WorldWideScience

Sample records for multi-drug resistant salmonella

  1. Multiplex TaqMan® detection of pathogenic and multi-drug resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2013-09-02

    Overuse of antibiotics in the medical and animal industries is one of the major causes for the development of multi-drug-resistant (MDR) food pathogens that are often difficult to treat. In the past few years, higher incidences of outbreaks caused by MDR Salmonella have been increasingly documented. The objective of this study was to develop a rapid multiplex real-time polymerase chain reaction (PCR) assay for simultaneous detection of pathogenic and MDR Salmonella spp. A multiplex TaqMan®real-time PCR was designed by targeting the invasin virulence gene (invA), and four commonly found antibiotic resistance genes, viz. ampicillin, chloramphenicol, streptomycin and tetracycline. To avoid false negative results and to increase the reliability of the assay, an internal amplification control (IAC) was added which was detected using a locked nucleic acid (LNA) probe. In serially diluted (5 ng-50 fg) DNA samples, the assay was able to detect 100 genomic equivalents of Salmonella, while in a multiplex format, the sensitivity was 1000 genomic equivalents. The assay performed equally well on artificially contaminated samples of beef trim, ground beef of different fat contents (73:27, 80:20, 85:15 and 93:7), chicken rinse, ground chicken, ground turkey, egg, spinach and tomato. While the detection limit for un-enriched inoculated food samples was 10(4) CFU/g, this was improved to 10 CFU/g after a 12-h enrichment in buffered peptone water, with 100% reproducibility. The multiplex real-time assay developed in this study can be used as a valuable tool to detect MDR virulent Salmonella, thus enhancing the safety of food. © 2013.

  2. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    Science.gov (United States)

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  3. Antibacterial effect of mango (Mangifera indica Linn.) leaf extract against antibiotic sensitive and multi-drug resistant Salmonella typhi.

    Science.gov (United States)

    Hannan, Abdul; Asghar, Samra; Naeem, Tahir; Ikram Ullah, Muhammad; Ahmed, Ijaz; Aneela, Syeda; Hussain, Shabbir

    2013-07-01

    Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. Typhoid fever is a serious infection and failure of its treatment emerged multi-drug resistant (MDR) bugs of Salmonella typhi. Due to multiple and repeated issues with antibiotics efficacy, it became essential to evaluate biological properties of plants from different geographical origins. Mango leaves have been Reported for various medicinal effects like antioxidant, antimicrobial, antihelminthic, antidiabetic and antiallergic etc. Objective of present study was to investigate anti-typhoid properties of acetone mango leaf extract (AMLE) against antibiotic sensitive and MDR S. typhi isolates. A total of 50 isolates of S. typhi including MDR (n=30) and antibiotic sensitive (n=20) were investigated. Staphylococcus aureus (ATCC 25923) and Salmonella typhimurium (ATCC14028) were used as quality control strains. AMLE was prepared and its antibacterial activity was evaluated by agar well diffusion screening method and minimum inhibitory concentration (MIC), by agar dilution technique. Zone of inhibition (mm) of AMLE against MDR and antibiotic sensitive isolates was 18±1.5mm (Mean±S.D). Zone of S. aureus (ATCC 25923) and S. typhimurium (ATCC14028) was 20±1.5mm (Mean±S.D). MIC of AMLE was Reported in range from 10-50 mg/ml. The present study described the inhibitory effects of mango leaves against S. typhi.

  4. Antibacterial activity of methylglyoxal against multi-drug resistant Salmonella Typhi

    International Nuclear Information System (INIS)

    Afzal, R.K.; Ahmed, A.

    2018-01-01

    To evaluate the antibacterial activity of MGO against MDR Salmonella typhi isolated from blood culture specimens and compare this activity against non-MDR S. typhi and with other gram negative rods. Study Design: Experimental study. Place and Duration of Study: Department of Microbiology, University of Health Sciences Lahore, from Jul 2011 to Jun 2012. Material and Methods: A total of 157 isolates of S. typhi were collected from different hospitals of Lahore and kept stored at -80 degree C. Morphological, biochemical and serological identification and antibiotic susceptibility testing of the isolates was carried out as per CLSI 2011 guidelines. Agar dilution method was used for the determination of MICs of MGO, using a multi-point inoculator. The data was compiled and results were determined using SPSS version 17. Results: Ninety-seven out of 157 isolates (61.8%) were MDR S. Typhi, while 60 (38.2%) were non-MDR S. Typhi. MIC90 of MGO against MDR S. Typhi isolates was (0.20 mg/mL; 2.8 mM), against non-MDR S. Typhi and Gram negative rods each, it was (0.21 mg/mL; 3.0 mM). When MICs of MGO against MDR S. Typhi group were compared to those of non-MDR S. Typhi group, the p-value was 0.827 (p>0.05; statistically insignificant). Whereas, the p-value of MICs of MGO against MDR S. Typhi group was 0.023 (p<0.05; statistically significant) when compared to gram negative rods group. Conclusion: MGO has good antibacterial activity against MDR and non-MDR S. Typhi, and other genera of Gram negative rods. (author)

  5. Prevalence and characterization of multi-drug resistant Salmonella Enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Parvej

    2016-01-01

    Full Text Available Aim: Salmonella is an important zoonotic pathogen responsible for animal and human diseases. The aim of the present study was to determine the prevalence and stereotyping of Salmonella isolates isolated from apparently healthy poultry. Furthermore, the clonal relatedness among the isolated Salmonella serovars was assessed. Materials and Methods: A total of 150 cloacal swab samples from apparently healthy chickens were collected, and were subjected for the isolation and identification of associated Salmonella organisms. The isolated colonies were identified and characterized on the basis of morphology, cultural characters, biochemical tests, slide agglutination test, polymerase chain reaction, and pulsed-field gel electrophoresis (PFGE. Antibiotic sensitivity patterns were also investigated using commonly used antibiotics. Results: Of the 150 samples, 11 (7.33% produced characteristics pink colony with black center on XLD agar medium, and all were culturally and biochemically confirmed to be Salmonella. All possessed serovar-specific gene SpeF and reacted uniformly with group D antisera, suggesting that all of the isolates were Salmonella Enterica serovar Gallinarum, biovar Pullorum and/or Gallinarum. Antimicrobial susceptibility testing revealed that 54.54% of the isolated Salmonella Enterica serovars were highly sensitive to ciprofloxacin, whereas the 81.81% isolates were resistant to amoxycillin, doxycycline, kanamycin, gentamycin, and tetracycline. Pulsed-field gel electrophoresis of the XbaI-digested genomic DNA exhibited identical banding patterns, suggesting that the multidrug resistant Salmonella Enterica serovars occurring in commercial layers are highly clonal in Bangladesh. Conclusion: The present study was conducted to find out the prevalence of poultry Salmonella in layer chicken and to find out the clonal relationship among them. The data in this study suggest the prevalence of Salmonella Enterica, which is multidrug resistant and

  6. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    Science.gov (United States)

    We investigated the combined antimicrobial effects of plant essential oils and olive extract against antibiotic resistant Salmonella enterica serovar Newport on organic leafy greens. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with S. Newport and dip-t...

  7. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice.

    Science.gov (United States)

    Asahara, T; Shimizu, K; Takada, T; Kado, S; Yuki, N; Morotomi, M; Tanaka, R; Nomoto, K

    2011-01-01

    The anti-infectious activity of lactobacilli against multi-drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic-induced infection. Explosive intestinal growth and subsequent lethal extra-intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 10(8) colony-forming units per mouse daily to mice. Comparison of the anti-Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869(T) , Lactobacillus plantarum ATCC 14917(T) , Lactobacillus reuteri JCM 1112(T) , Lactobacillus rhamnosus ATCC 7469(T) and Lactobacillus salivarius ATCC 11741(T) conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334(T) and Lactobacillus zeae ATCC 15820(T) . The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti-infectious activity. Moreover, heat-killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti-infectious activity. These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi-drug resistant pathogens, such as DT104. Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics. © 2010 The Authors. Journal of Applied Microbiology

  8. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    Science.gov (United States)

    2013-01-01

    Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial activities against selected multi

  9. Multi-drug resistant Ewingella Americana

    International Nuclear Information System (INIS)

    Bukhari, Syed Z.; Ashshi, Ahmad M.; Hussain, Waleed M.; Fatani, Mohammad I.

    2008-01-01

    We report a case of pneumonia due to multi-drug resistant Ewingella Americana in a young patient admitted in the Intensive Care Unit of Hera General Hospital, Makkah, Saudi Arabia with severe head injury in a road traffic accident. He was an Indonesian pilgrim who had traveled to the Kingdom of Saudi Arabia to perform Hajj in December 2007. Ewingella Americana was identified to be the pathogen of pneumonia with clinical signs and symptoms along with positive radiological findings. (author)

  10. Multi-drug resistant tuberculosis in Tanzania: Initial description of ...

    African Journals Online (AJOL)

    Background: Drug resistant Tuberculosis is well documented worldwide and is associated with increasing morbidity and mortality complicating Tuberculosis control with increasing costs of managing the disease. Broad. Objective: To describe clinical and laboratory characteristics of multi-drug resistant Tuberculosis ...

  11. Multi drug resistant tuberculosis: a challenge in the management of ...

    African Journals Online (AJOL)

    Multi drug resistant tuberculosis (MDR-TB) will not usually respond to short course chemotherapy. Unless the individual infected with this bug is treated appropriately, they can continue spreading resistant strains in the community and further fuel the tuberculosis epidemic. Diagnosis requires drug sensitivity testing and the ...

  12. Multi drug resistance and β-lactamase production by Klebsiella ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... *Corresponding author. E-mail: gnsimha123@rediffmail.com. (Rice, 1999). plasmid that can be easily spread from one organisms to another (Sirot, 1995) these enzymes are capable of inactivating a variety of β-lactam drugs (Rice,. 1999). The ESBL producing organisms often show multi- drug resistant as ...

  13. Low-level quinolone-resistance in multi-drug resistant typhoid

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S H; Khan, M A [Armed Forces Inst. of Pathology, Rawalpindi (Pakistan). Dept. of Microbiolgy

    2008-01-15

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  14. Low-level quinolone-resistance in multi-drug resistant typhoid

    International Nuclear Information System (INIS)

    Mirza, S.H.; Khan, M.A.

    2008-01-01

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  15. Multi drug resistant tuberculosis presenting as anterior mediastinal mass

    Directory of Open Access Journals (Sweden)

    Parmarth Chandane

    2016-01-01

    Full Text Available Enlargement of the mediastinal lymphatic glands is a common presentation of intrathoracic tuberculosis (TB in children. However, usually, the mediastinal TB nodes enlarge to 2.8 ± 1.0 cm. In this report, we describe a case of anterior mediastinal lymphnode TB seen as huge mass (7 cm on computed tomography (CT thorax without respiratory or food pipe compromise despite anterior mediastinum being an enclosed space. CT guided biopsy of the mass cultured Mycobacterium TB complex which was resistant to isoniazide, rifampicin, streptomycin ofloxacin, moxifloxacin, and pyrazinamide. Hence, we report primary multi drug resistant TB presenting as anterior mediastinal mass as a rare case report.

  16. Multi drug resistance tuberculosis: pattern seen in last 13 years

    International Nuclear Information System (INIS)

    Iqbal, R.; Shabbir, I.; Munir, K.; Tabassum, M.N.; Khan, S.U.; Khan, M.Z.U.

    2011-01-01

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  17. Multi drug resistance tuberculosis: pattern seen in last 13 years

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, R; Shabbir, I; Munir, K [King Edward Medical University Hospital, Lahore (Pakistan). Dept. of Research Centre; Tabassum, M N; Khan, S U; Khan, M Z.U. [King Edward Medical University Hospital, Lahore (Pakistan). Dept. of Chest Medicine

    2011-01-15

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  18. Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan

    Directory of Open Access Journals (Sweden)

    Noriko Shinoda

    2016-02-01

    Full Text Available Abstract Background Multi-drug-resistant Mycobacterium tuberculosis has been an important problem in public health around the world. However, limited information about disinfectant-susceptibility of multi-drug-resistant strain of M. tuberculosis was available. Findings We studied susceptibility of several Japanese isolates of multi-drug-resistant M. tuberculosis against disinfectants, which are commonly used in clinical and research laboratories. We selected a laboratory reference strain (H37Rv and eight Japanese isolates, containing five drug-susceptible strains and three multi-drug-resistant strains, and determined profiles of susceptibility against eight disinfectants. The M. tuberculosis strains were distinguished into two groups by the susceptibility profile. There was no relationship between multi-drug-resistance and disinfectant-susceptibility in the M. tuberculosis strains. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance. Conclusions Disinfectant-resistance is independent from multi-drug-resistance in M. tuberculosis. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance.

  19. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  20. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  1. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    Science.gov (United States)

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  2. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  3. Multi-drug resistance and molecular pattern of erythromycin and ...

    African Journals Online (AJOL)

    The appearance and dissemination of penicillin resistant and macrolide resistant Streptococcus pneumoniae strains has caused increasing concern worldwide. The aim of this study was to survey drug resistance and genetic characteristics of macrolide and penicillin resistance in S. pneumoniae. This is a cross-sectional ...

  4. Pattern of intensive phase treatment outcomes of multi-drug resistant ...

    African Journals Online (AJOL)

    Pattern of intensive phase treatment outcomes of multi-drug resistant tuberculosis in University of Port Harcourt Treatment Centre: a review of records from ... Data on patients' age, sex, HIV status, treatment outcomes were extracted from the hospital book records into a computer data sheet at the UPTH treatment centre.

  5. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    OpenAIRE

    More, Arun Punaji; Nagdawane, Ramkrishna Panchamrao; Gangurde, Aniket K

    2013-01-01

    Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR) has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence...

  6. Cooperative Antibiotic Resistance in a Multi-Drug Environment

    Science.gov (United States)

    Yurtsev, Eugene; Dai, Lei; Gore, Jeff

    2013-03-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. A frequent mechanism of antibiotic resistance involves the production of an enzyme which inactivates the antibiotic. By inactivating the antibiotic, resistant cells can ``share'' their resistance with other cells in the bacterial population, suggesting that it may be possible to observe cooperation between strains that inactivate different antibiotics. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics. We find that together the strains are able to grow in antibiotic concentrations that inhibit growth of either of the strains individually. We observe that even when there is stable coexistence between the two strains, the population size of each strain can undergo large oscillations. We expect that our results will provide insight into the evolution of antibiotic resistance and the evolutionary origin of phenotypic diversity and cooperative behaviors.

  7. Increased multi-drug resistant Escherichia coli from hospitals in ...

    African Journals Online (AJOL)

    Background: Multidrug-resistant Escherichia coli (MDR E. coli) has become a major public health concern in Sudan and many countries, causing failure in treatment with consequent huge health burden. Objectives: To determine the prevalence and susceptibility of MDR E. coli isolated from patients in hospitals at Khartoum ...

  8. Nasal carriage of multi-drug resistant Staphylococcus aureus in ...

    African Journals Online (AJOL)

    Background: Nasal Staphylococcus aureus is a major source of community and hospital associated staphylococcal infections. This study determined the prevalence of nasal S. aureus isolates and investigated their antimicrobial resistance profile in healthy volunteers. Methods: Nasal specimens of healthy volunteers in ...

  9. Multi-drug resistant Staphylococcus aureus isolated from emergency ...

    African Journals Online (AJOL)

    Purpose: To study the prevalence of resistant strains of S. aureus isolated from surfaces, beds and various equipment of an Iranian hospital emergency ward. Methods: Two hundred swab samples were collected from the surfaces, beds, trolleys, surgical equipment and diagnostic medical devices in emergency ward.

  10. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    Sayed-Ahmed, Mohamed M.

    2007-01-01

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  11. An ETP model (exclusion-tolerance-progression for multi drug resistance

    Directory of Open Access Journals (Sweden)

    Kannan Subburaj

    2005-04-01

    Full Text Available Abstract Background It is known that sensitivity or resistance of tumor cells to a given chemotherapeutic agent is an acquired characteristic(s, depending on the heterogeneity of the tumor mass subjected to the treatment. The clinical success of a chemotherapeutic regimen depends on the ratio of sensitive to resistant cell populations. Results Based on findings from clinical and experimental studies, a unifying model is proposed to delineate the potential mechanism by which tumor cells progress towards multi drug resistance, resulting in failure of chemotherapy. Conclusion It is suggested that the evolution of multi drug resistance is a developmentally orchestrated event. Identifying stage-specific time windows during this process would help to identify valid therapeutic targets for the effective elimination of malignancy.

  12. Epidemiology of multi-drug resistant staphylococci in cats, dogs and people in Switzerland

    OpenAIRE

    Decristophoris, Paola Maria Aurelia

    2011-01-01

    Background: The human relationship with cats and dogs has been suggested to be of potential concern to public health because of the possible role of pets as reservoir of antibiotic resistant microorganisms. Here I suggest the “One Health” interdisciplinary approach to be helpful towards the understanding of the role of pets in antibiotic resistance spreading, considering also the socio-emotional context of the human-pet relationship. Methods: I investigated the presence of multi-drug resis...

  13. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Science.gov (United States)

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  14. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  15. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia.

    Science.gov (United States)

    Thung, Tze Y; Radu, Son; Mahyudin, Nor A; Rukayadi, Yaya; Zakaria, Zunita; Mazlan, Nurzafirah; Tan, Boon H; Lee, Epeng; Yeoh, Soo L; Chin, Yih Z; Tan, Chia W; Kuan, Chee H; Basri, Dayang F; Wan Mohamed Radzi, Che W J

    2017-01-01

    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S . Enteritidis and S . Typhimurium in the meat samples. The prevalence of Salmonella spp., S . Enteritidis and S . Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.

  16. Bloodstream infections caused by multi-drug resistant Proteus mirabilis: Epidemiology, risk factors and impact of multi-drug resistance.

    Science.gov (United States)

    Korytny, Alexander; Riesenberg, Klaris; Saidel-Odes, Lisa; Schlaeffer, Fransisc; Borer, Abraham

    2016-01-01

    The prevalence of antimicrobial co-resistance among ESBL-producing Enterobactereaceae is extremely high in Israel. Multidrug-resistant Proteus mirabilis strains (MDR-PM), resistant to almost all antibiotic classes have been described. The aim was to determine the risk factors for bloodstream infections caused by MDR-PM and clinical outcomes. A retrospective case-control study. Adult patients with PM bacteremia during 7 years were identified retrospectively and their files reviewed for demographics, underlying diseases, Charlson Comorbidity Index, treatment and outcome. One hundred and eighty patients with PM-bloodstream infection (BSI) were included; 90 cases with MDR-PM and 90 controls with sensitive PM (S-PM). Compared to controls, cases more frequently were from nursing homes, had recurrent hospital admissions in the past year and received antibiotic therapy in the previous 3 months, were bedridden and suffered from peripheral vascular disease and peptic ulcer disease (p < 0.001). Two-thirds of the MDR-PM isolates were ESBL-producers vs 4.4% of S-PM isolates (p < 0.001, OR = 47.6, 95% CI = 15.9-142.6). In-hospital crude mortality rate of patients with MDR-PM BSI was 37.7% vs 23.3% in those with S-PM BSI (p = 0.0359, OR = 2, 95% CI = 1.4-3.81). PM bacteremia in elderly and functionally-dependent patients is likely to be caused by nearly pan-resistant PM strains in the institution; 51.8% of the patients received inappropriate empiric antibiotic treatment. The crude mortality rate of patients with MDR-PM BSI was significantly higher than that of patients with S-PM BSI.

  17. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis

    NARCIS (Netherlands)

    Kamp, Jasper; Bolhuis, Mathieu S.; Tiberi, Simon; Akkerman, Onno W.; Centis, Rosella; de lange, Wiel C.; Kosterink, Jos G.; van der Werf, Tjip S.; Migliori, Giovanni B.; Alffenaar, Jan-Willem C.

    Linezolid is used increasingly for the treatment of multi-drug-resistant (MDR) and extensively-drug-resistant (XDR) tuberculosis (TB). However, linezolid can cause severe adverse events, such as peripheral and optical neuropathy or thrombocytopenia related to higher drug exposure. This study aimed

  18. Advantage and limitations of nitrofurantoin in multi-drug resistant Indian scenario

    Directory of Open Access Journals (Sweden)

    Laishram Shakti

    2015-01-01

    Full Text Available Infections caused by antibiotic resistant pathogens are of significant concern and are associated with higher mortality and morbidity. Nitrofurantoin is a broad-spectrum bactericidal antibiotic and is effectively used to treat urinary tract infections (UTIs caused by E. coli, Klebsiella sp., Enterobacter sp., Enterococcus sp. and Staphylococcus aureus. It interfere with the synthesis of cell wall, bacterial proteins and DNA of both Gram positive and Gram negative pathogens. Nitrofurantoin has been used successfully for treatment and prophylaxis of acute lower urinary tract infections. With the emergence of antibiotic resistance, nitrofurantoin has become the choice of agent for treating UTIs caused by multi-drug resistant pathogens.

  19. Antimicrobial Resistance Profiles of the Two Porcine Salmonella Typhimurium Isolates

    Directory of Open Access Journals (Sweden)

    Kemal METİNER

    2016-07-01

    Full Text Available The aim of the study is to detect the presence of the Salmonella species in swine with diarrhea, and to investigate their antimicrobial resistance and extended spectrum beta lactamase (ESBL and/or AmpC β-lactamase production. For this purpose, stool samples from three commercial pig farms in Istanbul and Tekirdag were collected and processed for Salmonella isolation by culture and isolates were identified by biochemical activity tests. Salmonella isolates were confirmed by PCR then serotyped. Antimicrobial resistance and ESBL and AmpC production of the isolates were determined according to the Clinical and Laboratory Standards Institute (CLSI standard. In the study, two hundred and thirty eight stool samples were examined. Salmonella spp. were obtained from 2 samples, and the isolation rate was determined as 0.8%. Both of the isolates were defined as Salmonella enterica subsp. enterica serovar Typhimurium (serotype 1, 4, [5], 12: I: 1, 2 by serotyping. Both of them were resistant to cefaclor, cloxacillin and lincomycin (100%. Multidrug resistance (resistance ≥3 antimicrobials observed in all isolates. ESBL and AmpC production were not detected in any of the isolates. To our knowledge, this is the first report of the isolation of S. Typhimurium in pigs with diarrhea in Turkey. This study also represents the first report of multi-drug resistant S. Typhimurium isolates from pig stools in Turkey.

  20. Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Noman Siddiqi

    1998-09-01

    Full Text Available A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.

  1. Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers

    Directory of Open Access Journals (Sweden)

    Brisebois Ronald

    2007-08-01

    Full Text Available Abstract Background Military members, injured in Afghanistan or Iraq, have returned home with multi-drug resistant Acinetobacter baumannii infections. The source of these infections is unknown. Methods Retrospective study of all Canadian soldiers who were injured in Afghanistan and who required mechanical ventilation from January 1 2006 to September 1 2006. Patients who developed A. baumannii ventilator associated pneumonia (VAP were identified. All A. baumannii isolates were retrieved for study patients and compared with A. baumannii isolates from environmental sources from the Kandahar military hospital using pulsed-field gel electrophoresis (PFGE. Results During the study period, six Canadian Forces (CF soldiers were injured in Afghanistan, required mechanical ventilation and were repatriated to Canadian hospitals. Four of these patients developed A. baumannii VAP. A. baumannii was also isolated from one environmental source in Kandahar – a ventilator air intake filter. Patient isolates were genetically indistinguishable from each other and from the isolates cultured from the ventilator filter. These isolates were resistant to numerous classes of antimicrobials including the carbapenems. Conclusion These results suggest that the source of A. baumannii infection for these four patients was an environmental source in the military field hospital in Kandahar. A causal linkage, however, was not established with the ventilator. This study suggests that infection control efforts and further research should be focused on the military field hospital environment to prevent further multi-drug resistant A. baumannii infections in injured soldiers.

  2. Antibacterial Activity of Essential Oil of Sature jahortensis Against Multi-DrugResistant Bacteria

    Directory of Open Access Journals (Sweden)

    Saeide Saeidi

    2014-05-01

    Full Text Available Background: Development of resistance to many of the commonly used antibiotics is an impetus for further attempts to search for new antimicrobial agents. Objectives: In the present study, the antibacterial activity of Saturejahortensis essential oil against multi-drug resistant bacteria isolated from the urinary tract infections was investigated. Materials and Methods: During the years 2011 to 2012 a total of 36 strains of pathogenic bacteria including 12 Klebsiellapneumoniae, 12 Escherichia coli and 12 Staphylococcus aureus species were isolated from urine samples of hospitalized patients (Amir Al-Momenin Hospital, Zabol, South-eastern Iran suffering from urinary tract infections. After bacteriological confirmatory tests, the minimum inhibitory concentrations of the essential oil of Saturejahortensis were determined using micro-dilution method. Results: The antibiotic resistance profile of the E. coli isolates were as follows: ceftazidime (50% cefixime (41.6%, tetracycline (75%, erythromycin (58.3%. However K. pneumoniae isolates showed resistance to ceftazidime (33.3%, cefixime (58.3%, erythromycin (75% and S. aureus isolates were resistant to cefixime (33.3%, trimethoprim-sulfamethoxazole (41.66%, penicillin (50%, oxacillin (83.3%, ceftazidime (66.6% and vancomycin (8.3%. The essential oil of this plant had inhibitory effect against most isolates. More than 1/3 of the E. coli isolates showed the lowest MIC (10 ppm whereas more than 1/3 of the K. pneumoniae isolates showed the highest (250 ppm MIC values. In contrast ,equal number of S. aureus isolates showed the low MIC values (10 and 50 ppm, while the heighest MIC (250 ppm was seen in 1/3 of isolates and moderate MIC (100 ppm was seen in one isolate only. Conclusions: The Saturejahortensis essential oil has a potent antimicrobial activity against multi-drug resistant bacteria. The present study confirms the usefullness of this essential oil as antibacterial agent but further research is

  3. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI

    Directory of Open Access Journals (Sweden)

    Anthony D. Kappell

    2015-04-01

    Full Text Available Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance, tet(M (tetracycline resistance, and β-lactamases (blaOXA, blaSHV, and blaPSE. E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for 5 different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from urban waterway. These results indicate that Milwaukee’s urban waterways may select for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance.

  4. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  5. Multi-drug-resistant tuberculosis in HIV positive patients in Eastern Europe

    DEFF Research Database (Denmark)

    Post, Frank A; Grint, Daniel; Efsen, Anne Marie Werlinrud

    2014-01-01

    Observational data from Eastern Europe on the management and outcome of multi-drug-resistant tuberculosis (MDR TB) in HIV positive populations remain sparse in the English-language literature.We compared clinical characteristics and outcomes of 55 patients who were diagnosed with HIV and MDR TB...... in Eastern Europe between 2004 and 2006 to 89 patients whose Mycobacterium tuberculosis isolates were susceptible to isoniazid and rifampicin.Patients with HIV and MDR TB were young and predominantly male with high rates of intravenous drug use, imprisonment and hepatitis C co-infection. Eighty-four per cent...... of patients with MDR TB had no history of previous TB drug exposure suggesting that the majority of MDR TB resulted from transmission of drug-resistant M. tuberculosis. The use of non-standardized tuberculosis treatment was common, and the use of antiretroviral therapy infrequent. Compared to those...

  6. Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs

    Science.gov (United States)

    Regula, Gertraud; Petrini, Orlando; Zinsstag, Jakob; Schelling, Esther

    2013-01-01

    We investigated the distribution of commensal staphylococcal species and determined the prevalence of multi-drug resistance in healthy cats and dogs. Risk factors associated with the carriage of multi-drug resistant strains were explored. Isolates from 256 dogs and 277 cats were identified at the species level using matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The diversity of coagulase-negative Staphylococci (CNS) was high, with 22 species in dogs and 24 in cats. Multi-drug resistance was frequent (17%) and not always associated with the presence of the mecA gene. A stay in a veterinary clinic in the last year was associated with an increased risk of colonisation by multi-drug resistant Staphylococci (OR = 2.4, 95% CI: 1.1~5.2, p value LRT = 0.04). When identifying efficient control strategies against antibiotic resistance, the presence of mechanisms other than methicillin resistance and the possible role of CNS in the spread of resistance determinants should be considered. PMID:23820161

  7. Molecular approaches for detection of the multi-drug resistant tuberculosis (MDR-TB in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Tafsina Haque Aurin

    Full Text Available The principal obstacles in the treatment of tuberculosis (TB are delayed and inaccurate diagnosis which often leads to the onset of the drug resistant TB cases. To avail the appropriate treatment of the patients and to hinder the transmission of drug-resistant TB, accurate and rapid detection of resistant isolates is critical. Present study was designed to demonstrate the efficacy of molecular techniques inclusive of line probe assay (LPA and GeneXpert MTB/RIF methods for the detection of multi-drug resistant (MDR TB. Sputum samples from 300 different categories of treated and new TB cases were tested for the detection of possible mutation in the resistance specific genes (rpoB, inhA and katG through Genotype MTBDRplus assay or LPA and GeneXpert MTB/RIF tests. Culture based conventional drug susceptibility test (DST was also carried out to measure the efficacy of the molecular methods employed. Among 300 samples, 191 (63.7% and 193 (64.3% cases were found to be resistant against rifampicin in LPA and GeneXpert methods, respectively; while 189 (63% cases of rifampicin resistance were detected by conventional DST methods. On the other hand, 196 (65.3% and 191 (63.7% isolates showed isoniazid resistance as detected by LPA and conventional drug susceptibility test (DST, respectively. Among the drug resistant isolates (collectively 198 in LPA and 193 in conventional DST, 189 (95.6% and 187 (96.9% were considered to be MDR as examined by LPA and conventional DST, respectively. Category-II and -IV patients encountered higher frequency of drug resistance compared to those from category-I and new cases. Considering the higher sensitivity, specificity and accuracy along with the required time to results significantly shorter, our study supports the adoption of LPA and GeneXpert assay as efficient tools in detecting drug resistant TB in Bangladesh.

  8. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipients

    Science.gov (United States)

    The objective of this study was to evaluate conjugative transfer of cephalosporin resistance among (n=100) strains of multi-drug resistant Escherichia coli (MDRE) to Salmonella Newport and E. coli DH5-alpha recipients. To accomplish this, phenotypic and genotypic profiles were determined for MDRE, ...

  9. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines

    Directory of Open Access Journals (Sweden)

    Lin Ge

    2010-07-01

    Full Text Available Abstract Multi-drug resistance (MDR of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  10. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines.

    Science.gov (United States)

    Chai, Stella; To, Kenneth Kw; Lin, Ge

    2010-07-25

    Multi-drug resistance (MDR) of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC) membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM) in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  11. Diabetic foot gangrene patient with multi-drug resistant Pseudomonas putida infection in Karawaci District, Indonesia

    Directory of Open Access Journals (Sweden)

    Nata Pratama Hardjo Lugito

    2015-01-01

    Full Text Available Pseudomonas putida is a rod-shaped, non fermenting Gram-negative organism frequently found in the environment that utilizes aerobic metabolism, previously thought to be of low pathogenicity. It had been reported as cause of skin and soft tissue infection, especially in immunocompromised patients. A female green grocer, 51 year-old came to internal medicine out-patient clinic with gangrene and osteomyelitis on her 1 st , 2 nd and 3 rd digit and wound on the sole of the right foot since 1 month prior. The patient had history of uncontrolled diabetes since a year ago. She was given ceftriaxone 2 grams b.i.d, metronidazole 500 mg t.i.d empirically and then amikacin 250 mg b.i.d, followed by amputation of the digits and wound debridement. The microorganism′s culture from pus revealed multi drug resistant Pseudomonas putida. She recovered well after antibiotics and surgery.

  12. Diversity of multi-drug resistant Acinetobacter baumannii population in a major hospital in Kuwait

    Directory of Open Access Journals (Sweden)

    Leila eVali

    2015-07-01

    Full Text Available Acinetobacter baumannii is one of the most important opportunistic pathogens that causes serious health care associated complications in critically ill patients. In the current study we report on the diversity of the clinical multi-drug resistant A. baumannii in Kuwait by molecular characterization. One hundred A. baumannii were isolated from one of the largest governmental hospitals in Kuwait. Following the identification of the isolates by molecular methods, the amplified blaOXA-51-like gene product of one isolate (KO-12 recovered from blood showed the insertion of the ISAba19 at position 379 in blaOXA-78. Of the 33 multi-drug resistant isolates, 28 (85% contained blaOXA-23, 2 (6% blaOXA-24 and 6 (18% blaPER-1 gene. We did not detect blaOXA-58, blaVIM, blaIMP, blaGES, blaVEB and blaNDM genes in any of the tested isolates. In 3 blaPER-1 positive isolates the genetic environment of blaPER-1 consisted of two copies of ISPa12 (tnpiA1 surrounding the blaPER-1 gene on a highly stable plasmid of ca. 140-kb. MLST analysis of the 33 A. baumannii isolates identified 20 different STs, of which 6 (ST-607, ST-608, ST-609, ST-610, ST-611 and ST-612 were novel. Emerging STs such as ST15 (identified for the first time in the Middle East, ST78 and ST25 were also detected. The predominant clonal complex was CC2. PFGE and MLST defined the MDR isolates as multi-clonal with diverse lineages. Our results lead us to believe that A. baumannii is diverse in clonal origins and / or is undergoing clonal expansion continuously while multiple lineages of MDR A. baumannii circulate in hospital wards simultaneously.

  13. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    Directory of Open Access Journals (Sweden)

    Arun P. More

    2013-03-01

    Full Text Available Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence ofcombined resistance to first and second-line anti-tuberculosis drugs is remarkably high. The isolates of M. tuberculosiswas identified and subjected to drug susceptibility testing. The patterns of drug susceptibility of isolates of M. tuberculosisduring the periods 2000 and 2004 were compared with drug susceptibility patterns of the organisms during theperiod 2008 to 2011.Results: The 260 isolates identified as M. tuberculosis show mean drug resistance prevalence of 45.6% for more than anytwo drugs and the MDR rate as 37% in the years 2000 to 2004 whereas 305 isolates of the organism show mean drugresistance prevalence of 30.2% and the MDR rate as 25% in the years 2008 to 2011.Conclusion: The researcher found that, though the prevalence of multidrug resistance to the drugs tested is remarkablyhigh, it has come down noticeably during the past seven years due to efforts of State Government and strict implementationof treatment guidelines of WHO by the physicians. J Microbiol Infect Dis 2013; 3(1: 12-17Key words: MDR-TB, XDR-TB, DOTS, drug-resistance prevalence rate.

  14. [The role of CCLINs in the event of an epidemic of multi-drug and highly resistant bacteria].

    Science.gov (United States)

    Landriu, Danièle

    2015-01-01

    The management of epidemics of multi-drug and highly resistant bacteria must be based on a structured organisation. Within each region it requires the expertise of centres for the interregional coordination of nosocomial infection control (CCLINs) and their regional branches of nosocomial infection control (Arlin) which support hospitals in reporting these types of epidemics. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Association between diabetes mellitus and multi-drug-resistant tuberculosis : a protocol for a systematic review and meta-analysis

    NARCIS (Netherlands)

    Tegegne, Balewgizie Sileshi; Habtewold, Tesfa Dejenie; Mengesha, Melkamu Merid; Burgerhof, Johannes G M

    2017-01-01

    INTRODUCTION: Multi-drug-resistant tuberculosis (MDR-TB) has emerged as a challenge to global tuberculosis (TB) control and remains a major public health concern in many countries. Diabetes mellitus (DM) is an increasingly recognized comorbidity that can both accelerate TB disease and complicate its

  16. Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.

    Science.gov (United States)

    Roundhill, E A; Burchill, S A

    2012-03-13

    Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; PMRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.

  17. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Directory of Open Access Journals (Sweden)

    Mohammed Y. Shobrak

    2014-12-01

    Full Text Available Emergence and distribution of multi-drug resistant (MDR bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor. Also, hemolysin production (a virulence factor was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration.

  18. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Science.gov (United States)

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  19. Bovine salmonellosis in northeast of Iran: frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    Science.gov (United States)

    Halimi, Hessam A; Seifi, Hesam A; Rad, Mehrnaz

    2014-01-01

    To evaluate serovar and antimicrobial resistance patterns of Salmonella spp isolated from healthy, diseased and necropsied cows and calves in this observational study. Nineteen isolates recovered from feces and tissues of salmonellosis-affected animals of two commercial farms in north-east of Iran. In second part of the study, the two farms were sampled 4 times with an interval of 2 month. The samples included calves' feces, adult cows' feces, feeds, water, milk filters, and milk fed to calves. Five Salmonella were isolated from 332 fecal samples collected from calves and peri-parturient cows. No Salmonella was recovered from water, feed, milk filers and milk fed to calves. Salmonella Typhimurium was the most frequently isolate among all sero-groups. S. Dublin was only accounted for 8% (two out of 24) of isolates. Isolated Salmonella strains were used for the ERIC PCR DNA fingerprinting assay. Our results grouped Salmonella isolates into 3 clusters, suggesting that specific genotypes were responsible for each sero-group of Salmonella. The results also revealed diversity among Salmonella isolates in cluster III (sero-group B). Eighteen out of 19 Salmonella spp. were resistant to oxytetracycline. Five isolates out of 19 showed more than one drug resistance. Multi-drug resistance was seen only among Salmonella Typhimurium isolates. Enrofloxacin was the most susceptible antibiotic against all isolates in this study. The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  20. Multi-drug-resistant tuberculosis in HIV positive patients in Eastern Europe.

    Science.gov (United States)

    Post, Frank A; Grint, Daniel; Werlinrud, Anne Marie; Panteleev, Alexander; Riekstina, Vieja; Malashenkov, Evgeniy A; Skrahina, Alena; Duiculescu, Dan; Podlekareva, Daria; Karpov, Igor; Bondarenko, Vasiliy; Chentsova, Nelly; Lundgren, Jens; Mocroft, Amanda; Kirk, Ole; Miro, Jose M

    2014-03-01

    Observational data from Eastern Europe on the management and outcome of multi-drug-resistant tuberculosis (MDR TB) in HIV positive populations remain sparse in the English-language literature. We compared clinical characteristics and outcomes of 55 patients who were diagnosed with HIV and MDR TB in Eastern Europe between 2004 and 2006 to 89 patients whose Mycobacterium tuberculosis isolates were susceptible to isoniazid and rifampicin. Patients with HIV and MDR TB were young and predominantly male with high rates of intravenous drug use, imprisonment and hepatitis C co-infection. Eighty-four per cent of patients with MDR TB had no history of previous TB drug exposure suggesting that the majority of MDR TB resulted from transmission of drug-resistant M. tuberculosis. The use of non-standardized tuberculosis treatment was common, and the use of antiretroviral therapy infrequent. Compared to those with susceptible tuberculosis, patients with MDR TB were less likely to achieve cure or complete tuberculosis treatment (21.8% vs. 62.9%, p < 0.0001), and they were more likely to die (65.5% vs. 27.0%, p < 0.0001). Our study documents suboptimal management and poor outcomes in HIV positive patients with MDR TB. Implementation of WHO guidelines, rapid TB diagnostics and TB drug susceptibility testing for all patients remain a priority in this region. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  1. Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar.

    Science.gov (United States)

    Aye, Khin Saw; Nakajima, Chie; Yamaguchi, Tomoyuki; Win, Min Min; Shwe, Mu Mu; Win, Aye Aye; Lwin, Thandar; Nyunt, Wint Wint; Ti, Ti; Suzuki, Yasuhiko

    2016-03-01

    The number of multi-drug-resistant tuberculosis (MDR-TB) cases is rising worldwide. As a countermeasure against this situation, the implementation of rapid molecular tests to identify MDR-TB would be effective. To develop such tests, information on the frequency and distribution of mutations associating with phenotypic drug resistance in Mycobacterium tuberculosis is required in each country. During 2010, the common mutations in the rpoB, katG and inhA of 178 phenotypically MDR M. tuberculosis isolates collected by the National Tuberculosis Control Program (NTP) in Myanmar were investigated by DNA sequencing. Mutations affecting the 81-bp rifampicin (RIF) resistance-determining region (RRDR) of the rpoB were identified in 127 of 178 isolates (71.3%). Two of the most frequently affected codons were 531 and 526, with percentages of 48.3% and 14.0% respectively. For isoniazid (INH) resistance, 114 of 178 MDR-TB isolates (64.0%) had mutations in the katG in which a mutation-conferring amino acid substitution at codon 315 from Ser to Thr was the most common. Mutations in the inhA regulatory region were also detected in 20 (11.2%) isolates, with the majority at position -15. Distinct mutation rate and pattern from surrounding countries might suggest that MDR-TB has developed and spread domestically in Myanmar. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Comparative In Vitro Efficacy of Doripenem and Imipenem Against Multi-Drug Resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Wali, Nadia; Mirza, Irfan Ali

    2016-04-01

    To compare the in vitro efficacy of doripenem and imipenem against multi-drug resistant (MDR) Pseudomonas aeruginosa from various clinical specimens. Descriptive cross-sectional study. Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from November 2012 to November 2013. MDR Pseudomonas aeruginosa isolates from various clinical samples were included in the study. Susceptibility of Pseudomonas aeruginosa against doripenem and imipenem was performed by E-test strip and agar dilution methods. The results were interpreted as recommended by Clinical Laboratory Standard Institute (CLSI) guidelines. The maximum number of Pseudomonas aeruginosa were isolated from pure pus and pus swabs. In vitro efficacy of doripenem was found to be more effective as compared to imipenem against MDR Pseudomonas aeruginosa with both E-test strip and agar dilution methods. Overall, p-values of 0.014 and 0.037 were observed when susceptibility patterns of doripenem and imipenem were evaluated with E-test strip and agar dilution methods. In vitro efficacy of doripenem was found to be better against MDR Pseudomonas aeruginosaas compared to imipenem when tested by both E-test and agar dilution methods.

  3. Comparative In Vitro Efficacy of Doripenem and Imipenem Against Multi-Drug Resistant Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Wali, N.; Mirza, I. A.

    2016-01-01

    Objective: To compare the in vitro efficacy of doripenem and imipenem against multi-drug resistant (MDR) Pseudomonas aeruginosa from various clinical specimens. Study Design: Descriptive cross-sectional study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from November 2012 to November 2013. Methodology: MDR Pseudomonas aeruginosa isolates from various clinical samples were included in the study. Susceptibility of Pseudomonas aeruginosa against doripenem and imipenem was performed by E-test strip and agar dilution methods. The results were interpreted as recommended by Clinical Laboratory Standard Institute (CLSI) guidelines. Results: The maximum number of Pseudomonas aeruginosa were isolated from pure pus and pus swabs. In vitro efficacy of doripenem was found to be more effective as compared to imipenem against MDR Pseudomonas aeruginosa with both E-test strip and agar dilution methods. Overall, p-values of 0.014 and 0.037 were observed when susceptibility patterns of doripenem and imipenem were evaluated with E-test strip and agar dilution methods. Conclusion: In vitro efficacy of doripenem was found to be better against MDR Pseudomonas aeruginosa as compared to imipenem when tested by both E-test and agar dilution methods. (author)

  4. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    Tze Y. Thung

    2018-01-01

    Full Text Available The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60 were randomly collected. The multiplex polymerase chain reaction (mPCR in combination with the most probable number (MPN method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%. Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70% exhibited the highest multiple antibiotic resistance (MAR index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100% were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR Salmonella and various virulence genes are present among the isolated Salmonella serovars.

  5. Quality of life of multi drug resistant tuberculosis patients: a study of north India.

    Directory of Open Access Journals (Sweden)

    Raman Sharma

    2014-06-01

    Full Text Available Tuberculosis is still one of the leading causes of mortality and morbidity. Besides clinical impact, the disease affects the quality of life (QOL too. With the rise of 21st century, multi-drug-resistant TB (MDR TB has risen as a significant public health problem due to emergence of resistance to anti-tuberculosis therapy (ATT drugs. This study was planned to analyze the impact of MDRTB on QOL. It was a six month analysis, with a sample size of 60 cases each of MDRTB and PTB. It was based on a pre-designed, pre-tested questionnaire using WHOQOL BREF scale.  Out of each group, 38 (63.33% and 36 (60.0% were in the 21-40 years of age groups, more than 60% married and were residing in the urban/urban slums. It was found that QoL of MDRTB patients was worse than PTB counterparts. The psychological and environmental domains (MDRTB vs. PTB 17.46 vs. 15.23 and 22.00 vs 18.91 were more affected as compared to physical and social domains (19.03 vs 20.05 and 7.88 vs 9.61 in MDRTB and PTB. Financially, MDRTB patients were worst suffers as compared to PTB as former were not being covered under any program, while both groups are affected socially due to social stigma attached with the disease. Thus, there is a need to design an applicable, reliable measure to better address the quality issues methodologically. This would further enable the health care professionals and management to devise relevant interventions to improve the quality of the patients, as well as the programme.

  6. A Novel Submicron Emulsion System Loaded with Doxorubicin Overcome Multi-Drug Resistance in MCF-7/ADR Cells.

    Science.gov (United States)

    Zhou, W P; Hua, H Y; Sun, P C; Zhao, Y X

    2015-01-01

    The purpose of the present study was to develop the Solutol HS15-based doxorubicin submicron emulsion with good stability and overcoming multi-drug resistance. In this study, we prepared doxorubicin submicron emulsion, and examined the stability after autoclaving, the in vitro cytotoxic activity, the intracellular accumulation and apoptpsis of doxorubicin submicron emulsion in MCF-7/ADR cells. The physicochemical properties of doxorubicin submicron emulsion were not significantly affected after autoclaving. The doxorubicin submicron emulsion significantly increased the intracellular accumulation of doxorubicin submicron emulsion and enhanced cytotoxic activity and apoptotic effects of doxorubicin. These results may be correlated to doxorubicin submicron emulsion inhibitory effects on efflux pumps through the progressive release of intracellular free Solutol HS15 from doxorubicin submicron emulsion. Furthermore, these in vitro results suggest that the Solutol HS15-based submicron emulsion may be a potentially useful drug delivery system to circumvent multi-drug resistance of tumor cells.

  7. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    Science.gov (United States)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  8. Topicality of the problem of combined course of multi-drug resistant pulmonary tuberculosis with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    O. M. Raznatovska

    2017-08-01

    Full Text Available According to the World Health Organization, today in the world among the infectious chronic diseases one of the leading places and causes of death is multi-drug resistant tuberculosis of the lungs, and chronic non-communicable diseases – diabetes mellitus. The situation is complicated by the fact that the number of patients with combined course of these two heavy separate illnesses that complicate each other increases. It is established that with increasing severity of diabetes mellitus, tuberculosis process in the lungs becomes more complicate and deteriorates, and vice versa, the specific process complicates the course of diabetes mellitus, contributing to the development of diabetic complications. Against this background, the effectiveness of treatment of patients suffering from multi-drug resistant tuberculosis of the lungs in our country remains very low, mainly due to the toxic adverse reactions to antimycobacterial drugs of the reserve line, and in the case of adding diabetes mellitus, it deteriorates even more. The aim of this study was to review the scientific literature to determine the relevance of the study of combined course of multi-drug resistant tuberculosis of the lungs with diabetes mellitus and perspectives of innovative methods of diagnosis of diabetes mellitus. Early diagnosis of pre-diabetes, and autoimmune diseases will allow the use of timely correction techniques that prevents the development of diabetes mellitus, depending on its type, and in the future the development of serious irreversible processes, allow timely applying appropriate methods of correction of the revealed violations. Results. Very little amount of work is dedicated to the problem of combined course of multi-drug resistant tuberculosis of the lungs with diabetes mellitus, regardless of its type, the theme is relevant for today, in Ukraine there are no data regarding its study. This combined course of very difficult in the treatment diseases requires

  9. The making of a public health problem: multi-drug resistant tuberculosis in India.

    Science.gov (United States)

    Engel, Nora C

    2013-07-01

    This paper examines how actors construct the public problem of multi-drug resistant tuberculosis (MDR-TB) in India. MDR-TB has been framed by the World Health Organization as a pressing, global public health problem. The responses to MDR-TB are complicated as treatment takes longer and is more expensive than routine TB treatment. This is particularly problematic in countries, such as India, with high patient loads, a large and unregulated private sector, weak health systems and potentially high numbers of MDR-TB cases. This paper analyses how actors struggle for control over ownership, causal theories and political responsibility of the public problem of MDR-TB in India. It combines Gusfield's theory on the construction of public problems with insights from literature on the social construction of diseases and on medical social control. It highlights that there are flexible definitions of public problems, which are negotiated among actor groups and which shift over time. The Indian government has shifted its policy in recent years and acknowledged that MDR-TB needs to be dealt with within the TB programme. The study results reveal how the policy shift happened, why debates on the construction of MDR-TB as a public problem in India continue, and why actors with alternative theories than the government do not succeed in their lobbying efforts. Two main arguments are put forward. First, the construction of the public problem of MDR-TB in India is a social and political process. The need for representative data, international influence and politics define what is controllable. Second, the government seems to be anxious to control the definition of India's MDR-TB problem. This impedes an open, critical and transparent discussion on the definition of the public problem of MDR-TB, which is important in responding flexibly to emerging public health challenges.

  10. Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yonatan Moges Mesfin

    Full Text Available BACKGROUND: Human immunodeficiency virus (HIV, multi-drug resistant tuberculosis (MDR is emerging as major challenge facing tuberculosis control programs worldwide particularly in Asia and Africa. Findings from different studies on associations of HIV co-infection and drug resistance among patients with TB have been contradictory (discordant. Some institution based studies found strongly increased risks for multi-drug resistant TB (MDR TB among patients co-infected with TB and HIV, whereas other studies found no increased risk (it remains less clear in community based studies. The aim was to conduct a systematic review and meta-analysis of the association between multi-drug resistant tuberculosis and HIV infection. METHODS AND FINDINGS: Systematic review of the published literature of observational studies was conducted. Original studies were identified using databases of Medline/Pubmed, Google Scholar and HINARI. The descriptions of original studies were made using frequency and forest plot. Publication bias was assessed using Funnel plot graphically and Egger weighted and Begg rank regression tests statistically. Heterogeneity across studies was checked using Cochrane Q test statistic and I(2. Pool risk estimates of MDR-TB and sub-grouping analysis were computed to analyze associations with HIV. Random effects of the meta-analysis of all 24 observational studies showed that HIV is associated with a marginal increased risk of multi-drug resistant tuberculosis (estimated Pooled OR 1.24; 95%, 1.04-1.43. Subgroup analyses showed that effect estimates were higher (Pooled OR 2.28; 95%, 1.52-3.04 for primary multi-drug resistance tuberculosis and moderate association between HIV/AIDS and MDR-TB among population based studies and no significant association in institution settings. CONCLUSIONS: This study demonstrated that there is association between MDR-TB and HIV. Capacity for diagnosis of MDR-TB and initiating and scale up of antiretroviral

  11. Occurrence of multidrug-resistant Salmonella enterica serovar Enteritidis isolates from poultry in Iran

    Directory of Open Access Journals (Sweden)

    Ghaderi, R.

    2016-03-01

    Full Text Available Salmonella enterica is recognized as one of the major food-borne pathogens with more than 2,500 serotypes worldwide. The present study addresses antimicrobial resistance of Salmonella enterica serovar Enteritidis isolates in Iran. A collection of 151 Salmonella spp. isolates collected from poultry were serotyped to identify Salmonella Enteritidis. Sixty-one Salmonella Enteritidis were subsequently tested against 30 antimicrobials. A high frequency of antimicrobial resistance was observed against nitrofurantoin (n=55, 90.2% followed by nalidixic acid (n=41, 67.2%, and cephalexin (n=23, 37.7%. Multi-drug resistance were observed in 35 (57.4% out of 61 isolates. Twenty-six antimicrobial resistance patterns were observed among the 61 Salmonella Enteritidis. All isolates were susceptible to ofloxacin, imipenem, enrofloxacin, chloramphenicol, gentamicin, and 3rd and 4th generation cephalosporins. In conclusion, our results revealed that implementing new policies toward overuse of antimicrobial drugs in Iranian poultry industry are of great importance.

  12. Antibiotic of resistence profile of Salmonella spp. serotypes isolated from retail beef in Mexico City.

    Directory of Open Access Journals (Sweden)

    Nova Nayarit-Ballesteros

    2016-05-01

    Full Text Available Objective. To determine the serotype and antibiotic resistance profile of Salmonella spp. isolated from retail ground beef in Mexico City. Materials and methods. A total of 100 samples of ground beef were analyzed. The pathogen was isolated by conventional methods and confirmed by PCR (invA gene, 284 bp. The antibiotic resistance profile was determined by the Kirby-Bauer method while serotyping was performed according to the Kauffman-White scheme. Results. We isolated a total of 19 strains of Lomita (6, Derby (4, Senftenberg (2, Javiana and Cannsttat (1 and undeter- mined (5 serotypes. The strains showed a high resistance rate to ampicillin (18/19, carbenicillin (16/19, tetracyclin (13/19, and trimethoprim-sulfamethoxazole (13/19. Multidrug resistance was observed in 14 isolates. Conclusions. Several Salmonella spp. serotypes of public health significance are circulating in ground beef sold in the major Mexican city. Some of these strains are multi-drug resistance.

  13. Prevalence of multi drug resistant Acinetobacter baumannii in the clinical samples from Tertiary Care Hospital in Islamabad, Pakistan.

    Science.gov (United States)

    Begum, Shahzeera; Hasan, Fariha; Hussain, Shagufta; Ali Shah, Aamer

    2013-09-01

    Acinetobacter baumannii can cause a wide range of infections, including bacteremia, pneumonia, urinary tract infection, peritonitis, etc. This organism is becoming resistant to a large group of antibiotics, especially β-lactam antibiotics. The reason for multi-drug resistance may be the production of extended- spectrum β-lactamses (ESBLs), carbapenemases/metallo β-lactamases or AmpC β-lactamases. The aim of the present study was to determine the prevalence of multi-drug resistant Acinetobacter baumannii isolated from the patients in Surgical Intensive Care Units (SICUs) of Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan. A total of 91 A. baumanni isolates were collected from PIMS during the period from February 2011 to December 2011. The antibiotic susceptibility testing was performed by standard disc diffusion method as recommended by CLSI. Combination disc method, Modified Hodge test, EDTA disc synergy test and AmpC disc test were performed for detection of ESBLs, carbapenemases, metallo β-lactamases, and AmpC β-lactamases, respectively. The prevalence of MDRs was reported 100% among A. baumannii. The antibiotic susceptibility profile showed that minocycline and tigecycline were the most effective drugs against A. baumannii. Almost all of A. baumannii isolates were carbapenemase and metallo β-lactamase producers. AmpC prevalence was observed in 41.76%, while none of the isolates was ESBL producer. Antibiogram and minimal inhibitory concentrations (MICs) indicated tetracycline is relatively effective against A. baumanii. Increased frequency of multi-drug resistance supports the need for continuous surveillance to determine prevalence and evolution of these enzymes in Pakistan.

  14. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Songzhe eHE

    2015-05-01

    Full Text Available Objective To investigate the in vitro and in vivo antibacterial activities of tigecycline and other 13 common antimicrobial agents, alone or in combination, against multi-drug resistant Acinetobacter baumannii.MethodsAn in vitro susceptibility test of 101 Acinetobacter baumannii was used to detect minimal inhibitory concentrations (MICs. A mouse lung infection model of multi-drug resistant Acinetobacter baumannii,established by the ultrasonic atomization method, was used to define in vivo antimicrobial activities.Results Multi-drug resistant Acinetobacter baumannii showed high sensitivity to tigecycline (98% inhibition, polymyxin B (78.2% inhibition, and minocycline (74.2% inhibition. However, the use of these antimicrobial agents in combination with other antimicrobial agents produced synergistic or additive effects. In vivo data showed that white blood cell (WBC counts in drug combination groups C (minocycline + amikacin and D (minocycline + rifampicin were significantly higher than in groups A (tigecycline and B (polymyxin B (P < 0.05, after administration of the drugs 24h post-infection. Lung tissue inflammation gradually increased in the model group during the first 24h after ultrasonic atomization infection; vasodilation, congestion with hemorrhage were observed 48h post infection. After three days of anti-infective therapy in groups A, B, C and D, lung tissue inflammation in each group gradually recovered with clear structures. The mortality rates in drug combination groups (groups C and D were much lower than in groups A and B.ConclusionThe combination of minocycline with either rifampicin or amikacin is more effective against multidrug-resistant Acinetobacter baumannii than single-agent tigecycline or polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable model for drug screening and analysis of infection mechanism.

  15. Animal experiment and clinical preliminary application of percutaneous 70% ethanol injection therapy in multi-drug resistant pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Liu Fuquan; Yue Zhendong; Gao Shunyu; Li YanSheng; Wei Guobin; Guo Weiyi; Chen Xijun; Li Baoyu

    2004-01-01

    Objective: To evaluate the clinical value of percutaneous injection of 70% ethanol in the treatment of multidrug resistant pulmonary tuberculosis. Methods: Percutaneous and transcatheter absolute ethanol, 70% ethanol, and 60% meglucamine diatrizoate(or distilled water) injection into the lung (25 cases) and the bronchi (25 cases) of healthy rabbits were performed, respectively.All specimens were studied with pathology. On the base of animals experiment, thirty-five patients with multi-drug resistant pulmonary tuberculosis were treated with percutaneous 70% ethanol injection. Every patient was treated by the same way for 1-3 times. Results: Pathological findings of the specimens of pulmonary tissue showed nonspecific inflammation, necrosis, and fibrosis. The chief pathological changes with percutaneous or transcatheter 70% ethanol injection were slighter than those with absolute ethanol injection. Pathological findings of the specimens of bronchi showed slight mucosal edema, nonspecific inflammation, and focal cytonecrosis. Recovery of the damaged bronchial mucosa occurred within 14-30 days after the treatment. All patients with multi-drug resistant pulmonary tuberculosis were followed up for 6 to 33 months. The sputum bacterial conversion to negative rate was 100% within 6 months after the treatment. Cavity closing, shrinking, and no changing rate were 47.1% (16/34), 50.0% (17/34), and 2.9% (1/34), respectively. Radiographic improvement rate was 94.3 % (33/35). No severe complications and adverse reactions occurred. Conclusion: Percutaneous 70% ethanol injection is safe, effective, and easy to perform in the treatment of multi-drug resistant pulmonary tuberculosis. (authors)

  16. Comparison of the multi-drug resistant human hepatocellular carcinoma cell line Bel-7402/ADM model established by three methods

    Directory of Open Access Journals (Sweden)

    Zhong Xingguo

    2010-08-01

    Full Text Available Abstract Background To compare the biological characteristics of three types of human hepatocellular carcinoma multi-drug resistant cell sub-lines Bel-7402/ADM models established by three methods. Methods Established human hepatocellular carcinoma adriamycin (ADM multi-drug resistant cell sub-lines models Bel-7402/ADMV, Bel-7402/ADML and Bel-7402/ADMS by three methods of in vitro concentration gradient increased induction, nude mice liver-implanted induction and subcutaneous-implanted induction respectively. Phase contrast microscopy was used to observe the cells and the MTT (methyl thiazolyl tetrazolium method was used to detect drug resistance of the three different sub-lines of cells. Results The three groups of drug resistant cells, Bel-7402/ADMV, Bel-7402/ADML and Bel-7402/ADMS generated cross-resistance to ADM and CDDP (cis-Diaminedichloroplatinum, but showed a significant difference in resistance to Bel-7402 IC50 value (P V, 46 h (Bel-7402/ADML, and 45 h (Bel-7402/ADMS. The excretion rates of ADM were significantly increased compared with the parent cell (34.14% line and were 81.06% (Bel-7402/ADMV, 66.56% (Bel-7402/ADML and 61.56% (Bel-7402/ADMS. Expression of P-gp and MRP in the three groups of resistant cells was significantly enhanced (P P > 0.05. Conclusions Stable resistance was involved in the resistant cell line model established by the above three methods. Liver implantation was a good simulation of human hepatocellular and proved to be an ideal model with characteristics similar to human hepatocellular biology and the pharmacokinetics of anticancer drugs.

  17. Rapid molecular detection of rifampicin resistance facilitates early diagnosis and treatment of multi-drug resistant tuberculosis: case control study.

    Directory of Open Access Journals (Sweden)

    Philly O'Riordan

    2008-09-01

    Full Text Available Multi-drug resistant tuberculosis (MDR-TB is a major public health concern since diagnosis is often delayed, increasing the risk of spread to the community and health care workers. Treatment is prolonged, and the total cost of treating a single case is high. Diagnosis has traditionally relied upon clinical suspicion, based on risk factors and culture with sensitivity testing, a process that can take weeks or months. Rapid diagnostic molecular techniques have the potential to shorten the time to commencing appropriate therapy, but have not been put to the test under field conditions.This retrospective case-control study aimed to identify risk factors for MDR-TB, and analyse the impact of testing for rifampicin resistance using RNA polymerase B (rpoB mutations as a surrogate for MDR-TB. Forty two MDR-TB cases and 84 fully sensitive TB controls were matched by date of diagnosis; and factors including demographics, clinical presentation, microbiology findings, management and outcome were analysed using their medical records. Conventionally recognised risk factors for MDR-TB were absent in almost half (43% of the cases, and 15% of cases were asymptomatic. A significant number of MDR-TB cases were identified in new entrants to the country. Using rpoB mutation testing, the time to diagnosis of MDR-TB was dramatically shortened by a median of 6 weeks, allowing patients to be commenced on appropriate therapy a median of 51days earlier than those diagnosed by conventional culture and sensitivity testing.MDR-TB is frequently an unexpected finding, may be asymptomatic, and is particularly prevalent among TB infected new entrants to the country. Molecular resistance testing of all acid fast bacilli positive specimens has the potential to rapidly identify MDR-TB patients and commence them on appropriate therapy significantly earlier than by conventional methods.

  18. Development of PET and SPECT radiopharmaceuticals to study multi-drug resistance (MDR)

    International Nuclear Information System (INIS)

    Katsififs, A.; Dikic, B.; Greguric, I.; Knott, R.; Mattner, F.

    2002-01-01

    PgP. This generic structure also offers the flexibility to prepare a wide range of molecules that are readily suitable for halogenation with either Iodine-123 or F-18 for radiopharmaceutical development. Finally these phenolic type of molecules based on Quercetin are relatively less toxic than equivalent drugs. In this proposal an extensive research program is required to develop specific drugs for the different efflux pumps present in the body, which represent multi drug resistance. A successful outcome is critically dependent on the initial synthesis of a large number of compounds for screening. The combined effort of the three institutions will boost resources significantly to a critical level required to competitively produce successful outcomes in the project. Optimisation studies on derivatives of these flavonols will be made in parallel with the assistance of in vitro studies by measuring the binding of compounds to the ATP sites of Pgp. An extensive in vitro screening program has been established in Paris, prior to radiolabelling and in vivo evaluation. Structural optimisation and attachment of radionuclides to promising molecular targets will be explored using molecular modelling. Initially computational chemistry using Sybyl will be undertaken to develop a pharmacophore and to assist with the incorporation of the radionuclide in the appropriate position. In vivo evaluation will be undertaken in specific animal models both at the University of Tours in France as well as at the Sydney Cancer Centre in Australia. PET functional imaging studies may be undertaken on successful candidates at the SHFJ in Orsay, France whilst SPECT imaging will be undertaken in both Tours and in Sydney. In addition to intellectual property and potential commercial product(s), specific PET or SPECT radiopharmaceuticals can provide valuable information on the assessment of MDR in cancer patients through functional, non-invasive, imaging and therefore make significant contributions to

  19. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis.

