DOP is insensitive to both the glucose concentration and the chlorophyllin concentration. Consequently, the potential of the proposed SPR-enhanced Stokes–Mueller matrix polarimetry method for high-resolution CB/CD/DOP detection is confirmed. Notably, in contrast to conventional SPR techniques designed to detect relative refractive index changes, the SPR technique proposed in the present study allows absolute measurements of the optical properties (CB/CD/DOP) to be obtained.

  17. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Vivien E. [Blaise Pascal Univ., Aubiere (France)

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  18. Traceable Mueller polarimetry and scatterometry for shape reconstruction of grating structures

    Science.gov (United States)

    Hansen, Poul-Erik; Madsen, Morten H.; Lehtolahti, Joonas; Nielsen, Lars

    2017-11-01

    Dimensional measurements of multi-patterned transmission gratings with a mixture of long and small periods are great challenges for optical metrology today. It is a further challenge when the aspect ratio of the structures is high, that is, when the height of structures is larger than the pitch. Here we consider a double patterned transmission grating with pitches of 500 nm and 20 000 nm. For measuring the geometrical properties of double patterned transmission grating we use a combined spectroscopic Mueller polarimetry and scatterometry setup. For modelling the experimentally obtained data we rigorously compute the scattering signal by solving Maxwell's equations using the RCWA method on a supercell structure. We also present a new method for analyzing the Mueller polarimetry parameters that performs the analysis in the measured variables. This new inversion method for finding the best fit between measured and calculated values are tested on silicon gratings with periods from 300 to 600 nm. The method is shown to give results within the expanded uncertainty of reference AFM measurements. The application of the new inversion method and the supercell structure to the double patterned transmission grating gives best estimates of dimensional quantities that are in fair agreement with those derived from local AFM measurements

  19. Optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy in retinal nerve fiber layer measurements of glaucoma patients.

    Science.gov (United States)

    Fanihagh, Farsad; Kremmer, Stephan; Anastassiou, Gerasimos; Schallenberg, Maurice

    2015-01-01

    To determine the correlations and strength of association between different imaging systems in analyzing the retinal nerve fiber layer (RNFL) of glaucoma patients: optical coherence tomography (OCT), scanning laser polarimetry (SLP) and confocal scanning laser ophthalmoscopy (CSLO). 114 eyes of patients with moderate open angle glaucoma underwent spectral domain OCT (Topcon SD-OCT 2000 and Zeiss Cirrus HD-OCT), SLP (GDx VCC and GDx Pro) and CSLO (Heidelberg Retina Tomograph, HRT 3). Correlation coefficients were calculated between the structural parameters yielded by these examinations. The quantitative relationship between the measured RNFL thickness globally and for the four regions (superior, inferior, nasal, temporal) were evaluated with different regression models for all used imaging systems. The strongest correlation of RNFL measurements was found between devices using the same technology like GDx VCC and GDx Pro as well as Topcon OCT and Cirrus OCT. In glaucoma patients, the strongest associations (R²) were found between RNFL measurements of the two optical coherence tomography devices Topcon OCT and Cirrus OCT (R² = 0.513) and between GDx VCC and GDx Pro (R² = 0.451). The results of the OCTs and GDX Pro also had a strong quantitative relationship (Topcon OCT R² = 0.339 and Cirrus OCT R² = 0.347). GDx VCC and the OCTs showed a mild to moderate association (Topcon OCT R² = 0.207 and Cirrus OCT R² = 0.258). The confocal scanning laser ophthalmoscopy (HRT 3) had the lowest association to all other devices (Topcon OCT R² = 0.254, Cirrus OCT R² = 0.158, GDx Pro R² = 0.086 and GDx VCC R² = 0.1). The measurements of the RNFL in glaucoma patients reveal a high correlation of OCT and GDx devices because OCTs can measure all major retinal layers and SLP can detect nerve fibers allowing a comparison between the results of this devices. However, CSLO by means of HRT topography can only measure height values of the retinal surface but it cannot distinguish

  20. Multiple view fan beam polarimetry on Tokamak devices

    International Nuclear Information System (INIS)

    Geck, W.R.; Domier, C.W.; Luhmann, N.C.

    1997-01-01

    A polarimeter diagnostic is under development which utilizes several fan beams to accumulate line integrated Faraday rotation data in a Tokamak plasma. The utilization of a fan beam configuration over that of conventional vertical view polarimeter systems significantly reduces access requirements. The high angular separation inherent in a fan beam implementation increases plasma coverage and eliminates the necessity of assumed plasma symmetries to generate high quality current density profiles. Codes have been developed to generate these high-resolution two-dimensional images of the plasma current profile from data collected at arbitrary positions and viewing angles. copyright 1997 American Institute of Physics

  1. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  2. Polarimetry and Unification of Low-Redshift Radio Galaxies

    International Nuclear Information System (INIS)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-01-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or Pα.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise steeply

  3. Polarimetry and Unification of Low-Redshift Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-11-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or P{alpha}.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise

  4. Determination of D-lactide content in lactide stereoisomeric mixture using gas chromatography-polarimetry.

    Science.gov (United States)

    Feng, Lidong; Bian, Xinchao; Chen, Zhiming; Xiang, Sheng; Liu, Yanlong; Sun, Bin; Li, Gao; Chen, Xuesi

    2017-03-01

    An analytical method has been proposed to quantify the D-lactide content in a lactide stereoisomeric mixture using combined gas chromatography and polarimetry (GC- polarimetry). As for a lactide stereoisomeric mixture, meso-lactide can be determined quantitatively using GC, but D- and L-lactides cannot be separated by the given GC system. The composition of a lactide stereoisomeric mixture is directly relative to its specific optical rotation. The specific optical rotations of neat L-lactide were obtained in different solutions, which were -266.3° and -298.8° in dichloromethane (DCM) and toluene solutions at 20°C, respectively. Therefore, for a lactide sample, the D-lactide content could be calculated based on the meso-lactide content obtained from GC and the specific optical rotations of the sample and neat L-lactide obtained from polarimetry. The effects of impurities and temperature on the test results were investigated, respectively. When the total content of impurities was not more than 1.0%, the absolute error for determining D-lactide content was less than 0.10% in DCM and toluene solutions. When the D-lactide content was calculated according to the specific optical rotation of neat L-lactide at 20°C, the absolute error caused by the variation in temperature of 20±15°C was not more than 0.2 and 0.7% in DCM and toluene solutions, respectively, and thus usually could be ignored in a DCM solution. When toluene was used as a solvent for the determination of D-lactide content, a temperature correction for specific optical rotations could be introduced and would ensure the accuracy of results. This method is applicable to the determination of D-lactide content in lactide stereoisomeric mixtures. The standard deviation (STDEV) of the measurements is less than 0.5%, indicating that the precision is suitable for this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Polarimetry of Solar System Objects: Observations vs. Models

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and

  6. Practical Aspects of X-ray Imaging Polarimetry of Supernova Remnants and Other Extended Sources

    Directory of Open Access Journals (Sweden)

    Jacco Vink

    2018-04-01

    Full Text Available The new generation of X-ray polarisation detectors, the gas pixel detectors, which will be employed by the future space missions IXPE and eXTP, allows for spatially resolved X-ray polarisation studies. This will be of particular interest for X-ray synchrotron emission from extended sources like young supernova remnants and pulsar wind nebulae. Here we report on employing a polarisation statistic that can be used to makes maps in the Stokes I, Q, and U parameters, a method that we expand by correcting for the energy-dependent instrumental modulation factor, using optimal weighting of the signal. In order to explore the types of Stokes maps that can be obtained, we present a Monte Carlo simulation program called xpolim, with which different polarisation weighting schemes are explored. We illustrate its use with simulations of polarisation maps of young supernova remnants, after having described the general science case for polarisation studies of supernova remnants, and its connection to magnetic-field turbulence. We use xpolim simulations to show that in general deep, ~2 Ms observations are needed to recover polarisation signals, in particular for Cas A, for which in the polarisation fraction may be as low as 5%.

  7. Reflection nebulae in the Galactic center: soft X-ray imaging polarimetry

    Czech Academy of Sciences Publication Activity Database

    Marin, Frederic; Muleri, F.; Soffitta, P.; Karas, Vladimír; Kunneriath, Devaky

    2015-01-01

    Roč. 576, April (2015), A19/1-A19/7 ISSN 0004-6361 R&D Projects: GA MŠk LD12010; GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : Galaxy * nucleus * structure Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  8. On-chip polarimetry for high-throughput screening of nanoliter and smaller sample volumes

    Science.gov (United States)

    Bachmann, Brian O. (Inventor); Bornhop, Darryl J. (Inventor); Dotson, Stephen (Inventor)

    2012-01-01

    A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate (22) having one or more microfluidic channels (26) formed therein. A polarized laser beam (14) is directed onto optically active samples that are disposed in the channels. The incident laser beam interacts with the optically active molecules in the sample, which slightly alter the polarization of the laser beam as it passes multiple times through the sample. Interference fringe patterns (28) are generated by the interaction of the laser beam with the sample and the channel walls. A photodetector (34) is positioned to receive the interference fringe patterns and generate an output signal that is input to a computer or other analyzer (38) for analyzing the signal and determining the rotation of plane polarized light by optically active material in the channel from polarization rotation calculations.

  9. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    International Nuclear Information System (INIS)

    Zhang, J.; Crocker, N. A.; Carter, T. A.; Kubota, S.; Peebles, W. A.

    2010-01-01

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation, it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.

  10. Nanotwin Detection and Domain Polarity Determination via Optical Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Ren, Ming-Liang; Agarwal, Rahul; Nukala, Pavan; Liu, Wenjing; Agarwal, Ritesh

    2016-07-13

    We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.

  11. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  12. X-ray polarimetry with a conventional gas proportional counter through rise-time analysis

    CERN Document Server

    Hayashida, K; Tsunemi, H; Torii, K; Murakami, H; Ohno, Y; Tamura, K

    1999-01-01

    We have performed an experiment on the signal rise time of a Xe gas proportional counter using a polarized X-ray beam of synchrotron orbital radiation with energies from 10 to 40 keV. When the counter anode is perpendicular to the electric vector of the incident X-ray photons, the average rise time becomes significantly longer than that for the parallel case. This indicates that the conventional gas proportional counters are useful for X-ray polarimetry. The moderate modulation contrast of this rise-time polarimeter (M=0.1 for 10 keV X-rays and M=0.35 for 40 keV X-rays), with capability of the simultaneous measuring X-ray energies and the timing, would be useful for applications in X-ray astronomy and in other fields.

  13. Optical characterization of porcine articular cartilage using a polarimetry technique with differential Mueller matrix formulism.

    Science.gov (United States)

    Chang, Ching-Min; Lo, Yu-Lung; Tran, Nghia-Khanh; Chang, Yu-Jen

    2018-03-20

    A method is proposed for characterizing the optical properties of articular cartilage sliced from a pig's thighbone using a Stokes-Mueller polarimetry technique. The principal axis angle, phase retardance, optical rotation angle, circular diattenuation, diattenuation axis angle, linear diattenuation, and depolarization index properties of the cartilage sample are all decoupled in the proposed analytical model. Consequently, the accuracy and robustness of the extracted results are improved. The glucose concentration, collagen distribution, and scattering properties of samples from various depths of the articular cartilage are systematically explored via an inspection of the related parameters. The results show that the glucose concentration and scattering effect are both enhanced in the superficial region of the cartilage. By contrast, the collagen density increases with an increasing sample depth.

  14. Strong equivalence, Lorentz and CPT violation, anti-hydrogen spectroscopy and gamma-ray burst polarimetry

    International Nuclear Information System (INIS)

    Shore, Graham M.

    2005-01-01

    The strong equivalence principle, local Lorentz invariance and CPT symmetry are fundamental ingredients of the quantum field theories used to describe elementary particle physics. Nevertheless, each may be violated by simple modifications to the dynamics while apparently preserving the essential fundamental structure of quantum field theory itself. In this paper, we analyse the construction of strong equivalence, Lorentz and CPT violating Lagrangians for QED and review and propose some experimental tests in the fields of astrophysical polarimetry and precision atomic spectroscopy. In particular, modifications of the Maxwell action predict a birefringent rotation of the direction of linearly polarised radiation from synchrotron emission which may be studied using radio galaxies or, potentially, gamma-ray bursts. In the Dirac sector, changes in atomic energy levels are predicted which may be probed in precision spectroscopy of hydrogen and anti-hydrogen atoms, notably in the Doppler-free, two-photon 1s-2s and 2s-nd (n∼10) transitions

  15. Optimal distribution of integration time for intensity measurements in Stokes polarimetry.

    Science.gov (United States)

    Li, Xiaobo; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie; Hu, Haofeng

    2015-10-19

    We consider the typical Stokes polarimetry system, which performs four intensity measurements to estimate a Stokes vector. We show that if the total integration time of intensity measurements is fixed, the variance of the Stokes vector estimator depends on the distribution of the integration time at four intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the Stokes vector estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time by employing Lagrange multiplier method. According to the theoretical analysis and real-world experiment, it is shown that the total variance of the Stokes vector estimator can be significantly decreased about 40% in the case discussed in this paper. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improves the measurement accuracy of the polarimetric system.

  16. A quartz Cherenkov detector for Compton-polarimetry at future e+e- colliders

    International Nuclear Information System (INIS)

    List, Jenny; Vauth, Annika; Vormwald, Benedikt; Hamburg Univ.

    2015-02-01

    Precision polarimetry is essential for future e + e - colliders and requires Compton polarimeters designed for negligible statistical uncertainties. In this paper, we discuss the design and construction of a quartz Cherenkov detector for such Compton polarimeters. The detector concept has been developed with regard to the main systematic uncertainties of the polarisation measurements, namely the linearity of the detector response and detector alignment. Simulation studies presented here imply that the light yield reachable by using quartz as Cherenkov medium allows to resolve in the Cherenkov photon spectra individual peaks corresponding to different numbers of Compton electrons. The benefits of the application of a detector with such single-peak resolution to the polarisation measurement are shown for the example of the upstream polarimeters foreseen at the International Linear Collider. Results of a first testbeam campaign with a four-channel prototype confirming simulation predictions for single electrons are presented.

  17. Polarimetry on dense samples of spin-polarized {sup 3}He by magnetostatic detection

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R. [Mainz Univ. (Germany). Inst. fuer Physik

    1997-12-21

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized {sup 3}He gas contained in spherical glass cells at pressures around several bars. The {sup 3}He nuclear polarization can be extracted with high precision {Delta}P/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.). 29 refs.

  18. Polarimetry on dense samples of spin-polarized 3He by magnetostatic detection

    International Nuclear Information System (INIS)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R.

    1997-01-01

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized 3 He gas contained in spherical glass cells at pressures around several bars. The 3 He nuclear polarization can be extracted with high precision ΔP/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.)

  19. Precision gamma-ray polarimetry applied to studies of bremsstrahlung produced by polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Oleksiy

    2015-12-16

    The thesis reports on the measurement of bremsstrahlung linear polarization produced in collisions of longitudinally and transversely polarized electrons with gold atoms. The experiment was performed at the Mainzer Microtron MAMI in the Institut fuer Kernphysik of Johannes Gutenberg-Universitaet Mainz, Germany. Spin-oriented electrons with 2.15 MeV kinetic energy collided with a thin golden target and produced bremsstrahlung. Linear polarization of the emitted photons was measured by means of Compton polarimetry applied to a segmented high-purity germanium detector. Experimental results reveal a strong correlation between the electron spin orientation and bremsstrahlung linear polarization. This indicates a dominant role of the electron spin in atomic-field bremsstrahlung and Coulomb scattering.

  20. COBE DIRBE near-infrared polarimetry of the zodiacal light: Initial results

    Science.gov (United States)

    Berriman, G. B.; Boggess, N. W.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Moseley, S. H.; Reach, W. T.; Silverberg, R. F.

    1994-01-01

    This Letter describes near-infrared polarimetry of the zodiacal light at 2.2 micrometers, measured with the Diffuse Infrared Background Experiment (DIRBE) aboard the Cosmic Background Explorer (COBE) spacecraft. The polarization is due to scattering of sunlight. The polarization vector is perpendicular to the scattering plane, and its observed amplitude on the ecliptic equator at an elongation of 90 deg and ecliptic longitude of 10 deg declines from 12.0 +/- 0.4% at 1.25 micrometers to 8.0 +/- 0.6% at 3.5 micrometers (cf. 16% in the visible); the principal source of uncertainty is photometric noise due to stars. The observed near-infrared colors at this location are redder than Solar, but at 3.5 micrometers this is due at least in part to the thermal emission contribution from the interplanetary dust. Mie theory calculations show that both polarizations and colors are important in constraining models of interplanetary dust.

  1. Solar Maximum Mission Experiment - Ultraviolet Spectroscopy and Polarimetry on the Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hanssen, E.; Cheng, C. C.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.; Gurman, J. B.; Hyder, C. L.

    1981-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacecraft is described. It is pointed out that the instrument, which operates in the wavelength range 1150-3600 A, has a spatial resolution of 2-3 arcsec and a spectral resolution of 0.02 A FWHM in second order. A Gregorian telescope, with a focal length of 1.8 m, feeds a 1 m Ebert-Fastie spectrometer. A polarimeter comprising rotating Mg F2 waveplates can be inserted behind the spectrometer entrance slit; it permits all four Stokes parameters to be determined. Among the observing modes are rasters, spectral scans, velocity measurements, and polarimetry. Examples of initial observations made since launch are presented.

  2. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    Science.gov (United States)

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation.

    Science.gov (United States)

    Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  4. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures.

    Science.gov (United States)

    Majeed, Hassaan; Shaheen, Amrozia; Anwar, Muhammad Sabieh

    2013-10-21

    We report the complete determination of the polarization changes caused in linearly polarized incident light due to propagation in a magneto-optically active terbium gallium garnet (TGG) single crystal, at temperatures ranging from 6.3 to 300 K. A 28-fold increase in the Verdet constant of the TGG crystal is seen as its temperature decreases to 6.3 K. In contrast with polarimetry of light emerging from a Faraday material at room temperature, polarimetry at cryogenic temperatures cannot be carried out using the conventional fixed polarizer-analyzer technique because the assumption that ellipticity is negligible becomes increasingly invalid as temperature is lowered. It is shown that complete determination of light polarization in such a case requires the determination of its Stokes parameters, otherwise inaccurate measurements will result with negative implications for practical devices.

  5. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    Science.gov (United States)

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a

  6. Study of the possibility to use dp-elastic scattering for the Nuclotron external deuteron beam polarimetry

    International Nuclear Information System (INIS)

    Gurchin, Yu.V.; Isupov, A.Yu.; Khrenov, A.N.; Kiselev, A.S.; Ladygin, V.P.; Reznikov, S.G.; Vasil'ev, T.A.; Janek, M.; Karachuk, J.T.

    2011-01-01

    A selection of dp-elastic scattering events at energies of 1.6 and 2.0 GeV by using scintillation counters has been performed. The procedure of the CH 2 -C subtraction has been established. The dependence of the elastic events yield on the filter thickness has been investigated. This method can be used to develop the efficient high-energy deuteron beam polarimetry

  7. Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae

    National Research Council Canada - National Science Library

    Ohnaka, K; Boboltz, D. A

    2007-01-01

    .... We present multi-epoch, high-angular resolution observations of 22 GHz H2O masers toward the silicate carbon star EU And to probe the spatio-kinematic distribution of oxygen-rich material. Methods...

  8. Structure-function correlations using scanning laser polarimetry in primary angle-closure glaucoma and primary open-angle glaucoma.

    Science.gov (United States)

    Lee, Pei-Jung; Liu, Catherine Jui-Ling; Wojciechowski, Robert; Bailey-Wilson, Joan E; Cheng, Ching-Yu

    2010-05-01

    To assess the correlations between retinal nerve fiber layer (RNFL) thickness measured with scanning laser polarimetry and visual field (VF) sensitivity in primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Prospective, comparative, observational cases series. Fifty patients with POAG and 56 patients with PACG were examined using scanning laser polarimetry with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, Inc.) and Humphrey VF analyzer (Carl Zeiss Meditec, Inc.) between August 2005 and July 2006 at Taipei Veterans General Hospital. Correlations between RNFL thickness and VF sensitivity, expressed as mean sensitivity in both decibel and 1/Lambert scales, were estimated by the Spearman rank correlation coefficient (r(s)) and multivariate median regression models (pseudo R(2)). The correlations were determined globally and for 6 RNFL sectors and their corresponding VF regions. The correlation between RNFL thickness and mean sensitivity (in decibels) was weaker in the PACG group (r(s) = 0.38; P = .004; pseudo R(2) = 0.17) than in the POAG group (r(s) = 0.51; P polarimetry. Compared with eyes with POAG, fewer RNFL sectors have significant structure-function correlations in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.

