WorldWideScience

Sample records for multi-cylinder internal combustion

  1. Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends

    Directory of Open Access Journals (Sweden)

    S. M. Ashrafur Rahman

    2018-03-01

    Full Text Available Essential oils are derived from not-fatty parts of plants and are mostly used in aromatherapy, as well as cosmetics and perfume production. The essential oils market is growing rapidly due to their claimed health benefits. However, because only therapeutic grade oil is required in the medicinal sector, there is a substantial low-value waste stream of essential oils that can be used in the transportation and agricultural sectors. This study investigated the influence of orange, eucalyptus, and tea tree oil on engine performance and combustion characteristics of a multi-cylinder compression ignition engine. Orange, eucalyptus, and tea tree oil were blended with diesel at 10% by volume. For benchmarking, neat diesel and 10% waste cooking biodiesel-diesel blend were also tested. The selected fuels were used to conduct engine test runs with a constant engine speed (1500 RPM (revolutions per minute at four loads. As the load increased, frictional power losses decreased for all of the fuel samples and thus mechanical efficiency increased. At higher loads (75% and 100%, only orange oil-diesel blends produced comparable power to diesel and waste cooking biodiesel-diesel blends. Fuel consumption (brake and indicated for the essential oil-diesel blends was higher when compared to base diesel and waste cooking biodiesel-diesel blends. Thermal efficiency for the essential oil-diesel blends was comparable to base diesel and waste cooking biodiesel-diesel blends. At higher loads, blow-by was lower for essential oil blends as compared to base diesel and waste cooking biodiesel-diesel blends. At 50% and 100% load, peak pressure was lower for all of the essential oil-diesel blends when compared to base diesel and waste cooking biodiesel-diesel blends. From the heat release rate curve, the essential oil-diesel blends ignition delay times were longer because the oils have lower cetane values. Overall, the low-value streams of these essential oils were found to be

  2. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  3. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  4. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  5. Internal combustion engine

    Science.gov (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  6. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  7. A first implementation of an efficient combustion strategy in a multi cylinder two-stage turbo CI-engine producing low emissions while consuming a gasoline/EHN blend

    NARCIS (Netherlands)

    Doornbos, G.; Somhorst, J.; Boot, M.D.

    2013-01-01

    A Gasoline Compression Ignition combustion strategy was developed and showed its capabilities in the heavy duty single cylinder test-cell, resulting in indicated efficiencies up to 50% and low engine out emissions applying to EU VI and US 10 legislations while the soot remained at a controllable 1.5

  8. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  9. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  10. Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets

    International Nuclear Information System (INIS)

    Sen, A.K.; Litak, G.; Finney, C.E.A.; Daw, C.S.; Wagner, R.M.

    2010-01-01

    In this paper we analyze data from previously reported experimental measurements of cycle-to-cycle combustion variations in a lean-fueled, multi-cylinder spark-ignition (SI) engine. We characterize the changes in the observed combustion dynamics with as-fed fuel-air ratio using conventional histograms and statistical moments, and we further characterize the shifts in combustion complexity in terms of multifractals and wavelet decomposition. Changes in the conventional statistics and multifractal structure indicate trends with fuel-air ratio that parallel earlier reported observations. Wavelet decompositions reveal persistent, non-stochastic oscillation modes at higher fuel-air ratios that were not obvious in previous analyses. Recognition of these long-time-scale, non-stochastic oscillations is expected to be useful for improving modelling and control of engine combustion variations and multi-cylinder balancing.

  11. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  12. Producer for vegetal combustibles for internal-combustion motors

    Energy Technology Data Exchange (ETDEWEB)

    1943-12-28

    A producer is described for internal-combustion motors fed with wood or agricultural byproducts characterized by the fact that its full operation is independent of the degree of wetness of the material used.

  13. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  14. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  15. Carburetor for internal combustion engines

    Science.gov (United States)

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  16. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  17. Experimental and regression analysis for multi cylinder diesel engine operated with hybrid fuel blends

    Directory of Open Access Journals (Sweden)

    Gopal Rajendiran

    2014-01-01

    Full Text Available The purpose of this research work is to build a multiple linear regression model for the characteristics of multicylinder diesel engine using multicomponent blends (diesel- pungamia methyl ester-ethanol as fuel. Nine blends were tested by varying diesel (100 to 10% by Vol., biodiesel (80 to 10% by vol. and keeping ethanol as 10% constant. The brake thermal efficiency, smoke, oxides of nitrogen, carbon dioxide, maximum cylinder pressure, angle of maximum pressure, angle of 5% and 90% mass burning were predicted based on load, speed, diesel and biodiesel percentage. To validate this regression model another multi component fuel comprising diesel-palm methyl ester-ethanol was used in same engine. Statistical analysis was carried out between predicted and experimental data for both fuel. The performance, emission and combustion characteristics of multi cylinder diesel engine using similar fuel blends can be predicted without any expenses for experimentation.

  18. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  19. Cold flow simulation of an internal combustion engine with vertical valves using layering approach

    Science.gov (United States)

    Martinas, G.; Cupsa, O. S.; Stan, L. C.; Arsenie, A.

    2015-11-01

    Complying with emission requirements and fuel consumption efficiency are the points which drive any development of internal combustion engine. Refinement of the process of combustion and mixture formation, together with in-cylinder flow refinement, is a requirement, valves and piston bowl and intake exhaust port design optimization is essential. In order to reduce the time for design optimization cycle it is used Computational Fluid Dynamics (CFD). Being time consuming and highly costly caring out of experiment using flow bench testing this methods start to become less utilized. Air motion inside the intake manifold is one of the important factors, which govern the engine performance and emission of multi-cylinder diesel engines. Any cold flow study on IC is targeting the process of identifying and improving the fluid flow inside the ports and the combustion chamber. This is only the base for an optimization process targeting to increase the volume of air accessing the combustion space and to increase the turbulence of the air at the end of the compression stage. One of the first conclusions will be that the valve diameter is a fine tradeoff between the need for a bigger diameter involving a greater mass of air filling the cylinder, and the need of a smaller diameter in order to reduce the blind zone. Here there is room for optimization studies. The relative pressure indicates a suction effect coming from the moving piston. The more the shape of the inlet port is smoother and the diameter of the piston is bigger, the aerodynamic resistance of the geometry will be smaller so that the difference of inlet port pressure and the pressure near to piston face will be smaller. Here again there is enough room for more optimization studies.

  20. Science review of internal combustion engines

    International Nuclear Information System (INIS)

    Taylor, Alex M.K.P.

    2008-01-01

    Internal combustion engines used in transportation produce about 23% of the UK's carbon dioxide emission, up from 14% in 1980. The current science described in this paper suggests that there could be 6-15% improvements in internal combustion fuel efficiency in the coming decade, although filters to meet emission legislation reduce these gains. Using these engines as hybrids with electric motors produces a reduction in energy requirements in the order of 21-28%. Developments beyond the next decade are likely to be dominated by four topics: emission legislation and emission control, new fuels, improved combustion and a range of advanced concepts for energy saving. Emission control is important because current methods for limiting nitrogen oxides and particulate emissions imply extra energy consumption. Of the new fuels, non-conventional fossil-derived fuels are associated with larger greenhouse gas emissions than conventional petroleum-based fuels, while a vehicle propelled by fuel cells consuming non-renewable hydrogen does not necessarily offer an improvement in emissions over the best hybrid internal combustion engines. Improved combustion may be developed for both gasoline and diesel fuels and promises better efficiency as well as lower noxious emissions without the need for filtering. Finally, four advanced concepts are considered: new thermodynamic cycles, a Rankine bottoming cycle, electric turbo-compounding and the use of thermoelectric devices. The latter three all have the common theme of trying to extract energy from waste heat, which represents about 30% of the energy input to an internal combustion engine

  1. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    liquid fuel droplet combustion studies. In addition, the internal compositions of rapidly quenched metal particles will be analyzed using SEM technique. Such compositions are similar to those existing during the combustion and provide new insight on metal combustion processes. The results of this experimental work will be used to model the fundamental mechanisms of metal combustion. Preliminary experimental results on Al and Zr particle combustion at normal gravity are discussed here.

  2. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  3. Internal Heterogeneous Processes in Aluminum Combustion

    Science.gov (United States)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.

  4. Internal combustion engines history - a review

    International Nuclear Information System (INIS)

    Gaviria Rios, Jorge Enrique; Mora Guzman, Jorge Hernan; Agudelo, John Ramiro

    2002-01-01

    In this article, a chronological analysis of the technologies and events that any way influenced in the evolution of the internal combustion engine is done everything it through the observation of the works carried out for scientific empiric and engineers whose technical and conceptual value meant the motivation of other people for the search of a better development in this engineering field

  5. Exhaust gas afterburner for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G

    1977-05-12

    The invention pertains to an exhaust gas afterburner for internal combustion engines, with an auxiliary fuel device arranged upstream from the afterburner proper and controlled by the rotational speed of the engine, which is additionally controlled by an oxygen or carbon monoxide sensor. The catalytic part of the afterburner, together with a rotochamber, is a separate unit.

  6. Simulation Of The Internal-Combustion Engine

    Science.gov (United States)

    Zeleznik, Frank J.; Mcbride, Bonnie J.

    1987-01-01

    Program adapts to available information about particular engine. Mathematical model of internal-combustion engine constructed and implemented as computer program suitable for use on large digital computer systems. ZMOTTO program calculates Otto-cycle performance parameters as well as working-fluid compositions and properties throughout cycle for number of consecutive cycles and for variety of input parameters. Written in standard FORTRAN IV.

  7. Modeling internal ballistics of gas combustion guns.

    Science.gov (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  8. Internal Combustion Engine Principles with Vehicle Applications

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    The book is an introductory text on the subject of internal combustion engines, intended for use in engineering courses at the senior or introductory graduate student level. The focus in on describing the basic principles of engine operation on a broad basis, to provide a foundation for further...... exchange processes, combustion in different engine types, exhaust emissions, engine control including mean value engine models, pressure charging, fuels and fuel systems, balancing, friction, and heat transfer. In addition, methods to establish the connection between engine characteristics and vehicle...

  9. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  10. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    Energy Technology Data Exchange (ETDEWEB)

    Kassa, Mateos [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Hall, Carrie [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Ickes, Andrew [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA; Wallner, Thomas [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA

    2016-10-07

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air

  11. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  12. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  13. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  14. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  15. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  16. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. © The Author(s) 2016.

  17. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  18. Feasibility Demonstration of a Multi-Cylinder Stirling Convertor with a Duplex Linear Alternator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Technology Company (STC) proposes to integrate an existing Multi-Cylinder Free-Piston Stirling Engine (MPFPSE) with innovative compact linear alternators....

  19. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  20. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  1. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2013-09-05

    ... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY... hazardous air pollutants for stationary reciprocating internal combustion engines and the standards of performance for stationary internal combustion engines. Subsequently, the EPA received three petitions for...

  2. Fuel injection apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, H; Kobayashi, H; Nagata, S

    1975-01-07

    A fuel injection apparatus for a rapid cut of fuel supply to internal combustion engines during deceleration is described. The fuel cut is achieved by an electromagnetic switch. The number of engine revolutions are determined by the movement of cam shafts, and one of the cam shafts is made of electroconductive and nonconductive materials which generate an intermittent electrical signal to the magnetic switch. The device can cut the fuel in any deceleration condition, therefore it is more advantageous than fuel injection utilizing the intake load variation which can operate only under certain deceleration conditions.

  3. Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration

    OpenAIRE

    Ennetta Ridha; Hamdi Mohamed; Said Rachid

    2008-01-01

    Three chemical kinetic mechanisms of methane combustion were tested and compared using the internal combustion engine model of Chemkin 4.02 [1]: one-step global reaction mechanism, four-step mechanism, and the standard detailed scheme GRIMECH 3.0. This study shows good concordances, especially between the four-step and the detailed mechanisms in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict pollutant emissions in an internal combustion...

  4. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  5. Starting apparatus for internal combustion engines

    Science.gov (United States)

    Dyches, Gregory M.; Dudar, Aed M.

    1997-01-01

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  6. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  7. Variable compression ratio device for internal combustion engine

    Science.gov (United States)

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  8. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  9. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  10. 75 FR 75937 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-12-07

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... internal combustion engines. Subsequently, the Administrator received two petitions for reconsideration... Any industry using a stationary 2211 Electric power reciprocating internal generation, combustion...

  11. 76 FR 12923 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2011-03-09

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... pollutants for existing stationary spark ignition reciprocating internal combustion engines. The final rule... reciprocating internal combustion generation, engine. transmission, or distribution. 622110 Medical and surgical...

  12. 75 FR 51569 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-08-20

    ... Air Pollutants for Reciprocating Internal Combustion Engines; Final Rule #0;#0;Federal Register / Vol... for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines AGENCY: Environmental... hazardous air pollutants for existing stationary spark ignition reciprocating internal combustion engines...

  13. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-10-03

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Pollutants for Stationary Reciprocating Internal Combustion Engines to solicit comment on specific issues...

  14. 77 FR 33811 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-06-07

    ... 63 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines; Proposed Rule #0;#0... Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source...

  15. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  16. Benchmarking the internal combustion engine and hydrogen

    International Nuclear Information System (INIS)

    Wallace, J.S.

    2006-01-01

    The internal combustion engine is a cost-effective and highly reliable energy conversion technology. Exhaust emission regulations introduced in the 1970's triggered extensive research and development that has significantly improved in-use fuel efficiency and dramatically reduced exhaust emissions. The current level of gasoline vehicle engine development is highlighted and representative emissions and efficiency data are presented as benchmarks. The use of hydrogen fueling for IC engines has been investigated over many decades and the benefits and challenges arising are well-known. The current state of hydrogen-fueled engine development will be reviewed and evaluated against gasoline-fueled benchmarks. The prospects for further improvements to hydrogen-fueled IC engines will be examined. While fuel cells are projected to offer greater energy efficiency than IC engines and zero emissions, the availability of fuel cells in quantity at reasonable cost is a barrier to their widespread adaptation for the near future. In their current state of development, hydrogen fueled IC engines are an effective technology to create demand for hydrogen fueling infrastructure until fuel cells become available in commercial quantities. During this transition period, hydrogen fueled IC engines can achieve PZEV/ULSLEV emissions. (author)

  17. 3rd International Conference on Numerical Combustion

    CERN Document Server

    Larrouturou, Bernard; Numerical Combustion

    1989-01-01

    Interest in numerical combustion is growing among applied mathematicians, physicists, chemists, engine manufacturers and many industrialists. This proceedings volume contains nine invited lectures and twenty seven contributions carefully selected by the editors. The major themes are numerical simulation of transsonic and supersonic combustion phenomena, the study of supersonic reacting mixing layers, and turbulent combustion. Emphasis is laid on hyperbolic models and on numerical simulations of hydrocarbon planes with a complete set of chemical reactions carried out in two-dimensional geometries as well as on complex reactive flow simulations.

  18. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    Science.gov (United States)

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  19. Air-steam hybrid engine : an alternative to internal combustion.

    Science.gov (United States)

    2011-03-01

    In this Small Business Innovation Research (SBIR) Phase 1 project, an energy-efficient air-steam propulsion system has been developed and patented, and key performance attributes have been demonstrated to be superior to those of internal combustion e...

  20. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  1. 75 FR 37732 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-06-30

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion... combustion engines. 40 CFR 63.6590 was amended by revising paragraphs (b)(1) and (3). Inadvertently...

  2. 8th International symposium on transport phenomena in combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  3. Starting procedure for internal combustion vessels

    Science.gov (United States)

    Harris, Harry A.

    1978-09-26

    A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.

  4. Hydrogen-oxygen powered internal combustion engine

    Science.gov (United States)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  5. Combustion, detonation, shock waves. Proceedings of the Zel'dovich memorial - International conference on combustion. Volume 1

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Frolov, S.M.