    Science.gov (United States)

    Kamp, Jasper; Bolhuis, Mathieu S; Tiberi, Simon; Akkerman, Onno W; Centis, Rosella; de Lange, Wiel C; Kosterink, Jos G; van der Werf, Tjip S; Migliori, Giovanni B; Alffenaar, Jan-Willem C

    2017-06-01

    Linezolid is used increasingly for the treatment of multi-drug-resistant (MDR) and extensively-drug-resistant (XDR) tuberculosis (TB). However, linezolid can cause severe adverse events, such as peripheral and optical neuropathy or thrombocytopenia related to higher drug exposure. This study aimed to develop a population pharmacokinetic model to predict the area under the concentration curve (AUC) for linezolid using a limited number of blood samples. Data from patients with MDR-/XDR-TB who received linezolid and therapeutic drug monitoring as part of their TB treatment were used. Mw\\Pharm 3.82 (Mediware, Zuidhorn, The Netherlands) was used to develop a population pharmacokinetic model and limited sampling strategy (LSS) for linezolid. LSS was evaluated over a time span of 6 h. Blood sampling directly before linezolid administration and 2 h after linezolid administration were considered to be the most clinically relevant sampling points. The model and LSS were evaluated by analysing the correlation between AUC 12h,observed and AUC 12h,estimated . In addition, LSS was validated with an external group of patients with MDR-/XDR-TB from Sondalo, Italy. Fifty-two pharmacokinetic profiles were used to develop the model. Thirty-three profiles with a 300 mg dosing regimen and 19 profiles with a 600 mg dosing regimen were obtained. Model validation showed prediction bias of 0.1% and r 2 of 0.99. Evaluation of the most clinically relevant LSS showed prediction bias of 4.8% and r 2 of 0.97. The root mean square error corresponding to the most relevant LSS was 6.07%. The developed LSS could be used to enable concentration-guided dosing of linezolid. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  20. Transcriptomic analysis of Salmonella desiccation resistance.

    Science.gov (United States)

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  1. Multi-targeted therapy for leprosy: insilico strategy to overcome multi drug resistance and to improve therapeutic efficacy.

    Science.gov (United States)

    Anusuya, Shanmugam; Natarajan, Jeyakumar

    2012-12-01

    Leprosy remains a major public health problem, since single and multi-drug resistance has been reported worldwide over the last two decades. In the present study, we report the novel multi-targeted therapy for leprosy to overcome multi drug resistance and to improve therapeutic efficacy. If multiple enzymes of an essential metabolic pathway of a bacterium were targeted, then the therapy would become more effective and can prevent the occurrence of drug resistance. The MurC, MurD, MurE and MurF enzymes of peptidoglycan biosynthetic pathway were selected for multi targeted therapy. The conserved or class specific active site residues important for function or stability were predicted using evolutionary trace analysis and site directed mutagenesis studies. Ten such residues which were present in at least any three of the four Mur enzymes (MurC, MurD, MurE and MurF) were identified. Among the ten residues G125, K126, T127 and G293 (numbered based on their position in MurC) were found to be conserved in all the four Mur enzymes of the entire bacterial kingdom. In addition K143, T144, T166, G168, H234 and Y329 (numbered based on their position in MurE) were significant in binding substrates and/co-factors needed for the functional events in any three of the Mur enzymes. These are the probable residues for designing newer anti-leprosy drugs in an attempt to reduce drug resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole

    KAUST Repository

    Campos, Mônica C.

    2017-10-25

    Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 5–8 million people in Latin America. Although the nitroheterocyclic compound benznidazole has been the front-line drug for several decades, treatment failures are common. Benznidazole is a pro-drug and is bio-activated within the parasite by the mitochondrial nitroreductase TcNTR-1, leading to the generation of reactive metabolites that have trypanocidal activity. To better assess drug action and resistance, we sequenced the genomes of T. cruzi Y strain (35.5 Mb) and three benznidazole-resistant clones derived from a single drug-selected population. This revealed the genome-wide accumulation of mutations in the resistant parasites, in addition to variations in DNA copy-number. We observed mutations in DNA repair genes, linked with increased susceptibility to DNA alkylating and inter-strand cross-linking agents. Stop-codon-generating mutations in TcNTR-1 were associated with cross-resistance to other nitroheterocyclic drugs. Unexpectedly, the clones were also highly resistant to the ergosterol biosynthesis inhibitor posaconazole, a drug proposed for use against T. cruzi infections, in combination with benznidazole. Our findings therefore identify the highly mutagenic activity of benznidazole metabolites in T. cruzi, demonstrate that this can result in multi-drug resistance, and indicate that vigilance will be required if benznidazole is used in combination therapy.

  3. [Reflection on Medical Treatment of Multi-drug Resistance Tuberculosis: The Necessity of Chinese Medicine Holistic View].

    Science.gov (United States)

    Zhang, Lei-lei; Jin, Hua

    2015-12-01

    Causative factors of multi-drug resistance tuberculosis (MDR-TB) were analyzed from iatrogenic angles, patients themselves, and society. Reviewed was the development of treatment strategies for MDR-TB from directly observed treatment short-course (DOTS) to DOTS-Plus. The history of Chinese medicine (CM) fighting TB and characteristics at the present stage were also analyzed. Authors pointed out that CM pays attention not only to killing pathogens and confirms the necessity of getting rid of pathogens, but also to cascade response caused by pathogens. It also regards the occurrence and development of MDR-TB as a whole by combining patients' conditions, climatic, geographic, psychological, and social factors. Authors believed that therapeutic principles under guidance of CM holistic view are of positive significance and inspiration in treating MDR-TB, and emphasized holistic view as basic strategies for treating MDR-TB, but not a single countermeasure.

  4. Regional Lymphotropic Therapy in Combination with Low Level Laser Therapy for Treating Multi-Drug-Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Oksana Dogorova

    2016-03-01

    Full Text Available With the growing incidence of Multi-Drug-Resistant Tuberculosis (MDR-TB in newly identified patients, novel multimodality treatment methods are needed, aimed at reducing the time to sputum conversion and cavity healing, which would be applicable in MDR cases. Our experimental treatment consisted of the following: 1 chemotherapy based on the drug sensitivity profile, 2 local laser irradiation therapy for 25 days, and lymphotropic administration of isoniazid (to subcutaneous tissue in alternating locations: underarm area; fifth intercostal space along the sterna border; subclavian area where the first rib meets the sternum in a daily dose of 10mg/kg 5 times a week. This treatment was significantly more effective in newly detected destructive MDR-TB versus the standard Category IV regimen for MDR-TB in terms of reduced time for sputum culture conversion and cavity healing, estimated to be 6 months after initiation of treatment.

  5. Complete genome sequence of Acinetobacter baumannii XH386 (ST208, a multi-drug resistant bacteria isolated from pediatric hospital in China

    Directory of Open Access Journals (Sweden)

    Youhong Fang

    2016-03-01

    Full Text Available Acinetobacter baumannii is an important bacterium that emerged as a significant nosocomial pathogen worldwide. The rise of A. baumannii was due to its multi-drug resistance (MDR, while it was difficult to treat multi-drug resistant A. baumannii with antibiotics, especially in pediatric patients for the therapeutic options with antibiotics were quite limited in pediatric patients. A. baumannii ST208 was identified as predominant sequence type of carbapenem resistant A. baumannii in the United States and China. As we knew, there was no complete genome sequence reproted for A. baumannii ST208, although several whole genome shotgun sequences had been reported. Here, we sequenced the 4087-kilobase (kb chromosome and 112-kb plasmid of A. baumannii XH386 (ST208, which was isolated from a pediatric hospital in China. The genome of A. baumannii XH386 contained 3968 protein-coding genes and 94 RNA-only encoding genes. Genomic analysis and Minimum inhibitory concentration assay showed that A. baumannii XH386 was multi-drug resistant strain, which showed resistance to most of antibiotics, except for tigecycline. The data may be accessed via the GenBank accession number CP010779 and CP010780. Keywords: Acinetobacter baumannii, Multi-drug resistance, Paediatric

  6. Diagnostic and therapeutic progress of multi-drug resistance with anti-HBV nucleos(t)ide analogues

    Institute of Scientific and Technical Information of China (English)

    Zhuo-Lun Song; Yu-Jun Cui; Wei-Ping Zheng; Da-Hong Teng; Hong Zheng

    2012-01-01

    Nucleos(t)ide analogues (NA) are a breakthrough in the treatment and management of chronic hepatitis B.NA could suppress the replication of hepatitis B virus (HBV) and control the progression of the disease.However,drug resistance caused by their long-term use becomes a practical problem,which influences the long-term outcomes in patients.Liver transplantation is the only choice for patients with HBV-related end-stage liver disease.But,the recurrence of HBV after transplantation often caused by the development of drug resistance leads to unfavorable outcomes for the recipients.Recentiy,the multi-drug resistance (MDR) has become a common issue raised due to the development and clinical application of a variety of NA.This may complicate the antiviral therapy and bring poorly prognostic outcomes.Although clinical evidence has suggested that combination therapy with different NA could effectively reduce the viral load in patients with MDR,the advent of new antiviral agents with high potency and high genetic barrier to resistance brings hope to antiviral therapy.The future of HBV researches relies on how to prevent the MDR occurrence and develop reasonable and effective treatment strategies.This review focuses on the diagnostic and therapeutic progress in MDR caused by the anti-HBV NA and describes some new research progress in this field.

  7. High prevalence of multi-drug resistant Klebsiella pneumoniae in a ...

    African Journals Online (AJOL)

    The lowest resistance rates were documented for Carbapenems (23.2%). For specific antibiotics, there was high resistance to commonly used antibiotics (over 80% for Ceftriaxone, Cefipime, Gentamycin and Ceftazidime). The antibiotics with least resistance were Amikacin and Meropenem (21% and 7 % respectively).

  8. Changing trends in antimicrobial resistance of Salmonella enterica serovar typhi and salmonella enterica serovar paratyphi A in Chennai

    Directory of Open Access Journals (Sweden)

    Krishnan Padma

    2009-10-01

    Full Text Available Background and Objectives: Chloramphenicol was considered the anti-microbial gold standard for typhoid treatment but, following the increasing worldwide frequency of antibiotic resistance, ciprofloxacin has been the mainstay of therapy since 1980. Recent studies have shown a shifting of susceptibility to conventional drugs like chloramphenicol, ampicillin and cotrimoxazole. The primary objective of the study was to evaluate the in vitro activity of chloramphenicol and other first-line drugs in comparison with cephalosporins and quinolones. Materials and Methods: Fifty isolates of Salmonella obtained from blood culture were subjected to serotyping at the Central Research Institute, Kasauli. Phage typing and biotyping was performed at the National Phage Typing Centre, New Delhi. Antibiotic sensitivity testing was carried out for 10 drugs by the Kirby-Bauer disc diffusion method and minimum inhibitory concentration by broth microdilution for nalidixic acid, chloramphenicol, ciprofloxacin, ceftriaxone, cefixime and ofloxacin. Multi-drug-resistant (MDR strains were checked for plasmid. Results: In the present study, 70 and 30% of the isolates were Salmonella enterica serovar typhi and paratyphi A, respectively. They were highly sensitive to chloramphenicol (86%, ampicillin (84% and cotrimoxazole (88%. Highest sensitivity was seen for cephalosporins, followed by quinolones. Seventeen/21 (81% and 100% of the Salmonella enterica serovar typhi strains belonged to E1 phage type and biotype 1, respectively. Antibiogram showed 2% of the strains to be sensitive to all the drugs tested and 12% were MDR and showed the presence of plasmids. Conclusion: The study indicates reemergence of chloramphenicol-susceptible Salmonella enterica serovar typhi and paratyphi A isolates, a significant decline in MDR strains and high resistance to nalidixic acid. E1 phage type and biotype 1 are found to be most prevalent in Chennai, India.

  9. Characterization of Multi-Drug Resistant Enterococcus faecalis Isolated from Cephalic Recording Chambers in Research Macaques (Macaca spp.).

    Science.gov (United States)

    Woods, Stephanie E; Lieberman, Mia T; Lebreton, Francois; Trowel, Elise; de la Fuente-Núñez, César; Dzink-Fox, Joanne; Gilmore, Michael S; Fox, James G

    2017-01-01

    Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST): ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6')-aph(2"), aph(3')-III, str, ant(6)-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I) and gyrA (S83I) were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC), hyaluronidases (hylA, hylB), and other survival genes (ElrA, tpx). Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.

  10. Characterization of Multi-Drug Resistant Enterococcus faecalis Isolated from Cephalic Recording Chambers in Research Macaques (Macaca spp..

    Directory of Open Access Journals (Sweden)

    Stephanie E Woods

    Full Text Available Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST: ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6'-aph(2", aph(3'-III, str, ant(6-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I and gyrA (S83I were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC, hyaluronidases (hylA, hylB, and other survival genes (ElrA, tpx. Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.

  11. Adverse reactions among patients being treated for multi-drug resistant tuberculosis at Abbassia Chest Hospital

    Directory of Open Access Journals (Sweden)

    Mohammad A. Tag El Din

    2015-10-01

    Conclusions: There is a relation between both tobacco smoking and drug addiction, and MDR TB. The most common type of resistance is acquired resistance because of lack of adherence to treatment or inappropriate treatment. The most common co-morbidities associated with MDR TB are diabetes and chronic obstructive lung diseases. The most important predictors of patients’ outcome are sputum conversion, number of previous TB treatment and presence of co-morbidities.

  12. Exploring the Genome and Phenotype of Multi-Drug Resistant Klebsiella pneumoniae of Clinical Origin

    OpenAIRE

    João Anes; Daniel Hurley; Marta Martins; Séamus Fanning; Séamus Fanning

    2017-01-01

    Klebsiella pneumoniae is an important nosocomial pathogen with an extraordinary resistant phenotype due to a combination of acquired resistant-elements and efflux mechanisms. In this study a detailed molecular characterization of 11 K. pneumoniae isolates of clinical origin was carried out. Eleven clinical isolates were tested for their susceptibilities, by disk diffusion and broth microdilution and interpreted according to CLSI guidelines. Efflux activity was determined by measuring the extr...

  13. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan

    Directory of Open Access Journals (Sweden)

    Ayman A. Elshayeb

    2017-11-01

    Full Text Available Abstract Background Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. Objectives The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Methods Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. Results A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax − b. Minimum bactericidal concentration’s predication of resistance was given the exponential trend (y = n ex and the predictive coefficient R2 > 0 < 1 are approximately alike. It was assumed that resistant bacteria occurred with a constant rate of antibiotic doses during the whole experimental period. Thus, the number of sensitive bacteria decreases at the same rate as resistant occur following term to the modified predictive model which solved computationally. Conclusion This study assesses the prediction of multi-drug resistance among S. Typhi isolates by applying low cost materials and simple statistical methods suitable for the most frequently used antibiotics as typhoid empirical therapy. Therefore, bacterial surveillance systems should be implemented to present data on the aetiology and current

  14. Antibacterial activity of herbal extracts against multi-drug resistant Escherichia coli recovered from retail chicken meat.

    Science.gov (United States)

    Shaheen, Arfat Yousaf; Sheikh, Ali Ahmad; Rabbani, Masood; Aslam, Asim; Bibi, Tasra; Liaqat, Fakhra; Muhammad, Javed; Rehmani, Shafqat Fatima

    2015-07-01

    Increasing incidence rate of multiple drug resistance in Escherichia coli (E. coli) due to extensive uses of antibiotics is a serious challenge to disease treatment. Contaminated retail chicken meat is one of the major sources of spread of multi drug resistant (MDR) E. coli. Current study has been conducted to study the prevalence of MDR E. coli in retail chicken meat samples from Lahore city of Pakistan and it was found that 73.86% of E. coli isolates have MDR pattern. In vitro evaluation of antibacterial activity of crude ethanolic extracts of six herbs against MDR E. coli phenotypes has revealed that clove and cinnamon have maximum zones of inhibition as compared to other herbal extracts. Mint and coriander gave the intermediate results while garlic and kalonji showed the least antibacterial activity against the MDR E. coli phenotypes using the agar well diffusion technique. Average Minimum Inhibitory Concentrations (MICs) for clove, mint, cinnamon, coriander, kalonji and garlic extracts were 1.15, 1.38, 0.5, 1.99, 2.41, 8.60 mg/mL respectively using the broth micro dilution method. The results obtained in present study were revealed that crude ethanol extracts of selected herbs have had significant antibacterial activity. Hence they can be used as promising alternatives of antimicrobials against MDR E. coli species and can be used for cooked food preservation.

  15. Molecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Omid Azizi

    2016-10-01

    Full Text Available Background: Acinetobacter baumannii is commonly resistant to nearly all antibiotics due to presence of antibiotic resistance genes and biofilm formation. In this study we determined the presence of certain antibiotic-resistance genes associated with biofilm production and the influence of low iron concentration on expression of the biofilm-associated protein gene (bap in development of biofilm among multi-drug-resistant A. baumannii (MDRAB. Methods: Sixty-five MDRAB isolates from clinical samples were collected. Molecular typing was carried out by random amplified polymorphism DNA polymerase chain reaction (RAPD-PCR. Biofilm formation was assayed by the microtiter method. Results: The sequence of bap was determined and deposited in the GenBank database (accession no. KR080550.1. Expression of bap in the presence of low iron was analyzed by relative quantitative real time PCR (rqRT-PCR. Nearly half of the isolates belonged to RAPD-types A and B remaining were either small clusters or singleton. The results of biofilm formation revealed that 23 (35.4%, 18 (27.7%, 13 (20%, and 11 (16.9% of the isolates had strong, moderate, weak, and no biofilm activities, respectively. ompA and csuE genes were detected in all, while bap and blaPER-1 were detected in 43 (66% and 42 (64% of the isolates that showed strong and moderate biofilm activities (p ≤ 0.05, respectively. Analysis of bap expression by rqRT-PCR revealed five isolates with four-fold bap overexpression in the presence of low iron concentration (20 μM. Conclusion: The results suggest that bap overexpression may influence biofilm formation in presence of low iron concentration.

  16. Mouse ATP-Binding Cassette (ABC) Transporters Conferring Multi-Drug Resistance

    Science.gov (United States)

    Shuaizhang, L I; Zhang, Wen; Yin, Xuejiao; Xing, Shilai; Xie, Qunhui; Cao, Zhengyu; Zhao, Bin

    2015-04-28

    The ABC (ATP-binding cassette) transporter is one of the largest and most ancient protein families with members functioning from protozoa to human. The resistance of cancer and tumor cells to anticancer drugs is due to the over-expression of some ABC transporters, which may finally lead to chemotherapy failure. The mouse ABC transporters are classified into seven subfamilies by phylogenetic analysis. The mouse ABC transporter gene, alias, chromosomal location and function have been determined. Within the ABC super-family, the MDR transporters (Abcb1, Abcc1, Abcg2) in mouse models have been proved to be valuable to investigate the biochemistry and physiological functions. This review concentrates on the multidrug resistance of mouse ABC transporters in cancer and tumor cells.

  17. Antimicrobial stewardship through telemedicine and its impact on multi-drug resistance.

    Science.gov (United States)

    Dos Santos, Rodrigo P; Dalmora, Camila H; Lukasewicz, Stephani A; Carvalho, Otávio; Deutschendorf, Caroline; Lima, Raquel; Leitzke, Tiago; Correa, Nilson C; Gambetta, Marcelo V

    2018-01-01

    Introduction Telemedicine technologies are increasingly being incorporated into infectious disease practice. We aimed to demonstrate the impact of antimicrobial stewardship through telemedicine on bacterial resistance rates. Methods We conducted a quasi-experimental study in a 220-bed hospital in southern Brazil. An antimicrobial stewardship program incorporating the use of telemedicine was implemented. Resistance and antimicrobial consumption rates were determined and analysed using a segmented regression model. Results After the intervention, the rate of appropriate antimicrobial prescription increased from 51.4% at baseline to 81.4%. Significant reductions in the consumption of fluoroquinolones (level change, β = -0.80; P change, β = -0.01; P = 0.98), first-generation cephalosporins (level change, β = -0.91; P change, β = +0.01; P = 0.96), vancomycin (level change, β = -0.47; P = 0.04; trend change, β = +0.17; P = 0.66) and polymyxins (level change, β = -0.15; P = 0.56; trend change, β = -1.75; P change, β = +0.84; P change, β = +0.14; P = 0.41) and cefuroxime (level change, β = +0.21; P = 0.17; trend change, β = +0.66; P = 0.02). A significant decrease in the rate of carbapenem-resistant Acinetobacter spp. isolation (level change, β = +0.66; P = 0.01; trend change, β = -1.26; P resistance.

  18. Rapid molecular diagnostics for multi-drug resistant tuberculosis in India.

    Science.gov (United States)

    Ramachandran, Rajeswari; Muniyandi, M

    2018-03-01

    Rapid molecular diagnostic methods help in the detection of TB and Rifampicin resistance. These methods detect TB early, are accurate and play a crucial role in reducing the burden of drug resistant tuberculosis. Areas covered: This review analyses rapid molecular diagnostic tools used in the diagnosis of MDR-TB in India, such as the Line Probe Assay and GeneXpert. We have discussed the burden of MDR-TB and the impact of recent diagnostic tools on case detection and treatment outcomes. This review also discusses the costs involved in establishing these new techniques in India. Expert commentary: Molecular methods have considerable advantages for the programmatic management of drug resistant TB. These include speed, standardization of testing, potentially high throughput and reduced laboratory biosafety requirements. There is a desperate need for India to adopt modern, rapid, molecular tools with point-of-care tests being currently evaluated. New molecular diagnostic tests appear to be cost effective and also help in detecting missing cases. There is enough evidence to support the scaling up of these new tools in India.

  19. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    Science.gov (United States)

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  20. 99mTcN-gatifloxacin dithiocarbamate complex. A novel multi-drug-resistance Streptococcus pneumoniae (MRSP) infaction radiotracer

    International Nuclear Information System (INIS)

    Syed Qaiser Shah; Mohammad Rafiullah Khan

    2011-01-01

    Gatifloxacin (GTN) was derivatized to its dithiocarbamate derivative and its radiolabeling with technetium-99m ( 99m Tc) using the [ 99m Tc≡N] 2+ core was investigated. The appropriateness of the 99m TcN - gatifloxacin dithiocarbamate ( 99m TcN - GTND) complex as a potential multi-drug-resistance Streptococcus pneumoniae (MRSP) infection radiotracer was evaluated in terms of stability in saline, serum, in vitro binding with MRSP and biodistribution in artificially MRSP infected Male Wistar Rats (MWR). In saline the 99m TcN - GTND complex showed more than 90% labeling yield up to 4 h with a maximum yield of 98.25 ± 0.20%, after reconstitution. In serum the 99m TcN - GTND complex showed stability up to 16 h of incubation with the appearance of insignificant 15.95% undesirable side products. The 99m TcN - GTND complex demonstrated saturated in vitro binding with MRSP with a maximum value of 75.50 ± 1.00% (at 90 min). In MWR model of group A, almost six times higher uptake of the labeled GTND was monitored in the muscle of MWR infected with live MRSP as compared to the inflamed and normal muscles. Based on the higher labeling yield in saline, in vitro stability in serum, saturated in vitro binding with live MRSP and promising biodistribution in MWR model we recommend 99m TcN - gatifloxacin dithiocarbamate complex as a potential MRSP infection radiotracer. (author)

  1. Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbes along with remarkable anticancerous properties.

    Science.gov (United States)

    Jha, Diksha; Thiruveedula, Prasanna Kumar; Pathak, Rajiv; Kumar, Bipul; Gautam, Hemant K; Agnihotri, Shrish; Sharma, Ashwani Kumar; Kumar, Pradeep

    2017-11-01

    This study demonstrates the therapeutic potential of silver nanoparticles (AgNPs), which were biosynthesized using the extracts of Citrus maxima plant. Characterization through UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) confirmed the formation of AgNps in nano-size range. These nanoparticles exhibited enhanced antioxidative activity and showed commendable antimicrobial activity against wide range of microbes including multi-drug resistant bacteria that were later confirmed by TEM. These particles exhibited minimal toxicity when cytotoxicity study was performed on normal human lung fibroblast cell line as well as human red blood cells. It was quite noteworthy that these particles showed remarkable cytotoxicity on human fibrosarcoma and mouse melanoma cell line (B16-F10). Additionally, the apoptotic topographies of B16-F10 cells treated with AgNps were confirmed by using acridine orange and ethidium bromide dual dye staining, caspase-3 assay, DNA fragmentation assay followed by cell cycle analysis using fluorescence-activated cell sorting. Taken together, these results advocate promising potential of the biosynthesized AgNps for their use in therapeutic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Evaluation of the microscopic observational drug susceptibility assay for rapid and efficient diagnosis of multi-drug resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    R P Lazarus

    2012-01-01

    Full Text Available Purpose: Tuberculosis (TB is endemic in India and the burden of multi-drug-resistant tuberculosis (MDR-TB is high. Early detection of MDR-TB is of primary importance in controlling the spread of TB. The microscopic observational drug susceptibility (MODS assay has been described as a cost-effective and rapid method by which mycobacterial culture and the drug susceptibility test (DST can be done at the same time. Materials and Methods: A total of 302 consecutive sputum samples that were received in an accredited mycobacteriology laboratory for conventional culture and DST were evaluated by the MODS assay. Results: In comparison with conventional culture on Lowenstein Jensen (LJ media, the MODS assay showed a sensitivity of 94.12% and a specificity of 89.39% and its concordance with the DST by the proportion method on LJ media to isoniazid and rifampicin was 90.8% and 91.5%, respectively. The turnaround time for results by MODS was 9 days compared to 21 days by culture on LJ media and an additional 42 days for DST by the 1% proportion method. The cost of performing a single MODS assay was Rs. 250/-, compared to Rs. 950/- for culture and 1st line DST on LJ. Conclusion: MODS was found to be a sensitive and rapid alternative method for performing culture and DST to identify MDR-TB in resource poor settings.

  3. Molecular detection of Salmonella spp. isolated from apparently healthy pigeon in Mymensingh, Bangladesh and their antibiotic resistance pattern

    Directory of Open Access Journals (Sweden)

    Md. Khaled Saifullah

    2016-03-01

    Full Text Available Objectives: Here we determined the prevalence of Salmonella in cloacal swabs and pharyngeal swabs of apparently healthy pigeons sold in the live bird markets and villages in and around Bangladesh Agricultural University Campus, Mymensingh, Bangladesh. Materials and methods: A total of 50 samples, comprised of cloacal swabs (n=24 and pharyngeal swabs (n=26 were collected. The samples were processed, and Salmonella was isolated through a series of conventional bacteriological techniques and biochemical tests followed by polymerase chain reaction (PCR. Results: The prevalence rate of Salmonella was found to be 37.5% (n=9/24 in cloacal swabs and 30.77% (n=8/26 in pharyngeal swabs with an overall prevalence rate of 34% (n=17/50. The prevalence rate of Salmonella pigeon varied slightly among locations; 34.62% (n=9/26 in live bird markets, and 33.33% (n=8/24 in villages. Molecular detection of 17 Salmonella isolates obtained from biochemical test was performed by genus specific PCR, where all of them amplified a region of 496-bp segment of the histidine transport operon gene. Antibiogram study revealed multi-drug resistant traits in most of the isolates tested. The highest resistance was found against Ampicillin (88.23% followed by Cephalexin (82.35%. The rate of sensitivity of the isolates to Ciprofloxacin was 100% followed by Azithromycin (82.35%, Gentamicin (76.47% and Nalidixic acid (76.47%. Conclusion: Our findings suggest that pigeons carry multi-drug resistant Salmonella that may transfer to the humans and animals. [J Adv Vet Anim Res 2016; 3(1.000: 51-55

  4. The function of the thyroid gland in patients with multi-drug resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    S. L. Matveyeva

    2017-08-01

    Full Text Available Abstract Background Multidrug-resistant tuberculosis (MDRTB remains a health problem for many countries in the world. The share of MDRTB is 10–30% among newly diagnosed cases and 20–70% among relapses and treatment failure. The aim of the study is to define the side effects of second line drugs used in the treatment of MDRTB on thyroid function. Methods In 30 patients with multidrug resistant tuberculosis, echostructure of thyroid was studied by ultrasound imaging method. Indices of thyroid function: plasma levels of free thyroxin, thyroid stimulating hormone were studied before chemotherapy initiated, at the end of intensive phase and after the treatment finished. Results Decreasing of thyroid function under antituberculosis chemotherapy was approved. Monitoring and correction of thyroid function during antituberculosis chemotherapy was suggested. Conclusion Patients with MDRTB taking ethionamide and PAS are at increased risk for hypothyroidism and goiter, and therefore require monitoring of thyroid function at all stages of antituberculosis chemotherapy for its timely correction.

  5. Frequency Of Isolation Of Salmonella From Commercial Poultry Feeds And Their Anti-Microbial Resistance Profiles, Imo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Okoli IC

    2006-09-01

    Full Text Available This study was conducted to determine the frequency of isolation of salmonella and their microbial resistance profiles across different commercial poultry feeds sold in Imo State, Nigeria. Thirty-six bulk feed samples were colleted from 154 bag across different feed types and brands which included Guinea (GF, Top (TF, Vital (VF, Extra (EF, Animal care (AF and livestock (LF feeds. The salmonella isolated were tested against 14 anti-microbial drugs using the disc diffusion method. Bacterial load enumeration of the samples indicated a range of <30 colony forming unit (CFU to overgrowth at 104 serial dilutions. Eight feed samples (22.2% which cuts across the entire feed brands expect EF were positive for salmonella. The highest prevalence of 28.8% and 25.0% were recorded for LF and TF respectively, while VF, GF and AF had 11.1 and 10.0% respectively. Salmonella isolates showed high rates of resistance (51-100% against nitrofurantoin, ampicillin, tetracycline and ceftriazole, while moderate rates (31-50% were recorded for chloramphenicol, oxfloxacin and cotrimoxazole. Low resistance rates (1-30% were on the other hand recorded against ciprofloxacin and amoxycillin clavulanate (Augumentine, whereas zero resistance was demonstrated against pefloxacin, gentamycin, streptomycin and nalidixic. Commercial feeds form important channels for the dissemination of multi-drug resistant salmonella in Imo State, Nigeria.

  6. Lethal inflammasome activation by a multi-drug resistant pathobiont upon antibiotic disruption of the microbiota

    Science.gov (United States)

    Ayres, Janelle S.; Trinidad, Norver J.; Vance, Russell E.

    2012-01-01

    The mammalian intestine harbors a complex microbial community that provides numerous benefits to its host. However, the microbiota can also include potentially virulent species, termed pathobionts, which can cause disease when intestinal homeostasis is disrupted. The molecular mechanisms by which pathobionts cause disease remain poorly understood. Here we describe a sepsis-like disease that occurs upon gut injury in antibiotic-treated mice. Sepsis was associated with the systemic spread of a specific multidrug-resistant E. coli pathobiont that expanded dramatically in the microbiota of antibiotic-treated mice. Rapid sepsis-like death required a component of the innate immune system, the Naip5-Nlrc4 inflammasome. In accordance with Koch's postulates, we found the E. coli pathobiont was sufficient to activate Naip5-Nlrc4 and cause disease when injected intravenously into unmanipulated mice. These findings reveal how sepsis-like disease can result from recognition of pathobionts by the innate immune system. PMID:22522562

  7. Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available Staphylococcus aureus, the leading cause of hospital-acquired infections in the United States, is also pathogenic to the model nematode Caenorhabditis elegans. The C. elegans-S. aureus infection model was previously carried out on solid agar plates where the bacteriovorous C. elegans feeds on a lawn of S. aureus. However, agar-based assays are not amenable to large scale screens for antibacterial compounds. We have developed a high throughput liquid screening assay that uses robotic instrumentation to dispense a precise amount of methicillin resistant S. aureus (MRSA and worms in 384-well assay plates, followed by automated microscopy and image analysis. In validation of the liquid assay, an MRSA cell wall defective mutant, MW2ΔtarO, which is attenuated for killing in the agar-based assay, was found to be less virulent in the liquid assay. This robust assay with a Z'-factor consistently greater than 0.5 was utilized to screen the Biomol 4 compound library consisting of 640 small molecules with well characterized bioactivities. As proof of principle, 27 of the 30 clinically used antibiotics present in the library conferred increased C. elegans survival and were identified as hits in the screen. Surprisingly, the antihelminthic drug closantel was also identified as a hit in the screen. In further studies, we confirmed the anti-staphylococcal activity of closantel against vancomycin-resistant S. aureus isolates and other Gram-positive bacteria. The liquid C. elegans-S. aureus assay described here allows screening for anti-staphylococcal compounds that are not toxic to the host.

  8. Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Jayamani, Elamparithi; Kim, Younghoon; Larkins-Ford, Jonah; Conery, Annie; Ausubel, Frederick M; Mylonakis, Eleftherios

    2014-01-01

    Staphylococcus aureus, the leading cause of hospital-acquired infections in the United States, is also pathogenic to the model nematode Caenorhabditis elegans. The C. elegans-S. aureus infection model was previously carried out on solid agar plates where the bacteriovorous C. elegans feeds on a lawn of S. aureus. However, agar-based assays are not amenable to large scale screens for antibacterial compounds. We have developed a high throughput liquid screening assay that uses robotic instrumentation to dispense a precise amount of methicillin resistant S. aureus (MRSA) and worms in 384-well assay plates, followed by automated microscopy and image analysis. In validation of the liquid assay, an MRSA cell wall defective mutant, MW2ΔtarO, which is attenuated for killing in the agar-based assay, was found to be less virulent in the liquid assay. This robust assay with a Z'-factor consistently greater than 0.5 was utilized to screen the Biomol 4 compound library consisting of 640 small molecules with well characterized bioactivities. As proof of principle, 27 of the 30 clinically used antibiotics present in the library conferred increased C. elegans survival and were identified as hits in the screen. Surprisingly, the antihelminthic drug closantel was also identified as a hit in the screen. In further studies, we confirmed the anti-staphylococcal activity of closantel against vancomycin-resistant S. aureus isolates and other Gram-positive bacteria. The liquid C. elegans-S. aureus assay described here allows screening for anti-staphylococcal compounds that are not toxic to the host.

  9. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens

    Science.gov (United States)

    2014-01-01

    Background Biosurfactants (BS) are amphiphilic compounds produced by microbes, either on the cell surface or secreted extracellularly. BS exhibit strong antimicrobial and anti-adhesive properties, making them good candidates for applications used to combat infections. In this study, our goal was to assess the in vitro antimicrobial, anti-adhesive and anti-biofilm abilities of BS produced by Lactobacillus jensenii and Lactobacillus rhamnosus against clinical Multidrug Resistant (MDR) strains of Acinetobacter baumannii, Escherichia coli, and Staphylococcus aureus (MRSA). Cell-bound BS from both L. jensenii and L. rhamnosus were extracted and isolated. The surface activities of crude BS samples were evaluated using an oil spreading assay. The antimicrobial, anti-adhesive and anti-biofilm activities of both BS against the above mentioned MDR pathogens were determined. Results Surface activities for both BS ranged from 6.25 to 25 mg/ml with clear zones observed between 7 and 11 cm. BS of both L. jensenii and L. rhamnosus showed antimicrobial activities against A. baumannii, E. coli and S. aureus at 25-50 mg/ml. Anti-adhesive and anti-biofilm activities were also observed for the aforementioned pathogens between 25 and 50 mg/ml. Finally, analysis by electron microscope indicated that the BS caused membrane damage for A. baumannii and pronounced cell wall damage in S. aureus. Conclusion Our results indicate that BS isolated from two Lactobacilli strains has antibacterial properties against MDR strains of A. baumannii, E. coli and MRSA. Both BS also displayed anti-adhesive and anti-biofilm abilities against A. baumannii, E. coli and S. aureus. Together, these capabilities may open up possibilities for BS as an alternative therapeutic approach for the prevention and/or treatment of hospital-acquired infections. PMID:25124936

  10. Prevalence, risk factors and antimicrobial resistance of Salmonella diarrhoeal infection among children in Thi-Qar Governorate, Iraq.

    Science.gov (United States)

    Harb, A; O'Dea, M; Hanan, Z K; Abraham, S; Habib, I

    2017-12-01

    We conducted a hospital-based cross-sectional study among children aged Salmonella infection. From 320 diarrhoea cases enrolled between March and August 2016, 33 (10·3%, 95% confidence interval (CI) 8·4-12·4) cases were stool culture-positive for non-typhoidal Salmonella enterica. The most commonly identified serovar was Typhimurium (54%). Multivariable logistic regression analysis indicated that the odds of Salmonella infection in children from households supplied by pipe water was 4·7 (95% CI 1·6-13·9) times higher compared with those supplied with reverse osmosis treated water. Similarly, children from households with domestic animals were found to have a higher odds (OR 10·5; 95% CI 3·8-28·4) of being Salmonella stool culture-positive. The likelihood of Salmonella infection was higher (OR 3·9; 95% CI 1·0-6·4) among children belonging to caregiver with primary vs. tertiary education levels. Lower odds (OR 0·4; 95% CI 0·1-0·9) of Salmonella infection were associated with children exclusively breast fed as compared with those exclusively bottle fed. Salmonella infection was three times lower (95% CI 0·1-0·7) in children belonging to caregiver who reported always washing hands after cleaning children following defecation, vs. those belonging to caregivers who did not wash hands. The antimicrobial resistance profile by disc diffusion revealed that non-susceptibility to tetracycline (78·8%), azithromycin (66·7%) and ciprofloxacin (57·6%) were the most commonly seen, and 84·9% of Salmonella isolates were classified as multi-drug resistant. This is the first study on prevalence and antimicrobial resistance of Salmonella infection among children in this setting. This work provides specific epidemiological data which are crucial to understand and combat paediatric diarrhoea in Iraq.

  11. The Potential Impact of Up-Front Drug Sensitivity Testing on India's Epidemic of Multi-Drug Resistant Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Kuldeep Singh Sachdeva

    Full Text Available In India as elsewhere, multi-drug resistance (MDR poses a serious challenge in the control of tuberculosis (TB. The End TB strategy, recently approved by the world health assembly, aims to reduce TB deaths by 95% and new cases by 90% between 2015 and 2035. A key pillar of this approach is early diagnosis of tuberculosis, including use of higher-sensitivity diagnostic testing and universal rapid drug susceptibility testing (DST. Despite limitations of current laboratory assays, universal access to rapid DST could become more feasible with the advent of new and emerging technologies. Here we use a mathematical model of TB transmission, calibrated to the TB epidemic in India, to explore the potential impact of a major national scale-up of rapid DST. To inform key parameters in a clinical setting, we take GeneXpert as an example of a technology that could enable such scale-up. We draw from a recent multi-centric demonstration study conducted in India that involved upfront Xpert MTB/RIF testing of all TB suspects.We find that widespread, public-sector deployment of high-sensitivity diagnostic testing and universal DST appropriately linked with treatment could substantially impact MDR-TB in India. Achieving 75% access over 3 years amongst all cases being diagnosed for TB in the public sector alone could avert over 180,000 cases of MDR-TB (95% CI 44187 - 317077 cases between 2015 and 2025. Sufficiently wide deployment of Xpert could, moreover, turn an increasing MDR epidemic into a diminishing one. Synergistic effects were observed with assumptions of simultaneously improving MDR-TB treatment outcomes. Our results illustrate the potential impact of new and emerging technologies that enable widespread, timely DST, and the important effect that universal rapid DST in the public sector can have on the MDR-TB epidemic in India.

  12. Copper bis(diphosphine) complexes: radiopharmaceuticals for the detection of multi-drug resistance in tumours by PET

    International Nuclear Information System (INIS)

    Lewis, J.S.; Dearling, J.L.S.; Blower, P.J.; Sosabowski, J.K.; Zweit, J.; Carnochan, P.; Kelland, L.R.; Coley, H.M.

    2000-01-01

    Experience with imaging of the multi-drug resistance (MDR) phenotype in tumours using technetium-99m sestamibi, a substrate of the P-glycoprotein (Pgp) transporter, suggests that better quantification of images and separation of MDR from other variables affecting tracer uptake in tumours are required. One approach to these problems is the development of short half-life positron-emitting tracers which are substrates of Pgp. Several lipophilic cationic copper(I) bis(diphosphine) complexes labelled with copper-64 have been synthesised and evaluated in vitro as substrates for Pgp. The synthesis is rapid and efficient with no need for purification steps. The chemistry is suitable for use with very short half-life radionuclides such as copper-62 (9.7 min) and copper-60 (23.7 min). Incubation of the complexes with human serum in vitro showed that they are sufficiently stable in serum to support clinical imaging, and the more lipophilic members of the series are taken up rapidly by cells (Chinese hamster ovary and human ovarian carcinoma) in vitro with great avidity. Uptake in human ovarian carcinoma cells is significantly reduced after several months of conditioning in the presence of doxorubicin, which induces increased Pgp expression. Uptake in hooded rat sarcoma (HSN) cells, which express Pgp, is significantly increased in the presence of the MDR modulator cyclosporin A. Biodistribution studies in hooded rats show rapid blood clearance, excretion through both kidneys and liver, and low uptake in other tissues. The one complex investigated in HSN tumour-bearing rats showed uptake in tumour increasing up to 30 min p.i. while it was decreasing in other tissues. We conclude that diphosphine ligands offer a good basis for development of radiopharmaceuticals containing copper radionuclides, and that this series of complexes should undergo further evaluation in vivo as positron emission tomography imaging agents for MDR. (orig.)

  13. Single photon emission computed tomography imaging using 99Tcm-methoxyisobutylisonitrile predict the multi-drug resistance and chemotherapy efficacy of lung cancer

    International Nuclear Information System (INIS)

    Zhang Yiqiu; Shi Hongcheng

    2008-01-01

    Chemotherapy is one of the main comprehensive treatments for lung cancer, especially for non-small cell lung cancer (NSCIC) Multi-drug resistance of lung cancer plays an important role in the failure of chemotherapy. Early detection of multi-drug resistance (MDR) is essential for choosing a suitable chemotherapy regimen for the patients of lung cancer. In recent years lots of literature reports that MDR of lung cancer is related to many kinds of multi-drug resistance protein (MRP) expression in lung cancer. Some lipophilic chemotherapy drugs and 99 Tc m -methoxyisobutylisonitrile( 99 Tc m -MIBI)may be the same substrate for some MRP. These MRP can transport them out of the tumor cells, then the chemotherapy is invalid or non-radioactive concentration. The retention of 99 Tc m -MIBI in tumor cells is correlated with the expression of MRP, thus the prediction of the MRP expression before chemotherapy or monitoring MRP expression changes in the process of chemotherapy by using the noninvasive 99 Tc m -MIBI single photon emission computed tomography imaging is helpful to predict the MDR and chemotherapy efficacy of lung cancer. (authors)

  14. A PROSPECTIVE, OBSERVATIONAL STUDY OF ADVERSE REACTIONS TO DRUG REGIME FOR MULTI-DRUG RESISTANT PULMONARY TUBERCULOSIS IN CENTRAL INDIA.

    Directory of Open Access Journals (Sweden)

    Dr. Rohan C. Hire

    2014-09-01

    Full Text Available Abstract Objective: 1 To assess the adverse drug reactions of second line anti-tubercular drugs used to treat Multi-drug resistant Tuberculosis (MDR TB in central India on the basis of causality, severity and avoidability scales. 2 To study the relationship of type of MDR TB (primary or secondary and presence of diabetes mellitus (DM with mean smear conversion time. Material and Methods: A prospective, observational study was carried out on diagnosed multidrug resistant tuberculosis patients enrolled for DOTS‑Plus regimen at TB and Chest Disease Department from January to December 2012. They were followed for 9 months thereafter and encountered adverse drug reactions (ADRs were noted along with the time of sputum conversion. The data were analysed by Chi-square or Fisher’s exact test and unpaired student’s‘t’ test. Results: Total 64 ADRs were reported in 55 patients out of total 110 patients (n = 110. As per the Naranjo causality assessment of ADRs, 7 patients had “definite” causal relation, 45 had “probable” causal relation and 3 had “possible” causal relation with drugs of DOTS Plus regime. As per the Hartwig’s severity assessment scale, there were total 7 ADRs in Level 1, 6 in Level 2, 33 in Level 3 and 9 in Level 4. Hallas avoidability assessment scale divided the ADRs as 3 being “Definitely avoidable”, 26 “Possibly avoidable”, 23 “Not avoidable” and 3 “unevaluable”. . Mean sputum smear conversion time is significantly higher in patients with secondary type than that of primary type of MDR TB (p = 0.0001 and in patients with DM than those without DM (p <0.0001. Conclusion: ADRs were common in patients of MDR TB on DOTs-Plus drug regime. It was due to lack of availability of safer and equally potent drugs in DOTs-Plus drug regime compared to DOTS regime in non-resistant TB. The frequency and severity of ADRs can be reduced by strict vigilance about known and unknown ADRs, monitoring their laboratory and

  15. Detection of low frequency multi-drug resistance and novel putative maribavir resistance in immunocompromised paediatric patients with cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Charlotte Jane Houldcroft

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed paediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks. Changes in consensus sequence and resistance mutations were analysed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54 and C480F (UL97. In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of eleven subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.

  16. Isolation of multi-drug resistant Paenibacillus sp. from fertile soil: An imminent menace of spreading resistance.

    Digital Repository Service at National Institute of Oceanography (India)

    Pednekar, P.B.; Jain, R.; Thakur, N.L.; Mahajan, G.B.

    There are a good number of reports in the literature stating spread of resistance from normal soil flora to nosocomial microorganism through various ways. Similarly during the study of antimicrobial susceptibility pattern in the microflora, a multi...

  17. Presence Of Multi Drug Resistant Coliform Bacteria Isolated From Biofilm Of Sachet And Borehole Waters Sold In Abakaliki Metropolis Ebonyi State Nigeria.

    Directory of Open Access Journals (Sweden)

    Okafor Collins Onyebuchi Okeke

    2015-06-01

    Full Text Available ABSTRACT This study investigated the presence of multi drug resistant coliform bacteria from biofilm of sachet and borehole waters sold in Abakaliki metropolis in Ebonyi State Nigeria. Five hundred 500 samples of water comprising 250 each from selected brand of sachet water retailers and borehole water dispensers from seven locations were sampled for the detection of coliform bacteria from biofilm and to determine their antimicrobial susceptibility using commercially prepared antibiotic discs. Results revealed a high faecal contamination level in sachet waters as Gospel 36 72 Aqua Rapha 30 60 and Bejoy 18 36 were the highest among the sachet water brands examined with Nene and Rock Tama sachet water brands having the lowest contamination level of 612 and 1326 respectively. Borehole samples results revealed that Aboffia had 27 76.93 samples contaminated with faecal bacteria while Azugwu 11 28.5 Azuiyiokwu 18 50 Azuiyiudene 2980 Kpirikpiri 24 66.63 PrescoNtezi 1646.15 and Udensi 22 61.54. Escherichia coli Enterobacter spp and Klebsiella spp were the major contaminants of both sachet and borehole water samples. The bacteria isolates from biofilm of sachet and borehole waters were susceptible to only three of the antibiotics used namely nitrofurantoin amoxycilin and ampicillin. The bacteria were completely resistant to ciprofloxacin tetracycline norbactinnorfloxacin ofloxacin cefuroxime and gentamicin. This showed that they exhibit multi-drug resistance pattern which is a common feature of medically important biofilm bacteria. We therefore report the presence of multi-drug resistant coliform bacteria from biofilm of sachet and borehole waters sold in Abakaliki metropolis Ebonyi State Nigeria.

  18. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    George Sakoulas

    Full Text Available We evaluated the in vitro activity of a merochlorin A, a novel compound with a unique carbon skeleton, against a spectrum of clinically relevant bacterial pathogens and against previously characterized clinical and laboratory Staphylococcus aureus isolates with resistance to numerous antibiotics.Merochlorin A was isolated and purified from a marine-derived actinomycete strain CNH189. Susceptibility testing for merochlorin A was performed against previously characterized human pathogens using broth microdilution and agar dilution methods. Cytotoxicity was assayed in tissue culture assays at 24 and 72 hours against human HeLa and mouse sarcoma L929 cell lines.The structure of as new antibiotic, merochlorin A, was assigned by comprehensive spectroscopic analysis. Merochlorin A demonstrated in vitro activity against Gram-positive bacteria, including Clostridium dificile, but not against Gram negative bacteria. In S. aureus, susceptibility was not affected by ribosomal mutations conferring linezolid resistance, mutations in dlt or mprF conferring resistance to daptomycin, accessory gene regulator knockout mutations, or the development of the vancomycin-intermediate resistant phenotype. Merochlorin A demonstrated rapid bactericidal activity against MRSA. Activity was lost in the presence of 20% serum.The unique meroterpenoid, merochlorin A demonstrated excellent in vitro activity against S. aureus and C. dificile and did not show cross-resistance to contemporary antibiotics against Gram positive organisms. The activity was, however, markedly reduced in 20% human serum. Future directions for this compound may include evaluation for topical use, coating biomedical devices, or the pursuit of chemically modified derivatives of this compound that retain activity in the presence of serum.

  19. Comparison of multi-drug resistant environmental methicillin-resistant Staphylococcus aureus [MRSA] isolated from recreational beaches and high touch surfaces in built environments

    Directory of Open Access Journals (Sweden)

    Marilyn C Roberts

    2013-04-01

    Full Text Available Over the last decade community-acquired methicillin-resistant Staphylococcus aureus [MRSA] has emerged as a major cause of disease in the general population with no health care exposure or known classical risk factors for MRSA infections. The potential community reservoirs have not been well defined though certain strains such as ST398 and USA300 have been well studied in some settings. MRSA has been isolated from recreational beaches, high-touch surfaces in homes, universities and other community environmental surfaces. However, in most cases the strains were not characterized to determine if they are related to community-acquired or hospital-acquired clinical strains. We compared 55 environmental MRSA from 805 samples including sand, fresh and marine water samples from local marine and fresh water recreational beaches (n=296, high touch surfaces on the University of Washington campus (n=294, surfaces in UW undergraduate housing (n=85, and the local community (n=130. Eleven USA300, representing 20% of the isolates, were found on the UW campus surfaces, student housing surfaces and on the community surfaces but not in the recreational beach samples from the Northwest USA. Similarly, the predominant animal ST133 was found in the recreational beach samples but not in the high touch surface samples. All USA300 isolates were multi-drug resistant carrying 2-6 different antibiotic resistance genes coding for kanamycin, macrolides and/or macrolides-lincosamides-streptogramin B and tetracycline, with the majority [72%] carrying 4-6 different antibiotic resistance genes. A surprising 98% of the 55 MRSA isolates were resistant to other classes of antibiotics and most likely represent reservoirs for these genes in the environment.

  20. Extensively and Pre-Extensively Drug Resistant Tuberculosis in Clinical Isolates of Multi-Drug Resistant Tuberculosis Using Classical Second Line Drugs (Levofloxacin and Amikacin)

    International Nuclear Information System (INIS)

    Mirza, I. A.; Khan, F. A.; Khan, K. A.; Satti, L.; Ghafoor, T.; Fayyaz, M.

    2015-01-01

    Objective:To find out the frequency of Extensively Drug Resistant (XDR) and pre-XDR tuberculosis in clinical isolates of Multi-Drug Resistant (MDR) Tuberculosis (TB) by determining the susceptibilities against Levofloxacin and Amikacin (classical second line antituberculosis drugs). Study Design: A descriptive cross-sectional study. Place and Duration of Study: Microbiology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from September 2011 to August 2013. Methodology: Amikacin (AK) and Levofloxacin (LEVO) were obtained in chemically pure form from Sigma (Taufkirchen, Germany). The breakpoint concentration used for AK was 1.0 micro g/ml and for LEVO 2.0 micro g/ml. Mycobacterial Growth Indicator Tube (MGIT) 960 system was used to carry out drug susceptibility testing as per recommended protocol. Results: A total of 3 MDR-TB isolates (3 percentage) turned out to be XDR-TB based upon simultaneous resistance to injectable second line antituberculosis drug AK and one of the fluoro-quinolones (LEVO). A total of 24 MDR-TB isolates (24 percentage) were found to be pre-XDR based upon resistance to LEVO alone. Treatment status record of patients with XDR and pre-XDRTB isolates revealed that majority of patients had received fluoroquinolones (FQs) during the course of treatment. Conclusion: XDR-TB has started to emerge in MDR-TB isolates in our set up. The worrying sign is the high frequency of pre-XDR tuberculosis. Urgent steps need to be taken to stem the tide of pre-XDR-TB in our population. It is thus recommended to develop facilities to carry out drug susceptibility testing to monitor the status of pre-XDR and XDR-TB in our population. (author)

  1. Potential public health significance of faecal contamination and multidrug-resistant Escherichia coli and Salmonella serotypes in a lake in India.

    Science.gov (United States)

    Abhirosh, C; Sherin, V; Thomas, A P; Hatha, A A M; Mazumder, A

    2011-06-01

    To assess the prevalence of faecal coliform bacteria and multiple drug resistance among Escherichia coli and Salmonella serotypes from Vembanadu Lake. Systematic microbiological testing. Monthly collection of water samples were made from ten stations on the southern and northern parts of a salt water regulator constructed in Vembanadu Lake in order to prevent incursion of seawater during certain periods of the year. Density of faecal colifrom bacteria was estimated. E. coli and Salmonella were isolated and their different serotypes were identified. Antibiotic resistance analysis of E. coli and Salmonella serotypes was done and the MAR index of individual isolates was calculated. Density of faecal coliform bacteria ranged from mean MPN value 2900 -7100/100ml. Results showed multiple drug resistance pattern among the bacterial isolates. E. coli showed more than 50% resistance to amickacin, oxytetracycline, streptomycin, tetracycline and kanamycin while Salmonella showed high resistance to oxytetracycline, streptomycin, tetracycline and ampicillin. The MAR indexing of the isolates showed that they have originated from high risk source such as humans, poultry and dairy cows. The high density of faecal coliform bacteria and prevalence of multi drug resistant E. coli and Salmonella serotypes in the lake may pose severe public health risk through related water borne and food borne outbreaks. Copyright © 2011 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. Specific Clinical Profile and Risk Factors for Mortality in General Surgery Patients with Infections by Multi-Drug-Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Rubio-Perez, Ines; Martin-Perez, Elena; Domingo-García, Diego; Garcia-Olmo, Damian

    2017-07-01

    The incidence of gram-negative multi-drug-resistant (MDR) infections is increasing worldwide. This study sought to determine the incidence, clinical profiles, risk factors, and mortality of these infections in general surgery patients. All general surgery patients with a clinical infection by gram-negative MDR bacteria were studied prospectively for a period of five years (2007-2011). Clinical, surgical, and microbiologic parameters were recorded, with a focus on the identification of risk factors for MDR infection and mortality. Incidence of MDR infections increased (5.6% to 15.2%) during the study period; 106 patients were included, 69.8% presented nosocomial infections. Mean age was 65 ± 15 years, 61% male. Extended-spectrum β-lactamases (ESBL) Escherichia coli was the most frequent MDR bacteria. Surgical site infections and abscesses were the most common culture locations. The patients presented multiple pre-admission risk factors and invasive measures during hospitalization. Mortality was 15%, and related to older age (odds ratio [OR] 1.07), malnutrition (OR 13.5), chronic digestive conditions (OR 4.7), chronic obstructive pulmonary disease (OR 3.9), and surgical re-intervention (OR 9.2). Multi-drug resistant infections in the surgical population are increasing. The most common clinical profile is a 65-year-old male, with previous comorbidities, who has undergone a surgical intervention, intensive care unit (ICU) admission, and invasive procedures and who has acquired the MDR infection in the nosocomial setting.

  3. Resident cats in small animal veterinary hospitals carry multi-drug resistant enterococci and are likely involved in cross-contamination of the hospital environment

    Directory of Open Access Journals (Sweden)

    Anuradha eGhosh

    2012-02-01

    Full Text Available In the U.S., small animal veterinary hospitals (SAVHs commonly keep resident cats living permanently as pets within their facilities. Previously, multi-drug resistant (MDR enterococci were found as a contaminant of multiple surfaces within such veterinary hospitals, and nosocomial infections are a concern. The objectives of this study were to determine whether resident cats carry MDR enterococci and if they potentially play a role in the contamination of the hospital environment. Enterococcal strains (n=180 were isolated from the feces of six healthy resident cats from different SAVHs. The concentration of enterococci ranged from 1.1 x 105 to 6.0 x 108 CFU g-1 of feces, and the population comprised E. hirae (38.3±18.6%, E. faecium (35.0±14.3%, E. faecalis (23.9±11.0%, and E. avium (2.8±2.2%. Testing of phenotypic resistance to 14 antimicrobial agents revealed multi-drug resistance (≥3 antimicrobials in 48.9% of all enterococcal isolates with most frequent resistance to tetracycline (72.8%, erythromycin (47.8%, and rifampicin (35.6%. Vancomycin resistant E. faecalis (3.9% with vanB not horizontally transferable in in vitro conjugation assays were detected from one cat. Genotyping (pulsed-field gel electrophoresis demonstrated a host-specific clonal population of MDR E. faecalis and E. faecium. Importantly, several feline isolates were genotypically identical or closely related to isolates from surfaces of cage door, thermometer, and stethoscope of the corresponding SAVHs. These data demonstrate that healthy resident cats at SAVHs carry MDR enterococci and likely contribute to contamination of the SAVH environment. Proper disposal and handling of fecal material and restricted movement of resident cats within the ward is recommended.

  4. Characterization of multi-drug resistant ESBL producing nonfermenter bacteria isolated from patients blood samples using phenotypic methods in Shiraz (Iran

    Directory of Open Access Journals (Sweden)

    Maneli Amin Shahidi

    2015-10-01

    Full Text Available Background and Aim: The emergence of  nonfermenter bacteria that are resistant to multidrug resistant ESBL  are  nowadays a principal problem  for hospitalized patients. The present study aimed at surveying the emergence of nonfermenter bacteria resistant to multi-drug ESBL producing isolated from patients blood samples using BACTEC 9240 automatic system in Shiraz. Materials and Methods: In this cross-sectional study, 4825 blood specimens were collected from hospitalized patients in Shiraz (Iran, and positive samples were detected by means of  BACTEC 9240 automatic system. The isolates  containing nonfermenter bacteria were identified based on biochemical tests embedded in the API-20E system. Antibiotic sensitivity  test was performed  and identification of  ESBL producing strains were done  using phenotypic detection of extended spectrum beta-lactamase producing isolates(DDST according to CLSI(2013 guidelines.   Results: Out of 4825 blood samples, 1145 (24% specimen were gram-positive using BACTEC system. Among all isolated microorganisms, 206 isolates were non-fermenting gram- negative bacteria. The most common non-fermenter isolates were Pseudomonas spp. (48%, Acinetobacter spp. (41.7% ,and Stenotrophomonas spp. (8.2%. Seventy of them (81.4% were  Acinetobacter spp. which were ESBL positive. Among &beta-lactam antibiotics, Pseudomonas spp. showed  the best sensitivity to piperacillin-tazobactam (46.5%.  Conclusion: It was found that  &beta-lactam antibiotics are not effective against more than 40% of Pseudomonas spp. infections and 78% Acinetobacter infections. Emergence of multi-drug resistant strains that are resistant to most antibiotic classes is a major public health problem in Iran. To resolve this problem using of practical guidelines is critical.

  5. Amoxicillin / Clavulanic Acid and Cefotaxime Resistance in Salmonella Minnesota and Salmonella Heidelberg from Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Rodrigues IBBE

    2017-10-01

    Full Text Available This study investigated the resistance of various Salmonella strains to beta-lactam antibiotics. Salmonella Minnesota (36 strains and Salmonella Heidelberg (24 strains were isolated from broiler chickens and carcasses by the Disk Diffusion Test and resistance genes blaCTX-M-8, blaACC-1 and blaCMY-2 were detected by PCR. Of the 60 strains tested, 80% were resistant to at least one antibiotic. Specifically, 66.7% were resistant to amoxicillin/clavulanic acid and 75% were resistant to cefotaxime. Among the amoxicillin/clavulanic acid resistant strains, the blaCMY-2 gene was detected in 40%, blaACC-1 in 37.5% and blaCTX-M-8 in 7.5%. Among the cefotaxime resistant strains, we detected the genes blaCTX-M-8 in 13.3%, blaACC-1 in 33.3%, and blaCMY-2 in 31.1%. The presence of cefotaxime- and amoxicillin/clavulanic acid-resistant Salmonella in poultry, and the prevalence of extended spectrum betalactamases and AmpC-betalactamases in these strains are of huge concern to public health and economy.

  6. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Science.gov (United States)

    2012-01-01

    Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR), and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC) of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN), a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY). Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria. PMID:22709668

  7. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Directory of Open Access Journals (Sweden)

    Voukeng Igor K

    2012-06-01

    Full Text Available Abstract Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR, and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN, a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY. Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria.

  8. Cost-Effectiveness of a Model Infection Control Program for Preventing Multi-Drug-Resistant Organism Infections in Critically Ill Surgical Patients.

    Science.gov (United States)

    Jayaraman, Sudha P; Jiang, Yushan; Resch, Stephen; Askari, Reza; Klompas, Michael

    2016-10-01

    Interventions to contain two multi-drug-resistant Acinetobacter (MDRA) outbreaks reduced the incidence of multi-drug-resistant (MDR) organisms, specifically methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile in the general surgery intensive care unit (ICU) of our hospital. We therefore conducted a cost-effective analysis of a proactive model infection-control program to reduce transmission of MDR organisms based on the practices used to control the MDRA outbreak. We created a model of a proactive infection control program based on the 2011 MDRA outbreak response. We built a decision analysis model and performed univariable and probabilistic sensitivity analyses to evaluate the cost-effectiveness of the proposed program compared with standard infection control practices to reduce transmission of these MDR organisms. The cost of a proactive infection control program would be $68,509 per year. The incremental cost-effectiveness ratio (ICER) was calculated to be $3,804 per aversion of transmission of MDR organisms in a one-year period compared with standard infection control. On the basis of probabilistic sensitivity analysis, a willingness-to-pay (WTP) threshold of $14,000 per transmission averted would have a 42% probability of being cost-effective, rising to 100% at $22,000 per transmission averted. This analysis gives an estimated ICER for implementing a proactive program to prevent transmission of MDR organisms in the general surgery ICU. To better understand the causal relations between the critical steps in the program and the rate reductions, a randomized study of a package of interventions to prevent healthcare-associated infections should be considered.

  9. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs).

    Science.gov (United States)

    Naderi, Atiyeh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Imani Fooladi, Abbas Ali; Abdollahpour Alitappeh, Meghdad; Saffarian, Parvaneh

    2014-03-01

    Urinary tract infection (UTI) caused by bacteria is one of the most frequent infections in human population. Inappropriate use of antibiotics, often leads to appearance of drug resistance in bacteria. However, use of probiotic bacteria has been suggested as a partial replacement. This study was aimed to assess the antagonistic effects of Lactobacillus standard strains against bacteria isolated from UTI infections. Among 600 samples; those with ≥10,000 cfu/ml were selected as UTI positive samples. Enterococcus sp., Klebsiella pneumoniae, Enterobacter sp., and Escherichia coli were found the most prevalent UTI causative agents. All isolates were screened for multi drug resistance and subjected to the antimicrobial effects of three Lactobacillus strains by using microplate technique and the MICs amounts were determined. In order to verify the origin of antibiotic resistance of isolates, plasmid curing using ethidium bromide and acridine orange was carried out. No antagonistic activity in Lactobacilli suspension was detected against test on Enterococcus and Enterobacter strains and K. pneumoniae, which were resistant to most antibiotics. However, an inhibitory effect was observed for E. coli which were resistant to 8-9 antibiotics. In addition, L. casei was determined to be the most effective probiotic. RESULTS from replica plating suggested one of the plasmids could be related to the gene responsible for ampicillin resistance. Treatment of E. coli with probiotic suspension was not effective on inhibition of the plasmid carrying hypothetical ampicillin resistant gene. Moreover, the plasmid profiles obtained from probiotic-treated isolates were identical to untreated isolates.

  10. Antibiotic resistant Salmonella and Escherichia coli isolated from ...

    African Journals Online (AJOL)

    Results: A hundred and four indigenous chicken rectal swabs were analysed, of which 67.3% were contaminated with Escherichia coli and 12.5% with Salmonella typhimurium. Seventy Escherichia coli isolates showed resistance phenotypes to one, two or more antibiotics. The most common antimicrobial resistance pattern ...