  9. How to COAAD Images. II. A Coaddition Image that is Optimal for Any Purpose in the Background-dominated Noise Limit

    Energy Technology Data Exchange (ETDEWEB)

    Zackay, Barak; Ofek, Eran O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2017-02-20

    Image coaddition is one of the most basic operations that astronomers perform. In Paper I, we presented the optimal ways to coadd images in order to detect faint sources and to perform flux measurements under the assumption that the noise is approximately Gaussian. Here, we build on these results and derive from first principles a coaddition technique that is optimal for any hypothesis testing and measurement (e.g., source detection, flux or shape measurements, and star/galaxy separation), in the background-noise-dominated case. This method has several important properties. The pixels of the resulting coadded image are uncorrelated. This image preserves all the information (from the original individual images) on all spatial frequencies. Any hypothesis testing or measurement that can be done on all the individual images simultaneously, can be done on the coadded image without any loss of information. The PSF of this image is typically as narrow, or narrower than the PSF of the best image in the ensemble. Moreover, this image is practically indistinguishable from a regular single image, meaning that any code that measures any property on a regular astronomical image can be applied to it unchanged. In particular, the optimal source detection statistic derived in Paper I is reproduced by matched filtering this image with its own PSF. This coaddition process, which we call proper coaddition, can be understood as the maximum signal-to-noise ratio measurement of the Fourier transform of the image, weighted in such a way that the noise in the entire Fourier domain is of equal variance. This method has important implications for multi-epoch seeing-limited deep surveys, weak lensing galaxy shape measurements, and diffraction-limited imaging via speckle observations. The last topic will be covered in depth in future papers. We provide an implementation of this algorithm in MATLAB.

  10. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    Directory of Open Access Journals (Sweden)

    Pottier E.

    2010-06-01

    Full Text Available SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height

  11. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry.

    Science.gov (United States)

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor

    2015-05-01

    Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT ), retardance (RT ), depolarization(ΔT ), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT , ΔL, RT ,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DTa nd DL showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues.

  12. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  13. Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept

    International Nuclear Information System (INIS)

    Bieg, B.; Chrzanowski, J.; Kravtsov, Yu. A.; Mazon, D.

    2015-01-01

    Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.

  14. Evaluating Glaucomatous Retinal Nerve Fiber Damage by GDx VCC Polarimetry in Taiwan Chinese Population

    Science.gov (United States)

    Chen, Hsin-Yi; Huang, Mei-Ling; Huang, Wei-Cheng

    2010-01-01

    Purpose To study the capability of scanning laser polarimetry with variable corneal compensation (GDx VCC) to detect differences in retinal nerve fiber layer thickness between normal and glaucomatous eyes in a Taiwan Chinese population. Methods This study included 44 normal eyes and 107 glaucomatous eyes. The glaucomatous eyes were divided into three subgroups on the basis of its visual field defects (early, moderate, severe). Each subject underwent a GDx-VCC exam and visual field testing. The area under the receiver-operating characteristic curve (AROC) of each relevant parameter was used to differentiate normal from each glaucoma subgroup, respectively. The correlation between visual field index and each parameter was evaluated for the eyes in the glaucoma group. Results For normal vs. early glaucoma, the parameter with the best AROC was Nerve fiber indicator (NFI) (0.942). For normal vs. moderate glaucoma, the parameter showing the best AROC was NFI (0.985). For normal vs. severe glaucoma, the parameter that had the best AROC was NFI (1.000). For early vs. moderate glaucoma, the parameter with the best AROC was NFI (0.732). For moderate vs. severe, the parameter showing the best AROC was temporal-superior-nasal-inferior-temporal average (0.652). For early vs. severe, the parameter with the best AROC was NFI (0.852). Conclusions GDx-VCC-measured parameters may serve as a useful tool to distinguish normal from glaucomatous eyes; in particular, NFI turned out to be the best discriminating parameter.

  15. Signal processing techniques for lithium beam polarimetry on DIII-D

    International Nuclear Information System (INIS)

    Thomas, D. M.; Leonard, A. W.

    2006-01-01

    On the DIII-D tokamak the LIBEAM diagnostic provides precise measurements of the local magnetic field direction by combined polarimetry/ spectroscopy of the Zeeman-split 2S-2P lithium resonance line. Using these measurements we are able to determine the behavior of the edge toroidal current density j φ (r), a parameter of critical interest for edge stability and performance. For a successful measurement, analysis of the polarization state of the spectrally filtered fluorescence must be done with high precision in the presence of nonideal filtering, beam intensity evolution, and dynamically varying background light. This is accomplished by polarization modulation of the collected emission, followed by digital demodulation at various harmonics of the modulation frequency. Either lock-in or fast Fourier transform techniques can be used to determine the various Stokes parameters and reconstruct the field directions based on accurate spatial and polarization efficiency calibrations. Details of the specific techniques used to analyze various DIII-D discharges are described, along with a discussion of the present limitations and some possible avenues towards improving the analysis

  16. Identification of Soil Freezing and Thawing States Using SAR Polarimetry at C-Band

    Directory of Open Access Journals (Sweden)

    Thomas Jagdhuber

    2014-03-01

    Full Text Available The monitoring of soil freezing and thawing states over large areas is very challenging on ground. In order to investigate the potential and the limitations of space-borne SAR polarimetry at C-band for soil state survey, analyses were conducted on an entire winter time series of fully polarimetric RADARSAT-2 data from 2011/2012 to identify freezing as well as thawing states within the soil. The polarimetric data were acquired over the Sodankylä test site in Finland together with in situ measurements of the soil and the snow cover. The analyses indicate clearly that the dynamics of the polarimetric entropy and mean scattering alpha angle are directly correlated to soil freezing and thawing states, even under distinct dry snow cover. First modeling attempts using the Extended Bragg soil scattering model justify the observed trends, which indicate surface-like scattering during frozen soil conditions and multiple/volume scattering for thawed soils. Hence, these first investigations at C-band foster motivation to work towards a robust polarimetric detection of soil freezing and thawing states as well as their transition phase.

  17. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    Science.gov (United States)

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  18. Polarimetry as a tool for the study of solutions of chiral solutes.

    Science.gov (United States)

    Orlova, Anna V; Andrade, Renato R; da Silva, Clarissa O; Zinin, Alexander I; Kononov, Leonid O

    2014-01-13

    Optical rotation of aqueous solutions of D-levoglucosan was studied experimentally in the 0.03-4.0 mol L(-1) concentration range and a nonlinear concentration dependence of specific optical rotation (SR) was revealed. Discontinuities observed in the concentration plot of SR (at 0.1, 0.3, 0.5, 1.0, and 2.0 mol L(-1)) are well correlated with those found by static and dynamic light scattering and identify concentration ranges in which different solution domains (supramers) may exist. The average SR experimental value for a D-levoglucosan aqueous solution ([α]D(28) -58.5±8.7 deg dm(-1) cm(-3) g(-1)) was found to be in good agreement with values obtained by theoretical calculation (TD-DFT/GIAO) of SR for 15 different conformers revealed by conformational sampling at the PCM/B3LYP/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) level, which were shown to be strongly affected by the solvation microenvironment (0, 1, 2, and 3 explicit solvent molecules considered) due to local geometrical changes induced in the solute molecule. This exceptionally high sensitivity of SR makes polarimetry a unique method capable of sensing changes in the structure of supramers detected in this study. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. THE STATISTICS OF RADIO ASTRONOMICAL POLARIMETRY: BRIGHT SOURCES AND HIGH TIME RESOLUTION

    International Nuclear Information System (INIS)

    Van Straten, W.

    2009-01-01

    A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal-broadening phenomenon in single-pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single- and giant-pulse polarimetry typically involves sources with large flux-densities and observations with high time-resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self-noise is shown to fully explain the excess polarization dispersion previously noted in single-pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated.

  20. Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept

    Energy Technology Data Exchange (ETDEWEB)

    Bieg, B. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Chrzanowski, J., E-mail: j.chrzanowski@am.szczecin.pl [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Kravtsov, Yu. A. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Space Research Institute, Profsoyuznaya St. 82/34 Russian Academy of Science, Moscow 117997 (Russian Federation); Mazon, D. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-10-15

    Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.

  1. Polarimetry and photometry of active quasars at visual and near-infrared wavelengths

    International Nuclear Information System (INIS)

    Smith, P.S.

    1986-01-01

    The optical and near-infrared continua of highly luminous BL Lacertae (BL Lac) objects and optically violent variable (OVV) quasars are studied through simultaneous broad-band photometry and linear polarimetry. Nineteen BL Lacs and OVVs were monitored during a ∼1 1/2-year period, with the major aim of characterizing the wavelength-dependent polarization exhibited by these objects. Optical (UBVRI) observations were conducted at the UCSD/U. Minn. 1.5-m telescope on Mt. Lemmon, Arizona. Simultaneous (within 1 hr.) near-infrared (JHK) measurements were made using the KPNO 2.1-m telescope. Most of the BL Lac objects exhibit large variations in polarization and brightness on time scale of less than a week. The degree of fractional linear polarization (P) is not observed to be related to brightness or optical spectral index. Most BL Lacs did not show a preferred polarization position angle (theta). Wavelength-dependent P and theta are observed in almost all BL Lacs, but not always simultaneously. The OVV quasar 1156 + 295 shows behavior very similar to the BL Lac objects. 3C 345 Exhibited polarization properties that are quite different from those of the BL Lacs. This object showed a clear correlation between brightness and P

  2. Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Niccolò Bucciantini

    2018-03-01

    Full Text Available Supernova remnants (SNRs and pulsar wind nebulae (PWNs are among the most significant sources of non-thermal X-rays in the sky, and the best means by which relativistic plasma dynamics and particle acceleration can be investigated. Being strong synchrotron emitters, they are ideal candidates for X-ray polarimetry, and indeed the Crab nebula is up to present the only object where X-ray polarization has been detected with a high level of significance. Future polarimetric measures will likely provide us with crucial information on the level of turbulence that is expected at particle acceleration sites, together with the spatial and temporal coherence of magnetic field geometry, enabling us to set stronger constraints on our acceleration models. PWNs will also allow us to estimate the level of internal dissipation. I will briefly review the current knowledge on the polarization signatures in SNRs and PWNs, and I will illustrate what we can hope to achieve with future missions such as IXPE/XIPE.

  3. Looking inside jets: optical polarimetry as a probe of Gamma-Ray Bursts physics

    Science.gov (United States)

    Kopac, D.; Mundell, C.

    2015-07-01

    It is broadly accepted that gamma-ray bursts (GRBs) are powered by accretion of matter by black holes, formed during massive stellar collapse, which launch ultra-relativistic, collimated outflows or jets. The nature of the progenitor star, the structure of the jet, and thus the underlying mechanisms that drive the explosion and provide collimation, remain some of the key unanswered questions. To approach these problems, and in particular the role of magnetic fields in GRBs, early time-resolved polarimetry is the key, because it is the only direct probe of the magnetic fields structure. Using novel fast RINGO polarimeter developed for use on the 2-m robotic optical Liverpool Telescope, we have made the first measurements of optical linear polarization of the early optical afterglows of GRBs, finding linear percentage polarization as high as 30% and, for the first time, making time-resolved polarization measurements. I will present the past 8 years of RINGO observations, discuss how the results fit into the GRB theoretical picture, and highlight recent data, in particular high-time resolution multi-colour optical photometry performed during the prompt GRB phase, which also provides some limits on polarization.

  4. Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC).

    Science.gov (United States)

    Dada, Tanuj; Aggarwal, A; Bali, S J; Sharma, A; Shah, B M; Angmo, D; Panda, A

    2013-01-01

    Myopia presents a significant challenge to the ophthalmologist as myopic discs are often large, tilted, with deep cups and have a thinner neuroretinal rim all of which may mimic glaucomatous optic nerve head changes causing an error in diagnosis. To evaluate the retinal fiber layer (RNFL) thickness in low, moderate and high myopia using scanning laser polarimetry with variable corneal compensation (GDxVCC). One hundred eyes of 100 emmetropes, 30 eyes of low myopes (0 to - 4 D spherical equivalent(SE), 45 eyes with moderate myopia (- 4 to - 8D SE), and 30 eyes with high myopia (- 8 to - 15D SE) were subjected to retinal nerve fiber layer assessment using the scanning laser polarimetry (GDxVCC) in all subjects using the standard protocol. Subjects with IOP > 21 mm Hg, optic nerve head or visual field changes suggestive of glaucoma were excluded from the study. The major outcome parameters were temporal-superior-nasal-inferiortemporal (TSNIT) average, the superior and inferior average and the nerve fibre indicator (NFI). The TSNIT average (p = 0.009), superior (p = 0.001) and inferior average (p = 0.008) were significantly lower; the NFI was higher (P less than 0.001) in moderate myopes as compared to that in emmetropes. In high myopia the RNFL showed supranormal values; the TSNIT average, superior and inferior average was significantly higher(p less than 0.001) as compared to that in emmetropes. The RNFL measurements on scanning laser polarimetry are affected by the myopic refractive error. Moderate myopes show a significant thinning of the RNFL. In high myopia due to peripapillary chorioretinal atrophy and contribution of scleral birefringence, the RNFL values are abnormally high. These findings need to be taken into account while assessing and monitoring glaucoma damage in moderate to high myopes on GDxVCC. © NEPjOPH.

  5. Determination of self generated magnetic field and the plasma density using Cotton Mouton polarimetry with two color probes

    Directory of Open Access Journals (Sweden)

    Joshi A.S.

    2013-11-01

    Full Text Available Self generated magnetic fields (SGMF in laser produced plasmas are conventionally determined by measuring the Faraday rotation angle of a linearly polarized laser probe beam passing through the plasma along with the interferogram for obtaining plasma density. In this paper, we propose a new method to obtain the plasma density and the SGMF distribution from two simultaneous measurements of Cotton Mouton polarimetry of two linearly polarized probe beams of different colors that pass through plasma in a direction normal to the planar target. It is shown that this technique allows us to determine the distribution of SGMF and the plasma density without doing interferometry of laser produced plasmas.

  6. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  7. Multi-Epoch Hubble Space Telescope Observations of IZw18 : Characterization of Variable Stars at Ultra-Low Metallicities

    NARCIS (Netherlands)

    Fiorentino, G.; Ramos, R. Contreras; Clementini, G.; Marconi, M.; Musella, I.; Aloisi, A.; Annibali, F.; Saha, A.; Tosi, M.; van der Marel, R. P.

    2010-01-01

    Variable stars have been identified for the first time in the very metal-poor blue compact dwarf galaxy IZw18, using deep multi-band (F606W, F814W) time-series photometry obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope. We detected 34 candidate variable stars in the

  8. Chemical Compositions of Stars in the Globular Cluster NGC 3201: Tracers of Multi-Epoch Star Formation

    Science.gov (United States)

    Simmerer, Jennifer A.; Ivans, I. I.; Filler, D.

    2012-01-01

    The retrograde halo globular cluster NGC 3201 contains stars of substantially different iron abundance ([Fe/H]), a property that puts it at odds with the vast majority of the Galactic cluster system. Though its unusual orbit prompted speculation that NGC 3201 was the remnant of a captured object, much like the multi-metallicity globular cluster Omega Centauri, NGC 3201 is much less massive than Omega Centauri and all of the other halo globular clusters that have internal metallicity variations. We present the abundances of 21 elements in 24 red giant branch stars in NGC 3201 based on high-resolution (R 40,000), high signal-to-noise (S/N 70) spectra. We find that the detailed abundance pattern of NGC 3201 is unique amongst multi-metallicity halo clusters. Unlike M22, Omega Centauri, and NGC 1851, neither metal-poor nor metal-rich stars show any evidence of s-process enrichment (a product of the advanced evolution of low- and intermediate-mass stars). We find that while Na, O, and Al vary from star to star as is typical in globular clusters, there is no systematic difference between the abundance pattern in the metal-poor cluster stars and that of the metal-rich cluster stars. Furthermore, we find that the metallicity variations in NGC 3201 are independent of the well-known Na-O anticorrelation, which separates it from every other multi-metallicity cluster. In the context of a multi-episode star formation model, this implies that NGC 3201 began life with the [Fe/H] variations we measure now.

  9. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    Science.gov (United States)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  10. On the use of polarization modulation in combined interferometry and polarimetry. Corrigendum. 1998 Plasma Phys. Control. Fusion, v. 40 p. 153-161

    International Nuclear Information System (INIS)

    Segre, S.E.

    1998-01-01

    Errors in the main text, the appendix and two curves are corrected in this corrigendum to the paper entitled ''On the use of polarization modulation in combined interferometry and polarimetry'', written by S.E. Segre and published in 1998 Plasma Phys. Control. Fusion, v. 40 p. 153-161

  11. Performance of a position sensitive Si(Li) x-ray detector dedicated to Compton polarimetry of stored and trapped highly-charged ions

    International Nuclear Information System (INIS)

    Weber, G; Braeuning, H; Hess, S; Maertin, R; Spillmann, U; Stoehlker, Th

    2010-01-01

    We report on a novel two-dimensional position sensitive Si(Li) detector dedicated to Compton polarimetry of x-ray radiation arising from highly-charged ions. The performance of the detector system was evaluated in ion-atom collision experiments at the ESR storage ringe at GSI, Darmstadt. Based on the data obtained, the polarimeter efficiency is estimated in this work.

  12. ACTIVE GALAXY UNIFICATION IN THE ERA OF X-RAY POLARIMETRY

    International Nuclear Information System (INIS)

    Dorodnitsyn, A.; Kallman, T.

    2010-01-01

    Active galactic nuclei (AGNs), Seyfert galaxies, and quasars are powered by luminous accretion and often accompanied by winds that are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes that are happening within the central parsec around the black hole (BH). One example of such a wind is the partially ionized gas responsible for X-ray and UV absorption (warm absorbers). Here, we show that such gas will have a distinct signature when viewed in polarized X-rays. Observations of such polarization can test models for the geometry of the flow and the gas responsible for launching and collimating it. We present calculations that show that the polarization depends on the hydrodynamics of the flow, the quantum mechanics of resonance-line scattering, and the transfer of polarized X-ray light in the highly ionized moving gas. The results emphasize the three-dimensional nature of the wind for modeling spectra. We show that the polarization in the 0.1-10 keV energy range is dominated by the effects of resonance lines. We predict a 5%-25% X-ray polarization signature of type-2 objects in this energy range. These results are generalized to flows that originate from a cold torus-like structure, located ∼1 pc from the BH, which wraps the BH and is ultimately responsible for the apparent dichotomy between type 1 and type 2 AGNs. Such signals will be detectable by future dedicated X-ray polarimetry space missions, such as the NASA Gravity and Extreme Magnetism Small Explorer.