    1995-01-01

    This book contains lectures by the experts in various fields of modern research in combustion, detonation and shock waves, presented at the Zel'dovich memorial - International conference on combustion dedicated to the 80-th birthday of academician Ya.B. Zel'dovich. There are eight chapters discussing the state-of-the-art in combustion kinetics, ignition and steady-state flame propagation, diffusion and heterogeneous combustion, turbulent combustion, unsteady combustion, detonation, combustion and detonation analogies, intense shock waves and extreme states of matter [ru

  6. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D [Imperial College, London (United Kingdom); Greenhalgh, D [Cranfield Univ. (United Kingdom); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  7. Experimental studies of thermal preparation of internal combustion engine

    Science.gov (United States)

    Karnaukhov, N. N.; Merdanov, Sh M.; V, Konev V.; Borodin, D. M.

    2018-05-01

    In conditions of autonomous functioning of road construction machines, it becomes necessary to use its internal sources. This can be done by using a heat recovery system of an internal combustion engine (ICE). For this purpose, it is proposed to use heat accumulators that accumulate heat of the internal combustion engine during the operation of the machine. Experimental studies have been carried out to evaluate the efficiency of using the proposed pre-start thermal preparation system, which combines a regular system based on liquid diesel fuel heaters and an ICE heat recovery system. As a result, the stages of operation of the preheating thermal preparation system, mathematical models and the dependence of the temperature change of the antifreeze at the exit from the internal combustion engine on the warm-up time are determined.

  8. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    Science.gov (United States)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  9. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Science.gov (United States)

    2010-10-01

    ... and vehicles with certain electronic equipment when transported by aircraft or vessel. When an... vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... Than Class 1 and Class 7 § 173.220 Internal combustion engines, self-propelled vehicles, mechanical...

  10. Process gas generator feeding internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Iwantscheff, G; Kostka, H; Henkel, H J

    1978-10-26

    The invention relates to a process gas generator feeding gaseous fuel to internal combustion piston engines. The cylinder linings of the internal combustion engine are enclosed by the catalytic reaction chamber of the process gas generator which contains perforated sintered nozzle bricks as carriers of the catalysts needed for the conversion. The reaction chamber is surrounded by the exhaust gas chamber around which a tube coil is ound which feeds the fuel charge to the reaction chamber after evaporation and mixing with exhaust gas and air. The fuel which may be used for this purpose, e.g., is low-octane gasoline or diesel fuel. In the reaction chamber the fuel is catalytically converted at temperatures above 200/sup 0/C, e.g., into low-molecular paraffins, carbon monoxide and hydrogen. Operation of the internal combustion engine with a process gas generator greatly reduces the pollutant content of the exhaust gases.

  11. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  12. Bulkhead insert for an internal combustion engine

    Science.gov (United States)

    Maki, Clifford E.; Chottiner, Jeffrey Eliot; Williams, Rick L.; Thibault, Mark W.; Ervin, James Douglas; Boileau, James Maurice; McKeough, Bryan

    2017-08-01

    An engine includes a cylinder block defining at least one main bearing bulkhead adjacent to a cylinder, and a crankshaft rotatably housed within the block by a main bearing. A bulkhead insert has a cap portion, and an insert portion provided within the bulkhead. The insert portion has having first and second end regions connected by first and second straps. Each strap having a flanged beam cross section. The first and second ends of the insert portion are configured to connect a main bearing cap column to a cylinder head column. Each of the first and second end regions define at least one protrusion having a surface substantially normal to engine combustion and reactive loads. The cap portion is configured to mate with the first end region at the main bearing cap column and support the main bearing.

  13. 3rd International Workshop on Turbulent Spray Combustion

    CERN Document Server

    Gutheil, Eva

    2014-01-01

    This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth ...

  14. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  15. Powertrain sizing of electrically supercharged internal combustion engine vehicles

    NARCIS (Netherlands)

    Murgovski, N.; Marinkov, S.; Hilgersom, D.; de Jager, B.; Steinbuch, M.; Sjöberg, J.

    2015-01-01

    We assess the concept of electrically supercharged internal combustion engines, where the supercharger, consisting of a compressor and an electric motor, draws electric power from a buffer (a battery or a supercapacitor). In particular, we investigate the scenario of downsizing the engine, while

  16. Results of measurements of emission from internal combustion engines

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Jovanovska, Vangelica

    1999-01-01

    A mathematical model for solving the emission from internal combustion engines on the cross roads are made. The exhausted pipes from vehicles are substituted with a pipe in a centre of the cross road. This model is proved with measurement made on vehicles in the city of Bitola (Macedonia). (Author)

  17. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  18. Carbon/Carbon Pistons for Internal Combustion Engines

    Science.gov (United States)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  19. Fuel injector nozzle for an internal combustion engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  20. Fuels for internal-combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    1925-10-23

    To reduce knocking in internal-conbustion engines, the fuel is mixed with a small quantity, for instance 10 percent, of the hydrocarbon obtained by extracting with liquid sulfur dioxide hydrocarbon material, such as mineral oil fractions, coal tar and lignite tar distillates of higher boiling point, for example distillates boiling between 150 and 300/sup 0/C.

  1. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  2. HYDROGEN USE IN INTERNAL COMBUSTION ENGINE:

    OpenAIRE

    Ciniviz, Murat

    2012-01-01

    Fast depletion of fossil fuels is urgently demanding a carry out work for research to find out the viable alternative fuels for meeting sustainable energy demand with minimum environmental impact. In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms. The use of the hydrogen as fuel in the internal combusti...

  3. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  4. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    Directory of Open Access Journals (Sweden)

    Ashok A Dhale

    2010-01-01

    Full Text Available At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous combustion in internal combustion engines. This concept used the porous medium combustion technique and is called "PM-engine". It is shown that the PM combustion technique can be applied to internal combustion engines. Theoretical considerations are presented for internal combustion engines, indicating that an overall improvement in thermal efficiency can be achieved for the PM-engine. This is explained and general performance of the new PM-engines is demonstrated for a single cylinder, water cooled, direct injection diesel engine. Verification of experiments at primary stage is described that were carried out as a part of the present study.

  5. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  6. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  7. Performance and Emission Analysis of Rubber Seed, Palm, and Their Combined Blend in a Multi-Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ibrahim Khalil Adam

    2018-06-01

    Full Text Available In consideration of its vast resources in Malaysia, the potential use of a nonedible biodiesel source from rubber seed oil (RSO is explored. However, a mixture with a high saturation content feedstock is required to increase its oxidation stability, which is caused by its 78.93% unsaturation content. Two blends of 20% and 50% v/v rubber seed biodiesel (RB or palm biodiesel (PB and varying percentage mixtures of these two feedstock oils biodiesel (RPB were evaluated on combustion performance in a 55 kW multi-cylinder diesel engine at full load conditions. The results showed that feedstock blending offered benefits in terms of fuel properties enhancement, improved engine performance, and reduced emissions. In comparison to RB, RPB showed higher brake power (BP of 1.18–2.97% and lower brake specific fuel consumption (BSFC of 0.85–3.69%, smoke opacity (11.89–14.19%, carbon monoxide (CO of 2.48–6.93%, hydrocarbon (HC of 2.36–9.34%, and Nitrogen oxide (NO emissions of 2.34–5.93%. The cylinder pressures and heat release rates (HRR of RPB blends were 8.47–11.43% and 36.02–46.61% higher than diesel, respectively. The start of combustion angles (SOC of RB and RPB blends were from −13 to −15 °C and from −13.2 to −15.6 crank angle degree (°CA before top dead center (BTDC, but the combustion delays were 6–8 °C and 5.4–7.8 °C shorter when compared to diesel fuel which were −10 °C BTDC and 11 °C, respectively. It can be concluded that RPB blends showed better performance and emissions over the individual rubber seed and palm biodiesel blends and can replace diesel fuel in unmodified engines.

  8. Fuel injection system for internal combustion engines. Kraftstoffeinspritzsystem fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, U.

    1990-09-13

    A fuel injection system for an internal combustion engine is provided with a fuel supply line (13) and at least one electromagnetically actuated fuel injection valve (14) for apportioning a quantity of fuel for injection. A connection muzzle (24) coming from the valve body (23) juts into an opening (22) in the suction pipe (21) of the internal combustion engine. The end of the injection valve opposite the connecting muzzle (24) is connected with the fuel supply line via a fuel entry. The valve body (23) is enclosed by a casing (25) in order to provide the conditions required for a warm start. An annulus (31) extending over a large part of the axial length of the valve remains between the casing and the valve body (23). The annulus (31) communicates with the fuel flow through the fuel supply line (13) via an afflux and an efflux opening (32, 33) (Fig. 1).

  9. Minimal algorithm for running an internal combustion engine

    Science.gov (United States)

    Stoica, V.; Borborean, A.; Ciocan, A.; Manciu, C.

    2018-01-01

    The internal combustion engine control is a well-known topic within automotive industry and is widely used. However, in research laboratories and universities the use of a control system trading is not the best solution because of predetermined operating algorithms, and calibrations (accessible only by the manufacturer) without allowing massive intervention from outside. Laboratory solutions on the market are very expensive. Consequently, in the paper we present a minimal algorithm required to start-up and run an internal combustion engine. The presented solution can be adapted to function on performance microcontrollers available on the market at the present time and at an affordable price. The presented algorithm was implemented in LabView and runs on a CompactRIO hardware platform.

  10. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Salih ÖZER

    2014-04-01

    Full Text Available This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power curves. The studies reveal that these changes are because of the physical and chemical characteristics of alcohols. Thıs study tries to explain what kind of conclusions the physical and chemical properties cause

  11. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  12. DESIGNING AND PROTOTYPING OF AN ALTERNATIVE ELLIPTIC INTERNAL COMBUSTION ENGINE

    OpenAIRE

    AKSOY, Nadir; İÇİNGÜR, Yakup

    2010-01-01

    ABSTRACTIn the conventional internal combustion engines, the elements of linear movement cause the friction power to increase the manufacturing economy to deteriorate and also cause vibration. The diameter of intake valves, which is smaller than the diameter of the cylinder, causes the volumetric efficiency to decrease. In the two stroke engines, in which the number of work per cycle is increased, power output per unit volume (kW/liter) is higher; however, specific fuel consumption decreases ...

  13. Thermal Loss Determination for a Small Internal Combustion Engine

    Science.gov (United States)

    2014-03-27

    an engine driven compressor (supercharger) or by means of an exhaust turbine driven compressor (turbocharger). The compressed air has a higher density...low and high adjustment screws were screwed in (leaned) or out (enrich) as needed to bring the air /fuel mixture closer to stoichiometric conditions...THERMAL LOSS DETERMINATION FOR A SMALL INTERNAL COMBUSTION ENGINE THESIS Joshua A. Rittenhouse, Captain, USAF AFIT-ENY-14-M-41 DEPARTMENT OF THE AIR

  14. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  15. The Combination of Internal-Combustion Engine and Gas Turbine

    Science.gov (United States)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  16. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Science.gov (United States)

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  17. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    Science.gov (United States)

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  18. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  19. 76 FR 12863 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2011-03-09

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... combustion engines. The final rule was published on August 20, 2010. This direct final action amends certain... Emission Standards for Hazardous Air Pollutant for Stationary Reciprocating Internal Combustion Engines...

  20. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  1. Biogas utilization as flammable for internal combustion engine

    International Nuclear Information System (INIS)

    Cardenas, H.

    1995-01-01

    In this work the energetic potential stored in form of generated biogas of organic industrial wastes treatment is analyzed. Biogas utilization as flammable at internal combustion engine coupled to electrical energy generating is studied in the Wastewater Treatment Plant of Bucaramanga city (Colombia). This Plant was designed for 160.000 habitants treatment capacity, 1300 m3/h wealth, 170 BDO/m3 residues concentration and 87% process efficiency. The plant generate 2.000 m3/d of biogas. In laboratory trials was worked with biogas originating from Treatment Plant, both without purifying and purified, and the obtained results were compared with both yields determined with 86-octanes gasoline and natural gas. The analysis of pollutant by-products generated in combustion process as leak gases, present corrosive compounds and not desirable. elements in biogas composition are included

  2. Holographic aids for internal combustion engine flow studies

    Science.gov (United States)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  3. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  4. Computation and Analysis of EGR Mixing in Internal Combustion Engine Manifolds

    OpenAIRE

    Sakowitz, Alexander

    2013-01-01

    This thesis deals with turbulent mixing processes occurring in internal combustion engines, when applying exhaust gas recirculation (EGR). EGR is a very efficient way to reduce emissions of nitrogen oxides (NOx) in internal combustion engines. Exhaust gases are recirculated and mixed with the fresh intake air, reducing the oxygen con- centration of the combustion gas and thus the peak combustion temperatures. This temperature decrease results in a reduction of NOx emissions. When applying EGR...

  5. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Science.gov (United States)

    2010-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers...

  6. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  7. Fractal and spectroscopic analysis of soot from internal combustion engines

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.

    2018-03-01

    Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.

  8. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  9. Cylinder head fastening structure for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  10. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  11. Experimental results with hydrogen fueled internal combustion engines

    Science.gov (United States)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  12. Efficient energy recovering air inlet system for an internal combustion engine

    NARCIS (Netherlands)

    2011-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  13. Efficient energy recovering air inlet system for an international combustion engine

    NARCIS (Netherlands)

    2013-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  14. The Thermodynamics of Internal Combustion Engines: Examples of Insights

    Directory of Open Access Journals (Sweden)

    Jerald A. Caton

    2018-05-01

    Full Text Available A major goal of the development of internal combustion (IC engines continues to be higher performance and efficiencies. A major aspect of achieving higher performance and efficiencies is based on fundamental thermodynamics. Both the first and second laws of thermodynamics provide strategies for and limits to the thermal efficiencies of engines. The current work provides three examples of the insights that thermodynamics provides to the performance and efficiencies of an IC engine. The first example evaluates low heat rejection engine concepts, and, based on thermodynamics, demonstrates the difficulty of this concept for increasing efficiencies. The second example compares and contrasts the thermodynamics associated with external and internal exhaust gas dilution. Finally, the third example starts with a discussion of the Otto cycle analysis and explains why this is an incorrect model for the IC engine. An important thermodynamic property that is responsible for many of the observed effects is specific heat.

  15. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  16. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  17. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  18. Impact of Fuel Type on the Internal Combustion Engine Condition

    Directory of Open Access Journals (Sweden)

    Zdravko Schauperl

    2012-07-01

    Full Text Available The paper studies the influence of liquefied petroleum gas as alternative fuel on the condition of the internal combustion engine. The traffic, energy, economic and ecological influence as well as the types of fuel are studied and analyzed in an unbiased manner, objectively, and in detail, and the obtained results are compared with the condition of the engine of a vehicle powered by the stipulated fuel, petrol Eurosuper 95. The study was carried out on two identical passenger cars with one being fitted with gas installation. The obtained results show that properly installed gas installations in vehicles and the usage of LPG have no significant influence on the driving performances, but they affect significantly the ecological and economic parameters of using passenger cars.

  19. Exhaust gas turbocharger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Behnert, R.; Dommes, W.; Gerwig, W.

    1982-01-21

    The invention aimes at the heat protection of a turbocharger for internal combustion engines. The turbine is feeded with exhaust gas and drives the shaft of a compressor. For resolving this problem a thermal shield has been installed on the backside of the turbine. The shaft is sealed with an elastic gasket ring. This gasket avoids the deposition of dust and dirt. As a consequence of this constructive measure a growth of tinder and oxides can be avoided as well as the deposition of dirt. A constant reflection factor is ensured. The thermal shield can be manufactured of thin sheet with a nickel surface and can fastened with distance pieces on the backside of the turbine case. Furthermore it is possible to use a ceramic heat shield.

  20. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  1. Possibility of reducing CO2 emissions from internal combustion engines

    Science.gov (United States)

    Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof

    2017-10-01

    Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.