  11. Antimicrobial resistance of fecal isolates of salmonella and shigella ...

    African Journals Online (AJOL)

    Salmonellosis and Shigellosis coupled with increased levels of multidrug resistances are public health problems, especially in developing countries. This study was aimed at determining the prevalence of fecal Salmonella and Shigella spp and its antimicrobial resistance patterns. A retrospective study was conducted on ...

  12. Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient

    Science.gov (United States)

    2012-01-01

    Background Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. Results The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. Conclusions The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized

  13. Molecular detection of multi drug resistant tuberculosis (mdr-tb) in mdr-tb patients' attendant in north western pakistan

    International Nuclear Information System (INIS)

    Shah, T.; Hayat, A.; Shah, Z.; Hayat, A.; Khan, S.B.

    2017-01-01

    Objective: To determine the drugs susceptibility pattern of mycobacterium tuberculosis (M.TB) in multi-drug resistant tuberculosis (MDR-TB) patients' attendants in North Western, Pakistan. Study Design: Cross sectional study. Place and Duration of Study: This study was conducted at Peshawar Tuberculosis Research Laboratory (PTRL), Provincial TB Control Program Hayatabad Medical Complex Peshawar, (KP) from August 2013 to March 2014. Material and Methods: A cross sectional study in which four hundred and eighty sputum samples from MDR-TB patients' attendants were processed for the detection of M.TB through Ziehl-Neelsen staining, Lowenstein-Jensen, BACTEC MGIT-960 culture and line probe assay. Results: Out of 480 samples, 06 (2.1%) were found positive for M.TB through Ziehl-Neelsen staining while 10 (2.8%) were positive through LJ and BACTEC MGIT-960 culture. The 10 positive samples were further subjected to drugs susceptibility testing and line probes assay test to find out rifampicin, isoniazid, streptomycin and ethambutol resistant and it was found that 6 M.TB isolates were resistant while 4 were sensitive to rifampicin and isoniazid. Among the 6 resistant M.TB strains, 4 showed mutation in rpoB gene at 531, 516 and 526 codons. Conclusion: Majority of MDR-TB patients' attendants had drug-resistant tuberculosis and the rate of drug susceptible TB was low. (author)

  14. Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Sanjoy Banerjee

    2012-01-01

    Full Text Available Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%, V. mimicus (16.7%, V. parahaemolyticus (10%, V. vulnificus (6.7%, and V. alginolyticus (1.7%. Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.

  15. Salmonella

    Science.gov (United States)

    ... Compartir Find out about Salmonella infections linked to Kellogg’s Honey Smacks Cereal Find out about Salmonella infections ... Outbreaks Multistate Outbreak of Salmonella Infections Linked to Kellogg’s Honey Smacks Cereal Multistate Outbreak of Salmonella Adelaide ...

  16. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    Directory of Open Access Journals (Sweden)

    Nachiket P Marathe

    insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure.

  17. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  18. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    Science.gov (United States)

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-07-25

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.

  19. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain.

    Science.gov (United States)

    Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6')-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.

  20. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain.

    Directory of Open Access Journals (Sweden)

    Marc Solà-Ginés

    Full Text Available Avian pathogenic Escherichia coli (APEC are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE and multi-locus sequence typing (MLST. The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6'-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.

  1. drug resistant strains of Salmonella enterica

    African Journals Online (AJOL)

    Conclusions: The aqueous extract of Thonningia sanguinea can provide an alternative therapy for the treatment of salmonellosis, mainly for typhoid fever caused by MDR strains of S. Typhi.The extract also inhibits S.Hadar a MDR emerging strain in Ivory Coast. Keywords: Thonningia sanguinea; Salmonella, MDR strains, ...

  2. Antimicrobial Resistance of Enteric Salmonella in Bangui, Central African Republic

    Directory of Open Access Journals (Sweden)

    Christian Diamant Mossoro-Kpinde

    2015-01-01

    Full Text Available Introduction. The number of Salmonella isolated from clinical samples that are resistant to multiple antibiotics has increased worldwide. The aim of this study was to determine the prevalence of resistant Salmonella enterica isolated in Bangui. Methods. All enteric Salmonella strains isolated from patients in 2008 were identified and serotyped, and the phenotypes of resistance were determined by using the disk diffusion method. Nine resistance-associated genes, blaTEM, blaOXA, blaSHV, tetA, aadA1, catA1, dhfrA1, sul I, and sul II, were sought by genic amplification in seven S.e. Typhimurium strains. Results. The 94 strains isolated consisted of 47 S.e. Typhimurium (50%, 21 S.e. Stanleyville (22%, 18 S.e. Enteritidis (19%, 4 S.e. Dublin (4%, 4 S.e. Hadar (4%, and 1 S.e. Papuana (1%. Twenty-five (28% were multiresistant, including 20 of the Typhimurium serovar (80%. Two main phenotypes of resistance were found: four antibiotics (56% and to five antibiotics (40%. One S.e. Typhimurium isolate produced an extended-spectrum β-lactamase (ESBL. Only seven strains of S.e. Typhimurium could be amplified genically. Only phenotypic resistance to tetracycline and aminosides was found. Conclusion. S. Typhimurium is the predominant serovar of enteric S. enterica and is the most widely resistant. The search for resistance genes showed heterogeneity of the circulating strains.

  3. Multi-clonal evolution of multi-drug-resistant/extensively drug-resistant Mycobacterium tuberculosis in a high-prevalence setting of Papua New Guinea for over three decades

    Science.gov (United States)

    Bainomugisa, Arnold; Lavu, Evelyn; Hiashiri, Stenard; Majumdar, Suman; Honjepari, Alice; Moke, Rendi; Dakulala, Paison; Hill-Cawthorne, Grant A.; Pandey, Sushil; Marais, Ben J.; Coulter, Chris; Coin, Lachlan

    2018-01-01

    An outbreak of multi-drug resistant (MDR) tuberculosis (TB) has been reported on Daru Island, Papua New Guinea. Mycobacterium tuberculosis strains driving this outbreak and the temporal accrual of drug resistance mutations have not been described. Whole genome sequencing of 100 of 165 clinical isolates referred from Daru General Hospital to the Supranational reference laboratory, Brisbane, during 2012–2015 revealed that 95 belonged to a single modern Beijing sub-lineage strain. Molecular dating suggested acquisition of streptomycin and isoniazid resistance in the 1960s, with potentially enhanced virulence mediated by an mycP1 mutation. The Beijing sub-lineage strain demonstrated a high degree of co-resistance between isoniazid and ethionamide (80/95; 84.2 %) attributed to an inhA promoter mutation combined with inhA and ndh coding mutations. Multi-drug resistance, observed in 78/95 samples, emerged with the acquisition of a typical rpoB mutation together with a compensatory rpoC mutation in the 1980s. There was independent acquisition of fluoroquinolone and aminoglycoside resistance, and evidence of local transmission of extensively drug resistant (XDR) strains from 2009. These findings underline the importance of whole genome sequencing in informing an effective public health response to MDR/XDR TB. PMID:29310751

  4. Characteristics of plasmids in multi-drug-resistant enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq

    Science.gov (United States)

    Multidrug-resistant (MDR) bacteria such as Escherichia coli and Klebsiella spp. are increasingly common causes of infections in hospitals worldwide and also in the U.S. military treatment facilities. Plasmids are thought to play an important role in the dissemination of antibiotic resistance in thes...

  5. Antibiotic resistant Salmonella and Escherichia coli isolated from ...

    African Journals Online (AJOL)

    Objective: To characterise and investigate antimicrobial resistance of Esherichia coli and salmonella strains isolated from indigenous Gallus gallus in a leading slaughterhouse/market outlet in Nairobi-Kenya. Design: A repeated cross sectional study and based on random sampling was used. Setting: The study was carried ...

  6. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Ansari, Mohammad A; Khan, Haris M; Alzohairy, Mohammad A; Jalal, Mohammad; Ali, Syed G; Pal, Ruchita; Musarrat, Javed

    2015-01-01

    -β-lactamases strains of P. aeruginosa, regardless of their drug resistance patterns and mechanisms. The results elucidated the clinical significance of Al2O3-NPs in developing an effective antibacterial therapeutic regimen against the multi-drug resistant bacterial infections. The use of leaf extract of lemongrass for the synthesis of Al2O3-NPs appears to be cost effective, nontoxic, eco-friendly and its strong antibacterial activity against multi-drug resistant strains of P. aeruginosa offers compatibility for pharmaceutical and other biomedical applications.

  7. HIV multi-drug resistance at first-line antiretroviral failure and subsequent virological response in Asia

    OpenAIRE

    Jiamsakul, Awachana; Sungkanuparph, Somnuek; Law, Matthew; Kantor, Rami; Praparattanapan, Jutarat; Li, Patrick CK; Phanuphak, Praphan; Merati, Tuti; Ratanasuwan, Winai; Lee, Christopher KC; Ditangco, Rossana; Mustafa, Mahiran; Singtoroj, Thida; Kiertiburanakul, Sasisopin

    2014-01-01

    Introduction: First-line antiretroviral therapy (ART) failure often results from the development of resistance-associated mutations (RAMs). Three patterns, including thymidine analogue mutations (TAMs), 69 Insertion (69Ins) and the Q151M complex, are associated with resistance to multiple-nucleoside reverse transcriptase inhibitors (NRTIs) and may compromise treatment options for second-line ART. Methods: We investigated patterns and factors associated with multi-NRTI RAMs at first-line failu...

  8. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    OpenAIRE

    Hercules Sakkas; Panagiota Gousia; Vangelis Economou; Vassilios Sakkas; Stefanos Petsios; Chrissanthy Papadopoulou

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneum...

  9. Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq.

    Directory of Open Access Journals (Sweden)

    Xiao-Zhe Huang

    Full Text Available BACKGROUND: Gram-negative multidrug-resistant (MDR bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38 and randomly selected non-MDR counterparts (n = 41 isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3 plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01. Various large plasmids (~52 to 100 kb from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA, β-lactam (bla(TEM1, bla(AMPC, bla(CTX-M-15, bla(OXA-1, bla(VIM-2 and bla(SHV, sulfamethoxazole/trimethoprim (sul/dfr, tetracycline (tet and chloramphenicol (cat resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary

  10. MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates

    Directory of Open Access Journals (Sweden)

    Katrina eBrudzynski

    2015-07-01

    Full Text Available The emergence of extended- spectrum β-lactamase (ESBL is the underlying cause of growing antibiotic resistance among Gram-negative bacteria to β-lactam antibiotics. We recently reported the discovery of honey glycoproteins (glps that exhibited a rapid, concentration-dependent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli that resembled action of cell wall-active β-lactam drugs. Glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1 precursor that harbors three antimicrobial peptides: Jelleins 1, 2 and 4. Here, we used semi-quantitative radial diffusion assay and broth microdilution assay to evaluate susceptibility of a number of multi-drug resistant (MDR clinical isolates to the MRJP1-contaning honey glycoproteins. The MDR bacterial strains comprised 3 MRSA, 4 Pseudomonas aeruginosa, 2 Klebsiella pneumoniae, 2 VRE and 5 Extended-spectrum beta-lactamase (ESBL identified as 1 Proteus mirabilis, 3 Escherichia coli and 1 Escherichia coli NDM. Their resistance to different classes of antibiotics was confirmed using automated system Vitek 2. MDR isolates differred in their susceptibility to glps with MIC90 values ranging from 4.8μg/ml against B. subtilis to 14.4μg/ml against ESBL K. pneumoniae, Klebsiella spp ESBL and E. coli and up to 33μg/ml against highly resistant strains of P. aeruginosa. Glps isolated from different honeys showed a similar ability to overcome bacterial resistance to β-lactams suggesting that (a their mode of action is distinct from other classes of β-lactams and that (b the common glps structure was the lead structure responsible for the activity. The results of the current study together with our previous evidence of a rapid bactericidal activity of glps demonstrate that glps possess suitable characteristics to be considered a novel antibacterial drug candidate.

  11. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean

    2016-09-01

    The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.

  12. Increasing quinolone resistance in Salmonella enterica serotype enteritidis

    DEFF Research Database (Denmark)

    Mølbak, K.; Gerner-Smidt, P.; Wegener, Henrik Caspar

    2002-01-01

    Until recently, Salmonella enterica serotype Enteritidis has remained sensitive to most antibiotics. However, national surveillance data from Denmark show that quinolone resistance in S. Enteritidis has increased from 0.8% in 1995 to 8.5% in 2000. These data support concerns that the current use...... of quinolone in food animals leads to increasing resistance in S. Enteritidis and that action should be taken to limit such use....

  13. A data-driven mathematical model of multi-drug resistant Acinetobacter baumannii transmission in an intensive care unit

    NARCIS (Netherlands)

    Wang, Xia; Chen, Yong; Zhao, Wei; Wang, Yan; Song, Qing; Liu, Hui; Zhao, Jingya; Han, Xuelin; Hu, Xiaohua; Grundmann, Hajo; Xiao, Yanni; Han, Li

    2015-01-01

    Major challenges remain when attempting to quantify and evaluate the impacts of contaminated environments and heterogeneity in the cohorting of health care workers (HCWs) on hospital infections. Data on the detection rate of multidrug-resistant Acinetobacter baumannii (MRAB) in a Chinese intensive

  14. [Thin layer agar represents a cost-effective alternative for the rapid diagnosis of multi-drug resistant tuberculosis].

    Science.gov (United States)

    Hernández-Sarmiento, José M; Martínez-Negrete, Milton A; Castrillón-Velilla, Diana M; Mejía-Espinosa, Sergio A; Mejía-Mesa, Gloria I; Zapata-Fernández, Elsa M; Rojas-Jiménez, Sara; Marín-Castro, Andrés E; Robledo-Restrepo, Jaime A

    2014-01-01

    Using cost-benefit analysis for comparing the thin-layer agar culture method to the standard multiple proportion method used in diagnosing multidrug-resistant tuberculosis (MDR TB). A cost-benefit evaluation of two diagnostic tests was made at the Corporación para Investigaciones Biológicas (CIB) in Medellín, Colombia. 100 patients were evaluated; 10.8% rifampicin resistance and 14.3% isoniazid resistance were found. A computer-based decision tree model was used for cost-effectiveness analysis (Treeage Pro); the thin-layer agar culture method was most cost-effective, having 100% sensitivity, specificity and predictive values for detecting rifampicin and isoniazid resistance. The multiple proportion method value was calculated as being US$ 71 having an average 49 day report time compared to US$ 18 and 14 days for the thin-layer agar culture method. New technologies have been developed for diagnosing tuberculosis which are apparently faster and more effective; their operating characteristics must be evaluated as must their effectiveness in terms of cost-benefit. The present study established that using thin-layer agar culture was cheaper, equally effective and could provide results more quickly than the traditional method. This implies that a patient could receive MDR TB treatment more quickly.

  15. Impact of single room design on the spread of multi-drug resistant bacteria in an intensive care unit.

    NARCIS (Netherlands)

    Halaby, Teysir; Al Naiemi, Nashwan; Beishuizen, Bert; Verkooijen, Roel; Ferreira, José A; Klont, Rob; Vandenbroucke-Grauls, Christina

    2017-01-01

    Cross-transmission of nosocomial pathogens occurs frequently in intensive care units (ICU). The aim of this study was to investigate whether the introduction of a single room policy resulted in a decrease in transmission of multidrug-resistant (MDR) bacteria in an ICU.

  16. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    Directory of Open Access Journals (Sweden)

    Hercules Sakkas

    2016-09-01

    Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive or resistant and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. [J Complement Med Res 2016; 5(3.000: 212-218

  17. Fission yeast 26S proteasome mutants are multi-drug resistant due to stabilization of the Pap1transcription factor

    DEFF Research Database (Denmark)

    Penney, Mary; Samejima, Itaru; Wilkinson, Caroline

    2012-01-01

    Here we report the result of a genetic screen for mutants resistant to the microtubule poison methyl benzimidazol-2-yl carbamate (MBC) that were also temperature sensitive for growth. In total the isolated mutants were distributed in ten complementation groups. Cloning experiments revealed...

  18. Prevalence and occurrence rate of Mycobacterium tuberculosis Haarlem family multi-drug resistant in the worldwide population: A systematic review and meta-analysis

    Science.gov (United States)

    Ramazanzadeh, Rashid; Roshani, Daem; Shakib, Pegah; Rouhi, Samaneh

    2015-01-01

    Background: Transmission of Mycobacterium tuberculosis (M. tuberculosis) can occur in different ways. Furthermore, drug resistant in M. tuberculosis family is a major problem that creates obstacles in treatment and control of tuberculosis (TB) in the world. One of the most prevalent families of M. tuberculosis is Haarlem, and it is associated with drug resistant. Our objectives of this study were to determine the prevalence and occurrence rate of M. tuberculosis Haarlem family multi-drug resistant (MDR) in the worldwide using meta-analysis based on a systematic review that performed on published articles. Materials and Methods: Data sources of this study were 78 original articles (2002-2012) that were published in the literatures in several databases including PubMed, Science Direct, Google Scholar, Biological abstracts, ISI web of knowledge and IranMedex. The articles were systematically reviewed for prevalence and rate of MDR. Data were analyzed using meta-analysis and random effects models with the software package Meta R, Version 2.13 (P < 0.10). Results: Final analysis included 28601 persons in 78 articles. The highest and lowest occurrence rate of Haarlem family in M. tuberculosis was in Hungary in 2006 (66.20%) with negative MDR-TB and in China in 2010 (0.8%), respectively. From 2002 to 2012, the lowest rate of prevalence was in 2010, and the highest prevalence rate was in 2012. Also 1.076% were positive for MDR and 9.22% were negative (confidence interval: 95%).0020. Conclusion: Many articles and studies are performed in this field globally, and we only chose some of them. Further studies are needed to be done in this field. Our study showed that M. tuberculosis Haarlem family is prevalent in European countries. According to the presence of MDR that was seen in our results, effective control programs are needed to control the spread of drug-resistant strains, especially Haarlem family. PMID:25767526

  19. Evaluation of GenoType® MTBDRplus assay for rapid detection of drug susceptibility testing of multi-drug resistance tuberculosis in Northern India

    Directory of Open Access Journals (Sweden)

    Anand Kumar Maurya

    2013-01-01

    Full Text Available Background: The problem of multi-drug resistance tuberculosis (MDR-TB is growing in several hotspots throughout the world. Rapid and accurate diagnosis of MDR-TB is crucial to facilitate early treatment and to reduce its spread in the community. The aim of the present study was to evaluate the new, novel GenoType® MTBDRplus assay for rapid detection of drug susceptibility testing (DST of MDR-TB cases in Northern India. Materials and Methods: A total of 550 specimens were collected from highly suspected drug resistant from pulmonary and extra-pulmonary TB cases. All the specimens were processed by Ziehl- Neelsen staining, culture, differentiation by the GenoType® CM assay, first line DST using BacT/ALERT 3D system and GenoType® MTBDRplus assay. The concordance of the GenoType® MTBDRplus assay was calculated in comparison with conventional DST results. Results: Overall the sensitivity for detection of rifampicin, isoniazid and MDR-TB resistance by GenoType® MTBDRplus assay was 98.0%, 98.4% and 98.2% respectively. Out of 55 MDR-TB strains, 45 (81.8%, 52 (94.5% and 17 (30.9% strains showed mutation in rpoB, katG and inhA genes respectively (P < 0.05. The most prominent mutations in rpoB, katG and inhA genes were; 37 (67.3% in S531L, 52 (94.5% in S315T1 and 11 (20% in C15T regions respectively (P < 0.05. Conclusions: Our study demonstrated a high concordance between the GenoType® MTBDRplus assay resistance patterns and those were observed by conventional DST with good sensitivity, specificity with short turnaround times and to control new cases of MDR-TB in countries with a high prevalence of MDR-TB.

  20. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp.

    Science.gov (United States)

    Subramani, Ramesh; Kumar, Rohitesh; Prasad, Pritesh; Aalbersberg, William; Retheesh, S T

    2013-04-01

    To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites.

  1. Prevalence and occurrence rate of Mycobacterium tuberculosis Haarlem family multi-drug resistant in the worldwide population: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Rashid Ramazanzadeh

    2015-01-01

    Full Text Available Background: Transmission of Mycobacterium tuberculosis (M. tuberculosis can occur in different ways. Furthermore, drug resistant in M. tuberculosis family is a major problem that creates obstacles in treatment and control of tuberculosis (TB in the world. One of the most prevalent families of M. tuberculosis is Haarlem, and it is associated with drug resistant. Our objectives of this study were to determine the prevalence and occurrence rate of M. tuberculosis Haarlem family multi-drug resistant (MDR in the worldwide using meta-analysis based on a systematic review that performed on published articles. Materials and Methods: Data sources of this study were 78 original articles (2002-2012 that were published in the literatures in several databases including PubMed, Science Direct, Google Scholar, Biological abstracts, ISI web of knowledge and IranMedex. The articles were systematically reviewed for prevalence and rate of MDR. Data were analyzed using meta-analysis and random effects models with the software package Meta R, Version 2.13 (P < 0.10. Results: Final analysis included 28601 persons in 78 articles. The highest and lowest occurrence rate of Haarlem family in M. tuberculosis was in Hungary in 2006 (66.20% with negative MDR-TB and in China in 2010 (0.8%, respectively. From 2002 to 2012, the lowest rate of prevalence was in 2010, and the highest prevalence rate was in 2012. Also 1.076% were positive for MDR and 9.22% were negative (confidence interval: 95%.0020. Conclusion: Many articles and studies are performed in this field globally, and we only chose some of them. Further studies are needed to be done in this field. Our study showed that M. tuberculosis Haarlem family is prevalent in European countries. According to the presence of MDR that was seen in our results, effective control programs are needed to control the spread of drug-resistant strains, especially Haarlem family.

  2. Profile of Virulence Factors in the Multi-Drug Resistant Pseudomonas aeruginosa Strains of Human Urinary Tract Infections (UTI).

    Science.gov (United States)

    Habibi, Asghar; Honarmand, Ramin

    2015-12-01

    Putative virulence factors are responsible for the pathogenicity of UTIs caused by Pseudomonas aeruginosa (P. aeruginosa). Resistance of P. aeruginosa to commonly used antibiotics is caused by the extreme overprescription of those antibiotics. The goal of the present study was to investigate the prevalence of virulence factors and the antibiotic resistance patterns of P. aeruginosa isolates in UTI cases in Iran. Two hundred and fifty urine samples were collected from patients who suffered from UTIs. Samples were cultured immediately, and those that were P. aeruginosa-positive were analyzed for the presence of virulence genes using polymerase chain reaction (PCR) testing. Antimicrobial susceptibility testing (AST) was performed using the disk diffusion method. Of the 250 urine samples analyzed, 8 samples (3.2%) were positive for P. aeruginosa. The prevalence of P. aeruginosa in male and female patients was 2.7% and 3.5%, respectively, (P = 0.035). In patients less than 10 years old, it was 4.2%, and in patients more than 55 years old, it was 4.2%. These were the most commonly infected groups. The highest levels of resistance were seen against ampicillin (87.5%), norfloxacin (62.5%), gentamycin (62.5%), amikacin (62.5%), and aztreonam (62.5%), while the lowest were seen for meropenem (0%), imipenem (12.5%), and polymyxin B (12.5%). LasB (87.5%), pclH (75%), pilB (75%), and exoS (75%) were the most commonly detected virulence factors in the P. aeruginosa isolates. It is logical to first prescribe meropenem, imipenem, and polymyxin B in cases of UTIs caused by P. aeruginosa. Medical practitioners should be aware of the presence of levels of antibiotic resistance in hospitalized UTI patients in Iran.

  3. Multi drug resistance and Extended Spectrum Beta Lactamases in clinical isolates of Shigella: A study from New Delhi, India.

    Science.gov (United States)

    Aggarwal, Prabhav; Uppal, Beena; Ghosh, Roumi; Krishna Prakash, S; Chakravarti, Anita; Jha, Arun Kumar; Rajeshwari, Krishnan

    2016-01-01

    Shigella is an important cause of gastroenteritis in local Indian population, as well as of traveler's diarrhea in the international visitors to India. These patients often require appropriate antimicrobial therapy; however, rapid development of antimicrobial resistance poses a major hurdle in achieving this goal. A prospective study was conducted during 2009-12 in New Delhi, India, including 6339 stool samples from gastroenteritis patients. 121 Shigella strains were identified on the basis of colony morphology, biochemical reactions, serotyping and ipaH gene based PCR. Antimicrobial susceptibility testing by disc diffusion, MIC determination by Vitek(®) 2 and phenotypic tests for ESBL/AmpC production were done. Nineteen percent strains (23/121) were found to be resistant to third generation cephalosporins and all were phenotypically confirmed to be ESBL producers; one strain was positive for AmpC. ESBL producing strains were also found to be significantly more resistant (p Shigella is a matter of concern for the local population as well as international travelers. Therefore, better national level antimicrobial management programs are the priority needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Antibiotic resistance, integrons and Salmonella genomic island 1 among non-typhoidal Salmonella serovars in The Netherlands.

    NARCIS (Netherlands)

    Vo, An T T; Duijkeren, Engeline van; Fluit, Ad C; Wannet, Wim J B; Verbruggen, Anjo J; Maas, Henny M E; Gaastra, Wim

    2006-01-01

    The objective of this study was to investigate the antimicrobial resistance patterns, integron characteristics and gene cassettes as well as the presence of Salmonella genomic island 1 (SGI1) in non-typhoidal Salmonella (NTS) isolates from human and animal origin. Epidemiologically unrelated Dutch

  5. HIV multi-drug resistance at first-line antiretroviral failure and subsequent virological response in Asia.

    Science.gov (United States)

    Jiamsakul, Awachana; Sungkanuparph, Somnuek; Law, Matthew; Kantor, Rami; Praparattanapan, Jutarat; Li, Patrick C K; Phanuphak, Praphan; Merati, Tuti; Ratanasuwan, Winai; Lee, Christopher K C; Ditangco, Rossana; Mustafa, Mahiran; Singtoroj, Thida; Kiertiburanakul, Sasisopin

    2014-01-01

    First-line antiretroviral therapy (ART) failure often results from the development of resistance-associated mutations (RAMs). Three patterns, including thymidine analogue mutations (TAMs), 69 Insertion (69Ins) and the Q151M complex, are associated with resistance to multiple-nucleoside reverse transcriptase inhibitors (NRTIs) and may compromise treatment options for second-line ART. We investigated patterns and factors associated with multi-NRTI RAMs at first-line failure in patients from The TREAT Asia Studies to Evaluate Resistance - Monitoring study (TASER-M), and evaluated their impact on virological responses at 12 months after switching to second-line ART. RAMs were compared with the IAS-USA 2013 mutations list. We defined multi-NRTI RAMs as the presence of either Q151M; 69Ins; ≥ 2 TAMs; or M184V+≥ 1 TAM. Virological suppression was defined as viral load (VL) failure and (2) factors associated with virological suppression after 12 months on second-line. A total of 105 patients from 10 sites in Thailand, Hong Kong, Indonesia, Malaysia and Philippines were included. There were 97/105 (92%) patients harbouring ≥ 1 RAMs at first-line failure, 39/105 with multi-NRTI RAMs: six with Q151M; 24 with ≥ 2 TAMs; and 32 with M184V+≥ 1 TAM. Factors associated with multi-NRTI RAMs were CD4 ≤ 200 cells/µL at genotyping (OR=4.43, 95% CI [1.59-12.37], p=0.004) and ART duration >2 years (OR=6.25, 95% CI [2.39-16.36], pfailure were associated with low CD4 level and longer duration of ART. With many patients switching to highly susceptible regimens, good adherence was still crucial in achieving virological response. This emphasizes the importance of continued adherence counselling well into second-line therapy.

  6. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs.

    Directory of Open Access Journals (Sweden)

    Mohamed F Mohamed

    Full Text Available Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan with minimum inhibitory concentration50 (MIC50 of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide and IK8 "D isoform" demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF3K (two cell penetrating peptides were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin

  7. HIV multi-drug resistance at first-line antiretroviral failure and subsequent virological response in Asia

    Science.gov (United States)

    Jiamsakul, Awachana; Sungkanuparph, Somnuek; Law, Matthew; Kantor, Rami; Praparattanapan, Jutarat; Li, Patrick CK; Phanuphak, Praphan; Merati, Tuti; Ratanasuwan, Winai; Lee, Christopher KC; Ditangco, Rossana; Mustafa, Mahiran; Singtoroj, Thida; Kiertiburanakul, Sasisopin

    2014-01-01

    Introduction First-line antiretroviral therapy (ART) failure often results from the development of resistance-associated mutations (RAMs). Three patterns, including thymidine analogue mutations (TAMs), 69 Insertion (69Ins) and the Q151M complex, are associated with resistance to multiple-nucleoside reverse transcriptase inhibitors (NRTIs) and may compromise treatment options for second-line ART. Methods We investigated patterns and factors associated with multi-NRTI RAMs at first-line failure in patients from The TREAT Asia Studies to Evaluate Resistance – Monitoring study (TASER-M), and evaluated their impact on virological responses at 12 months after switching to second-line ART. RAMs were compared with the IAS-USA 2013 mutations list. We defined multi-NRTI RAMs as the presence of either Q151M; 69Ins; ≥2 TAMs; or M184V+≥1 TAM. Virological suppression was defined as viral load (VL) Malaysia and Philippines were included. There were 97/105 (92%) patients harbouring ≥1 RAMs at first-line failure, 39/105 with multi-NRTI RAMs: six with Q151M; 24 with ≥2 TAMs; and 32 with M184V+≥1 TAM. Factors associated with multi-NRTI RAMs were CD4 ≤200 cells/µL at genotyping (OR=4.43, 95% CI [1.59–12.37], p=0.004) and ART duration >2 years (OR=6.25, 95% CI [2.39–16.36], p<0.001). Among 87/105 patients with available VL at 12 months after switch to second-line ART, virological suppression was achieved in 85%. The median genotypic susceptibility score (GSS) for the second-line regimen was 2.00. Patients with ART adherence ≥95% were more likely to be virologically suppressed (OR=9.33, 95% CI (2.43–35.81), p=0.001). Measures of patient resistance to second-line ART, including the GSS, were not significantly associated with virological outcome. Conclusions Multi-NRTI RAMs at first-line failure were associated with low CD4 level and longer duration of ART. With many patients switching to highly susceptible regimens, good adherence was still crucial in achieving

  8. Expression of multi-drug resistance-related genes MDR3 and MRP as prognostic factors in clinical liver cancer patients.

    Science.gov (United States)

    Yu, Zheng; Peng, Sun; Hong-Ming, Pan; Kai-Feng, Wang

    2012-01-01

    To investigate the expression of multi-drug resistance-related genes, MDR3 and MRP, in clinical specimens of primary liver cancer and their potential as prognostic factors in liver cancer patients. A total of 26 patients with primary liver cancer were enrolled. The expression of MDR3 and MRP genes was measured by real-time PCR and the association between gene expression and the prognosis of patients was analyzed by the Kaplan-Meier method and COX regression model. This study showed that increases in MDR3 gene expression were identified in cholangiocellular carcinoma, cirrhosis and HBsAg-positive patients, while MRP expression increased in hepatocellular carcinoma, non-cirrhosis and HBsAg-negative patients. Moreover, conjugated bilirubin and total bile acid in the serum were significantly reduced in patients with high MRP expression compared to patients with low expression. The overall survival tended to be longer in patients with high MDR3 and MRP expression compared to the control group. MRP might be an independent prognostic factor in patients with liver cancer by COX regression analysis. MDR3 and MRP may play important roles in liver cancer patients as prognostic factors and their underlying mechanisms in liver cancer are worthy of further investigation.

  9. The TolC protein of Legionella pneumophila plays a major role in multi-drug resistance and the early steps of host invasion.

    Directory of Open Access Journals (Sweden)

    Mourad Ferhat

    Full Text Available Pneumonia associated with Iegionnaires's disease is initiated in humans after inhalation of contaminated aerosols. In the environment, Legionella pneumophila is thought to survive and multiply as an intracellular parasite within free-living amoeba. In the genome of L. pneumophila Lens, we identified a unique gene, tolC, encoding a protein that is highly homologous to the outer membrane protein TolC of Escherichia coli. Deletion of tolC by allelic exchange in L. pneumophila caused increased sensitivity to various drugs. The complementation of the tolC mutation in trans restored drug resistance, indicating that TolC is involved in multi-drug efflux machinery. In addition, deletion of tolC caused a significant attenuation of virulence towards both amoebae and macrophages. Thus, the TolC protein appears to play a crucial role in virulence which could be mediated by its involvement in efflux pump mechanisms. These findings will be helpful in unraveling the pathogenic mechanisms of L. pneumophila as well as in developing new therapeutic agents affecting the efflux of toxic compounds.

  10. Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia.

    Science.gov (United States)

    Thung, T Y; Mahyudin, N A; Basri, D F; Wan Mohamed Radzi, C W J; Nakaguchi, Y; Nishibuchi, M; Radu, S

    2016-08-01

    Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia. © 2016 Poultry Science Association Inc.

  11. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104

    DEFF Research Database (Denmark)

    Molbak, K.; Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1999-01-01

    Background Food-borne salmonella infections have become a major problem in industrialized countries. The strain of Salmonella enterica serotype typhimurium known as definitive phage type 104 (DT104) is usually resistant to five drugs: ampicillin, chloramphenicol, streptomycin, sulfonamides......, and tetracycline. An increasing proportion of DT104 isolates also have reduced susceptibility to fluoroquinolones. Methods The Danish salmonella surveillance program determines the phage types of all typhimurium strains from the food chain, and in the case of suspected outbreaks, five-drug-resistant strains...... are characterized by molecular methods. All patients infected with five-drug-resistant typhimurium are interviewed to obtain clinical and epidemiologic data. In 1998, an outbreak of salmonella occurred, in which the strain of typhimurium DT104 was new to Denmark. We investigated this outbreak and report our...

  12. A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer.

    Science.gov (United States)

    Yang, Ting; Xu, Feifei; Sheng, Yuan; Zhang, Wen; Chen, Yun

    2016-10-01

    Apoptosis suppression caused by overexpression of anti-apoptotic proteins is a central factor to the acquisition of multi-drug resistance (MDR) in breast cancer. As a highly conserved anti-apoptotic protein, Bcl-2 can initiate an anti-apoptosis response via an ERK1/2-mediated pathway. However, the details therein are still far from completely understood and a quantitative description of the associated proteins in the biological context may provide more insights into this process. Following our previous attempts in the quantitative analysis of MDR mechanisms, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics was continually employed here to describe ERK/Bcl-2-mediated anti-apoptosis. A targeted proteomics assay was developed and validated first for the simultaneous quantification of ERK1/2 and Bcl-2. In particular, ERK isoforms (i.e., ERK1 and ERK2) and their differential phosphorylated forms including isobaric ones were distinguished. Using this assay, differential protein levels and site-specific phosphorylation stoichiometry were observed in parental drug-sensitive MCF-7/WT cancer cells and drug-resistant MCF-7/ADR cancer cells and breast tissue samples from two groups of patients who were either suspected or diagnosed to have drug resistance. In addition, quantitative analysis of the time course of both ERK1/2 and Bcl-2 in doxorubicin (DOX)-treated MCF-7/WT cells confirmed these findings. Overall, we propose that targeted proteomics can be used generally to resolve more complex cellular events.

  13. Molecular identification of marine symbiont bacteria of gastropods from the waters of the Krakal coast Yogyakarta and its potential as a Multi-Drug Resistant (MDR) antibacterial agent

    Science.gov (United States)

    Bahry, Muhammad Syaifudien; Pringgenies, Delianis; Trianto, Agus

    2017-01-01

    The resistance of pathogenic bacteria may occur to many types of antibiotics, especially in cases of non-compliance use of antibiotics, which likely to allow the evolution of Multi-Drug Resistant (MDR) bacteria. Gastropods seas are marine invertebrates informed capable of production of secondary metabolites as antibacterial MDR. The purpose of the study was the isolation and identification of gastropod symbiont bacteria found in the waters of Krakal, Gunung Kidul, Yogyakarta, which has the ability to produce antibacterial compounds against MDR(Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, MRSA (methicillin-Resistant Staphylococcus aureus), Staphylococcus aureus, and Staphylococcus homunis) molecular. Stages of this research began with the isolation of bacteria, bacteria screening for anti-MDR compound, mass culture, and extraction, antibacterial activity test, DNA extraction, amplification by PCR 16S rDNA and sequencing. The results of the study showed that 19 isolates of bacteria were isolated from three species of gastropods namely Littorina scabra, Cypraea moneta and Conus ebraeus. Among them, 4 isolates showed activity against MDR test bacteria (E. coli, E. cloacae, K. pneumoniae, S. aureus and S. homunis). The highest activity was displayed by code LS.G1.8 isolate with the largest inhibition zone 15.47±0.45mm on S. humonis at 250 µg/disk concentration. Isolate CM.G2.1 showed largest inhibition zone, with 21.5±0.07mm on MRSA at 1000 µg/disk concentration and isolate the largest inhibition zone CM.G2.5 14.37±0.81mm on MRSA 14.37±0.81mm at concentrations 1000 µg/disk. The molecular identification of isolates LS.G1.8 has 99% homology with Bacillus subtilis and isolates CM.G2.1 has 99% homology with Bacillus pumillus.

  14. Presence, distribution and molecular epidemiology of multi-drug-resistant Gram-negative bacilli from medical personnel of intensive care units in Tianjin, China, 2007-2015.

    Science.gov (United States)

    Liu, H; Fei, C N; Zhang, Y; Liu, G W; Liu, J; Dong, J

    2017-06-01

    Multi-drug-resistant Gram-negative bacteria (MDRGNB) have become an important cause of nosocomial infection in intensive care units (ICUs). To investigate the molecular epidemiology of MDRGNB isolated from medical personnel (MP) and non-medical personnel (NMP) at 69 ICUs in Tianjin, China. From April 2007 to October 2015, 2636 nasal and hand swab samples from 1185 MP and 133 NMP were cultured for GNB (including MDRGNB), meticillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The susceptibilities of GNB to 14 antimicrobial agents were determined, and 80 MDRGNB were characterized using pulsed-field gel electrophoresis (PFGE) and dendrogram analysis. In total, 301 GNB were identified in 269 MP, including 109 MDRGNB isolates in 104 MP. Forty-two GNB were isolated from 39 NMP, which included 20 NMP with MDRGNB. Overall, 8.8% of MP were colonized with MDRGNB, which greatly exceeded colonization rates with MRSA (0.9%) and VRE (0.1%). Three pairs of Klebsiella pneumoniae and one pair of Enterobacter aerogenes were indistinguishable from each other, but the majority of isolate tests had distinct PFGE profiles. The prevalence of MDRGNB was high among ICU MP in Tianjin, and greatly exceeded that of VRE and MRSA. There was no difference in the rates of nasal carriage of MDRGNB between MP and NMP, but NMP were significantly more likely to have hand colonization with MDRGNB. PFGE profiles showed that there was only limited sharing of strains of MDR E. aerogenes and K. pneumoniae between personnel. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. Multi-drug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex infection outbreak in dogs and cats in a veterinary hospital.

    Science.gov (United States)

    Kuzi, S; Blum, S E; Kahane, N; Adler, A; Hussein, O; Segev, G; Aroch, I

    2016-11-01

    Members of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex cause severe outbreaks in humans, and are increasingly reported in animals. A retrospective study, describing a severe outbreak in dogs and cats caused by a multidrug resistant member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex in a veterinary hospital, between July 2010 and November 2012. The study included 19 dogs and 4 cats. Acinetobacter calcoaceticus-Acinetobacter baumannii complex bacteria were isolated from urine (9 animals), respiratory tract (11), tissues (3) and blood (1). The most common infection-associated findings included fever, purulent discharge from endotracheal tubes, hypotension, and neutropaenia. Infections led to pneumonia, urinary tract infection, cellulitis and sepsis. Infection was transmitted in the intensive care unit, where 22 of 23 animals were initially hospitalised. The mortality rate was 70% (16 of 23 animals), and was higher in cases of respiratory infection compared to other infections. Aggressive environmental cleaning and disinfection, with staff education for personal hygiene and antisepsis, sharply decreased the infection incidence. Health care-associated outbreaks with multidrug resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex in dogs and cats are potentially highly fatal and difficult to eradicate, warranting monitoring, antiseptic techniques and judicious antibiotic use. © 2016 British Small Animal Veterinary Association.

  16. Nosocomial spontaneous bacterial peritonitis antibiotic treatment in the era of multi-drug resistance pathogens: A systematic review.

    Science.gov (United States)

    Fiore, Marco; Maraolo, Alberto Enrico; Gentile, Ivan; Borgia, Guglielmo; Leone, Sebastiano; Sansone, Pasquale; Passavanti, Maria Beatrice; Aurilio, Caterina; Pace, Maria Caterina

    2017-07-07

    To systematically review literature upon aetiology of nosocomial spontaneous bacterial peritonitis (N-SBP) given the rising importance of multidrug-resistant (MDR) bacteria. A literature search was performed on MEDLINE and Google Scholar databases from 2000 to 15 th of November 2016, using the following search strategy: "spontaneous" AND "peritonitis". The initial search through electronic databases retrieved 2556 records. After removing duplicates, 1958 records remained. One thousand seven hundred and thirty-five of them were excluded on the basis of the screening of titles and abstract, and the ensuing number of remaining articles was 223. Of these records, after careful evaluation, only 9 were included in the qualitative analysis. The overall proportion of MDR bacteria turned out to be from 22% to 73% of cases across the studies. N-SBP is caused, in a remarkable proportion, by MDR pathogens. This should prompt a careful re-assessment of guidelines addressing the treatment of this clinical entity.

  17. Bio-hybridization of nanobactericides with cellulose films for effective treatment against members of ESKAPE multi-drug-resistant pathogens

    Science.gov (United States)

    Baker, Syed; Volova, Tatiana; Prudnikova, Svetlana V.; Shumilova, Anna A.; Perianova, Olga V.; Zharkov, Sergey M.; Kuzmin, Andrey; Olga, Kondratenka; Bogdan, Kiryukhin; Shidlovskiy, Ivan P.; Potkina, Zoya K.; Khohlova, Olga Y.; Lobova, Tatiana I.

    2018-03-01

    The rapid expansion of drug-resistant pathogens has created huge global impact and development of novel antimicrobial leads is one of the top priority studies in the current scenario. The present study aims to develop bio-hybridized nanocellulose films which comprise of phytogenic silver nanobactericides. The nanobactericides were synthesized by treating 1 mM silver nitrate with aqueous extract of Chamerion angustifolium which reduced the metal salt to produce polydispersed nanobactericides which were tested against the members of ESKAPE drug-resistant communities. The synthesized silver nanobactericides were subjected to characterization with UV-visible spectra which displayed maximum absorbance at 408 nm. The bio-molecular interaction of phyto-constituents to mediate synthesis and stabilization of nanobactericides was studied with Fourier-transform infrared spectroscopy (FTIR) which depicted functional groups associated with nanobactericides. The crystalline nature was studied with X-ray diffraction (XRD) which showed Bragg's intensities at 2θ angle which denoted (111), (200), (220), and (311) planes. The morphological characteristics of silver nanobactericides were defined with transmission electron Microscopy (TEM) image which displayed polydispersity of silver nanobactericides with size ranging from 2 to 40 nm. The synthesized nanobactericides showed a significant activity against MRSA strain with 21 mm zone of inhibition. The minimal inhibitory concentration of silver nanobactericides to inhibit the growth of test pathogens was also determined which ranged between 0.625 and 1.25 μg/ml. The silver nanobactericides were bio-hybridized onto nanocellulose films produced by Komagataeibacter xylinus B-12068 culture strain. The films were dried to determine the mechanical properties which showed increased in Young's modulus and tensile strength in comparison with control bacterial cellulose films. Overall, the results obtained in the present investigation are

  18. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates.

    Science.gov (United States)

    Ali, Khursheed; Dwivedi, Sourabh; Azam, Ameer; Saquib, Quaiser; Al-Said, Mansour S; Alkhedhairy, Abdulaziz A; Musarrat, Javed

    2016-06-15

    ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Isolation, structure elucidation and anticancer activity from Brevibacillus brevis EGS 9 that combats Multi Drug Resistant actinobacteria.

    Science.gov (United States)

    Arumugam, T; Senthil Kumar, P; Hemavathy, R V; Swetha, V; Karishma Sri, R

    2018-02-01

    Actinobacteria is the most widely distributed organism in the mangrove environment and produce a large amount of secondary metabolites. A new environmental actinobacterial stain exhibited strong antimicrobial activity against vancomycin and methicillin resistant actinobacteria. The active producer strain was found to be as Brevibacillus brevis EGS9, which was confirmed by its morphological, biochemical characteristics and 16S rRNA gene sequencing. It was deposited in NCBI GeneBank database and received with an accession number of KX388147. Brevibacillus brevis EGS9 was cultivated by submerged fermentation to produce antimicrobial compounds. The anti-proliferative agent was extracted from Brevibacillus brevis EGS9 with ethyl acetate. The bioactive metabolites of mangrove actinobacteria was identified by Liquid chromatography with mass spectrometry analysis. The result of the present investigation revealed that actinobacteria isolated from mangroves are potent source of anticancer activity. The strain of Brevibacillus brevis EGS9 exhibited a potential in vitro anticancer activity. The present research concluded that the actinobacteria isolated from mangrove soil sediment are valuable in discovery of novel species. Copyright © 2017. Published by Elsevier Ltd.

  20. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    Science.gov (United States)

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. A manganese photosensitive tricarbonyl molecule [Mn(CO)3(tpa-κ3N)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli.

    Science.gov (United States)

    Rana, Namrata; Jesse, Helen E; Tinajero-Trejo, Mariana; Butler, Jonathan A; Tarlit, John D; von Und Zur Muhlen, Milena L; Nagel, Christoph; Schatzschneider, Ulrich; Poole, Robert K

    2017-10-01

    Carbon monoxide-releasing molecules (CORMs) are a promising class of new antimicrobials, with multiple modes of action that are distinct from those of standard antibiotics. The relentless increase in antimicrobial resistance, exacerbated by a lack of new antibiotics, necessitates a better understanding of how such novel agents act and might be used synergistically with established antibiotics. This work aimed to understand the mechanism(s) underlying synergy between a manganese-based photoactivated carbon monoxide-releasing molecule (PhotoCORM), [Mn(CO)3(tpa-κ 3 N)]Br [tpa=tris(2-pyridylmethyl)amine], and various classes of antibiotics in their activities towards Escherichia coli EC958, a multi-drug-resistant uropathogen. The title compound acts synergistically with polymyxins [polymyxin B and colistin (polymyxin E)] by damaging the bacterial cytoplasmic membrane. [Mn(CO)3(tpa-κ 3 N)]Br also potentiates the action of doxycycline, resulting in reduced expression of tetA, which encodes a tetracycline efflux pump. We show that, like tetracyclines, the breakdown products of [Mn(CO)3(tpa-κ 3 N)]Br activation chelate iron and trigger an iron starvation response, which we propose to be a further basis for the synergies observed. Conversely, media supplemented with excess iron abrogated the inhibition of growth by doxycycline and the title compound. In conclusion, multiple factors contribute to the ability of this PhotoCORM to increase the efficacy of antibiotics in the polymyxin and tetracycline families. We propose that light-activated carbon monoxide release is not the sole basis of the antimicrobial activities of [Mn(CO)3(tpa-κ 3 N)]Br.

  2. Mechanisms of quinolone resistance in Salmonella spp. / Mecanismos de resistência às quinolonas em Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Tereza Cristina Rocha Moreira de Oliveira

    2010-07-01

    Full Text Available Salmonellosis is a common and widespread zoonotic disease of humans and a frequent cause of foodborne disease. Treatment of severe and systemic salmonellosis is usually done with fluoroquinolones. In this review resistance mechanisms of Salmonella to quinolones are discussed. Single point mutations in the quinolone resistant determining region (QRDR of the gyrA gene may be sufficient to generate high levels of resistance to non-fluorated quinolones and also may decrease the fluoroquinolones susceptibility. Other resistance mechanisms that should be considered are mutations in parC gene, the possibility of acquiring resistance through plasmidial transference and hyper-expression of efflux pumps. Fluoroquinolones resistance is still relatively uncommon in Salmonella compared to other species belonging to the Enterobacteriaceae family. However, the more careful use of fluoroquinolones in veterinary and human medicine is essential to decrease the selective pressure which can avoid the emergence and spread of resistant clones and consequently maintain the clinical efficacy of this group of antibiotics.A salmonelose é uma zoonose de importância mundial e uma das mais freqüentes doenças de origem alimentar. As fluoroquinolonas são a principal opção para o tratamento de salmoneloses graves ou sistêmicas. Esta revisão de literatura teve como objetivo apresentar os principais mecanismos envolvidos na resistência de Salmonella spp a estes antimicrobianos. Mutações de ponto na Região Determinante de Resistência à Quinolona (QRDR do gene gyrA podem gerar altos níveis de resistência a quinolonas não-fluoradas, além de reduzir a suscetibilidade as fluoroquinolonas. Outros mecanismos de resistência que também precisam ser considerados são as mutações no gene parC, a possibilidade do envolvimento de plasmídios de resistência e o sistema de efluxo ativo. A resistência às fluoroquinolonas ainda é incomum em Salmonella spp., quando

  3. Results of antiretroviral treatment interruption and intensification in advanced multi-drug resistant HIV infection from the OPTIMA trial.

    Directory of Open Access Journals (Sweden)

    Mark Holodniy

    2011-03-01

    Full Text Available Guidance is needed on best medical management for advanced HIV disease with multidrug resistance (MDR and limited retreatment options. We assessed two novel antiretroviral (ARV treatment approaches in this setting.We conducted a 2×2 factorial randomized open label controlled trial in patients with a CD4 count≤300 cells/µl who had ARV treatment (ART failure requiring retreatment, to two options (a re-treatment with either standard (≤4 ARVs or intensive (≥5 ARVs ART and b either treatment starting immediately or after a 12-week monitored ART interruption. Primary outcome was time to developing a first AIDS-defining event (ADE or death from any cause. Analysis was by intention to treat. From 2001 to 2006, 368 patients were randomized. At baseline, mean age was 48 years, 2% were women, median CD4 count was 106/µl, mean viral load was 4.74 log(10 copies/ml, and 59% had a prior AIDS diagnosis. Median follow-up was 4.0 years in 1249 person-years of observation. There were no statistically significant differences in the primary composite outcome of ADE or death between re-treatment options of standard versus intensive ART (hazard ratio 1.17; CI 0.86-1.59, or between immediate retreatment initiation versus interruption before re-treatment (hazard ratio 0.93; CI 0.68-1.30, or in the rate of non-HIV associated serious adverse events between re-treatment options.We did not observe clinical benefit or harm assessed by the primary outcome in this largest and longest trial exploring both ART interruption and intensification in advanced MDR HIV infection with poor retreatment options.Clinicaltrials.gov NCT00050089.

  4. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    Science.gov (United States)

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens.

    Science.gov (United States)

    Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael

    2015-02-15

    The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three

  6. Yield of facility-based verbal screening amongst household contacts of patients with multi-drug resistant tuberculosis in Pakistan

    Directory of Open Access Journals (Sweden)

    Ejaz Qadeer

    2017-05-01

    Full Text Available Background: Household contacts of multidrug-resistant tuberculosis (MDR-TB patients are at a high risk of getting infected with TB/MDR-TB, therefore symptomatic or vulnerable individuals should be screened and treated early. Methods: A cross-sectional study was conducted among household contacts of MDR-TB patients in three high-burden TB sites in Pakistan from July 2013 to June 2014. MDR-TB index patients were asked to provide a list of all members of their household and were asked whether any of them had TB symptoms such as productive cough, fever, weight loss and night sweat (“facility-based verbal screening”. Symptomatic contacts were defined as presumptive TB cases and were invited for investigations at the facility. Those who did not come were paid a home-visit. Confirmed TB/MDR-TB patients were registered in the nearest treatment facility. Results: Of 209 MDR-TB index patients, 1467 household contacts were identified and screened, 95 of them children < 5 years. Of these 172 (12% were symptomatic. Most common symptoms were cough 157 (91% and fever 107 (62%. 58 (34% presumptive TB contacts were not investigated. Of total contacts, 56 (3.8% were diagnosed with TB, among them 54(96% with MDR-TB and 2(4% with drug-susceptible-TB. The number needed to screen (NNS to identify a new MDR-TB case among adult household contacts was 27 and among presumptive adult and pediatric TB contacts was three. All 56 confirmed patients were registered for treatment. Conclusion: Screening household contacts of MDR-TB index cases may be considered a feasible and high yield option, in high-burden, low-resource settings within Pakistan. The number of presumptive TB contacts required to screen to identify a new MDR-TB case was unusually low, indicating an effective strategy that could easily be scaled-up. The screening and management of vulnerable adults and children living with patients having TB of any form is a major priority in the combined efforts

  7. Genetic diversity and natural selection of Plasmodium vivax multi-drug resistant gene (pvmdr1) in Mesoamerica.

    Science.gov (United States)

    González-Cerón, Lilia; Montoya, Alberto; Corzo-Gómez, Josselin C; Cerritos, Rene; Santillán, Frida; Sandoval, Marco A

    2017-07-01

    The Plasmodium vivax multidrug resistant 1 gene (pvmdr1) codes for a transmembrane protein of the parasite's digestive vacuole. It is likely that the pvmdr1 gene mutations occur at different sites by convergent evolution. In here, the genetic variation of pvmdr1 at three sites of the Mesoamerican region was studied. Since 1950s, malarious patients of those areas have been treated only with chloroquine and primaquine. Blood samples from patients infected with P. vivax were obtained in southern Mexico (SMX), in the Northwest (NIC-NW) and in the northeast (NIC-NE) of Nicaragua. Genomic DNA was obtained and fragments of pvmdr1 were amplified and sequenced. The nucleotide and amino acid changes as well as the haplotype frequency in pvmdr1 were determined per strain and per geographic site. The sequences of pvmdr1 obtained from the studied regions were compared with homologous sequences from the GenBank database to explore the P. vivax genetic structure. In 141 parasites, eight nucleotide changes (two changes were synonymous and other six were nonsynonymous) were detected in 1536 bp. The PvMDR1 amino acid changes Y976F, F1076FL were predominant in endemic parasites from NIC-NE and outbreak parasites in NIC-NW but absent in SMX. Thirteen haplotypes were resolved, and found to be closely related, but their frequency at each geographic site was different (P = 0.0001). The pvmdr1 codons 925-1083 gene fragment showed higher genetic and haplotype diversity in parasites from NIC-NE than the other areas outside Latin America. The haplotype networks suggested local diversification of pvmdr1 and no significant departure from neutrality. The F ST values were low to moderate regionally, but high between NIC-NE or NIC-NW and other regions inside and outside Latin America. The pvmdr1 gene might have diversified recently at regional level. In the absence of significant natural, genetic drift might have caused differential pvmdr1 haplotype frequencies at different geographic sites

  8. Genomic analysis reveals multi-drug resistance clusters in Group B Streptococcus CC17 hypervirulent isolates causing neonatal invasive disease in southern mainland China

    Directory of Open Access Journals (Sweden)

    Edmondo Campisi

    2016-08-01

    Full Text Available Neonatal invasive disease caused by group B Streptococcus (GBS represents a significant public health care concern globally. However, data related to disease burden, serotype distribution and molecular epidemiology in China and other Asian countries are very few and specifically relative to confined regions. The aim of this study was to investigate the genetic characteristics of GBS isolates recovered from neonates with invasive disease during 2013-2014 at Guangzhou and Changsha hospitals in southern mainland China. We assessed the capsular polysaccharide (CPS type, pilus islands (PIs distribution and hvgA gene presence in a panel of 26 neonatal clinical isolates, of which 8 were recovered from Early Onset Disease (EOD and 18 from Late Onset Disease (LOD. Among 26 isolates examined, five serotypes were identified. Type III was the most represented (15 cases, particularly among LOD strains (n=11, followed by types Ib (n=5, V (n=3, Ia (n=2 and II (n=1. We performed whole-genome sequencing (WGS analysis and antimicrobial susceptibility testing on the 14 serotype III isolates belonging to the hypervirulent Clonal Complex 17 (serotype III-CC17.The presence of PI-2b alone was associated with 13 out of 14 serotype III-CC17 strains. Genome analysis led us to identify two multi-drug resistance gene clusters harbored in two new versions of integrative and conjugative elements (ICEs, carrying five or eight antibiotic resistance genes, respectively. These ICEs replaced the 16 kb-locus that normally contains the PI-1 operon. All isolates harboring the identified ICEs showed multiple resistances to aminoglycoside, macrolide and tetracycline antibiotic classes. In conclusion, we report the first whole-genome sequence analysis of 14 GBS serotype III-CC17 strains isolated in China, representing the most prevalent lineage causing neonatal invasive disease. The acquisition of newly identified ICEs conferring multiple antibiotic resistances could in part explain

  9. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    International Nuclear Information System (INIS)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-01-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  10. In Vitro Evaluation of Linezolid and Meropenem Against Clinical Isolates of Multi Drug Resistant Tuberculosis By Mycobacterial Growth Indicator Tube (MGIT) 960

    International Nuclear Information System (INIS)

    Mirza, I. A.; Satti, L.; Khan, F. A.; Khan, K. A.

    2015-01-01

    Objective: To evaluate the in vitro effectiveness of multiple breakpoint concentrations of newer antituberculosis agents (Linezolid and Meropenem) against Multi Drug-Resistant Tuberculosis (MDR-TB) isolates. Study Design: Adescriptive cross-sectional study. Place and Duration of Study: Microbiology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from September 2011 to August 2013. Methodology: Atotal of 100 MDR-TB isolates recovered during the study period were subjected to susceptibility testing against multiple breakpoint concentrations of Linezolid (LZD) and Meropenem (MER). The breakpoint concentration used for LZD were 0.5, 1.0 and 2.0 micro g/ml, while for MER were 4.0, 8.0 and 16 micro g/ml. Mycobacterial Growth Indicator Tube (MGIT) 960 system was used to carry out drug susceptibility testing as per recommended protocol. Results: At break point concentration of 0.5 micro g/ml, 80 out of 100 (80%) MDR-TB isolates were susceptible to LZD while at breakpoint concentration of 1.0 micro g/ml and 2.0 micro g/ml, 96/100, (96%) of MDR-TB isolates were susceptible. For MER, at breakpoint concentrations of 4.0 micro g/ml no MDR-TB isolate was susceptible, while at 8.0 micro g/ml 3/100, (3%) and at 16.0 micro g/ml 11/100, (11%) of MDR-TB isolates were susceptible. Conclusion: LZD was found to have excellent in vitroefficacy as 96% of MDR-TB isolates were susceptible at breakpoint concentration of 1.0 micro g/ml or more. In case of MER it was found that in vitrosusceptibility improved as the break point concentrations were increased. (author)

  11. Is one sputum specimen as good as two during follow-up cultures for monitoring multi drug resistant tuberculosis patients in India?

    Directory of Open Access Journals (Sweden)

    Sharath Burugina Nagaraja

    Full Text Available BACKGROUND: In India, the Revised National Tuberculosis Control Programme (RNTCP has adopted the strategy of examining two specimens during follow-up culture examinations to monitor the treatment response of multi-drug resistant tuberculosis (MDR-TB patients. OBJECTIVES: To determine the incremental yield of the second sputum specimen during follow-up culture examinations among patients with MDR-TB and the effect on case management on changing from two to one specimen follow-up strategy. METHODS: A cross sectional record review of MDR-TB patients registered during 2008-09 under RNTCP was undertaken in three MDR-TB treatment sites of India. RESULTS: Of 1721 pairs of follow-up sputum culture examinations done among 220 MDR-TB patients, 451(26% were positive with either of the two specimens; 29(1.7% were culture positive only on the second specimen indicating the incremental yield. To detect one additional culture positive result on the second specimen, 59 specimens needed to be processed. If we had examined only one specimen, we would have missed 29 culture-positive results. By current RNTCP guidelines, however, a single specimen policy would have altered case management in only 3(0.2% instances, where patients would have missed a one month extension of the intensive phase of MDR-TB treatment. There is no meaningful advantage in using two specimens for the monitoring of MDR-TB patients. A single specimen policy could be safely implemented with negligible clinical effect on MDR-TB patients and favourable resource implications for RNTCP.

  12. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Tomono, Takumi [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Kajita, Masahiro [Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Yano, Kentaro [Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Ogihara, Takuo, E-mail: togihara@takasaki-u.ac.jp [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan)

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  13. Development of a Patient-Centred, Psychosocial Support Intervention for Multi-Drug-Resistant Tuberculosis (MDR-TB Care in Nepal.

    Directory of Open Access Journals (Sweden)

    Sudeepa Khanal

    Full Text Available Multi-drug-resistant tuberculosis (MDR-TB poses a major threat to public health worldwide, particularly in low-income countries. The current long (20 month and arduous treatment regime uses powerful drugs with side-effects that include mental ill-health. It has a high loss-to-follow-up (25% and higher case fatality and lower cure-rates than those with drug sensitive tuberculosis (TB. While some national TB programmes provide small financial allowances to patients, other aspects of psychosocial ill-health, including iatrogenic ones, are not routinely assessed or addressed. We aimed to develop an intervention to improve psycho-social well-being for MDR-TB patients in Nepal. To do this we conducted qualitative work with MDR-TB patients, health professionals and the National TB programme (NTP in Nepal. We conducted semi-structured interviews (SSIs with 15 patients (10 men and 5 women, aged 21 to 68, four family members and three frontline health workers. In addition, three focus groups were held with MDR-TB patients and three with their family members. We conducted a series of meetings and workshops with key stakeholders to design the intervention, working closely with the NTP to enable government ownership. Our findings highlight the negative impacts of MDR-TB treatment on mental health, with greater impacts felt among those with limited social and financial support, predominantly married women. Michie et al's (2011 framework for behaviour change proved helpful in identifying corresponding practice- and policy-level changes. The findings from this study emphasise the need for tailored psycho-social support. Recent work on simple psychological support packages for the general population can usefully be adapted for use with people with MDR-TB.

  14. Genome sequence of Mycobacterium yongonense RT 955-2015 isolate from a patient misdiagnosed with multi-drug resistant tuberculosis: first clinical isolate in Tanzania.

    Science.gov (United States)

    Mnyambwa, Nicholaus Peter; Kim, Dong-Jin; Ngadaya, Esther; Chun, Jongsik; Ha, Sung-Min; Petrucka, Pammla; Addo, Kennedy Kwasi; Kazwala, Rudovick R; Mfinanga, Sayoki G

    2018-04-24

    Mycobacterium yongonense is a recently described novel species belonging to Mycobacterium avium complex which is the most prevalent etiology of non-tuberculous mycobacteria associated with pulmonary infections, and posing tuberculosis diagnostic challenges in high-burden, resource-constrained settings. We used whole genome shotgun sequencing and comparative microbial genomic analyses to characterize the isolate from a patient diagnosed with multi-drug resistant tuberculosis (MDR-TB) after relapse. We present a genome sequence of the first case of M. yongonense (M. yongonense RT 955-2015) in Tanzania. Sequence analysis revealed that the RT 955-2015 strain had a high similarity to M. yongonense 05-1390(T) (98.74%) and M. chimaera DSM 44623(T) (98%). Its 16S rRNA showed similarity to M. paraintracellulare KCTC 290849(T) (100%); M. intracellulare ATCC 13950(T) (100%); M. chimaera DSM 44623(T) (99.9%); and M. yongonense 05-1390(T) (98%). The strain had a substantially different rpoB sequence from that of M. yongonense 05-1390 (95.16%) but exhibited a sequence closely related to M. chimaera DSM 44623(T) (99.86%), M. intracellulare ATCC 13950(T) (99.53%), and M. paraintracellulare KCTC 290849(T) (99.53%). In light of the OrthoANI algorithm, and phylogenetic analysis, we conclude that the isolate was M. yongonense Type II genotype, which is an indication that the patient was misdiagnosed with TB/MDR-TB and received inappropriate treatment. Copyright © 2018. Published by Elsevier Ltd.