  13. Scanning Laser Polarimetry and Optical Coherence Tomography for Detection of Retinal Nerve Fiber Layer Defects

    Science.gov (United States)

    Oh, Jong-Hyun

    2009-01-01

    Purpose To compare the ability of scanning laser polarimetry with variable corneal compensation (GDx-VCC) and Stratus optical coherence tomography (OCT) to detect photographic retinal nerve fiber layer (RNFL) defects. Methods This retrospective cross-sectional study included 45 eyes of 45 consecutive glaucoma patients with RNFL defects in red-free fundus photographs. The superior and inferior temporal quadrants in each eye were included for data analysis separately. The location and presence of RNFL defects seen in red-free fundus photographs were compared with those seen in GDx-VCC deviation maps and OCT RNFL analysis maps for each quadrant. Results Of the 90 quadrants (45 eyes), 31 (34%) had no apparent RNFL defects, 29 (32%) had focal RNFL defects, and 30 (33%) had diffuse RNFL defects in red-free fundus photographs. The highest agreement between GDx-VCC and red-free photography was 73% when we defined GDx-VCC RNFL defects as a cluster of three or more color-coded squares (p<5%) along the traveling line of the retinal nerve fiber in the GDx-VCC deviation map (kappa value, 0.388; 95% confidence interval (CI), 0.195 to 0.582). The highest agreement between OCT and red-free photography was 85% (kappa value, 0.666; 95% CI, 0.506 to 0.825) when a value of 5% outside the normal limit for the OCT analysis map was used as a cut-off value for OCT RNFL defects. Conclusions According to the kappa values, the agreement between GDx-VCC deviation maps and red-free photography was poor, whereas the agreement between OCT analysis maps and red-free photography was good. PMID:19794943

  14. Combining Frequency Doubling Technology Perimetry and Scanning Laser Polarimetry for Glaucoma Detection.

    Science.gov (United States)

    Mwanza, Jean-Claude; Warren, Joshua L; Hochberg, Jessica T; Budenz, Donald L; Chang, Robert T; Ramulu, Pradeep Y

    2015-01-01

    To determine the ability of frequency doubling technology (FDT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) to detect glaucoma when used individually and in combination. One hundred ten normal and 114 glaucomatous subjects were tested with FDT C-20-5 screening protocol and the GDx-VCC. The discriminating ability was tested for each device individually and for both devices combined using GDx-NFI, GDx-TSNIT, number of missed points of FDT, and normal or abnormal FDT. Measures of discrimination included sensitivity, specificity, area under the curve (AUC), Akaike's information criterion (AIC), and prediction confidence interval lengths. For detecting glaucoma regardless of severity, the multivariable model resulting from the combination of GDx-TSNIT, number of abnormal points on FDT (NAP-FDT), and the interaction GDx-TSNIT×NAP-FDT (AIC: 88.28, AUC: 0.959, sensitivity: 94.6%, specificity: 89.5%) outperformed the best single-variable model provided by GDx-NFI (AIC: 120.88, AUC: 0.914, sensitivity: 87.8%, specificity: 84.2%). The multivariable model combining GDx-TSNIT, NAP-FDT, and interaction GDx-TSNIT×NAP-FDT consistently provided better discriminating abilities for detecting early, moderate, and severe glaucoma than the best single-variable models. The multivariable model including GDx-TSNIT, NAP-FDT, and the interaction GDx-TSNIT×NAP-FDT provides the best glaucoma prediction compared with all other multivariable and univariable models. Combining the FDT C-20-5 screening protocol and GDx-VCC improves glaucoma detection compared with using GDx or FDT alone.

  15. Comparison of Optical Coherence Tomography and Scanning Laser Polarimetry Measurements in Patients with Multiple Sclerosis

    Science.gov (United States)

    Quelly, Amanda; Cheng, Han; Laron, Michal; Schiffman, Jade S.; Tang, Rosa A.

    2010-01-01

    Purpose To compare optical coherence tomography (OCT) and scanning laser polarimetry (GDx) measurements of the retinal nerve fiber layer (RNFL) in multiple sclerosis (MS) patients with and without optic neuritis (ON). Methods OCT and GDx were performed on 68 MS patients. Qualifying eyes were divided into two groups: 51 eyes with an ON history ≥ 6 months prior (ON eyes), and 65 eyes with no history of ON (non-ON eyes). Several GDx and OCT parameters and criteria were used to define an eye as abnormal, for example, GDx nerve fiber indicator (NFI) above 20 or 30, OCT average RNFL thickness and GDx temporal-superior-nasal-inferior-temporal average (TSNIT) below 5% or 1% of the instruments’ normative database. Agreement between OCT and GDx parameters was reported as percent of observed agreement, along with the AC1 statistic. Linear regression analyses were used to examine the relationship between OCT average RNFL thickness and GDx NFI and TSNIT. Results All OCT and GDx measurements showed significantly more RNFL damage in ON than in non-ON eyes. Agreement between OCT and GDx parameters ranged from 69–90% (AC1 0.37–0.81) in ON eyes, and 52–91% (AC1 = 0.21–0.90) in non-ON eyes. Best agreement was observed between OCT average RNFL thickness (P 30) in ON eyes (90%, AC1 = 0.81), and between OCT average RNFL thickness (P < 0.01) and GDx TSNIT average (P < 0.01) in non-ON eyes (91%, AC1 = 0.90). In ON eyes, the OCT average RNFL thickness showed good linear correlation with NFI (R2 = 0.69, P < 0.0001) and TSNIT (R2 = 0.55, P < 0.0001). Conclusions OCT and GDx show good agreement and can be useful in detecting RNFL loss in MS/ON eyes. PMID:20495500

  16. Tracing the Magnetic Field of IRDC G028.23-00.19 Using NIR Polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hoq, Sadia; Clemens, D. P.; Cashman, Lauren R. [Institute for Astrophysical Research, 725 Commonwealth Ave, Boston University, Boston, MA 02215 (United States); Guzmán, Andrés E., E-mail: shoq@bu.edu, E-mail: clemens@bu.edu, E-mail: lcashman@bu.edu, E-mail: aguzman@das.uchile.cl [Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile)

    2017-02-20

    The importance of the magnetic ( B ) field in the formation of infrared dark clouds (IRDCs) and massive stars is an ongoing topic of investigation. We studied the plane-of-sky B field for one IRDC, G028.23-00.19, to understand the interaction between the field and the cloud. We used near-IR background starlight polarimetry to probe the B field and performed several observational tests to assess the field importance. The polarimetric data, taken with the Mimir instrument, consisted of H -band and K -band observations, totaling 17,160 stellar measurements. We traced the plane-of-sky B -field morphology with respect to the sky-projected cloud elongation. We also found the relationship between the estimated B -field strength and gas volume density, and we computed estimates of the normalized mass-to-magnetic flux ratio. The B -field orientation with respect to the cloud did not show a preferred alignment, but it did exhibit a large-scale pattern. The plane-of-sky B -field strengths ranged from 10 to 165 μ G, and the B -field strength dependence on density followed a power law with an index consistent with 2/3. The mass-to-magnetic flux ratio also increased as a function of density. The relative orientations and relationship between the B field and density imply that the B field was not dynamically important in the formation of the IRDC. The increase in mass-to-flux ratio as a function of density, though, indicates a dynamically important B field. Therefore, it is unclear whether the B field influenced the formation of G28.23. However, it is likely that the presence of the IRDC changed the local B -field morphology.

  17. Poloidal magnetic field profile measurements on the microwave tokamak experiment using far-infrared polarimetry

    International Nuclear Information System (INIS)

    Rice, B.W.

    1992-09-01

    The measurement of plasma poloidal magnetic field (B) profiles in tokamaks with good temporal and spatial resolution has proven to be a difficult but important measurement. A large range of toroidal confinement phenomena is expected to depend sensitively on the radial variation of B including the tearing instability, sawtooth oscillations, disruptions, and transport. Experimental confirmation of theoretical models describing these phenomena has been hampered by the lack of detailed B measurements. A fifteen chord far-infrared (FIR) polarimeter has been developed to measure B in the Microwave Tokamak, Experiment (MTX). Polarimetry utilizes the well known Faraday rotation effect, which causes a rotation of the polarization of an FIR beam propagating in the poloidal plane. The rotation angle is proportional to the component of B parallel to the beam. A new technique for determining the Faraday rotation angle is introduced, based on phase measurements of a rotating polarization ellipse. This instrument has been used successfully to measure B profiles for a wide range of experiments on MTX. For ohmic discharges, measurements of the safety factor on axis give q 0 ∼ 0.75 during sawteeth and q 0 > 1 without sawteeth. Large perturbations to the polarimeter signals correlated with the sawtooth crash are observed during some discharges. Measurements in discharges with electron cyclotron heating (ECH) show a transition from a hollow to peaked J profile that is triggered by the ECH pulse. Current-ramp experiments were done to perturb the J profile from the nominal Spitzer conductivity profile. Profiles for initial current ramps and ramps starting from a stable equilibrium have been measured and are compared with a cylindrical diffusion model. Finally, the tearing mode stability equation is solved using measured J profiles. Stability predictions are in good agreement with the existence of oscillations observed on the magnetic loops

  18. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Straten, W., E-mail: vanstraten.willem@gmail.com [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia)

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  19. Scanning laser polarimetry retinal nerve fiber layer thickness measurements after LASIK.

    Science.gov (United States)

    Zangwill, Linda M; Abunto, Teresa; Bowd, Christopher; Angeles, Raymund; Schanzlin, David J; Weinreb, Robert N

    2005-02-01

    To compare retinal nerve fiber layer (RNFL) thickness measurements before and after LASIK. Cohort study. Twenty participants undergoing LASIK and 14 normal controls. Retinal nerve fiber layer thickness was measured before LASIK and approximately 3 months after surgery in one eye each of 20 patients using a scanning laser polarimeter (GDx Nerve Fiber Analyzer) with fixed corneal compensation (FCC), one with variable corneal compensation (GDx VCC), and optical coherence tomography (OCT). Fourteen normal controls also were tested at baseline and approximately 3 months later. Retinal nerve fiber layer thicknesses measured with the GDx FCC, GDx VCC, and OCT. At baseline, mean (95% confidence interval [CI]) RNFL thicknesses for the GDx FCC, GDx VCC, and OCT were 78.1 microm (72.2-83.9), 54.3 microm (52.7-56.0), and 96.8 microm (93.2-100.5), respectively. In both LASIK and control groups, there were no significant changes between baseline and follow-up examinations in GDx VCC and OCT RNFL thickness measurements globally or in the superior and inferior quadrants (mean change, FCC measurements between baseline and follow-up. In LASIK patients, significant reductions were observed in GDx FCC RNFL measurements. Average absolute values of the mean (95% CI) change in thickness were 12.4 microm (7.7-17.2), 15.3 microm (9.6-20.9), and 12.9 microm (7.6-18.1) for GDx FCC RNFL measurements superiorly, inferiorly, and globally, respectively (all Ps FCC RNFL thickness measurements after LASIK is a measurement artifact and is most likely due to erroneous compensation for corneal birefringence. With scanning laser polarimetry, it is mandatory to compensate individually for change in corneal birefringence after LASIK to ensure accurate RNFL assessment.

  20. Optical Polarimetry Campaign on Markarian 421 during the 2012 Large Flaring Episodes

    Science.gov (United States)

    Barres de Almeida, Ulisses; Jermak, Helen; Lindfors, Elina; Mundell, Carole; Nilsson, Kari; Steele, Iain

    2015-08-01

    In 2012, Fermi/LAT gamma-ray and radio observations registered the largest flaring episodes ever recorded from the blazar Markarian 421. The unprecedented activity state of the source has remained high and much above the normal emission state seem from the source also for the year 2013, characterising a dramatic and long-lasting, albeit puzzling, change of behaviour in the emission of this object. This unique event has been followed by observations over the entire electromagnetic spectrum, showing extreme signatures in all bands, from radio to VHE gamma-rays. Polarisation monitoring of the source has nevertheless been somewhat more scarce, and direct observation of the peak activity in 2012 was prevented by the source's proximity to the Sun at that time. As part of our continuous monitoring programme of VHE-emitting blazars in optical polarimetry at the Liverpool Telescope, which used the RINGO2 fast polarimeter and lasted from 2010 to 2013, we have observed Mkn 421 with regular coverage and a sub-weekly cadence for over two years. This continued monitoring allowed us to continually follow the polarisation behaviour of the source for a long time and up to the days preceding the dramatic flare event in 2012. In the weeks before the extreme 2012 outbursts, Mrk 421 underwent an unprecedented increase in its degree of polarisation, which rose by a factor of 5, not witnessed in decades from this object. The source also showed a large rotation of its polarisation angle, by over 180 degrees, which has never been registered before for this objetc. In this talk we will present our entire dataset on Mkn 421, concentrating in discussing the unprecedented events in optical polarisation that preceded the high-energy outburst. The main question we put ourselves is if what we have seen could be regarded as a polarimetric precursor to the high activity that followed. And if yes, what connections can we establish between them, and what remains mysterious to us about it?

  1. Numerical simulation of a high-brightness lithium ion gun for a Zeeman polarimetry on JT-60U

    International Nuclear Information System (INIS)

    Kojima, Atsushi; Kamiya, Kensaku; Fujita, Takaaki; Kamada, Yutaka; Iguchi, Harukazu

    2007-01-01

    A lithium ion gun is under construction for a lithium beam Zeeman polarimetry on JT-60U. The performance of the prototype ion gun has been estimated by the numerical simulation taking the space charge effects into account. The target values of the ion gun are the beam energy of 30 keV, the beam current of 10 mA and the beam divergence angle within 0.13 degrees. The low divergence of 0.13 degrees is required for the geometry of the Zeeman polarimetry on JT-60U where the observation area is 6.5 m away from the neutralizer. The numerical simulation needs to be carried out for the design study because the requirement of the divergence angle is severe for the development of the high-brightness ion gun. The simulation results show the beam loss of 50% caused by the clash to the electrode such as the cathode and the neutralizer. Moreover, the beam transport efficiency from the neutralizer to the observation area is low due to the broadening of the divergence angle. The total beam efficiency is about 5%. Extracted beam profile affects the beam focusing and the efficiency. The peaked profile achieves better efficiency than the hollow one. As a result, beam current of 1 mA is obtained at the observation area by the simulation for the prototype ion gun. (author)

  2. Imaging

    International Nuclear Information System (INIS)

    Kellum, C.D.; Fisher, L.M.; Tegtmeyer, C.J.

    1987-01-01

    This paper examines the advantages of the use of excretory urography for diagnosis. According to the authors, excretory urography remains the basic radiologic examination of the urinary tract and is the foundation for the evaluation of suspected urologic disease. Despite development of the newer diagnostic modalities such as isotope scanning, ultrasonography, CT, and magnetic resonsance imaging (MRI), excretory urography has maintained a prominent role in ruorradiology. Some indications have been altered and will continue to change with the newer imaging modalities, but the initial evaluation of suspected urinary tract structural abnormalities; hematuria, pyuria, and calculus disease is best performed with excretory urography. The examination is relatively inexpensive and simple to perform, with few contraindictions. Excretory urography, when properly performed, can provide valuable information about the renal parenchyma, pelvicalyceal system, ureters, and urinary bladder

  3. Polarimetric Imaging Of Protoplanetary Disks From The Optical To Sub-Mm

    Science.gov (United States)

    De Boer, Jos; Ménard, F.; Pinte, C.; van der Plas, G.; Snik, F.

    2017-10-01

    To learn how planets form from the smallest building blocks within protoplanetary disks, we first need to know how dust grains grow from micron to mm sizes. Polarimetry across the spectrum has proven to be sensitive to grain properties like dust size distribution and composition and thus can be used to characterize the scattering grains. However, polarization measured with radio interferometric arrays is rarely studied in concert with optical polarimetry. Our team has successfully calibrated the NIR polarimetric imaging mode of VLT/SPHERE, hence upgrading the instrument from a high-contrast imager to a robust tool for quantitative characterization. In this presentation, we will discuss which lessons can be learned by comparing polarimetry in the optical and sub-mm and explore for which science cases both techniques can complement each other. When we combine the polarimetric capabilities of the most advanced optical high-contrast imagers (e.g., Gemini GPI or VLT SPHERE) with that of ALMA we will be able to study the spatial distribution of an extensive range of different grains, which allows us to take an essential step towards a deeper understanding of planet formation.

  4. Imaging of the optic disk in caring for patients with glaucoma: ophthalmoscopy and photography remain the gold standard.

    Science.gov (United States)

    Spaeth, George L; Reddy, Swathi C

    2014-01-01

    Optic disk imaging is integral to the diagnosis and treatment of patients with glaucoma. We discuss the various forms of imaging the optic nerve, including ophthalmoscopy, photography, and newer imaging modalities, including optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy (HRT), and scanning laser polarimetry (GDx), specifically highlighting their benefits and disadvantages. We argue that ophthalmoscopy and photography remain the gold standard of imaging due to portability, ease of interpretation, and the presence of a large database of images for comparison. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Photometry and Polarimetry of Comet 67P/Churyumov-Gerasimenko at the 6-m Telescope of the Special Astrophysical Observatory (SAO RAS)

    Science.gov (United States)

    Kolokolova, L.; Ivanova, O.; Rosenbush, V.; Kiselev, N.; Afanasiev, V.

    2016-12-01

    We report observations of comet 67P/Churyumov-Gerasimenko, performed by the co-authors from MAO NASU and SAO RAS at the SAO 6-m telescope with a focal reducer SCORPIO-2 used in the modes of broad-band photometry and of imaging polarimetry. Three sets of post-perihelion observations were made in November and December of 2015 and in April of 2016 covering heliocentric distance of the comet from 1.61 au to 2.72 au and phase angle from 33.2° to 10.4°. Imaging photometry of the comet in the g-sdss (465/65 nm) and r-sdss (620/60 nm) filters allowed us to derive maps of intensity and color. The tail and two bright persistent jets, observed from November 2015 to April 2016, had colors redder than the rest of the coma, indicating a difference in the dust particles. Color of the coma becomes bluer with increasing distance from the nucleus. Linear polarization maps and scans through the coma revealed that in April, at phase angle about 10°, the polarization varied from -0.6% in the near-nucleus area to -4% in the outer coma. In November and December, the polarization near the nucleus was 8%, dropped sharply to 2% at the distance 5000 km, and then gradually increased to >8% at 40000 km. The radial variations of polarization suggest an evolution of the dust properties. We suppose that they reflect decreasing particle size. This assumption is consistent with the laboratory studies by Hadamcik et al. (JQSRT, 2009), which showed that with decreasing size of particles from hundreds of micron (the size of dominating particles measured by the Rosetta dust instruments in the vicinity of the nucleus) to dozens of microns, their polarization decreases, whereas at smaller particle sizes polarization increases with decreasing size. Changing the color to a more blue with the nucleocentric distance is also consistent with decreasing particle size. Note that Jewitt (ApJ, 2004) observed similar dependences of polarization and color for comet 2P/Encke that may have a similar explanation.

  6. Predictive Factors for Visual Field Conversion: Comparison of Scanning Laser Polarimetry and Optical Coherence Tomography.

    Science.gov (United States)

    Diekmann, Theresa; Schrems-Hoesl, Laura M; Mardin, Christian Y; Laemmer, Robert; Horn, Folkert K; Kruse, Friedrich E; Schrems, Wolfgang A

    2018-02-01

    The purpose of this study was to compare the ability of scanning laser polarimetry (SLP) and spectral-domain optical coherence tomography (SD-OCT) to predict future visual field conversion of subjects with ocular hypertension and early glaucoma. All patients were recruited from the Erlangen glaucoma registry and examined using standard automated perimetry, 24-hour intraocular pressure profile, and optic disc photography. Peripapillary retinal nerve fiber layer thickness (RNFL) measurements were obtained by SLP (GDx-VCC) and SD-OCT (Spectralis OCT). Positive and negative predictive values (PPV, NPV) were calculated for morphologic parameters of SLP and SD-OCT. Kaplan-Meier survival curves were plotted and log-rank tests were performed to compare the survival distributions. Contingency tables and Venn-diagrams were calculated to compare the predictive ability. The study included 207 patients-75 with ocular hypertension, 85 with early glaucoma, and 47 controls. Median follow-up was 4.5 years. A total of 29 patients (14.0%) developed visual field conversion during follow-up. SLP temporal-inferior RNFL [0.667; 95% confidence interval (CI), 0.281-0.935] and SD-OCT temporal-inferior RNFL (0.571; 95% CI, 0.317-0.802) achieved the highest PPV; nerve fiber indicator (0.923; 95% CI, 0.876-0.957) and SD-OCT mean (0.898; 95% CI, 0.847-0.937) achieved the highest NPV of all investigated parameters. The Kaplan-Meier curves confirmed significantly higher survival for subjects within normal limits of measurements of both devices (P<0.001). Venn diagrams tested with McNemar test statistics showed no significant difference for PPV (P=0.219) or NPV (P=0.678). Both GDx-VCC and SD-OCT demonstrate comparable results in predicting future visual field conversion if taking typical scans for GDx-VCC. In addition, the likelihood ratios suggest that GDx-VCC's nerve fiber indicator<30 may be the most useful parameter to confirm future nonconversion. (http://www.ClinicalTrials.gov number, NTC

  7. Two-dimensional polarimeter with a charge-coupled-device image sensor and a piezoelastic modulator.

    Science.gov (United States)

    Povel, H P; Keller, C U; Yadigaroglu, I A

    1994-07-01

    We present the first measurements and scientific observations of the solar photosphere obtained with a new two-dimensional polarimeter based on piezoelastic modulators and synchronous demodulation in a CCD imager. This instrument, which is developed for precision solar-vector polarimetry, contains a specially masked CCD that has every second row covered with an opaque mask. During exposure the charges are shifted back and forth between covered and light-sensitive rows synchronized with the modulation. In this way Stokes I and one of the other Stokes parameters can be recorded. Since the charge shifting is performed at frequencies well above the seeing frequencies and both polarization states are measured with the same pixel, highly sensitive and accurate polarimetry is achieved. We have tested the instrument in laboratory conditions as well as at three solar telescopes.

  8. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue.