  2. Multiple fuel supply system for an internal combustion engine

    Science.gov (United States)

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  3. Automatic compression adjusting mechanism for internal combustion engines

    Science.gov (United States)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  4. Internal combustion engines fueled by natural gas-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akansu, S.O.; Kahraman, N. [Erciyes University, Kayseri (Turkey). Engineering Faculty; Dulger, Z. [Kocaeli University (Turkey). Engineering Faculty; Veziroglu, T.N. [University of Miami, Coral Gables, FL (United States). College of Engineering

    2004-11-01

    In this study, a survey of research papers on utilization of natural gas-hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO{sub 2}, and CO emissions decrease with increasing H{sub 2}, but NO{sub x} emissions generally increase. If a catalytic converter is used, NO{sub x} emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H{sub 2} amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using. (author)

  5. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    Science.gov (United States)

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  6. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

    International Nuclear Information System (INIS)

    Laurijssen, Jobien; De Gram, Frans J.; Worrell, Ernst; Faaij, Andre

    2010-01-01

    The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in conventional multi-cylinder drying sections are investigated, calculating the effect on energy use. Optimization measures include a) decreasing the amount of water evaporation by applying additives in higher consistencies and by lowering the water viscosity, b) decreasing the heat use of water evaporation by increasing the dew point temperature of the dryer and c) increasing the amount of heat recovery by using exhaust air to not only pre-heat the incoming air but also to increase process water temperatures. These could all be achieved by retrofitting and/or choosing different processing conditions in existing factories. The combined thermal heat saving potential due to the optimization actions is 1.3 GJ h /t paper (or 32% of the drying section's heat use) as compared to the reference situation.

  7. Dynamic estimator for determining operating conditions in an internal combustion engine

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  8. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    Science.gov (United States)

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  9. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  10. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  11. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  12. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  13. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2013-03-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2008-0708, FRL-9756-4] RIN 2060-AQ58 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule...

  14. Motor vehicles and internal combustion engines; Kraftfahrwesen und Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Bargende, M.; Wiedemann, J. [eds.

    1999-07-01

    The book comprises the papers presented at the 3rd Stuttgart symposium. It reviews the state of the art in science and engineering and outlines future perspectives in the fields of motor vehicles and internal combustion engines. As the conference, the book comprises three sections: 'Engines' on DI spark ignition engines and diesel engines, mixing, combustion and exhaust purification. 'Motor cars' discusses acoustics and aeroacoustics, aerodynamics and wind tunnel technology, comfort, driving gear and stability control. 'Motor vehicle systems' contains papers on thermomanagement, control and automation, real-time applications in motor car simulation, software tools in the control systems development process, and simulation in motor vehicle systems development. Finally, the plenary paper 'Fuel cells, a solution for non-polluting motor car drives' by Dr.-Ing. F. Panik is also contained in the book. [German] Das vorliegende Buch enthaelt die Vortraege des 3. Stuttgarter Symposiums. Es gibt einen Ueberblick ueber den aktuellen Stand von Wissenschaft und Technik und zeigt zukuenftige Perspektiven im Bereich Kraftfahrwesen und Verbrennungsmotoren. Entsprechend der Tagung gliedert sich das Buch in drei Teile. Teil 1 'Motoren' besteht aus Vortraegen ueber Ottomotoren mit Direkteinspritzung und Dieselmotoren, Gemischbildung, Verbrennung und Abgasnachbehandlung, Analyse, Simulation und Motorkomponenten. Teil 2 'Kraftfahrzeuge' enthaelt Arbeiten ueber Fahrzeugakustik und Aeroakustik, Fahrzeug-Aerodynamik und Windkanaltechnik, Fahrzeugkomfort, Fahrwerk und Fahrdynamik. Teil 3 'Kraftfahrzeugsystemtechnik' enthaelt Beitraege ueber Thermomanagement, Regelungs- und Automatisierungstechnik, Echtzeitanwendungen in der Kfz-Simulationstechnik, Softwaretools im Steuergeraete-Entwicklungsprozess und Simulation in der Kraftfahrzeug-Systementwicklung. Der abschliessende Plenarvortrag des Symposiums &apos

  15. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  16. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    Science.gov (United States)

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  17. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  18. Recurrence plot for parameters analysing of internal combustion engine

    Science.gov (United States)

    Alexa, O.; Ilie, C. O.; Marinescu, M.; Vilau, R.; Grosu, D.

    2015-11-01

    In many technical disciplines modem data analysis techniques has been successfully applied to understand the complexity of the system. The growing volume of theoretical knowledge about systems dynamic's offered researchers the opportunity to look for non-linear dynamics in data whose evolution linear models are unable to explain in a satisfactory manner. One approach in this respect is Recurrence Analysis - RA which is a graphical method designed to locate hidden recurring patterns, nonstationarity and structural changes. RA approach arose in natural sciences like physics and biology but quickly was adopted in economics and engineering. Meanwhile. The fast development of computer resources has provided powerful tools to perform this new and complex model. One free software which was used to perform our analysis is Visual Recurrence Analysis - VRA developed by Eugene Kononov. As is presented in this paper, the recurrence plot investigation for the analyzing of the internal combustion engine shows some of the RPA capabilities in this domain. We chose two specific engine parameters measured in two different tests to perform the RPA. These parameters are injection impulse width and engine angular speed and the tests are I11n and I51n. There were computed graphs for each of them. Graphs were analyzed and compared to obtain a conclusion. This work is an incipient research, being one of the first attempts of using recurrence plot for analyzing automotive dynamics. It opens a wide field of action for future research programs.

  19. Four-Stroke, Internal Combustion Engine Performance Modeling

    Science.gov (United States)

    Wagner, Richard C.

    In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.

  20. Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)

    International Nuclear Information System (INIS)

    Vaja, Iacopo; Gambarotta, Agostino

    2010-01-01

    This paper describes a specific thermodynamic analysis in order to efficiently match a vapour cycle to that of a stationary Internal Combustion Engine (ICE). Three different working fluids are considered to represent the main classes of fluids, with reference to the shape of the vapour lines in the T-s diagram: overhanging, nearly isoentropic and bell shaped. First a parametric analysis is conducted in order to determine optimal evaporating pressures for each fluid. After which three different cycles setups are considered: a simple cycle with the use of only engine exhaust gases as a thermal source, a simple cycle with the use of exhaust gases and engine cooling water and a regenerated cycle. A second law analysis of the cycles is performed, with reference to the available heat sources. This is done in order to determine the best fluid and cycle configuration to be employed, the main parameters of the thermodynamic cycles and the overall efficiency of the combined power system. The analysis demonstrates that a 12% increase in the overall efficiency can be achieved with respect to the engine with no bottoming; nevertheless it has been observed that the Organic Rankine Cycles (ORCs) can recover only a small fraction of the heat released by the engine through the cooling water.

  1. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  2. 40 CFR 60.4241 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines participating in the voluntary... I am a manufacturer of stationary SI internal combustion engines participating in the voluntary... internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline...

  3. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...

  4. 40 CFR 60.4240 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn..., and must test their engines as specified in that part. Stationary SI internal combustion engine...

  5. Modeling reacting gases and aftertreatment devices for internal combustion engines

    Science.gov (United States)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream

  6. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.

    2011-01-01

    The scope of the PhD thesis presented here is the investigation of theoretical and practical aspects of laser-induced spark ignition and laser thermal ignition. Laser ignition systems are currently undergoing a rapidly development with growing intensity involving more and more research groups who mainly concentrate on the field of car and large combustion engines. This research is primarily driven by the engagement to meet the increasingly strict emission limits and by the intention to use the limited energy reserves more efficiently. For internal combustion engines, laser plasma-induced ignition will allow to combine the goals for legally required reductions of pollutant emissions and higher engine efficiencies. Also for rocket engines laser ignition turns out to be very attractive. A highly reliable ignition system like laser ignition would represent an option for introducing non-toxic propellants in order to replace highly toxic and carcinogenic hydrazine-based propellants commonly used in launch vehicle upper stages and satellites. The most important results on laser ignition and laser plasma generation, accomplished by the author and, in some respects, enriched by cooperation with colleagues are presented in the following. The emphasis of this thesis is placed on the following issues: - Two-color effects on laser plasma generation - Theoretical considerations about the focal volume concerning plasma generation - Plasma transmission experiments - Ignition experiments on laser-induced ignition - Ignition experiments on thermally-induced ignition - Feasibility study on laser ignition of rocket engines The purpose of the two-color laser plasma experiments is to investigate possible constructive interference effects of driving fields that are not monochromatic, but contain (second) harmonic radiation with respect to the goal of lowering the plasma generation threshold. Such effects have been found in a number of related processes, such as laser ablation or high

  7. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-12-23

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 [EPA-HQ-OAR-2008-0708, FRL-9244-2] RIN 2060-AP36 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... combustion engines and requesting public comment on one issue arising from the final rule. Specifically, EPA...

  8. New type of microengine using internal combustion of hydrogen and oxygen

    NARCIS (Netherlands)

    Svetovoy, Vitaly; Sanders, Remco G.P.; Ma, Kechun; Elwenspoek, Michael Curt

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we

  9. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  10. PARAMETER MATCHING OF INTERNAL COMBUSTION ENGINE AND ELECTROMECHANICAL POWER TRAIN OF WHEEL TRACTOR

    Directory of Open Access Journals (Sweden)

    A. V. Kliuchnikov

    2012-01-01

    Full Text Available The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. 

  11. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    Science.gov (United States)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  12. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Blarigan, P. Van [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  13. EDWARDS' REFERENCE CYCLE FOR INTERNAL AND EXTERNAL COMBUSTION ENGINES

    OpenAIRE

    A. E. Piir

    2014-01-01

    Useful physical regularities of a reversible thermodynamic cycle for heat engines have been established in the paper. The engines are using fuel combustion products as a heat source, and the environment - as a heat sink that surpasses Carnot cycle according to efficiency factor.

  14. The dynamic interaction between combustible renewables and waste consumption and international tourism: the case of Tunisia.

    Science.gov (United States)

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2015-08-01

    This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions, and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO2 emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO2 emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO2 emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects.

  15. Biomass downdraft gasifier with internal cyclonic combustion chamber: design, construction, and experimental results.

    Science.gov (United States)

    Patil, Krushna; Bhoi, Prakash; Huhnke, Raymond; Bellmer, Danielle

    2011-05-01

    An exploratory downdraft gasifier design with unique biomass pyrolysis and tar cracking mechanism is evolved at Oklahoma State University. This design has an internal separate combustion section where turbulent, swirling high-temperature combustion flows are generated. A series of research trials were conducted using wood shavings as the gasifier feedstock. Maximum tar cracking temperatures were above 1100°C. Average volumetric concentration levels of major combustible components in the product gas were 22% CO and 11% H(2). Hot and cold gas efficiencies were 72% and 66%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Co-Optimization of Internal Combustion Engines and Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.

    2016-03-08

    The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to be realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.

  17. A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram

    Directory of Open Access Journals (Sweden)

    Tomić Miroljub V.

    2008-01-01

    Full Text Available In this paper a simplified procedure of an internal combustion engine in-cylinder pressure record analysis has been presented. The method is very easy for programming and provides quick evaluation of the gas temperature and the rate of combustion. It is based on the consideration proposed by Hohenberg and Killman, but enhances the approach by involving the rate of heat transferred to the walls that was omitted in the original approach. It enables the evaluation of the complete rate of heat released by combustion (often designated as “gross heat release rate” or “fuel chemical energy release rate”, not only the rate of heat transferred to the gas (which is often designated as “net heat release rate”. The accuracy of the method has been also analyzed and it is shown that the errors caused by the simplifications in the model are very small, particularly if the crank angle step is also small. A several practical applications on recorded pressure diagrams taken from both spark ignition and compression ignition engine are presented as well.

  18. Fully coupled fluid-structure interaction model of reed valves in a multi-cylinder reciprocating piston compressor

    Science.gov (United States)

    Xie, F.; Nieter, J.; Lifson, A.; Reba, R.; Sishtla, V.

    2017-08-01

    For years compressor researchers have tried to account for the fluid interaction effect of the working fluid on valve motion in displacement compressors. In recent years, the computing capacities and available CFD and FEA programs have allowed fully coupled interaction of fluids and moving structures to be modelled more comprehensively. This paper describes our experience and results from developing a model of a multi-cylinder reciprocating piston compressor with suction and discharge valve systems that are fully coupled with the pressure pulsation in the adjacent plenum. Valve dynamics are captured by the model that affects compressor performance. The results show that higher running speed causes more discharge valve delay on closing due to higher pressure pulsation in discharge plenum. The acoustic property of the discharge plenum as it relates to valve motion is studied by the developed cost-effective standalone model.

  19. Researches on direct injection in internal-combustion engines

    Science.gov (United States)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  20. Study of Second Generation Biofuels in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Dhandapani

    2012-07-01

    fuel, vis-a-vis neat diesel fuel (DF). The CO, THC, smoke and TPM emissions were reduced significantly, while NOx emissions were somewhat higher with BD blended fuels compared to neat FT fuel. The reductions in CO, THC, smoke and TPM emissions with BD blends were mainly due to the oxygen content in the BD blended fuel, while the increases in NOx emissions with BD fuels were due to advances in injection timing, higher percentages of fatty acids with double bonds in the carbon chain and higher heat release in the pre-mixed combustion. Secondly, a four-stroke, single-cylinder, naturally-aspirated (NA), direct-injection (DI) diesel engine with 8 BHP at 1500 rpm coupled with water-cooled, eddy current dynamometer was used for the experiments. Ethanol (5% by volume) was injected into the intake manifold by the port injection method with the assistance of a mechanical fuel injection pump. Therefore, the volumetric blending percentages of ethanol, BD and diesel fuels (E:D:JME) are (0:100:0), (5:95:0), (5:75:20), (5:55:40), (5:35:60), (5:15:80) (5:0:95) and (0:0:100) respectively. Ethanol pre-mixed with intake air, assisted in improving combustion in both diesel and the JME blends. The addition of ethanol to high-viscosity Jatropha methyl ester (JME) through port injection is investigated in order to determine its effect on the fuels viscosity and thereby on the diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME was studied in particular. It was found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which in turn, alter the engines operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for up to 25% blending of diesel with biofuels, while

  1. Ignition system for an internal combustion engine with rotary system

    Energy Technology Data Exchange (ETDEWEB)

    Hochstein, P A

    1977-05-18

    In the Wankel engine, the sparking plugs spark three times per rotation of the rotor and are never cooled by the incoming mixture. This constant high temperature environment necessitates the use of special sparking plugs. The covered top of the sparking plug is particularly liable to carbon deposits. This invention makes it possible to use sparking plugs on the rotor, without the disadvantages due to the use of high voltage. Further, the use of distributors or mechanical devices determining the ignition timing is no longer necessary. The fuel/air mixture is ignited in a combustion chamber, which is limited by first and second components moving relative to one another in repeated cycles. A generator device is fitted to the first components and an ignition device to the second components. The magnetic flux linking takes place in a predetermined area of the relative movement between the first and second components in a repeated cycle. An ignition signal is produced in the combustion chamber by the magnetic flux linking.

  2. Control of internal combustion engines and hybrid engines; Regelung von Verbrennungsmotoren und Hybridantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R. [TU Darmstadt (Germany). Forschungsgruppe Regelungstechnik und Prozessautomatisierung

    2007-07-15

    In the development of internal combustion engines, there are increasingly rigid specifications for further reduction of consumption, exhaust and noise emissions, better specific performance, lower weight, and good driving characteristics. The contributions in this special issue provide an insight into the many aspects of internal combustion engine and hybrid engine control. The editors of at journal took care to select interesting papers presented at the 3. VDI/VDE-GMA conference AUTOREG 2006. They show how control and mechatronics support the high demands on functionality in motor car engineering. (orig.)