  15. Antimicrobial resistance among Salmonella enterica serovar Infantis from broiler carcasses in Serbia

    Science.gov (United States)

    Nikolić, A.; Baltić, T.; Velebit, B.; Babić, M.; Milojević, L.; Đorđević, V.

    2017-09-01

    This study aimed to investigate antimicrobial resistance of Salmonella Infantis isolates from poultry carcasses in Serbia. A total of 48 Salmonella isolates were examined for antimicrobial resistance. A panel of 10 antibiotics was selected for testing. Isolates showed resistance to sulfamethoxazole, ceftazidime and cefotaxime (100%). However, the highest number of Salmonella Infantis isolates were sensitive to chloramphenicol. The usage of antibiotics in food producing animals could result in antimicrobial resistance pathogenic bacteria especially Salmonella spp. in poultry, which may be transmitted to humans through the food chain and increase risk of treatment failures.

  16. Bovine salmonellosis in Northeast of Iran: Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Hessam A. Halimi

    2014-01-01

    Conclusion: The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background.

  17. Resistance of Salmonella enteritidis variety typhimurium to gamma radiation

    International Nuclear Information System (INIS)

    Norberg, A.N.; Maliska, C.

    1988-01-01

    The use of ionizing radiations to kill microrganisms responsible for food deterioration, and toxinfections is an example of peaceful use of nuclear energy. Food toxinfections are, amongus, produced mostly by Salmonella enteritidis var. typhimurium. Due to the pauncity of information on the resistance to gamma radiation of Salmonella enteritidis var. typhimurium this paper has the aim to define the 60-Cobalt gamma radiation lethal dose to these bacteria, in experimentally contaminated milk by samples recovered from our geographycal area. One hundred nineteen samples of milk containing about 150.000 bacteria per ml were irradiated with doses ranging from 100 to 1.100 Gy. Two samples of surving bacteria were again irradiated by doses up to 2.500 Gy. The bacteria not previously irradiated were killed by doses of 1.100 Gy. It was concluded that the 60-Cobalt gamma radiation minimal lethal dose to Salmonella enteritidis var. typhimurium is 1.200 Gy. The surviving strains to smaller doses than 1.200 Gy when re-irradiated prompt the forthcoming of more radio-resistant germs. (author) [pt

  18. Ambulatory Multi-Drug Resistant Tuberculosis Treatment Outcomes in a Cohort of HIV-Infected Patients in a Slum Setting in Mumbai, India

    Science.gov (United States)

    Isaakidis, Petros; Cox, Helen S.; Varghese, Bhanumati; Montaldo, Chiara; Da Silva, Esdras; Mansoor, Homa; Ladomirska, Joanna; Sotgiu, Giovanni; Migliori, Giovanni B.; Pontali, Emanuele; Saranchuk, Peter; Rodrigues, Camilla; Reid, Tony

    2011-01-01

    Background India carries one quarter of the global burden of multi-drug resistant TB (MDR-TB) and has an estimated 2.5 million people living with HIV. Despite this reality, provision of treatment for MDR-TB is extremely limited, particularly for HIV-infected individuals. Médecins Sans Frontières (MSF) has been treating HIV-infected MDR-TB patients in Mumbai since May 2007. This is the first report of treatment outcomes among HIV-infected MDR-TB patients in India. Methods HIV-infected patients with suspected MDR-TB were referred to the MSF-clinic by public Antiretroviral Therapy (ART) Centers or by a network of community non-governmental organizations. Patients were initiated on either empiric or individualized second-line TB-treatment as per WHO recommendations. MDR-TB treatment was given on an ambulatory basis and under directly observed therapy using a decentralized network of providers. Patients not already receiving ART were started on treatment within two months of initiating MDR-TB treatment. Results Between May 2007 and May 2011, 71 HIV-infected patients were suspected to have MDR-TB, and 58 were initiated on treatment. MDR-TB was confirmed in 45 (78%), of which 18 (40%) were resistant to ofloxacin. Final treatment outcomes were available for 23 patients; 11 (48%) were successfully treated, 4 (17%) died, 6 (26%) defaulted, and 2 (9%) failed treatment. Overall, among 58 patients on treatment, 13 (22%) were successfully treated, 13 (22%) died, 7 (12%) defaulted, two (3%) failed treatment, and 23 (40%) were alive and still on treatment at the end of the observation period. Twenty-six patients (45%) experienced moderate to severe adverse events, requiring modification of the regimen in 12 (20%). Overall, 20 (28%) of the 71 patients with MDR-TB died, including 7 not initiated on treatment. Conclusions Despite high fluoroquinolone resistance and extensive prior second-line treatment, encouraging results are being achieved in an ambulatory MDR-T- program in a

  19. Characterization and Antimicrobial Resistance of Salmonella Typhimurium Isolates from Clinically Diseased Pigs in Korea.

    Science.gov (United States)

    Oh, Sang-Ik; Kim, Jong Wan; Chae, Myeongju; Jung, Ji-A; So, Byungjae; Kim, Bumseok; Kim, Ha-Young

    2016-11-01

    This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:- (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes bla TEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.

  20. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii.

    Science.gov (United States)

    Knezevic, Petar; Aleksic, Verica; Simin, Natasa; Svircev, Emilija; Petrovic, Aleksandra; Mimica-Dukic, Neda

    2016-02-03

    Traditional herbal medicine has become an important issue on the global scale during the past decade. Among drugs of natural origin, special place belongs to essential oils, known as strong antimicrobial agents that can be used to combat antibiotic-resistant bacteria. Eucalyptus camaldulensis leaves are traditional herbal remedy used for various purposes, including treatment of infections. The aim of this study was to determine antimicrobial potential of two E. camaldulensis essential oils against multi-drug resistant (MDR) Acinetobacter baumannii wound isolates and to examine possible interactions of essential oils with conventional antimicrobial agents. Chemical composition of essential oils was determined by gas chromatography-mass spectrometry analysis (GC-MS). MIC values of essential oils against A. baumannii strains were estimated by modified broth microdilution method. The components responsible for antimicrobial activity were detected by bioautographic analysis. The potential synergy between the essential oils and antibiotics (ciprofloxacin, gentamicin and polymyxin B) was examined by checkerboard method and time kill curve. The dominant components of both essential oils were spatulenol, cryptone, p-cimene, 1,8-cineole, terpinen-4-ol and β-pinene. The detected MICs for the E. camaldulensis essential oils were in range from 0.5 to 2 μl mL(-1). The bioautographic assay confirmed antibacterial activity of polar terpene compounds. In combination with conventional antibiotics (ciprofloxacin, gentamicin and polymyxin B), the examined essential oils showed synergistic antibacterial effect in most of the cases, while in some even re-sensitized MDR A. baumannii strains. The synergistic interaction was confirmed by time-kill curves for E. camaldulensis essential oil and polymyxin B combination which reduced bacterial count under detection limit very fast, i.e. after 6h of incubation. The detected anti-A. baumannii activity of E. camaldulensis essential oils

  1. Resistance to antimicrobials drugs and control measures of Salmonella spp in the poultry industry

    Directory of Open Access Journals (Sweden)

    Velhner Maja

    2013-01-01

    Full Text Available The worldwide prevalence of multiple resistant Salmonella spp is described. Clonally distributed Salmonella Enteritidis PT4 and Salmonella Typhimurium DT104 are among the most pathogenic strains for humans. Recently there have been reports on the prevalence of ST “like” monophasic 4(5,12:i strains in some countries. Vaccination strategy and antimicorbial agent therapy is also briefly discussed. Products of animal origin must be safe and without the risk of antimicrobial resistance. Subsequently, the good management practice at farm level and HACCP in feed factories are required to cope with salmonella infections. Poultry producers in developed countries have been motivated to participate in salmonella control programs, because of public awareness on safe food and risks in the food chain. Export of poultry and poultry products is more successful in the regions where Salmonella Enteritidis and Salmonella Typhimurium have been eradicated. [Projekat Ministarstva nauke Republike Srbije, br. TR31071

  2. Multidrug-Resistant Salmonella enterica Serovar Muenchen from Pigs and Humans and Potential Interserovar Transfer of Antimicrobial Resistance

    OpenAIRE

    Gebreyes, Wondwossen A.; Thakur, Siddhartha

    2005-01-01

    Salmonella serovars are important reservoirs of antimicrobial resistance. Recently, we reported on multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium strains among pigs with resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (resistance [R] type AKSSuT) and resistance to amoxicillin-clavulanic acid, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (R type AxACSSuT). In the present study, 67 isolates (39 from humans...

  3. Dithiazole thione derivative as competitive NorA efflux pump inhibitor to curtail multi drug resistant clinical isolate of MRSA in a zebrafish infection model.

    Science.gov (United States)

    Lowrence, Rene Christena; Raman, Thiagarajan; Makala, Himesh V; Ulaganathan, Venkatasubramanian; Subramaniapillai, Selva Ganesan; Kuppuswamy, Ashok Ayyappa; Mani, Anisha; Chittoor Neelakantan, Sundaresan; Nagarajan, Saisubramanian

    2016-11-01

    Multi drug resistant (MDR) pathogens pose a serious threat to public health since they can easily render most potent drugs ineffective. Efflux pump inhibitors (EPI) can be used to counter the MDR phenotypes arising due to increased efflux. In the present study, a series of dithiazole thione derivatives were synthesized and checked for its antibacterial and efflux pump inhibitory (EPI) activity. Among 10 dithiazole thione derivatives, real-time efflux studies revealed that seven compounds were potent EPIs relative to CCCP. Zebrafish toxicity studies identified four non-toxic putative EPIs. Both DTT3 and DTT9 perturbed membrane potential and DTT6 was haemolytic. Among DTT6 and DTT10, the latter was less toxic as evidenced by histopathology studies. Since DTT10 was non-haemolytic, did not affect the membrane potential, and was least toxic, it was chosen further for in vivo study, wherein DTT10 potentiated effect of ciprofloxacin against clinical strain of MRSA and reduced bacterial burden in muscle and skin tissue of infected zebrafish by ~ 1.7 and 2.5 log fold respectively. Gene expression profiling of major efflux transport proteins by qPCR revealed that clinical isolate of MRSA, in the absence of antibiotic, upregulated NorA, NorB and MepA pump, whereas it downregulates NorC and MgrA relative to wild-type strain of Staphylococcus aureus. In vitro studies with NorA mutant strains and substrate profiling revealed that at higher concentrations DTT10 is likely to function as a competitive inhibitor of NorA efflux protein in S. aureus, whereas at lower concentrations it might inhibit ciprofloxacin efflux through NorB and MepA as implied by docking studies. A novel non-toxic, non-haemolytic dithiazole thione derivative (DTT10) was identified as a potent competitive inhibitor of NorA efflux pump in S. aureus using in silico, in vitro and in vivo studies. This study also underscores the importance of using zebrafish infection model to screen and evaluate putative EPI for

  4. Analysis of multi drug resistant tuberculosis (MDR-TB) financial protection policy: MDR-TB health insurance schemes, in Chhattisgarh state, India.

    Science.gov (United States)

    Kundu, Debashish; Sharma, Nandini; Chadha, Sarabjit; Laokri, Samia; Awungafac, George; Jiang, Lai; Asaria, Miqdad

    2018-01-27

    There are significant financial barriers to access treatment for multi drug resistant tuberculosis (MDR-TB) in India. To address these challenges, Chhattisgarh state in India has established a MDR-TB financial protection policy by creating MDR-TB benefit packages as part of the universal health insurance scheme that the state has rolled out in their effort towards attaining Universal Health Coverage for all its residents. In these schemes the state purchases health insurance against set packages of services from third party health insurance agencies on behalf of all its residents. Provider payment reform by strategic purchasing through output based payments (lump sum fee is reimbursed as per the MDR-TB benefit package rates) to the providers - both public and private health facilities empanelled under the insurance scheme was the key intervention. To understand the implementation gap between policy and practice of the benefit packages with respect to equity in utilization of package claims by the poor patients in public and private sector. Data from primary health insurance claims from January 2013 to December 2015, were analysed using an extension of 'Kingdon's multiple streams for policy implementation framework' to explain the implementation gap between policy and practice of the MDR-TB benefit packages. The total number of claims for MDR-TB benefit packages increased over the study period mainly from poor patients treated in public facilities, particularly for the pre-treatment evaluation and hospital stay packages. Variations and inequities in utilizing the packages were observed between poor and non-poor beneficiaries in public and private sector. Private providers participation in the new MDR-TB financial protection mechanism through the universal health insurance scheme was observed to be much lower than might be expected given their share of healthcare provision overall in India. Our findings suggest that there may be an implementation gap due to weak

  5. HbA1c level cannot predict the treatment outcome of smear-positive non-multi-drug-resistant HIV-negative pulmonary tuberculosis inpatients

    Science.gov (United States)

    Tashiro, Ken; Horita, Nobuyuki; Nagai, Kenjiro; Ikeda, Misako; Shinkai, Masaharu; Yamamoto, Masaki; Sato, Takashi; Hara, Yu; Nagakura, Hideyuki; Shibata, Yuji; Watanabe, Hiroki; Nakashima, Kentaro; Ushio, Ryota; Nagashima, Akimichi; Narita, Atsuya; Kobayashi, Nobuaki; Kudo, Makoto; Kaneko, Takeshi

    2017-01-01

    We conducted a single-center retrospective cohort study to evaluate whether the HbA1c level on admission could predict the in-hospital treatment outcome of smear-positive non-multi-drug-resistant HIV-negative culture-proven pulmonary tuberculosis inpatients. Our standard regimens under the direct observation were HRZE or HRE for the first two months followed by combination therapy with isoniazid and rifampicin. Our cohort consisted of consecutive 239 patients consisted of 147 men and 92 women with a median age of 73 years. The HbA1c level of patients whose HbA1c was above 7.0% on admission showed clear declining trends after admission. HbA1c on admission had no Spearman’s rank correlation with time to discharge alive (r = 0.17) and time to becoming non-infective (r = 0.17). By Kaplan-Meier curves and a log-rank trend test, HbA1c quartile subgroups showed no association with times to discharge alive (p = 0.431), becoming non-infective (p = 0.113), and in-hospital death (p = 0.427). Based on multi-variate Cox analysis, HbA1c on admission had no significant impact on time to discharge alive (hazard ratio = 1.03, 95% CI 0.89–1.20, p = 0.659), becoming non-infective (hazard ratio = 0.93, 95% CI 0.80–1.06, p = 0.277), and in-hospital death (hazard ratio = 0.68, 0.43–1.07, p = 0.097). In conclusion, the HbA1c level on admission did not seem to affect in-hospital tuberculosis treatment outcomes in Japanese cohort. PMID:28406247

  6. Towards understanding the drivers of policy change: a case study of infection control policies for multi-drug resistant tuberculosis in South Africa.

    Science.gov (United States)

    Saidi, Trust; Salie, Faatiema; Douglas, Tania S

    2017-05-30

    Explaining policy change is one of the central tasks of contemporary policy analysis. In this article, we examine the changes in infection control policies for multi-drug resistant tuberculosis (MDR-TB) in South Africa from the time the country made the transition to democracy in 1994, until 2015. We focus on MDR-TB infection control and refer to decentralised management as a form of infection control. Using Kingdon's theoretical framework of policy streams, we explore the temporal ordering of policy framework changes. We also consider the role of research in motivating policy changes. Policy documents addressing MDR-TB in South Africa over the period 1994 to 2014 were extracted. Literature on MDR-TB infection control in South Africa was extracted from PubMed using key search terms. The documents were analysed to identify the changes that occurred and the factors driving them. During the period under study, five different policy frameworks were implemented. The policies were meant to address the overwhelming challenge of MDR-TB in South Africa, contextualised by high prevalence of HIV infection, that threatened to undermine public health programmes and the success of antiretroviral therapy rollouts. Policy changes in MDR-TB infection control were supported by research evidence and driven by the high incidence and complexity of the disease, increasing levels of dissatisfaction among patients, challenges of physical, human and financial resources in public hospitals, and the ideologies of the political leadership. Activists and people living with HIV played an important role in highlighting the importance of MDR-TB as well as exerting pressure on policymakers, while the mass media drew public attention to infection control as both a cause of and a solution to MDR-TB. The critical factors for policy change for infection control of MDR-TB in South Africa were rooted in the socioeconomic and political environment, were supported by extensive research, and can be framed

  7. Mechanisms of first-line antimicrobial resistance in multi-drug and extensively drug resistant strains of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Navisha Dookie

    2016-10-01

    Full Text Available Abstract Background In South Africa, drug resistant tuberculosis is a major public health crisis in the face of the colossal HIV pandemic. Methods In an attempt to understand the distribution of drug resistance in our setting, we analysed the rpoB, katG, inhA, pncA and embB genes associated with resistance to key drugs used in the treatment of tuberculosis in clinical isolates of Mycobacterium tuberculosis in the KwaZulu-Natal province. Results Classical mutations were detected in the katG, inhA and embB genes associated with resistance to isoniazid and ethambutol. Diverse mutations were recorded in the multidrug resistant (MDR and extensively drug resistant (XDR isolates for the rpoB and pncA gene associated with resistance to rifampicin and pyrazinamide. Conclusions M.tuberculosis strains circulating in our setting display a combination of previously observed mutations, each mediating resistance to a different drug. The MDR and XDR TB isolates analysed in this study displayed classical mutations linked to INH and EMB resistance, whilst diverse mutations were linked to RIF and PZA resistance. The similarity of the XDR strains confirms reports of the clonality of the XDR epidemic. The successful dissemination of the drug resistant strains in the province underscores the need for rapid diagnostics to effectively diagnose drug resistance and guide treatment.

  8. International Spread of an Epidemic Population of Salmonella enterica Serotype Kentucky ST198 Resistant to Ciprofloxacin

    DEFF Research Database (Denmark)

    Le Hello, Simon; Hendriksen, Rene S.; Doublet, Benoit

    2011-01-01

    National Salmonella surveillance systems from France, England and Wales, Denmark, and the United States identified the recent emergence of multidrug-resistant isolates of Salmonella enterica serotype Kentucky displaying high-level resistance to ciprofloxacin. A total of 489 human cases were ident...

  9. Phenotypic and Genotypic Antibiotic Resistance of Salmonella from Chicken Carcasses Marketed at Ibague, Colombia

    Directory of Open Access Journals (Sweden)

    D Cortes Vélez

    Full Text Available ABSTRACT Salmonella enterica is responsible for alimentary toxic infections associated with the consumption of contaminated poultry products and the antimicrobial resistant patterns of Salmonella circulating in the Tolima region are currently unknown. To address this issue, both the phenotype and genotype antibiotic resistance patterns of 47 Salmonella isolated from raw chicken carcasses sold at the Ibague city were analyzed by the disc diffusion, microdilution and PCR assays. All 47 Salmonella isolates showed resistance to five or more antimicrobial agents. Resistance to Ampicillin (AMP, Amikacin (AMK, Gentamicin (GEN, Tobramycin (TOB, Cefazoline (CFZ, Cefoxitin (FOX, Nitrofurantoin (NIT, Trimethoprim-Sulfamethoxazole (SXT, Tetracycline (TET, Ciprofloxacin (CIP and Enrofloxacin (ENR was observed in 42.35% of Salmonella isolates. All tested S. Paratyphi B var Java isolates showed resistance to at least 12 antibiotics. S. Hvittingfoss showed resistance to 5 antibiotics, whereas S. Muenster showed resistance to seven antibiotics. Amplification of a number of antibiotic resistance genes showed that blaTEM (100% correlated well with resistance to Ampicilin and Cephalosporin, whereas aadB (87% correlated well with resistance to Aminoglycosides. It is concluded that Salmonella isolated from raw chicken meat marketed at Ibague showed MDR by both phenotypic and genotypic methods and they may represent an important threat to human health. Additional studies are needed to establish the relationship between antibiotic resistance in Salmonella from poultry products and clinical isolates.

  10. Prevalence and antimicrobial resistance pattern of Salmonella in animal feed produced in Namibia.

    Science.gov (United States)

    Shilangale, Renatus P; Di Giannatale, Elisabetta; Chimwamurombe, Percy M; Kaaya, Godwin P

    2012-01-01

    The occurrence of Salmonella is a global challenge in the public health and food production sectors. Our study investigated the prevalence, serovar and antimicrobial susceptibility of strains of Salmonella serovars isolated from animal feed (meat-and-bone and blood meal) samples from two commercial abattoirs in Namibia. A total of 650 samples (n=650) were examined for the presence of Salmonella. Results showed that 10.9% (n=71) were positive for Salmonella. Of the Salmonella serovars isolated, S. Chester was the most commonly isolated serovar (19.7%), followed by S. Schwarzengrund at 12.7%. From the Salmonella isolates, 19.7% (n=14) were resistant to one or more of the antimicrobials (nalidixic acid, trimethoprim-sulfamethoxazole, sulfisoxazole, streptomycin and/or tetracycline), whereas 80.3% (n=57) were susceptible to all 16 antimicrobials tested. Resistance to sulfisoxazole and the trimethroprimsuflamethoxazole combination were the most common. The resistant isolates belonged to ten different Salmonella serovars. The susceptibility of most of the Salmonella isolated to the antimicrobials tested indicates that anti-microbial resistance is not as common and extensive in Namibia as has been reported in many other countries. It also appears that there is a range of antimicrobials available that are effective in managing Salmonella infections in Namibia. However, there is some evidence that resistance is developing and this will need further monitoring to ensure it does not become a problem.

  11. Evolution of antimicrobial resistance of Salmonella enteritidis (1972–2005

    Directory of Open Access Journals (Sweden)

    Jermaine Khumalo

    2014-11-01

    Full Text Available With the extensive use of antibiotics in livestock production, surveillance revealed an increase in Salmonella resistance to the commonly used antimicrobials in veterinary and public health. This serious threat to health care is further exacerbated by the limited epidemiological information about the common zoonotic agent, Salmonella enteritidis, required to determine antibiotic therapy. The aim was to characterise the antimicrobial resistance patterns of S. enteritidis isolates across different timelines (1972–2005 with accompanying genetic changes being investigated. Thirty-seven stored S. enteritidis isolates were collected from the Central Veterinary Laboratory, Harare, with antimicrobial susceptibility determined against eight antibiotics. Plasmids were isolated to analyse any genetic variation. An overall significant increase in resistance (p < 0.05 to nalidixic acid (0% – 10%, ampicillin (14.3% – 50%, tetracycline (14.3% – 30% and erythromycin (71.4% – 100% was observed across the timeline. However, the highest rates of susceptibility were maintained for gentamicin, sulphamethoxazole-trimethoprim, kanamycin and chloramphenicol. We report an increase in multidrug resistance (MDR of 14.2% – 50% with an increase in resistotypes and plasmid profiles across the timeline. Eleven plasmid profiles were obtained in the 37 isolates studied with a minority of isolates (21.6%, 8/37 harbouring a 54 kb plasmid, commonly serovar-specific. A concerning increase in antimicrobial resistance to commonly administered drugs was observed across the timeline. The surge in MDR is of great concern and implies the need for consistent antimicrobial stewardship. No correlation was observed between the plasmid and antibiotic profiles.

  12. Occurrence and antimicrobial resistance of Salmonella spp. isolated from food other than meat in Poland

    Directory of Open Access Journals (Sweden)

    Łukasz Mąka

    2015-09-01

    Although, the level of resistance and multiresistance of Salmonella spp. isolates from non-meat foods was lower than in those from meat products, the presence of these resistant bacteria poses a real threat to the health of consumers.

  13. Drug resistant Salmonella in broiler chicken sold at local market in ...

    African Journals Online (AJOL)

    user

    2015-10-28

    Oct 28, 2015 ... Key words: Antibiogram, Salmonellosis, PCR, broiler chicken, drug resistance. ... of zoonotic origin and have gained their resistance in an animal host ..... dynamics of Salmonella enterica serotypes in commercial egg and.

  14. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne Nielsine; Andersen, Jens Strodl; Aabo, Søren

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue...

  15. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne; Andersen, Jens Strodl; Aabo, Søren

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue....

  16. Prevalence and multidrug resistance pattern of Salmonella isolated from resident wild birds of Bangladesh

    Directory of Open Access Journals (Sweden)

    Abdullah Al Faruq

    2016-10-01

    Full Text Available Aim: Salmonellosis is one of the most common zoonotic diseases, and the presence of antimicrobial resistant Salmonella in wild birds is global public health threat. Throughout the last decades, multidrug resistance of Salmonella spp. has increased, particularly in developing countries. Therefore, a cross-sectional study was conducted to investigate the prevalence of Salmonella spp. and antimicrobial resistance pattern against Salmonella spp. from two species of resident wild birds namely house crow (Corvus splendens and Asian pied starling (Gracupica contra. Materials and Methods: Samples were collected from cloacal swabs of house crows and Asian pied starling for isolating Salmonella spp. (bacteriological culture methods followed by antimicrobial susceptibility testing (disk diffusion method against Salmonella spp. isolates during March to December 2014. Results: The prevalence of Salmonella in Asian pied starling and house crows were 67% and 65%, respectively. Within the category of samples from different species, the variation in prevalence was not varied significantly (p>0.05. Isolated Salmonella spp. was tested for resistance to six different antimicrobial agents. Among six antimicrobial tested, 100% resistance were found to penicillin, oxacillin, and clindamycin followed by erythromycin (50-93%, kanamycin (7-20%, and cephalothin (30-67% from both species of birds. Kanamycin remained sensitive in (70-73%, cephalothin (26-70%, and erythromycin appeared to be (0-30% sensitive against Salmonella spp. isolates. Isolated Salmonella spp. was multidrug resistant up to three of the six antimicrobials tested. Conclusion: It can be said that the rational use of antimicrobials needs to be adopted in the treatment of disease for livestock, poultry, and human of Bangladesh to limit the emergence of drug resistance to Salmonella spp.

  17. Pharmacological modification of multi-drug resistance (MDR) in vitro detected by a novel fluorometric microculture cytotoxicity assay. Reversal of resistance and selective cytotoxic actions of cyclosporin A and verapamil on MDR leukemia T-cells.

    Science.gov (United States)

    Larsson, R; Nygren, P

    1990-07-15

    A novel fluorometric microculture cytotoxicity assay (FMCA), based on measurements of fluorescein diacetate (FDA) hydrolysis and DNA staining by Hoechst 33342, was used for drug sensitivity testing and detection of resistance reversal in acute lymphoblastic leukemia (ALL) cell lines. The 72-hr assay was found to be sensitive, reproducible and linearly related to the number of viable cells within a broad range of cell concentrations. At clinically achievable drug concentrations, the calcium channel blocker Verapamil (ver) and the immunosuppressant Cyclosporin A (csA) were found to partly reverse acquired Vincristine (vcr) resistance in multi-drug resistant (MDR) T-ALL L100 cells with little or no effect on the drug-sensitive parental L0 cell line. By combining the fluorometric indices, we found that low concentrations of csA were growth-inhibitory, whereas higher concentrations (greater than 10 micrograms/ml) were progressively cytotoxic for drug-sensitive L0 cells. In MDR L100 cells, on the other hand, csA produced significant cell kill even at low drug concentrations. Ver had no effects on sensitive L0 cells but showed considerable cytotoxic action towards MDR L100 cells. There was no apparent relationship between drug reversal of vcr resistance and the cytotoxic actions of the drug per se since the calcium channel blocker diltiazem (dil) significantly potentiated the actions of vcr on MDR L100 cells without being more toxic to these cells (compared to vcr-sensitive L0 cells).

  18. Contribution of efflux pumps in fluroquinolone resistance in multi-drug resistant nosocomial isolates of Pseudomanas aeruginosa from a tertiary referral hospital in north east India

    Directory of Open Access Journals (Sweden)

    D Choudhury

    2015-01-01

    Full Text Available Background: Pseudomonas aeruginosa is one of the leading opportunistic pathogen and its ability to acquire resistance against series of antimicrobial agents confine treatment option for nosocomial infections. Increasing resistance to fluroquinolone (FQ agents has further worsened the scenario. The major mechanism of resistance to FQs includes mutation in FQs target genes in bacteria (DNA gyrase and/or topoisomerases and overexpression of antibiotic efflux pumps. Objective: We have investigated the role of efflux pump mediated FQ resistance in nosocomial isolates of P. aeruginosa from a tertiary referral hospital in north eastern part of India. Materials and Methods: A total of 234 non-duplicate, consecutive clinical isolates of P. aeruginosa were obtained from a tertiary referral hospital of north-east India. An efflux pump inhibitor (EPI, carbonyl cyanide m-chlorophenylhydrazone (CCCP based method was used for determination of efflux pump activity and multiplex polymerase chain reaction (PCR was performed for molecular characterisation of efflux pump. Minimum inhibitory concentration (MIC reduction assay was also performed for all the isolates. Results and Conclusion: A total number of 56 (23% have shown efflux mediated FQ resistance. MexAB-OprM efflux system was predominant type. This is the first report of efflux pump mediated FQ resistance from this part of the world and the continued emergence of these mutants with such high MIC range from this part of the world demands serious awareness, diagnostic intervention, and proper therapeutic option.

  19. Antibacterial activity of local herbs collected from Murree (Pakistan) against multi-drug resistant Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus.

    Science.gov (United States)

    Mansoor, Qaisar; Shaheen, Saira; Javed, Uzma; Shaheen, Uzma; Iqrar, Irum; Ismail, Muhammad

    2013-07-01

    Exploring healing power in plants emerged in prehistory of human civilization. Sustaining good health has been achieved over the millions of years by use of plant products in various traditional sockets. A major contribution of medicinal plants to health care systems is their limitless possession of bioactive components that stimulate explicit physiological actions. Luckily Pakistan is blessed with huge reservoir of plants with medicinal potential and some of them; we focused in this study for their medicinal importance.In this study we checked the antibacterial activity inherent in Ricinus communis, Solanum nigrum, Dodonaea viscose and Berberis lyceum extracts for multidrug resistance bacterial strains Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus. MRSA showed sensitivity for Ricinus communis. Multidrug resistant Klebsiella pneumonae was sensitive with Pine roxburgii and Ricinus communis but weakly susceptible for Solanum nigrum. Multidrug resistant E. coli was resistant to all plant extracts. Treatment of severe infections caused by the bacterial strains used in this study with Ricinus communis, Pine roxburgii and Solanum nigrum can lower the undesired side effects of synthetic medicine and also reduce the economic burden.

  20. Mechanisms of resistance to quinolones and epidemiological significance of Salmonella spp.

    OpenAIRE

    Velhner, Maja

    2016-01-01

    Bacteria develop resistance to antimicrobial agents by a number of different mechanisms. The resistance to (fluoro)quinolones in Salmonella is of particular importance especially if therapy in humans is required. For decades there has been a significant interest in studying the biology of Salmonella because these bacteria are among the leading causes of foodborne illnesses around the globe. To this date, two main mechanisms of quinolone resistance have been established: alteration in the targ...

  1. Characterization of a multidrug resistant Salmonella enterica give ...

    African Journals Online (AJOL)

    Salmonella enterica Give is one of the serotypes that have been incriminated in Salmonella infections; sometimes associated with hospitalization and mortalities in humans and animals in some parts of the world. In this work, we characterized one Salmonella Give isolated from cloaca swab of an Agama agama lizard ...

  2. Multiple antimicrobial resistance of Escherichia coli and Salmonella ...

    African Journals Online (AJOL)

    Presumptive isolates were subjected to antimicrobial susceptibility testing using 13 panels of antibiotics for both E. coli and Salmonella spp. Results showed that the overall isolation rate of Salmonella spp. was 12 (11.4%), broiler chickens had higher isolation rate 9 (12.0%) of Salmonella than local chickens. However, the ...

  3. Drug-resistance patterns of Mycobacterium tuberculosis strains and associated risk factors among multi drug-resistant tuberculosis suspected patients from Ethiopia.

    Science.gov (United States)

    Mesfin, Eyob Abera; Beyene, Dereje; Tesfaye, Abreham; Admasu, Addisu; Addise, Desalegn; Amare, Miskir; Dagne, Biniyam; Yaregal, Zelalem; Tesfaye, Ephrem; Tessema, Belay

    2018-01-01

    Multidrug drug-resistant tuberculosis (MDR-TB) is a major health problem and seriously threatens TB control and prevention efforts globally. Ethiopia is among the 30th highest TB burden countries for MDR-TB with 14% prevalence among previously treated cases. The focus of this study was on determining drug resistance patterns of Mycobacterium tuberculosis among MDR-TB suspected cases and associated risk factors. A cross-sectional study was conducted in Addis Ababa from June 2015 to December 2016. Sputum samples and socio-demographic data were collected from 358 MDR-TB suspected cases. Samples were analyzed using Ziehl-Neelsen technique, GeneXpert MTB/RIF assay, and culture using Lowenstein-Jensen and Mycobacterial growth indicator tube. Data were analyzed using SPSS version 23. A total of 226 the study participants were culture positive for Mycobacterium tuberculosis, among them, 133 (58.8%) participants were males. Moreover, 162 (71.7%) had been previously treated for tuberculosis, while 128 (56.6%) were TB/HIV co-infected. A majority [122 (54%)] of the isolates were resistant to any first-line anti-TB drugs. Among the resistant isolates, 110 (48.7%) were determined to be resistant to isoniazid, 94 (41.6%) to streptomycin, 89 (39.4%) to rifampicin, 72 (31.9%) to ethambutol, and 70 (30.9%) to pyrazinamide. The prevalence of MDR-TB was 89 (39.4%), of which 52/89 (58.4%) isolates were resistance to all five first-line drugs. Risk factors such as TB/HIV co-infection (AOR = 5.59, p = 0.00), cigarette smoking (AOR = 3.52, p = 0.045), alcohol drinking (AOR = 5.14, p = 0.001) hospital admission (AOR = 3.49, p = 0.005) and visiting (AOR = 3.34, p = 0.044) were significantly associated with MDR-TB. The prevalence of MDR-TB in the study population was of a significantly high level among previously treated patients and age group of 25-34. TB/HIV coinfection, smoking of cigarette, alcohol drinking, hospital admission and health facility visiting were identified as risk factors

  4. Multidrug-resistant Salmonella enterica serovar Typhimurium isolates are resistant to antibiotics that influence their swimming and swarming motility

    Science.gov (United States)

    Motile bacteria utilize one or more strategies for movement, such as darting, gliding, sliding, swarming, swimming, and twitching. The ability to move is considered a virulence factor in many pathogenic bacteria, including Salmonella. Multidrug-resistant (MDR) Salmonella encodes acquired factors t...

  5. Position on mouse chromosome 1 of a gene that controls resistance to Salmonella typhimurium.

    Science.gov (United States)

    Taylor, B A; O'Brien, A D

    1982-06-01

    Ity is a gene which regulates the magnitude of Salmonella typhimurium growth in murine tissues and, hence, the innate salmonella resistance of mice. The results of a five-point backcross clearly showed that the correct gene order on chromosome 1 is fz-Idh-1-Ity-ln-Pep-3.

  6. Occurrence and antimicrobial resistance of Salmonella spp. isolated from food other than meat in Poland

    Directory of Open Access Journals (Sweden)

    Łukasz Mąka

    2015-09-01

    Full Text Available Introduction and objectives. Antimicrobial resistance of pathogenic bacteria can result in therapy failure, increased hospitalization, and increased risk of death. In Poland, [i]Salmonella[/i] spp. is a major bacterial agent of food poisoning. The majority of studies on antimicrobial resistance in [i]Salmonella[/i] spp. isolates from food have focused on meat products as the source of this pathogen. In comparison, this study examines the antimicrobial susceptibility of [i]Salmonella[/i] spp. isolated from retail food products other than meat in Poland. Materials and Methods. A collection of 122 [i]Salmonella[/i] spp. isolates were isolated in Poland in 2008–2012 from foods other than meat: confectionery products, eggs, fruits, vegetables, spices and others. The resistance of these isolates to 19 antimicrobial agents was tested using the disc diffusion method. Results. [i]Salmonella[/i] Enteritidis was the most frequently identified serotype (84.4% of all tested isolates. In total, 42.6% of the [i]Salmonella[/i] spp. isolates were resistant to antibiotics. The highest frequencies of resistance were observed in isolates from 2009 (60.0% and 2012 (59.5%. Antibiotic resistance was most prevalent among [i]Salmonella[/i] spp. isolated from egg-containing food samples (68.0%. Resistance to nalidixic acid was most common and was observed in 35.2% of all tested isolates. The isolates were less frequently resistant to sulphonamides (6.6%, ampicillin (4.9%, amoxicillin/clavulanic acid (2.5% and to streptomycin, cefoxitin, gentamicin and tetracycline (1.6%. Only one isolate showed resistance to chloramphenicol. Four isolates displayed multiresistance. Conclusions. Although, the level of resistance and multiresistance of [i]Salmonella[/i] spp. isolates from non-meat foods was lower than in those from meat products, the presence of these resistant bacteria poses a real threat to the health of consumers.

  7. Characterization of integron mediated antimicrobial resistance in Salmonella isolated from diseased swine

    Science.gov (United States)

    White, David G.; Zhao, Shaohua; McDermott, Patrick F.; Ayers, Sherry; Friedman, Sharon; Sherwood, Julie; Breider-Foley, Missy; Nolan, Lisa K.

    2003-01-01

    Forty-two Salmonella isolates obtained from diseased swine were genetically characterized for the presence of specific antimicrobial resistance mechanisms. Twenty of these isolates were characterized as S. Typhimurium DT104 strains. Pulsed-field gel electrophoresis was used to determine genetic relatedness and revealed 20 distinct genetic patterns among the 42 isolates. However, all DT104 isolates fell within 2 closely related genetic clusters. Other Salmonella isolates were genetically grouped together according to serotype. All DT104 isolates displayed the penta-resistance phenotype to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline. Resistance to sulfamethoxazole, tetracycline, streptomycin, kanamycin, and ampicillin was most common among the non-DT104 Salmonella isolates. All DT104 strains contained 2 chromosomal integrons of 1000 and 1200 base pairs. The DNA sequencing revealed that the 2 integrons contained genes encoding a resistance to streptomycin and ampicillin, respectively. None of the non-DT104 strains showed the same pattern, although several strains possessed integrons of 1000 base pairs or larger. However, the majority of non-DT104 Salmonella strains did not possess any integrons. Two Salmonella isolates displayed tolerance to the organic solvent cyclohexane, indicating the possibility that they are overexpressing chromosomal regulatory genes marA or soxS or the associated multidrug efflux pump, acrAB. This research suggests that integrons contribute to antimicrobial resistance among specific swine Salmonella serotypes; however, they are not as widely disseminated among non-Typhimurium swine Salmonella serotypes as previously thought. PMID:12528827

  8. Genetic diversity and antimicrobial resistance of Campylobacter and Salmonella strains isolated from decoys and raptors.

    Science.gov (United States)

    Jurado-Tarifa, E; Torralbo, A; Borge, C; Cerdà-Cuéllar, M; Ayats, T; Carbonero, A; García-Bocanegra, I

    2016-10-01

    Infections caused by thermotolerant Campylobacter spp. and Salmonella spp. are the leading causes of human gastroenteritis worldwide. Wild birds can act as reservoirs of both pathogens. A survey was carried out to determine the prevalence, genetic diversity and antimicrobial resistance of thermotolerant Campylobacter and Salmonella in waterfowl used as decoys and wild raptors in Andalusia (Southern Spain). The overall prevalence detected for Campylobacter was 5.9% (18/306; CI95%: 3.25-8.52) in decoys and 2.3% (9/387; CI95%: 0.82-3.83) in wild raptors. Isolates were identified as C. jejuni, C. coli and C. lari in both bird groups. Salmonella was isolated in 3.3% (10/306; CI95%: 2.3-4.3) and 4.6% (18/394; CI95%: 3.5-5.6) of the decoys and raptors, respectively. Salmonella Enteritidis and Typhimurium were the most frequently identified serovars, although Salmonella serovars Anatum, Bredeney, London and Mikawasima were also isolated. Pulsed-field gel electrophoresis analysis of isolates showed higher genetic diversity within Campylobacter species compared to Salmonella serovars. Campylobacter isolates showed resistance to gentamicin, ciprofloxacin and tetracycline, while resistance to erythromycin and tetracycline was found in Salmonella isolates. The results indicate that both decoys and raptors can act as natural carriers of Campylobacter and Salmonella in Spain, which may have important implications for public and animal health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mobilome differences between Salmonella enterica serovars Anatum and Typhimurium isolated from cattle and humans and potential impact on virulence

    Science.gov (United States)

    Salmonella enterica subsp. enterica is an important group of pathogens capable of inhabiting a range of niches and hosts with varying degrees of impact, from commensal colonization to invasive infection. Recent outbreaks of multi-drug resistant S. enterica, attributed to consumption of contaminated ...

  10. Prevalence and antibiotic resistance of Salmonella spp. in meat products, meat preparations and minced meat

    Science.gov (United States)

    Rašeta, M.; Mrdović, B.; Janković, V.; Bečkei, Z.; Lakićević, B.; Vidanović, D.; Polaček, V.

    2017-09-01

    This study aimed to determine Salmonella spp. prevalence in meat products, meat preparations and minced meat. Over a period of three years, a total of 300 samples were taken (100 RTE meat products, 100 meat preparations and 100 minced meat) and examined for the presence of Salmonella spp. Sampling was carried out at the warehouses of the food manufacturers. Salmonella spp. were not detected in RTE meat products, while 7% of semi-finished meat products (fresh sausages, grill meat formed and unformed) contained Salmonella, as did 18% of minced meats (minced pork II category, minced beef II category, mixed minced meat). The 25 Salmonella isolates obtained were examined for antibiotic resistance by the disk diffusion test, according to the NCCLS and CLSI guidelines. Isolates showed resistance to ampicillin and nalidixic acid (80%), tetracycline (72%), cefotaxime/clavulanic acid (48%), but not to gentamicin (8%) or trimethoprim/sulfamethoxazole (0%).

  11. Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA).

    Science.gov (United States)

    Zuo, Guo-Ying; Li, Yang; Han, Jun; Wang, Gen-Chun; Zhang, Yun-Ling; Bian, Zhong-Qi

    2012-08-29

    Antibacterial activity of berberine (Ber) and 8-acetonyl-dihydroberberine (A-Ber) alone and combined uses with antibacterial agents ampicillin (AMP), azithromycin (AZM), cefazolin (CFZ) and levofloxacin (LEV) was studied on 10 clinical isolates of SCCmec III type methicillin-resistant Staphylococcus aureus (MRSA). Susceptibility to each agent alone was tested using a broth microdilution method and the chequerboard and time-kill tests for the combined evaluations, respectively. The alone MICs/MBCs (μg/mL) ranges were 32-128/64-256 (Ber) and 32-128/128-512 (A-Ber). Significant synergies were observed for the Ber (A-Ber)/AZM and Ber (A-Ber)/LEV combinations against 90% of the tested MRSA strains, with fractional inhibitory concentration indices (FICIs) values ranged from 0.188 to 0.500. An additivity result was also observed for the Ber/AZM combination by time-kill curves. These results demonstrated for the first time that Ber and A-Ber enhanced the in vitro inhibitory efficacy of AZM and LEV to a same extent, which had potential for further investigation in combinatory therapeutic applications of patients infected with MRSA.

  12. Antibacterial and Synergy of Berberines with Antibacterial Agents against Clinical Multi-Drug Resistant Isolates of Methicillin-Resistant Staphylococcus aureus (MRSA

    Directory of Open Access Journals (Sweden)

    Zhong-Qi Bian

    2012-08-01

    Full Text Available Antibacterial activity of berberine (Ber and 8-acetonyl-dihydroberberine (A-Ber alone and combined uses with antibacterial agents ampicillin (AMP, azithromycin (AZM, cefazolin (CFZ and levofloxacin (LEV was studied on 10 clinical isolates of SCCmec III type methicillin-resistant Staphylococcus aureus (MRSA. Susceptibility to each agent alone was tested using a broth microdilution method and the chequerboard and time-kill tests for the combined evaluations, respectively. The alone MICs/MBCs (mg/mL ranges were 32–128/64–256 (Ber and 32-128/128-512 (A-Ber. Significant synergies were observed for the Ber (A-Ber/AZM and Ber (A-Ber/LEV combinations against 90% of the tested MRSA strains, with fractional inhibitory concentration indices (FICIs values ranged  from 0.188 to 0.500. An additivity result was also observed for the Ber/AZM combination by time-kill curves. These results demonstrated for the first time that Ber and A-Ber enhanced the in vitro inhibitory efficacy of AZM and LEV to a same extent, which had potential for further investigation in combinatory therapeutic applications of patients infected with MRSA.

  13. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China.

    Directory of Open Access Journals (Sweden)

    Yan Lu

    Full Text Available A total of 310 Salmonella isolates were isolated from 6 broiler farms in Eastern China, serotyped according to the Kauffmann-White classification. All isolates were examined for susceptibility to 17 commonly used antimicrobial agents, representative isolates were examined for resistance genes and class I integrons using PCR technology. Clonality was determined by pulsed-field gel electrophoresis (PFGE. There were two serotypes detected in the 310 Salmonella strains, which included 133 Salmonella enterica serovar Indiana isolates and 177 Salmonella enterica serovar Enteritidis isolates. Antimicrobial sensitivity results showed that the isolates were generally resistant to sulfamethoxazole, ampicillin, tetracycline, doxycycline and trimethoprim, and 95% of the isolates sensitive to amikacin and polymyxin. Among all Salmonella enterica serovar Indiana isolates, 108 (81.2% possessed the blaTEM, floR, tetA, strA and aac (6'-Ib-cr resistance genes. The detected carriage rate of class 1 integrons was 66.5% (206/310, with 6 strains carrying gene integron cassette dfr17-aadA5. The increasing frequency of multidrug resistance rate in Salmonella was associated with increasing prevalence of int1 genes (rs = 0.938, P = 0.00039. The int1, blaTEM, floR, tetA, strA and aac (6'-Ib-cr positive Salmonella enterica serovar Indiana isolates showed five major patterns as determined by PFGE. Most isolates exhibited the common PFGE patterns found from the chicken farms, suggesting that many multidrug-resistant isolates of Salmonella enterica serovar Indiana prevailed in these sources. Some isolates with similar antimicrobial resistance patterns represented a variety of Salmonella enterica serovar Indiana genotypes, and were derived from a different clone.

  14. Heat resistance of Salmonella in various egg products.

    Science.gov (United States)

    Garibaldi, J A; Straka, R P; Ijichi, K

    1969-04-01

    The heat-resistance characteristics of Salmonella typhimurium Tm-1, a reference strain in the stationary phase of growth, were determined at several temperatures in the major types of products produced by the egg industry. The time required to kill 90% of the population (D value) at a given temperature in specific egg products was as follows: at 60 C (140 F), D = 0.27 min for whole egg; D = 0.60 min for whole egg plus 10% sucrose; D = 1.0 min for fortified whole egg; D = 0.20 min for egg white (pH 7.3), stabilized with aluminum; D = 0.40 min for egg yolk; D = 4.0 min for egg yolk plus 10% sucrose; D = 5.1 min for egg yolk plus 10% NaCl; D = 1.0 min for scrambled egg mix; at 55 C (131 F), D = 0.55 min for egg white (pH 9.2); D = 1.2 min for egg white (pH 9.2) plus 10% sucrose. The average Z value (number of degrees, either centigrade or fahrenheit, for a thermal destruction time curve to traverse one logarithmic cycle) was 4.6 C (8.3 F) with a range from 4.2 to 5.3 C. Supplementation with 10% sucrose appeared to have a severalfold greater effect on the heat stabilization of egg white proteins than on S. typhimurium Tm-1. This information should be of value in the formulation of heat treatments to insure that all egg products be free of viable salmonellae.

  15. Molecular Characterization of Multidrug-Resistant Salmonella enterica subsp. enterica Serovar Typhimurium Isolates from Swine

    OpenAIRE

    Gebreyes, Wondwossen Abebe; Altier, Craig

    2002-01-01

    As part of a longitudinal study of antimicrobial resistance among salmonellae isolated from swine, we studied 484 Salmonella enterica subsp. enterica serovar Typhimurium (including serovar Typhimurium var. Copenhagen) isolates. We found two common pentaresistant phenotypes. The first was resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (the AmCmStSuTe phenotype; 36.2% of all isolates), mainly of the definitive type 104 (DT104) phage type (180 of 187 ...

  16. Salmonella enterica isolates from pasture-raised poultry exhibit antimicrobial resistance and class I integrons.

    Science.gov (United States)

    Melendez, S N; Hanning, I; Han, J; Nayak, R; Clement, A R; Wooming, A; Hererra, P; Jones, F T; Foley, S L; Ricke, S C

    2010-12-01

    While considerable foodborne pathogen research has been conducted on conventionally produced broilers and turkeys, few studies have focused on free-range (organic) or pastured poultry. The current surveillance study was designed to isolate, identify and genetically characterize Salmonella from pastured poultry farm environment and from retail samples. In this study, 59 isolates were collected from two pastured poultry farms (n = 164; pens, feed, water and insect traps) and retail carcasses (n = 36) from a local natural foods store and a local processing plant. All isolates were serotyped and analysed phenotypically (antimicrobial resistance profiles) and genotypically (DNA fingerprints, plasmid profiles and integron analysis). Salmonella enterica was detected using standard microbiological methods. Salmonella Kentucky was the most prevalent serotype detected from the sampled sources (53%), followed by Salmonella Enteritidis (24%), Bareilly (10%), Mbandaka (7%), Montevideo (5%) or Newport (2%). All isolates were resistant to sulfisoxazole and novobiocin, and the majority (40/59) possessed class I integrons shown by PCR detection. Each Salmonella serotype elicited a distinct pulsed-field gel electrophoresis fingerprint profile, and unique differences were observed among the serotypes.  The findings of this study show that Salmonella serotypes isolated from pasture-raised poultry exhibit antimicrobial resistance and class I integrons.  This study demonstrates that despite the cessation of antibiotic usage in poultry production, antibiotic resistant Salmonella may still be recovered from the environment and poultry products. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  17. Salmonella Typhimurium ST213 is associated with two types of IncA/C plasmids carrying multiple resistance determinants.

    Science.gov (United States)

    Wiesner, Magdalena; Calva, Edmundo; Fernández-Mora, Marcos; Cevallos, Miguel A; Campos, Freddy; Zaidi, Mussaret B; Silva, Claudia

    2011-01-11

    Salmonella Typhimurium ST213 was first detected in the Mexican Typhimurium population in 2001. It is associated with a multi-drug resistance phenotype and a plasmid-borne blaCMY-2 gene conferring resistance to extended-spectrum cephalosporins. The objective of the current study was to examine the association between the ST213 genotype and blaCMY-2 plasmids. The blaCMY-2 gene was carried by an IncA/C plasmid. ST213 strains lacking the blaCMY-2 gene carried a different IncA/C plasmid. PCR analysis of seven DNA regions distributed throughout the plasmids showed that these IncA/C plasmids were related, but the presence and absence of DNA stretches produced two divergent types I and II. A class 1 integron (dfrA12, orfF and aadA2) was detected in most of the type I plasmids. Type I contained all the plasmids carrying the blaCMY-2 gene and a subset of plasmids lacking blaCMY-2. Type II included all of the remaining blaCMY-2-negative plasmids. A sequence comparison of the seven DNA regions showed that both types were closely related to IncA/C plasmids found in Escherichia, Salmonella, Yersinia, Photobacterium, Vibrio and Aeromonas. Analysis of our Typhimurium strains showed that the region containing the blaCMY-2 gene is inserted between traA and traC as a single copy, like in the E. coli plasmid pAR060302. The floR allele was identical to that of Newport pSN254, suggesting a mosaic pattern of ancestry with plasmids from other Salmonella serovars and E. coli. Only one of the tested strains was able to conjugate the IncA/C plasmid at very low frequencies (10-7 to 10-9). The lack of conjugation ability of our IncA/C plasmids agrees with the clonal dissemination trend suggested by the chromosomal backgrounds and plasmid pattern associations. The ecological success of the newly emerging Typhimurium ST213 genotype in Mexico may be related to the carriage of IncA/C plasmids. We conclude that types I and II of IncA/C plasmids originated from a common ancestor and that the

  18. Non-typhoidal Salmonella serotypes, antimicrobial resistance and co-infection with parasites among patients with diarrhea and other gastrointestinal complaints in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Eguale, Tadesse; Gebreyes, Wondwossen A; Asrat, Daniel; Alemayehu, Haile; Gunn, John S; Engidawork, Ephrem

    2015-11-04

    isolates. Resistance to five or more antimicrobials was detected in 17 (25.4 %). Resistance to individual antimicrobials was found at varying proportions: streptomycin (50; 74.6 %), nitrofurantoin (27; 40.3 %), sulfisoxazole (26; 38.8 %), kanamycin (23; 34.3 %), cephalothin (12; 17.9 %), and ampicillin (11; 16.4 %) respectively. Two S. Kentucky, one S. Typhimurium and one S. Concord isolates were multi-drug resistant to more than 10 antimicrobials. The study demonstrated significant association of Salmonella infection with consumption of raw vegetables. There was no significant association of Salmonella infection with co-occurring parasites. The study also showed the dominance of S. Typhimurium and S. Virchow in primary health care units. Overall, prevalence of MDR was low compared to previous studies. Although their proportion was low, S. Kentucky and S. Concord demonstrated wider spectrum of MDR. Continuous monitoring of circulating serotypes, antimicrobial resistance profile and characterization on molecular resistance determinants is essential for proper treatment of patients and for identifying potential environmental origins of antimicrobial resistance.

  19. Antimicrobial resistance and typing of Salmonella isolated from street vended foods and associated environment.

    Science.gov (United States)

    Anukampa; Shagufta, Bi; Sivakumar, M; Kumar, Surender; Agarwal, Rajesh Kumar; Bhilegaonkar, Kiran Narayan; Kumar, Ashok; Dubal, Zunjar Baburao

    2017-07-01

    The present study was carried out to find out the occurrence and types of Salmonella present in street vended foods and associated environment, and their resistance pattern against various antibiotics. About 1075 street vended food and associated environment samples were processed for isolation and confirmation of different Salmonella spp. by targeting gene specific inv A gene and serotype specific Sdf I, Via B and Spy genes by PCR. Selected Salmonella isolates were screened for antibiotic resistance by using Baeur-Kirby disk diffusion test. Out of 1075 samples, only 31 (2.88%) isolates could be amplified the inv A gene of which 19 could be recovered from meat vendors; 8 from egg vendors while remaining 4 from milk vendors. Though, majority of Salmonella recovered from raw foods the ready-to-eat food like chicken gravy and rasmalai also showed its presence which pose a serious public health threat. Overall, 19, 6 and 1 isolates of S. Typhimurium, S. Enteritidis and S. Typhi could be detected by PCR while remaining 5 isolates could not be amplified suggesting other type of Salmonella. Selected Salmonella isolates were completely resistance to Oxacillin (100%) followed by Cefoxitin (30.43%) and Ampicillin (26.10%). Thus, it is observed that the street vended foods of animal origin and associated environment play an important role in transmission of food borne pathogens including Salmonella .

  20. Antimicrobial resistant Salmonella enterica and Escherichia coli recovered from dairy operations

    Science.gov (United States)

    Antimicrobial resistance has become a major public health concern and animal agriculture is often implicated as a source of resistant bacteria. The primary objective of this study was to determine prevalence of antimicrobial resistance in Salmonella and E. coli from healthy animals on dairy farms i...

  1. Multidrug resistant Salmonellae isolated from blood culture samples ...

    African Journals Online (AJOL)

    This study investigates the prevalence of R-plasmids in Salmonella sp. isolated from blood samples of suspected typhoid patients in Warri, Nigeria. A total of 136 blood samples were collected between May and December,2009 and screened for the presence of Salmonellae using standard blood culture techniques of which ...

  2. A comparison of cecal colonization of Salmonella enterica serotype Typhimurium in white leghorn chicks and Salmonella-resistant mice

    Directory of Open Access Journals (Sweden)

    Bogomolnaya Lydia M

    2008-10-01

    Full Text Available Abstract Background Salmonellosis is one of the most important bacterial food borne illnesses worldwide. A major source of infection for humans is consumption of chicken or egg products that have been contaminated with Salmonella enterica serotype Typhimurium, however our knowledge regarding colonization and persistence factors in the chicken is small. Results We compared intestinal and systemic colonization of 1-week-old White Leghorn chicks and Salmonella-resistant CBA/J mice during infection with Salmonella enterica serotype Typhimurium ATCC14028, one of the most commonly studied isolates. We also studied the distribution of wild type serotype Typhimurium ATCC14028 and an isogenic invA mutant during competitive infection in the cecum of 1-week-old White Leghorn chicks and 8-week-old CBA/J mice. We found that although the systemic levels of serotype Typhimurium in both infected animal models are low, infected mice have significant splenomegaly beginning at 15 days post infection. In the intestinal tract itself, the cecal contents are the major site for recovery of serotype Typhimurium in the cecum of 1-week-old chicks and Salmonella-resistant mice. Additionally we show that only a small minority of Salmonellae are intracellular in the cecal epithelium of both infected animal models, and while SPI-1 is important for successful infection in the murine model, it is important for association with the cecal epithelium of 1-week-old chicks. Finally, we show that in chicks infected with serotype Typhimurium at 1 week of age, the level of fecal shedding of this organism does not reflect the level of cecal colonization as it does in murine models. Conclusion In our study, we highlight important differences in systemic and intestinal colonization levels between chick and murine serotype Typhimurium infections, and provide evidence that suggests that the role of SPI-1 may not be the same during colonization of both animal models.

  3. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    Science.gov (United States)

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Antimicrobial resistance, class 1 integrons, and genomic island 1 in Salmonella isolates from Vietnam.

    Directory of Open Access Journals (Sweden)

    An T T Vo

    Full Text Available BACKGROUND: The objective was to investigate the phenotypic and genotypic resistance and the horizontal transfer of resistance determinants from Salmonella isolates from humans and animals in Vietnam. METHODOLOGY/PRINCIPAL FINDINGS: The susceptibility of 297 epidemiologically unrelated non-typhoid Salmonella isolates was investigated by disk diffusion assay. The isolates were screened for the presence of class 1 integrons and Salmonella genomic island 1 by PCR. The potential for the transfer of resistance determinants was investigated by conjugation experiments. Resistance to gentamicin, kanamycin, chloramphenicol, streptomycin, trimethoprim, ampicillin, nalidixic acid, sulphonamides, and tetracycline was found in 13 to 50% of the isolates. Nine distinct integron types were detected in 28% of the isolates belonging to 11 Salmonella serovars including S. Tallahassee. Gene cassettes identified were aadA1, aadA2, aadA5, bla(PSE-1, bla(OXA-30, dfrA1, dfrA12, dfrA17, and sat, as well as open reading frames with unknown functions. Most integrons were located on conjugative plasmids, which can transfer their antimicrobial resistance determinants to Escherichia coli or Salmonella Enteritidis, or with Salmonella Genomic Island 1 or its variants. The resistance gene cluster in serovar Emek identified by PCR mapping and nucleotide sequencing contained SGI1-J3 which is integrated in SGI1 at another position than the majority of SGI1. This is the second report on the insertion of SGI1 at this position. High-level resistance to fluoroquinolones was found in 3 multiresistant S. Typhimurium isolates and was associated with mutations in the gyrA gene leading to the amino acid changes Ser83Phe and Asp87Asn. CONCLUSIONS: Resistance was common among Vietnamese Salmonella isolates from different sources. Legislation to enforce a more prudent use of antibiotics in both human and veterinary medicine should be implemented by the authorities in Vietnam.

  5. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan

    DEFF Research Database (Denmark)

    Lauderdale, T. L.; Aarestrup, Frank Møller; Chen, P. C.

    2006-01-01

    (41%) and was highly prevalent in Salmonella enterica serotype Typhimurium (72.7%, 176/242) the most common serotype. Additional resistance to trimethoprim was present in 155 (19.4% overall) of the ACSSuT R-type isolates from several serotypes. Reduced susceptibility to fluoroquinolone (FQ...... multiresistant to other antimicrobials. Studies are needed to determine the sources of different multidrug-resistant serotypes. Continued national surveillance is underway to monitor changes in resistance trends and to detect further emergence of resistant Salmonella serotypes in Taiwan. (c) 2006 Elsevier Inc...

  6. The incidence and antibiotic resistance of Salmonella species isolated from cloacae of captive veiled chameleons

    Directory of Open Access Journals (Sweden)

    Silvia Barazorda Romero

    2015-01-01

    Full Text Available Salmonella can be present in the intestinal flora of captive reptiles without clinical disease or it can cause life threatening morbidity. The presence of certain species of Salmonella in reptiles is consistent with them being the source of contamination in some cases of human disease. Thus, Salmonella positive animals can be a potential public health concern even more when strains acquire resistance to antibiotics. The nature and extent of Salmonella harboured by different species of reptiles commonly kept in captivity are not known. The aims of this study were to analyse the incidence of Salmonella species in cloacae as an indicator of the intestinal flora in a cohort of healthy captive bred female veiled chameleons. A cloacal sample was taken from each of fifteen healthy captive bred, adult female veiled chameleons that were housed at a teaching and research clinic. Salmonella isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and positive cases were serotyped by slide agglutination test. Salmonella organisms were detected in 12 chameleons. Eighty percent of chameleons harboured 1 of 4 subspecies and serovars of Salmonella. All strains belonged to the species enterica, predominantly subspecies enterica (91.7 % and were distributed among 4 different serovars: S. Ago (58.3 %, S. Blijdorp (16.7 %, S. Tennessee (16.7 % and S. IV 45:g,z51:- (8.3 %. Antibiotic resistance to streptomycin was detected in one of 12 Salmonella strains: S. IV 45:g,z51:-. Our study extended the list of Salmonella found in healthy captive animals and included serovars S. Tennessee and S. IV 45:g,z51:- that have been associated with morbidity in humans.

  7. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    Science.gov (United States)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  8. Molecular typing, antibiotic resistance, virulence gene and biofilm formation of different Salmonella enterica serotypes.

    Science.gov (United States)

    Turki, Yousra; Mehr, Ines; Ouzari, Hadda; Khessairi, Amel; Hassen, Abdennaceur

    2014-01-01

    Salmonella enterica isolates representing commonly isolated serotypes in Tunisia were analyzed using genotyping and phenotyping methods. ERIC and ITS-PCR applied to 48 Salmonella spp. isolates revealed the presence of 12 and 10 different profiles, respectively. The distribution of profiles among serotypes demonstrated the presence of strains showing an identical fingerprinting pattern. All Salmonella strains used in this study were positive for the sdiA gene. Three Salmonella isolates belonging to serotypes Anatum, Enteritidis and Amsterdam were negative for the invA gene. The spvC gene was detected in thirteen isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Gallinarum and Montevideo. Antibiotic resistance was frequent among the recovered Salmonella isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Zanzibar and Derby. The majority of these isolates exhibited resistance to at least two antibiotic families. Four multidrug-resistant isolates were recovered from food animals and poultry products. These isolates exhibited not only resistance to tetracycline, sulphonamides, and ampicillin, but also have shown resistance to fluoroquinolones. Common resistance to nalidixic acid, ciprofloxacin and ofloxacin in two S. Anatum and S. Zanzibar strains isolated from raw meat and poultry was also obtained. Furthermore, wastewater and human isolates exhibited frequent resistance to nalidixic acid and tetracycline. Of all isolates, 33.5% were able to form biofilm.

  9. The expression and significance of multi-drug resistance genes in breast cancer stem cells%乳腺癌干细胞多药耐药基因的表达及意义

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Chunping Liu; Yanli He; Jinghui Zhang; Tao Huang

    2008-01-01

    Objective:To approach the expressions of MDR1 and BCRP in breast cancer stem cells and differentiated cells.Methods:The breast cancer stem calls were separated from human breast cancer primary tissues and MCF-7 by flow cytometry.Then we measured the expressions of MDR1 and BCRP with different subset cells by Realtime-PCR.Results:Contrasted with breast cancer differentiated cells,the expressions of MDR1 and BCRP in breast cancer stem calls were higher (P<0.01),and the proportion of stem cells rose after chemotherapy (P<0.01).Conclusion:Contrasted with breast cancer differentiated cells,breast cancer stem cells have stronger ability of clrug-resistanca with higher level of multi-drug resistance genes,and it is one of key points for chemotherapy failure of breast cancer.