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    Full Text Available Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02, sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08, specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17 and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10 for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification.

  9. Efficient dermal delivery of retinyl palmitate: Progressive polarimetry and Raman spectroscopy to evaluate the structure and efficacy.

    Science.gov (United States)

    Lee, Jun Bae; Lee, Dong Ryeol; Choi, Nak Cho; Jang, Jihui; Park, Chun Ho; Yoon, Moung Seok; Lee, Miyoung; Won, Kyoungae; Hwang, Jae Sung; Kim, B Moon

    2015-10-12

    Over the past decades, there has been a growing interest in dermal drug delivery. Although various novel delivery devices and methods have been developed, dermal delivery is still challenging because of problems such as poor drug permeation, instability of vesicles and drug leakage from vesicles induced by fusion of vesicles. To solve the vesicle instability problems in current dermal delivery systems, we developed materials comprised of liquid crystals as a new delivery vehicle of retinyl palmitate and report the characterization of the liquid crystals using a Mueller matrix polarimetry. The stability of the liquid-crystal materials was evaluated using the polarimeter as a novel evaluation tool along with other conventional methods. The dermal delivery of retinyl palmitate was investigated through the use of confocal Raman spectroscopy. The results indicate that the permeation of retinyl palmitate was enhanced by up to 106% compared to that using an ordinary emulsion with retinyl palmitate. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Statistical and fractal analysis of autofluorescent myocardium images in posthumous diagnostics of acute coronary insufficiency

    Science.gov (United States)

    Boichuk, T. M.; Bachinskiy, V. T.; Vanchuliak, O. Ya.; Minzer, O. P.; Garazdiuk, M.; Motrich, A. V.

    2014-08-01

    This research presents the results of investigation of laser polarization fluorescence of biological layers (histological sections of the myocardium). The polarized structure of autofluorescence imaging layers of biological tissues was detected and investigated. Proposed the model of describing the formation of polarization inhomogeneous of autofluorescence imaging biological optically anisotropic layers. On this basis, analytically and experimentally tested to justify the method of laser polarimetry autofluorescent. Analyzed the effectiveness of this method in the postmortem diagnosis of infarction. The objective criteria (statistical moments) of differentiation of autofluorescent images of histological sections myocardium were defined. The operational characteristics (sensitivity, specificity, accuracy) of these technique were determined.

  11. Effect of cataract surgery on retinal nerve fiber layer thickness parameters using scanning laser polarimetry (GDxVCC).

    Science.gov (United States)

    Dada, Tanuj; Behera, Geeta; Agarwal, Anand; Kumar, Sanjeev; Sihota, Ramanjit; Panda, Anita

    2010-01-01

    To study the effect of cataract extraction on the retinal nerve fiber layer (RNFL) thickness, and assessment by scanning laser polarimetry (SLP), with variable corneal compensation (GDx VCC), at the glaucoma service of a tertiary care center in North India. Thirty-two eyes of 32 subjects were enrolled in the study. The subjects underwent RNFL analysis by SLP (GDx VCC) before undergoing phacoemulsification cataract extraction with intraocular lens (IOL) implantation (Acrysof SA 60 AT) four weeks following cataract surgery. The RNFL thickness parameters evaluated both before and after surgery included temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and nerve fiber index (NFI). The mean age of subjects was 57.6 +/- 11.7 years (18 males, 14 females). Mean TSNIT average thickness (microm) pre- and post-cataract surgery was 49.2 +/- 14.1 and 56.5 +/- 7.6 ( P = 0.001). There was a statistically significant increase in RNFL thickness parameters (TSNIT average, superior average, and inferior average) and decrease in NFI post-cataract surgery as compared to the baseline values. Mean NFI pre- and post-cataract surgery was 41.3 +/- 15.3 and 21.6 +/- 11.8 ( P = 0.001). Measurement of RNFL thickness parameters by scanning laser polarimetry is significantly altered following cataract surgery. Post the cataract surgery, a new baseline needs to be established for assessing the longitudinal follow-up of a glaucoma patient. The presence of cataract may lead to an underestimation of the RNFL thickness, and this should be taken into account when analyzing progression in a glaucoma patient.

  12. Retinal nerve fiber layer in primary open-angle glaucoma with high myopia determined by optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Wang, Xiao-en; Wang, Xiao-yu; Gu, Yang-shun; Huang, Zhu

    2013-01-01

    Fundus changes associated with high myopia (HM) may mask those associated with primary open-angle glaucoma (POAG). This study aim to determine the characteristics of RNFL thickness changes in patients with both POAG and HM and compare these to changes in patients with only HM. The diagnostic capabilities of both OCT and GDxVCC in this subset of patients are also evaluated. Twenty-two eyes with POAG and HM (spherical equivalent (SE) between -6.0 and -12.0 D) were evaluated, and 22 eyes with HM were used for comparison. Characteristic retinal nerve fiber layer (RNFL) thickness profiles in patients with POAG and HM were examined using optical coherence tomography (OCT) and scanning laser polarimetry with variable corneal compensation (GDxVCC), and the diagnostic capabilities of these imaging modalities were compared. RNFL parameters evaluated included superior average (Savg-GDx), inferior average (Iavg-GDx), temporal-superior-nasal- inferior-temporal (TSNIT) average, and nerve fiber indicator (NFI) on GDxVCC and superior average (Savg-OCT), inferior average (Iavg-OCT), nasal average (Navg-OCT), temporal average (Tavg-OCT), and average thickness (AvgThick-OCT) on OCT (fast RNFL scan). Visual field testing was performed and defects were evaluated using mean defect (MD) and pattern standard deviation (PSD). The RNFL parameters (P < 0.05) significantly different between groups included Savg-GDx, Iavg-GDx, TSNIT average, NFI, Savg-OCT, Iavg-OCT, Tavg-OCT, and AvgThick-OCT. Significant correlations existed between TSNIT average and AvgThick-OCT (r = 0.778), TSNIT average and MD (r = 0.749), AvgThick-OCT and MD (r = 0.647), TSNIT average and PSD (r = -0.756), and AvgThick-OCT and PSD (r = -0.784). The area under the receiver operating characteristic curve (AUROC) values of TSNIT average, Savg-GDx, Iavg-GDx, NFI, Savg-OCT, Iavg-OCT, Navg-OCT, Tavg-OCT, and AvgThick-OCT were 0.947, 0.962, 0.973, 0.994, 0.909, 0.917, 0.511, 0.906, and 0.913, respectively. The NFI AUROC was the

  13. Evaluation of baseline structural factors for predicting glaucomatous visual-field progression using optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy.

    Science.gov (United States)

    Sehi, M; Bhardwaj, N; Chung, Y S; Greenfield, D S

    2012-12-01

    The objective of this study is to assess whether baseline optic nerve head (ONH) topography and retinal nerve fiber layer thickness (RNFLT) are predictive of glaucomatous visual-field progression in glaucoma suspect (GS) and glaucomatous eyes, and to calculate the level of risk associated with each of these parameters. Participants with ≥28 months of follow-up were recruited from the longitudinal Advanced Imaging for Glaucoma Study. All eyes underwent standard automated perimetry (SAP), confocal scanning laser ophthalmoscopy (CSLO), time-domain optical coherence tomography (TDOCT), and scanning laser polarimetry using enhanced corneal compensation (SLPECC) every 6 months. Visual-field progression was assessed using pointwise linear-regression analysis of SAP sensitivity values (progressor) and defined as significant sensitivity loss of >1 dB/year at ≥2 adjacent test locations in the same hemifield at P<0.01. Cox proportional hazard ratios (HR) were calculated to determine the predictive ability of baseline ONH and RNFL parameters for SAP progression using univariate and multivariate models. Seventy-three eyes of 73 patients (43 GS and 30 glaucoma, mean age 63.2±9.5 years) were enrolled (mean follow-up 51.5±11.3 months). Four of 43 GS (9.3%) and 6 of 30 (20%) glaucomatous eyes demonstrated progression. Mean time to progression was 50.8±11.4 months. Using multivariate models, abnormal CSLO temporal-inferior Moorfields classification (HR=3.76, 95% confidence interval (CI): 1.02-6.80, P=0.04), SLPECC inferior RNFLT (per -1 μm, HR=1.38, 95% CI: 1.02-2.2, P=0.02), and TDOCT inferior RNFLT (per -1 μm, HR=1.11, 95% CI: 1.04-1.2, P=0.001) had significant HRs for SAP progression. Abnormal baseline ONH topography and reduced inferior RNFL are predictive of SAP progression in GS and glaucomatous eyes.

  14. Systems of imaging digital systems in case of glaucoma

    International Nuclear Information System (INIS)

    Fernandez Argones, Liamet; Piloto Diaz, Ibrain; Coba Penna, Maria Josefa; Perez Tamayo, Bertila; Dominguez Randulfe, Marerneda; Trujillo Fonseca, Katia

    2009-01-01

    Now a day we can't consider the strict follow up in Glaucoma without the use of the digital analysis of image system of the optic nerve head and the retinal nerve fiber layer. This is a review about some contributions of Scanning Laser Polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, CA), Confocal Scanning Laser (Heidelberg Retina Tomograph HRT, Heidelberg Engineering Inc.) and Optical Coherence Tomography (Stratus OCT, Carl Zeiss Meditec, Alemania) in the diagnosis and follow up of Glaucoma. It's considered that objective measurement giving by them must be incorporate in the rigorous analysis of each glaucomatous patient

  15. Direct Imaging Search for Extrasolar Planets in the Pleiades

    Science.gov (United States)

    Yamamoto, Kodai; Matsuo, Taro; Shibai, Hiroshi; Itoh, Yoichi; Konishi, Mihokko; Sudo, Jun; Tanii, Ryoko; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; hide

    2013-01-01

    We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the H and K(sub S) bands using HiCIAO combined with adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the H band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch images, but the precision of its proper motion was not sufficient to conclude whether it was a background object. Four other candidates are waiting for second-epoch observations to determine their proper motion. Finally, the remaining two were confirmed to be 60 M(sub J) brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5), respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the H band beyond 1.'' 5 from the central star. On the basis of this detection limit, we calculated the detection efficiency to be 90% for a planet with 6 to 12 Jovian masses and a semi-major axis of 50–1000 AU. For this reason we extrapolated the distribution of the planet mass and the semi-major axis derived from radial velocity observations, and adopted the planet evolution model Baraffe et al. (2003, A&A, 402, 701). Since there was no detection of a planet, we estimated the frequency of such planets to be less than 17.9% (2 sigma) around one star of the Pleiades cluster.

  16. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma.

    Science.gov (United States)

    Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-03-01

    We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.

  17. Author Correction: Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager

    Science.gov (United States)

    Vadawale, S. V.; Chattopadhyay, T.; Mithun, N. P. S.; Rao, A. R.; Bhattacharya, D.; Vibhute, A.; Bhalerao, V. B.; Dewangan, G. C.; Misra, R.; Paul, B.; Basu, A.; Joshi, B. C.; Sreekumar, S.; Samuel, E.; Priya, P.; Vinod, P.; Seetha, S.

    2018-05-01

    In the Supplementary Information file originally published for this Letter, in Supplementary Fig. 7 the error bars for the polarization fraction were provided as confidence intervals but instead should have been Bayesian credibility intervals. This has been corrected and does not alter the conclusions of the Letter in any way.

  18. High resolution 2-D imaging polarimetry of the jet of M87, in the light of U, B and V

    Energy Technology Data Exchange (ETDEWEB)

    Visvanathan, N; Pickles, A J [Australian National Univ., Canberra. Mount Stromlo and Siding Spring Observatories

    1981-01-01

    Polarisation maps to a resolution of 1 arcsec in the jet of M87 are presented. The results show that small-scale structure exists in the magnetic field down to at least this resolution, as evidenced by the fact that the 1 arcsec resolution percentage polarisations are approximately 80% higher than those obtained at a lower resolution, 2 arcsec. The sudden change of position angles of the electric vector near knot B supports shock models of the jet. The jet is significantly broader in the light of U than in B or V. The continuous energy distribution in UBV can be described as a power law spectrum, with a slope of -1.7 +- 0.3 which indicates a turnover in the synchrotron spectrum in the vicinity of V.

  19. THE IMAGING PROPERTIES OF THE GAS PIXEL DETECTOR AS A FOCAL PLANE POLARIMETER

    Energy Technology Data Exchange (ETDEWEB)

    Fabiani, S.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.; Rubini, A. [INAF-IAPS, via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Bellazzini, R.; Brez, A.; De Ruvo, L.; Minuti, M.; Pinchera, M.; Sgró, C.; Spandre, G. [INFN Sezione di Pisa, Largo B. Pontecorvo, 3, I-56127 Pisa (Italy); Spiga, D.; Tagliaferri, G.; Pareschi, G.; Basso, S.; Citterio, O. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Burwitz, V.; Burkert, W., E-mail: sergio.fabiani@iaps.inaf.it [Max-Planck-Institut für extraterrestrische Physik, Gautinger Str. 45, D-82061 Neuired (Germany); and others

    2014-06-01

    X-rays are particularly suited to probing the physics of extreme objects. However, despite the enormous improvements of X-ray astronomy in imaging, spectroscopy, and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as a candidate instrument to fill the gap created by more than 30 yr without measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time, and the polarization angle of every single photon, it allows us to perform polarimetry of subsets of data singled out from the spectrum, the light curve, or an image of the source. The GPD has an intrinsic, very fine imaging capability, and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray testing facility of the Max-Planck-Institut für extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it with a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like pulsar wind nebulae and supernova remnants as case studies for the XIPE configuration and also discuss possible improvements by coupling the detector with advanced optics that have a finer angular resolution and larger effective areas to study extended objects with more detail.

  20. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    Science.gov (United States)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical

  1. A Direct Comparison of Passive Polarimetry and Scatterometry Under Low- and High-Wind Conditions

    National Research Council Canada - National Science Library

    Swift, Calvin

    1997-01-01

    The University of Massachusetts Microwave Remote Sensing Laboratory (MIRSL) gathered coincident active and passive measurements of the ocean surface from the NASA Wallops P3 during the Ocean Wind Imaging (OWI) Experiment...

  2. Predictive capability of average Stokes polarimetry for simulation of phase multilevel elements onto LCoS devices.

    Science.gov (United States)

    Martínez, Francisco J; Márquez, Andrés; Gallego, Sergi; Ortuño, Manuel; Francés, Jorge; Pascual, Inmaculada; Beléndez, Augusto

    2015-02-20

    Parallel-aligned (PA) liquid-crystal on silicon (LCoS) microdisplays are especially appealing in a wide range of spatial light modulation applications since they enable phase-only operation. Recently we proposed a novel polarimetric method, based on Stokes polarimetry, enabling the characterization of their linear retardance and the magnitude of their associated phase fluctuations or flicker, exhibited by many LCoS devices. In this work we apply the calibrated values obtained with this technique to show their capability to predict the performance of spatially varying phase multilevel elements displayed onto the PA-LCoS device. Specifically we address a series of multilevel phase blazed gratings. We analyze both their average diffraction efficiency ("static" analysis) and its associated time fluctuation ("dynamic" analysis). Two different electrical configuration files with different degrees of flicker are applied in order to evaluate the actual influence of flicker on the expected performance of the diffractive optical elements addressed. We obtain a good agreement between simulation and experiment, thus demonstrating the predictive capability of the calibration provided by the average Stokes polarimetric technique. Additionally, it is obtained that for electrical configurations with less than 30° amplitude for the flicker retardance, they may not influence the performance of the blazed gratings. In general, we demonstrate that the influence of flicker greatly diminishes when the number of quantization levels in the optical element increases.

  3. Chromospheric polarimetry through multiline observations of the 850-nm spectral region - II. A magnetic flux tube scenario

    Science.gov (United States)

    Quintero Noda, C.; Kato, Y.; Katsukawa, Y.; Oba, T.; de la Cruz Rodríguez, J.; Carlsson, M.; Shimizu, T.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.

    2017-11-01

    In this publication, we continue the work started in Quintero Noda et al., examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically doppler shifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5 per cent of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field, and we estimate the field strength using the weak-field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process, which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works, demonstrating the capabilities and limitations of the 850-nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.

  4. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris M.; Graff, Jeff; Lebedev, Gennadi; Andresen, Nord; Schmid, Andreas; Fedorov, Alexei; El Gabaly, Farid; Wan, Weishi; Lanzara, Alessandra; Hussain, Zahid

    2010-04-13

    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

  5. AN ORDERED MAGNETIC FIELD IN THE PROTOPLANETARY DISK OF AB Aur REVEALED BY MID-INFRARED POLARIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan; Pantin, Eric; Telesco, Charles M.; Zhang, Han; Barnes, Peter J.; Mariñas, Naibí [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, FL 32611 (United States); Wright, Christopher M. [School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, Canberra, ACT 2610 (Australia); Packham, Chris, E-mail: d.li@ufl.edu [Physics and Astronomy Department, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 (United States)

    2016-11-20

    Magnetic fields ( B -fields) play a key role in the formation and evolution of protoplanetary disks, but their properties are poorly understood due to the lack of observational constraints. Using CanariCam at the 10.4 m Gran Telescopio Canarias, we have mapped out the mid-infrared polarization of the protoplanetary disk around the Herbig Ae star AB Aur. We detect ∼0.44% polarization at 10.3 μ m from AB Aur's inner disk ( r  < 80 au), rising to ∼1.4% at larger radii. Our simulations imply that the mid-infrared polarization of the inner disk arises from dichroic emission of elongated particles aligned in a disk B -field. The field is well ordered on a spatial scale, commensurate with our resolution (∼50 au), and we infer a poloidal shape tilted from the rotational axis of the disk. The disk of AB Aur is optically thick at 10.3 μ m, so polarimetry at this wavelength is probing the B -field near the disk surface. Our observations therefore confirm that this layer, favored by some theoretical studies for developing magneto-rotational instability and its resultant viscosity, is indeed very likely to be magnetized. At radii beyond ∼80 au, the mid-infrared polarization results primarily from scattering by dust grains with sizes up to ∼1 μ m, a size indicating both grain growth and, probably, turbulent lofting of the particles from the disk mid-plane.

  6. Differential Shift Estimation in the Absence of Coherence: Performance Analysis and Benefits of Polarimetry

    Science.gov (United States)

    Villano, Michelangelo; Papathanassiou, Konstantinos P.

    2011-03-01

    The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.

  7. Micro-polarimetry for pre-clinical diagnostics of pathological changes in human tissues

    Science.gov (United States)

    Golnik, Andrzej; Golnik, Natalia; Pałko, Tadeusz; Sołtysiński, Tomasz

    2008-05-01

    The paper presents a practical study of several methods of image analysis applied to polarimetric images of regular and malignant human tissues. The images of physiological and pathologically changed tissues from body and cervix of uterus, intestine, kidneys and breast were recorded in transmitted light of different polarization state. The set up of the conventional optical microscope with CCD camera and rotating polarizer's were used for analysis of the polarization state of the light transmitted through the tissue slice for each pixel of the camera image. The set of images corresponding to the different coefficients of the Stockes vectors, a 3×3 subset of the Mueller matrix as well as the maps of the magnitude and in-plane direction of the birefringent components in the sample were calculated. Then, the statistical analysis and the Fourier transform as well as the autocorrelation methods were used to analyze spatial distribution of birefringent elements in the tissue samples. For better recognition of tissue state we proposed a novel method that takes advantage of multiscale image data decomposition The results were used for selection of the optical characteristics with significantly different values for regular and malignant tissues.

  8. Snapshot Mueller matrix polarimetry by wavelength polarization coding and application to the study of switching dynamics in a ferroelectric liquid crystal cell.

    Directory of Open Access Journals (Sweden)

    Le Jeune B.

    2010-06-01

    Full Text Available This paper describes a snapshot Mueller matrix polarimeter by wavelength polarization coding. This device is aimed at encoding polarization states in the spectral domain through use of a broadband source and high-order retarders. This allows one to measure a full Mueller matrix from a single spectrum whose acquisition time only depends on the detection system aperture. The theoretical fundamentals of this technique are developed prior to validation by experiments. The setup calibration is described as well as optimization and stabilization procedures. Then, it is used to study, by time-resolved Mueller matrix polarimetry, the switching dynamics in a ferroelectric liquid crystal cell.