  3. Cylinder head seal for piston engines especially internal combustion engines. Zylinderkopfdichtung fuer Hubkolbenmaschinen, insbesondere Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.; Winter, J.

    1991-01-17

    The invention concerns a cylinder head seal for reciprocating piston engines especially internal combustion engines and preferentially those with cylinder sleeves. With performances of internal combustion engines encreasing all the time it is becoming more and more difficult to seal the cylinder heat. The invention proposes a ring seal whose sides are plastically deformed when the cylinder headed screws are tightened. The inner deformations of the cylinder head resulting from the pressure forces inside the cylinder are compensated by means of elastic spring action of the combustion chamber sealing ring. The dimension of land, groove and sides are matched in such a way as to prevent any seal squeezing during plastification which would result in a deformation of the cylinder sleeve. The ring can therefore be set directly into the centering of the cylinder sleeve. Separate centering devices are not required.

  4. Internal combustion engines in stationary installations for the efficient use of energy. VDI-meeting at Stuttart

    Energy Technology Data Exchange (ETDEWEB)

    Titl, A

    1976-11-01

    The efficient use of stationary internal combustion engines for energy supply is discussed: the state of technology and the scientific significance of internal combustion engines; thermal power coupling with unit-type thermal power plants which supply current as well as heat; and operational experience with unit-type thermal power plants for living districts, sport centers, industries etc.

  5. Combustion research in the Internal Fluid Mechanics Division

    Science.gov (United States)

    Mularz, Edward J.

    1986-01-01

    The goal of this research is to bring computational fluid dynamics to a state of practical application for the aircraft engine industry. The approach is to have a strongly integrated computational and experimental program for all the disciplines associated with the gas turbine and other aeropropulsion systems by advancing the understanding of flow physics, heat transfer, and combustion processes. The computational and experimental research is integrated in the following way: the experiments that are performed provide an empirical data set so that physical models can be formulated to describe the processes that are occurring - for example, turbulence or chemical reaction. These experiments also form a data base for those who are doing code development by providing experimental data against which the codes can be verified and assesed. Models are generated as closure to some of the numerical codes, and they also provide physical insight for experiments. At the same time, codes which solve the complete Navier-Stokes equations can be used as a kind of numerical experiment from which far more extensive data can be obtained than ever could be obtained experimentally. This could provide physical insight into the complex processes that are taking place. These codes are also exercised against experimental data to assess the accuracy and applicability of models.

  6. New type of microengine using internal combustion of hydrogen and oxygen

    Science.gov (United States)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5–4 bar for a time of 100–400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines. PMID:24599052

  7. New type of microengine using internal combustion of hydrogen and oxygen.

    Science.gov (United States)

    Svetovoy, Vitaly B; Sanders, Remco G P; Ma, Kechun; Elwenspoek, Miko C

    2014-03-06

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm(3) that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.

  8. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Internal combustion engines, other than ship's equipment. 1915.136 Section 1915.136 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Tools and Related Equipment §...

  9. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  10. Hydrogen enrichment of an internal combustion engine via closed loop thermochemical recuperation

    NARCIS (Netherlands)

    Zwitserlood, J.G.; Hofman, T.; Erickson, P.A.

    2013-01-01

    Hydrogen enrichment in an internal combustion engine can greatly improve efficiency and at the same time reduce emissions without the need for extensive engine modifications. One option for a hydrogen source for the enrichment is actively producing hydrogen on-board the vehicle through steam

  11. Convex modeling and sizing of electrically supercharged internal combustion engine powertrain

    NARCIS (Netherlands)

    Marinkov, S.; Murgovski, N.; de Jager, B.

    2016-01-01

    This paper investigates a concept of an electrically supercharged internal combustion engine powertrain. A supercharger consists of an electric motor and a compressor. It draws its power from an electric energy buffer (e.g., a battery) and helps the engine during short-duration high-power demands.

  12. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  13. Use of a perfume composition as a fuel for internal combustion engines

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to fuel compositions containing perfume fractions, that is to say compositions of fragrance materials, and to the use of such perfume fractions containing fuel compositions to provide a fuel for internal combustion engines and burners. According to the present fuel

  14. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Broerman, III, Eugene L.; Bourn, Gary D [Laramie, WY

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  15. Combustion of Liquid Bio-Fuels in an Internal Circulating Fluidized Bed

    Czech Academy of Sciences Publication Activity Database

    Miccio, F.; Kalisz, S.; Baxter, D.; Svoboda, Karel

    2008-01-01

    Roč. 143, 1-3 (2008), s. 172-179 ISSN 1385-8947 Institutional research plan: CEZ:AV0Z40720504 Keywords : internal circulating fluidized bed * liquid fuel * combustion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.813, year: 2008

  16. Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel

    International Nuclear Information System (INIS)

    Hickson, Allister; Phillips, Al; Morales, Gene

    2007-01-01

    Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel source

  17. Ionization in the Knock Zone of an Internal-combustion Engine

    Science.gov (United States)

    Hasting, Charles E

    1940-01-01

    The ionization in the knock zone of an internal-combustion engine was investigated. A suspected correlation between the intensity of knock and the degree of ionization was verified and an oscillation in the degree of ionization corresponding in frequency to the knock vibrations in the cylinder pressure was observed.

  18. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  19. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  20. Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Mehdi Ali Ehyaei

    2016-03-01

    Full Text Available Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

  1. The scaling of performance and losses in miniature internal combustion engines

    Science.gov (United States)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate

  2. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  3. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  4. International cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes an international cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity. In June, 1994, NEDO and NASA reached a basic agreement with each other about this cooperative R and D on combustion under microgravity conditions. In fiscal 2000, Japan proposed an experiment using the drop tower facilities and parabolic aircraft at NASA Glen Research Center and at JAMIC (Japan Microgravity Center). In other words, the proposals from Japan included experiments on combustion of droplets composed of diversified fuels under different burning conditions (vaporization), flame propagation in smoldering porous materials and dispersed particles under microgravity conditions, and control of interactive combustion of two droplets by acoustical and electrical perturbations. Additionally proposed were experiments on effect of low external air flow on solid material combustion under microgravity, and sooting and radiation effects on the burning of large droplets under microgravity conditions. This report gives an outline of the results of these five cooperative R and D projects. The experiments were conducted under ordinary normal gravity and microgravity conditions, with the results compared and examined mutually. (NEDO)

  5. 7th international symposium on internal combustion diagnostics. Proceedings; 7. Internationales Symposium fuer Verbrennungsdiagnostik. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At one time combustion pressure indicating was the ''trigger'' for this symposium, and today it still serves as the basis for continued investigation of combustion phenomena. It now finds application throughout the development process, as more sophisticated analysis of conventional signals is possible. Understanding of localized combustion phenomena is substantially simplified by means of optical diagnostic methods, the application of which has reached a certain level of standardization. The presentations will cover specific topics including fuel spray analysis, ignition events and information about gas mixtures. The comparison and combination of results from measurement and simulation shed light on the complex processes in the combustion chamber. What's more, the linkage of two complementary methods offers substantial cost savings through reductions in test hardware and shorter development times. Focused application of all of the available tools allows us better to understand combustion processes, recognize the influential parameters and derive control algorithms. The latter are subsequently to be found in engines that fulfill both regulatory requirements and customer expectations. So it is that the symposium captures the current state of the art in combustion diagnostics through a combination of indicating, optical diagnostics and simulation, and offers both the methodology expert and the engine developer the ideal platform for discussion of today's issues - and to form their own opinions on them. Anyone wanting to keep up to date in this continuously developing and ever more complex area of activity certainly can't afford to miss our symposium. (orig.)

  6. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    International Nuclear Information System (INIS)

    Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Arbab, M.I.; Cheng, S.F.; Gouk, S.W.

    2014-01-01

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  7. Influence of biofuels usage in internal combustion engines of agricultural tractors on output parametrs

    Directory of Open Access Journals (Sweden)

    Tomáš Šmerda

    2010-01-01

    Full Text Available Application of alternative fuels brings the social benefits in terms of reducing dependence on oil industry and its products as well as decreasing of damage of the environment together with using of na­tu­ral resources, especially in field of renewable energy resources. The use of biofuels is the most important part of energy strategy in European Union, whose member states have agreed the content of biofuels will achieve 5.75% of the total energy sum of fuel for transport purposes in 2010. Operation of internal combustion engine fueled by RME brings environmental benefits as described several authors in analysis of the life cycle. The contribution deals with technical difficulties of the RME usage in internal combustion engine used in agricultural tractors. Different fuel causes different process of combustion which means changes in output power and pollution. The aim of this experiment was to determine these effects. Experimental work was divided into two parts according to various fuel systems. The first tractor was equipped with mechanical injection system, the second one was provided with common-rail fuel system. The test procedures consisted of measurement of power- torque curves where the engine load was created by Eddy current dynamometer. Exhaust gas analyzer sampled the pollution of carbon monoxide, carbon dioxide and hydrocarbons as the most important indicators of combustion process.

  8. Experimental validation of a combustion kinetics based multi-zone model for natural gas-diesel RCCI engines

    NARCIS (Netherlands)

    Mikulski, M.; Bekdemir, C.; Willems, F.P.T.

    2016-01-01

    This paper presents the validation results of TNO's combustion model designed to support RCCI control development. In-depth validation was performed on a multi-cylinder heavy-duty engine operating in RCCI mode on natural gas and diesel fuel. It was shown that the adopted approach is able to

  9. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  10. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  11. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  12. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  13. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  14. EXPERIMENTAL INSTALLATION FOR AN ASSESSMENT OF METHODS OF WATER SUPPLY IN AN INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    A. V. Bizhaev

    2015-01-01

    Full Text Available The water additive to fuel became one of effective ways of the solution of the main problems of the piston internal combustion engines (ICE as it reduces thermal factor of the engine, toxic emissions of exhaust products, and also increases efficiency by some operating modes. The way of fuel and air mix with water feeding in the combustion chamber has a great influence on process of combustion. Experimental installation for obtaining comparative characteristics of the main methods of water supply in the ICE combustion chamber was created. It was defined that there are two ways of water supply in the combustion chamber. At the first way water feed is carried out in the form of a water fuel emulsion which moves to the combustion chamber through a nozzle by means of the fuel pump with a high pressure. At the second way water arrives with air through the spraying element - the carburetor or a nozzle. This way is very simple in difference of emulsion feeding. The easiest way is nozzles application. It was established that the emulsion as the non-uniform highly dispersed fluid can be divide into components. Therefore it is necessary to use during the feeding system operation special emulsifiers with air for the uniformity water getting to the cylinder. The system for each nozzle opening at some point was offered. System of feedback with sensors of exhaust gases temperature in a final collector for adjustment of duration of injection was worked out. It was showed that at the developed experimental stand it is possible to carry out tests at various power modes. As result it will be possible to estimate both ways of fuel and air mix with water feeding.

  15. 7th international symposium on internal combustion diagnostics. Proceedings; 7. Internationales Symposium fuer Verbrennungsdiagnostik. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At one time combustion pressure indicating was the ''trigger'' for this symposium, and today it still serves as the basis for continued investigation of combustion phenomena. It now finds application throughout the development process, as more sophisticated analysis of conventional signals is possible. Understanding of localized combustion phenomena is substantially simplified by means of optical diagnostic methods, the application of which has reached a certain level of standardization. The presentations will cover specific topics including fuel spray analysis, ignition events and information about gas mixtures. The comparison and combination of results from measurement and simulation shed light on the complex processes in the combustion chamber. What's more, the linkage of two complementary methods offers substantial cost savings through reductions in test hardware and shorter development times. Focused application of all of the available tools allows us better to understand combustion processes, recognize the influential parameters and derive control algorithms. The latter are subsequently to be found in engines that fulfill both regulatory requirements and customer expectations. So it is that the symposium captures the current state of the art in combustion diagnostics through a combination of indicating, optical diagnostics and simulation, and offers both the methodology expert and the engine developer the ideal platform for discussion of today's issues - and to form their own opinions on them. Anyone wanting to keep up to date in this continuously developing and ever more complex area of activity certainly can't afford to miss our symposium. (orig.)

  16. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  17. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  18. Waste heat recovery systems for internal combustion engines: classification and benefits

    OpenAIRE

    Marchenko, A.; Samoilenko, D.; Adel Hamzah, Ali; Adel Hamzah, Omar

    2014-01-01

    Recent trend about the best ways of using the deployable sources of energy in to useful work in order to reduce the rate of consumption of fossil fuel as well as pollution. Out of all the available sources, the internal combustion engines are the major consumer of fossil fuel around the globe. The remaining heat is expelled to the environment through exhaust gases and engine cooling systems, resulting in to entropy rise and serious environmental pollution, so it is required to utilized waste ...

  19. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    OpenAIRE

    Weerasinghe, Rohitha; Hounsham, Sandra

    2017-01-01

    Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders [1]. Dependable data for small steam expanders will allow us to predict on their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Wankel Engines, with its lower resistance properties at small scale provide excellent contenders for bottoming cycle expanders. Present paper is based on results of experiments carried ...

  20. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  1. Particular mechanism for continuously varying the compression ratio for an internal combustion engine

    Science.gov (United States)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.

    2018-01-01

    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  2. Numerical Study on the Performance Characteristics of Hydrogen Fueled Port Injection Internal Combustion Engine

    OpenAIRE

    Rosli A. Bakar; Mohammed K. Mohammed; M. M. Rahman

    2009-01-01

    This study was focused on the engine performance of single cylinder hydrogen fueled port injection internal combustion engine. GT-Power was utilized to develop the model for port injection engine. One dimensional gas dynamics was represented the flow and heat transfer in the components of the engine model. The governing equations were introduced first, followed by the performance parameters and model description. Air-fuel ratio was varied from stoichiometric limit to a lean limit and the rota...

  3. The dynamic interaction between combustible renewables and waste consumption and international tourism: The case of Tunisia

    OpenAIRE

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2014-01-01

    This paper employs the Autoregressive Distributed Lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald-test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of es...

  4. Dynamic and Thermodynamic Examination of a Two-Stroke Internal Combustion Engine

    OpenAIRE

    İPCİ, Duygu; KARABULUT, Halit

    2016-01-01

    In this study the combined dynamic and thermodynamic analysis of a two-stroke internal combustion engine was carried out. The variation of the heat, given to the working fluid during the heating process of the thermodynamic cycle, was modeled with the Gaussian function. The dynamic model of the piston driving mechanism was established by means of nine equations, five of them are motion equations and four of them are kinematic relations. Equations are solved by using a numerical method based o...

  5. Internal combustion engine with rotary valve assembly having variable intake valve timing

    Science.gov (United States)

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  6. Exhaust gas turbo-charger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Behnert, R.

    1982-01-07

    The invention is concerned with a exhaust gas turbocharger for internal combustion engines. A turbine driving a compressor, is feeded with the exhaust gas. Intended is the over-temperature protection of the exhaust gas turbocharger. For this reason a ring shaped sheet with a well polished nickel surface, serves as thermal shield. A sealing avoids soiling of the turbine shaft. Due to the heat shielding effect no tinder, oxide or dirt deposition is possible. The heat reflection factor is constant.

  7. The effect of oil additives on exhaust emission of internal combustion engines

    International Nuclear Information System (INIS)

    Dimitrovski, M.B.; Kuzmanovski, K.A.

    1999-01-01

    An attempt was conducted to acquire data on connection between motor oil and motor oil additives and exhaust emission of internal combustion engine. The consulted literature did not contain enough data, so experiments were conducted. The results of the experiments are presented on diagrams that have been processed in the computer program EXCEL. Conclusions that were made out of that work show the need of expanding research on the subject. (Author)

  8. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2010-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in re...

  9. Conflict between internal combustion engine and thermoelectric generator during waste heat recovery in cars

    Science.gov (United States)

    Korzhuev, M. A.

    2011-02-01

    It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.

  10. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2009-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’...