  10. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections

    Science.gov (United States)

    Sjölund-Karlsson, Maria; Gordon, Melita A.; Parry, Christopher M.

    2015-01-01

    SUMMARY Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015. PMID:26180063

  11. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis.

    Science.gov (United States)

    Tadesse, Getachew; Tessema, Tesfaye S; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.

  12. Prevalence and Antimicrobial Resistance of Salmonella Isolates from Chicken Carcasses in Retail Markets in Yangon, Myanmar.

    Science.gov (United States)

    Moe, Aung Zaw; Paulsen, Peter; Pichpol, Duangporn; Fries, Reinhard; Irsigler, Herlinde; Baumann, Maximilian P O; Oo, Kyaw Naing

    2017-06-01

    A cross-sectional investigation was conducted concerning prevalence, antimicrobial resistance, multidrug resistance patterns, and serovar diversity of Salmonella in chicken meat sold at retail in Yangon, Myanmar. The 141 chicken meat samples were collected at 141 retail markets in the Yangon Region, Myanmar, 1 November 2014 to 31 March 2015. Information on hygienic practices (potential risk factors) was retrieved via checklists. Salmonella was isolated and identified according to International Organization for Standardization methods (ISO 6579:2002) with minor modifications. Twelve antimicrobial agents belonging to eight pharmacological groups were used for antimicrobial susceptibility testing (disk diffusion method). Salmonella was recovered from 138 (97.9%) of the 141 samples. The isolates were most frequently resistant to trimethoprim-sulfamethoxazole (70.3% of isolates), tetracycline (54.3%), streptomycin (49.3%), and ampicillin (47.1%). Resistance was also found to chloramphenicol (29.7%), amoxicillin-clavulanic acid (17.4%), ciprofloxacin (9.4%), tobramycin (8.7%), gentamicin (8%), cefazolin (7.2%), lincomycin-spectinomycin (5.8%), and norfloxacin (0.7%). Among the 138 Salmonella isolates, 72 (52.2%) were resistant to three or more antimicrobial agents. Twenty-four serovars were identified among the 138 Salmonella-positive samples; serovars Albany, Kentucky, Braenderup, and Indiana were found in 38, 11, 10, and 8% of samples, respectively. None of the potential risk factors were significantly related to Salmonella contamination of chicken carcasses. This study provides new information regarding prevalence and antimicrobial resistance and Salmonella serovar diversity in retail markets in Yangon, Myanmar.

  13. Characterization of a Multidrug Resistant Salmonella Enterica Give

    African Journals Online (AJOL)

    Dr Olaleye

    more than 535 cases of laboratory-confirmed Salmonella infections ... Serotyping of the isolate: The isolate was sub cultured into. TSA agar and ... Electrophoresis unit (Life Technologies). Determination of .... raw minced meat. (Girardin et al.

  14. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    Science.gov (United States)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-09-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 °C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 °C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation.

  15. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    International Nuclear Information System (INIS)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-01-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 o C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 o C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D 10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D 10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation

  16. Antimicrobial resistance of Salmonella and E. coli from Pennsylvania dairy herds

    Science.gov (United States)

    Antimicrobial resistance in bacterial pathogens is an increasing public health concern. The objective of this study was to examine antimicrobial resistance in Salmonella and E. coli isolates from Pennsylvania dairy herds. Manure composite samples were collected from 76 farms: on each farm one sample...

  17. Serovars of Salmonella isolated from Danish turkeys between 1995 and 2000 and their antimicrobial resistance

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hansen, H.C.; Jørgensen, J.C.

    2002-01-01

    , florfenicol, or amoxycillin with clavulanic acid, only 24 isolates were resistant to two or more compounds in various combinations of up to six compounds; one Salmonella Havana isolate was resistant to six compounds. Six isolates were serovar Typhimurium, but none of them belonged to phage type DT104....

  18. Antimicrobial resistance in E. coli and Salmonella spp. isolates from calves in southern Chile

    Directory of Open Access Journals (Sweden)

    Luis Hervé-Claude

    2017-09-01

    Full Text Available Objective: Description of antimicrobial resistance in E. coli and Salmonella spp. isolates from calves <30 days of age from southern Chile. Material and methods: Necropsy and microbiology reports of 107 calves <30 days of age received at the Animal Pathology Institute between 2002 and 2015 were considered. Additionally, an antimicrobial resistance score was generated to allow comparisons among isolates with different antimicrobial susceptibility profiles. Results: There was no clear trend in antimicrobial resistance during the study period, with similar levels of resistance for E. coli, β-hemolytic E. coli and Salmonella spp. Approximately 50% of isolates were sensitive to antimicrobials, and between 19 and 36% of samples showed possible extended- or pan- drug resistance. Multiple different antimicrobial resistance patterns were found, including 32 for E. coli, 17 for β-hemolytic E. coli and 10 for Salmonella spp. Conclusions: Overall, E. coli samples were most sensitive to ceftriaxone; β-hemolytic E. coli to florfenicol; and Salmonella spp. to gentamicin. In contrast, these agents were resistant to amoxicillin, ampicillin and oxytetracycline respectively. This study is unique in its approach and provides useful information for veterinarians and producers on the antibiotic resistance patterns of bacteria posing a serious threat to calves. These results can help field veterinarians to control and treat bacterial diarrhea in calves.

  19. Prevalence, seasonal occurrence and antimicrobial resistance of Salmonella in poultry retail products in Greece.

    Science.gov (United States)

    Zdragas, A; Mazaraki, K; Vafeas, G; Giantzi, V; Papadopoulos, T; Ekateriniadou, L

    2012-10-01

    To detect the prevalence, the seasonal occurrence and distribution of Salmonella serotypes in poultry products and to determine the resistance profile of Salmonella isolates. A total of 96 skin-on chicken carcasses and 30 liver samples were analysed between May 2007 and May 2009 from twenty-two different commercial farm brands found in retail market countrywide. Salmonella was isolated from 38 (39·5%) of 96 chicken carcasses and from 10 (33·3%) of 30 liver samples. Higher isolation rate (60·4%) was observed in carcasses detected during summer (May to October), and lower isolation rate (18·7%) was observed in carcasses detected during winter (November to April); in liver samples, the positive rates were 53·4 and 13·2%, respectively. Twelve serotypes were detected with the serotypes Hadar, Enteritidis and Blockley being the most prevalent at 29·2, 22·9 and 12·5%, respectively. Nine of 11 Salm. Enteritidis isolates occurred during summer. Of 48 isolates, 38 (79%) were resistant to one or more of the antimicrobial agents used. The highest resistance rates were found to the following antimicrobials: streptomycin (64·5%), tetracycline (56·2%), nalidixic acid (39·5%), ampicillin and rifampicin (33·3%). The relatively high Salmonella spp. contamination rates of raw chicken meat and liver have been detected. Salm. Enteritidis isolates peaked in summer, increasing the risk to human health. Antibiotic resistance of Salmonella still remains a threat as resistance plasmids may be extensively shared between animal and humans. The study enabled us to improve the data on the seasonal occurrence of Salmonella and to determine the antimicrobial pattern profile and trends in Salmonella strains isolated from poultry retail products in Greece. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  20. STUDY ON THE ANTIBIOTIC-RESISTANCE IN STRAINS OF SALMONELLA ISOLATES IN FOOD FROM 2003 TO 2010

    Directory of Open Access Journals (Sweden)

    F. Capuano

    2012-08-01

    Full Text Available A survey on the antibiotics resistance on salmonella strains of food origin was carried out. Four hundred thirty five different strains of Salmonella detected during eight years since 2003 were tested with the protocols of the National Committee for Clinical Laboratory Standard (NCCLS. One hundred twenty Salmonella strains were of cow origin, 166 from swine, 92 from poultry and the remaining 57 from shellfish. Starting from 2007 a reduction in the resistance was evident on the total isolates.

  1. Antibiotic Resistance of Salmonella spp. Isolated from Shrimp Farming Freshwater Environment in Northeast Region of Brazil

    Directory of Open Access Journals (Sweden)

    Fátima C. T. Carvalho

    2013-01-01

    Full Text Available This study investigated the presence and antibiotic resistance of Salmonella spp. in a shrimp farming environment in Northeast Region of Brazil. Samples of water and sediments from two farms rearing freshwater-acclimated Litopenaeus vannamei were examined for the presence of Salmonella. Afterwards, Salmonella isolates were serotyped, the antimicrobial resistance was determined by a disk diffusion method, and the plasmid curing was performed for resistant isolates. A total of 30 (16.12% of the 186 isolates were confirmed to be Salmonella spp., belonging to five serovars: S. serovar Saintpaul, S. serovar Infantis, S. serovar Panama, S. serovar Madelia, and S. serovar Braenderup, along with 2 subspecies: S. enterica serovar houtenae and S. enterica serovar enterica. About twenty-three percent of the isolates were resistant to at least one antibiotic, and twenty percent were resistant to at least two antibiotics. Three strains isolated from water samples (pond and inlet canal exhibited multiresistance to ampicillin, tetracycline, oxytetracycline, and nitrofurantoin. One of them had a plasmid with genes conferring resistance to nitrofurantoin and ampicillin. The incidence of bacteria pathogenic to humans in a shrimp farming environment, as well as their drug-resistance pattern revealed in this study, emphasizes the need for a more rigorous attention to this area.

  2. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan.

    Science.gov (United States)

    Elshayeb, Ayman A; Ahmed, Abdelazim A; El Siddig, Marmar A; El Hussien, Adil A

    2017-11-14

    Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax - b). Minimum bactericidal concentration's predication of resistance was given the exponential trend (y = n e x ) and the predictive coefficient R 2  > 0 current antimicrobial drug resistance patterns of community-acquired agents causing outbreaks.

  3. Incidence of Salmonella Infantis in poultry meat and products and the resistance of isolates to antimicrobials

    Science.gov (United States)

    Kalaba, V.; Golić, B.; Sladojević, Ž.; Kalaba, D.

    2017-09-01

    Globalisation, climate change, changes in eating habits and the food industry, modern animal husbandry and market demands often have a negative impact on quality assurance, food safety and animal health. After the eradication of some zoonotic diseases that previously often jeopardized the human population, today in developed countries, the focus is mainly on the control of zoonoses transmitted by food. Salmonella is one of the most common pathogens that can be transmitted from animals to humans, and its reservoirs are poultry, cattle and pigs, so one transmission route to humans is from contaminated food of animal origin. Multidrug-resistant isolates of Salmonella, which can transfer their resistance genes to other microorganisms, are considered a serious threat to public health. Control of Salmonella primarily depends on a good monitoring system and knowledge of the presence of serovars and strains in an epizootiological area. During the first nine months of 2016, 1321 samples of poultry meat and products were examined, among which 108 harboured Salmonella. Altogether, 29 of the 108 isolates (26.85%) were Salmonella Infantis. For all 29 S. Infantis isolates, antimicrobial resistance was tested by the disc diffusion method. The isolates showed 100% resistance to amoxicillin, and nalidixic acid.

  4. Prevalence and antimicrobial resistance of Listeria, Salmonella, and Yersinia species isolates in ducks and geese.

    Science.gov (United States)

    Jamali, Hossein; Radmehr, Behrad; Ismail, Salmah

    2014-04-01

    The aims of this study were to determine the prevalence and antimicrobial resistance of Listeria, Salmonella, and Yersinia spp. isolated from duck and goose intestinal contents. A total of 471 samples, including 291 duck and 180 goose intestinal contents, were purchased from wet markets between November 2008 and July 2010. Listeria, Salmonella, and Yersinia spp. were isolated from 58 (12.3%), 107 (22.7%), and 80 (17%) of the samples, respectively. It was concluded that Listeria ivanovii, Salmonella Thompson, and Yersinia enterocolitica were the predominant serovars among Listeria, Salmonella, and Yersinia spp., respectively. Moreover, resistance to tetracycline was common in Listeria (48.3%) and Salmonella spp. (63.6%), whereas 51.3% of the Yersinia spp. isolates were resistant to cephalothin. Therefore, continued surveillance of the prevalence of the pathogens and also of emerging antibiotic resistance is needed to render possible the recognition of foods that may represent risks and also ensure the effective treatment of listeriosis, salmonellosis, and yersiniosis.

  5. Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut microbiota in the absence of antibiotic treatment

    DEFF Research Database (Denmark)

    Gumpert, Heidi; Kubicek-Sutherland, Jessica Z.; Porse, Andreas

    2017-01-01

    lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through in vivo competition assays, we suggest that the resistant transconjugant can persist through a fitness......The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high...... infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant...

  6. In vitro transfer of multiple resistance observed in vivo during a Salmonella london epidemic.

    Science.gov (United States)

    Lantos, J; Marjai, E

    1980-01-01

    Between 1976 and 1978, waves of Salmonella london infections conveyed by raw meat and meat products were observed. The strains isolated during the epidemic were first susceptible then developed multiple antibiotic resistance. The identical antibiotic resistance patterns of the strain and their more frequent occurrence in hospital environments indicated plasmid-mediated resistance. R-plasmid transfer, minimum inhibition concentration and resistance elimination were studied in representative strains. The resistant S. london strain and transconjugants of Escherichia coli rendered resistant were compared. The results proved that multiple resistance was plasmid-mediated.

  7. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses.

    Directory of Open Access Journals (Sweden)

    Rizwana Tasmin

    Full Text Available Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B and Kentucky (SK222_32B recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP analysis identified 2,432 (ST19 SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152 SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was

  8. Challenges with gonorrhea in the era of multi-drug and extensively drug resistance – are we on the right track?

    Science.gov (United States)

    Unemo, Magnus; Golparian, Daniel; Shafer, William M

    2015-01-01

    Neisseria gonorrhoeae has retained antimicrobial resistance to drugs previously recommended for first-line empiric treatment of gonorrhea, and resistance to ceftriaxone, the last option for monotherapy, is evolving. Crucial actions to combat this developing situation include implementing response plans; considering use of dual antimicrobial regimens; enhancing surveillance of gonorrhea, gonococcal antimicrobial resistance, treatment failures and antimicrobial use/misuse and improving prevention, early diagnosis, contact tracing and treatment. The ways forward also include an intensified research to identify novel antimicrobial resistance determinants and develop and evaluate appropriate use of molecular antimicrobial resistance testing, ideally point-of-care and with simultaneous detection of gonococci, to supplement culture-based methods and ideally guide tailored treatment. It is crucial with an enhanced understanding of the dynamics of the national and international emergence, transmission and evolution of antimicrobial-resistant gonococcal strains. Genome sequencing combined with epidemiological metadata will detail these issues and might also revolutionize the molecular antimicrobial resistance testing. Ultimately, novel antimicrobials are essential and some antimicrobials in development have shown potent in vitro activity against gonococci. Several of these antimicrobials deserve further attention for potential future treatment of gonorrhea. PMID:24702589

  9. Transfer and Persistence of a Multi-Drug Resistance Plasmid in situ of the Infant Gut Microbiota in the Absence of Antibiotic Treatment

    Directory of Open Access Journals (Sweden)

    Heidi Gumpert

    2017-09-01

    Full Text Available The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high-resolution insight into the plasticity, and selective forces shaping individual genomes is scarce. In a longitudinal study, we followed the dynamics of co-existing Escherichia coli lineages in an infant not receiving antibiotics. Using whole genome sequencing, we observed large genomic deletions, bacteriophage infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through in vivo competition assays, we suggest that the resistant transconjugant can persist through a fitness advantage in the mouse gut in spite of a fitness cost in vitro. Our findings highlight the dynamic nature of the human gut microbiota and provide the first genomic description of antibiotic resistance gene transfer between bacteria in the unperturbed human gut. These results exemplify that conjugative plasmids, harboring resistance determinants, can transfer and persists in the gut in the absence of antibiotic treatment.

  10. Isolation and Determination of Antibiotic Resistance Patterns in Nontyphoid Salmonella spp isolated from chicken

    Directory of Open Access Journals (Sweden)

    Seyyedeh Hoorieh Fallah

    2013-01-01

    Full Text Available Background: Salmonellosis is one of the most common food borne diseases in industrial and developing countries. In recent years, an increase in antimicrobial drug resistance, among non-typhoid Salmonella spp has been observed. Objectives: The aim of this study was to isolate and determine antibiotic resistance pattern in non-typhoid Salmonella spp. Materials and Methods: This descriptive study was done on 100 samples of chickens collected from 196 retail markets and was examined for the presence of Salmonella using standard bacteriological procedures and stereotyping kit. Antimicrobial susceptibility testing was performed by disk diffusion methods according to the National Committee for Clinical Laboratory Standards (CLSI. The data were analyzed by using the SPSS software version 18. Result: Forty- four percent of samples were contaminated with Salmonella infection and 56% didn’t have any contamination. The stereotyping results showed that 34 of 44 isolates of Salmonella belonged to Salmonella infantis (79.5 %, one strain (2.3% of group C and 8 strain (18.2% of group D. However, all these strains were sensitive to Cefotaxime and Ciprofloxacin, and 100% were resistant to Nalidixic acid, Tetracyclin and Sterptomycin. The most common resistance pattern (34.1% was towards six antibiotics, and 6.8% of strains were resistant to at least three antibiotics. Conclusion: High levels of resistance to antibiotics that are used commonly for human and poultry can be a warning for our community health and this information must be used to form important strategies for improvement of infection control.

  11. Presence of multi-drug resistant pathogenic Escherichia coli in the San Pedro River located in the State of Aguascalientes, Mexico.

    Directory of Open Access Journals (Sweden)

    Flor Yazmin Ramirez Castillo

    2013-06-01

    Full Text Available Contamination of surface waters in developing countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks and may represent a significant dissemination mechanism of antibiotic resistance genes. In this study, the water quality of San Pedro River, the main river and pluvial collector of the Aguascalientes State, Mexico was assessed. Thirty sample locations were tested throughout the River. The main physicochemical parameters of water were evaluated. Results showed high levels of fecal pollution as well as inorganic and organic matter abundant enough to support the heterotrophic growth of microorganisms. These results indicate poor water quality in samples from different locations. One hundred and fifty Escherichia coli were collected and screened by PCR for several virulence genes. Isolates were classified as either pathogenic (n = 91 or commensal (n = 59. The disc diffusion method was used to determine antimicrobial susceptibility to 13 antibiotics. Fifty-two percent of the isolates were resistant to at least one antimicrobial agent and 30.6% were multi-resistant. Eighteen E. coli strains were quinolone resistant of which 16 were multi-resistant. Plasmid-mediated quinolone resistance genes were detected in 12 isolates. Mutations at the Ser-83→Leu and/or Asp-87→Asn in the gyrA gene were detected as well as mutations at the Ser-80→Ile in parC. An E. coli microarray (Maxivirulence V 3.1 was used to characterize the virulence and antimicrobial resistance genes profiles of the fluoroquinolone-resistant isolates. Antimicrobial resistance genes such as blaTEM, sulI, sulII, dhfrIX, aph3 (strA and tet (B as well as integrons were found in fluoroquinolone resistance E. coli strains. The presence of potential pathogenic E. coli and antibiotic resistance in San Pedro River such as fluoroquinolone resistant E. coli could pose a potential threat to human

  12. [Prevalence and antimicrobial susceptibility of Salmonella isolated from broiler whole production process in four provinces of China].

    Science.gov (United States)

    Li, W W; Bai, L; Zhang, X L; Xu, X J; Tang, Z; Bi, Z W; Guo, Y C

    2018-04-06

    Objective: To determine the prevalence and antimicrobial susceptibility of Salmonella isolated from broiler production process in 4 provinces of China. Methods: Using convenience sampling method, 238 sample sites from broiler whole production process were chosen in Henan, Jiangsu, Heilongjiang and Shandong provinces in 2012. A total of 11 592 samples were collected and detected to analyze prevalence baseline, including 2 090 samples from breeding chicken farms and hatcheries, 1 421 samples from broiler farms, 5 610 samples from slaughterhouses and 2 471 samples from distribution and retail stores. All Salmonella strains were isolated through selective enrichment, and were serotyped according to Kauffmann-White scheme. The antimicrobial susceptibilities of selected Salmonella strains were determined by the broth microdilution method and fourteen antimicrobial agents were examined. Results: During incubation course, the average prevalence of Salmonella was 5.5% in feces of breeding hens, feces of chicks, and hatching eggs, 123 Salmonella strains were isolated. During cultivation course, the prevalence of Salmonella was 8.0% in feces from broiler farms, soil, feed, and workers, 114 Salmonella strains were isolated. During slaughter course, the prevalence of Salmonella was 24.9% in swabs pre-slaughter, dressed broiler carcasses, pre-cooled broiler carcasses, water from precooling pool, cutter and chipping boards, frozen chicken portions, and workers, 1 438 Salmonella strains were isolated. During distribution and sale course, the prevalence of Salmonella was 20.9% in transport carts, frozen chicken portions, retail chicken portions and workers, 551 Salmonella strains were isolated. The dominant Salmonella serotypes were Salmonella Enteritidis ( n= 1 229) and Salmonella Indiana ( n= 621). Among 1 231 examined strains, 97.2% Salmonella isolates were resistant to at least one antimicrobial, 69.9% Salmonella strains were multi-drug resistant isolates. Conclusion: Our

  13. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR bacteria isolated from urinary tract infections (UTIs

    Directory of Open Access Journals (Sweden)

    Atiyeh Naderi

    2014-03-01

    Conclusion: Treatment of E. coli with probiotic suspension was not effective on inhibition of the plasmid carrying hypothetical ampicillin resistant gene. Moreover, the plasmid profiles obtained from probiotic-treated isolates were identical to untreated isolates.

  14. Prevalence and antimicrobial resistance of Salmonella serovars isolated from poultry in Ghana

    DEFF Research Database (Denmark)

    Andoh, Linda A.; Dalsgaard, Anders; Obiri-Danso, K.

    2016-01-01

    Poultry are possible sources of non-typhoidal Salmonella serovars which may cause foodborne human disease. We conducted a cross-sectional study to determine the prevalence of Salmonella serovars in egg-laying hens and broilers at the farm level and their susceptibility to antimicrobials commonly...... of antimicrobials). Of the resistant strains (n = 57), the most significant were to nalidixic acid (89·5%), tetracycline (80·7%), ciprofloxacin (64·9%), sulfamethazole (42·1%), trimethoprim (29·8%) and ampicillin (26·3%). All S. Kentucky strains were resistant to more than two antimicrobials and shared common...

  15. Salmonella spp. in raw broiler parts: occurrence, antimicrobial resistance profile and phage typing of the Salmonella Enteritidis isolates Salmonella spp. em cortes de frango: ocorrência, resistência antimicrobiana e fagotipificação dos isolados de Salmonella Enteritidis

    Directory of Open Access Journals (Sweden)

    Aldemir Reginato Ribeiro

    2007-06-01

    Full Text Available The present study was carried out to evaluate the occurrence of Salmonellae in raw broiler parts and to determine the antimicrobial resistance profile of the isolated strains. Twenty-four (39.3% broiler parts samples were positive for Salmonella and twenty-five Salmonella strains were isolated, since two different serovars were detected in one single positive sample. Salmonella Enteritidis was the most prevalent serovar. Among Salmonella Enteritidis isolates, 95.2% belonged to Phage Type 4 (PT4 (20/21 and 4.8% to PT7 (1/21. Twenty-two (88% strains of Salmonella were resistant to at least one antimicrobial agent, generating eight different resistance patterns. The S. Typhimurium (n: 1 and S. Hadar (n: 3 isolates presented multiple resistance. Three S. Enteritidis isolates were susceptible to all antimicrobials tested, two were resistant only to tetracycline. The high prevalence of Salmonella in the broiler parts strenghtens the importance of the use of good manufacturing practices (GMP, and HACCP. The results also emphasize the need for the responsible use of antimicrobials in animal production.Este trabalho foi conduzido para avaliar a ocorrência de Salmonella em cortes de frango e para determinar o perfil de resistência antimicrobiana das cepas isoladas. Vinte e quatro (39,3% cortes de frango foram positivas para Salmonella, tendo sido isoladas vinte e cinco cepas de Salmonella, uma vez que em uma amostra isolaram-se dois sorovares. Salmonella Enteritidis foi o sorovar prevalente. Entre as Salmonella Enteritidis isoladas, 95,2% pertencem ao Fagotipo 4 (PT4 (20/21 e 4,8% ao PT7 (1/21. Vinte e duas (88% cepas de Salmonella foram resistentes a pelo menos um agente antimicrobiano e oito diferentes padrões de resistência foram observados. S. Typhimurium (n:1 e S. Hadar (n: 3, apresentaram múltipla resistência. Três cepas de S. Enteritidis foram sensíveis a todos os antimicrobianos e duas resistentes somente a tetraciclina. A elevada ocorr

  16. Antimicrobial Resistance Profiles and Diversity in Salmonella from Humans and Cattle, 2004-2011.

    Science.gov (United States)

    Afema, J A; Mather, A E; Sischo, W M

    2015-11-01

    Analysis of long-term anti-microbial resistance (AMR) data is useful to understand source and transmission dynamics of AMR. We analysed 5124 human clinical isolates from Washington State Department of Health, 391 cattle clinical isolates from the Washington Animal Disease Diagnostic Laboratory and 1864 non-clinical isolates from foodborne disease research on dairies in the Pacific Northwest. Isolates were assigned profiles based on phenotypic resistance to 11 anti-microbials belonging to eight classes. Salmonella Typhimurium (ST), Salmonella Newport (SN) and Salmonella Montevideo (SM) were the most common serovars in both humans and cattle. Multinomial logistic regression showed ST and SN from cattle had greater probability of resistance to multiple classes of anti-microbials than ST and SN from humans (P resistant ST and SN for people, occurrence of profiles unique to cattle and not observed in temporally related human isolates indicates these profiles are circulating in cattle only. We used various measures to assess AMR diversity, conditional on the weighting of rare versus abundant profiles. AMR profile richness was greater in the common serovars from humans, although both source data sets were dominated by relatively few profiles. The greater profile richness in human Salmonella may be due to greater diversity of sources entering the human population compared to cattle or due to continuous evolution in the human environment. Also, AMR diversity was greater in clinical compared to non-clinical cattle Salmonella, and this could be due to anti-microbial selection pressure in diseased cattle that received treatment. The use of bootstrapping techniques showed that although there were shared profiles between humans and cattle, the expected and observed number of profiles was different, suggesting Salmonella and associated resistance from humans and cattle may not be wholly derived from a common population. © 2014 The Authors. Zoonoses and Public Health Published by

  17. Arginine-dependent acid resistance in Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Kieboom, J.; Abee, T.

    2006-01-01

    Salmonella enterica serovar Typhimurium does not survive a pH 2.5 acid challenge under conditions similar to those used for Escherichia coli (J. W. Foster, Nat. Rev. Microbiol. 2:898-907, 2004). Here, we provide evidence that S. enterica serovar Typhimurium can display arginine-dependent acid

  18. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells

    NARCIS (Netherlands)

    Michaelis, M.; Rothweiler, F.; Barth, S.; Cinatl, J.; van Rikxoort, M.; Loeschmann, N.; Voges, Y.; Breitling, R.; von Deimling, A.; Roedel, F.; Weber, K.; Fehse, B.; Mack, E.; Stiewe, T.; Doerr, H. W.; Speidel, D.; Cinatl, J.; Cinatl jr., J.; Stephanou, A.

    2011-01-01

    Six p53 wild-type cancer cell lines from infrequently p53-mutated entities (neuroblastoma, rhabdomyosarcoma, and melanoma) were continuously exposed to increasing concentrations of the murine double minute 2 inhibitor nutlin-3, resulting in the emergence of nutlin-3-resistant, p53-mutated sublines

  19. Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Abeer Ahmed Rushdy

    Full Text Available OBJECTIVES: To study the potential factors include gene mutation, efflux pump and alteration of permeability associated with quinolone-resistance of Salmonella enterica strains isolated from patients with acute gastroenteritis and to evaluate the degree of synergistic activity of efflux pump inhibitors when combined with ciprofloxacin against resistant isolates. METHODS: Antimicrobial resistance patterns of fifty-eight Salmonella isolates were tested. Five isolates were selected to study the mechanism of resistance associated with quinolone group, including mutation in topoisomerase-encoding gene, altered cell permeability, and expression of an active efflux system. In addition, the combination between antibiotics and efflux pump inhibitors to overcome the microbial resistance was evaluated. RESULTS: Five Salmonella isolates totally resistant to all quinolones were studied. All isolates showed alterations in outer membrane proteins including disappearance of some or all of these proteins (Omp-A, Omp-C, Omp-D and Omp-F. Minimum inhibitory concentration values of ciprofloxacin were determined in the presence/absence of the efflux pump inhibitors: carbonyl cyanide m-chlorophenylhydrazone, norepinephrin and trimethoprim. Minimum inhibitory concentration values for two of the isolates were 2-4 fold lower with the addition of efflux pump inhibitors. All five Salmonella isolates were amplified for gyrA and parC genes and only two isolates were sequenced. S. Enteritidis 22 had double mutations at codon 83 and 87 in addition to three mutations at parC at codons 67, 76 and 80 whereas S. Typhimurium 57 had three mutations at codons 83, 87 and 119, but no mutations at parC. CONCLUSIONS: Efflux pump inhibitors may inhibit the major AcrAB-TolC in Salmonella efflux systems which are the major efflux pumps responsible for multidrug resistance in Gramnegative clinical isolates.

  20. Antibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Tchinda, Cedric F; Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-05-01

    In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia , Alchornea laxiflora , Boerhavia diffusa , Combretum hispidum , Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289. Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.

  1. ANTIBACTERIAL AND ANTIFUNGAL EFFECT OF ETHANOL EXTRACTS, HEXANE AND METHANOLIC FROM THE LEAVES OF Kalanchoe pinnata (Lam. PERS (Malva corama AGAINST MULTI-DRUG RESISTANT STRAINS

    Directory of Open Access Journals (Sweden)

    Paloma de Souza Santana

    2016-03-01

    Full Text Available The infections caused by bacteria and fungi, as well as the subsequent resistance of these microorganisms continue with high incidencesthus studies of medicinal plants and their combination with conventional therapy, are becoming essential. This study examined the antibacterial, antifungal and modifier of resistance to antibiotics and antifungal extracts of ethanol, hexane and methanol from the leaves of Kalanchoe pinnata, used in folk medicine. The phytochemical was performed qualitatively by visual observation of color changes and formation of precipitates after addition of specific reagents, such as ferric chloride (Fecl310% sodium hydroxide (NaOH10%, hydrochloric acid (HCl 1%, acid  acetic acid 5%, ammonium hydroxide (NH4OH 10%, chloroform and  reagent Draggendorff 10%. The analysis for antimicrobial activity was through the microdilution test for determination of minimum inhibitory concentration (MIC and modifying the action of antibiotics (gentamicin and amikacin and antifungals (ketoconazole and fluconazole in association with the extracts. The phytochemicals assays indicated the presence of secondary metabolites such as flavonoids, alkaloids and flabobênicos tannins. In assessing the MIC results were obtained <1024μg/ mL for Candida albicans and Candida krusei. There was synergism between extracts of Kalanchoe pinnata leaves with aminoglycosides and antifungal, reducing the concentration of CIM of multidrug-resistant strains. Our results demonstrate that the extracts of Kalanchoe pinnata have bioactive constituents with antimicrobial activity in vitro. Keywords: Kalcinchoe pinnata, Microorganisms, Synergistic effect, Antifungal, Antibacterial.

  2. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Agniswamy, Johnson; Louis, John M.; Roche, Julien; Harrison, Robert W.; Weber, Irene T. (GSU); (NIH); (Iowa State)

    2016-12-16

    We report structural analysis of HIV protease variant PRS17 which was rationally selected by machine learning to represent wide classes of highly drug-resistant variants. Crystal structures were solved of PRS17 in the inhibitor-free form and in complex with antiviral inhibitor, darunavir. Despite its 17 mutations, PRS17 has only one mutation (V82S) in the inhibitor/substrate binding cavity, yet exhibits high resistance to all clinical inhibitors. PRS17 has none of the major mutations (I47V, I50V, I54ML, L76V and I84V) associated with darunavir resistance, but has 10,000-fold weaker binding affinity relative to the wild type PR. Comparable binding affinity of 8000-fold weaker than PR is seen for drug resistant mutant PR20, which bears 3 mutations associated with major resistance to darunavir (I47V, I54L and I84V). Inhibitor-free PRS17 shows an open flap conformation with a curled tip correlating with G48V flap mutation. NMR studies on inactive PRS17 D25N unambiguously confirm that the flaps adopt mainly an open conformation in solution very similar to that in the inhibitor-free crystal structure. In PRS17, the hinge loop cluster of mutations, E35D, M36I and S37D, contributes to the altered flap dynamics by a mechanism similar to that of PR20. An additional K20R mutation anchors an altered conformation of the hinge loop. Flap mutations M46L and G48V in PRS17/DRV complex alter the Phe53 conformation by steric hindrance between the side chains. Unlike the L10F mutation in PR20, L10I in PRS17 does not break the inter-subunit ion pair or diminish the dimer stability, consistent with a very low dimer dissociation constant comparable to that of wild type PR. Distal mutations A71V, L90M and I93L propagate alterations to the catalytic site of PRS17. PRS17 exhibits a molecular mechanism whereby mutations act synergistically to alter the flap dynamics resulting in significantly weaker binding yet maintaining active site contacts with darunavir.

  3. Frequency, serotyping and antimicrobial resistance pattern of Salmonella from feces and lymph nodes of pigs

    Directory of Open Access Journals (Sweden)

    João B.P. Guerra Filho

    Full Text Available ABSTRACT: Salmonellosis is a foodborne disease caused by bacteria of the genus Salmonella, being pigs and pork-products potentially important for its occurrence. In recent decades, some serovars of Salmonella have shown increase of resistance to conventional antimicrobials used in human and animal therapy, with serious risks for public health. The aim of this study was to evaluate feces (n=50, mediastinal (n=50, mesenteric (n=50 and mandibular (n=50 lymph nodes obtained from slaughter houses for Salmonella spp. Positive samples were serotyped and subjected to an in vitro antimicrobial susceptibility test, including the extended-spectrum beta-lactamase (ESBL production. Salmonella species were identified in 10% (20/200 of total samples. From these, 20% (10/50 were identified in the submandibular lymph nodes, 18% (9/50 in the mesenteric lymph nodes, 2% (1/50 in feces and 0% (0/50 in the mediastinal lymph nodes. The serotypes found were Salonella Typhimurium (55%, S. enterica subsp. enterica 4,5,12: i: - (35%, S. Brandenburg and S. Derby with 5% (5% each. All strains showed resistance to at least one antimicrobial; 90% were resistant to four or more antimicrobials, and 15% were multidrug-resistant. Resistance to ciprofloxacin, tetracycline and nalidixic acid was particularly prevalent amongst the tested serovars. Here, we highlighted the impact of pigs in the epidemiological chain of salmonellosis in domestic animals and humans, as well as the high antimicrobial resistance rates of Salmonella strains, reinforcing the necessity for responsible use of antimicrobials for animals as an emergent One Health issue, and to keep these drugs for human therapy approaches.

  4. Analysis of the protein profiles of the antibiotic-resistant Salmonella ...

    African Journals Online (AJOL)

    The emergent Salmonella typhimurium definitive phage type (DT) 104 is of particular global concern due to its frequent isolation and multiple antibiotic resistances. There is thus a need to know the kind of proteins expressed by S. typhimurium DT104 so as to provide a basis for developing an intervention. This study ...

  5. Salmonella Species' Persistence and Their High Level of Antimicrobial Resistance in Flooded Man-Made Rivers in China.

    Science.gov (United States)

    Song, Qifa; Zhang, Danyang; Gao, Hong; Wu, Junhua

    2018-05-11

    Man-made rivers, owing to proximity to human habitats, facilitate transmission of salmonellosis to humans. To determine the contamination situation by Salmonella in flooded man-made rivers and thereafter the exposure risk to public health, we investigated the prevalence of Salmonella species and their antimicrobial resistance in such rivers, as well as the relationship between the incidence of local infectious diarrhea cases and the number of Salmonella isolates from patients. After a heavy flood, 95 isolates of 13 Salmonella serotypes were isolated from 80 river water samples. The two most prevalent serotypes were Typhimurium and Derby. Eight Salmonella serotypes were newly detected after the flood. Overall, 50 isolates were resistant to ampicillin and/or cefotaxime and carried at least bla TEM . Twelve isolates of serotypes Typhimurium, Derby, Rissen, and Indiana were extended-spectrum β-lactamase (ESBL) producing and carried at least one of bla OXA and bla CTX-M-like genes. Twelve isolates of serotypes Typhimurium, Derby, Agona, Rissen, and Indiana were resistant to ciprofloxacin and had gyrA mutations. Isolates of Typhimurium, Derby, and Indiana were concurrently ciprofloxacin resistant and ESBL producing. Pulsed-field gel electrophoresis illustrates the circulation of two dominant clones of Salmonella Typhimurium isolates among patients, river, and food. High prevalence of various highly pathogenic and antimicrobial-resistant Salmonella serotypes shows that man-made rivers are prone to heavy contamination with Salmonella, and as a result put public health at greater risk.

  6. Dogs leaving the ICU carry a very large multi-drug resistant enterococcal population with capacity for biofilm formation and horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Anuradha Ghosh

    Full Text Available The enterococcal community from feces of seven dogs treated with antibiotics for 2-9 days in the veterinary intensive care unit (ICU was characterized. Both, culture-based approach and culture-independent 16S rDNA amplicon 454 pyrosequencing, revealed an abnormally large enterococcal community: 1.4±0.8×10(8 CFU gram(-1 of feces and 48.9±11.5% of the total 16,228 sequences, respectively. The diversity of the overall microbial community was very low which likely reflects a high selective antibiotic pressure. The enterococcal diversity based on 210 isolates was also low as represented by Enterococcus faecium (54.6% and Enterococcus faecalis (45.4%. E. faecium was frequently resistant to enrofloxacin (97.3%, ampicillin (96.5%, tetracycline (84.1%, doxycycline (60.2%, erythromycin (53.1%, gentamicin (48.7%, streptomycin (42.5%, and nitrofurantoin (26.5%. In E. faecalis, resistance was common to tetracycline (59.6%, erythromycin (56.4%, doxycycline (53.2%, and enrofloxacin (31.9%. No resistance was detected to vancomycin, tigecycline, linezolid, and quinupristin/dalfopristin in either species. Many isolates carried virulence traits including gelatinase, aggregation substance, cytolysin, and enterococcal surface protein. All E. faecalis strains were biofilm formers in vitro and this phenotype correlated with the presence of gelE and/or esp. In vitro intra-species conjugation assays demonstrated that E. faecium were capable of transferring tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin resistance traits to human clinical strains. Multi-locus variable number tandem repeat analysis (MLVA and pulsed-field gel electrophoresis (PFGE of E. faecium strains showed very low genotypic diversity. Interestingly, three E. faecium clones were shared among four dogs suggesting their nosocomial origin. Furthermore, multi-locus sequence typing (MLST of nine representative MLVA types revealed that six sequence types (STs originating from five

  7. JNK signaling maintains the mesenchymal properties of multi-drug resistant human epidermoid carcinoma KB cells through snail and twist1

    International Nuclear Information System (INIS)

    Zhan, Xia; Feng, Xiaobing; Kong, Ying; Chen, Yi; Tan, Wenfu

    2013-01-01

    In addition to possess cross drug resistance characteristic, emerging evidences have shown that multiple-drug resistance (MDR) cancer cells exhibit aberrant metastatic capacity when compared to parental cells. In this study, we explored the contribution of c-Jun N-terminal kinases (JNK) signaling to the mesenchymal phenotypes and the aberrant motile capacity of MDR cells utilizing a well characterized MDR cell line KB/VCR, which is established from KB human epidermoid carcinoma cells by vincristine (VCR), and its parental cell line KB. Taking advantage of experimental strategies including pharmacological tool and gene knockdown, we showed here that interference with JNK signaling pathway by targeting JNK1/2 or c-Jun reversed the mesenchymal properties of KB/VCR cells to epithelial phenotypes and suppressed the motile capacity of KB/VCR cells, such as migration and invasion. These observations support a critical role of JNK signaling in maintaining the mesenchymal properties of KB/VCR cells. Furthermore, we observed that JNK signaling may control the expression of both snail and twist1 in KB/VCR cells, indicating that both snail and twist1 are involved in controlling the mesenchymal characteristics of KB/VCR cells by JNK signaling. JNK signaling is required for maintaining the mesenchymal phenotype of KB/VCR cells; and JNK signaling may maintain the mesenchymal characteristics of KB/VCR cells potentially through snail and twist1

  8. Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus

    KAUST Repository

    Huang, Jonathan P.

    2012-04-11

    Multiple drug resistant (MDR) and methicillin-resistant Staphylococcus aureus (MRSA) have become increasingly prevalent as a community acquired infection. As a result limited treatment options are available with conventional synthetic antibiotics. Bioprospecting natural products with potent antimicrobial activity show promise for developing new drugs against this pathogen. In this study, we have investigated the antimicrobial activity of a purple violet pigment (PVP) from an Antarctic bacterium, Janthinobacterium sp. Ant5-2 on 15 clinical MDR and MRSA strains. The colorimetric resazurin assay was employed to determine the minimum inhibitory concentration (MIC90) of PVP against MDR and MRSA. The MIC90 ranged between 1.57 µg/mL and 3.13 µg/mL, which are significantly lower than many antimicrobials tested from natural sources against this pathogen. The spectrophotometrically determined growth analysis and total microscopic counts using Live/dead® BacLight™ fluorescent stain exhibited a steady decrease in viability of both MDR and MRSA cultures following treatment with PVP at the MIC levels. In silico predictive molecular docking study revealed that PVP could be a DNA-targeting minor groove binding antimicrobial compound. The continued development of novel antimicrobials derived from natural sources with the combination of a suite of conventional antibiotics could stem the rising pandemic of MDR and MRSA along with other deadly microbial pathogens.

  9. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells.

    Science.gov (United States)

    Shalviri, Alireza; Raval, Gaurav; Prasad, Preethy; Chan, Carol; Liu, Qiang; Heerklotz, Heiko; Rauth, Andrew Michael; Wu, Xiao Yu

    2012-11-01

    This work investigated the capability of a new nanoparticulate system, based on terpolymer of starch, polymethacrylic acid and polysorbate 80, to load and release doxorubicin (Dox) as a function of pH and to evaluate the anticancer activity of Dox-loaded nanoparticles (Dox-NPs) to overcome multidrug resistance (MDR) in human breast cancer cells in vitro. The Dox-NPs were characterized by Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The cellular uptake and cytotoxicity of the Dox-loaded nanoparticles were investigated using fluorescence microscopy, flow cytometry, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. The nanoparticles were able to load up to 49.7±0.3% of Dox with a high loading efficiency of 99.9±0.1%, while maintaining good colloidal stability. The nanoparticles released Dox at a higher rate at acidic pH attributable to weaker Dox-polymer molecular interactions evidenced by ITC. The Dox-NPs were taken up by the cancer cells in vitro and significantly enhanced the cytotoxicity of Dox against human MDR1 cells with up to a 20-fold decrease in the IC50 values. The results suggest that the new terpolymeric nanoparticles are a promising vehicle for the controlled delivery of Dox for treatment of drug resistant breast cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus

    KAUST Repository

    Huang, Jonathan P.; Mojib, Nazia; Goli, Rakesh R.; Watkins, Samantha; Waites, Ken B.; Ravindra, Rasik; Andersen, Dale T.; Bej, Asim K.

    2012-01-01

    Multiple drug resistant (MDR) and methicillin-resistant Staphylococcus aureus (MRSA) have become increasingly prevalent as a community acquired infection. As a result limited treatment options are available with conventional synthetic antibiotics. Bioprospecting natural products with potent antimicrobial activity show promise for developing new drugs against this pathogen. In this study, we have investigated the antimicrobial activity of a purple violet pigment (PVP) from an Antarctic bacterium, Janthinobacterium sp. Ant5-2 on 15 clinical MDR and MRSA strains. The colorimetric resazurin assay was employed to determine the minimum inhibitory concentration (MIC90) of PVP against MDR and MRSA. The MIC90 ranged between 1.57 µg/mL and 3.13 µg/mL, which are significantly lower than many antimicrobials tested from natural sources against this pathogen. The spectrophotometrically determined growth analysis and total microscopic counts using Live/dead® BacLight™ fluorescent stain exhibited a steady decrease in viability of both MDR and MRSA cultures following treatment with PVP at the MIC levels. In silico predictive molecular docking study revealed that PVP could be a DNA-targeting minor groove binding antimicrobial compound. The continued development of novel antimicrobials derived from natural sources with the combination of a suite of conventional antibiotics could stem the rising pandemic of MDR and MRSA along with other deadly microbial pathogens.

  11. JNK signaling maintains the mesenchymal properties of multi-drug resistant human epidermoid carcinoma KB cells through snail and twist1.

    Science.gov (United States)

    Zhan, Xia; Feng, Xiaobing; Kong, Ying; Chen, Yi; Tan, Wenfu

    2013-04-04

    In addition to possess cross drug resistance characteristic, emerging evidences have shown that multiple-drug resistance (MDR) cancer cells exhibit aberrant metastatic capacity when compared to parental cells. In this study, we explored the contribution of c-Jun N-terminal kinases (JNK) signaling to the mesenchymal phenotypes and the aberrant motile capacity of MDR cells utilizing a well characterized MDR cell line KB/VCR, which is established from KB human epidermoid carcinoma cells by vincristine (VCR), and its parental cell line KB. Taking advantage of experimental strategies including pharmacological tool and gene knockdown, we showed here that interference with JNK signaling pathway by targeting JNK1/2 or c-Jun reversed the mesenchymal properties of KB/VCR cells to epithelial phenotypes and suppressed the motile capacity of KB/VCR cells, such as migration and invasion. These observations support a critical role of JNK signaling in maintaining the mesenchymal properties of KB/VCR cells. Furthermore, we observed that JNK signaling may control the expression of both snail and twist1 in KB/VCR cells, indicating that both snail and twist1 are involved in controlling the mesenchymal characteristics of KB/VCR cells by JNK signaling. JNK signaling is required for maintaining the mesenchymal phenotype of KB/VCR cells; and JNK signaling may maintain the mesenchymal characteristics of KB/VCR cells potentially through snail and twist1.

  12. Plasmid-mediated quinolone resistance in Salmonella serotypes isolated from chicken carcasses in Turkey

    Directory of Open Access Journals (Sweden)

    Zafer Ata

    2014-01-01

    Full Text Available Quinolones have been extensively used for treatment of a variety of invasive and systemic infections of salmonellosis. Widespread use of these agents has been associated with the emergence and dissemination of quinolone-resistant pathogens. The quinolone resistance and plasmid-mediated quinolone resistance determinants (qnrA, qnrB, qnrS and aac(6’-Ib-cr of 85 Salmonella isolates from chicken carcasses were investigated in this study. Isolates were serotyped according to the Kauffman-White-Le Minor scheme, and broth microdilution method was used to determine quinolone resistance. Plasmid-mediated quinolone resistance genes were investigated by real-time PCR and positive results were confirmed by sequencing. Among the Salmonella isolates, 30/85 (35% and 18/85 (21% were found to be resistant to enrofloxacin (MIC ≥ 2 mg/ml, and danofloxacin (MIC ≥ 2 mg/ml, respectively. All the isolates were negative for qnrA, qnrB and aac(6’-Ib-cr genes, nevertheless 2% (S. Brandenburg and S. Dabou were positive for qnrS (qnrS1 determinant. This study is the first and unique investigating the plasmid- mediated quinolone resistance determinants of Salmonella isolated from chicken carcasses in Turkey.

  13. Diversity and antimicrobial resistance of Salmonella enterica isolates from surface water in Southeastern United States.

    Science.gov (United States)

    Li, Baoguang; Vellidis, George; Liu, Huanli; Jay-Russell, Michele; Zhao, Shaohua; Hu, Zonglin; Wright, Anita; Elkins, Christopher A

    2014-10-01

    A study of prevalence, diversity, and antimicrobial resistance of Salmonella enterica in surface water in the southeastern United States was conducted. A new scheme was developed for recovery of Salmonella from irrigation pond water and compared with the FDA's Bacteriological Analytical Manual (8th ed., 2014) (BAM) method. Fifty-one isolates were recovered from 10 irrigation ponds in produce farms over a 2-year period; nine Salmonella serovars were identified by pulsed-field gel electrophoresis analysis, and the major serovar was Salmonella enterica serovar Newport (S. Newport, n = 29), followed by S. enterica serovar Enteritidis (n = 6), S. enterica serovar Muenchen (n = 4), S. enterica serovar Javiana (n = 3), S. enterica serovar Thompson (n = 2), and other serovars. It is noteworthy that the PulseNet patterns of some of the isolates were identical to those of the strains that were associated with the S. Thompson outbreaks in 2010, 2012, and 2013, S. Enteritidis outbreaks in 2011 and 2013, and an S. Javiana outbreak in 2012. Antimicrobial susceptibility testing confirmed 16 S. Newport isolates of the multidrug resistant-AmpC (MDR-AmpC) phenotype, which exhibited resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT), and to the 1st, 2nd, and 3rd generations of cephalosporins (cephalothin, amoxicillin-clavulanic acid, and ceftriaxone). Moreover, the S. Newport MDR-AmpC isolates had a PFGE pattern indistinguishable from the patterns of the isolates from clinical settings. These findings suggest that the irrigation water may be a potential source of contamination of Salmonella in fresh produce. The new Salmonella isolation scheme significantly increased recovery efficiency from 21.2 (36/170) to 29.4% (50/170) (P = 0.0002) and streamlined the turnaround time from 5 to 9 days with the BAM method to 4 days and thus may facilitate microbiological analysis of environmental water. Copyright © 2014, American Society for

  14. Occurrence of Salmonella in ruminants and camel meat in Maiduguri, Nigeria and their antibiotic resistant pattern

    Directory of Open Access Journals (Sweden)

    Zakaria Musa

    2017-09-01

    Full Text Available Objective: This study was conducted to determine the occurrence of Salmonella in various meat products (beef from cattle, chevon from goats, mutton from sheep and jaziir from camel, by screening the various selling points which includes; meat retailers in abattoir, markets and shops in Maiduguri and its environs. Materials and methods: A total of 120 samples of fresh meat from cattle, sheep, goats and camels sampled from ten meat retailers in abattoir, markets and shops in the Maiduguri metropolis, using simple random sampling technique. All samples were processed and examined according to standard bacteriological protocols. Results: Percentage occurrence of Salmonella species had the highest value of 15 (50.1% from the market, found in sheep, while the lowest occurrence of Salmonella species was associated with 3(10.0% in goats sampled from shop meat.. Antibiotic susceptibility pattern of Salmonella species from cattle meat revealed high resistant to Erythromycin (52%. In sheep, the higher percentage of resistance occurred against Ampicillin (33.3% and less resistant to Amoxicillin (4% was obtained. The isolates from camel meat recorded 25% resistant against Ampicillin, Gentamycin and 12.5% to Streptomycin. A total of 28.4% of the isolates were resistant to Ampicillin, Gentamycin and 23.1% to Ofloxacin. Conclusion: The study has shown that Salmonella species are present in fresh meat sold in abattoir, retail markets and shops. We recommend strict hygienic measures in places where fresh meat are sold in Maiduguri metropolis, Nigeria to ensure consumers right to have safe food. [J Adv Vet Anim Res 2017; 4(3.000: 227-233

  15. Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda.

    Directory of Open Access Journals (Sweden)

    Josephine A Afema

    Full Text Available In sub‒Saharan Africa, non‒typhoidal Salmonellae (NTS cause invasive disease particularly in children and HIV infected adults, but the disease epidemiology is poorly understood. Between 2012 and 2013, we investigated NTS sources and transmission in Kampala. We detected Salmonella in 60% of the influent and 60% of the effluent samples from a wastewater treatment plant and 53.3% of the influent and 10% of the effluent samples from waste stabilization ponds that serve the human population; 40.9% of flush‒water samples from ruminant slaughterhouses, 6.6% of the poultry fecal samples from live bird markets and 4% of the fecal samples from swine at slaughter; and in 54.2% of the water samples from a channel that drains storm-water and effluents from the city. We obtained 775 Salmonella isolates, identified 32 serovars, and determined resistance to 15 antimicrobials. We genotyped common serovars using multiple‒locus variable number tandem repeats analysis or pulsed‒field gel electrophoresis. In addition, we analyzed 49 archived NTS isolates from asymptomatic livestock and human clinical cases. Salmonella from ruminant and swine sources were mostly pan‒susceptible (95% while poultry isolates were generally more resistant. Salmonella Kentucky isolated from poultry exhibited extensive drug resistance characterized by resistance to 10 antimicrobials. Interestingly, similar genotypes of S. Kentucky but with less antimicrobial resistance (AMR were found in poultry, human and environmental sources. The observed AMR patterns could be attributed to host or management factors associated with production. Alternatively, S. Kentucky may be prone to acquiring AMR. The factors driving AMR remain poorly understood and should be elucidated. Overall, shared genotypes and AMR phenotypes were found in NTS from human, livestock and environmental sources, suggesting zoonotic and environmental transmissions most likely occur. Information from this study could be

  16. Active Sputum Monitoring Detects Substantial Rate of Multi-Drug Resistant Tuberculosis (MDR-TB) in an HIV-Infected Population in South Africa

    Science.gov (United States)

    Hassim, Shaheen; Shaw, Pamela A.; Sangweni, Phumelele; Malan, Lizette; Ntshani, Ella; Mathibedi, Monkwe Jethro; Stubbs, Nomso; Metcalf, Julia A; Eckes, Risa; Masur, Henry; Komati, Stephanus

    2010-01-01

    Background Tuberculosis (TB) co-infection with HIV is a substantial problem in South Africa. There has been a presumption that drug resistant strains of TB are common in South Africa, but few studies have documented this impression. Methods In Phidisa, a joint observational and randomized HIV treatment study for South African National Defence Force members and dependents, an initiative obtained microbiologic TB testing in subjects who appeared to be at high risk. We report results for HIV-infected subjects. Results TB was identified by culture in 116/584 (19.9%) of patients selected for sputum examination on the basis of suggestive symptoms. Smear was an insensitive technique for confirming the diagnosis: only 33% of culture-positive patients were identified by smear, with a 0.2% false positive rate. Of the 107 culture-positive individuals with susceptibility testing, 22 (20.6%) were identified to be MDR and 4 (3.7%) became extremely drug resistant tuberculosis (XDR) while under observation. Culture-positive cases with a history of TB treatment had more than twice the rate of MDR than those without, 27.1% vs. 11.9% (p=0.05). Conclusions TB is common in this cohort of HIV-infected patients. Smear was not a sensitive technique for identifying culture-positive cases in this health system. Drug susceptibility testing is essential to proper patient management because MDR was present in 20.6% of culture-positive patients. Better management strategies are needed to reduce the development of MDR-TB since so many such patients had received prior antituberculous therapy that was presumably not curative. PMID:20196651

  17. Diabetes and Other Risk Factors for Multi-drug Resistant Tuberculosis in a Mexican Population with Pulmonary Tuberculosis: Case Control Study.

    Science.gov (United States)

    Gómez-Gómez, Alejandro; Magaña-Aquino, Martin; López-Meza, Salvador; Aranda-Álvarez, Marcelo; Díaz-Ornelas, Dora E; Hernández-Segura, María Guadalupe; Salazar-Lezama, Miguel Ángel; Castellanos-Joya, Martín; Noyola, Daniel E

    2015-02-01

    Multidrug resistant tuberculosis (MDR-TB) poses problems in treatment, costs and treatment outcomes. It is not known if classically described risk factors for MDR-TB in other countries are the same in Mexico and the frequency of the association between diabetes mellitus (DM) and MDR-TB in our country is not clear. We undertook this study to analyze risk factors associated with the development of MDR-TB, with emphasis on DM. A case-control study in the state of San Luis Potosi (SLP), Mexico was carried out. All pulmonary MDR-TB patients diagnosed in the state of SLP between 1998 and 2013 (36 cases) evaluated at a state pharmacoresistant tuberculosis (TB) clinic and committee; 139 controls were randomly selected from all pulmonary non-multidrug-resistant tuberculosis (non-MDR-TB) cases identified between 2003 and 2008. Cases and controls were diagnosed and treated under programmatic conditions. Age, gender, malnutrition, being a health-care worker, HIV/AIDS status, and drug abuse were not significantly different between MDR-TB and non-MDR-TB patients. Significant differences between MDR-TB and non-MDR-TB patients were DM (47.2 vs. 28.1%; p = 0.028); previous anti-TB treatments (3 vs. 0, respectively; p <0.001), and duration of first anti-TB treatment (8 vs. 6 months, respectively; p <0.001). MDR-TB and DM are associated in 47.2% of MDR TB cases (17/36) in this study. Other recognized factors were not found to be significantly different in MDR-TB compared to non-MDR-TB in this study. Cost-feasible strategies must be implemented in the treatment of DM-TB in order to prevent the selection of MDR-TB. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  18. Prevalence of antimicrobial resistance among Salmonella isolates from chicken in China.

    Science.gov (United States)

    Lu, Yan; Wu, Cong-Ming; Wu, Guo-Juan; Zhao, Hong-Yu; He, Tao; Cao, Xing-Yuan; Dai, Lei; Xia, Li-Ning; Qin, Shang-Shang; Shen, Jian-Zhong

    2011-01-01

    We evaluated the antimicrobial resistance of Salmonella isolated in 2008 from a chicken hatchery, chicken farms, and chicken slaughterhouses in China. A total of 311 Salmonella isolates were collected from the three sources, and two serogroups of Salmonella were detected, of which 133 (42.8%) consisted of Salmonella indiana and 178 (57.2%) of Salmonella enteritidis. The lowest percentage of S. indiana isolates was found in the chicken hatchery (4.2%), followed by the chicken farms (54.9%) and the slaughterhouses (71.4%). More than 80% of the S. indiana isolates were highly resistant to ampicillin (97.7%), amoxicillin/clavulanic acid (87.9%), cephalothin (87.9%), ceftiofur (85.7%), chloramphenicol (84.9%), florfenicol (90.9%), tetracycline (97.7%), doxycycline (98.5%), kanamycin (90.2%), and gentamicin (92.5%). About 60% of the S. indiana isolates were resistant to enrofloxacin (65.4%), norfloxacin (78.9%), and ciprofloxacin (59.4%). Of the S. indiana isolates, 4.5% were susceptible to amikacin and 5.3% to colistin. Of the S. enteritidis isolates, 73% were resistant to ampicillin, 33.1% to amoxicillin/clavulanic acid, 66.3% to tetracycline, and 65.3% to doxycycline, whereas all of these isolates were susceptible to the other drugs used in the study. The S. indiana isolates showed resistance to 16 antimicrobial agents. Strains of Salmonella (n = 108) carrying the resistance genes floR, aac(6')-Ib-cr, and bla(TEM) were most prevalent among the 133 isolates of S. indiana, at a frequency of 81.2%. The use of pulsed-field gel electrophoresis to analyze the S. indiana isolates that showed similar antimicrobial resistance patterns and carried resistance genes revealed six genotypes of these organisms. Most of these isolates had the common pulsed-field gel electrophoresis patterns found in the chicken hatchery, chicken farms, and slaughterhouses, suggesting that many multidrug-resistant isolates of S. indiana prevailed in the three sources. Some of these isolates were

  19. Antibiotic of resistence profile of Salmonella spp. serotypes isolated from retail beef in Mexico City.

    OpenAIRE

    Nova Nayarit-Ballesteros; María Salud Rubio-Lozano; Enrique Delgado-Suárez; Danilo Méndez-Medina; Diego Braña-Varela; Oscar Rodas-Suárez

    2016-01-01

    Objective. To determine the serotype and antibiotic resistance profile of Salmonella spp. isolated from retail ground beef in Mexico City. Materials and methods. A total of 100 samples of ground beef were analyzed. The pathogen was isolated by conventional methods and confirmed by PCR (invA gene, 284 bp). The antibiotic resistance profile was determined by the Kirby-Bauer method while serotyping was performed according to the Kauffman-White scheme. Results. We isolated a total of 19 strains o...

  20. Antibiotic resistance in Salmonella Enteritidis isolated from broiler carcasses Resistência antimicrobiana em Salmonella Enteritidis isoladas de carcaças de frango

    Directory of Open Access Journals (Sweden)

    Martha Oliveira Cardoso

    2006-09-01

    Full Text Available Eighty Salmonella Enteritidis strains isolated from broiler carcasses between May 1995 and April 1996 in the State of Rio Grande do Sul, Brazil, were tested for antibiotic susceptibility using the disk diffusion method. Resistance to colistin, novobiocin, erythromycin and tetracycline was observed in 100% of the isolates. The strains showed intermediate resistance at different levels to kanamycin (1.25%, enrofloxacin (3.75%, neomycin (3.75%, fosfomycin (20%, sulphonamides (86.25% and nitrofurantoin (90%. Resistance to ciprofloxacin, norfloxacin, gentamicin, polymyxin B, sulphametrim and sulphazotrim was not found. Since resistance to antibiotics especially those introduced in the last decades, was detected, it is recommended that their use must be based on the results of resistance tests or minimum inhibitory concentration tests.Oitenta amostras de Salmonella Enteritidis isoladas de carcaças de frango no período entre maio de 1995 a abril de 1996 no Estado do Rio Grande do Sul, Brasil foram testados para susceptibilidade antimicrobiana pelo método de antibiograma. O antibiograma das amostras apresentou 100% de resistência a colistina, novobiocina, eritromicina e tetraciclina. Tiveram resistência em diferentes níveis a canamicina (1,25%, enrofloxacina (3,75%, neomicina (3,75%, fosfomicina (20%, sulfonamida (86,25% e nitrofurantoína (90% e por outro lado não apresentaram resistência a ciprofloxacina, norfloxacina, gentamicina, polimixina B, sulfametrim e sulfazotrim. A constatação de resistência a antibióticos, inclusive àqueles introduzidos na última década, enfatiza a necessidade de uso responsável de antibióticos, e com base em antibiograma ou concentração inibitória mínima.

  1. PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica

    DEFF Research Database (Denmark)

    Navarre, William Wiley; Zou, S Betty; Roy, Hervé

    2010-01-01

    We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-beta-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive...

  2. Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium

    Science.gov (United States)

    Background Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline an...

  3. Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai-Myanmar border

    Directory of Open Access Journals (Sweden)

    Ruengweerayut Kulaya

    2010-10-01

    /ml; p Conclusions Although pharmacokinetic (ethnic-related factors including resistance of P. falciparum to mefloquine contribute to some treatment failure following treatment with a three-day combination regimen of artesunate-mefloquine, results suggest that artesunate resistance may be emerging at the Thai-Myanmar border.

  4. The Potential Link between Thermal Resistance and Virulence in Salmonella: A Review

    Directory of Open Access Journals (Sweden)

    Turki M. Dawoud

    2017-06-01

    Full Text Available In some animals, the typical body temperature can be higher than humans, for example, 42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge for pathogens. Even in animals with lower body temperatures, when infection occurs, the immune system may increase body temperature to reduce the chance of survival for pathogens. However, some pathogens can still easily overcome higher body temperatures and/or rise in body temperatures through expression of stress response mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne illnesses, salmonellosis, and can readily survive over a wide range of temperatures due to the efficient expression of the heat (thermal stress response. Therefore, thermal resistance mechanisms can provide cross protection against other stresses including the non-specific host defenses found within the human body thus increasing pathogenic potential. Understanding the molecular mechanisms associated with thermal responses in Salmonella is crucial in designing and developing more effective or new treatments for reducing and eliminating infection caused by Salmonella that have survived heat stress. In this review, Salmonella thermal resistance is assessed followed by an overview of the thermal stress responses with a focus on gene regulation by sigma factors, heat shock proteins, along with the corresponding thermosensors and their association with virulence expression including a focus on a potential link between heat resistance and potential for infection.