  9. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Science.gov (United States)

    Bergmair, Michael; Bruno, Giovanni; Cattelan, Denis; Cobet, Christoph; de Martino, Antonello; Fleischer, Karsten; Dohcevic-Mitrovic, Zorana; Esser, Norbert; Galliet, Melanie; Gajic, Rados; Hemzal, Dušan; Hingerl, Kurt; Humlicek, Josef; Ossikovski, Razvigor; Popovic, Zoran V.; Saxl, Ottilia

    2009-01-01

    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures. PMID:21170135

  10. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria, E-mail: maria.losurdo@ba.imip.cnr.i [National Council of Research-Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP (Italy); Bergmair, Michael [Johannes Kepler University Linz, Christian Doppler Laboratory for Surface Optics, Center for Surface- and Nanoanalytics (Austria); Bruno, Giovanni [National Council of Research-Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP (Italy); Cattelan, Denis, E-mail: denis.cattelan@horiba.co [HORIBA Scientific, Thin Film Division (France); Cobet, Christoph [ISAS Institute for Analytical Sciences, Department Berlin (Germany); Martino, Antonello de [Ecole Polytechnique, Centre National de la Recherche Scientique (CNRS-LPICM) (France); Fleischer, Karsten [ISAS Institute for Analytical Sciences, Department Berlin (Germany); Dohcevic-Mitrovic, Zorana [Institute of Physics, Center for Solid State Physics and New Materials (Serbia); Esser, Norbert [ISAS Institute for Analytical Sciences, Department Berlin (Germany); Galliet, Melanie, E-mail: melanie.gaillet@horiba.co [HORIBA Scientific, Thin Film Division (France); Gajic, Rados [Institute of Physics, Center for Solid State Physics and New Materials (Serbia); Hemzal, Dusan; Hingerl, Kurt [Johannes Kepler University Linz, Christian Doppler Laboratory for Surface Optics, Center for Surface- and Nanoanalytics (Austria); Humlicek, Josef; Ossikovski, Razvigor [Ecole Polytechnique, Centre National de la Recherche Scientique (CNRS-LPICM) (France); Popovic, Zoran V. [Institute of Physics, Center for Solid State Physics and New Materials (Serbia); Saxl, Ottilia [Institute of Nanotechnology (United Kingdom)

    2009-10-15

    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures.

  11. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    International Nuclear Information System (INIS)

    Losurdo, Maria; Bergmair, Michael; Bruno, Giovanni; Cattelan, Denis; Cobet, Christoph; Martino, Antonello de; Fleischer, Karsten; Dohcevic-Mitrovic, Zorana; Esser, Norbert; Galliet, Melanie; Gajic, Rados; Hemzal, Dusan; Hingerl, Kurt; Humlicek, Josef; Ossikovski, Razvigor; Popovic, Zoran V.; Saxl, Ottilia

    2009-01-01

    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures.

  12. Resolving the HD 100546 Protoplanetary System with the Gemini Planet Imager: Evidence for Multiple Forming, Accreting Planets

    OpenAIRE

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean; Grady, Carol; Burrows, Adam; Muto, Takayuki; Kenyon, Scott J.; Kuchner, Marc J.

    2015-01-01

    We report Gemini Planet Imager H band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 $Myr$-old early-type star recently confirmed to host a thermal infrared bright (super)jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal-infrared (IR) bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission originates an unresolved, po...

  13. Diagnosis of uterine cervix cancer using Müller polarimetry: a comparison with histopathology

    Science.gov (United States)

    Rehbinder, Jean; Deby, Stanislas; Haddad, Huda; Teig, Benjamin; Nazac, André; Pierangelo, Angelo; Moreau, François

    2015-07-01

    Today around 275000 women a year in the world keep dying from the cancer of uterine cervix due to the difficulty to meet the logistic requirements of an organized screening in the developing world. Polarimetric imaging is a new promising technique with a tremendous potential for applications in biomedical diagnostics: it is sensitive to slight morphological changes in tissues, can provide wide field images for the screening and requires light sources such as a LED for example. This work intends to characterize the polarimetric response of the uterine cervix in its healthy and pathological states. An extensive series of ex-vivo measurements is in progress the Kremlin Bicêtre hospital near Paris using an imaging multispectral Mueller polarimeter in backscattering configuration. The goal of this study is to evaluate the performances of polarimetric imaging technique in terms of sensitivity and specificity for the detection of healthy epithelia (Healthy Squamous epithelium and Malpighian Metaplasia) with respect to the diagnosis provided by pathologists from histology slides as the "gold standard". We show that, at λ=550nm, performances as high as 62% sensitivity and 64% specificity are achieved by optimizing a simple threshold on the scalar retardance values.

  14. Avaliação de uma proposta contextualizada sobre o ensino de polarimetria nos cursos de farmácia e engenharia de alimentos, na Universidade Federal do Ceará Evaluation of a contextualized application about polarimetry for pharmacy and food engineering courses at University federal of Ceara

    Directory of Open Access Journals (Sweden)

    Deyvison Henrique da Silva Rodrigues

    2009-01-01

    Full Text Available This work deals with an evaluation of an experimental application about polarimetry for pharmacy and food engineering courses. Foods obtained from the undergraduate students were used for demonstrating multidisciplinary concepts and these concepts were associated to the teaching of polarimetry. According to the results, the benefits of the contextualization are beyond the class and the undergraduating students became interested in control of quality of foods. From these results, it can be concluded that the experimental emphasis given is valid and creates motivation and interest for learning physico-chemistry, in comparison with the traditional methodology applied to teach polarimetry.

  15. Circular SAR Optimization Imaging Method of Buildings

    Directory of Open Access Journals (Sweden)

    Wang Jian-feng

    2015-12-01

    Full Text Available The Circular Synthetic Aperture Radar (CSAR can obtain the entire scattering properties of targets because of its great ability of 360° observation. In this study, an optimal orientation of the CSAR imaging algorithm of buildings is proposed by applying a combination of coherent and incoherent processing techniques. FEKO software is used to construct the electromagnetic scattering modes and simulate the radar echo. The FEKO imaging results are compared with the isotropic scattering results. On comparison, the optimal azimuth coherent accumulation angle of CSAR imaging of buildings is obtained. Practically, the scattering directions of buildings are unknown; therefore, we divide the 360° echo of CSAR into many overlapped and few angle echoes corresponding to the sub-aperture and then perform an imaging procedure on each sub-aperture. Sub-aperture imaging results are applied to obtain the all-around image using incoherent fusion techniques. The polarimetry decomposition method is used to decompose the all-around image and further retrieve the edge information of buildings successfully. The proposed method is validated with P-band airborne CSAR data from Sichuan, China.

  16. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.

    Science.gov (United States)

    Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui

    2017-08-01

    We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

  17. Scanning laser polarimetry and spectral domain optical coherence tomography for the detection of retinal changes in Parkinson's disease.

    Science.gov (United States)

    Stemplewitz, Birthe; Keserü, Matthias; Bittersohl, Diana; Buhmann, Carsten; Skevas, Christos; Richard, Gisbert; Hassenstein, Andrea

    2015-12-01

    Whether retinal degeneration is part of the degenerative processes in patients with Parkinson's disease (PD) is still unclear. This cross-sectional study was undertaken to compare the retinal morphology of patients with PD and healthy controls using spectral domain optical coherence tomography (SD-OCT) and scanning laser polarimetry (SLP). Both eyes of patients with PD (n = 108) and healthy controls (n = 165) were examined using SD-OCT and SLP on the same day. Data on the thickness of the retinal nerve fibre layer (RNFL) of all quadrants and the macular area were acquired by OCT (Cirrus, Zeiss). The SLP device (Glaucoma diagnostics (GDx), Zeiss) measured the RNFL and calculated the nerve fibre index (NFI). All patients and probands were checked for concomitant ocular disorders by an ophthalmologist. Visual acuity, intraocular pressure (IOP), objective refraction and the anterior and posterior segment were assessed. Patients with PD showed a reduced macular volume and a reduced central subfield thickness in OCT examinations. The RNFL in the different quadrants did not differ significantly from that of controls. SLP data showed a reduced average RNFL thickness, a decreased thickness of the inferior quadrant and an increase of the NFI in patients with PD. PD may be associated with reduced thickness and volume of the macula and a reduced thickness of the RNFL in the inferior quadrant of the retina. Investigations using SD-OCT and SLP revealed distinct but significant differences between patients with PD and healthy controls. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Glaucoma progression detection by retinal nerve fiber layer measurement using scanning laser polarimetry: event and trend analysis.

    Science.gov (United States)

    Moon, Byung Gil; Sung, Kyung Rim; Cho, Jung Woo; Kang, Sung Yong; Yun, Sung-Cheol; Na, Jung Hwa; Lee, Youngrok; Kook, Michael S

    2012-06-01

    To evaluate the use of scanning laser polarimetry (SLP, GDx VCC) to measure the retinal nerve fiber layer (RNFL) thickness in order to evaluate the progression of glaucoma. Test-retest measurement variability was determined in 47 glaucomatous eyes. One eye each from 152 glaucomatous patients with at least 4 years of follow-up was enrolled. Visual field (VF) loss progression was determined by both event analysis (EA, Humphrey guided progression analysis) and trend analysis (TA, linear regression analysis of the visual field index). SLP progression was defined as a reduction of RNFL exceeding the predetermined repeatability coefficient in three consecutive exams, as compared to the baseline measure (EA). The slope of RNFL thickness change over time was determined by linear regression analysis (TA). Twenty-two eyes (14.5%) progressed according to the VF EA, 16 (10.5%) by VF TA, 37 (24.3%) by SLP EA and 19 (12.5%) by SLP TA. Agreement between VF and SLP progression was poor in both EA and TA (VF EA vs. SLP EA, k = 0.110; VF TA vs. SLP TA, k = 0.129). The mean (±standard deviation) progression rate of RNFL thickness as measured by SLP TA did not significantly differ between VF EA progressors and non-progressors (-0.224 ± 0.148 µm/yr vs. -0.218 ± 0.151 µm/yr, p = 0.874). SLP TA and EA showed similar levels of sensitivity when VF progression was considered as the reference standard. RNFL thickness as measurement by SLP was shown to be capable of detecting glaucoma progression. Both EA and TA of SLP showed poor agreement with VF outcomes in detecting glaucoma progression.

  19. Scanning laser polarimetry, but not optical coherence tomography predicts permanent visual field loss in acute nonarteritic anterior ischemic optic neuropathy.

    Science.gov (United States)

    Kupersmith, Mark J; Anderson, Susan; Durbin, Mary; Kardon, Randy

    2013-08-15

    Scanning laser polarimetry (SLP) reveals abnormal retardance of birefringence in locations of the edematous peripapillary retinal nerve fiber layer (RNFL), which appear thickened by optical coherence tomography (OCT), in nonarteritic anterior ischemic optic neuropathy (NAION). We hypothesize initial sector SLP RNFL abnormalities will correlate with long-term regional visual field loss due to ischemic injury. We prospectively performed automated perimetry, SLP, and high definition OCT (HD-OCT) of the RNFL in 25 eyes with acute NAION. We grouped visual field threshold and RNFL values into Garway-Heath inferior/superior disc sectors and corresponding superior/inferior field regions. We compared sector SLP RNFL thickness with corresponding visual field values at presentation and at >3 months. At presentation, 12 eyes had superior sector SLP reduction, 11 of which had inferior field loss. Six eyes, all with superior field loss, had inferior sector SLP reduction. No eyes had reduced OCT-derived RNFL acutely. Eyes with abnormal field regions had corresponding SLP sectors thinner (P = 0.003) than for sectors with normal field regions. During the acute phase, the SLP-derived sector correlated with presentation (r = 0.59, P = 0.02) and with >3-month after presentation (r = 0.44, P = 0.02) corresponding superior and inferior field thresholds. Abnormal RNFL birefringence occurs in sectors corresponding to regional visual field loss during acute NAION when OCT-derived RNFL shows thickening. Since the visual field deficits show no significant recovery, SLP can be an early marker for axonal injury, which may be used to assess recovery potential at RNFL locations with respect to new treatments for acute NAION.

  20. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry.

    Science.gov (United States)

    Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  1. Structure-Function Correlations using Scanning Laser Polarimetry in Primary Angle-Closure Glaucoma and Primary Open Angle Glaucoma

    Science.gov (United States)

    Lee, Pei-Jung; Liu, Catherine Jui-Ling.; Wojciechowski, Robert; Bailey-Wilson, Joan E.; Cheng, Ching-Yu

    2010-01-01

    Purpose To assess the correlations between retinal nerve fiber layer (RNFL) thickness measured with scanning laser polarimetry (SLP) and visual field (VF) sensitivity in primary open angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Design Prospective, comparative, observational cases series Methods Fifty patients with POAG and 56 with PACG were examined using SLP with variable corneal compensation (GDx VCC) and Humphrey VF analyzer between August 2005 and July 2006 at Taipei Veterans General Hospital. Correlations between RNFL thickness and VF sensitivity, expressed as mean sensitivity (MS) in both decibel (dB) and 1/Lambert (L) scales, were estimated by Spearman's rank correlation coefficient (rs) and multivariate median regression models (pseudo R2). The correlations were determined globally and for six RNFL sectors and their corresponding VF regions. Results The correlation between RNFL thickness and MS (in dB) was weaker in the PACG group (rs = 0.38, P = 0.004, pseudo R2 = 0.17) than in the POAG group (rs = 0.51, P <0.001, pseudo R2 = 0.31), but the difference in the magnitude of correlation was not significant (P = 0.42).With Bonferroni correction, the structure-function correlation was significant in the superotemporal (rs = 0.62), superonasal (rs = 0.56), inferonasal (rs = 0.53), and inferotemporal (rs = 0.50) sectors in the POAG group (all P <0.001), while it was significant only in the superotemporal (rs = 0.53) and inferotemporal (rs = 0.48) sectors in the PACG group (both P <0.001). The results were similar when MS was expressed as 1/L scale. Conclusions Both POAG and PACG eyes had moderate structure-function correlations using SLP. Compared to eyes with POAG, fewer RNFL sectors have significant structure-function correlations in eyes with PACG. PMID:20202618

  2. THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Dan P. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Tassis, K. [Department of Physics and ITCP, University of Crete, 71003, Heraklion (Greece); Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov [Jet Propulsion Laboratory, M/S 169-504, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-12-20

    The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarization position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.

  3. High reflectance Cr/C multilayer at 250 eV for soft X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Mingwu; Jiang, Li; Zhang, Zhong; Huang, Qiushi [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Wang, Zhanshan, E-mail: wangzs@tongji.edu.cn [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); She, Rui; Feng, Hua [Department of Engineering Physics, Tsinghua University, Beijing (China); Wang, Hongchang [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-10-01

    X-ray reflection near 45° via multilayer mirrors can be used for astronomical polarization measurements. A Cr/C multilayer mirror (designed for X-ray polarimetry at 250 eV), with a period thickness of 3.86 nm and a bi-layer number of 100, was fabricated using direct current magnetron sputtering. Grazing incidence X-ray reflectometry at 8 keV and transmission electron microscopy were used to investigate the multilayer structure. Different models were introduced to fit the hard X-ray reflectivity curve, which indicates that the layer thickness of two materials slightly drifts from the bottom to the top of the stack. Both the chromium and carbon layers are amorphous with asymmetric interfaces, while the Cr-on-C interface is slightly wider. Based on the good quality of the multilayer structure, a high reflectivity of 21.8% for the s-polarized light was obtained at 250 eV at a grazing incidence angle of 40.7°. The fabricated Cr/C multilayer mirror exhibits high reflectivity and polarization levels in the energy region of 240 eV–260 eV. - Highlights: • We fabricated Cr/C multilayer with 3.8 nm d-spacing. • X-ray reflectometry was used to determine the exact structure of Cr/C multilayer. • A high reflectivity of 21.8% for the s-polarized light was obtained at 250 eV. • Both Cr and C were found to be amorphous with slightly asymmetric interfaces. • A 4-layer model was used to fit and explain the results.

  4. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry

    Science.gov (United States)

    Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  5. Polarimetry and Flux Distribution in the Debris Disk Around HD 32297

    Science.gov (United States)

    Asensio-Torres, R.; Janson, M.; Hashimoto, J.; Thalmann, C.; Currie, T.; Buenzli,; Kudo, T.; Kuzuhara, M.; Kusakabe, N.; Akiyama, E.; hide

    2016-01-01

    We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, we detect the nearly edge-on disk at > or = 5(sigma) levels from approx. 0.45" to approx.1.7" (50-192AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of approx. 0.75" (NE side) and approx. 0.65" (SW side). Global forward-modeling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from approx. 0.25-1.6", although the central region is quite noisy and high S/N are only found in the range approx. 0.75-1.2". The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from approx. 10% at 0.55" to approx. 25% at 1.6". The maximum is found at scattering angles of 90, either from the main components of the disk or from dust grains blown out to larger radii.

  6. VizieR Online Data Catalog: Polarimetry & photometry of GRB with RINGO2 (Steele+, 2017)

    Science.gov (United States)

    Steele, I. A.; Kopac, D.; Arnold, D. M.; Smith, R. J.; Kobayashi, S.; Jermak, H. E.; Mundell, C. G.; Gomboc, A.; Guidorzi, C.; Melandri, A.; Japelj, J.

    2018-03-01

    Between 2010 and 2012, 19 optical afterglows were observed with the RINGO2 polarimeter on the Liverpool Telescope (LT) at La Palma. Table 2 shows observational properties of the complete sample. In addition to the RINGO2 observations, optical band photometry of each burst was carried out using the RATCam CCD imaging camera on the same telescope, using either g'r'i' or r'i'z' filter sequences, in intervals between and after the RINGO2 observations. (3 data files).

  7. Near-Infrared Polarimetry of the GG Tauri A Binary System

    Science.gov (United States)

    Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; hide

    2014-01-01

    A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  8. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate): deswelling kinetics probed by quantitative Mueller matrix polarimetry.

    Science.gov (United States)

    Patil, Nagaraj; Soni, Jalpa; Ghosh, Nirmalya; De, Priyadarsi

    2012-11-29

    Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.

  9. Polarimetry of light scattered by surface roughness and textured films and periodic structures in nanotechnologies: a new challenge in instrumentation and modeling

    Directory of Open Access Journals (Sweden)

    Ferrieu. F.

    2010-06-01

    Full Text Available Exhaustive studies in the literature detail the Mueller matrices properties through decomposition, optical entropy and depolarization formalism. It has been applied for many years in rather different fields. In radar polarimetry, mathematical basis of depolarizing systems, have been first developed. In the visible range optics, standard diattenuation and retardance, decomposition is currently used in turbid organic media. The optical entropy concept, developed by S.R. Cloude, provides a very powerful analysis technique yielding important surface parameters such as depolarization, correlation and roughness. Complementary applications exist in scatterometry, for thin periodic grating films. With high capability polarimeters, such as the next generation of angle resolved polarimeters instruments, Polarimetry opens new fields of investigation for nanotechnologies materials as well as for gratings and photonics structures analysis: a program presently developed through a national consortium ANR08-NANO-020-03. With this instrumentation progress, simulation remains a key point to overpass as a challenge between future instruments. The theories for surfaces spectral power density (PSD and the random coupled wave approximation (RCWA in periodic structures are widely described in the literature. The implementation of some of these codes is described here for surface analysis and lithography scatterometry structures: grating overlay or double patterning.

  10. Rapid spectro-polarimetry to probe molecular symmetry in multiplex coherent anti-Stokes Raman scattering.

    Science.gov (United States)

    Würthwein, Thomas; Brinkmann, Maximilian; Hellwig, Tim; Fallnich, Carsten

    2017-11-21

    We present the simultaneous detection of the spectrum and the complete polarization state of a multiplex coherent anti-Stokes Raman scattering signal with a fast division-of-amplitude spectro-polarimeter. The spectro-polarimeter is based on a commercial imaging spectrograph, a birefringent wedge prism, and a segmented polarizer. Compared to the standard rotating-retarder fixed-analyzer spectro-polarimeter, only a single measurement is required and an up to 21-fold reduced acquisition time is shown. The measured Stokes parameters allow us to differentiate between vibrational symmetries and to determine the depolarization ratio ρ by data post-processing.

  11. ALMA SCIENCE VERIFICATION DATA: MILLIMETER CONTINUUM POLARIMETRY OF THE BRIGHT RADIO QUASAR 3C 286

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H.; Nakanishi, K.; Hada, K. [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Paladino, R. [INAF-Osservatorio di Radioastronomia, Via P. Gobetti, 101 I-40129 Bologna (Italy); Hull, C. L. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Cortes, P.; Fomalont, E. [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763 0355, Santiago de Chile (Chile); Moellenbrock, G. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Asada, K., E-mail: hiroshi.nagai@nao.ac.jp [The Academia Sinica Institute of Astronomy and Astrophysics, AS/NTU. No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C (China)

    2016-06-20

    We present full-polarization observations of the compact, steep-spectrum radio quasar 3C 286 made with the Atacama Large Millimeter and Submillimeter Array (ALMA) at 1.3 mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south–west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17%; this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or electric vector position angle (EVPA)) in the core is ∼39{sup ◦}, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.