  11. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  12. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  13. International evaluation of the programme on fluid bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H [Ruhr Univ., Bochum (Germany); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Reed, T [Colorado School of Mines (United States)

    1997-12-31

    This report on the Swedish National Program on Fluid Bed Combustion and Gasification is part of the on-going evaluation process adopted by the funding organization NUTEK. This agency has invited the undersigned to act as members of an international panel responsible for evaluating the progress made in 9 projects initiated between 1993-1996. The output of this evaluation procedure is given in this report. The main aim of the Fluid Bed Combustion and Gasification Program is to develop industrially relevant knowledge and competence in experimental and computational techniques capable of characterizing the flow, heat transfer, combustion, gasification, ash formation and deposition and emissions in fluid bed gasifiers and combustors. To achieve this aim NUTEK is sponsoring research in a number of universities and encourages close cooperation between universities and industry. In the evaluation of the various sponsored research programs, the evaluation committee has considered the following key points: relevance of research to industrial needs; originality of research; program management; adequacy of resources; degree of collaboration between industry and academia; international standing of research. In this report comments and recommendations are made on individual projects as well as on the programme in general and they express the unanimous view of the panel members

  14. International evaluation of the programme on fluid bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H. [Ruhr Univ., Bochum (Germany); Magnusson, B.F. [Norwegian Univ. of Science and Technology, Trondheim (Norway); Reed, T. [Colorado School of Mines (United States)

    1996-12-31

    This report on the Swedish National Program on Fluid Bed Combustion and Gasification is part of the on-going evaluation process adopted by the funding organization NUTEK. This agency has invited the undersigned to act as members of an international panel responsible for evaluating the progress made in 9 projects initiated between 1993-1996. The output of this evaluation procedure is given in this report. The main aim of the Fluid Bed Combustion and Gasification Program is to develop industrially relevant knowledge and competence in experimental and computational techniques capable of characterizing the flow, heat transfer, combustion, gasification, ash formation and deposition and emissions in fluid bed gasifiers and combustors. To achieve this aim NUTEK is sponsoring research in a number of universities and encourages close cooperation between universities and industry. In the evaluation of the various sponsored research programs, the evaluation committee has considered the following key points: relevance of research to industrial needs; originality of research; program management; adequacy of resources; degree of collaboration between industry and academia; international standing of research. In this report comments and recommendations are made on individual projects as well as on the programme in general and they express the unanimous view of the panel members

  15. Exergetic analysis of cogeneration plants through integration of internal combustion engine and process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leonardo de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: leonardo.carvalho@petrobras.com.br; Leiroz, Albino Kalab; Cruz, Manuel Ernani [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Mecanica], Emails: leiroz@mecanica.ufrj.br, manuel@mecanica.ufrj.br

    2010-07-01

    Internal combustion engines (ICEs) have been used in industry and power generation much before they were massively employed for transportation. Their high reliability, excellent power-to-weight ratio, and thermal efficiency have made them a competitive choice as main energy converters in small to medium sized power plants. Process simulators can model ICE powered energy plants with limited depth, due to the highly simplified ICE models used. Usually a better understanding of the global effects of different engine parameters is desirable, since the combustion process within the ICE is typically the main cause of exergy destruction in systems which utilize them. Dedicated commercial ICE simulators have reached such a degree of maturity, that they can adequately model a wide spectrum of phenomena that occur in ICEs. However, ICE simulators are unable to incorporate the remaining of power plant equipment and processes in their models. This paper presents and exploits the integration of an internal combustion engine simulator with a process simulator, so as to evaluate the construction of a fully coupled simulation platform to analyze the performance of ICE-based power plants. A simulation model of an actual cogeneration plant is used as a vehicle for application of the proposed computational methodology. The results show that by manipulating the engine mapping parameters, the overall efficiency of the plant can be improved. (author)

  16. Control Scheme Formulation for the Production of Hydrogen on Demand to Feed an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jarniel García Morales

    2016-12-01

    Full Text Available In this work, a control strategy is presented to produce hydrogen on demand to feed an internal combustion (IC engine. For this purpose, the modeling of the IC engine fueled by gasoline blended with 10 % v/v of anhydrous ethanol (E10 and hydrogen as an additive is developed. It is considered that the hydrogen gas is produced according to the IC engine demand, and that the hydrogen gas is obtained by an alkaline electrolyzer. The gasoline–ethanol blend added into the combustion chamber is determined according to the stoichiometric ratio and the production of hydrogen gas is regulated by a proportional and integral controller (P.I.. The controller reference is varying according to the mass flow air induced into the cylinder, in order to ensure an adequate production of hydrogen gas for any operating condition of the IC engine. The main contribution of this work is the control scheme developed, through simulation, in order to produce hydrogen on demand for any operating point of an internal combustion engine fueled by an E10 blend. The simulation results showed that the use of hydrogen gas as an additive in an E10 blend decreases the E10 fuel consumption 23 % on average, and the thermal efficiency is increased approximately 2.13 % , without brake power loss in the IC engine.

  17. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S; Toyoda, S [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  18. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  19. Experimental study of hydrogen as a fuel additive in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Saanum, Inge

    2008-07-01

    Combustion of hydrocarbons in internal combustion engines results in emissions that can be harmful both to human health and to the environment. Although the engine technology is improving, the emissions of NO{sub x}, PM and UHC are still challenging. Besides, the overall consumption of fossil fuel and hence the emissions of CO{sub 2} are increasing because of the increasing number of vehicles. This has lead to a focus on finding alternative fuels and alternative technologies that may result in lower emissions of harmful gases and lower CO{sub 2} emissions. This thesis treats various topics that are relevant when using blends of fuels in different internal combustion engine technologies, with a particular focus on using hydrogen as a fuel additive. The topics addressed are especially the ones that impact the environment, such as emissions of harmful gases and thermal efficiency (fuel consumption). The thesis is based on experimental work performed at four different test rigs: 1. A dynamic combustion rig with optical access to the combustion chamber where spark ignited premixed combustion could be studied by means of a Schlieren optical setup and a high speed video camera. 2. A spark ignition natural gas engine rig with an optional exhaust gas recycling system. 3. A 1-cylinder diesel engine prepared for homogeneous charge compression ignition combustion. 4. A 6-cylinder standard diesel engine The engine rigs were equipped with cylinder pressure sensors, engine dynamometers, exhaust gas analyzers etc. to enable analyses of the effects of different fuels. The effect of hydrogen blended with methane and natural gas in spark ignited premixed combustion was investigated in the dynamic combustion rig and in a natural gas engine. In the dynamic combustion rig, the effect of hydrogen added to methane on the flame speed and the flame structure was investigated at elevated pressure and temperature. A considerable increase in the flame speed was observed when adding 30 vol

  20. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  1. Equipment for heating the exhaust gases of internal combustion engines in order to improve afterburning

    Energy Technology Data Exchange (ETDEWEB)

    Masaki,

    1976-04-15

    The device described here serves to heat exhaust gases of internal combustion engines by heat exchange with hot gases and also, in cold engines, to raise the temperature of the fuel-air mixture drawn in by the engine. The device is installed next to the outlet opening of the engine. It consists of a burner to generate the hot gas, as well as a heat exchanger permitting heat supply to the exhaust gases and a hot-gas line leading to the intake line. Heating of the air is taken in leads to a better atomization of the mixture and thus to improved combustion. Heating of the exhaust gases improves afterburning. The burner generating the hot gas is shut off when the normal operational temperature of the engine is reached. The temperature is controlled by means of a temperature sensor installed in the device.

  2. Computational fluid dynamics applied to flows in an internal combustion engine

    Science.gov (United States)

    Griffin, M. D.; Diwakar, R.; Anderson, J. D., Jr.; Jones, E.

    1978-01-01

    The reported investigation is a continuation of studies conducted by Diwakar et al. (1976) and Griffin et al. (1976), who reported the first computational fluid dynamic results for the two-dimensional flowfield for all four strokes of a reciprocating internal combustion (IC) engine cycle. An analysis of rectangular and cylindrical three-dimensional engine models is performed. The working fluid is assumed to be inviscid air of constant specific heats. Calculations are carried out of a four-stroke IC engine flowfield wherein detailed finite-rate chemical combustion of a gasoline-air mixture is included. The calculations remain basically inviscid, except that in some instances thermal conduction is included to allow a more realistic model of the localized sparking of the mixture. All the results of the investigation are obtained by means of an explicity time-dependent finite-difference technique, using a high-speed digital computer.

  3. Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target

    Science.gov (United States)

    Ambarita, Himsar

    2017-09-01

    Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.

  4. Literature study and feasibility test regarding a gasoline/EHN blend consumed by standard CI-engine using a non-PCCI combustion strategy

    NARCIS (Netherlands)

    Doornbos, G.; Somhorst, J.; Boot, M.D.

    2013-01-01

    A literature and experimental study was done to create an overview of the behavior of gasoline combusted in a CI-engine. This paper creates a first overview of the work to be done before implementing this Gasoline Compression Ignition concept in a multi-cylinder engine. According to literature the

  5. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, Wayne [Cummins, Inc., Columbus, IN (United States); Rutland, Chris [Univ. of Wisconsin, Madison, WI (United States); Rohlfing, Eric [Dept. of Energy (DOE), Washington DC (United States). Office of Science; Singh, Gurpreet [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy; McIlroy, Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-03-03

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accounts for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not

  6. The realization and analysis of a new thermodynamic cycle for internal combustion engine

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2011-01-01

    Full Text Available This paper presents description and thermodynamic analysis of a new thermodynamic cycle. Realization of this new cycle is possible to achieve with valveless internal combustion engine with more complete expansion. The main purpose of this new IC engine is to increase engines’ thermal efficiency. The engine was designed so that the thermodynamic changes of the working fluid are different than in conventional engines. Specific differences are reflected in a more complete expansion of the working fluid (the expansion stroke is larger than compression stroke, valveless gas flowing and complete discharge of residual combustion products from the combustion chamber. In this concept, the movement of the piston is different than in conventional piston mechanisms. The results obtained herein include the efficiency characteristics of irreversible reciprocating new engine cycle which is very similar to Miller cycle. The results show that with this thermodynamic cycle engine has higher efficiency than with the standard Otto cycle. In this article, the patent application material under number 2008/607 at the Intellectual Property Office of the Republic of Serbia was used.

  7. Investigation on the Potential of High Efficiency for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2018-02-01

    Full Text Available The current brake thermal efficiency of advanced internal combustion engines is limited to 50%, and how to further improve the efficiency is a challenge. In this study, a theoretical investigation on engine thermal efficiency was carried out using one-dimension simulations based on the first law of thermodynamics. The energy balance was evaluated by varying parameters such as compression ratio (CR; heat transfer coefficient; intake charge properties; and combustion phasing etc.—their influences on the efficiency limits were demonstrated. Results show that for a given heat transfer coefficient, an optimal CR exists to obtain the peak efficiency. The optimal CR decreases with the increase of heat transfer coefficient, and high CR with a low heat-transfer coefficient can achieve a significantly high efficiency. A higher density and specific heat ratio of intake charge, as well as a shorter combustion duration with a proper CA50 (crank angle at 50% of total heat release, can increase efficiency significantly. Methanol shows an excellent ability in decreasing the peak in-cylinder temperature; and the peak indicated efficiency is relatively higher than other tested fuels. The displacement has few effects on the indicated efficiency, while it shows a strong effect on the energy distribution between heat transfer and exhaust energy. All these strategies with high CR result in high in-cylinder pressure and temperature; which means a breakthrough of material is needed in the future.

  8. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  9. Effect of plasma spraying modes on material properties of internal combustion engine cylinder liners

    Science.gov (United States)

    Timokhova, O. M.; Burmistrova, O. N.; Sirina, E. A.; Timokhov, R. S.

    2018-03-01

    The paper analyses different methods of remanufacturing worn-out machine parts in order to get the best performance characteristics. One of the most promising of them is a plasma spraying method. The mathematical models presented in the paper are intended to anticipate the results of plasma spraying, its effect on the properties of the material of internal combustion engine cylinder liners under repair. The experimental data and research results have been computer processed with Statistica 10.0 software package. The pare correlation coefficient values (R) and F-statistic criterion are given to confirm the statistical properties and adequacy of obtained regression equations.

  10. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T. K. [Universite du Quebec a Trois-Rivieres, Hydrogen Research Institute, Trois-Rivieres, PQ (Canada)

    2004-07-01

    An algorithm for self-adaptive tuning of an internal combustion engine is proposed, based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. Piezoelectric transducers are devices to monitor dynamic cylinder pressure; spark plugs with embedded piezo elements are now available to provide diagnostic engine functions. Such transducers are also capable of providing signals to the engine controller to perform auto tuning, a function that is considered very useful particularly in vehicles using alternative fuels whose characteristics frequently show variations between fill-ups. 2 refs., 2 figs.

  11. Acoustically damped metal oil trough for internal combustion engines. Schallgedaempfte Blech-Oelwanne fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.

    1991-03-28

    The invention refers to an acoustically damped oil trough. As there are strict requirements for reducing the noise emission from internal combustion engines, according to the invention it is proposed that the oil trough should be surrounded by an outer trough, where the outer trough is made of plastic or sheet steel in one or more layers. To avoid noise bridges, the oil trough and outer trough are separated by elastomer elements. The outer trough achieves a reasonably priced increase in sound insulation. It is also possible to backfit an outer trough on engines.

  12. New Turbo Compound Systems in Automotive Industry for Internal Combustion Engine to Recover Energy

    Science.gov (United States)

    Chiriac, R.; Chiru, A.; Condrea, O.

    2017-10-01

    The large amount of heat is scattered in the internal combustion engine through exhaust gas, coolant, convective and radiant heat transfer. Of all these residual heat sources, exhaust gases have the potential to recover using various modern heat recovery techniques. Waste heat recovery from an engine could directly reduce fuel consumption, increase available electrical power and improve overall system efficiency and if it would be used a turbochargers that can also produce energy. This solution is called turbo aggregation and has other ways to develop it in other areas of research like the electrical field. [1-3

  13. The highlighting of an internal combustion engine piston ring radial oscillations

    Directory of Open Access Journals (Sweden)

    Djallel ZEBBAR

    2016-06-01

    Full Text Available This paper deals with the definition of the lube-oil film thickness in the piston ring cylinder liner junction of an internal combustion engine. At first, a mathematical model for the estimation of the film thickness is established. It is used to point out the oscillating motion of the piston ring normal to the cylinder wall. For the first time, has been highlighted and analytically evaluated the oscillating behavior of the piston ring in its housing in the radial direction. Furthermore, it is demonstrated that the radial oscillations frequency is a function of piston ring stiffness, material and geometry.

  14. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  15. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    Science.gov (United States)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  16. Vibration survey of internal combustion engines for use on unmanned air vehicles

    International Nuclear Information System (INIS)

    Duanis, B.

    1998-01-01

    This paper describes the method, the procedure and data results of engine vibration test which is carried out on engines for use on unmanned air vehicles. The paper focuses on the testing of rotating propulsion systems powered by an internal combustion engine which is composed of main rotating components such as the alternator, gearbox, propeller , dampers and couplings. Three measurement methods for measuring torsional and lateral vibrations are presented: a. Gear tooth pulse signal. b. Shaft Strain Gage. c. Laser Displacement Sensors The paper also presents data from tests which were performed using each method and discusses the applications, the advantages and disadvantages of each method

  17. A Completely New Type of Actuator -or- This Ain't Your Grandfather's Internal Combustion Engine

    Science.gov (United States)

    Gore, Brian W.; Hawkins, Gary F.; Hess, Peter A.; Moore, Teresa A.; Fournier, Eric W.