  5. Silver-embedded screens in the intensive care unit. A new tool to control multi-drug resistant bacterial cross-transmission.

    Science.gov (United States)

    Ruiz, J; Ramirez, P; Villarreal, E; Gordon, M; Cuesta, S; Piñol, M; Frasquet, J; Castellanos, Á

    2017-08-01

    The purpose of this study was to assess the effectiveness of silver-embedded surfaces (BactiBlock®) to prevent surface colonization by multi-resistant bacteria (MRB) and to reduce the incidence of MRB colonization and infection in patients admitted to an intensive care unit (ICU). A 6-month prospective observational study in a 24-bed mixed ICU divided into two identical subunits (12 beds each) was designed. Seven solid mobile screens were placed in one of the subunits while in the other cloth screens remained. Solid screens were constructed with high-density polyethylene embedded in Bactiblock®. To evaluate the effectiveness of screens coated with Bactiblock®, number of MRB isolates on screens were compared for 6 months. Likewise, numbers of new patients and ICU-stays with MRB colonization in the two subunits were compared. One hundred forty screen samples were collected in 10-point prevalent days. MRB were detected on 28 (20.0%) samples. Over the 70 samples taken on cloth folding screens, MRB were detected in 25 (35.7%), while only 3 (4.3%) of the 70 samples taken on Bactiblock® screens were positive for MRB (p unit with Bactiblock® screens presented fewer number of ICU stays with MRB colonization (27.8% vs 47.1%; p units, proving to be an useful tool in the control of MRB.

  6. Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Kiran, George Seghal; Jackson, Stephen A; Priyadharsini, Sethu; Dobson, Alan D W; Selvin, Joseph

    2017-08-22

    Melanin is a dark brown ubiquitous photosynthetic pigment which have many varied and ever expanding applications in fabrication of radio-protective materials, food packaging, cosmetics and in medicine. In this study, melanin production in a Pseudomonas sp. which was isolated from the marine sponge Tetyrina citirna was optimized employing one-factor at a time experiments and characterized for chemical nature and stability. Following sonication nucleated nanomelanin (Nm) particles were formed and evaluated for antibacterial and antioxidant properties. Nanocomposite film was fabricated using combinations (% w/v) of polyhydroxy butyrate-nanomelanin (PHB:Nm) blended with 1% glycerol. The Nm was found to be spherical in shape with a diameter of 100-140 nm and showed strong antimicrobial activity against both Gram positive and Gram negative bacteria. The Nm-PHB nanocomposite film was homogeneous, smooth, without any cracks, and flexible. XRD and DSC data indicated that the film was crystalline in nature, and was thermostable up to 281.87 °C. This study represents the first report on the synthesis of Nm and fabrication of Nm-PHB nanocomposite film which show strong protective effect against multidrug resistant Staphyloccoccus aureus. Thus this Nm-PHB nanocomposite film may find utility as packaging material for food products by protecting the food products from oxidation and bacterial contamination.

  7. Antimicrobial resistance trends among Salmonella isolates obtained from horses in the northeastern United States (2001-2013).

    Science.gov (United States)

    Cummings, Kevin J; Perkins, Gillian A; Khatibzadeh, Sarah M; Warnick, Lorin D; Aprea, Victor A; Altier, Craig

    2016-05-01

    OBJECTIVE To describe the antimicrobial resistance patterns of Salmonella isolates obtained from horses in the northeastern United States and to identify trends in resistance to select antimicrobials over time. SAMPLE 462 Salmonella isolates from horses. PROCEDURES Retrospective data were collected for all Salmonella isolates obtained from equine specimens that were submitted to the Cornell University Animal Health Diagnostic Center between January 1, 2001, and December 31, 2013. Temporal trends in the prevalence of resistant Salmonella isolates were investigated for each of 13 antimicrobials by use of the Cochran-Armitage trend test. RESULTS The prevalence of resistant isolates varied among antimicrobials and ranged from 0% (imipenem) to 51.5% (chloramphenicol). During the observation period, the prevalence of resistant isolates decreased significantly for amoxicillin-clavulanic acid, ampicillin, cefazolin, cefoxitin, ceftiofur, chloramphenicol, and tetracycline and remained negligible for amikacin and enrofloxacin. Of the 337 isolates for which the susceptibility to all 13 antimicrobials was determined, 138 (40.9%) were pansusceptible and 192 (57.0%) were multidrug resistant (resistant to ≥ 3 antimicrobial classes). The most common serovar isolated was Salmonella Newport, and although the annual prevalence of that serovar decreased significantly over time, that decrease had only a minimal effect on the observed antimicrobial resistance trends. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that current antimicrobial use in horses is not promoting the emergence and dissemination of antimicrobial-resistant Salmonella strains in the region served by the laboratory.

  8. Voruciclib, a Potent CDK4/6 Inhibitor, Antagonizes ABCB1 and ABCG2-Mediated Multi-Drug Resistance in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Pranav Gupta

    2018-02-01

    Full Text Available Background/Aims: The overexpression of ATP-Binding Cassette (ABC transporters has known to be one of the major obstacles impeding the success of chemotherapy in drug resistant cancers. In this study, we evaluated voruciclib, a CDK 4/6 inhibitor, for its chemo-sensitizing activity in ABCB1- and ABCG2- overexpressing cells. Methods: Cytotoxicity and reversal effect of voruciclib was determined by MTT assay. The intracellular accumulation and efflux of ABCB1 and ABCG2 substrates were measured by scintillation counter. The effects on expression and intracellular localization of ABCB1 and ABCG2 proteins were determined by Western blotting and immunofluorescence, respectively. Vanadate-sensitive ATPase assay was done to determine the effect of voruciclib on the ATPase activity of ABCB1 and ABCG2. Flow cytometric analysis was done to determine the effect of voruciclib on apoptosis of ABCB1 and ABCG2-overexpressing cells and docking analysis was done to determine the interaction of voruciclib with ABCB1 and ACBG2 protein. Results: Voruciclib significantly potentiated the effect of paclitaxel and doxorubicin in ABCB1-overexpressing cells, as well as mitoxantrone and SN-38 in ABCG2-overexpressing cells. Voruciclib moderately sensitized ABCC10- overexpressing cells to paclitaxel, whereas it did not alter the cytotoxicity of substrates of ABCC1. Furthermore, voruciclib increased the intracellular accumulation and decreased the efflux of substrate anti-cancer drugs from ABCB1- or ABCG2-overexpressing cells. However, voruciclib did not alter the expression or the sub-cellular localization of ABCB1 or ABCG2. Voruciclib stimulated the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner. Lastly, voruciclib exhibited a drug-induced apoptotic effect in ABCB1- or ABCG2- overexpressing cells. Conclusion: Voruciclib is currently a phase I clinical trial drug. Our findings strongly support its potential use in combination with conventional anti

  9. Evaluation of Eight Different Cephalosporins for Detection of Cephalosporin Resistance in Salmonella enterica and Escherichia coli

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik; Veldman, K

    2010-01-01

    This study evaluates the efficacy of eight different cephalosporins for detection of cephalosporin resistance mediated by extended spectrum beta-lactamases (ESBL) and plasmidic AmpC beta-lactamases in Salmonella and Escherichia coli. A total of 138 E. coli and 86 Salmonella isolates with known beta......-resistant but cephalosporin-susceptible, 56 ESBL isolates and 19 isolates with plasmidic AmpC, as well as 10 ampC hyper-producing E. coli. The minimum inhibitory concentration distributions and zone inhibitions varied with the tested compound. Ampicillin-resistant isolates showed reduced susceptibility to the cephalosporins...... compared to ampicillin-susceptible isolates. Cefoperazone, cefquinome, and cefuroxime were not useful in detecting isolates with ESBL or plasmidic AmpC. The best substances for detection were cefotaxime, cefpodoxime, and ceftriaxone, whereas ceftazidime and ceftiofur were not as efficient. Ceftriaxone may...

  10. Recovery of Cephalosporin Resistant Escherichia coli and Salmonella from Pork, Beef and Chicken Marketed in Nova Scotia

    Directory of Open Access Journals (Sweden)

    Kevin R Forward

    2004-01-01

    Full Text Available BACKGROUND: Antimicrobial use in farm animals is a potentially important contributor to the emergence of antimicrobial resistance. Resistant Salmonella may lead to serious human infections and resistant Escherichia coli may transfer plasmid-encoded resistance genes to other pathogens.

  11. Antibiotic resistance determinants and genetic analysis of Salmonella enterica isolated from food in Morocco.

    Science.gov (United States)

    Murgia, Manuela; Bouchrif, Brahim; Timinouni, Mohammed; Al-Qahtani, Ahmed; Al-Ahdal, Mohammed N; Cappuccinelli, Pietro; Rubino, Salvatore; Paglietti, Bianca

    2015-12-23

    Antimicrobial-resistant non-typhoidal Salmonella (NTS) are an important cause of infection in Africa, but there is a lack of information on their molecular mechanisms of resistance and epidemiology. This study contributes to fill this gap through the characterization by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), plasmid profiling and analysis of antibiotic-resistance determinants of 94 Salmonella enterica strains isolated from food in Morocco. PFGE revealed considerable heterogeneity among the strains, showing 32 pulsotypes. MLST of strains representative of the different serovars evidenced 13 sequence types (STs), three of which were newly identified (ST1694, ST1768 and ST1818) and nine not previously reported in Morocco. Thirty-four strains harbored from one to four plasmids, of IncI1 group in S. Mbandaka, IncFIIA in S. Typhimurium, IncL/M in S. Hadar and S. Blockley. For the first time in Morocco an intact Salmonella Genomic Island 1 (SGI1) carrying the resistance genes aadA2, floR, tetG, blaPSE-1 and sul1 was detected in S. Typhimurium DT104. In serovar Hadar resistance to ampicillin, tetracycline and streptomycin was associated to blaTEM-1, tetA and strA genes respectively, whereas one mutation in gyrA (Asp87Asn) and one in parC (Thr54Ser) genes conferred resistance to nalidixic acid. These findings improve the information on foodborne Salmonella in Morocco, evidencing the presence of MDR strains potentially dangerous to humans, and provide useful data for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Genetic characterisation of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Mohammed Abdel-Maksoud

    2015-05-01

    Full Text Available Background: Food-borne diseases pose serious health problems, affecting public health and economic development worldwide. Methods: Salmonella was isolated from samples of chicken parts, skin samples of whole chicken carcasses, raw egg yolks, eggshells and chicken faeces. Resulting isolates were characterised by serogrouping, serotyping, antimicrobial susceptibility testing and detection of extended-spectrum β-lactamase (ESBL production. Antibiotic resistance genes and integrons were identified by polymerase chain reaction (PCR. Results: The detection rates of Salmonella were 60%, 64% and 62% in chicken parts, skin, and faeces, respectively, whereas the egg yolks and eggshells were uniformly negative. Salmonella Kentucky and S. Enteritidis serotypes comprised 43.6% and 2.6% of the isolates, respectively, whilst S. Typhimurium was absent. Variable resistance rates were observed against 16 antibiotics; 97% were resistant to sulfamethoxazole, 96% to nalidixic acid and tetracycline and 76% to ampicillin. Multidrug resistance was detected in 82% (64/78 of the isolates and ESBL production was detected in 8% (6/78. The β-lactamase blaTEM-1 gene was detected in 57.6% and blaSHV-1 in 6.8% of the isolates, whilst the blaOXA gene was absent. The sul1gene was detected in 97.3% and the sul2 gene in 5.3% of the isolates. Sixty-four of the 78 isolates (82% were positive for the integrase gene (int I from class 1 integrons, whilst int II was absent. Conclusion: This study reveals the presence of an alarming number of multidrug-resistant Salmonella isolates in the local poultry markets in Cairo. The high levels of drug resistance suggest an emerging problem that could impact negatively on efforts to prevent and treat poultry and poultry-transmitted human diseases in Egypt.

  13. Characterization of antimicrobial resistance in Salmonella enterica strains isolated from Brazilian poultry production.

    Science.gov (United States)

    Mattiello, Samara P; Drescher, Guilherme; Barth, Valdir C; Ferreira, Carlos A S; Oliveira, Sílvia D

    2015-11-01

    Antimicrobial resistance profiles and presence of resistance determinants and integrons were evaluated in Salmonella enterica strains from Brazilian poultry. The analysis of 203 isolates showed that those from the poultry environment (88 isolates) were significantly more resistant to antimicrobials than isolates from other sources, particularly those isolated from poultry by-product meal (106 isolates). Thirty-seven isolates were resistant to at least three antimicrobial classes. Class 1 integrons were detected in 26 isolates, and the analysis of the variable region between the 5' conserved segment (CS) and 3' CS of each class 1 integron-positive isolate showed that 13 contained a typical 3' CS and 14 contained an atypical 3' CS. One Salmonella Senftenberg isolate harbored two class 1 integrons, showing both typical and atypical 3' CSs. The highest percentage of resistance was found to sulfonamides, and sul genes were detected in the majority of the resistant isolates. Aminoglycoside resistance was detected in 50 isolates, and aadA and aadB were present in 28 and 32 isolates, respectively. In addition, strA and strB were detected in 78.1 and 65.6% isolates resistant to streptomycin, respectively. Twenty-one isolates presented reduced susceptibility to β-lactams and harbored bla(TEM), bla(CMY), and/or bla(CTX-M). Forty isolates showed reduced susceptibility to tetracycline, and most presented tet genes. These results highlight the importance of the environment as a reservoir of resistant Salmonella, which may enable the persistence of resistance determinants in the poultry production chain, contributing, therefore, to the debate regarding the impacts that antimicrobial use in animal production may exert in human health.

  14. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  15. Risk factors associated with multi-drug-resistant Acinetobacter baumannii nosocomial infections at a tertiary care hospital in Makkah, Saudi Arabia - a matched case–control study

    Science.gov (United States)

    Al-Gethamy, Manal M; Faidah, Hani S; Adetunji, Hamed Ademola; Ashgar, Sami S; Mohanned, Tayeb K; Mohammed, Al-Haj; Khurram, Muhammad; Hassali, Mohamed A

    2017-01-01

    Objective To determine risk factors for multi-drug-resistant Acinetobacter baumannii (MDR-AB) nosocomial infections in intensive care units in a tertiary care hospital, Makkah, Saudi Arabia. Methods We performed a hospital-based, matched case–control study in patients who were admitted to Al Noor Specialist Hospital between 1 January 2012 and 31 August 2012. The study included cases of A. baumannii nosocomial infection and controls without infection. Controls were matched to cases by age and ward of admission. Results The most frequent site of infection was the respiratory tract (77.3%). Susceptibility to antimicrobial MDR-AB was 92.0% for ceftazidime and ciprofloxacin, while it was 83.3% for imipenem, 83.0% for trimethoprim, 79.0% for amikacin, and 72.7% for gentamicin. Multiple logistic regression of risk factors showed that immunosuppression (OR = 2.9; 95% CI 1.5–5.6; p = 0.002), clinical outcome (OR = 0.4; 95% CI 0.3–0.9; p = 0.01), invasive procedures (OR = 7.9; 95% CI 1.8–34.2; p = 0.002), a central venous catheter (OR = 2.9; 95% CI 1.5–5.6; p = 0.000), and an endotracheal tube (OR = 3.4; 95% CI 1.6–7.3; p = 0.001) were associated with MDR-AB. Conclusions Acinetobacter nosocomial infections are associated with admission to the ICU (Intensive care unit) and exposure to invasive procedures. PMID:28480813

  16. Comparative study of isolates from community-acquired and catheter-associated urinary tract infections with reference to biofilm-producing property, antibiotic sensitivity and multi-drug resistance.

    Science.gov (United States)

    Bardoloi, Vishwajeet; Yogeesha Babu, K V

    2017-07-01

    Urinary tract infection (UTI) can be community-acquired (Com-UTI) or catheter-associated (CAUTI) and may be associated with biofilm-producing organisms. A comparative analysis of biofilm-producing property (BPP), antibiotic-sensitivity and multi-drug resistance (MDR) and their relation with the BPP of isolates from Com-UTI and CAUTI has not yet been performed and necessitated this study. (1) isolation of bacteria from CAUTI and Com-UTI and identification of their BPP, antibiotic-sensitivity and MDR status; (2) comparison of the isolates from CAUTI and Com-UTI as regards BPP, MDR status and their relation with BPP. isolates from 100 cases each of Com-UTI and CAUTI were subjected to Congo redagar (CRA) and Safranin tube tests. Antibiotic susceptibility was investigated using the disc diffusion method. Both groups were compared regarding BPP, drug sensitivity and MDR status. Statistical analyses were performed using χ2 and Fisher's exact tests. 76.19 % of isolates from Com-UTI and 60.72 % from CAUTI had BPP (P=0.0252; significant). The Safranin tube test detected more isolates with BPP than the CRA test. MDR is greater in CAUTI than Com-UTI (83.33 % versus 64.76 %; P=0.0039; significant). MDR is greater in isolates with BPP in both Com-UTI and CAUTI (76.47 and 62.35 %; non-significant). BPP was found in both Com-UTI and CAUTI. When used together, the Safranin tube test and the CRA test increased the sensitivity of detecting BPP. MDR was higher in CAUTI than Com-UTI. MDR and BPP are not interrelated or associated, especially in settings where it is not certain that isolates were obtained from a well-formed biofilm. However, this does not rule out a higher incidence or prevalence of MDR in isolates with BPP taken directly from the biofilms.

  17. Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana.

    Science.gov (United States)

    Parry-Hanson Kunadu, Angela; Holmes, Mark; Miller, Eric L; Grant, Andrew J

    2018-07-20

    Consumer perception of poor hygiene of fresh milk products is a major barrier to promotion of milk consumption as an intervention to alleviate the burden of malnutrition in Ghana. Fresh milk is retailed raw, boiled, or processed into unfermented cheese and spontaneously fermented products in unlicensed outlets. In this study, we have determined microbiological quality of informally retailed fresh milk products and characterized the genomic diversity and antimicrobial resistance (AMR) patterns of non-typhoidal Salmonella (NTS) in implicated products. A total of 159 common dairy products were purchased from five traditional milk markets in Accra. Samples were analysed for concentrations of aerobic bacteria, total and fecal coliforms, Escherichia coli, staphylococci, lactic acid bacteria and yeast and moulds. The presence of Salmonella, E. coli O157:H7, Listeria monocytogenes and Staphylococcus aureus were determined. AMR of Salmonella against 18 antibiotics was experimentally determined. Genome sequencing of 19 Salmonella isolates allowed determination of serovars, antigenic profiles, prediction of AMR genes in silico and inference of phylogenetic relatedness between strains. Raw and heat-treated milk did not differ significantly in overall bacterial quality (P = 0.851). E. coli O157:H7 and Staphylococcus aureus were present in 34.3% and 12.9% of dairy products respectively. Multidrug resistant (MDR) Salmonella enterica serovars Muenster and Legon were identified in 11.8% and 5.9% of unfermented cheese samples respectively. Pan genome analysis revealed a total of 3712 core genes. All Salmonella strains were resistant to Trimethoprim/Sulfamethoxazole, Cefoxitin, Cefuroxime Axetil and Cefuroxime. Resistance to Chloramphenicol (18%) and Ciprofloxacin (100%), which are first line antibiotics used in treatment of NTS bacteremia in Ghana, was evident. AMR was attributed to presence and/or mutations in the following genes: golS, sdiA for cephalosporins, aac(6')-Iy, ant

  18. Prevalence and antimicrobial resistance profile of Escherichia coli and salmonella isolated from diarrheic calves

    DEFF Research Database (Denmark)

    Ansari, A.R.M.I.H.; Rahman, M.M.; Islam, Md Zohorul

    2014-01-01

    . The diarrhea and other clinical signs seen with the disease are caused by the interaction of any of several possible infectious causes. This study was carried out to isolate, identify and detect the antimicrobial resistant profile of E. coli and Salmonella from diarrheic calves. A total of one hundred...... and twenty five fecal specimens were collected directly from the rectum of diarrheic calves. Of the samples collected 35 (25%) and 11 (8.8%) was found positive for E. coli and Salmonella respectively. Antimicrobial resistance of these two isolate was found against Amoxycillin and Tetracycline whereas a high......Neonatal calf diarrhea (NCD) is a common disease affecting the newborn calf and the most critical period is in the first few days following birth of the calf which is also known as calf scours. Keeping animals in close confinement where the opportunity for transmission of causative agents of NCD...

  19. Quinolone Resistance among Salmonella enterica from Cattle, Broilers and Swine in Denmark

    DEFF Research Database (Denmark)

    Wiuff, C.; Baggesen, Dorte Lau; Madsen, M.

    2000-01-01

    This study was conducted to determine the susceptibility to nalidixic acid and fluoroquinolones of Salmonella Dublin, S. Enteritidis, and S. Typhimurium isolates from cattle, broilers, and pigs over time in Denmark and to characterise the gyrA, gyrB, and parC genes in quinolone-resistant isolates...... that quinolone-resistant isolates have emerged in recent years among food-producing animals, especially among S. Enteritidis from broilers in Denmark, and that the resistance mainly is associated with mutations in gyrA.......This study was conducted to determine the susceptibility to nalidixic acid and fluoroquinolones of Salmonella Dublin, S. Enteritidis, and S. Typhimurium isolates from cattle, broilers, and pigs over time in Denmark and to characterise the gyrA, gyrB, and parC genes in quinolone-resistant isolates...... to quinolones. A single (1.1%) S. Typhimurium isolate from 1995 and three (5.9%) from 1998 were resistant to nalidixic acid. Six (9.0%) S. Dublin isolates from 1996, four (4.2%) from 1997, and one (1.7%) from 1998 were resistant to nalidixic acid. Resistance was not observed among isolates from cattle in 1999...

  20. Antimicrobial-resistant patterns of Escherichia coli and Salmonella strains in the aquatic Lebanese environments

    International Nuclear Information System (INIS)

    Harakeh, Steve; Yassine, Hadi; El-Fadel, Mutasem

    2006-01-01

    This study is the first to be conducted in Lebanon on the isolation and molecular characterization and the antimicrobial resistance profile of environmental pathogenic bacterial strains. Fifty-seven samples of seawater, sediment, crab, and fresh water were collected during the spring and summer seasons of 2003. The isolation of Escherichia coli and Salmonella using appropriate selective media revealed that 94.7% of the tested samples were contaminated with one or both of the tested bacteria. The polymerase chain reaction (PCR) was then used to identify the species of both bacteria using various sets of primers. Many pathogenic E. coli isolates were detected by PCR out of which two were identified as O157:H7 E. coli. Similarly, the species of many of the Salmonella isolates was molecularly identified. The confirmed isolates of Salmonella and E. coli were then tested using the disk diffusion method for their susceptibility to four different antimicrobials revealing high rates of antimicrobial resistance. - First report of antibiotic resistance in bacteria in the environment in Lebanon

  1. Phenotypic and genotypic profile of clinical and animal multidrug-resistant Salmonella enterica isolates from Mexico.

    Science.gov (United States)

    Aguilar-Montes de Oca, S; Talavera-Rojas, M; Soriano-Vargas, E; Barba-León, J; Vázquez-Navarrete, J; Acosta-Dibarrat, J; Salgado-Miranda, C

    2018-01-01

    The objective of this study was to obtain a phenotypic and genotypic profile of Salmonella enterica including multidrug-resistant (MDR) isolates from food-producing animals and clinical isolates, as well as their genetic relatedness in two different States of Mexico (Jalisco and State of Mexico). A total of 243 isolates were evaluated in terms of antimicrobial resistance (AMR) and related genes through a disk diffusion method and PCR respectively; we found 16 MDR isolates, all of them harbouring the bla CMY gene but not qnr genes, these isolates represent less than 10% of the collection. The pulsed-field gel electrophoresis revealed a higher genotypic similitude within isolates of State of Mexico than Jalisco. A low percentage of Salmonella isolates were resistant to relevant antibiotics in human health, nevertheless, the AMR and involved genes were similar despite the different serovars and origin of the isolates. This investigation provided an insight of the current status of AMR of Salmonella isolates in two States of Mexico and pinpoint the genes involved in AMR and their epidemiological relationship, the information could help to determine an adequate therapy in human and veterinary medicine. © 2017 The Society for Applied Microbiology.

  2. Prevalence and antimicrobial resistance among Escherichia coli and Salmonella in Ontario smallholder chicken flocks.

    Science.gov (United States)

    Lebert, L; Martz, S-L; Janecko, N; Deckert, A E; Agunos, A; Reid, A; Rubin, J E; Reid-Smith, R J; McEwen, S A

    2018-02-01

    Surveillance is an important component of an overall strategy to address antimicrobial resistant bacteria in food animals and the food chain. The poultry market has many points of entry into the Canadian food chain, and some production practices are underrepresented in terms of surveillance. For example, pathogen carriage and antimicrobial resistance surveillance data are limited in smallholder chicken flocks raised for slaughter at provincially inspected abattoirs. In Canada, antimicrobial resistance in Escherichia coli and Salmonella isolated from commercial broiler chicken flocks, slaughtered at federally inspected abattoirs, is monitored by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). The objective of this study was to establish baseline information of antimicrobial resistance presence in E. coli and Salmonella isolated from smallholder flocks in Ontario, utilizing CIPARS collection and isolation methodologies, and to compare findings with CIPARS federally inspected abattoir data from Ontario, Canada. Five chickens per flock were sampled from 205 smallholder flocks. Of 1,025 samples, the E. coli prevalence was 99% (1,022/1,025), and 47% (483/1,022) of positive E. coli isolates were resistant to one or more of the 14 antimicrobials. Furthermore, as compared to results reported for the CIPARS commercial flocks, E. coli isolates from smallholder flocks had significantly lower resistance prevalence to six of 14 individual antimicrobials. Recovery of E. coli did not differ between federally inspected and provincially inspected flocks. Salmonella prevalence at the bird level in smallholder flocks was 0.3% (3/1,025), significantly lower (p ≪ 0.0001, 95% CI 0.080%-0.86%) than federally inspected commercial flocks. The overall differences found between the commercial and smallholder flocks may be explained by differences in poultry husbandry practices and hatchery sources. © 2017 Her Majesty the Queen in Right of Canada

  3. Virulence-associated genes, antimicrobial resistance and molecular typing of Salmonella Typhimurium strains isolated from swine from 2000 to 2012 in Brazil.

    Science.gov (United States)

    Almeida, F; Medeiros, M I C; Kich, J D; Falcão, J P

    2016-06-01

    The aims of this study were to assess the pathogenic potential, antimicrobial resistance and genotypic diversity of Salmonella Typhimurium strains isolated in Brazil from swine (22) and the surrounding swine environment (5) from 2000 to 2012 and compare them to the profiles of 43 human strains isolated from 1983 to 2010, which had been previously studied. The presence of 12 SPI-1, SPI-2 and plasmid genes was assessed by PCR, the antimicrobial susceptibility to 13 antimicrobials was determined by the disc diffusion assay and genotyping was performed using pulsed-field gel electrophoresis (PFGE), multiple-locus variable-number of tandem repeats analysis (MLVA) and ERIC-PCR. More than 77·8% of the swine strains carried 10 or more of the virulence markers. Ten (37%) strains isolated from swine were multi-drug resistant (MDR). All the molecular typing techniques grouped the strains in two main clusters. Some strains isolated from swine and humans were allocated together in the PFGE-B2, MLVA-A1, MLVA-B and ERIC-A1 clusters. The genotyping results suggest that some strains isolated from swine and humans may descend from a common subtype and may indicate a possible risk of MDR S. Typhimurium with high frequency of virulence genes isolated from swine to contaminate humans in Brazil. This study provided new information about the pathogenic potential, antimicrobial resistance and genotypic diversity of S. Typhimurium isolates from swine origin in Brazil, the fourth largest producer of pigs worldwide. © 2016 The Society for Applied Microbiology.

  4. Antimicrobial Resistance Percentages of Salmonella and Shigella in Seafood Imported to Jordan: Higher Percentages and More Diverse Profiles in Shigella.

    Science.gov (United States)

    Obaidat, Mohammad M; Bani Salman, Alaa E

    2017-03-01

    This study determined the prevalence and antimicrobial resistance of human-specific ( Shigella spp.) and zoonotic ( Salmonella enterica ) foodborne pathogens in internationally traded seafood. Sixty-four Salmonella and 61 Shigella isolates were obtained from 330 imported fresh fish samples from Egypt, Yemen, and India. The pathogens were isolated on selective media, confirmed by PCR, and tested for antimicrobial resistance. Approximately 79 and 98% of the Salmonella and Shigella isolates, respectively, exhibited resistance to at least one antimicrobial, and 8 and 49% exhibited multidrug resistance (resistance to three or more antimicrobial classes). Generally, Salmonella exhibited high resistance to amoxicillin-clavulanic acid, cephalothin, streptomycin, and ampicillin; very low resistance to kanamycin, tetracycline, gentamicin, chloramphenicol, nalidixic acid, sulfamethoxazole-trimethoprim, and ciprofloxacin; and no resistance to ceftriaxone. Meanwhile, Shigella spp. exhibited high resistance to tetracycline, amoxicillin-clavulanic acid, cephalothin, streptomycin, and ampicillin; low resistance to kanamycin, nalidixic acid, sulfamethoxazole-trimethoprim, and ceftriaxone; and very low resistance to gentamicin and ciprofloxacin. Salmonella isolates exhibited 14 resistance profiles, Shigella isolates 42. This study is novel in showing that a human-specific pathogen has higher antimicrobial resistance percentages and more diverse profiles than a zoonotic pathogen. Thus, the impact of antimicrobial use in humans is as significant as, if not more significant than, it is in animals in spreading antibiotic resistance through food. This study also demonstrates that locally derived antimicrobial resistance can spread and pose a public health risk worldwide through seafood trade and that high resistance would make a possible outbreak difficult to control. So, capacity building and monitoring harvest water areas are encouraged in fish producing countries.

  5. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China.

    Science.gov (United States)

    Zhu, Yuanting; Lai, Haimei; Zou, Likou; Yin, Sheng; Wang, Chengtao; Han, Xinfeng; Xia, Xiaolong; Hu, Kaidi; He, Li; Zhou, Kang; Chen, Shujuan; Ao, Xiaolin; Liu, Shuliang

    2017-10-16

    A total of 189 Salmonella isolates were recovered from 627 samples which were collected from cecal contents of broilers, chicken carcasses, chicken meat after cutting step and frozen broiler chicken products along the slaughtering process at a slaughterhouse in Sichuan province of China. The Salmonella isolates were subjected to antimicrobial susceptibility testing to 10 categories of antimicrobial agents using the Kirby-Bauer disk diffusion method. Those antibiotics-resistant isolates were further investigated for the occurrence of resistance genes, the presence of class 1 integron as well as the associated gene cassettes, and the mutations within the gyrA and parC genes. Consequently, the prevalence of Salmonella was 30.14% (47.96% for cecal content, 18.78% for chicken carcasses, 31.33% for cutting meat and 14.00% for frozen meat, respectively). The predominant serotypes were S. Typhimurium (15.34%) and S. Enteritidis (69.84%). High resistance rates to the following drugs were observed: nalidixic acid (99.5%), ampicillin (87.8%), tetracycline (51.9%), ciprofloxacin (48.7%), trimethoprim/sulfamethoxazole (48.1%), and spectinomycin (34.4%). Antimicrobial resistance profiling showed that 60.8% of isolates were multidrug resistant (MDR), and MDR strains increased from 44.7% to 78.6% along the slaughtering line. 94.6% (n=157) of beta-lactam-resistant isolates harbored at least one resistance gene of bla TEM or bla CTX-M . The relatively low prevalence of aminoglycoside resistance genes (aac(3)-II, aac(3)-IV, and ant(2″)-I) was found in 49 (66.2%) of antibiotic-resistant isolates. The tetracycline resistance genes (tet(A), tet(B), tet(C), and tet(G) and sulfonamide resistance genes (sul1, sul2, and sul3) were identified in 84 (85.7%) and 89 (97.8%) antibiotic-resistant isolates respectively. floR was identified in 44 (97.8%) florfenicol-resistant isolates. Class 1 integron was detected in 37.4% (n=43) of the MDR isolates. Two different gene cassettes, bla OXA-30 -aad

  6. Persistence of fluoroquinolone-resistant Salmonella enterica serovar Kentucky from poultry and poultry sources in Nigeria

    DEFF Research Database (Denmark)

    Raufu, Ibrahim A.; Fashae, Kayode; Ameh, James A.

    2014-01-01

    Introduction: This study investigated the antimicrobial resistance and clonality of Salmonella enterica serotype Kentucky in poultry and poultry sources in Nigeria, and compared the isolates with the clone of S. Kentucky STI98-X1 CIPR using (PFGE) and (MIC). Methodology: Fecal samples from chickens...... and poultry sources (litter, water, rodent and lizard fecal samples) were collected from fourteen (14) poultry farms in 2007, 2010 and 2011 and were analyzed for S. Kentucky. Results and conclusions: Six percent of the samples were positive for S. Kentucky - all resistant to nalidixic acid and ciprofloxacin...

  7. Prevalence, serotypes and resistance patterns of Salmonella in Danish pig production

    DEFF Research Database (Denmark)

    Arguello, Hector; Sørensen, Gitte; Carvajal, Ana

    2013-01-01

    Typhimurium in finishers and Salmonella Derby in breeding herds while the most prevalent phage types of the S. Typhimurium isolates were DT 12 and DT 120. The antimicrobial resistance analysis yielded a 35.2% of the isolates from the slaughter pigs resistant to one or more antimicrobials while 19.3% were...... resistant to four or more antimicrobials. A significantly higher percentage of resistance to antimicrobials was found in the S. Typhimurium isolates (χ2=4.72, p=0.029), where 42.9% presented resistance to one or more compounds. In breeding herds, just S. Typhimurium and S. 4,5],12:i: – isolates were tested......The objective of this paper is to analyse in further detail the Danish results of the EFSA baseline studies in slaughter pigs and breeding herds, and compare them with the results obtained in (1) the pre-implementation study that was carried out to establish the initial prevalence values...

  8. Multidrug Resistant Salmonella typhi in Asymptomatic Typhoid Carriers among Food Handlers in Namakkal District, Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Senthilkumar B

    2005-01-01

    Full Text Available Purpose: to screen Salmonella typhi in asymptomatic typhoid carriers and to find out drug resistance and ability of the strains to transmit drug resistance to other bacteria. Methods: Cultural characters, biochemical tests, antibiotic sensitivity test (disc diffusion, agarose gel electrophoresis, and conjugation protocols were done. Thirty five stool samples were collected from the suspected food handlers for the study. Results: Among 35 samples, (17.14% yielded a positive result. Out of these 4 (20.0% were women and 2 (13.33% were men. The isolates were tested with a number of conventional antibiotics viz, amikacin, amoxicillin, ampicillin, chloramphenicol, ciprofloxacin, co-trimaxazole, rifampicin, gentamicin, nalidixic acid, ofloxacin and tetracycline. Five isolates were having the multidrug resistant character. Four (66.66% multidrug resistant isolates were found to have plasmids, while one (16.66% multidrug resistant isolate had no plasmid and the chromosome encoded the resistance. Only one strain (16.66% showed single antibiotic resistance in the study and had no plasmid DNA. The molecular weights of the plasmids were determined and found to be 120 kb.The mechanism of spreading of drug resistance through conjugation process was analyzed. In the conjugation studies, the isolates having R+ factor showed the transfer of drug resistance through conjugation, which was determined by the development of antibiotic resistance in the recipients. Conclusion: This study shows that drug resistant strains are able to transfer genes encoding drug resistance.

  9. The effects of different enrofloxacin dosages on clinical efficacy and resistance development in chickens experimentally infected with Salmonella Typhimurium.

    Science.gov (United States)

    Li, Jun; Hao, Haihong; Cheng, Guyue; Wang, Xu; Ahmed, Saeed; Shabbir, Muhammad Abu Bakr; Liu, Zhenli; Dai, Menghong; Yuan, Zonghui

    2017-09-15

    To investigate the optimal dosage which can improve clinical efficacy and minimize resistance, pharmacokinetics/pharmacodynamics model of enrofloxacin was established. Effect of enrofloxacin treatments on clearance of Salmonella in experimentally infected chickens and simultaneously resistance selection in Salmonella and coliforms were evaluated in three treatment groups (100, PK/PD designed dosage of 4, 0.1 mg/kg b.w.) and a control group. Treatment duration was three rounds of 7-day treatment alternated with 7-day withdrawal. Results showed that 100 mg/kg b.w. of enrofloxacin completely eradicated Salmonella, but resistant coliforms (4.0-60.8%) were selected from the end of the second round's withdrawal period till the end of the experiment (days 28-42). PK/PD based dosage (4 mg/kg b.w.) effectively reduced Salmonella for the first treatment duration. However upon cessation of medication, Salmonella repopulated chickens and persisted till the end with reduced susceptibility (MIC CIP  = 0.03-0.25 mg/L). Low frequency (5-9.5%) of resistant coliforms was selected (days 39-42). Enrofloxacin at dosage of 0.1 mg/kg b.w. was not able to eliminate Salmonella and selected coliforms with slight decreased susceptibility (MIC ENR  = 0.25 mg/L). In conclusion, short time treatment (7 days) of enrofloxacin at high dosage (100 mg/kg b.w.) could be effective in treating Salmonella infection while minimizing resistance selection in both Salmonella and coliforms.

  10. Antimicrobial resistance in Salmonella spp. recovered from patients admitted to six different hospitals in Tehran, Iran from 2007 to 2008

    DEFF Research Database (Denmark)

    Tajbakhsh, Mercedeh; Hendriksen, Rene S.; Nochi, Zahra

    2012-01-01

    were screened for the presence of Salmonella, serotyped, tested for antimicrobial susceptibility using disk diffusion and examined for the presence of relevant resistance genes and integrons by PCR. A total of 1,120 patients were screened for the presence of Salmonella. Out of 71 Salmonella isolates...... recovered, the following serovars were identified: 17 Typhi, 14 Paratyphi C, 13 Enteritidis, 11 Paratyphi B, 10 Paratyphi A and six Infantis. Most resistance was observed towards sulfamethoxazole (30%), tetracyclines (25%), nalidixic acid (22%), spectinomycin (17%), trimethoprim (15%), ampicillin (14......%) and kanamycin (14%). The tetracycline resistance genes tet(A), tet(B), and tet(G) were found in 28%, 14% and 6% of the tetracycline resistant isolates, respectively. The genes aadA, aadB, strA, strB and aphA1-Iab were present in 83%, 55%, 34%, 1% and 17% of the aminoglycoside resistant isolates, respectively...

  11. Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review

    Directory of Open Access Journals (Sweden)

    Vignal Alain

    2010-04-01

    Full Text Available Abstract Salmonellosis is a frequent disease in poultry stocks, caused by several serotypes of the bacterial species Salmonella enterica and sometimes transmitted to humans through the consumption of contaminated meat or eggs. Symptom-free carriers of the bacteria contribute greatly to the propagation of the disease in poultry stocks. So far, several candidate genes and quantitative trait loci (QTL for resistance to carrier state or to acute disease have been identified using artificial infection of S. enterica serovar Enteritidis or S. enterica serovar Typhimurium strains in diverse genetic backgrounds, with several different infection procedures and phenotypic assessment protocols. This diversity in experimental conditions has led to a complex sum of results, but allows a more complete description of the disease. Comparisons among studies show that genes controlling resistance to Salmonella differ according to the chicken line studied, the trait assessed and the chicken's age. The loci identified are located on 25 of the 38 chicken autosomal chromosomes. Some of these loci are clustered in several genomic regions, indicating the possibility of a common genetic control for different models. In particular, the genomic regions carrying the candidate genes TLR4 and SLC11A1, the Major Histocompatibility Complex (MHC and the QTL SAL1 are interesting for more in-depth studies. This article reviews the main Salmonella infection models and chicken lines studied under a historical perspective and then the candidate genes and QTL identified so far.

  12. Combination of multilocus sequence typing and pulsed-field gel electrophoresis reveals an association of molecular clonality with the emergence of extensive-drug resistance (XDR) in Salmonella.

    Science.gov (United States)

    Cao, Yongzhong; Shen, Yongxiu; Cheng, Lingling; Zhang, Xiaorong; Wang, Chao; Wang, Yan; Zhou, Xiaohui; Chao, Guoxiang; Wu, Yantao

    2018-03-01

    Salmonellae is one of the most important foodborne pathogens and becomes resistant to multiple antibiotics, which represents a significant challenge to food industry and public health. However, a molecular signature that can be used to distinguish antimicrobial resistance profile, particularly multi-drug resistance or extensive-drug resistance (XDR). In the current study, 168 isolates from the chicken and pork production chains and ill chickens were characterized by serotyping, antimicrobial susceptibility test, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The results showed that these isolates belonged to 13 serotypes, 14 multilocus sequence types (STs), 94 PFGE genotypes, and 70 antimicrobial resistant profiles. S. Enteritidis, S. Indiana, and S. Derby were the predominant serotypes, corresponding to the ST11, ST17, and ST40 clones, respectively and the PFGE Cluster A, Cluster E, and Cluster D, respectively. Among the ST11-S. Enteritidis (Cluster A) and the ST40-S. Derby (Cluster D) clones, the majority of isolates were resistant to 4-8 antimicrobial agents, whereas in the ST17S. Indiana (Cluster E) clone, isolates showed extensive-drug resistance (XDR) to 9-16 antimicrobial agents. The bla TEM-1-like gene was prevalent in the ST11 and ST17 clones corresponding to high ampicillin resistance. The bla TEM-1-like , bla CTX-M , bla OXA-1-like , sul1, aaC4, aac(6')-1b, dfrA17, and floR gene complex was highly prevalent among isolates of ST17, corresponding to an XDR phenotype. These results demonstrated the association of the resistant phenotypes and genotypes with ST clone and PFGE cluster. Our results also indicated that the newly identified gene complex comprising bla TEM-1-like , bla CTX-M , bla OXA-1-like , sul1, aaC4, aac(6')-1b, dfrA17, and floR, was responsible for the emergence of the ST17S. Indiana XDR clone. ST17 could be potentially used as a molecular signature to distinguish S. Indiana XDR clone. Copyright © 2017

  13. Emerging nalidixic acid and ciprofloxacin resistance in non-typhoidal Salmonella isolated from patients having acute diarrhoeal disease

    International Nuclear Information System (INIS)

    Panhotra, B.R.; Saxena, A.K.; Al-Arabi, Ali M.

    2004-01-01

    Non-typhoidal Salmonella are one of the key etiological agents of diarrhoeal disease. The appearence of multiple drung resistance along with resistance to quinolones in this bacterium poses a serious therapeutic problem. We determined the prevalence of nalidixic acid and ciprofloxacin resistance in non-typhodial Salmonella isolated from faecal samples of patients with acute diarroheal disease attending the outpatient and inpatient department of a hospital in Saudi Arabia during the years 1999 to 2002. Non-typhodial Salmonella were isolated from faecal samples. Antimicrobial susceptibility was tested by the disc diffusion test. MICs to nalidixic acid and ciprofloxacinwere determined by the agar dilution method. During the study period , 524 strains of non-typhoidal Salmonella were isolated. Strains belonging to serogroup C1were the commonest (41.4%) followed by serogroups B and D (15.6% and 14.5%, respectively). Resistance to ampicillin was observed in 22.9% and to trimethoprim/sulphamethoxazole in 18.5%of the strains. Nalidixic acid resistance was encounterd in 9.9% and ciprofloxacin esistance in 2.3% of the strains. Resistance to nalidixic acid significantly increased from 0.1% in 1999 to 5.51% in 2002 ( p=0.0007)and ciprofloxacin resistance increased significantly from 0.1% in 1999 to 0.9% in 2002( p=0.0001). MICs to nalidixic acid and ciprofloxacin were determined among 29 nalidixic acid-resistant strains of non-typhoidal salmonella isolated during 2002. The MIC was >256 ug /ml to nalidixic acid and 8 to 16 ug/ml to ciprofloxacin. The increasing rate of antimicrobial resistance encountered among non-tyophoidal Salmonella necessiate the judicious use of these drugs in humans. Moreover, these findings support the concern that the use of quinolones in animal feed may lead to an increasein resistance and should should be restricted. (author)

  14. Identification of a Plasmid-Mediated Quinolone Resistance Gene in Salmonella Isolates from Texas Dairy Farm Environmental Samples.

    Science.gov (United States)

    Cummings, K J; Rodriguez-Rivera, L D; Norman, K N; Ohta, N; Scott, H M

    2017-06-01

    A recent increase in plasmid-mediated quinolone resistance (PMQR) has been detected among Salmonella isolated from humans in the United States, and it is necessary to determine the sources of human infection. We had previously isolated Salmonella from dairy farm environmental samples collected in Texas, and isolates were tested for anti-microbial susceptibility. Two isolates, serotyped as Salmonella Muenster, showed the discordant pattern of nalidixic acid susceptibility and intermediate susceptibility to ciprofloxacin. For this project, whole-genome sequencing of both isolates was performed to detect genes associated with quinolone resistance. The plasmid-mediated qnrB19 gene and IncR plasmid type were identified in both isolates. To our knowledge, this is the first report of PMQR in Salmonella isolated from food animals or agricultural environments in the United States. © 2016 Blackwell Verlag GmbH.

  15. Presentation of life-threatening invasive nontyphoidal Salmonella disease in Malawian children: A prospective observational study.

    Science.gov (United States)

    MacLennan, Calman A; Msefula, Chisomo L; Gondwe, Esther N; Gilchrist, James J; Pensulo, Paul; Mandala, Wilson L; Mwimaniwa, Grace; Banda, Meraby; Kenny, Julia; Wilson, Lorna K; Phiri, Amos; MacLennan, Jenny M; Molyneux, Elizabeth M; Molyneux, Malcolm E; Graham, Stephen M

    2017-12-01

    Nontyphoidal Salmonellae commonly cause invasive disease in African children that is often fatal. The clinical diagnosis of these infections is hampered by the absence of a clear clinical syndrome. Drug resistance means that empirical antibiotic therapy is often ineffective and currently no vaccine is available. The study objective was to identify risk factors for mortality among children presenting to hospital with invasive Salmonella disease in Africa. We conducted a prospective study enrolling consecutive children with microbiologically-confirmed invasive Salmonella disease admitted to Queen Elizabeth Central Hospital, Blantyre, in 2006. Data on clinical presentation, co-morbidities and outcome were used to identify children at risk of inpatient mortality through logistic-regression modeling. Over one calendar year, 263 consecutive children presented with invasive Salmonella disease. Median age was 16 months (range 0-15 years) and 52/256 children (20%; 95%CI 15-25%) died. Nontyphoidal serovars caused 248/263 (94%) of cases. 211/259 (81%) of isolates were multi-drug resistant. 251/263 children presented with bacteremia, 6 with meningitis and 6 with both. Respiratory symptoms were present in 184/240 (77%; 95%CI 71-82%), 123/240 (51%; 95%CI 45-58%) had gastrointestinal symptoms and 101/240 (42%; 95%CI 36-49%) had an overlapping clinical syndrome. Presentation at Salmonella disease in Malawi is characterized by high mortality and prevalence of multi-drug resistant isolates, along with non-specific presentation. Young infants, children with dyspnea and HIV-infected children bear a disproportionate burden of the Salmonella-associated mortality in Malawi. Strategies to improve prevention, diagnosis and management of invasive Salmonella disease should be targeted at these children.

  16. Frequency Of Isolation Of Salmonella From Commercial Poultry Feeds And Their Anti-Microbial Resistance Profiles, Imo State, Nigeria

    OpenAIRE

    Okoli IC; Ndujihe GE; Ogbuewu IP

    2006-01-01

    This study was conducted to determine the frequency of isolation of salmonella and their microbial resistance profiles across different commercial poultry feeds sold in Imo State, Nigeria. Thirty-six bulk feed samples were colleted from 154 bag across different feed types and brands which included Guinea (GF), Top (TF), Vital (VF), Extra (EF), Animal care (AF) and livestock (LF) feeds. The salmonella isolated were tested against 14 anti-microbial drugs using the disc diffusion method. Bacteri...

  17. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.

    Science.gov (United States)

    Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R

    2017-01-01

    Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in

  18. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Maria Hoffmann

    2017-08-01

    Full Text Available Determinants of multidrug resistance (MDR are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI, and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about

  19. Antimicrobial resistance in Salmonella enterica subsp. enterica serovar typhimurium from humans and production animals

    DEFF Research Database (Denmark)

    Seyfarth, Anne Mette; Wegener, Henrik Caspar; FrimodtMoller, N.

    1997-01-01

    : Poultry strains were usually resistant only to ampicillin, white pig and cattle isolates were most often resistant to sulphonamide, tetracycline and streptomycin. Typing of the strains showed that some animal strains and human strains were indistinguishable. In conclusion, while antimicrobial resistance......We have studied the frequency of antimicrobial resistance and epidemiological relatedness among 473 isolates of Salmonella enterica subsp, enterica serovar typhimurium (S. typhimurium) from human and veterinary sources. The human strains were clinical isolates from patients with diarrhoea sent...... to the State Serum Institute during August 1993 (228 isolates). The animal strains were isolated from clinical or subclinical infections in cattle (48 isolates), pigs (99 isolates) or poultry (98 isolates), all from 1993. All strains were tested against 22 different antimicrobial agents used in both human...

  20. Increase in resistance to extended-spectrum cephalosporins in Salmonella isolated from retail chicken products in Japan.

    Science.gov (United States)

    Noda, Tamie; Murakami, Koichi; Etoh, Yoshiki; Okamoto, Fuyuki; Yatsuyanagi, Jun; Sera, Nobuyuki; Furuta, Munenori; Onozuka, Daisuke; Oda, Takahiro; Asai, Tetsuo; Fujimoto, Shuji

    2015-01-01

    Extended-spectrum β-lactamase (ESBL)-producing Salmonella are one of the most important public health problems in developed countries. ESBL-producing Salmonella strains have been isolated from humans in Asian countries neighboring Japan, along with strains harboring the plasmid-mediated extended-spectrum cephalosporin (ESC)-resistance gene, ampC (pAmpC). However, only a few studies have investigated the prevalence of ESC-resistant Salmonella in chicken products in Japan, which are the main vehicle of Salmonella transmission. The aim of this study was to investigate the prevalence of ESBL-producing, pAmpC-harboring, or carbapenem-resistant Salmonella in chicken products in Japan. In total, 355 out of 779 (45.6%) chicken product samples collected from 1996-2010 contained Salmonella, resulting in 378 distinct isolates. Of these isolates, 373 were tested for resistance to ESCs, cephamycins, or carbapenems. Isolates that showed resistance to one or more of these antimicrobials were then examined by PCR and DNA sequence analysis for the presence of the bla(CMY), bla(CTX-M), bla(TEM), and bla(SHV) resistance genes. Thirty-five resistant isolates were detected, including 26 isolates that contained pAmpC (bla(CMY-2)), and nine ESBL-producing isolates harboring bla(CTX-M) (n = 4, consisting of two bla(CTX-M-2) and two bla(CTX-M-15 genes)), bla(TEM) (n = 4, consisting of one bla(TEM-20) and three bla(TEM-52) genes), and bla(SHV) (n = 1, bla(SHV-12)). All pAmpC-harboring and ESBL-producing Salmonella isolates were obtained from samples collected after 2005, and the percentage of resistant isolates increased significantly from 0% in 2004 to 27.9% in 2010 (P for trend = 0.006). This increase was caused in part by an increase in the number of Salmonella enterica subsp. enterica serovar Infantis strains harboring an approximately 280-kb plasmid containing bla(CMY-2) in proximity to ISEcp1. The dissemination of ESC-resistant Salmonella containing plasmid-mediated bla(CMY-2) in

  1. Increase in resistance to extended-spectrum cephalosporins in Salmonella isolated from retail chicken products in Japan.

    Directory of Open Access Journals (Sweden)

    Tamie Noda

    Full Text Available Extended-spectrum β-lactamase (ESBL-producing Salmonella are one of the most important public health problems in developed countries. ESBL-producing Salmonella strains have been isolated from humans in Asian countries neighboring Japan, along with strains harboring the plasmid-mediated extended-spectrum cephalosporin (ESC-resistance gene, ampC (pAmpC. However, only a few studies have investigated the prevalence of ESC-resistant Salmonella in chicken products in Japan, which are the main vehicle of Salmonella transmission. The aim of this study was to investigate the prevalence of ESBL-producing, pAmpC-harboring, or carbapenem-resistant Salmonella in chicken products in Japan. In total, 355 out of 779 (45.6% chicken product samples collected from 1996-2010 contained Salmonella, resulting in 378 distinct isolates. Of these isolates, 373 were tested for resistance to ESCs, cephamycins, or carbapenems. Isolates that showed resistance to one or more of these antimicrobials were then examined by PCR and DNA sequence analysis for the presence of the bla(CMY, bla(CTX-M, bla(TEM, and bla(SHV resistance genes. Thirty-five resistant isolates were detected, including 26 isolates that contained pAmpC (bla(CMY-2, and nine ESBL-producing isolates harboring bla(CTX-M (n = 4, consisting of two bla(CTX-M-2 and two bla(CTX-M-15 genes, bla(TEM (n = 4, consisting of one bla(TEM-20 and three bla(TEM-52 genes, and bla(SHV (n = 1, bla(SHV-12. All pAmpC-harboring and ESBL-producing Salmonella isolates were obtained from samples collected after 2005, and the percentage of resistant isolates increased significantly from 0% in 2004 to 27.9% in 2010 (P for trend = 0.006. This increase was caused in part by an increase in the number of Salmonella enterica subsp. enterica serovar Infantis strains harboring an approximately 280-kb plasmid containing bla(CMY-2 in proximity to ISEcp1. The dissemination of ESC-resistant Salmonella containing plasmid-mediated bla(CMY-2 in chicken

  2. Third-Generation Cephalosporin-Resistant Non-Typhoidal Salmonella Isolated from Human Feces in Japan.

    Science.gov (United States)

    Saito, Satomi; Koori, Yoshio; Ohsaki, Yusuke; Osaka, Shunsuke; Oana, Kozue; Nagano, Yukiko; Arakawa, Yoshichika; Nagano, Noriyuki

    2017-05-24

    β-lactamase genes were detected and characterized from 10 non-typhoidal Salmonella (NTS) clinical isolates resistant to third-generation cephalosporins collected between 2012 and 2014 in Japan. Five strains showed cefotaxime minimum inhibitory concentration (MIC) ≥ 64 μg/ml and positive clavulanic acid inhibition results. The bla CTX-M-2 was detected in 3 strains (serotypes Stanley and Muenchen), whereas bla TEM-52 (serotype Manhattan) and bla SHV-12 (serotype Infantis) were each found in 1 strain. bla CMY-2 was detected in the remaining 5 strains (serotypes Infantis, Rissen, Newport, and Saintpaul) with cefotaxime MICs of 4-32 μg/ml and positive cloxacillin- and 3-aminophenylboronic acid- based inhibition tests. ISEcp1 was located upstream of the bla CMY-2 in 4 strains and of the bla CTX-M-2 in 1 strain. Incompatibility (Inc)A/C, IncP, and IncI1 plasmids were present in the strains harboring bla CMY-2 , which were detected predominantly in this study. Acquisition of resistance to third-generation cephalosporins by invasive NTS may limit therapeutic options for severe systemic infections and causing serious public health problems. Though such resistant clinical isolates are still rare in Salmonella species in Japan, our findings reveal the presence of cephem-resistant NTS in food handlers, thus emphasizing the necessity of more systematic nationwide investigations.

  3. Identification and characterization of multidrug-resistant Salmonella enterica serotype Albert isolates in the United States.

    Science.gov (United States)

    Folster, Jason P; Campbell, Davina; Grass, Julian; Brown, Allison C; Bicknese, Amelia; Tolar, Beth; Joseph, Lavin A; Plumblee, Jodie R; Walker, Carrie; Fedorka-Cray, Paula J; Whichard, Jean M

    2015-05-01

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Emergence of Ciprofloxacin-Resistant Salmonella enterica Serovar Typhi in Italy.

    Directory of Open Access Journals (Sweden)

    Aurora García-Fernández

    Full Text Available In developed countries, typhoid fever is often associated with persons who travel to endemic areas or immigrate from them. Typhoid fever is a systemic infection caused by Salmonella enterica serovar Typhi. Because of the emergence of antimicrobial resistance to standard first-line drugs, fluoroquinolones are the drugs of choice. Resistance to ciprofloxacin by this Salmonella serovar represents an emerging public health issue. Two S. enterica ser. Typhi strains resistant to ciprofloxacin (CIP were reported to the Italian surveillance system for foodborne and waterborne diseases (EnterNet-Italia in 2013. The strains were isolated from two Italian tourists upon their arrival from India. A retrospective analysis of 17 other S. enterica ser. Typhi strains isolated in Italy during 2011-2013 was performed to determine their resistance to CIP. For this purpose, we assayed for susceptibility to antimicrobial agents and conducted PCR and nucleotide sequence analyses. Moreover, all strains were typed using pulsed-field gel electrophoresis to evaluate possible clonal relationships. Sixty-eight percent of the S. enterica ser. Typhi strains were resistant to CIP (MICs, 0.125-16 mg/L, and all isolates were negative for determinants of plasmid-mediated quinolone resistance. Analysis of sequences encoding DNA gyrase and topoisomerase IV subunits revealed mutations in gyrA, gyrB, and parC. Thirteen different clonal groups were detected, and the two CIP-resistant strains isolated from the individuals who visited India exhibited the same PFGE pattern. Because of these findings, the emergence of CIP-resistant S. enterica ser. Typhi isolates in Italy deserves attention, and monitoring antibiotic susceptibility is important for efficiently managing cases of typhoid fever.

  5. Study of the role of efflux pump in ciprofloxacin resistance in Salmonella enterica serotype Typhi

    Directory of Open Access Journals (Sweden)

    V Sharma

    2013-01-01

    Full Text Available Purpose: There are increasing reports on failure of clinical response to ciprofloxacin in typhoid fever despite the strain being sensitive to drug in in-vitro using standard guidelines and showing mutations in DNA gyrase. But this increased MIC and clinical failures with ciprofloxacin are not always co-related with mutations presently identified in gyrA and parC genes. This shows that there may be other mechanisms such as an active drug efflux pump responsible as has been shown in other Enterobacteriaceae. This study was carried out to determine the role of efflux pump in Salmonella Typhi isolates. Materials and Methods : Total 25 already characterized nalidixic acid sensitive and nalidixic acid resistant S. Typhi strains with different range of ciprofloxacin MIC were included to study the role of efflux pump in the presence of CCCP (efflux pump inhibitor. For genotypic characterization, the entire acrR gene was sequenced to confirm the presence of any mutation in the gene. Results: The MIC of ciprofloxacin remained same in the presence and absence of CCCP in the studied strains and no significant mutations were found in the acrR gene in any of the isolates studied. Conclusions: No role of efflux pump in ciprofloxacin resistance was found in strains studied. There is a need to explore further mechanism of ciprofloxacin resistance in Salmonella Typhi.

  6. International spread of multidrug-resistant Salmonella Schwarzengrund in food products

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hendriksen, Rene S.; Lockett, Jana

    2007-01-01

    We compared 581 Salmonella enterica serotype Schwarzengrund isolates from persons, food, and food animals in Denmark, Thailand, and the United States by antimicrobial drug susceptibility and pulsed-field gel electrophoresis (PFGE) typing. Resistance, including resistance to nalidixic acid......, was frequent among isolates from persons and chickens in Thailand, persons in the United States, and food imported from Thailand to Denmark and the United States. A total of 183 PFGE patterns were observed, and 136 (23.4%) isolates had the 3 most common patterns. Seven of 14 isolates from persons in Denmark...... had patterns found in persons and chicken meat in Thailand; 22 of 390 human isolates from the United States had patterns found in Denmark and Thailand. This study suggests spread of multidrug-resistant S. Schwarzengrund from chickens to persons in Thailand, and from imported Thai food products...

  7. Tetracycline consumption and occurrence of tetracycline resistance in Salmonella typhimurium phage types from Danish pigs

    DEFF Research Database (Denmark)

    Emborg, Hanne-Dorthe; Vigre, Håkan; Jensen, Vibeke Frøkjær

    2007-01-01

    more than doubled at the national level from 12,000-13,000 kg of active compound in 1996-1998 to 29,000 kg of active compound in 2004. Instead, tetracycline-resistant S. Typhimurium phage types became more prevalent. This suggests that the spread of already established or new resistant clones, rather......The aims of the present study were to investigate at the farm-owner level the effect of prescribed tetracycline consumption in pigs and different Salmonella Typhimurium phage types on the probability that the S. Typhimurium was resistant to tetracycline. In this study, 1,307 isolates were included......, originating from 877 farm owners, and data were analyzed using logistic regression. The analysis showed that both the S. Typhimurium phage type (p type...

  8. Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104

    DEFF Research Database (Denmark)

    Sandvang, Dorthe; Aarestrup, Frank Møller; Jensen, Lars Bogø

    1997-01-01

    The presence and genetic content of integrons was investigated in eight Salmonella enterica Typhimurium DT104 isolates from different pig herds in Denmark. Two different integrons were identified using PCR and sequencing. Each of the integrons carried a single resistance cassette in addition...... to the sul1 and qacE Delta 1 genes characteristic of integrons. The first integron encoded the ant (3 ")-Ia gene that specified resistance to spectinomycin and streptomycin. The second contained the pse-l beta-lactamase gene. All the multiresistant strains contained both integrons. The presence of these two...... integrons did not account for the total phenotypic resistance of all the isolates and does not exclude the presence of other mobile DNA elements....

  9. Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104

    DEFF Research Database (Denmark)

    Sandvang, Dorthe; Aarestrup, Frank Møller; Jensen, Lars Bogø

    1998-01-01

    The presence and genetic content of integrons was investigated in eight Salmonella enteritica Typhimurium DT104 isolates from different pig herds in Denmark. Two different integrons were identified using PCR and sequencing. Each of the integrons carried a single resistance cassette in addition...... to the sul1 and qacE Delta 1 genes characteristic of integrons. The first integron encoded the ant (3")-Ia gene that specified resistance to spectinomycin and streptomycin. The second contained the pse-1 beta-lactamase gene. All the multiresistant strains contained both integrons. The presence of these two...... integrons did not account for the total phenotypic resistance of all the isolates and does not exclude the presence of other mobile DNA elements....

  10. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar

    2015-01-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim...... of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug......-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874...

  11. CRISPR Typing and Antibiotic Resistance Correlates with Polyphyletic Distribution in Human Isolates of Salmonella Kentucky.

    Science.gov (United States)

    Vosik, Dorothy; Tewari, Deepanker; Dettinger, Lisa; M'ikanatha, Nkuchia M; Shariat, Nikki W

    2018-02-01

    Although infrequently associated with reported salmonellosis in humans, Salmonella enterica, subsp. enterica serovar Kentucky (ser. Kentucky) is the most common nonclinical, nonhuman serovar reported in the United States. The goal of this study was to use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-multi-virulence-locus sequence typing (MVLST) to subtype a collection of human clinical isolates of ser. Kentucky submitted to the Pennsylvania Department of Health and to determine the extent of antibiotic resistance in these strains. This analysis highlighted the polyphyletic nature of ser. Kentucky, and separated our isolates into two groups, Group I and Group II, which were equally represented in our collection. Furthermore, antimicrobial susceptibility testing on all isolates using a National Antimicrobial Resistance Monitoring System (NARMS) panel of antibiotics demonstrated that resistance profiles could be divided into two groups. Group I isolates were resistant to cephems and penicillins, whereas Group II isolates were resistant to quinolones, gentamicin, and sulfisoxazole. Collectively, 50% of isolates were resistant to three or more classes of antibiotics and 30% were resistant to five or more classes. The correlation of antibiotic resistance with the two different lineages may reflect adaptation within two distinct reservoirs of ser. Kentucky, with differential exposure to antimicrobials.