  12. Image, Image, Image

    Science.gov (United States)

    Howell, Robert T.

    2004-01-01

    With all the talk today about accountability, budget cuts, and the closing of programs in public education, teachers cannot overlook the importance of image in the field of industrial technology. It is very easy for administrators to cut ITE (industrial technology education) programs to save school money--money they might shift to teaching the…

  13. Role of imaging in glaucoma diagnosis and follow-up

    Directory of Open Access Journals (Sweden)

    Vizzeri Gianmarco

    2011-12-01

    Full Text Available The purpose of the review is to provide an update on the role of imaging devices in the diagnosis and follow-up of glaucoma with an emphasis on techniques for detecting glaucomatous progression and the newer spectral domain optical coherence tomography instruments. Imaging instruments provide objective quantitative measures of the optic disc and the retinal nerve fiber layer and are increasingly utilized in clinical practice. This review will summarize the recent enhancements in confocal scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography with an emphasis on how to utilize these techniques to manage glaucoma patients and highlight the strengths and limitations of each technology. In addition, this review will briefly describe the sophisticated data analysis strategies that are now available to detect glaucomatous change overtime.

  14. Image-Based Fine-Scale Infrastructure Monitoring

    Science.gov (United States)

    Detchev, Ivan Denislavov

    adjustment. The input data for the adjustment comes from either model-based image fitting or full surface fitting procedures. The crack characterization, i.e., estimation of the average crack width, approximate length and overall orientation, is achieved directly in three dimensions by detecting cracks in a region of interest in a truly-rectified photo via image processing techniques. This hybrid approach combines the use of both geometric and radiometric data, and it performs best in a multi-epoch setting.

  15. Retinal nerve fiber layer analysis with scanning laser polarimetry and RTVue-OCT in patients of retinitis pigmentosa.

    Science.gov (United States)

    Xue, Kang; Wang, Min; Chen, Junyi; Huang, Xin; Xu, Gezhi

    2013-01-01

    To measure the thickness of the retinal nerve fiber layer (RNFL) of patients with retinitis pigmentosa (RP) and that of normal controls by scanning laser polarimetry with enhanced corneal compensation (GDxECC) and RTVue-optical coherence tomography (OCT). Fifty-two eyes of 26 patients were included. All patients underwent complete ophthalmological examinations and testing with GDxECC. Twenty-eight of 52 eyes of RP patients underwent RTVue-OCT measurements. A group of 50 eyes of 25 normal subjects (controls) was also included. GDxECC measured RNFL thickness in the peripapillary area in all subjects as well as temporal-superior-nasal-inferior-temporal (TSNIT) parameters, including TSNIT means, superior and inferior region means, TSNIT standard deviation (SD), inter-eye symmetry and nerve fiber indicator (NFI). RTVue-OCT measured the mean, superior, inferior, temporal and nasal quadrant RNFL thickness. In RP patients and controls, TSNIT means by GDxECC were, respectively, 65.00 ± 7.35 and 55.32 ± 5.20. Mean superior quadrant thicknesses were 80.56 ± 10.93 and 69.54 ± 7.45. Mean inferior thicknesses were 80.58 ± 9.34 and 69.12 ± 7.78. SDs were 27.92 ± 5.21 and 28.23 ± 4.01. Inter-eye symmetries were 0.82 ± 0.17 and 0.87 ± 0.09. NFIs were 9.74 ± 8.73 and 16.81 ± 8.13. The differences between mean TSNIT, mean superior and mean inferior quadrant thicknesses and NFIs were statistically significant (p < 0.001). In RTVue-OCT measurements, the differences between mean, superior, inferior and temporal quadrant RNFL thicknesses were statistically significant (p = 0.0322, 0.0213, 0.0387, 0.0005). The RNFL measured by GDxECC was significantly thicker in RP patients than in controls. RNFL thickness measured by RTVue-OCT was significantly greater in RP patients than in controls in the superior, inferior and temporal regions. This contribution provides information on RNFL thickness and discusses the mechanism underlying this phenomenon. Copyright © 2012 S. Karger AG

  16. Optical and Near-infrared Polarimetry of Non-periodic Comet C/2013 US10 (Catalina)

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yuna Grace; Ishiguro, Masateru; Lee, Myung Gyoon [Department of Physics and Astronomy, Seoul National University, 1 Gwanak, Seoul 08826 (Korea, Republic of); Kuroda, Daisuke; Toda, Hiroyuki; Yanagisawa, Kenshi [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Kamogata, Asakuchi, Okayama, 719-0232 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Kawabata, Koji S.; Nakaoka, Tatsuya [Hiroshima Astrophysical Science Center, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Akitaya, Hiroshi [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Itoh, Ryosuke; Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Ohta, Kouji [Department of Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Yoshida, Michitoshi [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Watanabe, Jun-Ichi, E-mail: ishiguro@astro.snu.ac.kr [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan)

    2017-10-01

    We present an optical and near-infrared (hereafter NIR) polarimetric study of a comet C/2013 US10 (Catalina) observed on UT 2015 December 17–18 at phase angles of α  = 52.°1–53.°1. Additionally, we obtained an optical spectrum and multi-band images to examine the influence of gas emission. We find that the observed optical signals are significantly influenced by gas emission; that is, the gas-to-total intensity ratio varies from 5 to 30% in the R {sub C} and 3%–18% in the I {sub C} bands, depending on the position in the coma. We derive the “gas-free dust polarization degrees” of 13.8% ± 1.0% in the R {sub C} and 12.5% ± 1.1% in the I {sub C} bands and a gray polarimetric color, i.e., −8.7% ± 9.9% μ m{sup −1} in optical and 1.6% ± 0.9% μ m{sup −1} in NIR. The increments of polarization obtained from the gas correction show that the polarimetric properties of the dust in this low-polarization comet are not different from those in high-polarization comets. In this process, the cometocentric distance dependence of polarization has disappeared. We also find that the R {sub C}-band polarization degree of the southeast dust tail, which consists of large dust particles (100 μ m–1 mm), is similar to that in the outer coma where small and large ones are mixed. Our study confirms that the dichotomy of cometary polarization does not result from the difference of dust properties, but from depolarizing gas contamination. This conclusion can provide a strong support for similarity in origin of comets.

  17. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  18. The optical variability of SDSS quasars from multi-epoch spectroscopy. I. Results from 60 quasars with ≥ six-epoch spectra

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hengxiao; Gu, Minfeng, E-mail: hxguo@shao.ac.cn, E-mail: gumf@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-09-01

    In a sample of 60 quasars selected from the Sloan Digital Sky Survey with at least six-epoch spectroscopy, we investigate the variability of emission lines and continuum luminosity at various aspects. A strong anti-correlation between the variability and continuum luminosity at 2500 Å is found for the sample, which is consistent with previous works. In individual sources, we find that half of the sample objects follow the trend of being bluer when brighter, while the remaining half follow the redder-when-brighter (RWB) trend. Although the mechanism for RWB is unclear, the effects of host galaxy contribution due to seeing variations cannot be completely ruled out. As expected from the photoionization model, the positive correlations between the broad emission line and continuum luminosity are found in most individual sources, as well as for the whole sample. We confirm the Baldwin effect in most individual objects and the whole sample, while a negative Baldwin effect is also found in several quasars, which can be at least partly (if not all) due to the host galaxy contamination. We find positive correlations between the broad emission line luminosity and line width in most individual quasars, as well as the whole sample, implying a line base that is more variable than the line core.

  19. High-frequency fluctuation measurements by far-infrared laser Faraday-effect polarimetry-interferometry and forward scattering system on MST.

    Science.gov (United States)

    Ding, W X; Lin, L; Duff, J R; Brower, D L

    2014-11-01

    Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1-2 cm(-1) for beam width w = 1.5 cm and 15 cm(-1) for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.

  20. The Electric Form Factor of the Neutron via Recoil Polarimetry to Q2 1.47 (GeV/c)2

    International Nuclear Information System (INIS)

    Bradley Plaster; Richard Madey; Andrei Semenov; Simon Taylor; Aram Aghalaryan; Erick Crouse; Glen MacLachlan; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Hartmuth Arenhovel; Razmik Asaturyan; O. Baker; Alan Baldwin; Paul Brewer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Calvin Howell; Paul Gueye; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; D. Manley; Pete Markowitz; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Irina Semenova; Wonick Seo; Neven Simicevic; Gregory Smith; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2003-01-01

    The Jefferson Laboratory E93-038 collaboration conducted measurements of the ratio of the electric form factor to the magnetic form factor of the neutron, G n E/G n M, via recoil polarimetry from the quasielastic 2 H((rvec e),e/(rvec n)) 1 H reaction at three values of Q 2 [viz., 0.45, 1.15, and 1.47 (GeV/c) 2 ] in Hall C of the Thomas Jefferson National Accelerator Facility. The preliminary results for G n E at Q 2 = 0.45 and 1.15 (GeV/c) 2 are consistent with the Galster parameterization; however, the preliminary result for G n E at Q 2 = 1.47 (GeV/c) 2 lies slightly above the Galster parameterization

  1. Magnetic structure of the swedenborgite CaBa (Co3Fe ) O7 derived by unpolarized neutron diffraction and spherical neutron polarimetry

    Science.gov (United States)

    Qureshi, N.; Díaz, M. T. Fernández; Chapon, L. C.; Senyshyn, A.; Schweika, W.; Valldor, M.

    2018-02-01

    We present a study that combines polarized and unpolarized neutrons to derive the magnetic structure of the swedenborgite compound CaBa (Co3Fe ) O7. Integrated intensities from a standard neutron diffraction experiment and polarization matrices from spherical neutron polarimetry have been simultaneously analyzed revealing a complex order, which differs from the usual spin configurations on a kagome lattice. We find that the magnetic structure is well described by a combination of two one-dimensional representations corresponding to the magnetic superspace symmetry P 21' , and it consists of spins rotating around an axis close to the [110] direction. Due to the propagation vector q =(1/3 00 ) , this modulation has cycloidal and helicoidal character rendering this system a potential multiferroic. The resulting spin configuration can be mapped onto the classical √{3 }×√{3 } structure of a kagome lattice, and it indicates an important interplay between the kagome and the triangular layers of the crystal structure.

  2. Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona.

    Science.gov (United States)

    Fallon, M; Pazos, M; Morilla, A; Sebastián, M A; Xancó, R; Mora, C; Calderón, B; Vega, Z; Antón, A

    2015-11-01

    To evaluate morphological parameters of optic disc and retinal nerve fiber layer (RNFL) examined with confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population, and analyze correlations of these parameters with demographic variables. Cross-sectional study in the context of a glaucoma screening campaign in the primary care center of Barcelona. The individuals selected were non-hypertensive Mediterranean Caucasians with risk for glaucoma development (individuals≥60 years old or≥40 years old with family history of glaucoma or intraocular pressure or myopia>3diopter). All subjects underwent a complete ophthalmic examination, confocal laser tomography (HRT3) and scanning laser polarimetry (GDX-VCC), subjects with results within normal limits only being included. Structural parameters were analyzed along with age, refraction, and pachymetry based on the Spearman rank correlation test. A total of 224 subjects included, with a mean age of 63.4±11.1 years. Disc areas, excavation and ring area were 2.14±0.52mm(2), 0.44±0.34mm (2) and 1.69±0.38mm(2), respectively. The mean RNFL (GDX) was 55.9±6.9μm. Age was correlated with lower ring volume, highest rate of cup shape measure, largest mean and maximum cup depth, lower nerve fiber index (NFI) and RNFL (all p-values below .05). The mean values and distribution of several parameters of the papilla and the RNFL in normal Mediterranean Caucasians population are presented. A loss of thickness of the RNFL, ring thinning, and enlarged cup was observed with increased age. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements

    Science.gov (United States)

    Ishikawa, R.; Bando, T.; Hara, H.; Ishikawa, S.; Kano, R.; Kubo, M.; Katsukawa, Y.; Kobiki, T.; Narukage, N.; Suematsu, Y.; Tsuneta, S.; Aoki, K.; Miyagawa, K.; Ichimoto, K.; Kobayashi, K.; Auchère, F.; Clasp Team

    2014-10-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectro-polarimeter optimized for measuring the linear polarization of the Lyman-α line (121.6 nm) to be launched in 2015 with NASA's sounding rocket (Ishikawa et al. 2011; Narukage et al. 2011; Kano et al. 2012; Kobayashi et al. 2012). With this experiment, we aim to (1) observe the scattering polarization in the Lyman-α line, (2) detect the Hanle effect, and (3) assess the magnetic fields in the upper chromosphere and transition region for the first time. The polarization measurement error consists of scale error δ a (error in amplitude of linear polarization), azimuth error Δφ (error in the direction of linear polarization), and spurious polarization ɛ (false linear polarization signals). The error ɛ should be suppressed below 0.1% in the Lyman-α core (121.567 nm ±0.02 nm), and 0.5% in the Lyman-α wing (121.567 nm ±0.05 nm), based on our scientific requirements shown in Table 2 of Kubo et al. (2014). From scientific justification, we adopt Δ φspectro-polarimeter features a continuously rotating MgF2 waveplate (Ishikawa et al. 2013), a dual-beam spectrograph with a spherical grating working also as a beam splitter, and two polarization analyzers (Bridou et al. 2011), which are mounted at 90 degree from each other to measure two orthogonal polarization simultaneously. For the optical layout of the CLASP instrument, see Figure 3 in Kubo et al. (2014). Considering the continuous rotation of the half-waveplate, the modulation efficiency is 0.64 both for Stokes Q and U. All the raw data are returned and demodulation (successive addition or subtraction of images) is done on the ground. We control the CLASP polarization performance in the following three steps. First, we evaluate the throughput and polarization properties of each optical component in the Lyman-α line, using the Ultraviolet Synchrotron ORbital Radiation Facility (UVSOR) at the Institute for Molecular Science. The second step

  4. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Francucci M

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager ( = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  5. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    R. Ricci

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager (λ = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  6. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant.

    Science.gov (United States)

    Boboc, A; Bieg, B; Felton, R; Dalley, S; Kravtsov, Yu

    2015-09-01

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments.

  7. Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant

    Energy Technology Data Exchange (ETDEWEB)

    Boboc, A., E-mail: Alexandru.Boboc@ccfe.ac.uk; Felton, R.; Dalley, S. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bieg, B.; Kravtsov, Yu. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Institute of Physics, Maritime University of Szczecin, Szczecin (Poland)

    2015-09-15

    In this paper, we present the work in the implementation of a new calibration for the JET real-time polarimeter based on the complex amplitude ratio technique and a new self-validation mechanism of data. This allowed easy integration of the polarimetry measurements into the JET plasma density control (gas feedback control) and as well as machine protection systems (neutral beam injection heating safety interlocks). The new addition was used successfully during 2014 JET Campaign and is envisaged that will operate routinely from 2015 campaign onwards in any plasma condition (including ITER relevant scenarios). This mode of operation elevated the importance of the polarimetry as a diagnostic tool in the view of future fusion experiments.

  8. Applications of Polarimetric and Interferometric SAR to Environmental Remote Sensing and its Activities: Recent Advances in Extrawideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing and its Applications

    Science.gov (United States)

    2007-02-01

    leap towards complete physical realizability” must and will be achieved during this decade – similar to progressing from “Classical X- Ray -Shadow...Visible, Ultraviolet, X- Ray , Proc. SPIE-1317 ( also see SPIE Proc. 891, 1166, 1746, 1988, 1989, 3121). [38] Chipman, R.A., 1994, Polarimetry...on „Radar mit realer und synthetischer Apertur“. Oldenburg Verlag, Munich 1999, 88 p. [173] Mott, H. and W-M. Boerner, 1992, editors, “Radar

  9. SEARCHING FOR SCATTERERS: HIGH-CONTRAST IMAGING OF YOUNG STARS HOSTING WIDE-SEPARATION PLANETARY-MASS COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Marta L.; Mawet, Dimitri [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Bowler, Brendan P.; Kraus, Adam L. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Hinkley, Sasha [University of Exeter, Physics Department, Stocker Road, Exeter EX4 4QL (United Kingdom); Nielsen, Eric L.; Blunt, Sarah C. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2016-08-20

    We have conducted an angular differential imaging survey with NIRC2 at Keck in search of close-in substellar companions to a sample of seven systems with confirmed planetary-mass companions (PMCs) on wide orbits (>50 au). These wide-separation PMCs pose significant challenges to all three possible formation mechanisms: core accretion plus scattering, disk instability, and turbulent fragmentation. We explore the possibility that these companions formed closer in and were scattered out to their present-day locations by searching for other massive bodies at smaller separations. The typical sensitivity for this survey is Δ K ∼ 12.5 at 1″. We identify eight candidate companions, whose masses would reach as low as one Jupiter mass if gravitationally bound. From our multi-epoch astrometry we determine that seven of these are conclusively background objects, while the eighth near DH Tau is ambiguous and requires additional monitoring. We rule out the presence of >7 M {sub Jup} bodies in these systems down to 15–50 au that could be responsible for scattering. This result combined with the totality of evidence suggests that dynamical scattering is unlikely to have produced this population of PMCs. We detect orbital motion from the companions ROXs 42B b and ROXs 12 b, and from this determine 95% upper limits on the companions’ eccentricities of 0.58 and 0.83 respectively. Finally, we find that the 95% upper limit on the occurrence rate of additional planets with masses between 5 and 15 M {sub Jup} outside of 40 au in systems with PMCs is 54%.

  10. SEARCHING FOR SCATTERERS: HIGH-CONTRAST IMAGING OF YOUNG STARS HOSTING WIDE-SEPARATION PLANETARY-MASS COMPANIONS

    International Nuclear Information System (INIS)

    Bryan, Marta L.; Mawet, Dimitri; Bowler, Brendan P.; Kraus, Adam L.; Knutson, Heather A.; Hinkley, Sasha; Nielsen, Eric L.; Blunt, Sarah C.

    2016-01-01

    We have conducted an angular differential imaging survey with NIRC2 at Keck in search of close-in substellar companions to a sample of seven systems with confirmed planetary-mass companions (PMCs) on wide orbits (>50 au). These wide-separation PMCs pose significant challenges to all three possible formation mechanisms: core accretion plus scattering, disk instability, and turbulent fragmentation. We explore the possibility that these companions formed closer in and were scattered out to their present-day locations by searching for other massive bodies at smaller separations. The typical sensitivity for this survey is Δ K ∼ 12.5 at 1″. We identify eight candidate companions, whose masses would reach as low as one Jupiter mass if gravitationally bound. From our multi-epoch astrometry we determine that seven of these are conclusively background objects, while the eighth near DH Tau is ambiguous and requires additional monitoring. We rule out the presence of >7 M Jup bodies in these systems down to 15–50 au that could be responsible for scattering. This result combined with the totality of evidence suggests that dynamical scattering is unlikely to have produced this population of PMCs. We detect orbital motion from the companions ROXs 42B b and ROXs 12 b, and from this determine 95% upper limits on the companions’ eccentricities of 0.58 and 0.83 respectively. Finally, we find that the 95% upper limit on the occurrence rate of additional planets with masses between 5 and 15 M Jup outside of 40 au in systems with PMCs is 54%.

  11. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  12. Low energy proton polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, M [Institutul Central de Fizica, Bucharest (Romania)

    1980-01-01

    Some polarimeters based on a measurement of the left-right asymmetry in the scattering from an analyser target are described. It is discussed the using of /sup 4/He, /sup 12/C, /sup 28/Si as analyser target.

  13. Low energy proton polarimetry

    International Nuclear Information System (INIS)

    Tanase, M.

    1980-01-01

    Some polarimeters based on a measurement of the left-right asymmetry in the scattering from an analyser target are described. It is discussed the using of 4 He, 12 C, 28 Si as analyser target. (author)

  14. Polarimetry and Interferometry Applications

    National Research Council Canada - National Science Library

    Keydel, Wolfgang

    2007-01-01

    ... extent prediction and forecast of natural disasters (involving landslides caused by earthquakes ore avalanches, volcanic eruptions, fires, floods, terrain resurfacing, followed by a period of recovery, etc...

  15. Synthesis Polarimetry Calibration

    Science.gov (United States)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  16. Polarimetry of symbiotic stars

    International Nuclear Information System (INIS)

    Piirola, V.