    2010-01-01

    A completely new type of actuator - one that is proposed for use in a variety of environments from sea to land to air to space - has been designed, patented, built, and tested. The actuator is loosely based on the principle of the internal combustion engine, except that it is a completely closed system, only requiring electrical input, and the working fuel is water. This paper outlines the theory behind the electrolysis- and ignition-based cycle upon which the actuator operates and describes the performance capability test apparatus and results for the actuator. A mechanism application that harnessed the unit s power to twist a scaled rotor blade is also highlighted.

  18. Design and Implementation of the Control System of an Internal Combustion Engine Test Unit

    Directory of Open Access Journals (Sweden)

    Tufan Koç

    2014-02-01

    Full Text Available Accurate tests and performance analysis of engines are required to minimize measurement errors and so the use of the advanced test equipment is imperative. In other words, the reliable test results depend on the measurement of many parameters and recording the experimental data accurately which is depended on engine test unit. This study aims to design the control system of an internal combustion engine test unit. In the study, the performance parameters of an available internal combustion engine have been transferred to computer in real time. A data acquisition (DAQ card has been used to transfer the experimental data to the computer. Also, a user interface has been developed for performing the necessary procedures by using LabVIEW. The dynamometer load, the fuel consumption, and the desired speed can easily be adjusted precisely by using DAQ card and the user interface during the engine test. Load, fuel consumption, and temperature values (the engine inlet-outlet, exhaust inlet-outlet, oil, and environment can be seen on the interface and also these values can be recorded to the computer. It is expected that developed system will contribute both to the education of students and to the researchers’ studies and so it will eliminate a major lack.

  19. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine

    International Nuclear Information System (INIS)

    He, Maogang; Zhang, Xinxin; Zeng, Ke; Gao, Ke

    2011-01-01

    In this paper, we present a steady-state experiment, energy balance and exergy analysis of exhaust gas in order to improve the recovery of the waste heat of an internal combustion engine (ICE). Considering the different characteristics of the waste heat of exhaust gas, cooling water, and lubricant, a combined thermodynamic cycle for waste heat recovery of ICE is proposed. This combined thermodynamic cycle consists of two cycles: the organic Rankine cycle (ORC), for recovering the waste heat of lubricant and high-temperature exhaust gas, and the Kalina cycle, for recovering the waste heat of low-temperature cooling water. Based on Peng–Robinson (PR) equation of state (EOS), the thermodynamic parameters in the high-temperature ORC were calculated and determined via an in-house computer program. Suitable working fluids used in high-temperature ORC are proposed and the performance of this combined thermodynamic cycle is analyzed. Compared with the traditional cycle configuration, more waste heat can be recovered by the combined cycle introduced in this paper. -- Highlights: ► We study the energy balance of fuel in internal combustion engine. ► Heat recovery effect of exhaust gas is good when ICE is at a high-load condition. ► We propose a new combined thermodynamic cycle for waste heat of ICE. ► The combined cycle has a higher recovery efficiency than previous configurations.

  20. Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels

    International Nuclear Information System (INIS)

    Duarte, Jorge; Amador, Germán; Garcia, Jesus; Fontalvo, Armando; Vasquez Padilla, Ricardo; Sanjuan, Marco; Gonzalez Quiroga, Arturo

    2014-01-01

    Control strategies for auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels are presented. Ambient temperature and ambient pressure are considered as the disturbing variables. A thermodynamic model for predicting temperature at the ignition point is developed, adjusted and validated with a large experimental data-set from high power turbocharged engines. Based on this model, the performance of feedback and feedforward auto-ignition control strategies is explored. A robustness and fragility analysis for the Feedback control strategies is presented. The feedforward control strategy showed the best performance however its implementation entails adding a sensor and new control logic. The proposed control strategies and the proposed thermodynamic model are useful tools for increasing the range of application of gaseous fuels with low methane number while ensuring a safe running in internal combustion engines. - Highlights: • A model for predicting temperature at the ignition point. • Robust PID, modified PID, and feedforward strategies for auto-ignition control. • λ′ were the best set of tuning equations for calculating controller parameters. • Robust PID showed significant improvements in auto-ignition control. • Feedforward control showed the best performance

  1. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Rohitha Weerasinghe

    2017-01-01

    Full Text Available Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders (Stobart and Weerasinghe, 2006. Dependable data for small steam expanders will allow us to predict their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Present paper is based on results of experiments carried out on small scale Wankel and two-stroke reciprocating engines as air expanders and as steam expanders. A test facility developed at Sussex used for measurements is comprised of a torque, power and speed measurements, electronic actuation of valves, synchronized data acquisition of pressure, and temperatures of steam and inside of the engines for steam and internal combustion cycles. Results are presented for four engine modes, namely, reciprocating engine in uniflow steam expansion mode and air expansion mode and rotary Wankel engine in steam expansion mode and air expansion mode. The air tests will provide base data for friction and motoring effects whereas steam tests will tell how effective the engines will be in this mode. Results for power, torque, and p-V diagrams are compared to determine the change in performance from air expansion mode to steam expansion mode.

  2. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  3. 3-D modeling of parietal liquid films in internal combustion engines; Modelisation tridimensionnelle des films liquides parietaux dans les moteurs a combustion interne

    Energy Technology Data Exchange (ETDEWEB)

    Foucart, H

    1998-12-11

    To simulate the air-fuel mixing in the intake ports and cylinder of an internal combustion engines, a wall fuel liquid film model has been developed for integration in 3D CFD codes. Phenomena taken into account include wall film formation by an impinging spray without splashing effect, film transport such as governed by mass and momentum equations with hot wall effects, and evaporation considering energy equation with an analytical mass transfer formulation developed here. A continuous-fluid method is used to describe the wall film over a three dimensional complex surface. The basic approximation is that of a laminar incompressible boundary layer; the liquid film equations are written in an integral form and solved by a first-order ALE finite volume scheme; the equation system is closed without coefficient fitting requirements. The model has been implemented in a Multi-Block version of KIVA-II (KMB) and tested against problems having theoretical solutions. Then in a first step, it has been compared to the measurements obtained in a cylindrical pipe reproducing the main characteristics of SI engine intake pipe flow and in a second step, it has been compared to the Xiong experiment concerning the film evaporation on a hot wall. The film behaviour is satisfactory reproduced by the computations for a set of operating conditions. Finally, engine calculations were conducted showing the importance of including a liquid film model for the simulations. (author) 54 refs.

  4. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  5. Large-eddy simulations of turbulent flows in internal combustion engines

    Science.gov (United States)

    Banaeizadeh, Araz

    The two-phase compressible scalar filtered mass density function (FMDF) model is further developed and employed for large-eddy simulations (LES) of turbulent spray combustion in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations are solved in a generalized curvilinear coordinate system with high-order, multi-block, compact differencing schemes for the turbulent velocity and pressure. However, turbulent mixing and combustion are computed with a new two-phase compressible scalar FMDF model. The spray and droplet dispersion/evaporation are modeled with a Lagrangian method. A new Lagrangian-Eulerian-Lagrangian computational method is employed for solving the flow, spray and scalar equation. The pressure effect in the energy equation, as needed in compressible flows, is included in the FMDF formulation. The performance of the new compressible LES/FMDF model is assessed by simulating the flow field and scalar mixing in a rapid compression machine (RCM), in a shock tube and in a supersonic co-axial jet. Consistency of temperatures predicted by the Eulerian finite-difference (FD) and Lagrangian Monte Carlo (MC) parts of the LES/FMDF model are established by including the pressure on the FMDF. It is shown that the LES/FMDF model is able to correctly capture the scalar mixing in both compressible subsonic and supersonic flows. Using the new two-phase LES/FMDF model, fluid dynamics, heat transfer, spray and combustion in the RCM with flat and crevice piston are studied. It is shown that the temperature distribution in the RCM with crevice piston is more uniform than the RCM with flat piston. The fuel spray characteristics and the spray parameters affecting the fuel mixing inside the RCM in reacting and non-reacting flows are also studied. The predicted liquid penetration and flame lift-off lengths for respectively non-reacting and reacting sprays are found to compare well with the available experimental data. Temperatures and

  6. Regeneration in an internal combustion engine: Thermal-hydraulic modeling and analysis

    International Nuclear Information System (INIS)

    Thyageswaran, Sridhar

    2016-01-01

    Highlights: • An arrangement is proposed for in-cylinder regeneration in a 4-stroke engine. • Thermodynamic models are formulated for overall cycle analysis. • A design procedure is outlined for micro-channel regenerators. • Partial differential equations are solved for flow inside the regenerator. • Regeneration with lean combustion decreases the idealized cycle efficiency. - Abstract: An arrangement is proposed for a four-stroke internal combustion engine to: (a) recover thermal energy from products of combustion during the exhaust stroke; (b) store that energy as sensible heat in a micro-channel regenerator matrix; and (c) transfer the stored heat to compressed fresh charge that flows through the regenerator during the succeeding mechanical cycle. An extra moveable piston that can be locked at preferred positions and a sequence of valve events enable the regenerator to lose heat to the working fluid during one interval of time but gain heat from the fluid during another interval of time. This paper examines whether or not this scheme for in-cylinder regeneration (ICR) improves the cycle thermal efficiency η I . Models for various thermodynamic processes in the cycle and treatments for unsteady compressible flow and heat transfer inside the regenerator are developed. Digital simulations of the cycle are made. Compared to an idealized engine cycle devoid of regeneration, provisions for ICR seem to deteriorate the thermal efficiency. In an 8:1 compression ratio octane engine simulated with an equivalence ratio of 0.75, η I  = 0.455 with regeneration and η I  = 0.491 without. This study shows that previous claims on efficiency gains via ICR, using highly-simplified models, may be misleading.

  7. From orbital debris capture systems through internal combustion engines on Mars

    Science.gov (United States)

    1991-01-01

    The investigation and conceptualization of an orbital debris collector was the primary area of design. In addition, an alternate structural design for Space Station Freedom and systems supporting resource utilization at Mars and the moon were studied. Hardware for production of oxygen from simulate Mars atmosphere was modified to permit more reliable operation at low pressures (down to 10 mb). An internal combustion engine was altered to study how Mars atmosphere could be used as a diluent to control combustion temperatures and avoid excess Mars propellant production requirements that would result from either methane-rich or oxygen-rich, methane-oxygen combustion. An elastic loop traction system that could be used for lunar construction vehicles was refined to permit testing. A parabolic heat rejection radiator system was designed and built to determine whether it was capable of increasing heat rejection rates during lunar daytime operation. In addition, an alternate space station truss design, utilizing a pre-integrated concept, was studied and found to reduce estimate extravehicular activity (EVA) time and increase the structural integrity when compared to the original Warren truss concept. An orbital-debris-capturing spacecraft design which could be mated with the Orbital Maneuvering Vehicle was studied. The design identified Soviet C-1B boosters as the best targets of opportunity in Earth orbits between an altitude of 900 km and 1100 km and at an inclination of 82.9 deg. A dual robot pallet, which could be spun to match the tumbling rate of the C-1B booster, was developed as the conceptual design.

  8. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions

    International Nuclear Information System (INIS)

    Roberts, Andrew; Brooks, Richard; Shipway, Philip

    2014-01-01

    Highlights: • The sources of I.C. engine cold start efficiency are reviewed and quantified. • Potential solutions are reviewed and the benefit quantified together. • Potential conflicts between different engine sub-systems are discussed. • Fuel consumption benefits of up to 7% are observed during cold start. • Emission reductions of up to 40% during cold start are observed. - Abstract: Legislation on vehicle emissions continues to become more stringent in an effort to minimise the impact of internal combustion engines on the environment. One area of significant concern in this respect is that of the cold-start; the thermal efficiency of the internal combustion engine is significantly lower at cold-start than when the vehicle reaches steady state temperatures owing to sub-optimal lubricant and component temperatures. The drive for thermal efficiency (of both the internal combustion engine and of the vehicle as a whole) has led to a variety of solutions being trialled to assess their merits and effects on other vehicle systems during this warm-up phase (and implemented where appropriate). The approaches have a common theme of attempting to reduce energy losses so that systems and components reach their intended operating temperature range as soon as possible after engine start. In the case of the engine, this is primarily focused on the lubricant system. Lubricant viscosity is highly sensitive to temperature and the increased viscosity at low temperatures results in higher frictional and pumping losses than would be observed at the target operating temperature. The approaches used to tackle the problem include the use of phase change materials (to reduce the cool-down rate during a period following engine running) [1,2] and the use of thermal barrier coatings in an attempt to insulate the cylinder bore and prevent heat loss (thus increasing the amount of energy utilised as brake work [3]). A range of system alterations have also been trialled including

  9. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  10. Coherent anti-Stokes Raman spectroscopy temperature measurements in an internal combustion engine

    Science.gov (United States)

    Ball, Don; Driver, H. Steve T.; Hutcheon, Richard J.; Lockett, Russel J.; Robertson, Gerald N.

    1994-09-01

    Part of a project to investigate the physics and chemistry of alternative fuels in internal combustion engines is reported. Coherent anti-Stokes Raman spectroscopy (CARS) is used to probe the fuel-air mixture in the cylinder of a Richardo E6 variable compression ratio research engine. The laser system comprises a passively Q- switched single-longitudinal-mode frequency-doubled Nd:YAG laser and a broadband dye laser, both with a pulse length of 15 ns. A crankshaft encoder and electronic delay are used to fire the lasers at specified times during the engine cycle, and CARS spectra are acquired using a 0.75 m spectrometer and a 1024 optical multichannel analyzer. Because of the uncertainties associated with collisional narrowing in the theoretical modeling of high-pressure CARS spectra, temperatures are determined by comparing the engine spectra with a library of experimental CARS spectra from a calibrated high-pressure, high- temperature cell. This purely experimental technique is shown to be superior to two theoretical models under the considered conditions, giving temperatures during the compression stroke of the engine with standard deviations of typically 10 K and a possible systematic error of 15 K. Together with pressure records, this information is used as input data for chemical kinetic modeling of the combustion process.

  11. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  12. Energy efficiency analyses of active flow aftertreatment systems for lean burn internal combustion engines

    International Nuclear Information System (INIS)

    Zheng Ming; Reader, Graham T.

    2004-01-01

    The use of three way catalytic converters in stoichiometric burn reciprocating internal combustion engine systems has proved to be an effective and efficient method for reducing the level of criteria pollutants. However, such passive systems have not been as successful in emission amelioration when combined with lean burn engines. This is because of the thermochemical nature of the exhaust gases generated by such engines. The high content of exhaust oxygen largely negates the effectiveness of three way catalytic converters, and the comparatively low temperature of the combusted gases means that supplemental energy has to be added to these gases to enable the converter to function correctly. This requirement severely reduces the energy efficiency of conventional passive aftertreatment systems. However, initial empirical studies have indicated that a possible means of improving the performance of aftertreatment devices when used with lean burn engine systems is to use active flow control of the exhaust gases. These results are reported in this paper. This concept has been further investigated by developing an energy efficiency analysis that enables the effects on aftertreatment performance of different gas flow rates, flow reversal frequencies and monolith solid properties to be investigated. Simulation results indicate that through active thermal management, the supplemental energy consumption can be drastically reduced

  13. Accelerated Electromechanical Modeling of a Distributed Internal Combustion Engine Generator Unit

    Directory of Open Access Journals (Sweden)

    Serhiy V. Bozhko

    2012-07-01

    Full Text Available Distributed generation with a combustion engine prime mover is still widely used to supply electric power in a variety of applications. These applications range from backup power supply systems and combined wind-diesel generation to providing power in places where grid connection is either technically impractical or financially uneconomic. Modelling of such systems as a whole is extremely difficult due to the long-time load profiles needed and the computational difficulty of including small time-constant electrical dynamics with large time-constant mechanical dynamics. This paper presents the development of accelerated, reduced-order models of a distributed internal combustions engine generator unit. Overall these models are shown to achieve a massive improvement in the computational time required for long-time simulations while also achieving an extremely high level of dynamic accuracy. It is demonstrated how these models are derived, used and verified against benchmark models created using established techniques. Throughout the paper the modelling set as a whole, including multi level detail, is presented, detailed and finally summarised into a crucial tool for general system investigation and multiple target optimisation.