  12. Diversity and Antimicrobial Resistance Genotypes in Non-Typhoidal Salmonella Isolates from Poultry Farms in Uganda

    Directory of Open Access Journals (Sweden)

    Terence Odoch

    2018-02-01

    Full Text Available Non-typhoidal Salmonella (NTS are foodborne pathogens of global public health significance. The aim of this study was to subtype a collection of 85 NTS originating from poultry farms in Uganda, and to evaluate a subgroup of phenotypically resistant isolates for common antimicrobial resistance genes and associated integrons. All isolates were subtyped by pulsed-field gel electrophoresis (PFGE. Phenotypically resistant isolates (n = 54 were screened by PCR for the most relevant AMR genes corresponding to their phenotypic resistance pattern, and all 54 isolates were screened by PCR for the presence of integron class 1 and 2 encoding genes. These genes are known to commonly encode resistance to ampicillin, tetracycline, ciprofloxacin, trimethoprim, sulfonamide and chloramphenicol. PFGE revealed 15 pulsotypes representing 11 serotypes from 75 isolates, as 10 were non-typable. Thirty one (57.4% of the 54 resistant isolates carried at least one of the seven genes (blaTEM-1, cmlA, tetA, qnrS, sul1, dhfrI, dhfrVII identified by PCR and six (11% carried class 1 integrons. This study has shown that a diversity of NTS-clones are present in Ugandan poultry farm settings, while at the same time similar NTS-clones occur in different farms and areas. The presence of resistance genes to important antimicrobials used in human and veterinary medicine has been demonstrated, hence the need to strengthen strategies to combat antimicrobial resistance at all levels.

  13. The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain

    Directory of Open Access Journals (Sweden)

    Simon eLe Hello

    2013-12-01

    Full Text Available While the spread of Salmonella enterica serotype Kentucky resistant to ciprofloxacin across Africa and the Middle-East has been described recently, the presence of this strain in humans, food, various animal species (livestock, pets, and wildlife and in environment is suspected in other countries of different continents. Here, we report results of an in-depth molecular epidemiological study on a global human and non-human collection of S. Kentucky (n=70.We performed XbaI-pulsed field gel electrophoresis and multilocus sequence typing, assessed mutations in the quinolone resistance-determining regions, detected β-lactam resistance mechanisms, and screened the presence of the Salmonella genomic island 1 (SGI1. In this study, we highlight the rapid and extensive worldwide dissemination of the ciprofloxacin-resistant S. Kentucky ST198-X1-SGI1 strain since the mid-2000s in an increasingly large number of contaminated sources, including the environment. This strain has accumulated an increasing number of chromosomal and plasmid resistance determinants and has been identified in the Indian subcontinent, Southeast Asia and Europe since 2010. The second substitution at position 87 in GyrA (replacing the amino acid Asp appeared helpful for epidemiological studies to track the origin of contamination.This global study provides evidence leading to the conclusion that high-level resistance to ciprofloxacin in S. Kentucky is a simple microbiological trait that facilitates the identification of the epidemic clone of interest, ST198-X1-SGI1. Taking this into account is essential in order to detect and monitor it easily and to take rapid measures in livestock to ensure control of this infection.

  14. Antibiotic Resistance Pattern and Biofilm Formation Ability of Clinically Isolates of Salmonella enterica Serotype typhimurium

    Directory of Open Access Journals (Sweden)

    Hadi Ghasemmahdi

    2015-05-01

    Full Text Available Background: The emergence of antimicrobial-resistant bacteria with biofilm formation ability may be a major threat to public health and food safety and sanitation. Objectives: The aim of this study was to determine antibiotic resistance patterns and biofilm production characteristics of Salmonella typhimurium isolated from different species of birds. Materials and Methods: The antibiotic resistance patterns of 38 pre-identified isolates were screened by standard Kirby-Bauer disc-diffusion method performed on Mueller–Hinton agar to a panel of 17 antibiotics. The extent of biofilm formation was measured by Microtiter plate (MTP-based systems. Results: The highest antimicrobial resistance was detected against nalidixic acid (97%, followed by doxycycline (86%, colistin (84%, streptomycin (84% and tetracycline (84%. All isolates were sensitive to amikacin (100% and 97% and 95% of the isolates were sensitive to ceftazidime and ceftriaxone, respectively. Twenty one different antibiotic resistance patterns were observed among S. typhimurium isolates. According to the results of the microtitre plate biofilm assay, there was a wide variation in biofilm forming ability among S. typhimurium isolates. Most of the isolates (60.52% were not capable of producing biofilm, while 26.31%, 7.89%, and 5.26% isolates were weak, strong and moderate biofilm producers, respectively. Conclusions: It was concluded that nearly all S. typhimurium isolates revealed a high multiple antibiotic resistant with low biofilm forming capabilities which proposed low association between biofilm formation and antibiotic resistance of a major food important pathogen.

  15. Antimicrobial sensitivity pattern of Salmonella: comparison of isolates from HIV-infected and HIV-uninfected patients.

    Science.gov (United States)

    Wolday, D; Erge, W

    1998-07-01

    A retrospective analysis of all cases of Salmonella infections occurring between 1991 and 1995 was undertaken in order to evaluate the antimicrobial sensitivity pattern of the isolates from both human immunodeficiency virus (HIV) infected and uninfected Ethiopian patients. During the 5-year study period, we identified 147 cases of Salmonella infections. Only in 49 cases was the HIV serostatus known; 22 (44.9%) of the infections were in HIV seronegative patients while 27 (55.9%) were in HIV seropositive patients. The strains were isolated from blood (71.4%), urine (18.4%) and stool (8.2%). Salmonella infection was found to be more frequent (55.15% versus 44.9%) among HIV positive than HIV-negative patients. Moreover, Salmonella isolates recovered from HIV-seropositive patients were significantly resistant to many of the antibiotics tested when compared to the isolates from HIV-seronegative patients. The only chloramphenicol resistant Salmonella typhi occurred in a patient who was seropositive for HIV. According to these results, Ethiopian patients infected with HIV may be at risk of acquiring infections, especially non-typhoidal salmonellas, that are multi-drug resistant (MDR) strains than HIV-uninfected subjects. The emergence of MDR Salmonella infection among HIV-positive patients requires reassessment of chemotherapeutic approaches in this patient population, and warrants continued laboratory surveillance.

  16. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa.

    Science.gov (United States)

    Pang, X Y; Yang, Y S; Yuk, H G

    2017-09-01

    This study aimed to evaluate the biofilm formation and disinfectant resistance of Salmonella cells in mono- and dual-species biofilms with Pseudomonas aeruginosa, and to investigate the role of extracellular polymeric substances (EPS) in the protection of biofilms against disinfection treatment. The populations of Salmonella in mono- or dual-species biofilms with P. aeruginosa on stainless steel (SS) coupons were determined before and after exposure to commercial disinfectant, 50 μg ml -1 chlorine or 200 μg ml -1 Ecolab ® Whisper™ V (a blend of four effective quaternary ammonium compounds (QAC)). In addition, EPS amount from biofilms was quantified and biofilm structures were observed using scanning electron microscopy (SEM). Antagonistic interactions between Salmonella and P. aeruginosa resulted in lower planktonic population level of Salmonella, and lower density in dual-species biofilms compared to mono-species biofilms. The presence of P. aeruginosa significantly enhanced disinfectant resistance of S. Typhimurium and S. Enteritidis biofilm cells for 2 days, and led to an average of 50% increase in polysaccharides amount in dual-species biofilms than mono-species biofilms of Salmonella. Microscopy observation showed the presence of large microcolonies covered by EPS in dual-species biofilms but not in mono-species ones. The presence of P. aeruginosa in dual-species culture inhibited the growth of Salmonella cells in planktonic phase and in biofilms, but protected Salmonella cells in biofilms from disinfection treatment, by providing more production of EPS in dual-species biofilms than mono-species ones. This study provides insights into inter-species interaction, with regard to biofilm population dynamics and disinfectant resistance. Thus, a sanitation protocol should be designed considering the protective role of secondary species to pathogens in biofilms on SS surface which has been widely used at food surfaces and manufacturers. © 2017 The Society

  17. Antimicrobial resistance patterns of bovine Salmonella enterica isolates submitted to the Wisconsin Veterinary Diagnostic Laboratory: 2006-2015.

    Science.gov (United States)

    Valenzuela, J R; Sethi, A K; Aulik, N A; Poulsen, K P

    2017-02-01

    Salmonellosis on the dairy continues to have a significant effect on animal health and productivity and in the United States. Additionally, Salmonella enterica ssp. enterica causes an estimated 1.2 million cases of human illness annually. Contributing to the morbidity and mortality in both human and domestic animal species is emergence of antimicrobial resistance by Salmonella species and increased incidence of multidrug-resistant isolates. This study describes serotype distribution and the antimicrobial resistance patterns for various Salmonella serotypes isolated from bovine samples submitted to the Wisconsin Veterinary Diagnostic Laboratory (WVDL) over the past 10 yr. Salmonella serotyping and antimicrobial susceptibility testing data were obtained from the laboratory information management system at WVDL. Data from accessions were limited to bovine samples submitted to the WVDL between January 2006 and June 2015 and those that had both a definitive serotype and complete results for antimicrobial susceptibility testing. A total of 4,976 isolates were identified. Salmonella enterica ser. Dublin was the most prevalent serotype identified among bovine samples submitted to the WVDL, accounting for a total of 1,153 isolates (23% of total isolates) over the study period. Along with Dublin, Salmonella enterica ser. Cerro (795, 16%), Newport (720, 14%), Montevideo (421, 8%), Kentucky (419, 8%), and Typhimurium (202, 4%) comprised the top 6 most commonly isolated serotypes during that time. Overall, resistance of bovine Salmonella isolates in the study population remained stable, although decreases in resistance were noted for gentamicin, neomycin, and trimethoprim sulfamethoxazole during the study period. All isolates remained susceptible to enrofloxacin. These data show that antimicrobial susceptibility for bovine Salmonella has changed in the population served by WVDL in the past 10 yr. This information is important for understanding Salmonella disease ecology in

  18. Distribution of extended-spectrum cephalosporin resistance determinants in Salmonella enterica and Escherichia coli isolated from broilers in southern Japan.

    Science.gov (United States)

    Shahada, F; Chuma, T; Kosugi, G; Kusumoto, M; Iwata, T; Akiba, M

    2013-06-01

    This study was conducted to investigate the distribution and diversity of extended-spectrum cephalosporin (ESC) resistance determinants in Salmonella enterica and Escherichia coli obtained from the same cecal samples and to provide evidence of transmission of the resistance determinants among these bacteria in broiler farms in southern Japan. Salmonella enterica and E. coli were characterized by serotyping and multilocus sequence typing, respectively. An antimicrobial susceptibility test, plasmid analysis, and identification and localization of resistance genes were performed to determine the relatedness of ESC resistance determinants among the isolates. Of 48 flocks examined, 14 had S. enterica. In total, 57 S. enterica isolates were obtained, 45 of which showed ESC resistance. Extended-spectrum cephalosporin-resistant E. coli were also obtained from all of these ESC-resistant Salmonella-positive samples. β-Lactamase genes, blaTEM-52 (38 isolates), blaCTX-M-14 (1 isolate), and blaCMY-2 (6 isolates), were carried by conjugative untypable or IncP plasmids detected in the S. enterica serovars Infantis and Manhattan. The β-lactamase genes blaCTX-M-14 (3 isolates), blaCTX-M-15 (3 isolates), blaSHV-2 (1 isolate), blaSHV-12 (2 isolates), and blaCMY-2 (32 isolates) associated with IncI1-Iγ, IncFIB, IncFIC, IncK, IncB/O, and IncY plasmids were detected in E. coli co-isolates. Restriction mapping revealed similar plasmids in Salmonella Infantis and Salmonella Manhattan and in different sequence types of E. coli. Intraspecies transmission of plasmids was suggested within S. enterica and E. coli populations, whereas interspecies transmission was not observed. This study highlights the importance of plasmids as carriers of ESC resistance determinants.

  19. Antimicrobial Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism of Reduced Susceptibility to the Fluoroquinolones▿

    OpenAIRE

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M.; Van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; Van Vinh Chau, Nguyen; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R. Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Bhattacharya, Sujit K.

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar Typhi strains collected in southern Vietnam, the proportion of multidrug resistance has remained high since 1993 (50% in 2004) and there was a dramatic increase in nalidixic acid resistance between ...

  20. Antimicrobial resistance of fecal Salmonella spp. isolated from all phases of pig production in 20 herds in Alberta and Saskatchewan

    OpenAIRE

    Rosengren, Leigh B.; Waldner, Cheryl L.; Reid‐Smith, Richard J.; Checkley, Sylvia L.; McFall, Margaret E.; Rajíc, Andrijana

    2008-01-01

    Salmonella spp. (n = 468), isolated from the feces of sows, nursery, and grow‐finish pigs in 20 farrow‐to‐finish herds in Alberta and Saskatchewan, were tested for susceptibility to 16 antimicrobials. No resistance was identified to amikacin, amoxicillin‐clavulanic acid, ceftiofur, ceftriaxone, ciprofloxacin or nalidixic acid, and less than 1% of the isolates were resistant to cefoxitin and gentamicin. Isolates were most commonly resistant to tetracycline (35%) and sulfamethoxazole (27%). Ove...

  1. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    Directory of Open Access Journals (Sweden)

    Sylvie eBaucheron

    2014-01-01

    Full Text Available Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e. in gyrA, gyrB, or parC correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.

  2. CRISPRs: Molecular Markers for Tracking Antibiotic Resistant Strains of Salmonella Enterica

    Science.gov (United States)

    2014-01-01

    15.4 Sulfonamides 29.2 5.7 21.6 24.6 10.9 15.8 15.4 Trimethoprim 6.8 5 14.3 10.7 5.6 11.1 7.7 Gentamicin 4.8 7.5 7.1 4.6 2.8 4.8 7.7 Kanamycin 1.7 2.6...Historically, ampicillin and trimethoprim -sulfa have been used to treat salmonellosis. The latest NARMS Salmonella data extend through isolates analyzed... determinants that encode for resistance to widely used antibiotics (e.g. sulfonamide and tetracyclines). Historical data show that resistance to the older

  3. Development of a real-time PCR melt curve assay for simultaneous detection of virulent and antibiotic resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2014-12-01

    Multiple drug resistance in Salmonella is an emerging problem in the area of food safety. Depending on the virulence and antibiotic resistance characteristics of the Salmonella strain, infections of varying severity could result. In this study, a multiplex melt curve real-time PCR assay for the detection of virulent and antibiotic resistance strains of Salmonella was developed with two primer sets. The first set targets the virulence gene, invasin (invA), and tetracycline (tetG), streptomycin (aadA2) and sulphonamide (sulI) antibiotic resistance genes, and the second set amplifies ampicillin (blaPSE,blaTEM) and chloramphenicol (floR) resistance genes. The multiplex assay was evaluated using 41 Salmonella strains and was further tested on eight different artificially inoculated food samples. The fluorescent DNA intercalating dye, SYTO9, generated high resolution melt curve peaks and, hence, was used for the development of the assay. This multiplex assay worked efficiently over a DNA concentration range of 20 ng-200 fg and showed a sensitivity of 290 CFU/mL with serially diluted broth cultures. The detection limit for un-enriched artificially inoculated food samples was 10(4) CFU/g, but an enrichment period of 6 h allowed for detection of 10 CFU/g of cells in the samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Resistance to antimicrobial agents among Salmonella isolates recovered from layer farms and eggs in the Caribbean region.

    Science.gov (United States)

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-12-01

    This investigation determined the frequency of resistance of 84 isolates of Salmonella comprising 14 serotypes recovered from layer farms in three Caribbean countries (Trinidad and Tobago, Grenada, and St. Lucia) to eight antimicrobial agents, using the disc diffusion method. Resistance among isolates of Salmonella was related to the country of recovery, type of sample, size of layer farms, and isolate serotype. Overall, all (100.0%) of the isolates exhibited resistance to one or more of seven antimicrobial agents tested, and all were susceptible to chloramphenicol. The resistance detected ranged from 11.9% to sulphamethoxazole-trimethoprim (SXT) to 100.0% to erythromycin. The difference was, however, not statistically significant (P = 0.23). Across countries, for types of samples that yielded Salmonella, significant differences in frequency of resistance were detected only to SXT (P = 0.002) in Trinidad and Tobago and to gentamycin (P = 0.027) in St. Lucia. For the three countries, the frequency of resistance to antimicrobial agents was significantly different for ampicillin (P = 0.001) and SXT (P = 0.032). A total of 83 (98.8%) of the 84 isolates exhibited 39 multidrug resistance patterns. Farm size significantly (P = 0.032) affected the frequency of resistance to kanamycin across the countries. Overall, among the 14 serotypes of Salmonella tested, significant (P resistance were detected to kanamycin, ampicillin, and SXT. Results suggest that the relatively high frequency of resistance to six of the antimicrobial agents (erythromycin, streptomycin, gentamycin, kanamycin, ampicillin, and tetracycline) tested and the multidrug resistance detected may pose prophylactic and therapeutic concerns for chicken layer farms in the three countries studied.

  5. Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica.

    Science.gov (United States)

    Neuert, Saskia; Nair, Satheesh; Day, Martin R; Doumith, Michel; Ashton, Philip M; Mellor, Kate C; Jenkins, Claire; Hopkins, Katie L; Woodford, Neil; de Pinna, Elizabeth; Godbole, Gauri; Dallman, Timothy J

    2018-01-01

    Surveillance of antimicrobial resistance (AMR) in non-typhoidal Salmonella enterica (NTS), is essential for monitoring transmission of resistance from the food chain to humans, and for establishing effective treatment protocols. We evaluated the prediction of phenotypic resistance in NTS from genotypic profiles derived from whole genome sequencing (WGS). Genes and chromosomal mutations responsible for phenotypic resistance were sought in WGS data from 3,491 NTS isolates received by Public Health England's Gastrointestinal Bacteria Reference Unit between April 2014 and March 2015. Inferred genotypic AMR profiles were compared with phenotypic susceptibilities determined for fifteen antimicrobials using EUCAST guidelines. Discrepancies between phenotypic and genotypic profiles for one or more antimicrobials were detected for 76 isolates (2.18%) although only 88/52,365 (0.17%) isolate/antimicrobial combinations were discordant. Of the discrepant results, the largest number were associated with streptomycin (67.05%, n = 59). Pan-susceptibility was observed in 2,190 isolates (62.73%). Overall, resistance to tetracyclines was most common (26.27% of isolates, n = 917) followed by sulphonamides (23.72%, n = 828) and ampicillin (21.43%, n = 748). Multidrug resistance (MDR), i.e., resistance to three or more antimicrobial classes, was detected in 848 isolates (24.29%) with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines being the most common MDR profile ( n = 231; 27.24%). For isolates with this profile, all but one were S . Typhimurium and 94.81% ( n = 219) had the resistance determinants bla TEM-1, strA-strB, sul2 and tet (A). Extended-spectrum β-lactamase genes were identified in 41 isolates (1.17%) and multiple mutations in chromosomal genes associated with ciprofloxacin resistance in 82 isolates (2.35%). This study showed that WGS is suitable as a rapid means of determining AMR patterns of NTS for public health surveillance.

  6. Dissemination of Zoonotic Antibiotic Resistant Serotypes of Salmonella by Caspian Pond Turtles, Golestan and Mazandaran Provinces, Iran

    Directory of Open Access Journals (Sweden)

    Somayeh Namroodi

    2017-03-01

    Full Text Available Background: Salmonella spp. are widespread zoonotic pathogens with economic importance for both humans and animals. They are categorized as the natural flora of the gastrointestinal tract of many reptiles. Human salmonellosis acquired from contact with reptiles is a well-recognized medical problem. Objective: The frequency of Salmonella contamination in Caspian pond turtles was surveyed to evaluate the danger of exposure or disease risk for humans as these species are abundant around the villages in Golestan and Mazandaran provinces. Materials and Methods: One hundred fifty fecal samples from Caspian pond turtles were tested by standard bacteriological methods and positive samples were serotyped. Antimicrobial susceptibility tests on isolated Salmonella strains were also performed. Results: Out of 150 samples, 54 turtles were detected to be contaminated with Salmonella. Of the 54 Salmonella isolates, 38.8% (21/54 were serotyped as S. typhimurium; 35.1% (19/54 as S. enterica subsp. enterica; 9.2% (5/54 as S. enterica subsp. salamae; 9.2% (5/54 as S. enterica subsp. arizona; and 7.4% (4/54 as S. enterica subsp. houtenae. Female (28/80, 35% and male (26/74, 35.1% turtles showed equal incidence of Salmonella spp. contamination. Resistance was mostly observed against ampicillin (37% followed by tetracycline (33.3%, nalidixic acid (7.4%, ciprofloxacin (5.5%, and cotrimoxazole (3.7%. The highest susceptibility was observed against gentamicin (100% and trimethoprim (98.1%. Conclusion: Our findings confirmed that people who are in close exposure to Caspian pond turtles and their feces are at the risk of Salmonella contamination. Accordingly, fundamental principles of hygiene should be applied in human contact with Caspian pond turtles. Furthermore, people should be educated about the Salmonella contamination which may occur through Caspian pond turtles.

  7. Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19-mediated quinolone resistance marker in two novel serovars

    DEFF Research Database (Denmark)

    Karczmarczyk, M.; Martins, M.; McCusker, M.

    2010-01-01

    Ninety-three Salmonella isolates recovered from commercial foods and exotic animals in Colombia were studied. The serotypes, resistance profiles and where applicable the quinolone resistance genes were determined. Salmonella Anatum (n=14), Uganda (19), Braenderup (10) and Newport (10) were the most...... plasmids, two of which were completely sequenced. These exhibited 97% (serovar 6,7:d:- isolate) and 100% (serovar Infantis isolate) nucleotide sequence identity with previously identified ColE-like plasmids. This study demonstrates the occurrence of the qnrB19 gene associated with small ColE plasmids...

  8. Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities Prevalencia y resistencia a los antimicrobianos de Salmonella en pollos congelados de venta al por menor en 15 ciudades del Brasil

    Directory of Open Access Journals (Sweden)

    Marcelo Augusto Nunes Medeiros

    2011-12-01

    Full Text Available OBJECTIVE: To describe the prevalence and antimicrobial resistance of Salmonella spp. in frozen chicken carcasses at retail from 15 Brazilian cities. METHODS: A descriptive study of data from the Brazilian National Program for Monitoring the Prevalence of Bacterial Resistance in Chicken (PREBAF was conducted from September 2004 to July 2006. The program collected chicken carcasses in 15 state capitals of Brazil in the five geographic regions of the country. Standardized methodologies were used to isolate Salmonella­spp. and identify serotypes. The minimal inhibitory concentration method was used to test resistance to 18 antimicrobials. RESULTS: In 2 679 carcasses examined, the prevalence of Salmonella spp. was 2.7% (range 0.0%-8.9%. São Paulo State produced 50.6% of positive samples. Eighteen serotypes were identified. The most frequently occurring were Salmonella Enteritidis (48.8%, Salmonella Infantis (7.6%, Salmonella Typhimurium (7.2%, and Salmonella Heidelberg (6.4%. All 250 strains tested were resistant to one or more antibiotics, and 133 (53.2% were multidrug resistant (≥ 3 classes. S. Heidelberg was resistant to ceftriaxone (75.0% and to ceftiofur(43.8%. CONCLUSIONS: The prevalence of Salmonella spp. found in this study was relatively low. However, there were a high proportion of multidrug-resistant strains, including third-generation cephalosporins used to treat invasive salmonellosis. The results confirm the relevanceof the PREBAF program. It is recommended that PREBAF be improved, including a timely data analysis. A review of permitted limits for Salmonella spp. in retail chicken in Brazil is also needed.OBJETIVO: Describir la prevalencia y la resistencia a los antibióticos de Salmonella spp. en canales de pollo congeladas de venta al por menor en 15 ciudades del Brasil. MÉTODOS: Entre septiembre del 2004 y julio del 2006 se llevó a cabo un estudio descriptivo de los datos del Programa Nacional Brasileño de Vigilancia de la

  9. Antimicrobial drug resistance of Salmonella enterica serovar typhi in asia and molecular mechanism of reduced susceptibility to the fluoroquinolones

    NARCIS (Netherlands)

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M.; van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; van Vinh Chau, Nguyen; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R. Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Bhattacharya, Sujit K.; Dutta, Shanta; Agtini, Magdarina; Dong, Baiqing; Honghui, Yang; Anh, Dang Duc; Canh, Do Gia; Naheed, Aliya; Albert, M. John; Phetsouvanh, Rattanaphone; Newton, Paul N.; Basnyat, Buddha; Arjyal, Amit; La, Tran Thi Phi; Rang, Nguyen Ngoc; Phuong, Le Thi; van Be Bay, Phan; von Seidlein, Lorenz; Dougan, Gordon; Clemens, John D.; Vinh, Ha; Hien, Tran Tinh; Chinh, Nguyen Tran; Acosta, Camilo J.; Farrar, Jeremy; Dolecek, Christiane

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar

  10. The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain

    DEFF Research Database (Denmark)

    Le Hello, Simon; Bekhit, Amany; Granier, Sophie A.

    2013-01-01

    While the spread of Salmonella enterica serotype Kentucky resistant to ciprofloxacin across Africa and the Middle-East has been described recently, the presence of this strain in humans, food, various animal species (livestock, pets, and wildlife) and in environment is suspected in other countrie...

  11. Genotypic relatedness and antimicrobial resistance of Salmonella Heidelberg isolated from chickens and turkeys in the midwestern United States.

    Science.gov (United States)

    Nisar, Muhammad; Kassem, Issmat I; Rajashekara, Gireesh; Goyal, Sagar M; Lauer, Dale; Voss, Shauna; Nagaraja, Kakambi V

    2017-05-01

    Salmonella is one of the most common causes of foodborne illnesses in humans in the United States, and domestic poultry is considered an important source of this pathogen. Salmonella enterica subsp. enterica serovar Heidelberg is the fourth most commonly reported Salmonella from retail meats and food animals in the United States. We assessed the genotypes and antimicrobial resistance phenotypes of Salmonella Heidelberg isolated from various chicken and turkey hatcheries and breeder farms in the Midwest. The genotypes of 33 S. Heidelberg isolates from chickens ( n = 19) and turkeys ( n = 14) were compared using pulsed-field gel electrophoresis analysis. Cluster analysis of the fingerprints showed that the majority of the chicken isolates grouped together with 87% similarity; those from turkeys clustered with 88% similarity. Similarity between chicken and turkey isolates was also high (86%). Isolates from turkeys were generally more genetically diverse than those from chickens. Antimicrobial susceptibility analysis detected resistance to sulfisoxazole (36% of the isolates), streptomycin (33%), gentamicin (27%), tetracycline (24%), ampicillin and amoxicillin-clavulanic acid (15%), cefoxitin (12%), ceftriaxone and ceftiofur (12%), and chloramphenicol (9%). None of the isolates was resistant to azithromycin, ciprofloxacin, or nalidixic acid. Although the number of the isolates was limited in our study, we conclude that S. Heidelberg isolates from the same host generally clustered together and that a considerable number of the isolates were resistant to a number of antimicrobial agents.

  12. Resistance phenotypes and genotypes of Salmonella enterica subsp. enterica isolates from feed, pigs, and carcasses in Brazil.

    Science.gov (United States)

    Lopes, Graciela Volz; Pissetti, Caroline; da Cruz Payão Pellegrini, Débora; da Silva, Luis Eduardo; Cardoso, Marisa

    2015-02-01

    Salmonella enterica subsp. enterica plays a role as a foodborne pathogen worldwide. The consumption of contaminated pork has been associated with human salmonellosis and the increase in antimicrobial resistance among Salmonella from pigs and pork products is a concern. A total of 225 Salmonella isolates from feed mills, the lairage environment, and the intestinal contents of pigs and carcasses were investigated for their antimicrobial susceptibility. A MIC for ciprofloxacin was screened by agar dilution, and antimicrobial resistance genes were investigated by PCR assays. Among the tested isolates, 171 (76%) showed resistance to at least one antimicrobial agent, and 91 (40.4%) were multiresistant. Resistance occurred most frequently to tetracycline (54.5%), sulfonamides (39.6%), and streptomycin (33.7%). Thirty-two (94.1%) nalidixic acid-resistant isolates exhibited decreased susceptibility to ciprofloxacin. The resistance genes found were blaTEM (ampicillin), tet(A) (tetracycline), tet(B) (tetracycline/minocycline), sul1, sul2, and sul3 (sulfonamides), catA1 (chloramphenicol), floR (florfenicol/chloramphenicol), strA and strB (streptomycin), aph(3')-Ia (kanamycin), aac(3)-IIa and aac(3)-IVa (apramycin/gentamicin), aadA variant (streptomycin/spectinomycin), and dfrA1 (trimethoprim). Salmonella isolates from pig feces and carcasses displayed a higher frequency of resistance to most antimicrobials tested than isolates from feed mills. Common resistance gene profiles were found in isolates from the lairage and the intestinal content of pigs and carcasses, demonstrating that resistance genes selected on farms may be found in pork.

  13. Multidrug-Resistant Outbreak-Associated Salmonella Strains in Irrigation Water from the Metropolitan Region, Chile.

    Science.gov (United States)

    Martínez, M C; Retamal, P; Rojas-Aedo, J F; Fernández, J; Fernández, A; Lapierre, L

    2017-06-01

    Salmonella enterica (S. enterica) is the main cause of foodborne diseases in the Chilean population. With the aim of characterizing the presence of S. enterica in bodies of water, samples from 40 sources were obtained, including rivers and irrigation canals used by agricultural farms in the most populated regions of Chile. As result, 35 S. enterica isolates belonging to several serotypes were detected, with the highest frequency represented by Typhimurium and Enteritidis. All strains showed phenotypic antimicrobial resistance, and most of them were multiresistant to critically important antimicrobials. In addition, the pulse-field gel electrophoresis analysis using XbaI and BlnI endonucleases showed that seven Salmonella isolates belonging to serotypes Typhimurium, Enteritidis and Infantis had identical pulsotypes to outbreak-associated clinical isolates detected in the Chilean population, suggesting a public health risk of water pollution in this region. Among sampling sites, the higher detection rates were observed in rural than urban and peri-urban areas, suggesting that the animal husbandry might contribute for environmental dispersion of this pathogen. Future efforts should address the characterization of cause-and-effect relationship between water contamination and foodborne disease, including the implementation of surveillance programmes to tackle potential risks for both human and animal populations. © 2016 Blackwell Verlag GmbH.

  14. Antibacterial effect of roselle extracts (Hibiscus sabadariffa), sodium hypochlorite and acetic acid against multidrug-resistant Salmonella strains isolated from tomatoes.

    Science.gov (United States)

    Gutiérrez-Alcántara, E J; Rangel-Vargas, E; Gómez-Aldapa, C A; Falfan-Cortes, R N; Rodríguez-Marín, M L; Godínez-Oviedo, A; Cortes-López, H; Castro-Rosas, J

    2016-02-01

    Antibiotic-resistant Salmonella strains were isolated from saladette and red round type tomatoes, and an analysis done of the antibacterial activity of roselle calyx extracts against any of the identified strains. One hundred saladette tomato samples and 100 red round tomato samples were collected from public markets. Each sample consisted of four whole tomatoes. Salmonella was isolated from the samples by conventional culture procedure. Susceptibility to 16 antibiotics was tested for the isolated Salmonella strains by standard test. The antibacterial effect of four roselle calyx extracts (water, methanol, acetone and ethyl acetate), sodium hypochlorite and acetic acid against antibiotic-resistant Salmonella isolates was evaluated on contaminated tomatoes. Twenty-four Salmonella strains were isolated from 12% of each tomato type. Identified Salmonella serotypes were Typhimurium and Typhi. All isolated strains exhibited resistance to at least three antibiotics and some to as many as 12. Over contaminated tomatoes, the roselle calyx extracts produced a greater reduction (2-2·6 log) in antibiotic-resistant Salmonella strain concentration than sodium hypochlorite and acetic acid. The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Multidrug-resistant Salmonella strains were isolated from raw tomatoes purchased in public markets in Mexico and challenged with roselle Hibiscus sabdariffa calyx extracts, sodium hypochlorite and acetic acid. On tomatoes, the extracts caused a greater reduction in the concentration of antibiotic-resistant Salmonella strains than sodium hypochlorite and acetic acid. Roselle calyx extracts are a potentially useful addition to disinfection procedures of raw tomatoes in the field, processing plants, restaurants and homes. © 2015 The Society for Applied Microbiology.

  15. Characterization of antibiotic resistance in Salmonella enterica isolates determined from ready-to-eat (RTE) salad vegetables.

    Science.gov (United States)

    Taban, Birce Mercanoglu; Aytac, Sait Aykut; Akkoc, Nefise; Akcelik, Mustafa

    2013-01-01

    In the last decade, ready-to-eat (RTE) salad vegetables are gaining increasing importance in human diet. However, since they are consumed fresh, inadequate washing during processing can bring on some foodborne illnesses, like salmonellosis, since these food items have natural contamination from soil and water. During 2009-2010, a total of 81 samples were purchased arbitrarily from local markets in Ankara, and were examined for Salmonella contamination. Salmonella screening was performed by using anti-Salmonella magnetic beads system and polymerase chain reaction (PCR) identification of the suspected colonies. Then, the antibiotic resistance profiles of four Salmonella strains identified (strains RTE-1, RTE-2, RTE-3, and RTE-4) were also investigated, since the mechanism by which Salmonella spp. have accumulated antibiotic resistance genes is of interest. All strains showed resistance against sulfonamides (MIC > 128 mg/L). Further results suggested that associated sulfonamide resistance genes were encoded by the 55.0 kb plasmid of strain RTE-1 that involves no integrons. As a result of using two primers (P1254 and P1283) in randomly amplified polymorphic DNA-PCR (RAPD-PCR) analysis, two common amplicons (364 bp and 1065 bp) were determined. The findings of this study provide support to the adoption of guidelines for the prudent use of antibiotics in order to reduce the number of pathogens present on vegetable and fruit farms. Besides, since it is shown that these bacteria started to gain resistance to antibiotics, it is necessary to further investigate the prevalence of them in foods.

  16. Characterization of antibiotic resistance in Salmonella enterica isolates determined from ready-to-eat (RTE salad vegetables

    Directory of Open Access Journals (Sweden)

    Birce Mercanoglu Taban

    2013-01-01

    Full Text Available In the last decade, ready-to-eat (RTE salad vegetables are gaining increasing importance in human diet. However, since they are consumed fresh, inadequate washing during processing can bring on some foodborne illnesses, like salmonellosis, since these food items have natural contamination from soil and water. During 2009-2010, a total of 81 samples were purchased arbitrarily from local markets in Ankara, and were examined for Salmonella contamination. Salmonella screening was performed by using anti-Salmonella magnetic beads system and polymerase chain reaction (PCR identification of the suspected colonies. Then, the antibiotic resistance profiles of four Salmonella strains identified (strains RTE-1, RTE-2, RTE-3, and RTE-4 were also investigated, since the mechanism by which Salmonella spp. have accumulated antibiotic resistance genes is of interest. All strains showed resistance against sulfonamides (MIC > 128 mg/L. Further results suggested that associated sulfonamide resistance genes were encoded by the 55.0 kb plasmid of strain RTE-1 that involves no integrons. As a result of using two primers (P1254 and P1283 in randomly amplified polymorphic DNA-PCR (RAPD-PCR analysis, two common amplicons (364 bp and 1065 bp were determined. The findings of this study provide support to the adoption of guidelines for the prudent use of antibiotics in order to reduce the number of pathogens present on vegetable and fruit farms. Besides, since it is shown that these bacteria started to gain resistance to antibiotics, it is necessary to further investigate the prevalence of them in foods.

  17. Occurrence of integrons and antimicrobial resistance genes among Salmonella enterica from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2006-01-01

    = 13) sources. The gene cassette arrangements could be determined in 51 of the positive isolates, which harboured one [dfrA22, aadA1 or orf3 (putative trimethoprim resistance)], two [aadA1-dfrA1, aac(6)-lb-orf1 (unknown function) or aacA4-aadA1], three [dfrA15b-cmlA4-aadA2, orf2 (unknown function......Objectives: To determine the occurrence of antimicrobial resistance genes and role of integrons among 135 anti microbial-resistant Salmonella enterica from Brazil. Methods: The presence of antimicrobial resistance genes, class 1 and 2 integrons and gene cassettes was analysed by PCR and sequencing....... The genetic location of class 1 integrons was determined in 25 isolates by hybridization and plasmid transfer experiments. Results: Fifty-five of the isolates were positive for class I integrons. Integron-positive isolates represented 17 different serovars and were mainly from human (n = 28) and animal (n...

  18. Drug resistant Salmonella in broiler chicken sold at local market in ...

    African Journals Online (AJOL)

    This study was designed to isolate and identify Salmonella spp. from cloacal swabs of apparently healthy broiler chickens in Bangladesh. Salmonella was characterized culturally, biochemically and also via PCR method. Among 50 isolates, 16 were found to be positive for Salmonella. PCR using 16S rRNA gene primers ...

  19. Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food.

    Science.gov (United States)

    Fernández, Javier; Guerra, Beatriz; Rodicio, M Rosario

    2018-04-08

    Non-typhoidal serovars of Salmonella enterica (NTS) are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical "last resort" antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae , Escherichia coli , and Enterobacter , which are major nosocomial pathogens affecting debilitated and immunocompromised patients), carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance-namely KPC ( Klebsiella pneumoniae carbapenemase) (class A), IMP (imipenemase), NDM (New Delhi metallo-β-lactamase), VIM (Verona integron-encoded metallo-β-lactamase) (class B), and OXA-48 (oxacillinase, class D)-have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC β-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids), together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these "last resort" antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria.

  20. Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food

    Directory of Open Access Journals (Sweden)

    Javier Fernández

    2018-04-01

    Full Text Available Non-typhoidal serovars of Salmonella enterica (NTS are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical “last resort” antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli, and Enterobacter, which are major nosocomial pathogens affecting debilitated and immunocompromised patients, carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance—namely KPC (Klebsiella pneumoniae carbapenemase (class A, IMP (imipenemase, NDM (New Delhi metallo-β-lactamase, VIM (Verona integron-encoded metallo-β-lactamase (class B, and OXA-48 (oxacillinase, class D—have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC β-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids, together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these “last resort” antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria.

  1. Molecular epidemiology and antimicrobial resistance of Salmonella Typhimurium DT104 on Ontario swine farms

    Science.gov (United States)

    Farzan, Abdolvahab; Friendship, Robert M.; Poppe, Cornelis; Martin, Laura; Dewey, Catherine E.; Funk, Julie

    2008-01-01

    This study was conducted to examine antimicrobial resistances, plasmid profiles, and pulsed-field gel electrophoresis patterns of 80 Salmonella Typhimurium (including var. Copenhagen) DT104 strains (including DT104a and DT104b) recovered from pig and environmental fecal samples on 17 swine farms in Ontario. No resistance was observed to amoxicillin/clavulanic acid, apramycin, carbadox, cephalothin, ceftriaxone, ceftiofur, cefoxitin, ciprofloxacin, nalidixic acid, trimethoprim, and tobramycin. However, the isolates exhibited resistance against 4 to 10 antimicrobials with the most frequent resistance being to sulfonamides (Su), ampicillin (A), streptomycin (S), spectinomycin (Sp), chloramphenicol (C), tetracycline (T), and florfenicol (F). Thirteen distinct resistance patterns were determined but 88% of isolates shared the typical resistance pattern “ACSpSSuT.” Twelve different plasmid profiles were observed; the 62 MDa virulence-associated plasmid was detected in 95% of the isolates. The 2.1 MDa plasmid was the second most frequent one, which was harbored by 65% isolates. The isolates were classified into 23 distinct genotypes by PFGE-SpeI + BlnI when difference in at least one fragment was defined as a distinct genotype. In total, 39 distinct “types” were observed when defining a “type” based on the combination of antimicrobial resistance, plasmid pattern, and PFGE-SpeI + BlnI for each isolate. The highest diversity was 0.96 (95% CI: 0.92, 0.96) for the “type” described above followed by 0.92 (95% CI: 0.88, 0.93) for PFGE-SpeI + BlnI. The diversity of DT104 isolates indicates there might be multiple sources for this microorganism on swine farms. This knowledge might be used to track these sources, as well as to study the extent of human salmonellosis attributed to pork compared to food products derived from other food-producing animals. PMID:18505209

  2. Distribution of sulfonamide resistance genes in Escherichia coli and Salmonella isolates from swine and chickens at abattoirs in Ontario and Québec, Canada.

    Science.gov (United States)

    Kozak, Gosia K; Pearl, David L; Parkman, Julia; Reid-Smith, Richard J; Deckert, Anne; Boerlin, Patrick

    2009-09-01

    Sulfonamide-resistant Escherichia coli and Salmonella isolates from pigs and chickens in Ontario and Québec were screened for sul1, sul2, and sul3 by PCR. Each sul gene was distributed differently across populations, with a significant difference between distribution in commensal E. coli and Salmonella isolates and sul3 restricted mainly to porcine E. coli isolates.

  3. Distribution of Sulfonamide Resistance Genes in Escherichia coli and Salmonella Isolates from Swine and Chickens at Abattoirs in Ontario and Québec, Canada ▿

    Science.gov (United States)

    Kozak, Gosia K.; Pearl, David L.; Parkman, Julia; Reid-Smith, Richard J.; Deckert, Anne; Boerlin, Patrick

    2009-01-01

    Sulfonamide-resistant Escherichia coli and Salmonella isolates from pigs and chickens in Ontario and Québec were screened for sul1, sul2, and sul3 by PCR. Each sul gene was distributed differently across populations, with a significant difference between distribution in commensal E. coli and Salmonella isolates and sul3 restricted mainly to porcine E. coli isolates. PMID:19633109

  4. Prevalence and antibiotic resistance of Salmonella isolated from a poultry farm and processing plant environment in the state of Kuwait

    DEFF Research Database (Denmark)

    Al-Zenki, Sameer; Al-Nasser, Affaf; Al-Safar, AbdulAmir

    2007-01-01

    the farm included hatching eggs, paper liners, litter, feed, water, drinkers, air, bird rinse, and ceca. While samples collected from the processing plant included carcass rinse and ceca. Out of 2882 samples collected from the farm, the overall percentage prevalence of Salmonella was 5.4% with prevalence......The prevalence of Salmonella isolated from a poultry farm and from the poultry processing plant environment were evaluated from August 2004 to July 2005 along with microbial antibiotic resistance. In total, 3242 samples were collected from the farm and processing plant. Samples collected from...... rates of 10%, 1.5%, 0.7%, 0.2%, 13.5%, and 12.6% for hatching eggs, litter, feed, drinkers, bird rinse and ceca, respectively. No Salmonella were detected in any of the paper liner, water, or air samples. Out of 360 samples collected from the processing plant, the overall percentage prevalence...

  5. Prevalence and behavior of multidrug-resistant Salmonella strains on raw whole and cut nopalitos (Opuntia ficus-indica L.) and on nopalitos salads.

    Science.gov (United States)

    Gómez-Aldapa, Carlos A; Gutiérrez-Alcántara, Eduardo J; Torres-Vitela, M Refugio; Rangel-Vargas, Esmeralda; Villarruel-López, Angelica; Castro-Rosas, Javier

    2017-09-01

    The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Nopalito is a cactaceous that is commonly consumed either raw or cooked in Mexico and other countries. The presence of antibiotic-resistant Salmonella strains on raw whole nopalitos (RWN, without prickles), raw nopalitos cut into squares (RNCS) and in cooked nopalitos salads (CNS) samples was determined. In addition, the behavior of multidrug-resistant Salmonella isolates on RWN, RNCS and CNS at 25° ± 2 °C and 3° ± 2 °C was investigated. One hundred samples of RWN, 100 of RNCS and 100 more of CNS were collected from public markets. Salmonella strains were isolated and identified in 30, 30 and 10% of the samples, respectively. Seventy multidrug-resistant Salmonella strains were isolated from all the nopalitos samples. Multidrug-resistant Salmonella isolates survived at least 15 days on RWN at 25° ± 2 °C or 3° ± 2 °C. Multidrug-resistant Salmonella isolates grew in the RNCS and CNS samples at 25° ± 2 °C. However, at 3° ± 2 °C the bacterial growth was inhibited. This is the first report about multidrug-resistant Salmonella isolation from raw nopalitos and nopalitos salads. Nopalitos from markets are very likely to be an important factor contributing to the endemicity of multidrug-resistant Salmonella-related gastroenteritis in Mexico. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Determination of the sources and antimicrobial resistance patterns of Salmonella isolated from the poultry industry in Southern Ethiopia.

    Science.gov (United States)

    Abdi, Reta Duguma; Mengstie, Fisseha; Beyi, Ashenafi Feyisa; Beyene, Takele; Waktole, Hika; Mammo, Bedasso; Ayana, Dinka; Abunna, Fufa

    2017-05-18

    Ethiopia set an ambitious masterplan to increase chicken meat and egg production from 2015 to 2020. Poultry breeding, multiplication and distribution centers in the country have received executive order to import, amplify and distribute commercial chickens to end users. The biosecurity and the pathogen fauna of the centers have not been evaluated as to whether the centers could implement the mission effectively without any risk. Thus, the aim of this study was to evaluate the biosecurity practices and the pathogen prevalence, risk factors and their antimicrobial resistance (AMR) using Salmonella as case study. Routine farm workers of the centers were interviewed about the different management (biosecurity) practices using a checklist. Samples (n = 270) from different sources consisting of chicken's cloacal swab (n = 244), personnel hand swab (n = 9) and bedding (n = 17) were collected from three chicken multiplication centers. Standard bacteriological methods were used for the isolation of Salmonella. Disk diffusion method was used for drug sensitivity testing. Antimicrobials were often over prescribed without confirming the cause of ill health and without susceptibility testing. The general biosecurity and flock management practices were substandard. Salmonella was isolated from 45 (16.7%) of the 270 samples. Its prevalence was significantly (pSalmonella isolation from (i) bedding, (ii) personnel hand swabs (iii) chickens, (iv) presence of more MDR isolates, (v) coupled with poor biosecurity practices in the centers could pose a risk for spreading of pathogens and drug resistant genes to the smallholder chicken producers and the public. We conclude that the poultry breeding, multiplication and distribution centers in Ethiopia, as they stand currently, seem to be a source of pathogens and AMR isolates at least for Salmonella. Therefore, strict biosecurity, personnel safety, prudent drug use, regular monitoring and traceability of Salmonella serotypes or genotypes

  7. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso.

    Science.gov (United States)

    Kagambèga, Assèta; Lienemann, Taru; Frye, Jonathan G; Barro, Nicolas; Haukka, Kaisa

    2018-01-01

    Multidrug-resistant Salmonella is an important cause of morbidity and mortality in developing countries. The aim of this study was to characterize and compare multidrug-resistant Salmonella enterica serovar Typhimurium isolates from patients and poultry feces. Salmonella strains were isolated from poultry and patients using standard bacteriological methods described in previous studies. The strains were serotype according to Kaufmann-White scheme and tested for antibiotic susceptibility to 12 different antimicrobial agents using the disk diffusion method. The whole genome of the S. Typhimurium isolates was analyzed using Illumina technology and compared with 20 isolates of S. Typhimurium for which the ST has been deposited in a global MLST database.The ResFinder Web server was used to find the antibiotic resistance genes from whole genome sequencing (WGS) data. For comparative genomics, publicly available complete and draft genomes of different S. Typhimurium laboratory-adapted strains were downloaded from GenBank. All the tested Salmonella serotype Typhimurium were multiresistant to five commonly used antibiotics (ampicillin, chloramphenicol, streptomycin, sulfonamide, and trimethoprim). The multilocus sequence type ST313 was detected from all the strains. Our sequences were very similar to S. Typhimurium ST313 strain D23580 isolated from a patient with invasive non-typhoid Salmonella (NTS) infection in Malawi, also located in sub-Saharan Africa. The use of ResFinder web server on the whole genome of the strains showed a resistance to aminoglycoside associated with carriage of the following resistances genes: strA , strB , and aadA1 ; resistance to β-lactams associated with carriage of a bla TEM-1B genes; resistance to phenicol associated with carriage of catA1 gene; resistance to sulfonamide associated with carriage of sul1 and sul2 genes; resistance to tetracycline associated with carriage of tet B gene; and resistance to trimethoprim associated to dfrA1 gene

  8. Salmonella Heidelberg: Genetic profile of its antimicrobial resistance related to extended spectrum β-lactamases (ESBLs).

    Science.gov (United States)

    Giuriatti, Jéssica; Stefani, Lenita Moura; Brisola, Maiara Cristina; Crecencio, Regiane Boaretto; Bitner, Dinael Simão; Faria, Gláucia Amorim

    2017-08-01

    The objective of this study was to evaluate the phenotypic and genotypic profile of antimicrobial susceptibility and the possible involvement of extended spectrum beta-lactamases (ESBLs) in the resistance profile of Salmonella Heidelberg (SH) isolated from chicken meat. We used 18 SH isolates from chicken meat produced in 2013 in the state of Paraná, Southern Brazil. The isolates were submitted to disk-diffusion tests and from these results it was possible to determine the number of isolates considered multiresistant and the index of multiple antimicrobial resistance (IRMA) against ten antimicrobials routinely used in human and veterinary medicine. It was considered multidrug resistant the isolate that showed resistance to three or more classes of antibiotics. Another test performed was the disc-approximation in order to investigate interposed zones of inhibition, indicative of ESBLs production. In the isolates that presented multidrug resistance (18/18), a search of resistance genes involved in the production of ESBLs was performed using PCR: blaCMY-2, blaSHV-1, blaTEM-1, blaCTX-M2, blaOXA-1, blaPSE-1 and AmpC. The overall antimicrobial resistance was 80.55%. The highest levels of resistance were observed for nalidixic acid and ceftiofur (100%). The most commonly resistance pattern found (42.1%) was A (penicillin-cephalosporin-quinolone-tetracycline). The results were negative for ghost zone formation, indicative of ESBLs. However, PCR technique was able to detect resistance genes via ESBLs where the blaTEM-1 gene showed the highest amplification (83.33%), and the second most prevalent genes were blaCMY-2 (38.88%) and AmpC gene (38.88%). The blaOXA-1 and blaPSE-1 genes were not detected. These results are certainly of concern since SH is becoming more prevalent in the South of Brazil and able to cause severe disease in immune compromised individuals, showing high antimicrobial resistance to those drugs routinely used in the treatment and control of human and

  9. Phenotypic and Genotypic Resistance of Salmonella Isolates from Healthy and Diseased Pigs in China During 2008-2015.

    Science.gov (United States)

    Jiu, Yueguang; Zhu, Shun; Khan, Sher Bahadar; Sun, Mengzhen; Zou, Geng; Meng, Xianrong; Wu, Bin; Zhou, Rui; Li, Shaowen

    2017-07-01

    The antimicrobial resistance of Salmonella strains is rapidly increasing worldwide, which poses significant threats to animal and public health. In this study, a total of 249 porcine Salmonella isolates collected in China during 2008-2015 were examined, including 155 clinical isolates from diseased pigs and 94 nonclinical isolates from healthy pigs. Based on the minimum inhibitory concentration of seven antimicrobial agents, 96.4% of the isolates were resistant to at least one of the tested antibiotics and 81.0% of them showed multidrug resistance. The highest antimicrobial resistance was observed for tetracycline (85.9%), and the lowest was found for cefotaxime (13.3%). The isolates from diseased pigs exhibited significantly higher levels of antimicrobial resistance than those from healthy pigs. Twenty-two isolates from healthy pigs were resistant to ciprofloxacin, which may inhibit the curative effectiveness of fluoroquinolones on bacterial food-borne poisoning and infections in humans caused by contaminated food. Moreover, cefotaxime resistance of the strains isolated from diseased pigs during 2013-2015 was significantly higher compared with the strains isolated during 2008-2010. Further study showed that the correlation between phenotypic and genotypic resistance varied among the isolates from different sources, and in many cases, the presence of resistance genes was not consistent with the resistance to the corresponding antimicrobials. These results are very significant for veterinary practice and public health.

  10. A Modified P1 Moiety Enhances in vitro Antiviral Activity against Various Multi-Drug-Resistant HIV-1 Variants and in vitro CNS Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Masayuki; Salcedo-Gómez, Pedro Miguel; Zhao, Rui; Yedidi, Ravikiran S.; Das, Debananda; Bulut, Haydar; Delino, Nicole S.; Sheri, Venkata Reddy; Ghosh, Arun K.; Mitsuya, Hiroaki (Kumamoto); (NIH); (Purdue)

    2016-09-12

    We here report that GRL-10413, a novel non-peptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (EC50: 0.00035 - 0.0018 μM) with minimal cytotoxicity (CC50: 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1NL4-3variants selected by up to 5 μM concentrations of atazanavir, lopinavir, or amprenavir (EC50: 0.0021 - 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multi-drug-resistant clinical HIV-1 variants isolated from patients, who no longer responded to various antiviral regimens after long-term antiretroviral therapy. The development of resistance against GRL-10413 was significantly delayed compared to that of APV. In addition, GRL-10413 showed a favorable central nervous system (CNS) penetration property as assessed with anin vitroblood brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active-site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants with favorable CNS-penetration capability and that the newly modified P1-moiety may confer desirable features in designing novel anti-HIV-1 PIs.

  11. Phenotypic and genotypic antimicrobial resistance and virulence genes of Salmonella enterica isolated from pet dogs and cats

    Science.gov (United States)

    Srisanga, Songsak; Angkititrakul, Sunpetch; Sringam, Patcharee; Le Ho, Phuong T.; Vo, An T. T.

    2017-01-01

    Salmonella enterica isolates (n = 122), including 32 serotypes from 113 dogs and 9 cats, were obtained from household dogs (n = 250) and cats (n = 50) during 2012–2015. The isolates were characterized by serotyping, antimicrobial resistance phenotyping and genotyping, and virulence gene screening. Serovars Weltevreden (15.6%) and Typhimurium (13.9%) were the most common. The majority (43%) of the isolates were multidrug resistant. The dog isolates (12.3%) harbored class 1 integrons, of which the dfrA12-aadA2 cassette was most frequent (66.7%). The only class integron in serovar Albany was located on a conjugative plasmid. Two ESBL-producing isolates (i.e., a serovar Krefeld and a serovar Enteritridis) carried blaTEM and blaCTX-M, and the blaTEM gene in both was horizontally transferred. Of the plasmid-mediated quinolone resistance genes tested, only qnrS (4.9%) was detected. Most Salmonella isolates harbored invA (100%), prgH (91.8%), and sipB (91%). Positive associations between resistance and virulence genes were observed for blaPSE-1/orgA, cmlA/spaN, tolC, and sul1/tolC (p resistance and virulence genes and that antimicrobial use in companion animals may select for the examined Salmonella virulence factors. PMID:27586467

  12. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010

    Directory of Open Access Journals (Sweden)

    Velca Botti

    2013-06-01

    Full Text Available Salmonella is an important zoonotic pathogen of economic importance. In Europe, salmonellosis is the second food-borne infection, in Italy, Salmonella is still the major cause of food-borne outbreaks. In Europe, there are many Salmonella surveillance plans on farmed animals, while Salmonella survey of wild animals is occasionally performed. The aim of this study was to investigate the presence of Salmonella including the antibiotic-resistant strains in wild animals. Between 2002 and 2010, 2,713 wild animals (canids, mustelids, birds, rodents, ungulates, were collected in north-western Italy and tested for Salmonella by classical microbiological culture method followed by serological and biochemical typing. One hundred and seventeen wild animals (63 canids, 25 mustelids, 24 birds, 5 ungulates were found positive for Salmonella (4.3%. One hundred and thirty strains, belonging to several serotypes were isolated, and S. Typhimurium was the most common serotype found. Antibiotic susceptibility was tested by disk-diffusion test on 88 strains. Almost all the analyzed strains (97.7% showed resistance/intermediate resistance to at least one class of antibiotics and the highest resistance values were observed for the tetracycline class. In conclusion, zoonotic and antibiotic-resistant serotypes were found in many species of wildlife.

  13. Relationship of Triamine-Biocide Tolerance of Salmonella enterica Serovar Senftenberg to Antimicrobial Susceptibility, Serum Resistance and Outer Membrane Proteins.

    Science.gov (United States)

    Futoma-Kołoch, Bożena; Dudek, Bartłomiej; Kapczyńska, Katarzyna; Krzyżewska, Eva; Wańczyk, Martyna; Korzekwa, Kamila; Rybka, Jacek; Klausa, Elżbieta; Bugla-Płoskońska, Gabriela

    2017-07-11

    A new emerging phenomenon is the association between the incorrect use of biocides in the process of disinfection in farms and the emergence of cross-resistance in Salmonella populations. Adaptation of the microorganisms to the sub-inhibitory concentrations of the disinfectants is not clear, but may result in an increase of sensitivity or resistance to antibiotics, depending on the biocide used and the challenged Salmonella serovar. Exposure of five Salmonella enterica subsp. enterica serovar Senftenberg ( S. Senftenberg) strains to triamine-containing disinfectant did not result in variants with resistance to antibiotics, but has changed their susceptibility to normal human serum (NHS). Three biocide variants developed reduced sensitivity to NHS in comparison to the sensitive parental strains, while two isolates lost their resistance to serum. For S. Senftenberg, which exhibited the highest triamine tolerance (6 × MIC) and intrinsic sensitivity to 22.5% and 45% NHS, a downregulation of flagellin and enolase has been demonstrated, which might suggest a lower adhesion and virulence of the bacteria. This is the first report demonstrating the influence of biocide tolerance on NHS resistance. In conclusion, there was a potential in S. Senftenberg to adjust to the conditions, where the biocide containing triamine was present. However, the adaptation did not result in the increase of antibiotic resistance, but manifested in changes within outer membrane proteins' patterns. The strategy of bacterial membrane proteins' analysis provides an opportunity to adjust the ways of infection treatments, especially when it is connected to the life-threating bacteremia caused by Salmonella species.

  14. Prevalence of beta-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark

    DEFF Research Database (Denmark)

    Olesen, Inger; Hasman, Henrik; Aarestrup, Frank Møller

    2004-01-01

    The genetic background for beta-lactamase-mediated resistance to beta-lactam antibiotics was examined by PCR and sequencing in 160 ampicillin-resistant isolates (109 Escherichia coli and 51 Salmonella) obtained from healthy and diseased food animals in Denmark. Sequencing revealed three different...... leading to increased production of the AmpC beta-lactamase were demonstrated in 11 cefoxitin-resistant or intermediate E. coli isolates. Nine of these isolates did not contain any bla(TEM) genes, whereas the remaining two did. No genes encoding SHV or extended-spectrum beta-lactamases were detected. Two...

  15. Differential gene expression by RamA in ciprofloxacin-resistant Salmonella Typhimurium.

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    Full Text Available Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM. The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.

  16. Decrease in the prevalence of extended-spectrum cephalosporin-resistant Salmonella following cessation of ceftiofur use by the Japanese poultry industry.

    Science.gov (United States)

    Shigemura, Hiroaki; Matsui, Mari; Sekizuka, Tsuyoshi; Onozuka, Daisuke; Noda, Tamie; Yamashita, Akifumi; Kuroda, Makoto; Suzuki, Satowa; Kimura, Hirokazu; Fujimoto, Shuji; Oishi, Kazunori; Sera, Nobuyuki; Inoshima, Yasuo; Murakami, Koichi

    2018-06-02

    Extended-spectrum cephalosporin (ESC)-resistant Salmonella in chicken meat is a significant food safety concern. We previously reported that the prevalence of ESC-resistant Salmonella in chicken meat, giblets, and processed chicken (chicken meat products) increased in Japan between 2005 and 2010, with 27.9% (17/61) of Salmonella isolated from chicken meat products in 2010 showing resistance to ESC. The aims of the present study were to clarify trends in the prevalence of ESC-resistant Salmonella in chicken meat products in Japan between 2011 and 2015, and to determine the genetic profiles of bla-harboring plasmids, including replicon types, using next-generation sequencing. Our results showed that the prevalence of ESC-resistant Salmonella, mainly consisting of AmpC β-lactamase CMY-2-producing isolates, in chicken meat products had increased to 45.5% (10/22) by 2011. However, following the voluntary cessation of ceftiofur use by the Japanese poultry industry in 2012, the prevalence of ESC-resistant Salmonella steadily decreased each year, to 29.2% (7/24), 18.2% (4/22), 10.5% (2/19), and 10.5% (2/19) in 2012, 2013, 2014, and 2015, respectively. Furthermore, no AmpC β-lactamase CMY-2-producing isolates were identified in 2014 and 2015. However, the prevalence of Salmonella enterica subspecies enterica serovar Manhattan isolates harboring a bla TEM-52 -carrying IncX1 plasmid remained steady even after the cessation of ceftiofur use. Therefore, continuous monitoring of ESC resistance amongst Salmonella isolates from chicken meat products is required for food safety. Copyright © 2018. Published by Elsevier B.V.

  17. Occurrence and phenotypic and molecular characterization of Listeriamonocytogenes and Salmonella spp. in slaughterhouses in southern Brazil.

    Science.gov (United States)

    Iglesias, Mariana Almeida; Kroning, Isabela Schneid; Decol, Luana Tombini; de Melo Franco, Bernadette Dora Gombossy; Silva, Wladimir Padilha da

    2017-10-01

    This study addressed the occurrence of Listeriamonocytogenes and Salmonella spp. in bovine carcasses at two slaughterhouses in southern Brazil. Then, the antimicrobial susceptibility profile and the virulence potential of the isolates were evaluated. Two hundred carcasses were sampled at four steps of the slaughter process, with L. monocytogenes being isolated in 12 and Salmonella spp. in 17 carcasses. All L. monocytogenes isolates carried the hlyA, prfA, plcA, plcB, actA, iap, mpl, inlA, inlB, inlC, and inlJ genes, while Salmonella spp. carried invA and hilA. Among the L. monocytogenes isolates, all of them presented virulence determinants and one showed multi-drug resistance. In relationship to Salmonella spp. isolates, many serogroups frequently related to outbreaks of foodborne diseases were identified and four isolates showed resistance to more than one antimicrobial agent. This data highlights the importance of a rigid hygienic-sanitary control during the slaughter process to reduce the risk of cross-contamination and lower the consumer exposure to L. monocytogenes and Salmonella spp. infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Virulence characterisation of Salmonella enterica isolates of differing antimicrobial resistance recovered from UK livestock and imported meat samples.

    Directory of Open Access Journals (Sweden)

    Roderick eCard

    2016-05-01

    Full Text Available Salmonella enterica is a foodborne zoonotic pathogen of significant public health concern. We have characterised the virulence and antimicrobial resistance gene content of 95 Salmonella isolates from 11 serovars by DNA microarray recovered from UK livestock or imported meat. Genes encoding resistance to sulphonamides (sul1, sul2, tetracycline (tet(A, tet(B, streptomycin (strA, strB, aminoglycoside (aadA1, aadA2, beta-lactam (blaTEM, and trimethoprim (dfrA17 were common. Virulence gene content differed between serovars; S. Typhimurium formed two subclades based on virulence plasmid presence. Thirteen isolates were selected by their virulence profile for pathotyping using the Galleria mellonella pathogenesis model. Infection with a chicken invasive S. Enteritidis or S. Gallinarum isolate, a multidrug resistant S. Kentucky, or a S. Typhimurium DT104 isolate resulted in high mortality of the larvae; notably presence of the virulence plasmid in S. Typhimurium was not associated with increased larvae mortality. Histopathological examination showed that infection caused severe damage to the Galleria gut structure. Enumeration of intracellular bacteria in the larvae 24 hours post-infection showed increases of up to 7 log above the initial inoculum and transmission electron microscopy (TEM showed bacterial replication in the haemolymph. TEM also revealed the presence of vacuoles containing bacteria in the haemocytes, similar to Salmonella containing vacuoles observed in mammalian macrophages; although there was no evidence from our work of bacterial replication within vacuoles. This work shows that microarrays can be used for rapid virulence genotyping of S. enterica and that the Galleria animal model replicates some aspects of Salmonella infection in mammals. These procedures can be used to help inform on the pathogenicity of isolates that may be antibiotic resistant and have scope to aid the assessment of their potential public and animal health risk.