    1983-01-01

    Five symbiotic stars have been observed for linear polarization (UBVRI) in September 1981. Three systems, CH Cyg, CI Cyg and AG Peg show intrinsic polarization while in the case of Z And and AX Per the observed polarization seems to be mostly of interstellar origin. The position angle of polarization of CI Cyg and AG Peg rotates strongly vs. wavelength, as observed also for CH Cyg in 1977-80. The polarization of CH Cyg has decreased since May 1980, especially in the I, R and U bands, so that the maximum polarization is now in the blue (Psub(B) approx. 0.3%). Probably one is monitoring the formation, growth and disappearance of dust particles in the atmosphere of this star. Two related systems, PU Vul (Nova Vul 1979) and R Aql (Mira) have polarization behaviour rather similar to that of symbiotic stars which suggests that the M type giant present in these systems is responsible for most of the intrinsic polarization. (Auth.)

  17. A teststand for photo detectors and beamtests for ILC polarimetry; Aufbau eines Teststandes fuer Photodetektoren und Teststrahlmessungen fuer die Strahlpolarisationsmessung am ILC

    Energy Technology Data Exchange (ETDEWEB)

    Velte, Ulrich

    2009-02-15

    In the future International Linear Collider (ILC) up to 80% polarized electrons shall be brought to collision with up to 60% polarized positrons. Because the cross sections of the resulting reactions depend sensitively on the beam polarization this must be measured with a hitherto never reached accuracy of {delta}P/P{approx}0.25%. This shall be reached via Compton scattering of laser photons from the beam particles and subsequent detection of the scattered electrons in a Cherenkov hodoscope. Content of this thesis was to build a teststand, in which different photodetectors for the detection of the Cherenkov light can be characterized and checked on their suitability for the special application in the ILC polarimeter. The until now best polarization measurement was reached in the framework of the SLD experiment at SLAC in California ({delta}P/P{approx}0.5%). At present the Cherenkov counter of the SLD polarimeter is at DESY and is their used in order to measure different photodetectors coming into question for the ILC polarimetry in the test beam. In order to be able to continue the experiences from the SLD experiment in the framework of this thesis test-beam measurements at the Cherenkov detector are evaluated and the first developments towards a polarimeter for the ILC described. [German] Im zukuenftigen International Linear Collider (ILC) sollen bis zu 80% polarisierte Elektronen mit bis zu 60% polarisierten Positronen zur Kollision gebracht werden. Da die Wirkungsquerschnitte der resultierenden Reaktionen empfindlich von der Strahlpolarisation abhaengen, muss diese mit einer bisher nie erreichten Genauigkeit von {delta}P/P{approx}0.25% gemessen werden. Dies soll ueber Compton-Streuung von Laserphotonen an den Strahlteilchen und anschliessendem Nachweis der gestreuten Elektronen in einem Cerenkov-Hodoskop erreicht werden. Inhalt dieser Arbeit war es, einen Teststand aufzubauen, in dem verschiedenartige Photodetektoren zum Nachweis des Cerenkov

  18. High-precision broad-band linear polarimetry of early-type binaries. II. Variable, phase-locked polarization in triple Algol-type system λ Tauri

    Science.gov (United States)

    Berdyugin, A.; Piirola, V.; Sakanoi, T.; Kagitani, M.; Yoneda, M.

    2018-03-01

    Aim. To study the binary geometry of the classic Algol-type triple system λ Tau, we have searched for polarization variations over the orbital cycle of the inner semi-detached binary, arising from light scattering in the circumstellar material formed from ongoing mass transfer. Phase-locked polarization curves provide an independent estimate for the inclination i, orientation Ω, and the direction of the rotation for the inner orbit. Methods: Linear polarization measurements of λ Tau in the B, V , and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained on the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and Tohoku 60 cm (Haleakala, Hawaii, USA) remotely controlled telescopes over 69 observing nights. Analytic and numerical modelling codes are used to interpret the data. Results: Optical polarimetry revealed small intrinsic polarization in λ Tau with 0.05% peak-to-peak variation over the orbital period of 3.95 d. The variability pattern is typical for binary systems showing strong second harmonic of the orbital period. We apply a standard analytical method and our own light scattering models to derive parameters of the inner binary orbit from the fit to the observed variability of the normalized Stokes parameters. From the analytical method, the average for three passband values of orbit inclination i = 76° + 1°/-2° and orientation Ω = 15°(195°) ± 2° are obtained. Scattering models give similar inclination values i = 72-76° and orbit orientation ranging from Ω = 16°(196°) to Ω = 19°(199°), depending on the geometry of the scattering cloud. The rotation of the inner system, as seen on the plane of the sky, is clockwise. We have found that with the scattering model the best fit is obtained for the scattering cloud located between the primary and the secondary, near the inner Lagrangian point or along the Roche lobe surface of the secondary facing the primary. The inclination i

  19. Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix

    Science.gov (United States)

    Kupinski, Meredith; Rehbinder, Jean; Haddad, Huda; Deby, Stanislas; Vizet, Jérémy; Teig, Benjamin; Nazac, André; Pierangelo, Angelo; Moreau, François; Novikova, Tatiana

    2017-07-01

    Significant contrast in visible wavelength Mueller matrix images for healthy and pre-cancerous regions of excised cervical tissue is shown. A novel classification algorithm is used to compute a test statistic from a small patient population.

  20. Repeatability and Reproducibility of Retinal Nerve Fiber Layer Parameters Measured by Scanning Laser Polarimetry with Enhanced Corneal Compensation in Normal and Glaucomatous Eyes.

    Science.gov (United States)

    Ara, Mirian; Ferreras, Antonio; Pajarin, Ana B; Calvo, Pilar; Figus, Michele; Frezzotti, Paolo

    2015-01-01

    To assess the intrasession repeatability and intersession reproducibility of peripapillary retinal nerve fiber layer (RNFL) thickness parameters measured by scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) in healthy and glaucomatous eyes. One randomly selected eye of 82 healthy individuals and 60 glaucoma subjects was evaluated. Three scans were acquired during the first visit to evaluate intravisit repeatability. A different operator obtained two additional scans within 2 months after the first session to determine intervisit reproducibility. The intraclass correlation coefficient (ICC), coefficient of variation (COV), and test-retest variability (TRT) were calculated for all SLP parameters in both groups. ICCs ranged from 0.920 to 0.982 for intravisit measurements and from 0.910 to 0.978 for intervisit measurements. The temporal-superior-nasal-inferior-temporal (TSNIT) average was the highest (0.967 and 0.946) in normal eyes, while nerve fiber indicator (NFI; 0.982) and inferior average (0.978) yielded the best ICC in glaucomatous eyes for intravisit and intervisit measurements, respectively. All COVs were under 10% in both groups, except NFI. TSNIT average had the lowest COV (2.43%) in either type of measurement. Intervisit TRT ranged from 6.48 to 12.84. The reproducibility of peripapillary RNFL measurements obtained with SLP-ECC was excellent, indicating that SLP-ECC is sufficiently accurate for monitoring glaucoma progression.

  1. A high-finesse Fabry–Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    International Nuclear Information System (INIS)

    Rakhman, A.; Hafez, M.; Nanda, S.; Benmokhtar, F.; Camsonne, A.; Cates, G.D.; Dalton, M.M.; Franklin, G.B.; Friend, M.; Michaels, R.W.; Nelyubin, V.; Parno, D.S.; Paschke, K.D.; Quinn, B.P.

    2016-01-01

    A high-finesse Fabry–Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO_3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.06 GeV and 50 μA.

  2. A high-finesse Fabry–Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Rakhman, A., E-mail: rahim@ornl.gov [Syracuse University, Department of Physics, Syracuse, NY 13244 (United States); Research Accelerator Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hafez, M. [Old Dominion University, Applied Research Center, Norfolk, VA 23529 (United States); Nanda, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Benmokhtar, F. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); Duquesne University, Pittsburgh, PA 15282 (United States); Camsonne, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Cates, G.D. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Dalton, M.M. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Franklin, G.B. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); Friend, M. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Michaels, R.W. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Nelyubin, V. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Parno, D.S. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); University of Washington, Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, Seattle, WA 98195 (United States); Paschke, K.D. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Quinn, B.P. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); and others

    2016-06-21

    A high-finesse Fabry–Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO{sub 3} crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.06 GeV and 50 μA.

  3. Influence of atypical retardation pattern on the peripapillary retinal nerve fibre distribution assessed by scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Schrems, W A; Laemmer, R; Hoesl, L M; Horn, F K; Mardin, C Y; Kruse, F E; Tornow, R P

    2011-10-01

    To investigate the influence of atypical retardation pattern (ARP) on the distribution of peripapillary retinal nerve fibre layer (RNFL) thickness measured with scanning laser polarimetry in healthy individuals and to compare these results with RNFL thickness from spectral domain optical coherence tomography (OCT) in the same subjects. 120 healthy subjects were investigated in this study. All volunteers received detailed ophthalmological examination, GDx variable corneal compensation (VCC) and Spectralis-OCT. The subjects were divided into four subgroups according to their typical scan score (TSS): very typical with TSS=100, typical with 99 ≥ TSS ≥ 91, less typical with 90 ≥ TSS ≥ 81 and atypical with TSS ≤ 80. Deviations from very typical normal values were calculated for 32 sectors for each group. There was a systematic variation of the RNFL thickness deviation around the optic nerve head in the atypical group for the GDxVCC results. The highest percentage deviation of about 96% appeared temporal with decreasing deviation towards the superior and inferior sectors, and nasal sectors exhibited a deviation of 30%. Percentage deviations from very typical RNFL values decreased with increasing TSS. No systematic variation could be found if the RNFL thickness deviation between different TSS-groups was compared with the OCT results. The ARP has a major impact on the peripapillary RNFL distribution assessed by GDx VCC; thus, the TSS should be included in the standard printout.

  4. Kramers-Kronig Relations in Representation of Modulation Polarimetry by an Example of the Transmission Spectra of GaAs Crystal

    Science.gov (United States)

    Matyash, I. E.; Minailova, I. A.; Mishchuk, O. N.; Serdega, B. K.

    2017-12-01

    The increments of the real and imaginary components of the complex refractive index Δ N = Δ n- iΔ k of a lightly doped GaAs crystal with a donor concentration of 1016 cm-3 have been measured using modulation polarimetry. It is shown that, within this representation, the birefringence and dichroism spectra (Δ n(ω) and Δ k(ω), respectively) obtained in the transparency window of a sample subjected to probe strain are derivatives of the corresponding functions: Δ n(ω) ≈ dn/ dω and Δ k(ω) ≈ dk/ dω. The experimental characteristics and primary dependences n(ω) and k(ω) derived from them by graphical integration are in agreement with the results of other researchers and measurements carried out by independent methods. The results obtained are compared (taking into account the integral (Kramers-Kronig) relations) with the resonance parameters: amplitude and phase in the Drude-Lorenz model. Agreement between the experimental characteristics and theoretical model predictions can be obtained by choosing an appropriate value of resonance damping parameter.

  5. GEMINI PLANET IMAGER OBSERVATIONS OF THE AU MICROSCOPII DEBRIS DISK: ASYMMETRIES WITHIN ONE ARCSECOND

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jason J.; Graham, James R.; De Rosa, Robert J.; Kalas, Paul; Chiang, Eugene; Duchêne, Gaspard [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Pueyo, Laurent; Chen, Christine; Greenbaum, Alexandra Z. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Nielsen, Eric L. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Millar-Blanchaer, Max [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Ammons, S. Mark [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Bulger, Joanna [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Cardwell, Andrew; Goodsell, Stephen J. [Gemini Observatory, Casilla 603, La Serena (Chile); Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Doyon, René [Institut de Recherche sur les Exoplanètes, Départment de Physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Esposito, Thomas M.; Fitzgerald, Michael P. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095 (United States); and others

    2015-10-01

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side at similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 M{sub Jup} planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.

  6. GEMINI PLANET IMAGER OBSERVATIONS OF THE AU MICROSCOPII DEBRIS DISK: ASYMMETRIES WITHIN ONE ARCSECOND

    International Nuclear Information System (INIS)

    Wang, Jason J.; Graham, James R.; De Rosa, Robert J.; Kalas, Paul; Chiang, Eugene; Duchêne, Gaspard; Pueyo, Laurent; Chen, Christine; Greenbaum, Alexandra Z.; Nielsen, Eric L.; Millar-Blanchaer, Max; Ammons, S. Mark; Bulger, Joanna; Cardwell, Andrew; Goodsell, Stephen J.; Chilcote, Jeffrey K.; Doyon, René; Draper, Zachary H.; Esposito, Thomas M.; Fitzgerald, Michael P.

    2015-01-01

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side at similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 M Jup planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk

  7. Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage

    Science.gov (United States)

    Hegedüs, Ramón; Barta, András; Bernáth, Balázs; Benno Meyer-Rochow, Victor; Horváth, Gábor

    2007-08-01

    Radiance, color, and polarization of the light in forests combine to create complex optical patterns. Earlier sporadic polarimetric studies in forests were limited by the narrow fields of view of the polarimeters used in such studies. Since polarization patterns in the entire upper hemisphere of the visual environment of forests could be important for forest-inhabiting animals that make use of linearly polarized light for orientation, we measured 180° field-of-view polarization distributions in Finnish forests. From a hot air balloon we also measured the polarization patterns of Hungarian grasslands lit by the rising sun. We found that the pattern of the angle of polarization α of sunlit grasslands and sunlit tree canopies was qualitatively the same as that of the sky. We show here that contrary to an earlier assumption, the α-pattern characteristic of the sky always remains visible underneath overhead vegetation, independently of the solar elevation and the sky conditions (clear or partly cloudy with visible sun's disc), provided the foliage is sunlit and not only when large patches of the clear sky are visible through the vegetation. Since the mirror symmetry axis of the α-pattern of the sunlit foliage is the solar-antisolar meridian, the azimuth direction of the sun, occluded by vegetation, can be assessed in forests from this polarization pattern. Possible consequences of this robust polarization feature of the optical environment in forests are briefly discussed with regard to polarization-based animal navigation.

  8. Discriminação entre olhos normais e glaucomatosos mediante polarimetria de varredura a laser Discrimination between normal and glaucomatous eyes by scanning laser polarimetry

    Directory of Open Access Journals (Sweden)

    Leopoldo Magacho

    2004-04-01

    Full Text Available OBJETIVOS: Avaliar a capacidade da polarimetria de varredura a laser de discriminar entre olhos normais e glaucomatosos. MÉTODOS: Cento e doze pacientes com glaucoma primário de ângulo aberto e 88 indivíduos normais foram incluídos no estudo. Todos os indivíduos foram submetidos a exame oftalmológico completo, perimetria computadorizada (Humphrey 24-2, full threshold, avaliando-se Mean Deviation (MD e Correct Pattern Standard Deviation (CPSD e exame com GDx. Curvas ROC foram criadas e novos pontos de corte para cada parâmetro individual do GDx estabelecidos para estabelecer uma melhor relação sensibilidade/especificidade (Se/Es no diagnóstico do glaucoma. A seguir, uma função discriminante com 2 parâmetros do GDx (ellipse modulation e the number e idade por meio da análise logística multivariada foi criada com o mesmo propósito. RESULTADOS: Os parâmetros individuais do GDx com melhor relação Se/Es foram: the number (Se: 79,5%, Es: 81,8%, área abaixo da curva ROC: 0,870, maximum modullation (Se: 83,0%, Es: 76,1%, área abaixo da curva ROC: 0,842 e ellipse modulation (Se: 65,2%, Es: 88,6%, área abaixo da curva ROC: 0,831. A função discriminante criada obteve resultados superiores a qualquer parâmetro do GDx isolado (Se: 85,7%, Es: 90,9%, a área abaixo da curva ROC: 0,920. CONCLUSÃO: A combinação de dois ou mais fatores em uma função logística multivariada aumenta a capacidade da polarimetria de varredura a laser de discriminar entre olhos normais e glaucomatosos.PURPOSE: To test the ability of the scanning laser polarimetry to discriminate between normal and glaucomatous eyes. METHODS: One-hundred and twelve patients with primary open-angle glaucoma and 88 normal individuals were enrolled in the study. All individuals underwent a complete ophthalmic evaluation, a 24-2 full threshold Humphrey visual field and a GDx examination. Cutoff points were selected, ROC curves were created, and the sensitivity (Se and

  9. The retinal nerve fibre layer thickness in glaucomatous hydrophthalmic eyes assessed by scanning laser polarimetry with variable corneal compensation in comparison with age-matched healthy children.

    Science.gov (United States)

    Hložánek, Martin; Ošmera, Jakub; Ležatková, Pavlína; Sedláčková, Petra; Filouš, Aleš

    2012-12-01

    To compare the thickness of the retinal nerve fibre layer (RNFL) in hydrophthalmic glaucomatous eyes in children with age-matched healthy controls using scanning laser polarimetry with variable corneal compensation (GDxVCC). Twenty hydrophthalmic eyes of 20 patients with the mean age of 10.64 ± 3.02 years being treated for congenital or infantile glaucoma were included in the analysis. Evaluation of RNFL thickness measured by GDxVCC in standard Temporal-Superior-Nasal-Inferior-Temporal (TSNIT) parameters was performed. The results were compared to TSNIT values of an age-matched control group of 120 healthy children published recently as referential values. The correlation between horizontal corneal diameter and RNFL thickness in hydrophthalmic eyes was also investigated. The mean ± SD values in TSNIT Average, Superior Average, Inferior Average and TSNIT SD in hydrophthalmic eyes were 52.3 ± 11.4, 59.7 ± 17.1, 62.0 ± 15.6 and 20.0 ± 7.8 μm, respectively. All these values were significantly lower compared to referential TSNIT parameters of age-matched healthy eyes (p = 0.021, p = 0.001, p = 0.003 and p = 0.018, respectively). A substantial number of hydrophthalmic eyes laid below the level of 5% probability of normality in respective TSNIT parameters: 30% of the eyes in TSNIT average, 50% of the eyes in superior average, 30% of the eyes in inferior average and 45% of the eyes in TSNIT SD. No significant correlation between enlarged corneal diameter and RNFL thickness was found. The mean values of all standard TSNIT parameters assessed using GDxVCC in hydrophthalmic glaucomatous eyes in children were significantly lower in comparison with referential values of healthy age-matched children. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  10. Measurement of retinal nerve fiber layer thickness in eyes with optic disc swelling by using scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Hata, Masayuki; Miyamoto, Kazuaki; Oishi, Akio; Kimura, Yugo; Nakagawa, Satoko; Horii, Takahiro; Yoshimura, Nagahisa

    2014-01-01

    The retinal nerve fiber layer thickness (RNFLT) in patients with optic disc swelling of different etiologies was compared using scanning laser polarimetry (SLP) and spectral-domain optical coherence tomography (OCT). Forty-seven patients with optic disc swelling participated in the cross-sectional study. Both GDx SLP (enhanced corneal compensation) and Spectralis spectral-domain OCT measurements of RNFLT were made in 19 eyes with papilledema (PE), ten eyes with optic neuritis (ON), and 18 eyes with nonarteritic anterior ischemic optic neuropathy (NAION) at the neuro-ophthalmology clinic at Kyoto University Hospital. Differences in SLP (SLP-RNFLT) and OCT (OCT-RNFLT) measurements among different etiologies were investigated. No statistical differences in average OCT-RNFLT among PE, ON, and NAION patients were noted. Average SLP-RNFLT in NAION patients was smaller than in PE (P<0.01) or ON (P=0.02) patients. When RNFLT in each retinal quadrant was compared, no difference among etiologies was noted on OCT, but on SLP, the superior quadrant was thinner in NAION than in PE (P<0.001) or ON (P=0.001) patients. Compared with age-adjusted normative data of SLP-RNFLT, average SLP-RNFLT in PE (P<0.01) and ON (P<0.01) patients was greater. Superior SLP-RNFLT in NAION patients was smaller (P=0.026). The ratio of average SLP-RNFLT to average OCT-RNFLT was smaller in NAION than in PE (P=0.001) patients. In the setting of RNFL thickening, despite increased light retardance in PE and ON eyes, SLP revealed that NAION eyes have less retardance, possibly associated with ischemic axonal loss.

  11. Innovation and optimization of a method of pump-probe polarimetry with pulsed laser beams in view of a precise measurement of parity violation in atomic cesium

    International Nuclear Information System (INIS)

    Chauvat, D.