  14. Experimental Evaluation of a Method for Turbocharging Four-Stroke, Single Cylinder, Internal Combustion Engines

    Science.gov (United States)

    Buchman, Michael; Winter, Amos

    2015-11-01

    Turbocharging an engine increases specific power, improves fuel economy, reduces emissions, and lowers cost compared to a naturally aspirated engine of the same power output. These advantages make turbocharging commonplace for multi-cylinder engines. Single cylinder engineers are not commonly turbocharged due to the phase lag between the exhaust stroke, which powers the turbocharger, and the intake stroke, when air is pumped into the engine. Our proposed method of turbocharging single cylinder engines is to add an ``air capacitor'' to the intake manifold, an additional volume that acts as a buffer to store compressed air between the exhaust and intake strokes, and smooth out the pressure pulses from the turbocharger. This talk presents experimental results from a single cylinder, turbocharged diesel engine fit with various sized air capacitors. Power output from the engine was measured using a dynamometer made from a generator, with the electrical power dissipated with resistive heating elements. We found that intake air density increases with capacitor size as theoretically predicted, ranging from 40 to 60 percent depending on heat transfer. Our experiment was able to produce 29 percent more power compared to using natural aspiration. These results validated that an air capacitor and turbocharger may be a simple, cost effective means of increasing the power density of single cylinder engines.

  15. Biomass-based gasifiers for internal combustion (IC) engines—A ...

    Indian Academy of Sciences (India)

    biomass is converted into a combustible producer gas. ..... with gasification efficiency, increased with the increase in gas flow rate. .... Livingston W R 2007 Report on Biomass ash characteristics and behaviour in combustion, gasification.

  16. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    International Nuclear Information System (INIS)

    Courteau, R.; Bose, T.K.

    2004-01-01

    Piezoelectric transducers offer an effective, non-intrusive way to monitor dynamic cylinder pressure in internal combustion engines. Devices dedicated to this purpose are appearing on the market, often in the form of spark plugs with embedded piezo elements. Dynamic cylinder pressure is typically used to provide diagnostic functions, or to help map an engine after it is designed. With the advent of powerful signal processor chips, it is now possible to embed enough computing power in the engine controller to perform auto tuning based on the signals provided by such transducers. Such functionality is very useful if the fuel characteristics vary between fill ups, as is often the case with alternative fuels. We propose here an algorithm for self-adaptive tuning based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. (author)

  17. Research of Data Acquisition and Analysis System for Internal Combustion Engine Based on DSP

    International Nuclear Information System (INIS)

    Gao, Y H; Tian, X L; Cheng, P; Chang, X; Dou, W J

    2006-01-01

    In the paper, the structure, working principle, functions and characteristics of an data acquisition and analysis system for internal combustion engines (I.C. engine) based on DSP is introduced. The DSP can not only acquire and analyze the data alone, also can work with the PC together to form data acquisition and analysis system with high speed and large memory. The system takes advantages of TMS320F2812's plenty of peripherals on chip, becomes small and easy for installation. USB technique is used to translate data between DSP and PC in high speed, so the system's real time processing is proved very much. It is proved that the designed system can acquire and analyze the steady and transient parameters of the I.C. engine very well

  18. Predictive piston motion control in a free-piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Jones, E.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU England (United Kingdom)

    2010-05-15

    A piston motion controller for a free-piston internal combustion engine is presented. To improve dynamic performance in the control of the piston motion and engine compression ratio, the controller response is determined from a prediction of engine top dead centre error rather than the measured value from the previous cycle. The proposed control approach showed superior performance compared with that of standard PI feedback control known from the literature due to a reduced control action time delay. The manipulation of fuel injection timing to reduce in-cylinder pressure peaks and cycle-to-cycle variations was also studied, indicating that with the piston motion estimation, the injection timing is a powerful control variable for this purpose. (author)

  19. Prototype testing and analysis of a novel internal combustion linear generator integrated power system

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhaoping; Chang, Siqin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2010-04-15

    A novel four-stroke free-piston engine equipped with a linear electric generator (namely internal combustion linear generator integrated power system) is proposed in this paper to achieve efficient energy conversion from fuel to electricity. Unique features of the novel power system are presented and their effects on the continuous running are discussed, along with potential advantages and disadvantages compared to conventional engines. A single cylinder, gasoline and spark ignition prototype is fabricated with reference to the geometric and control parameters of an existing conventional four-stroke engine. Stable running of the prototype is realized, and a 2.2 kW average output power with the generating efficiency of 32% has been obtained up to now. The feasibility and performance of the proposed design are verified. Detailed testing results from the continuous running prototype are analyzed in this paper for giving insight into the performance and dynamic behaviors of the novel power system. (author)

  20. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

  1. System and method for conditioning intake air to an internal combustion engine

    Science.gov (United States)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  2. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    Science.gov (United States)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  3. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part I Standard Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2015-01-01

    Full Text Available The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple.

  4. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  5. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla

    2009-01-01

    Full Text Available Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’ exhaust pipes. This work also considers how the simulation must be made, based on the previous exploration. The results (presented as e- quations in this first paper show the great influence exerted by pressure wave movement on flow through the engine and there- fore on its final performance.

  6. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  7. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  8. Start up system for hydrogen generator used with an internal combustion engine

    Science.gov (United States)

    Houseman, J.; Cerini, D. J. (Inventor)

    1977-01-01

    A hydrogen generator provides hydrogen rich product gases which are mixed with the fuel being supplied to an internal combustion engine for the purpose of enabling a very lean mixture of that fuel to be used, whereby nitrous oxides emitted by the engine are minimized. The hydrogen generator contains a catalyst which must be heated to a pre-determined temperature before it can react properly. To simplify the process of heating up the catalyst at start-up time, either some of the energy produced by the engine such as engine exhaust gas, or electrical energy produced by the engine, or the engine exhaust gas may be used to heat up air which is then used to heat the catalyst.

  9. Schlieren measurements in the round cylinder of an optically accessible internal combustion engine.

    Science.gov (United States)

    Kaiser, Sebastian Arnold; Salazar, Victor Manuel; Hoops, Alexandra A

    2013-05-10

    This paper describes the design and experimental application of an optical system to perform schlieren measurements in the curved geometry of the cylinder of an optically accessible internal combustion engine. Key features of the system are a pair of cylindrical positive meniscus lenses, which keep the beam collimated while passing through the unmodified, thick-walled optical cylinder, and a pulsed, high-power light-emitting diode with narrow spectral width. In combination with a high-speed CMOS camera, the system is used to visualize the fuel jet after injection of hydrogen fuel directly into the cylinder from a high-pressure injector. Residual aberrations, which limit the system's sensitivity, are characterized experimentally and are compared to the predictions of ray-tracing software.

  10. Flow effects due to valve and piston motion in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2015-01-01

    Highlights: • Flow regime identification depending on the valve lift during the exhaust stroke. • Analysis of the valve motion effect onto the flow development in the exhaust port. • Physical interpretation of commonly used discharge and flow coefficient formulations. • Illustration of flow effects in junction regions with pulsatile flow. - Abstract: Performance optimization regarding e.g. exhaust valve strategies in an internal combustion engine is often performed based on one-dimensional simulation investigation. Commonly, a discharge coefficient is used to describe the flow behavior in complex geometries, such as the exhaust port. This discharge coefficient for an exhaust port is obtained by laboratory experiments at fixed valve lifts, room temperatures, and low total pressure drops. The present study investigates the consequences of the valve and piston motion onto the energy losses and the discharge coefficient. Therefore, Large Eddy Simulations are performed in a realistic internal combustion geometry using three different modeling strategies, i.e. fixed valve lift and fixed piston, moving piston and fixed valve lift, and moving piston and moving valve, to estimate the energy losses. The differences in the flow field development with the different modeling approaches is delineated and the dynamic effects onto the primary quantities, e.g. discharge coefficient, are quantified. Considering the motion of piston and valves leads to negative total pressure losses during the exhaust cycle, which cannot be observed at fixed valve lifts. Additionally, the induced flow structures develop differently when valve motion is taken into consideration, which leads to a significant disparity of mass flow rates evolving through the two individual valve ports. However, accounting for piston motion and limited valve motion, leads to a minor discharge coefficient alteration of about one to two percent

  11. Effect of Exhaust Gas Recirculation (EGR) on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    OpenAIRE

    Khalil Ibrahim Abaas

    2016-01-01

    Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a fo...

  12. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME II. APPENDICES A-I

    Science.gov (United States)

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  13. Application of Response Surface Methodology for characterization of ozone production from Multi-Cylinder Reactor in non-thermal plasma device

    Science.gov (United States)

    Lian See, Tan; Zulazlan Shah Zulkifli, Ahmad; Mook Tzeng, Lim

    2018-04-01

    Ozone is a reactant which can be applied for various environmental treatment processes. It can be generated via atmospheric air non-thermal plasmas when sufficient voltages are applied through a combination of electrodes and dielectric materials. In this study, the concentration of ozone generated via two different configurations of multi-cylinder dielectric barrier discharge (DBD) reactor (3 x 40 mm and 10 x 10 mm) was investigated. The influence of the voltage and the duty cycle to the concentration of ozone generated by each configuration was analysed using response surface methodology. Voltage was identified as significant factor to the ozone production process. However, the regressed model was biased towards one of the configuration, leaving the predicted results of another configuration to be out of range.

  14. Determination of TDC in internal combustion engines by a newly developed thermodynamic approach

    International Nuclear Information System (INIS)

    Pipitone, Emiliano; Beccari, Alberto

    2010-01-01

    In-cylinder pressure analysis is nowadays an indispensable tool in internal combustion engine research and development. It allows the measure of some important performance related parameters, such as indicated mean effective pressure (IMEP), mean friction pressure, indicated fuel consumption, heat release rate, mass fraction burned, etc. Moreover, future automotive engine will probably be equipped with in-cylinder pressure sensors for continuous combustion monitoring and control, in order to fulfil the more and more strict emission limits. For these reasons, in-cylinder pressure analysis must be carried out with maximum accuracy, in order to minimize the effects of its characteristic measurement errors. The exact determination of crank position when the piston is at top dead centre (TDC) is of vital importance, since a 1 deg. error can cause up to a 10% evaluation error on IMEP and 25% error on the heat released by the combustion: the position of the crank shaft (and hence the volume inside the cylinder) should be known with the precision of at least 0.1 crank angle degrees, which is not an easy task, even if the engine dimensions are well known: it corresponds to a piston movement in the order of one tenth of micron, which is very difficult to estimate. A good determination of the TDC position can be pursued by means of a dedicated capacitive TDC sensor, which allows a dynamic measurement (i.e. while engine is running) within the required 0.1 deg. precision . Such a sensor has a substantial cost and its use is not really fast, since it must be fitted in the spark plug or injector hole of the cylinder. A different approach can be followed using a thermodynamic method, whose input is in-cylinder pressure sampled during the compression and expansion strokes: some of these methods, more or less valid, can be found in literature . This paper will discuss a new thermodynamic approach to the problem of the right determination of the TDC position. The base theory of the

  15. Flow effects due to pulsation in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2014-01-01

    Highlights: • Using POD analysis to identify large coherent flow structures in a complex geometry. • Flow field alters significant for constant and pulsating boundary conditions. • The discharge coefficient of the exhaust port decreases 2% with flow pulsation. • Pulsation causes a pumping mechanism due to a phase shift of pressure and momentum. - Abstract: In an internal combustion engine, the residual energy remaining after combustion in the exhaust gasses can be partially recovered by a downstream arranged device. The exhaust port represents the passage guiding the exhaust gasses from the combustion chamber to the energy recovering device, e.g. a turbocharger. Thus, energy losses in the course of transmission shall be reduced as much as possible. However, in one-dimensional engine models used for engine design, the exhaust port is reduced to its discharge coefficient, which is commonly measured under constant inflow conditions neglecting engine-like flow pulsation. In this present study, the influence of different boundary conditions on the energy losses and flow development during the exhaust stroke are analyzed numerically regarding two cases, i.e. using simple constant and pulsating boundary conditions. The compressible flow in an exhaust port geometry of a truck engine is investigated using three-dimensional Large Eddy Simulations (LES). The results contrast the importance of applying engine-like boundary conditions in order to estimate accurately the flow induced losses and the discharge coefficient of the exhaust port. The instantaneous flow field alters significantly when pulsating boundary conditions are applied. Thus, the induced losses by the unsteady flow motion and the secondary flow motion are increased with inflow pulsations. The discharge coefficient decreased about 2% with flow pulsation. A modal flow decomposition method, i.e. Proper Orthogonal Decomposition (POD), is used to analyze the coherent structures induced with the particular

  16. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques

    Science.gov (United States)

    Delvecchio, S.; Bonfiglio, P.; Pompoli, F.

    2018-01-01

    This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be

  17. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    Science.gov (United States)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  18. Effect of Exhaust Gas Recirculation (EGR on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    Directory of Open Access Journals (Sweden)

    Khalil Ibrahim Abaas

    2016-07-01

    Full Text Available Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a four-cylinder direct injection (DI diesel engine at constant engine speed (1500 rpm and variable loads (from no load to 86 kN/m2, the tests were repeated with constant load (77 kN/m2 and variable engine speeds (from 1250 to 3000 rpm.The experimental results showed that adding EGR to diesel engine provided significant reductions in brake power (bp, brake thermal efficiency and exhaust gas temperatures, while high increments in brake specific  fuel  consumption  (bsfc.  High  EGR  percentage  (as  30%  in  this  article  caused  an  11.7% reduction  in  brake  thermal  efficiency,  26.38%  reduction  in  exhaust  gas  temperatures  and  12.28%  in volumetric efficiency at full load conditions.

  19. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  20. Effect of using hydrogen in the power and performance of an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Edwin Tamayo

    2016-12-01

    Full Text Available This study analyzed the real working parameters of an Otto cycle internal combustion engine, using as fuel hydrogen plus gasoline. Two stoichiometric equations were determined. In the first equation, the reagents are octane and air, in the second equation was added the quantity of 3.86 H2 moles obtained from a hydrogen cell. Two sets of equations, for consumption and power, were determined from the chemical equations, working at the conditions of Quito: altitude 2850 msnm, 72.794 kPa of atmospheric pressure and 300 K of temperature. A single cylinder engine powered with hydrogen plus gasoline was used for getting real data of engine power, using mixtures of air-gasoline and hydrogen; the theoretical power without H2 was 3.91 HP and with H2 5.41 HP, it increased 27.1%, the real power is 3.78 HP without H2 and 4.66 HP with H2, it increased 16.7%. Theoretical fuel consumption is 401.61 g/kWh and addition of H2 is less to 373.52 g/kWh, the actual consumption that indicates the manufacturer is 395 g/kWh.

  1. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed.

    Science.gov (United States)

    Leach, Felix C P; Davy, Martin H; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  2. The production of hydrogen through the uncatalyzed partial oxidation of methane in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Ghazi A.; Wierzba, I. [Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary (Canada)

    2008-04-15

    The thermodynamic and kinetic limitations of the uncatalyzed partial oxidation of methane for the production of synthesis gas, which is made up of mostly hydrogen and carbon monoxide in a variety of proportions, are reviewed. It is suggested that such processes can be made to proceed successfully in a conventional internal combustion engine when operated on excessively rich mixtures of methane and oxygenated air. This is achieved while simultaneously producing power and regenerative exhaust gas heating. Experimental results are described that show a dual fuel engine of the compression ignition type with pilot liquid fuel injection can be operated on excessively rich mixtures of methane and air supplemented with oxygen gas to produce hydrogen rich gas with high methane conversion rates. Similarly, a spark ignition engine was reported to be equally capable of such production and performance. It is shown that there are viable prospects for the simultaneous production of synthesis gas in engines with efficient useful mechanical power and exhaust gas regenerative heating. (author)

  3. Innovative Calibration Method for System Level Simulation Models of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Ivo Prah

    2016-09-01

    Full Text Available The paper outlines a procedure for the computer-controlled calibration of the combined zero-dimensional (0D and one-dimensional (1D thermodynamic simulation model of a turbocharged internal combustion engine (ICE. The main purpose of the calibration is to determine input parameters of the simulation model in such a way as to achieve the smallest difference between the results of the measurements and the results of the numerical simulations with minimum consumption of the computing time. An innovative calibration methodology is based on a novel interaction between optimization methods and physically based methods of the selected ICE sub-systems. Therein physically based methods were used for steering the division of the integral ICE to several sub-models and for determining parameters of selected components considering their governing equations. Innovative multistage interaction between optimization methods and physically based methods allows, unlike the use of well-established methods that rely only on the optimization techniques, for successful calibration of a large number of input parameters with low time consumption. Therefore, the proposed method is suitable for efficient calibration of simulation models of advanced ICEs.