  19. An In Vitro Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from Salmonella to Commensal Escherichia coli.

    Science.gov (United States)

    Card, Roderick M; Cawthraw, Shaun A; Nunez-Garcia, Javier; Ellis, Richard J; Kay, Gemma; Pallen, Mark J; Woodward, Martin J; Anjum, Muna F

    2017-07-18

    The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase bla CTX-M1 We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections

  20. Prevalence and Antimicrobial Resistance of Salmonella Isolates Recovered from Retail Pork in Major Village Markets in Tai'an Region, China.

    Science.gov (United States)

    Miao, Zengmin; Li, Song; Qin, Kun; Zhou, Yufa

    2017-10-01

    The current study was undertaken to evaluate Salmonella contamination in retail pork at major village markets of the Tai'an region, China. In total, 200 retail pork samples were collected from four village markets between June 2015 and February 2016, of which 69 samples (34.5%) were determined to be positive for Salmonella. Eleven serotypes were identified from the 69 Salmonella isolates, and Salmonella Derby was the most common (18 of 69, 26.1%), followed by Typhimurium (17 of 69, 24.6%) and Meleagridis (11 of 69, 15.9%). Antimicrobial susceptibility testing showed that antimicrobial resistance against tetracycline was the most prevalent (42 of 69, 60.9%), but antimicrobial resistance against both ceftriaxone and cefotaxime was 1.4% (1 of 69) and 2.9% (2 of 69), respectively. Multilocus sequence typing revealed that the 69 Salmonella isolates were divided into 11 sequence types (STs), among which ST40 (18 of 69, 26.1%) was the most common, followed by ST34 (15 of 69, 21.7%) and ST64 (13 of 69, 18.8%). Collectively, retail pork at village markets in the Tai'an region has a high Salmonella contamination rate, and these isolates exhibit broad-spectrum antimicrobial resistance. However, the absence of a dominant ST demonstrates that the Salmonella isolates from retail pork may be of diverse origins.

  1. Epidemiology, clinical presentation, and patterns of drug resistance of Salmonella Typhi in Karachi, Pakistan.

    Science.gov (United States)

    Khan, M Imran; Soofi, Sajid Bashir; Ochiai, R Leon; Khan, Mohammad Jawed; Sahito, Shah Muhammad; Habib, Mohammad Atif; Puri, Mahesh K; Von Seidlein, Lorenz; Park, Jin Kyung; You, Young Ae; Ali, Mohammad; Nizami, S Qamarudding; Acosta, Camilo J; Sack, R Bradley; Clemens, John D; Bhutta, Zulfiqar A

    2012-10-19

    Enteric fever remains a major public health problem in Asia. Planning appropriate preventive measures such as immunization requires a clear understanding of disease burden. We conducted a community-based surveillance for Salmonella Typhi infection in children in Karachi, Pakistan. A de jure household census was conducted at baseline in the study setting to enumerate all individuals. A health-care facility-based passive surveillance system was used to capture episodes of fever lasting three or more 3 days in children 2 to 16 years old. A total of 7,401 blood samples were collected for microbiological confirmation, out of which 189 S. Typhi and 32 S. Paratyphi A isolates were identified with estimated annual incidences of 451/100,000 (95% CI: 446 - 457) and 76/100,000 (95% CI: 74 - 78) respectively. At the time of presentation, after adjusting for age, there was an association between the duration of fever and temperature at presentation, and being infected with multidrug-resistant S. Typhi. Of 189 isolates 83 were found to be resistant to first-line antimicrobial therapy. There was no statistically significant difference in clinical presentation of blood culture sensitive and resistant S. Typhi isolates. Incidence of S. Typhi in children is high in urban squatter settlements of Karachi, Pakistan. Findings from this study identified duration of fever and temperature at the time of presentation as important symptoms associated with blood culture-confirmed typhoid fever. Preventive strategies such as immunization and improvements in water and sanitation conditions should be the focus of typhoid control in urban settlements of Pakistan.

  2. Mechanisms of antimicrobial resistant Salmonella enterica transmission associated with starling-livestock interactions.

    Science.gov (United States)

    Carlson, James C; Hyatt, Doreene R; Ellis, Jeremy W; Pipkin, David R; Mangan, Anna M; Russell, Michael; Bolte, Denise S; Engeman, Richard M; DeLiberto, Thomas J; Linz, George M

    2015-08-31

    Bird-livestock interactions have been implicated as potential sources for bacteria within concentrated animal feeding operations (CAFO). European starlings (Sturnus vulgaris) in particular are known to contaminate cattle feed and water with Salmonella enterica through their fecal waste. We propose that fecal waste is not the only mechanisms through which starlings introduce S. enterica to CAFO. The goal of this study was to assess if starlings can mechanically move S. enterica. We define mechanical movement as the transportation of media containing S. enterica, on the exterior of starlings within CAFO. We collected 100 starlings and obtained external wash and gastrointestinal tract (GI) samples. We also collected 100 samples from animal pens. Within each pen we collected one cattle fecal, feed, and water trough sample. Isolates from all S. enterica positive samples were subjected to antimicrobial susceptibility testing. All sample types, including 17% of external starling wash samples, contained S. enterica. All sample types had at least one antimicrobial resistant (AMR) isolate and starling GI samples harbored multidrug resistant S. enterica. The serotypes isolated from the starling external wash samples were all found in the farm environment and 11.8% (2/17) of isolates from positive starling external wash samples were resistant to at least one class of antibiotics. This study provides evidence of a potential mechanism of wildlife introduced microbial contamination in CAFO. Mechanical movement of microbiological hazards, by starlings, should be considered a potential source of bacteria that is of concern to veterinary, environmental and public health. Published by Elsevier B.V.

  3. Multidrug resistant Salmonella enterica isolated from conventional pig farms using antimicrobial agents in preventative medicine programmes.

    Science.gov (United States)

    Cameron-Veas, Karla; Fraile, Lorenzo; Napp, Sebastian; Garrido, Victoria; Grilló, María Jesús; Migura-Garcia, Lourdes

    2018-04-01

    A longitudinal study was conducted to investigate the presence of multidrug antimicrobial resistance (multi-AR) in Salmonella enterica in pigs reared under conventional preventative medicine programmes in Spain and the possible association of multi-AR with ceftiofur or tulathromycin treatment during the pre-weaning period. Groups of 7-day-old piglets were treated by intramuscular injection with ceftiofur on four farms (n=40 piglets per farm) and with tulathromycin on another four farms (n=40 piglets per farm). A control group of untreated piglets (n=30 per farm) was present on each farm. Faecal swabs were collected for S. enterica culture prior to treatment, at 2, 7 and 180days post-treatment, and at slaughter. Minimal inhibitory concentrations of 14 antimicrobial agents, pulsed-field gel electrophoresis and detection of resistance genes representing five families of antimicrobial agents were performed. Plasmids carrying cephalosporin resistant (CR) genes were characterised. Sixty-six S. enterica isolates were recovered from five of eight farms. Forty-seven isolates were multi-AR and four contained bla CTX-M genes harboured in conjugative plasmids of the IncI1 family; three of these isolates were recovered before treatment with ceftiofur. The most frequent AR genes detected were tet(A) (51/66, 77%), sul1 (17/66, 26%); tet(B) (15/66, 23%) and qnrB (10/66, 15%). A direct relation between the use of ceftiofur in these conditions and the occurrence of CR S. enterica was not established. However, multi-AR was common, especially for ampicillin, streptomycin, sulphonamides and tetracycline. These antibiotics are used frequently in veterinary medicine in Spain and, therefore, should be used sparingly to minimise the spread of multi-AR. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Biofilm formation, antimicrobial resistance, and sanitizer tolerance of Salmonella entericia strains isolated from beef trim

    Science.gov (United States)

    In the beef industry, product contamination by Salmonella enterica is a serious public health concern, which may result in human infection and cause significant financial loss due to product recalls. Currently, the precise mechanism and pathogen source responsible for Salmonella contamination in com...

  5. Resistência antimicrobiana em Salmonella Enteritidis isoladas de amostras clínicas e ambientais de frangos de corte e matrizes pesadas Antimicrobial resistance in Salmonella Enteritidis isolated from clinical and environmental broiler chickens and breeders broiler

    Directory of Open Access Journals (Sweden)

    A.R. Ribeiro

    2008-10-01

    Full Text Available The antimicrobial resistance of Salmonella Enteritidis strains isolated from clinical and environmental poultry samples in the Southern Brazil during the years of 1999, 2000 and 2001 was evaluated. Among the 79 isolated samples, 64 (81% were resistant to at least one of the antimicrobial agents tested, showing 22 different resistance patterns. Tetracycline showed the highest percentage (64,5% of resistance among the antimicrobial agents used. Resistance to drugs at different levels was found as the following: ampicillin (1.2%, kanamycin (1.2%, ciprofloxacin (2.5%, enrofloxacin (8.8%, gentamicin (21.5%, streptomycin (20.2%, nitrofurantoin (26.6%, and nalidixic acid (30.4%. None of the S. Enteritidis strains were resistant to chloramphenicol, norfloxacin, and polimycin B. Among the 64 S. Enteritidis strains that showed resistance, 43 (67.2% were resistant to two or more antimicrobial agents. Twenty-one (32.8% strains were resistant to only one of the antimicrobial agents, 14 to tetracycline, three to nalidixic acid, three to nitrofurantoin, and one to gentamycin. These antimicrobial resistance levels suggest a high occurrence of tetracycline resistant S. Enteritidis strains and resistance to two or more antimicrobial agents.

  6. Translocation of integron-associated resistance in a natural system: Acquisition of resistance determinants by Inc P and Inc W Plasmids from Salmonella enterica Typhimurium DT104

    DEFF Research Database (Denmark)

    Sandvang, Dorthe; Diggle, M.; Platt, D.J.

    2002-01-01

    to determinate the genetic content. Translocation to R751 and R388 was associated with the loss of the indigenous trimethoprim cassette to both plasmids and also acquisition of sulfonamide resistance by R751 and RP4::Tn7, which indicated movement of the 3' terminus of one or both of the DT104 integrons......Salmonella enterica Typhimurium DT104, 961368, a veterinary field isolate that encodes a chromosomal cluster of resistance genes as well as two integrons, was used to study the mobility of resistance cassettes (aadA2 and pse-1) and nonintegron-associated resistance determinants (chloramphenicol...... and tetracycline). A range of natural plasmids was used as targets for the translocation of resistance. Plasmids that acquired resistance from the DT104 chromosome were segregated by conjugation into Escherichia coli K12. Plasmids R751, R388, and RP4::Tn7 acquired several combinations of resistance determinant...

  7. Revised Ciprofloxacin Breakpoints for Salmonella: Is it Time to Write an Obituary?

    Science.gov (United States)

    Girish, Revathy; Kumar, Anil; Khan, Sadia; Dinesh, Kavitha R; Karim, Shamsul

    2013-11-01

    To determine the minimum inhibitory concentration of ciprofloxacin among 50 blood stream isolates of Salmonella enterica. A total of 50 consecutive isolates of Salmonella enterica were tested for susceptibility to antimicrobials using the Kirby Bauer disk diffusion method. Minimum inhibitory concentrations were determined using Hi-Comb strips. All results were interpreted according to the CLSI guidelines. Of the 50 isolates 70%were Salmonella Typhi, 4% Salmonella paratyphi A, 2% Salmonella paratyphi B and the remaining 10% were identified only as Salmonella species. Using the CLSI 2011 breakpoints for disc diffusion, 86% (43/50) were resistant to nalidixic acid(NA), 22% (11/50) to ciprofloxacin, 12% to azithromycin, 6% to cotrimoxazole, 4% to ampicillin and 1% to chloramphenicol. The MIC50 and MIC90 of ciprofloxacin for S.Typhi were 0.181 μg/mL and 5.06 μg/mL respectively. While the same for S. paratyphi A was 0.212μg/mL and 0.228μg/mL respectively. None of the isolates were multi drug resistant and all were susceptible to ceftriaxone. Using the CLSI 2012 revised ciprofloxacin breakpoints for disc diffusion (>31mm) & MIC (<0.06 μg/mL), 90% (45/50) of these isolates were found to be resistant. MIC's of ciprofloxacin should be reported for all salmonella isolates and should be used to guide treatment. Blindly following western guidelines for a disease which is highly endemic in the subcontinent will spell the death knell of a cheap and effective drug in our armamentarium. Therefore it will be too premature to declare that "the concept of using ciprofloxacin in typhoid fever is dead!"

  8. ramR Mutations Affecting Fluoroquinolone Susceptibility in Epidemic Multidrug-Resistant Salmonella enterica Serovar Kentucky ST198

    Directory of Open Access Journals (Sweden)

    Axel eCloeckaert

    2013-07-01

    Full Text Available A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n=30, covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations.

  9. Antibacterial Activities and Possible Modes of Action of Acacia nilotica (L. Del. against Multidrug-Resistant Escherichia coli and Salmonella

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal Sadiq

    2017-01-01

    Full Text Available Medicinal plants are frequently used for the treatment of various infectious diseases. The objective of this study was to evaluate the antibacterial activity and mode of action of Acacia nilotica and the antibiogram patterns of foodborne and clinical strains of Escherichia coli and Salmonella. The mechanism of action of acacia extracts against E. coli and Salmonella was elucidated by observing morphological damages including cell integrity and cell membrane permeability, as well as changes in cell structures and growth patterns in kill-time experiments. The clinical isolates of E. coli and Salmonella were found resistant to more of the tested antibiotics, compared to food isolates. Minimum inhibitory concentration and minimum bactericidal concentration of acacia leaf extracts were in the ranges of 1.56–3.12 mg/mL and 3.12–6.25 mg/mL, respectively, whereas pods and bark extracts showed somewhat higher values of 3.12–6.25 mg/mL and 6.25–12.5 mg/mL, respectively, against all tested pathogens. The release of electrolytes and essential cellular constituents (proteins and nucleic acids indicated that acacia extracts damaged the cellular membrane of the pathogens. These changes corresponded to simultaneous reduction in the growth of viable bacteria. This study indicates that A. nilotica can be a potential source of new antimicrobials, effective against antibiotic-resistant strains of pathogens.

  10. Analysis of the intestinal microbiota of oligo-saccharide fed mice exhibiting reduced resistance to Salmonella infection

    DEFF Research Database (Denmark)

    Petersen, Anne; Bergström, Anders; Andersen, Jens Bo

    2010-01-01

    recently demonstrated a reduced resistance to Salmonella infection in mice fed diets containing fructo-oligosaccharides (FOS) or xylo-oligosaccharides (XOS). In the present study, faecal and caecal samples from the same mice were analysed in order to study microbial changes potentially explaining...... the observed effects on the pathogenesis of Salmonella. Denaturing gradient gel electrophoresis revealed that the microbiota in faecal samples from mice fed FOS or XOS were different from faecal samples collected before the feeding trial as well as from faecal profiles generated from control animals...... of short-chain fatty acids was recorded. In conclusion, diets supplemented with FOS or XOS induced a number of microbial changes in the faecal microbiota of mice. The observed effects of XOS were qualitatively similar to those of FOS, but the most prominent bifidogenic effect was seen for XOS. An increased...

  11. Antimicrobial resistance and molecular epidemiology of Salmonella Rissen from animals, food products, and patients in Thailand and Denmark

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Bangtrakulnonth, Aroon; Pulsrikarn, Chaiwat

    2008-01-01

    Rissen isolates recovered from humans, food products, and animals in Denmark and Thailand. Additionally, risk factors due to travel and consumption of specific food products were analyzed and evaluated. A total of 112 Salmonella Rissen isolates were included in this study from Thailand and Denmark. Thai...... isolates were recovered from humans, uncooked food, and ready-to-eat food. Danish isolates were obtained from humans (with and without a history of travel to Thailand prior to the infection), Danish pig or pork products, imported pig or pork products, turkeys, and animal feed. A total of 63 unique Xba...... was detected in tetracycline-resistant isolates. Statistical analysis and molecular subtyping identified the combination of travel to Thailand and consumption of imported pig or pork products as well consumption of as pig or pork products produced in Denmark as risk factors for Salmonella Rissen infection...

  12. beta-Lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands

    DEFF Research Database (Denmark)

    Hasman, Henrik; Mevius, D.; Veldman, K.

    2005-01-01

    Objectives: The purpose of this work was to study the genetic determinants responsible for extended-spectrum beta-lactamase (ESBL) resistance of Salmonella isolated from Dutch poultry, poultry meat and hospitalized humans. Methods: Thirty-four ESBL-resistant Salmonella isolates from The Netherlands...... were tested towards 21 antimicrobial agents. PCR and sequencing were used to determine the underlying genetic determinants responsible for the ESBL phenotypes. The transferability of the ESBL phenotypes was tested by conjugation to a susceptible Salmonella enterica serovar Dublin and plasmid....... Finally, the bla(ACC-1) gene was cloned from a S. Bareilly isolate and was found to be present on indistinguishable plasmids in all S. Bareilly isolates examined as well as in a S. Braenderup isolate and a S. Infantis isolate. Conclusions: Our data underscore the diversity of ESBL genes in Salmonella...

  13. Molecular characterization of Salmonella enterica serotype Enteritidis isolates from food and human samples by serotyping, antimicrobial resistance, plasmid profiling, (GTG5-PCR and ERIC-PCR

    Directory of Open Access Journals (Sweden)

    F. Fardsanei

    2016-11-01

    Full Text Available In recent years, Salmonella enterica serovar Enteritidis has been a primary cause of human salmonellosis in many countries. The major objective of this study was to investigate genetic diversity among Salmonella Enteritidis strains from different origins (food and human by Enterobacterial Repetitive Intergenic Consensus (ERIC -PCR, as well as to assess their plasmid profiling and antimicrobial resistance. A total of 30 Salmonella Enteritidis isolates, 15 from food samples (chicken, lamb, beef and duck meats and 15 from clinical samples were collected in Tehran. Identification of isolates as Salmonella was confirmed by using conventional standard biochemical and serological tests. Multiplex-PCR was used for serotyping of isolates to identify Salmonella Enteritidis. Antimicrobial susceptibility testing to 16 agents founds drug resistance patterns among Salmonella Enteritidis isolates. No resistance was observed to cephalexin, ceftriaxone, ceftazidime and cefotaxime, ciprofloxacin, imipenem or meropenem, chloramphenicol and gentamicin. The highest resistance (96.7% was observed to nitrofurantoin. Seven plasmid profiles (P1–P7 were detected, and a 68-kb plasmid was found in all isolates. Two different primers; ERIC and (GTG5 were used for genotyping, which each produced four profiles. The majority of clinical and food isolates fell into two separate common types (CTs with a similar percentage of 95% by ERIC-PCR. Using primer (GTG5, 29 isolates incorporated in three CTs with 70% of isolates showing a single banding pattern. Limited genetic diversity among human and food isolates of Salmonella Enteritidis may indicate that contaminated foods were possibly the source of human salmonellosis. These results confirmed that ERIC-PCR genotyping has limited discriminatory power for Salmonella Enteritidis of different origin.

  14. Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses

    Directory of Open Access Journals (Sweden)

    Williams P

    2008-10-01

    Full Text Available Abstract Background The successful interaction of bacterial pathogens with host tissues requires the sensing of specific chemical and physical cues. The human gut contains a huge number of neurons involved in the secretion and sensing of a class of neuroendocrine hormones called catecholamines. Recently, in Escherichia coli O157:H7, the catecholamines adrenaline and noradrenaline were shown to act synergistically with a bacterial quorum sensing molecule, autoinducer 3 (AI-3, to affect bacterial virulence and motility. We wished to investigate the impact of adrenaline on the biology of Salmonella spp. Results We have determined the effect of adrenaline on the transcriptome of the gut pathogen Salmonella enterica serovar Typhimurium. Addition of adrenaline led to an induction of key metal transport systems within 30 minutes of treatment. The oxidative stress responses employing manganese internalisation were also elicited. Cells lacking the key oxidative stress regulator OxyR showed reduced survival in the presence of adrenaline and complete restoration of growth upon addition of manganese. A significant reduction in the expression of the pmrHFIJKLM antimicrobial peptide resistance operon reduced the ability of Salmonella to survive polymyxin B following addition of adrenaline. Notably, both phenotypes were reversed by the addition of the β-adrenergic blocker propranolol. Our data suggest that the BasSR two component signal transduction system is the likely adrenaline sensor mediating the antimicrobial peptide response. Conclusion Salmonella are able to sense adrenaline and downregulate the antimicrobial peptide resistance pmr locus through the BasSR two component signalling system. Through iron transport, adrenaline may affect the oxidative stress balance of the cell requiring OxyR for normal growth. Both adrenaline effects can be inhibited by the addition of the β-adrenergic blocker propranolol. Adrenaline sensing may provide an environmental

  15. Temporal fluctuation of multidrug resistant salmonella typhi haplotypes in the mekong river delta region of Vietnam.

    Directory of Open Access Journals (Sweden)

    Kathryn E Holt

    2011-01-01

    Full Text Available typhoid fever remains a public health problem in Vietnam, with a significant burden in the Mekong River delta region. Typhoid fever is caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. Typhi, which is frequently multidrug resistant with reduced susceptibility to fluoroquinolone-based drugs, the first choice for the treatment of typhoid fever. We used a GoldenGate (Illumina assay to type 1,500 single nucleotide polymorphisms (SNPs and analyse the genetic variation of S. Typhi isolated from 267 typhoid fever patients in the Mekong delta region participating in a randomized trial conducted between 2004 and 2005.the population of S. Typhi circulating during the study was highly clonal, with 91% of isolates belonging to a single clonal complex of the S. Typhi H58 haplogroup. The patterns of disease were consistent with the presence of an endemic haplotype H58-C and a localised outbreak of S. Typhi haplotype H58-E2 in 2004. H58-E2-associated typhoid fever cases exhibited evidence of significant geo-spatial clustering along the Sông H u branch of the Mekong River. Multidrug resistance was common in the established clone H58-C but not in the outbreak clone H58-E2, however all H58 S. Typhi were nalidixic acid resistant and carried a Ser83Phe amino acid substitution in the gyrA gene.the H58 haplogroup dominates S. Typhi populations in other endemic areas, but the population described here was more homogeneous than previously examined populations, and the dominant clonal complex (H58-C, -E1, -E2 observed in this study has not been detected outside Vietnam. IncHI1 plasmid-bearing S. Typhi H58-C was endemic during the study period whilst H58-E2, which rarely carried the plasmid, was only transient, suggesting a selective advantage for the plasmid. These data add insight into the outbreak dynamics and local molecular epidemiology of S. Typhi in southern Vietnam.

  16. An association of genotypes and antimicrobial resistance patterns among Salmonella isolates from pigs and humans in Taiwan.

    Directory of Open Access Journals (Sweden)

    Hung-Chih Kuo

    Full Text Available We collected 110 Salmonella enterica isolates from sick pigs and determined their serotypes, genotypes using pulsed-field gel electrophoresis (PFGE, and antimicrobial susceptibility to 12 antimicrobials and compared the data with a collection of 18,280 isolates obtained from humans. The pig isolates fell into 12 common serovars for human salmonellosis in Taiwan; S. Typhimurium, S. Choleraesuis, S. Derby, S. Livingstone, and S. Schwarzengrund were the 5 most common serovars and accounted for a total of 84% of the collection. Of the 110 isolates, 106 (96% were multidrug resistant (MDR and 48 (44% had PFGE patterns found in human isolates. S. Typhimurium, S. Choleraesuis, and S. Schwarzengrund were among the most highly resistant serovars. The majority of the 3 serovars were resistant to 8-11 of the tested antimicrobials. The isolates from pigs and humans sharing a common PFGE pattern displayed identical or very similar resistance patterns and Salmonella strains that caused severe infection in pigs were also capable of causing infections in humans. The results indicate that pigs are one of the major reservoirs to human salmonellosis in Taiwan. Almost all of the pig isolates were MDR, which highlights the necessity of strictly regulating the use of antimicrobials in the agriculture sector in Taiwan.

  17. An association of genotypes and antimicrobial resistance patterns among Salmonella isolates from pigs and humans in Taiwan.

    Science.gov (United States)

    Kuo, Hung-Chih; Lauderdale, Tsai-Ling; Lo, Dan-Yuan; Chen, Chiou-Lin; Chen, Pei-Chen; Liang, Shiu-Yun; Kuo, Jung-Che; Liao, Ying-Shu; Liao, Chun-Hsing; Tsao, Chi-Sen; Chiou, Chien-Shun

    2014-01-01

    We collected 110 Salmonella enterica isolates from sick pigs and determined their serotypes, genotypes using pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility to 12 antimicrobials and compared the data with a collection of 18,280 isolates obtained from humans. The pig isolates fell into 12 common serovars for human salmonellosis in Taiwan; S. Typhimurium, S. Choleraesuis, S. Derby, S. Livingstone, and S. Schwarzengrund were the 5 most common serovars and accounted for a total of 84% of the collection. Of the 110 isolates, 106 (96%) were multidrug resistant (MDR) and 48 (44%) had PFGE patterns found in human isolates. S. Typhimurium, S. Choleraesuis, and S. Schwarzengrund were among the most highly resistant serovars. The majority of the 3 serovars were resistant to 8-11 of the tested antimicrobials. The isolates from pigs and humans sharing a common PFGE pattern displayed identical or very similar resistance patterns and Salmonella strains that caused severe infection in pigs were also capable of causing infections in humans. The results indicate that pigs are one of the major reservoirs to human salmonellosis in Taiwan. Almost all of the pig isolates were MDR, which highlights the necessity of strictly regulating the use of antimicrobials in the agriculture sector in Taiwan.

  18. Occurrence of extended-spectrum and AmpC β-lactamases in multiple drug resistant Salmonella isolates from clinical samples in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Akinyemi KO

    2017-01-01

    Full Text Available KO Akinyemi,1 Bamidele Abiodun Iwalokun,2 Akeeb O Bola Oyefolu,1 CO Fakorede1 1Department of Microbiology, Lagos State University, Ojo, 2Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria Purpose: Salmonella spp. are important foodborne pathogens exhibiting increasing resistance to antimicrobial drugs. Resistance to broad-spectrum β-lactams, mediated by extended-spectrum β-lactamase (ESBL and AmpC β-lactamase enzymes is fast spreading and has had negative impacts on the clinical outcomes, particularly on third-generation cephalosporins. This study investigated the carriage of AmpC gene among multidrug-resistant Salmonella spp. from Lagos, Nigeria. Methods: Forty Salmonella spp. from clinical samples (S. typhi = 13; S. typhimurium = 10; S. enteritidis = 8; S. choleraesuis = 5; S. paratyphi = 4 were subjected to in vitro susceptibility test by disk diffusion methods. Isolates that were resistant to cefoxitin and third-generation cephalosporins were screened for ESBL (Double Disk Synergy Test Method and AmpC enzyme (AmpC disk test production. Detection of AmpC fox gene was carried out by polymerase chain reaction. Results: Thirty-two (80% of the Salmonella isolates were cefoxitin resistant. Plasmid-mediated AmpC β-lactamase and ESBL enzymes were recorded in 10/40 (25% and 16/40 (40% of the Salmonella isolates, respectively. Specifically, 16/40 (40% of the Salmonella isolates possessed 380 bp AmpC fox gene, with the highest occurrence found in S. typhi strains (43.8% followed by S. typhimurium (25%. There was no AmpC fox gene detected in S. paratyphi strains. Interestingly, coproduction of enzymes occurred in some of the isolates, raising fears of resistance to a multitude of antibiotics in the treatment of bacterial infections. Conclusion: Emergence of AmpC β-lactamase–producing Salmonella isolates in our environment was recorded for the first time, raising concern on increased

  19. Prevalence, serotype diversity, and antimicrobial resistance of Salmonella in imported shipments of spice offered for entry to the United States, FY2007-FY2009.

    Science.gov (United States)

    Van Doren, Jane M; Kleinmeier, Daria; Hammack, Thomas S; Westerman, Ann

    2013-06-01

    In response to increased concerns about spice safety, the U.S. FDA initiated research to characterize the prevalence of Salmonella in imported spices. Shipments of imported spices offered for entry to the United Sates were sampled during the fiscal years 2007-2009. The mean shipment prevalence for Salmonella was 0.066 (95% CI 0.057-0.076). A wide diversity of Salmonella serotypes was isolated from spices; no single serotype constituted more than 7% of the isolates. A small percentage of spice shipments were contaminated with antimicrobial-resistant Salmonella strains (8.3%). Trends in shipment prevalence for Salmonella associated with spice properties, extent of processing, and export country, were examined. A larger proportion of shipments of spices derived from fruit/seeds or leaves of plants were contaminated than those derived from the bark/flower of spice plants. Salmonella prevalence was larger for shipments of ground/cracked capsicum and coriander than for shipments of their whole spice counterparts. No difference in prevalence was observed between shipments of spice blends and non-blended spices. Some shipments reported to have been subjected to a pathogen reduction treatment prior to being offered for U.S. entry were found contaminated. Statistical differences in Salmonella shipment prevalence were also identified on the basis of export country. Published by Elsevier Ltd.

  20. Isolation, antibiogram and pathogenicity of Salmonella spp. Recovered from slaughtered food animals in Nagpur region of Central India

    Directory of Open Access Journals (Sweden)

    D. G. Kalambhe

    2016-02-01

    Full Text Available Aim: To determine the prevalence, antibiogram and pathogenicity of Salmonella spp. in the common food animals slaughtered for consumption purpose at government approved slaughter houses located in and around Nagpur region during a period of 2010-2012. Materials and Methods: A total of 400 samples comprising 50 each of blood and meat from each slaughtered male cattle, buffaloes, pigs and goats were collected. Isolation was done by pre-enrichment in buffered peptone water and enrichment in Rappaport-Vassiliadis broth with subsequent selective plating onto xylose lysine deoxycholate agar. Presumptive Salmonella colonies were biochemically confirmed and analyzed for pathogenicity by hemolysin production and Congo red dye binding assay (CRDA. An antibiotic sensitivity test was performed to assess the antibiotic resistance pattern of the isolates. Results: A total of 10 isolates of Salmonella spp. from meat (3 from cattle, 1 from buffaloes and 6 from pigs with an overall prevalence of 5% among food animals was recorded. No isolation was reported from any blood samples. Pathogenicity assays revealed 100% and 80% positivity for CRDA and hemolytic activity, respectively. Antimicrobial sensitivity test showed multi-drug resistance. The overall resistance of 50% was noted for trimethoprim followed by ampicillin (20%. A maximum sensitivity (80% was reported to gentamycin followed by 40% each to ampicillin and trimethoprim, 30% to amikacin and 10% to kanamycin. Conclusion: The presence of multidrug resistant and potentially pathogenic Salmonella spp. in slaughtered food animals in Nagpur region can be a matter of concern for public health.

  1. Complete Sequences of Six IncA/C Plasmids of Multidrug-Resistant Salmonella enterica subsp. enterica Serotype Newport.

    Science.gov (United States)

    Cao, Guojie; Allard, Marc W; Hoffmann, Maria; Monday, Steven R; Muruvanda, Tim; Luo, Yan; Payne, Justin; Rump, Lydia; Meng, Kevin; Zhao, Shaohua; McDermott, Patrick F; Brown, Eric W; Meng, Jianghong

    2015-02-26

    Multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Newport has been a long-standing public health concern in the United States. We present the complete sequences of six IncA/C plasmids from animal-derived MDR S. Newport ranging from 80.1 to 158.5 kb. They shared a genetic backbone with S. Newport IncA/C plasmids pSN254 and pAM04528. Copyright © 2015 Cao et al.

  2. Prolonged restaurant-associated outbreak of multidrug-resistant Salmonella Typhimurium among patients from several European countries

    DEFF Research Database (Denmark)

    Ethelberg, S.; Lisby, M.; Torpdahl, M.

    2004-01-01

    This report concerns a prolonged restaurant-associated outbreak of infection caused by a multidrug-resistant (ASSuT) strain of Salmonella Typhimurium, phage-type U302, which took place during July and August 2003 and affected people from Denmark and neighbouring countries who had attended...... a specific restaurant. The outbreak comprised 67 laboratory-verified cases and ten probable cases; however, the actual number of patients was estimated to be more than 390. The outbreak strain was isolated from a buffet which was probably contaminated by an assistant chef who was found to excrete...

  3. Nalidixic acid-resistant Salmonella enteric serotype typhi infection presenting with sub-intestinal obstruction and mesenteric adenitis

    International Nuclear Information System (INIS)

    Al-Khuwaitir, Tarig S.; Al-Zuhair, Amin A.; Al-Ghamdi, Ali G.; Khan, A.

    2008-01-01

    Nalidixic acid-resistant Salmonella typhi NARST infections increase minimal inhibitory concentrations of fluoroquinolones, due to chromosomal mutations in the gene encoding DNA gyrase, and can lead to a delayed treatment response. This in turn alters the course of the disease allowing for a protracted period of illness and the occurrence of complications. In this case report, we present a patient from the Indian sub-continent, who was diagnosed with NARST complicated by sub-intestinal obstruction, her diagnosis, treatment and subsequent recovery. (author)

  4. Salmonella O48 Serum Resistance is Connected with the Elongation of the Lipopolysaccharide O-Antigen Containing Sialic Acid

    Directory of Open Access Journals (Sweden)

    Aleksandra Pawlak

    2017-09-01

    Full Text Available Complement is one of the most important parts of the innate immune system. Some bacteria can gain resistance against the bactericidal action of complement by decorating their outer cell surface with lipopolysaccharides (LPSs containing a very long O-antigen or with specific outer membrane proteins. Additionally, the presence of sialic acid in the LPS molecules can provide a level of protection for bacteria, likening them to human cells, a phenomenon known as molecular mimicry. Salmonella O48, which contains sialic acid in the O-antigen, is the major cause of reptile-associated salmonellosis, a worldwide public health problem. In this study, we tested the effect of prolonged exposure to human serum on strains from Salmonella serogroup O48, specifically on the O-antigen length. After multiple passages in serum, three out of four tested strains became resistant to serum action. The gas-liquid chromatography/tandem mass spectrometry analysis showed that, for most of the strains, the average length of the LPS O-antigen increased. Thus, we have discovered a link between the resistance of bacterial cells to serum and the elongation of the LPS O-antigen.

  5. Prevalência e perfil de resistência a antimicrobianos de sorovares de Salmonella isolados de lingüiças suínas tipo frescal em Lages, SC Prevalence and profile of resistance to antimicrobials of Salmonella serovars isolated from raw pork sausage in Lages, SC

    Directory of Open Access Journals (Sweden)

    D.A. Spricigo

    2008-04-01

    Full Text Available The prevalence and profile of resistance to antimicrobials of Salmonella serovars isolated from raw pork sausage were studied in Lages county, Santa Catarina, Brazil. A total of 125 samples of 12 trademarks were collected in different commercial establishments. Salmonella sp. was present in 12.8% (16/125 of the samples and Typhimurium serovar was the most prevalent. Fourteen different antimicrobials were tested and most of the samples showed resistance to sulfonamide and tetracycline (81.2%. Eight positive samples (50% were resistant at least to four antimicrobials, being considered as multi-resistant Salmonella. Seven (58.3% trademarks were disagreement with the Brazilian law, representing a risk to the public health. The high level of resistance to the antimicrobials should produce a concern by the pig industry and veterinarians in order to prevent the transmission of resistant strains through the food chain.

  6. The attribution of human infections with antimicrobial resistant Salmonella bacteria in Denmark to sources of animal origin

    DEFF Research Database (Denmark)

    Hald, Tine; Lo Fo Wong, Danilo M. A.; Aarestrup, Frank Møller

    2007-01-01

    Based on the Danish Salmonella surveillance in 2000-2001, we developed a mathematical model for quantifying the contribution of each major animal-food sources to human salmonellosis caused by antimicrobial resistant bacteria. Domestic food products accounted for 53.1% of all cases, mainly caused......, but infections with multidrug- and quinolone-resistant isolates were more commonly caused by imported food products and travelling, emphasizing the need for a global perspective on food safety and antimicrobial usage....... by table eggs (37.6%). A large proportion (19%) of cases were travel related, while 18% could not be associated with any source. Imported food products accounted for 9.5% of all cases; the most important source being imported chicken. Multidrug and quinolone resistance was rarely found in cases acquired...

  7. Assessment of antibiotic resistance of Escherichia coli isolates and screening of Salmonella spp. in wild ungulates from Portugal.

    Science.gov (United States)

    Dias, Diana; Torres, Rita T; Kronvall, Göran; Fonseca, Carlos; Mendo, Sónia; Caetano, Tânia

    2015-09-01

    Antibiotic resistance is an emerging global problem. Wild animals are rarely exposed to antibiotics and therefore low levels of antibiotic resistance are expected. However, the growing interactions of these animals with humans and livestock may have a huge impact on their bacterial flora. This study aimed to assess the levels of antibiotic resistance in Escherichia coli isolated from widespread wild ungulates in Portugal. The interpretation of inhibition zone diameters was performed according to clinical breakpoints and epidemiological cut-offs, determined with the normalized resistance interpretation (NRI) method. For clinical breakpoints, 16% of the isolates were resistant to at least one antibiotic, including ampicillin (10%), tetracycline (9%), streptomycin (5%) co-trimoxazole (4%), amoxicillin/clavulanic acid (1%) and cefoxitin (1%). The levels of resistance detected in E. coli strains isolated from wild boar were statistically different for ampicillin and co-trimoxasol. According to NRI cut-offs, 10% of the population showed a non-wild-type phenotype against at least one antibiotic, also including tetracycline (9%), co-trimoxazole (6%), streptomycin (4%), ampicillin (2%) and amoxicillin/clavulanic acid (1%). Considering this parameter of comparison, no statistically different levels of resistance were identified between E. coli recovered from the three wild ungulates. Screening of Salmonella spp., which can be potentially pathogenic, was also performed, revealing that its prevalence was very low (1.5%). The study demonstrated that wild ungulates from Portugal are also reservoirs of antibiotic-resistant bacteria. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety.

    Science.gov (United States)

    Vital, Pierangeli G; Caballes, Marie Bernadine D; Rivera, Windell L

    2017-09-02

    Foodborne diseases associated with fresh produce consumption have escalated worldwide, causing microbial safety of produce of critical importance. Bacteria that have increasingly been detected in fresh produce are Escherichia coli and Salmonella spp., both of which have been shown to progressively display antimicrobial resistance. The study focused on the assessment of antimicrobial resistance of these enteric bacteria from different kinds of fresh produce from various open air markets and supermarkets in the Philippines. Using the disk diffusion assay on a total of 50 bacterial isolates obtained from 410 fresh produce surveyed, monoresistance to tetracycline was observed to be the most prevalent (38%), followed by multidrug resistance to tetracycline, chloramphenicol, ciprofloxacin, and nalidixic acid (4%), and lastly by dual resistance to tetracycline and chloramphenicol (2%). Using multiplex and simplex polymerase chain reaction (PCR) assays, tetA (75%) and tetB (9%) were found in tetracycline resistant isolates, whereas catI (67%) and catIII (33%) were detected in chloramphenicol resistant isolates. Sequence analysis of gyr and par genes from the ciprofloxacin and nalidixic acid resistant isolates revealed different mutations. Based on the results, fresh produce act as a reservoir of these antibiotic resistant bacteria which may pose health threat to consumers.

  9. Occurrence and antimicrobial resistance of pathogenic Escherichia coli and Salmonella spp. in retail raw table eggs sold for human consumption in Enugu state, Nigeria

    Science.gov (United States)

    Okorie-Kanu, O. Josephine; Ezenduka, E. Vivienne; Okorie-Kanu, C. Onwuchokwe; Ugwu, L. Chinweokwu; Nnamani, U. John

    2016-01-01

    Aim: This study was conducted to investigate the occurrence of pathogenic Escherichia coli and Salmonella species in retail raw table eggs sold for human consumption in Enugu State and to determine the resistance of these pathogens to antimicrobials commonly used in human and veterinary practices in Nigeria. Materials and Methods: A total of 340 raw table eggs comprising 68 composite samples (5 eggs per composite sample) were collected from five selected farms (13 composite samples from the farms) and 10 retail outlets (55 composite samples from the retail outlets) in the study area over a period of 4-month (March-June, 2014). The eggs were screened for pathogenic E. coli and Salmonella species following standard procedures within 24 h of sample collection. Isolates obtained were subjected to in-vitro antimicrobial susceptibility test with 15 commonly used antimicrobials using the disk diffusion method. Results: About 37 (54.4%) and 7 (10.3%) of the 68 composite samples were positive for pathogenic E. coli and Salmonella species, respectively. The shells showed significantly higher (p0.05). The organisms obtained showed a multiple drug resistance. They were completely resistant to nitrofurantoin, sulfamethoxazole/trimethoprim, penicillin G and oxacillin. In addition to these, Salmonella spp. also showed 100% resistance to tetracycline. The pathogenic E. coli isolates obtained were 100% susceptible to gentamicin, neomycin, ciprofloxacin, and amoxicillin-clavulanic acid while Salmonella spp. showed 100% susceptibility to erythromycin, neomycin, and rifampicin. Both organisms showed varying degrees of resistance to streptomycin, amoxicillin, vancomycin, and doxycycline. Conclusion: From the results of the study, it can be concluded that the raw table eggs marketed for human consumption in Enugu State, Nigeria is contaminated with pathogenic E. coli and Salmonella species that showed multiple drug resistance to antimicrobial agents commonly used in veterinary and human

  10. Sequence Analysis of IncA/C and IncI1 Plasmids Isolated from Multidrug-Resistant Salmonella Newport Using Single-Molecule Real-Time Sequencing.

    Science.gov (United States)

    Cao, Guojie; Allard, Marc; Hoffmann, Maria; Muruvanda, Tim; Luo, Yan; Payne, Justin; Meng, Kevin; Zhao, Shaohua; McDermott, Patrick; Brown, Eric; Meng, Jianghong

    2018-04-05

    Multidrug-resistant (MDR) plasmids play an important role in disseminating antimicrobial resistance genes. To elucidate the antimicrobial resistance gene compositions in A/C incompatibility complex (IncA/C) plasmids carried by animal-derived MDR Salmonella Newport, and to investigate the spread mechanism of IncA/C plasmids, this study characterizes the complete nucleotide sequences of IncA/C plasmids by comparative analysis. Complete nucleotide sequencing of plasmids and chromosomes of six MDR Salmonella Newport strains was performed using PacBio RSII. Open reading frames were assigned using prokaryotic genome annotation pipeline (PGAP). To understand genomic diversity and evolutionary relationships among Salmonella Newport IncA/C plasmids, we included three complete IncA/C plasmid sequences with similar backbones from Salmonella Newport and Escherichia coli: pSN254, pAM04528, and peH4H, and additional 200 draft chromosomes. With the exception of canine isolate CVM22462, which contained an additional IncI1 plasmid, each of the six MDR Salmonella Newport strains contained only the IncA/C plasmid. These IncA/C plasmids (including references) ranged in size from 80.1 (pCVM21538) to 176.5 kb (pSN254) and carried various resistance genes. Resistance genes floR, tetA, tetR, strA, strB, sul, and mer were identified in all IncA/C plasmids. Additionally, bla CMY-2 and sugE were present in all IncA/C plasmids, excepting pCVM21538. Plasmid pCVM22462 was capable of being transferred by conjugation. The IncI1 plasmid pCVM22462b in CVM22462 carried bla CMY-2 and sugE. Our data showed that MDR Salmonella Newport strains carrying similar IncA/C plasmids clustered together in the phylogenetic tree using chromosome sequences and the IncA/C plasmids from animal-derived Salmonella Newport contained diverse resistance genes. In the current study, we analyzed genomic diversities and phylogenetic relationships among MDR Salmonella Newport using complete plasmids and chromosome

  11. Human isolates of Salmonella enterica serovar Typhimurium from Taiwan displayed significantly higher levels of antimicrobial resistance than those from Denmark.

    Science.gov (United States)

    Torpdahl, Mia; Lauderdale, Tsai-Ling; Liang, Shiu-Yun; Li, Ishien; Wei, Sung-Hsi; Chiou, Chien-Shun

    2013-02-01

    Salmonella enterica serovar Typhimurium is a major zoonotic pathogen with a high prevalence of antimicrobial resistance. This pathogen can disseminate across borders and spread far distances via the food trade and international travel. In this study, we compared the genotypes and antimicrobial resistance of 378 S. Typhimurium isolates collected in Taiwan and Denmark between 2009 and 2010. Genotyping revealed that many S. Typhimurium strains were concurrently circulating in Taiwan, Denmark and other countries in 2009 and 2010. When compared to the isolates collected from Denmark, the isolates from Taiwan displayed a significantly higher level of resistance to 11 of the 12 tested antimicrobials. Seven genetic clusters (A-G) were designated for the isolates. A high percentage of the isolates in genetic clusters C, F and G were multidrug-resistant. Of the isolates in cluster C, 79.2% were ASSuT-resistant, characterized by resistance to ampicillin, streptomycin, sulfamethoxazole, and tetracycline. In cluster F, 84.1% of the isolates were ACSSuT-resistant (resistant to ASSuT and chloramphenicol). Cluster G was unique to Taiwan and characterized in most isolates by the absence of three VNTRs (ST20, ST30 and STTR6) as well as a variety of multidrug resistance profiles. This cluster exhibited very high to extremely high levels of resistance to several first-line drugs, and among the seven clusters, it displayed the highest levels of resistance to cefotaxime and ceftazidime, ciprofloxacin and gentamicin. The high prevalence of antimicrobial resistance in S. Typhimurium from Taiwan highlights the necessity to strictly regulate the use of antimicrobials in the agriculture and human health care sectors. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Evaluation of antimicrobial resistance among Salmonella and Shigella isolates in the University Hospital "St. George," Plovdiv, Bulgaria.

    Science.gov (United States)

    Petrov, Michael M; Petrova, Atanaska; Stanimirova, Irina; Mircheva-Topalova, Marina; Koycheva, Lalka; Velcheva, Rayna; Stoycheva-Vartigova, Mariana; Raycheva, Ralitsa; Asseva, Galina; Petrov, Petar; Kardjeva, Velichka; Murdjeva, Marianna

    2017-03-01

    The aim of this work is to study the epidemiology and antimicrobial resistance to the most commonly used antibiotics for the treatment of acute gastroenteritis caused by Salmonella and Shigella at the largest Bulgarian hospital-University Hospital "St. George," Plovdiv-for the period 2009-2013. Two hundred ninety strains were in vitro tested for resistance to 15 antimicrobial agents. The presence of extended-spectrum beta-lactamases (ESBLs) was demonstrated by a variety of specialized tests. For comparison, a collection of 28 strains submitted by the National Reference Laboratory (NRL) "Enteric Infections" at the National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, was also tested for the production of ESBLs. In isolates, phenotypically demonstrated as ESBL producers, polymerase chain reaction (PCR) detection of the genes bla-CTX-M, bla-SHV, and bla-TEM was performed. Among the 290 tested isolates, only two- Salmonella serotype Livingstone and Shigella flexneri-were phenotypically proven to be ESBL producers. Only 4 strains from the collection of 28, submitted from the NRL "Intestinal Infections" in NCIPD, Sofia, were phenotypically confirmed as ESBL producers. The presence of the bla-CTX-M gene was detected in all of the tested strains (4 from NRL, NCIPD, Sofia, and 2 from the University Hospital St. George, Plovdiv), the bla-SHV gene only in strain S. Livingstone from Plovdiv, and the bla-TEM gene in two from Sofia and one (again S. Livingstone) from Plovdiv. In conclusion, Salmonella and Shigella isolates from patients hospitalized at the University Hospital St. George, Plovdiv, with acute gastroenteritis demonstrate good susceptibility to the most commonly used antibiotic agents, including azithromycin.

  13. Microarray-based analysis of IncA/C plasmid-associated genes from multidrug-resistant Salmonella enterica.

    Science.gov (United States)

    Lindsey, Rebecca L; Frye, Jonathan G; Fedorka-Cray, Paula J; Meinersmann, Richard J

    2011-10-01

    In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.

  14. Prevalence of enterobacteriaceae in Tupinambis merianae (Squamata: Teiidae from a captive facility in Central Brazil, with a profile of antimicrobial drug resistance in Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Andréa de Moraes Carvalho

    2013-06-01

    Full Text Available The present study reports the presence of enterobacteriaceae in Tegu Lizards (Tupinambis merianaefrom a captive facility in central Brazil. From a total of 30 animals, 10 juveniles and 20 adults (10 males, 10 females, 60 samples were collected, in two periods separated by 15 days. The samples were cultivated in Xylose-lysine-deoxycholate agar (XLT4 and MacConkey agar. The Salmonella enterica were tested for antimicrobial susceptibility. A total of 78 bacteria was isolated, of wich 27 were from juveniles of T. merianae, 30 from adult males and 21 from adult females. Salmonella enterica was the most frequent bacteria followed by Citrobacter freundii, Escherichia coli, Enterobacter sakasakii, Kluivera sp., Citrobacter amalonaticus, Serratia marcescens, Citrobacter diversus, Yersinia frederiksenii, Serratia odorifera, and Serratia liquefaciens. Salmonella enterica subsp. diarizonae and houtenae showed resistance to cotrimoxazole, and serum Salmonella enterica Worthington showed resistance to tetracycline and gentamicin. Salmonella enterica Panama and S. enterica subsp. diarizonae showed intermediate sensitivity to cotrimoxazole. In addition to Enterobacteriaceae in the Tegu lizard, pathogenic serotypes of S. enterica also occur, and their antimicrobial resistance was confirmed.

  15. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18

    DEFF Research Database (Denmark)

    Parkhill, J.; Dougan, G.; James, K.D.

    2001-01-01

    Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities(1). Many S. enterica serovars actively invade the mucosal surface...

  16. SEROTYPES AND ANTIMICROBIAL RESISTANCE OF SALMONELLA ENTERICA SSP IN CENTRAL THAILAND, 2001-2006

    DEFF Research Database (Denmark)

    Pantip, Sirichote; Aroon, B.; Kanokwan, Tienmanee

    2010-01-01

    This study was carried out to elucidate the epidemiological trends and antimicrobial susceptibilities against Salmonella serovars among Thai patients and asymptomatic carriers during 2001-2006 in central Thailand. A total of 1,401 human and 260 non-human isolates from various sources were include...

  17. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids From Whole Genome Sequences of Salmonella enterica Serovars From Humans in Ghana

    Directory of Open Access Journals (Sweden)

    Egle Kudirkiene

    2018-05-01

    Full Text Available In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either blaTEM52−B or blaCTX−M15 were present in two cephalosporin resistant isolates of S. Virchow and S. Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S. Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S. Typhimurium on plasmids of IncFII(S/IncFIB(S/IncQ1 type. In S. Virchow and in S. Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.

  18. The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family.

    Science.gov (United States)

    Douard, Gregory; Praud, Karine; Cloeckaert, Axel; Doublet, Benoît

    2010-12-20

    The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives.

  19. IND-2, a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells.

    Science.gov (United States)

    Karthikeyan, Chandrabose; Lee, Crystal; Moore, Joshua; Mittal, Roopali; Suswam, Esther A; Abbott, Kodye L; Pondugula, Satyanarayana R; Manne, Upender; Narayanan, Narayanan K; Trivedi, Piyush; Tiwari, Amit K

    2015-02-01

    Naturally occurring condensed quinolines have anticancer properties. In efforts to find active analogues, we designed and synthesized eight polycyclic heterocycles with a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline framework (IND series). The compounds were evaluated for activity against colon (HCT-116 and S1-MI-80), prostate (PC3 and DU-145), breast (MCF-7 and MDAMB-231), ovarian (ov2008 and A2780), and hepatocellular (HepG2) cancer cells and against non-cancerous Madin Darby canine kidney (MDCK), mouse embryonic fibroblast (NIH/3T3), and human embryonic kidney cells (HEK293). IND-2, a 4-chloro-2-methyl pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline, exhibited more than ten-fold selectivity and potent cytotoxic activity against colon cancer cells relative to the other cancer and non-cancer cells. With five additional colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo), IND-2 had similar cytotoxicity and selectivity, and sub-micromolar concentrations caused changes in the morphology of HCT-116 and HCT-15 cells. IND-2 did not activate the transactivating function of the pregnane X receptor (PXR), indicating that it does not induce PXR-regulated ABCB1 or ABCG2 transporters. Indeed, IND-2 was not a substrate of ABCB1 or ABCG2, and it induced cytotoxicity in HEK293 cells overexpressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. IND-2 was cytotoxic to resistant colon carcinoma S1-MI-80 cells, approximately three- and five-fold more than SN-38 and topotecan, respectively. In HCT-116 colon cancer cells, IND-2 produced concentration-dependent changes in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation. These findings suggest that, by increasing apoptosis, IND-2 has potential therapeutic efficacy for colorectal cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Longitudinal study of distributions of similar antimicrobial-resistant Salmonella serovars in pigs and their environment in two distinct swine production systems.

    Science.gov (United States)

    Keelara, Shivaramu; Scott, H Morgan; Morrow, William M; Gebreyes, Wondwossen A; Correa, Maria; Nayak, Rajesh; Stefanova, Rossina; Thakur, Siddhartha

    2013-09-01

    The aim of this longitudinal study was to determine and compare the prevalences and genotypic profiles of antimicrobial-resistant (AR) Salmonella isolates from pigs reared in antimicrobial-free (ABF) and conventional production systems at farm, at slaughter, and in their environment. We collected 2,889 pig fecal and 2,122 environmental (feed, water, soil, lagoon, truck, and floor swabs) samples from 10 conventional and eight ABF longitudinal cohorts at different stages of production (farrowing, nursery, finishing) and slaughter (postevisceration, postchill, and mesenteric lymph nodes [MLN]). In addition, we collected 1,363 carcass swabs and 205 lairage and truck samples at slaughter. A total of 1,090 Salmonella isolates were recovered from the samples; these were isolated with a significantly higher prevalence in conventionally reared pigs (4.0%; n = 66) and their environment (11.7%; n = 156) than in ABF pigs (0.2%; n = 2) and their environment (0.6%; n = 5) (P antimicrobial resistance (AR) were exhibited to tetracycline (71%), sulfisoxazole (42%), and streptomycin (17%). Multidrug resistance (resistance to ≥ 3 antimicrobials; MDR) was detected in 27% (n = 254) of the Salmonella isolates from the conventional system. Our study reports a low prevalence of Salmonella in both production systems in pigs on farms, while a higher prevalence was detected among the carcasses at slaughter. The dynamics of Salmonella prevalence in pigs and carcasses were reciprocated in the farm and slaughter environment, clearly indicating an exchange of this pathogen between the pigs and their surroundings. Furthermore, the phenotypic and genotypic fingerprint profile results underscore the potential role played by environmental factors in dissemination of AR Salmonella to pigs.

  1. In Vitro Development of Ciprofloxacin Resistance of Salmonella enterica Serovars Typhimurium, Enteritidis, and Indiana Isolates from Food Animals.

    Science.gov (United States)

    Zhang, Wen-Hui; Zhang, Chuan-Zhen; Liu, Zhi-Jie; Gu, Xi-Xi; Li, Wan; Yang, Ling; Liu, Ya-Hong; Zeng, Zhen-Ling; Jiang, Hong-Xia

    2017-09-01

    Difference in the development of resistance may be associated with the epidemiological spread and drug resistance of different Salmonella enterica serovar strains. In the present study, three susceptible S. enterica serovars, Typhimurium (ST), Enteritidis (SE), and Indiana (SI) strains, were subjected to stepwise selection with increasing ciprofloxacin concentrations. The results indicated that the mutation frequencies of the SI group were 10 1 -10 4 higher and developed resistance to ciprofloxacin more rapidly compared with the ST and SE groups. Ciprofloxacin accumulation in the SI strain was also higher than the other two strains in the presence of an efflux pump inhibitor. The development of ciprofloxacin resistance was quite different among the three serovar strains. In SI, increasing AcrAB-TolC efflux pump expression and single or double mutations in gyrA with or without a single parC mutation (T57S) were found in the development of ciprofloxacin resistance. In SE, an increase in the AcrAB-TolC efflux pump regulatory gene ramA gradually decreased as resistant bacteria developed; then resistance resulted from gyrA D87G and gyrB E466D mutations and/or in other active efflux pumps besides AcrAB-TolC. For ST, ramA expression increased rapidly along with gyrA D87 N and/or gyrB S464F mutations. In conclusion, persistent use of ciprofloxacin may aggravate the resistance of different S. enterica serovars and prudent use of the fluoroquinolones is needed. The quicker resistance and higher mutation frequency of the SI isolates present a potential public health threat.

  2. Diversity of pulsed-field gel electrophoresis pulsotypes, serovars, and antibiotic resistance among Salmonella isolates from wild amphibians and reptiles in the California Central Coast.

    Science.gov (United States)

    Gorski, Lisa; Jay-Russell, Michele T; Liang, Anita S; Walker, Samarpita; Bengson, Yingjia; Govoni, Jessica; Mandrell, Robert E

    2013-06-01

    A survey of cold-blooded vertebrates and associated surface waters in a produce-growing region on the Central California Coast was done between May and September 2011 to determine the diversity of Salmonella. Samples from 460 amphibians and reptiles and 119 water samples were collected and cultured for Salmonella. Animals sampled were frogs (n=331), lizards (n=59), newts (n=5), salamanders (n=6), snakes (n=39), and toads (n=20). Salmonella was isolated from 37 individual animals, including frogs, lizards, snakes, and toads. Snakes were the most likely to contain Salmonella, with 59% testing positive followed by 15.3% of lizards, 5% of toads, and 1.2% of frogs. Fifteen water samples (12.6%) were positive. Twenty-two different serovars were identified, and the majority of isolates were S. enterica subsp. IIIb, with subsp. I, II, and IIIa also found. The serovar isolated most frequently was S. enterica subsp. IIIb 16:z₁₀:e,n,x,z₁₅, from snakes and frogs in five different locations. S. enterica subsp. I serovar Typhimurium and the monophasic I 6,8:d:- were isolated from water, and subspecies I Duisburg and its variants were found in animals and water. Some samples contained more than one type of Salmonella. Analysis of pulsed-field gel electrophoresis pulsotypes indicated that some strains persisted in animals and water collected from the same location. Sixty-six isolates displayed antibiotic resistance, with 27 isolates resistant to more than one antibiotic, including a subspecies IIIb isolate from snake having resistance to five different antibiotics. Twenty-three isolates were resistant to more than one class of antibiotic, and six isolates were resistant to three classes. While these subspecies of IIIa and IIIb cause fewer instances of human illness, they may serve as reservoirs of antibiotic resistance, determinants in the environment, and be sources of contamination of leafy greens associated with product recalls.

  3. Nalidixic Acid-Resistant Salmonella enterica Serotype Typhi Presenting as a Primary Psoas Abscess: Case Report and Review of the Literature

    Science.gov (United States)

    Shakespeare, William A.; Davie, Daniel; Tonnerre, Claude; Rubin, Michael A.; Strong, Michael; Petti, Cathy A.

    2005-01-01

    We report an unusual case of Salmonella enterica serotype Typhi presenting as a primary psoas abscess. The isolate tested susceptible to ciprofloxacin but resistant to nalidixic acid in vitro, a pattern associated with fluoroquinolone therapeutic failures. We review the literature for serovar Typhi psoas abscess in the absence of bacteremia and discuss the importance of identifying isolates with reduced susceptibility to fluoroquinolones. PMID:15695728

  4. Nalidixic acid-resistant Salmonella enterica serotype Typhi presenting as a primary psoas abscess: case report and review of the literature.

    Science.gov (United States)

    Shakespeare, William A; Davie, Daniel; Tonnerre, Claude; Rubin, Michael A; Strong, Michael; Petti, Cathy A

    2005-02-01

    We report an unusual case of Salmonella enterica serotype Typhi presenting as a primary psoas abscess. The isolate tested susceptible to ciprofloxacin but resistant to nalidixic acid in vitro, a pattern associated with fluoroquinolone therapeutic failures. We review the literature for serovar Typhi psoas abscess in the absence of bacteremia and discuss the importance of identifying isolates with reduced susceptibility to fluoroquinolones.

  5. Characterization of a multidrug-resistant Salmonella enterica serovar Heidelberg outbreak strain in commercial turkeys: Colonization, transmission, and host transcriptional response

    Science.gov (United States)

    In recent years, multidrug-resistant (MDR) Salmonella enterica serovar Heidelberg has been associated with numerous human foodborne illness outbreaks due to consumption of poultry. For example, in 2011, an MDR S. Heidelberg outbreak associated with ground turkey sickened 136 individuals and resulted...

  6. Salmonella typhimurium DT104: a virulent and drug-resistant pathogen.

    OpenAIRE

    Poppe, C; Smart, N; Khakhria, R; Johnson, W; Spika, J; Prescott, J

    1998-01-01

    Salmonella typhimurium phage type (PT) or definitive type (DT) 104 is a virulent pathogen for humans and animals, particularly cattle. It has been isolated increasingly from humans and animals in the United Kingdom and several other European countries and, more recently, in the United States and Canada. Humans may acquire the infection from foods of animal origin contaminated with the infective organism. Farm families are particularly at risk of acquiring the infection by contact with infecte...

  7. Child morbidity of salmonellosis and the level of resistance of clinical isolates of salmonella to antibacterial preparations in saint Petersburg

    Directory of Open Access Journals (Sweden)

    N. V. Gonchar

    2015-01-01

    Full Text Available The aim of the study was to study the dynamics of the incidence of salmonellosis children in St. Petersburg and phenotypic resistance of clinical isolates of S. Enteritidis and S. Typhimurium to antibiotics in recent years. Materials and methods. The incidence of salmonellosis children studied according to the report for the first nine months of Rospotrebnadzor in 2013–2014. Incidence of salmonellosis in the structure of bacterial intestinal infections caused by pathogens in children hospitalized in the Department of intestinal infections in 2013–2014, studied according to annual reports. Antibiotic sensitivity was studied 86 Salmonella isolates (S. Enteritidis strain 64 and strain 22 S. Typhimurium, isolated from patients in children 2010–2014. Used the method of serial microdilution broth. Salmonella isolates were divided into sensitive, resistant, intermediate sensitivity to antibiotics. The Results. Analysis of the incidence of salmonellosis children of St. Petersburg has revealed its decline in 2014 (109.2 compared to 2013 (123,9 but relatively long-term average level was an increase in incidence (107,6. In the structure of salmonellosis in children prevailed salmonellosis Group D. In hospitalized children in the structure of bacterial intestinal infections detected Excess of share of salmonellosis in 2014 (36,9±3,4% compared to 2013 (24,5±2,4%; p <0,01. A reduction in the frequency sensitivity of S. Enteritidis to ampicillin, cefepime, ceftazidime and chloramphenicol. Compared to S. Enteritidis S. Typhimurium isolates were more resistant to ceftazidime and ampicillin, but more sensitive to ciprofloxacin. Conclusion. Morbidity of salmonellosis in recent years characterized by a relatively long-term average increase of the level. In the structure of salmonellosis in children prevailed salmonellosis Group D. There was a reduction of sensitivity S. Enteritidis isolates to cephalosporins new generations, and S. Typhimurium isolates

  8. Sobrevivência e perfil de resistência a antimicrobianos de Salmonella sp. isoladas em um sistema de tratamento de dejetos de suínos Survival and resistance patterns of Salmonella sp. isolated in a pig slurry treatment plant

    Directory of Open Access Journals (Sweden)

    Verônica Schmidt

    2003-10-01

    Full Text Available No presente estudo, foi avaliada a sobrevivência de Salmonella sp., presente em dejetos suínos, durante tratamento em um sistema de separação física e lagoas de estabilização ligadas em série. Nas amostras de Salmonella sp. isoladas foi determinado o perfil de resistência pelo método de difusão em ágar, usando 14 antimicrobianos. Das 20 coletas realizadas, foi possível isolar Salmonella sp. em 13 coletas no ponto correspondente ao início do sistema de tratamento e em apenas uma no ponto final do mesmo