    1997-10-01

    While Parity Violation (PV) experiments on highly forbidden transitions have been using detection of fluorescence signals; our experiment uses a pump-probe scheme to detect the PV signal directly on a transmitted probe beam. A pulsed laser beam of linear polarisation ε 1 excites the atoms on the 6S-7S cesium transition in a colinear electric field E || k(ex). The probe beam (k(pr) || k(ex)) of linear polarisation ε 2 tuned to the transition 7S-6P(3/2) is amplified. The small asymmetry (∼ 10 -6 ) in the gain that depends on the handedness of the tri-hedron (E, ε 1 , ε 2 ) is the manifestation of the PV effect. This is measured as an E-odd apparent rotation of the plane of polarization of the probe beam; using balanced mode polarimetry. New criteria of selection have been devised, that allow us to distinguish the true PV-signal against fake rotations due to electromagnetic interferences, geometrical effects, polarization imperfections, or stray transverse electric and magnetic fields. These selection criteria exploit the symmetry of the PV-rotation - linear dichroism - and the revolution symmetry of the experiment. Using these criteria it is not only possible to reject fake signals, but also to elucidate the underlying physical mechanisms and to measure the relevant defects of the apparatus. The present signal-to-noise ratio allows embarking in PV measurements to reach the 10% statistical accuracy. A 1% measurement still requires improvements. Two methods have been demonstrated. The first one exploits the amplification of the asymmetry at high gain - one major advantage provided by our detection method based on stimulated emission. The second method uses both a much higher incident intensity and a special dichroic component which magnifies tiny polarization rotations. (author)

  12. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT.

    Science.gov (United States)

    Horn, Folkert K; Mardin, Christian Y; Laemmer, Robert; Baleanu, Delia; Juenemann, Anselm M; Kruse, Friedrich E; Tornow, Ralf P

    2009-05-01

    To study the correlation between local perimetric field defects and glaucoma-induced thickness reduction of the nerve layer measured in the peripapillary area with scanning laser polarimetry (SLP) and spectral domain optical coherence tomography (SOCT) and to compare the results with those of a theoretical model. The thickness of the retinal nerve fiber layer was determined in 32 sectors (11.25 degrees each) by using SLP with variable cornea compensation (GDxVCC; Laser Diagnostics, San Diego, CA) and the newly introduced high-resolution SOCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany). Eighty-eight healthy subjects served as control subjects, to determine the thickness deviation in patients with glaucoma. The relationship between glaucomatous nerve fiber reduction and visual field losses was calculated in six nerve fiber bundle-related areas. Sixty-four patients at different stages of open-angle glaucoma and 26 patients with ocular hypertension underwent perimetry (Octopus G1; Haag-Streit, Köniz, Switzerland) and measurements with the two morphometric techniques. Sector-shaped analyses between local perimetric losses and reduction of the retinal nerve fiber layer thickness showed a significant association for corresponding areas except for the central visual field in SLP. Correlation coefficients were highest in the area of the nasal inferior visual field (SOCT, -0.81; SLP, -0.57). A linear model describes the association between structural and functional damage. Localized perimetric defects can be explained by reduced nerve fiber layer thickness. The data indicate that the present SOCT is useful for determining the functional-structural relationship in peripapillary areas and that association between perimetric defects and corresponding nerve fiber losses is stronger for SOCT than for the present SLP. (ClinicalTrials.gov number, NCT00494923.).

  13. SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems - From Planetary Disks To Nearby Super Earths

    Science.gov (United States)

    Boccaletti, Anthony; Schneider, Jean; Traub, Wes; Lagage, Pierre-Olivier; Stam, Daphne; Gratton, Raffaele; Trauger, John; Cahoy, Kerri; Snik, Frans; Baudoz, Pierre; hide

    2012-01-01

    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450-900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/2022, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (less than 25 pc) with masses ranging from a few Jupiter masses to Super Earths (approximately 2 Earth radii, approximately 10 mass compared to Earth) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System.

  14. Feasibility study of an image slicer for future space application

    Science.gov (United States)

    Calcines, A.; Ichimoto, K.

    2014-08-01

    This communication presents the feasibility study of an image slicer for future space missions, especially for the integral field unit (IFU) of the SUVIT (Solar UV-Visible-IR telescope) spectro-polarimeter on board the Japanese-led solar space mission Solar-C as a backup option. The MuSICa (Multi-Slit Image slicer based on collimator-Camera) image slicer concept, originally developed for the European Solar Telescope, has been adapted to the SUVIT requirements. The IFU will reorganizes a 2-D field of view of 10 x 10 arcsec2 into three slits of 0.18 arcsec width by 185.12 arcsec length using flat slicer mirrors of 100 μm width. The layout of MuSICa for Solar-C is telecentric and offers an optical quality limited by diffraction. The entrance for the SUVIT spectro-polarimeter is composed by the three IFU slits and one ordinal long slit to study, using high resolution spectro-polarimetry, the solar atmosphere (Photosphere and Chromosphere) within a spectral range between 520 nm (optionally 280 nm) and 1,100 nm.

  15. a Comparison Study of Different Kernel Functions for Svm-Based Classification of Multi-Temporal Polarimetry SAR Data

    Science.gov (United States)

    Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.

    2014-10-01

    In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.

  16. Compton polarimetry detection of small circularly and linearly polarized impurities in Mössbauer 8.4 keV (3/2-1/2) M1 γ-transition of {sup 169}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Tsinoev, V.; Cherepanov, V.; Shuvalov, V.; Balysh, A.; Gabbasov, R., E-mail: graul@list.ru [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-12-15

    The arrangement of an experiment to detect the P−odd and P, T−odd polarized part of the Mössbauer ({sup +}3/2– {sup +}1/2) gamma transition of a deformed {sup 169}Tm nucleus with an energy of 8.4 keV by Compton polarimetry is discussed. Tm {sub 2}O{sub 3} single crystal with a quadrupolarly split Mössbauer spectrum is proposed as a resonance polarizer. A Be-scatterer-based Compton polarimeter and a synchronously detecting system will be used to measure the P-odd circular polarization P{sub C}and P, T-odd linear polarization P{sub L}.The expected accuracy of measuring the relative magnitude of the P, T-odd contribution is about 1% of the magnitude of usual weak nucleon–nucleon interaction.

  17. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    Science.gov (United States)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  18. Information content of the space-frequency filtering of blood plasma layers laser images in the diagnosis of pathological changes

    Science.gov (United States)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Bodnar, G. B.; Kushnerick, L. Ya.; Savich, V. O.

    2013-12-01

    The bases of method of the space-frequency of the filtering phase allocation of blood plasma pellicle are given here. The model of the optical-anisotropic properties of the albumen chain of blood plasma pellicle with regard to linear and circular double refraction of albumen and globulin crystals is proposed. Comparative researches of the effectiveness of methods of the direct polarized mapping of the azimuth images of blood plasma pcllicle layers and space-frequency polarimetry of the laser radiation transformed by divaricate and holelikc optical-anisotropic chains of blood plasma pellicles were held. On the basis of the complex statistic, correlative and fracta.1 analysis of the filtered frcquencydimensional polarizing azimuth maps of the blood plasma pellicles structure a set of criteria of the change of the double refraction of the albumen chains caused by the prostate cancer was traced and proved.

  19. Image Gallery

    Science.gov (United States)

    ... R S T U V W X Y Z Image Gallery Share: The Image Gallery contains high-quality digital photographs available from ... Select a category below to view additional thumbnail images. Images are available for direct download in 2 ...

  20. Scanning laser polarimetry in glaucomatous and nonglaucomatous Brazilian subjects Polarimetria de varredura a laser em grupos de brasileiros glaucomatosos e não glaucomatosos

    Directory of Open Access Journals (Sweden)

    Christiane Rolim de Moura

    2003-12-01

    Full Text Available PURPOSE: To compare the results of scanning laser polarimetry of the retinal nerve fiber layer obtained by using the GDx Scanning Laser System® in primary open angle glaucoma (POAG and nonglaucomatous Brazilian subjects over 40 years, also analyzing the differences between the data obtained from right and left eyes. METHODS: Forty-six POAG patients and 44 normal subjects were enrolled in this study. Retardation data were assessed by the GDx Scanning Laser System®. The medians of the parameters printed in the result were compared in these two groups, separately in the right and left eyes, using Mann-Whitney's test. Also the frequencies of outside normal parameters and quadrants of deviation from normal graph were compared in these two groups, using chi-square or Fisher's exact test. RESULTS: All parameters obtained by GDx differed in a statistically significant way between the two groups, except symmetry for left eyes. The frequency of inferior quadrant with pOBJETIVOS: Comparar os resultados da polarimetria de varredura a laser da camada de fibras nervosas obtidas por meio do GDx Scanning Laser System® em brasileiros portadores de glaucoma primário de ângulo aberto e indivíduos não glaucomatosos acima de 40 anos, analisando também as diferenças obtidas entre olhos direitos e esquerdos. MÉTODOS: Foram incluídos neste estudo 46 pacientes portadores de glaucoma primário de ângulo aberto e 44 pacientes normais. Os dados de retardo polarimétrico foram obtidos por meio do GDx Scanning Laser System®. As medianas dos parâmetros impressos no resultado foram comparadas nesses dois grupos, separadamente para olhos direitos e esquerdos, usando o teste de Mann-Whitney. A freqüência de parâmetros impressa como fora da normalidade e quadrantes estatisticamente alterados do gráfico "deviation from normal" foram comparados nesses dois grupos usando chi-quadrado e o teste exato de Fischer. RESULTADOS: Todos os parâmetros obtidos pelo GDx

  1. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    International Nuclear Information System (INIS)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall; Hines, Dean C.; Millar-Blanchaer, Maxwell A.; Nielsen, Eric L.; Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul; Cardwell, Andrew; Chilcote, Jeffrey; Draper, Zachary H.; Fitzgerald, Michael P.; Hung, Li-Wei; Goodsell, Stephen J.; Grady, Carol A.; Hartung, Markus; Hibon, Pascale

    2016-01-01

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging

  2. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: swolff9@jh.edu [Gemini Observatory, Casilla 603, La Serena (Chile); and others

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  3. Towards High Precision Deuteron Polarimetry

    NARCIS (Netherlands)

    da Silva e Silva, M.; Crabb, DG; Day, DB; Liuti, S; Zheng,; Poelker, M; Prok, Y

    2009-01-01

    A finite electric dipole moment (EDM) in any fundamental system would constitute a signal for new physics. The deuteron presents itself as an optimal candidate both experimentally and theoretically. A new storage ring technique is being developed for which a small change in the vertical polarization

  4. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  5. Solar polarimetry: observations and theories

    Energy Technology Data Exchange (ETDEWEB)

    Rees, D E [Sydney Univ. (Australia). Dept. of Applied Mathematics

    1982-01-01

    This review surveys some recent observations of polarization in solar spectral lines with emphasis on their theoretical interpretation. Observations of non-magnetic resonance line polarization offer a new approach to temperature and density modelling of the atmosphere. They also provide a basis for comparison in Hanle effect studies of weak magnetic fields on the solar disk. Measurements of the Hanle effect are being used to deduce vector magnetic fields in prominences. It is now feasible to try to infer the vector field distribution in an active region such as a sunspot from analysis of the stokes parameter profiles of a Zeeman split line.

  6. Revealing Nanostructures through Plasmon Polarimetry.

    Science.gov (United States)

    Kleemann, Marie-Elena; Mertens, Jan; Zheng, Xuezhi; Cormier, Sean; Turek, Vladimir; Benz, Felix; Chikkaraddy, Rohit; Deacon, William; Lombardi, Anna; Moshchalkov, Victor V; Vandenbosch, Guy A E; Baumberg, Jeremy J

    2017-01-24

    Polarized optical dark-field spectroscopy is shown to be a versatile noninvasive probe of plasmonic structures that trap light to the nanoscale. Clear spectral polarization splittings are found to be directly related to the asymmetric morphology of nanocavities formed between faceted gold nanoparticles and an underlying gold substrate. Both experiment and simulation show the influence of geometry on the coupled system, with spectral shifts Δλ = 3 nm from single atoms. Analytical models allow us to identify the split resonances as transverse cavity modes, tightly confined to the nanogap. The direct correlation of resonance splitting with atomistic morphology allows mapping of subnanometre structures, which is crucial for progress in extreme nano-optics involving chemistry, nanophotonics, and quantum devices.

  7. Polarimetry of magnetic catalysmic variables

    Energy Technology Data Exchange (ETDEWEB)

    Cropper, M

    1985-01-01

    The design and construction of an astronomical polarimeter is described and an evaluation made of its performance. Extensive observations of cataclysmic variables with emphasis on the AM Her and DQ Her classes are then presented. The polarimeter permitted simultaneous linear and circular polarisation measurements, or, by rearranging the order of the retarders in the beam, linear polarisation measurements alone, or circular polarisation measurements alone, with enhanced efficiency. Extensive sets of observations using the polarimeter were obtained for six of the ten AM Her variables. A comparison was made between the competing models for the cyclotron emission, showing that those which take into account the temperature structure of the accretion region provide the best results.

  8. Polarimetry of the millisecond pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Stinebring, D R

    1983-04-21

    Polarization observations of the millisecond pulsar PSR1937+21 at 1415 and 2380 MHz were made with the 305-m telescope at the Arecibo Observatory in January 1983. The main pulse is found to depolarize substantially, while the interpulse polarization almost doubles. Evidence for orthogonally polarized radiation was detected on the edges facing across the 173 deg of longitude separating the main pulse from the interpulse, accounting for the approximately 90-deg difference in position angle. From the spectral-index difference (close to 1.0 over the frequency range observed) it is inferred that the interpulse may dominate the main pulse below 700 MHz; such behavior is noted to be similar to that of the physically different Crab pulsar.

  9. Image Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, Laura Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-08

    In large datasets, it is time consuming or even impossible to pick out interesting images. Our proposed solution is to find statistics to quantify the information in each image and use those to identify and pick out images of interest.

  10. Image Guidance

    Science.gov (United States)

    Guidance that explains the process for getting images approved in One EPA Web microsites and resource directories. includes an appendix that shows examples of what makes some images better than others, how some images convey meaning more than others

  11. Data imaging

    International Nuclear Information System (INIS)

    Pepy, G.

    1999-01-01

    After an introduction about data imaging in general, the principles of imaging data collected via neutron scattering experiments are presented. Some computer programs designed for data imaging purposes are reviewed. (K.A.)

  12. Pancreatic imaging

    International Nuclear Information System (INIS)

    Potsaid, M.S.

    1978-01-01

    The clinical use of [ 75 Se] selenomethionine for visualising the pancreas is described. The physiological considerations, imaging procedure, image interpretations and reliability are considered. (C.F.)

  13. Image city

    DEFF Research Database (Denmark)

    2003-01-01

    Image city exhibition explores a condition of mediation, through a focus on image and sound narratives with a point of departure on a number of Asian cities.......Image city exhibition explores a condition of mediation, through a focus on image and sound narratives with a point of departure on a number of Asian cities....

  14. Structure-function relationship between the octopus perimeter cluster mean sensitivity and sector retinal nerve fiber layer thickness measured with the RTVue optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Naghizadeh, Farzaneh; Garas, Anita; Vargha, Péter; Holló, Gábor

    2014-01-01

    To determine structure-function relationship between each of 16 Octopus perimeter G2 program clusters and the corresponding 16 peripapillary sector retinal nerve fiber layer thickness (RNFLT) values measured with the RTVue-100 Fourier-domain optical coherence tomography (RTVue OCT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) and enhanced corneal compensation (GDx-ECC) corneal compensation. One eye of 110 white patients (15 healthy, 20 ocular hypertensive, and 75 glaucoma eyes) were investigated. The Akaike information criterion and the F test were used to identify the best fitting model. Parabolic relationship with logarithmic cluster mean sensitivity and linear sector RNFLT values provided the best fit. For RTVue OCT, significant (P0.05) was found for the control eyes. Mean sensitivity of the Octopus visual field clusters showed significant parabolic relationship with the corresponding peripapillary RNFLT sectors. The relationship was more general with the RTVue OCT than GDx-VCC or GDx-ECC. The results show that visual field clusters of the Octopus G program can be applied for detailed structure-function research.

  15. Measurement of the proton form factors ratio GE/GM to Q2 = 5.6 GeV2 by recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gayou, Olivier [College of William and Mary, Williamsburg, VA (United States)

    2002-01-01

    In this thesis, we present the results of the experiment E99-007, which measured the ratio of the electric to magnetic form factors of the proton to the four momentum transfer square Q2 = 5.6 GeV2, by recoil polarimetry. Data were taken in 2000 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 4.6 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The polarization of the recoil proton was measured in the Focal Plane Polarimeter, located after one of the two High Resolution Spectrometers in the hall. The ratio of the transverse to longitudinal components of the recoil proton polarization is proportional to the ratio of the form factors. Elastic events were selected by detecting the scattered electron in a large acceptance lead-glass calorimeter. The main result of this experiment is the linear decrease of the form factor ratio with increasing Q2, corresponding to different spatial distributions of the electric charge and the magnetization. Numerous theoretical calculations show that relativistic effects, such as mixing of spin states due to Lorentz boosts, are important to account for the observed data in this critical intermediate kinematic region.

  16. Compton polarimetry of 6-35 keV X-rays. Influence of Breit interaction on the linear polarisation of KLL dielectronic recombination transitions in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Holger Eric

    2016-12-21

    The polarisation of X-rays emitted during K shell dielectronic recombination (DR) into highly charged ions was studied using electron beam ion traps. In the first experiment, the degree of linear polarisation of X-rays due to K shell DR transitions of highly charged krypton ions was measured with a newly developed Compton polarimeter based on SiPIN diodes. Such polarisation measurements allow a study of the population mechanism of magnetic sublevels in collisions between electrons and ions. In a second experiment, the influence of Breit interaction between electrons on the polarisation of X-rays emitted during K shell DR into highly charged xenon ions was studied. Here, polarisation measurements provide an access to the finer details of the electron-electron interaction in electron-ion collisions. Furthermore, a second Compton polarimeter based on silicon drift detectors has been developed for polarisation measurements at synchrotrons. It has been developed for X-ray polarimetry with a high energy resolution for energies between 6 keV and 35 keV. It was tested in the course of polarisation measurements at an electron beam ion trap and at a synchrotron radiation source.

  17. Maxillofacial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Larheim, T.A. [Oslo Univ. (Norway). Dept. of Maxillofacial Radiology; Westesson, P.L. [Univ. of Rochester School of Medicine and Dentistry, NY (United States). Div. of Diagnostic and Interventional Radiology

    2006-07-01

    Maxillofacial imaging has evolved dramatically over the past two decades with development of new cross-sectional imaging techniques. Traditional maxillofacial imaging was based on plain films and dental imaging. However, today's advanced imaging techniques with CT and MRI have only been partially implemented for maxillofacial questions. This book bridges the gap between traditional maxillofacial imaging and advanced medical imaging. We have applied CT and MRI to a variety of maxillofacial cases and these are illustrated with high-quality images and multiple planes. A comprehensive chapter on imaging anatomy is also included. This book is useful for oral and maxillofacial radiologists, oral and maxillofacial surgeons, dentists, radiologists, plastic surgeons, head and neck surgeons, and others that work with severe maxillofacial disorders. (orig.)

  18. Imaging angiogenesis.

    Science.gov (United States)

    Charnley, Natalie; Donaldson, Stephanie; Price, Pat

    2009-01-01

    There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).

  19. Spinal imaging and image analysis

    CERN Document Server

    Yao, Jianhua

    2015-01-01

    This book is instrumental to building a bridge between scientists and clinicians in the field of spine imaging by introducing state-of-the-art computational methods in the context of clinical applications.  Spine imaging via computed tomography, magnetic resonance imaging, and other radiologic imaging modalities, is essential for noninvasively visualizing and assessing spinal pathology. Computational methods support and enhance the physician’s ability to utilize these imaging techniques for diagnosis, non-invasive treatment, and intervention in clinical practice. Chapters cover a broad range of topics encompassing radiological imaging modalities, clinical imaging applications for common spine diseases, image processing, computer-aided diagnosis, quantitative analysis, data reconstruction and visualization, statistical modeling, image-guided spine intervention, and robotic surgery. This volume serves a broad audience as  contributions were written by both clinicians and researchers, which reflects the inte...

  20. Urogenital imaging

    International Nuclear Information System (INIS)

    Hamm, B.; Charite - Universitaetsmedizin Berlin; Asbach, P.; Beyersdorff, D.; Hein, P.; Lemke, U.

    2008-01-01

    The book in direct diagnosis in radiology, urogenital imaging, includes information concerning definition, imaging signs and clinical aspects on the following topics: kidneys and adrenals, the urinary tract, the male genitals and the female genitals