  4. THE HYDROGEN-FUELLED INTERNAL COMBUSTION ENGINES FOR MARINE APPLICATIONS WITH A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Ibrahim S. Seddiek

    2015-03-01

    Full Text Available Modern marine power plants have been designed to improve the overall ship’s efficiency. This pushed the designers of marine machinery to search for unconventional fuels for these plants. During the previous years, diesel oil has been extensively used on-board ships. Due to the high price of light diesel oil and the environmental problems resulting from the use of heavy fuel oil, it has become necessary to search for an alternative to traditional fuels. As a result, natural gas fuel has been used on-board some types of ships, especially short-voyage cruise ships. Unfortunately, there are still some technical and logistic problems related to the use of natural gas as a fuel, especially as it is considered a non-renewable energy source. The use of hydrogen fuel on-board ships, particularly in modern power plants may contribute to overcoming the above problems. The present paper considers the possibility of the use of hydrogen fuel for marine applications and discusses different stages of hydrogen gas cycle beginning with hydrogen generation process from clean energy until using it as fuel for internal combustion engines on-board one RO/RO ship, named Taba, operating in the Mediterranean Sea. Compared to the diesel engine, the hydrogen fuelled engine is found to be lower in thermal efficiency and fuel consumption, however, some adjustments are needed.

  5. Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles

    Directory of Open Access Journals (Sweden)

    Yanlin Ge

    2016-04-01

    Full Text Available On the basis of introducing the origin and development of finite time thermodynamics (FTT, this paper reviews the progress in FTT optimization for internal combustion engine (ICE cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible (with only the irreversibility of heat resistance and irreversible ICE cycles, including Otto, Diesel, Atkinson, Brayton, Dual, Miller, Porous Medium and Universal cycles with constant specific heats, variable specific heats, and variable specific ratio of the conventional and quantum working fluids (WFs; the studies on the optimum piston motion (OPM trajectories of ICE cycles, including Otto and Diesel cycles with Newtonian and other heat transfer laws; the studies on the performance limits of ICE cycles with non-uniform WF with Newtonian and other heat transfer laws; as well as the studies on the performance simulation of ICE cycles. In the studies, the optimization objectives include work, power, power density, efficiency, entropy generation rate, ecological function, and so on. The further direction for the studies is explored.

  6. Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines

    International Nuclear Information System (INIS)

    Canova, Aldo; Chicco, Gianfranco; Genon, Giuseppe; Mancarella, Pierluigi

    2008-01-01

    The increasing diffusion of small-scale energy systems within the distributed generation (DG) paradigm is raising the need for studying the environmental impact due to the different DG solutions in order to assess their sustainability. Addressing the environmental impact calls for building specific models for studying both local and global emissions. In this framework, the adoption of natural gas-fueled DG cogeneration technologies may provide, as a consequence of cogeneration enhanced overall energy efficiency and of natural gas relatively low carbon content, a significant reduction of global impact in terms of CO 2 emissions with respect to the separate production of electricity and heat. However, a comprehensive evaluation of the DG alternatives should take into account as well the impact due to the presence of plants spread over the territory that could increase the local pollution, in particular due to CO and NO x , and thus could worsen the local air quality. This paper provides an overview on the characterization of the emissions from small-scale natural gas-fueled cogeneration systems, with specific reference to the DG technologies nowadays most available in the market, namely, microturbines and internal combustion engines. The corresponding local and global environmental impacts are evaluated by using the emission balance approach. A numerical case study with two representative machines highlights their different emission characteristics, also considering the partial-load emission performance

  7. Converting existing Internal Combustion Generator (ICG) systems into HESs in standalone applications

    International Nuclear Information System (INIS)

    Perera, A.T.D.; Attalage, R.A.; Perera, K.K.C.K.; Dassanayake, V.P.C.

    2013-01-01

    Graphical abstract: - Highlights: • Obtained Pareto fronts of LEC, power supply reliability (PSR) and ICC/GHG emission. • Pareto surface was observed for smaller ICGs when considering LEC–PSR–GHG. • Shape of the LEC–PSR–ICC Pareto front gradually changes with ICG capacity. • Importance of multi-criterion decision-making after multi objective optimization. - Abstract: Expanding existing Internal Combustion Generator (ICG) systems by combining renewable energy sources is getting popular due to global concern on emission of green house gases (GHG) and increasing fossil fuel costs. Life cycle cost, initial capital cost (ICC), power supply reliability of the system, and GHG emission by ICG are factors to be considered in this process. Pareto front of Levelized Energy Cost (LEC)–Unmet Load Fraction (ULF)–GHG emission was taken in this study for four different expansion scenarios. Furthermore, Pareto front of ICC–LE–ULF was taken for three different expansion scenarios in order to analyze the impact of renewable energy integration. The results clearly depict that characteristics of the Pareto front varies with the scale of expansion and objectives taken for the optimization. A detailed analysis was conducted for a scale up problem with a 4 kVA ICG by using the Pareto fronts obtained

  8. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

    1992-04-01

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  9. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    Science.gov (United States)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  10. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels

    Science.gov (United States)

    Poulopoulos, S. G.; Samaras, D. P.; Philippopoulos, C. J.

    In the present work, the effect of ethanol addition to gasoline on regulated and unregulated emissions is studied. A 4-cylinder OPEL 1.6 L internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, 1,3-butadiene, toluene, acetic acid and ethanol. Addition of ethanol in the fuel up to 10% w/w had as a result an increase in the Reid vapour pressure of the fuel, which indicates indirectly increased evaporative emissions, while carbon monoxide tailpipe emissions were decreased. For ethanol-containing fuels, acetaldehyde emissions were appreciably increased (up to 100%), especially for fuel containing 3% w/w ethanol. In contrast, aromatics emissions were decreased by ethanol addition to gasoline. Methane and ethanol were the most resistant compounds to oxidation while ethylene was the most degradable compound over the catalyst. Ethylene, methane and acetaldehyde were the main compounds present at engine exhaust while methane, acetaldehyde and ethanol were the main compounds in tailpipe emissions for ethanol fuels after the catalyst operation.

  11. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed

    Science.gov (United States)

    Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  12. Vibration Diagnostics as an effective Tool for Testing Engines of Internal Combustion

    Directory of Open Access Journals (Sweden)

    Ferenc Dömötör

    2017-10-01

    Full Text Available There are several methods of automotive diagnostics used in services to detect a large variety of faults and damages of various parts of engines of internal combustion. Undoubtedly, they are effective, but they are simply unable to find all types of mechanical faults occurring during the operation. This is the reason why authors of this paper tried to use a special tool, which has been proven for years for detecting faults of rolling element bearing in rotating machinery. During their research, the authors tried to find valuable results by measuring vibration of various parts of engines. Three items were tested, a Diesel engine and two Otto motors. A large number of measurements have been taken at various speed, at different points, in different directions, with different parameter setup, etc. However, there was one setup which has been applied to all three engines. It is the measurement setup of vibration velocity, in the frequency range of 2 Hz-300 Hz. Valuable consequences have been found regarding the clogging of the air filters and the exhaust systems. As a conclusion the authors expressed their opinion, that, apart from the traditional diagnostic methods used in services, vibration measurements can also be useful, especially for detecting faults of rolling element bearings.

  13. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Sprouse, Charles; Depcik, Christopher

    2013-01-01

    Escalating fuel prices and future carbon dioxide emission limits are creating a renewed interest in methods to increase the thermal efficiency of engines beyond the limit of in-cylinder techniques. One promising mechanism that accomplishes both objectives is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. This paper reviews the history of internal combustion engine exhaust waste heat recovery focusing on Organic Rankine Cycles since this thermodynamic cycle works well with the medium-grade energy of the exhaust. Selection of the cycle expander and working fluid are the primary focus of the review, since they are regarded as having the largest impact on system performance. Results demonstrate a potential fuel economy improvement around 10% with modern refrigerants and advancements in expander technology. -- Highlights: ► This review article focuses on engine exhaust waste heat recovery works. ► The organic Rankine cycle is superior for low to medium exergy heat sources. ► Working fluid and expander selection strongly influence efficiency. ► Several authors demonstrate viable systems for vehicle installation

  14. Biomass gasification for electricity generation with internal combustion engines. Process efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia Faure, Luis; Recio Recio, Angel; Oliva Ruiz, Luis; Pajarín Rodríguez, Juan; Revilla Suarez, Dennis

    2015-01-01

    Biomass is a renewable source of energy worldwide increased prospects for its potential and its lower environmental impact compared to fossil fuels. By processes and energy conversion technologies it is possible to obtain fuels in solid, liquid and gaseous form from any biomass. The biomass gasification is the thermal conversion thereof into a gas, which can be used for electricity production with the use of internal combustion engines with a certain level of efficiency, which depends on the characteristics of biomass and engines used. In this work the evaluation of thermal and overall efficiency of the gasification in Integrated Forestry Enterprise of Santiago de Cuba, designed to generate electricity from waste from the forest industry is presented. Is a downdraft gasifier reactor, COMBO-80 model and engine manufacturing Hindu (diesel) model Leyland modified to work with producer gas. The evaluation was carried out for different loads (electric power generated) engine from experimental measurements of flow and composition of the gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25%. (full text)

  15. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method

    Science.gov (United States)

    Jiang, Zhinong; Wang, Zijia; Zhang, Jinjie

    2017-01-01

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable. PMID:29244722

  16. Dynamic Oil Consumption Measurement of Internal Combustion Engines using Laser Spectroscopy.

    Science.gov (United States)

    Sellmeier, Stefan; Alonso, Eduardo; Boesl, Ulrich

    2014-01-07

    A new approach has been developed to measure dynamic consumption of lubricant oil in an internal combustion engine. It is based on the already known technique where sulfur is used as a natural tracer of the engine oil. Since ejection of motor oil in gaseous form into the exhaust is by far the main source of engine oil consumption, detection of sulfur in the exhaust emission is a valuable way to measure engine oil consumption in a dynamic way. In earlier approaches, this is done by converting all sulfur containing chemical components into SO2 by thermal pyrolysis in a high temperature furnace at atmospheric pressure. The so-formed SO2 then is detected by broadband-UV-induced fluorescence or mass spectrometric methods. The challenge is to reach the necessary detection limit of 50 ppb. The new approach presented here includes sulfur conversion in a low-pressure discharge cell and laser-induced fluorescence with wavelength and fluorescence lifetime selection. A limit of detection down to 10 ppb at a temporal resolution in the time scale of few seconds is reached. Extensive, promising studies have been performed at a real engine test bench. Future developments of a compact, mobile device based on these improvements are discussed.

  17. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method.

    Science.gov (United States)

    Jiang, Zhinong; Mao, Zhiwei; Wang, Zijia; Zhang, Jinjie

    2017-12-15

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable.

  18. Electronic ignition device for internal combustion engines. Elektronische Zuendvorrichtung fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Erhard, W

    1983-07-14

    The purpose of the invention is to create an electronic ignition device for internal combustion engines, so that the exact setting of a required ignition timing can be done without troublesome balancing of the circuit and without temperature compensation processes. According to the invention, in order to solve this problem, the ignition device is characterized by an auxiliary circuit, with an auxiliary winding magnetically coupled to the ignition coil, a capacitor and a diode, which is connected in parallel with the control section of the control component. The auxiliary winding charges the capacitor up via the diode, as long as the induction and therefore the voltage in the auxiliary winding are increasing. After exceeding the maximum voltage, this is maintained at the capacitor while the voltage in the auxiliary winding decreases. If the difference reaches the threshold voltage of the control component, in particular of a thyristor, this is switched on and blocks the switching transistor. Due to this circuit, the ignition timing is very close behind the timing of the greatest possible energy input into the primary coil.

  19. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    Science.gov (United States)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  20. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China

    International Nuclear Information System (INIS)

    Qiao, Qinyu; Zhao, Fuquan; Liu, Zongwei; Jiang, Shuhua; Hao, Han

    2017-01-01

    Highlights: •Cradle-to-gate greenhouse gas emissions of internal combustion engine and battery electric vehicles are compared. •Greenhouse gas emissions of battery electric vehicles are 50% higher than internal combustion engine vehicles. •Traction battery production causes about 20% greenhouse gas emissions increase. •10% variations of curb weight, electricity and Li-ion battery production affect the results by 7%, 4% and 2%. •Manufacturing technique improvement, vehicle recycling and energy structure optimization are major mitigation opportunities. -- Abstract: Electric drive vehicles are equipped with totally different propulsion systems compared with conventional vehicles, for which the energy consumption and cradle-to-gate greenhouse gas emissions associated with vehicle production could substantially change. In this study, the life cycle energy consumption and greenhouse gas emissions of vehicle production are compared between battery electric and internal combustion engine vehicles in China’s context. The results reveal that the energy consumption and greenhouse gas emissions of a battery electric vehicle production range from 92.4 to 94.3 GJ and 15.0 to 15.2 t CO 2 eq, which are about 50% higher than those of an internal combustion engine vehicle, 63.5 GJ and 10.0 t CO 2 eq. This substantial change can be mainly attributed to the production of traction batteries, the essential components for battery electric vehicles. Moreover, the larger weight and different weight distribution of materials used in battery electric vehicles also contribute to the larger environmental impact. This situation can be improved through the development of new traction battery production techniques, vehicle recycling and a low-carbon energy structure.

  1. The model for calculation of emission and imisson of air pollutants from vehicles with internal combustion engine

    International Nuclear Information System (INIS)

    Tashevski, Done; Dimitrovski, Mile

    1994-01-01

    The model for calculation of emission and immision of air pollutants from vehicles with internal combustion engine on the crossroads in urban environments, with substitution of a great number of exhaust-pipes with one chimney in the centre of the crossroad has been made. The whole calculation of the pollution sources mentioned above is, in the fact, the calculation of the emission and imisson of pollutants from point sources of pollution. (author)

  2. Technology for emission control in internal combustion engines; Kakushu nainen kikan ni okeru hai gas joka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M. [Kyoto University, Kyoto (Japan)

    1998-09-01

    Described herein are emission control technology and exhaust gas cleaning measures for internal combustion engines. Gas turbines burn relatively high-quality fuels, such as natural gas, kerosene, diesel oil and gas oil, where the major concerns are to reduce NOx and dust emissions. The NOx abatement techniques fall into two general categories; wet processes which inject water or steam, and dry processes which depend on improved combustion. Power generation and cogeneration which burn natural gas adopt lean, premixed combustion and two-stage combustion as the major approaches. Low-speed, large-size diesel engines, which realize very high thermal efficiency, discharge high concentrations of NOx. Delayed fuel injection timing is the most easy NOx abatement technique to meet the related regulations, but is accompanied by decreased fuel economy. Use of water-emulsified fuel, water layer injection and multi-port injection can reduce NOx emissions without decreasing fuel economy, depending on optimization methods adopted. Automobile gasoline engines are required to further clean exhaust gases by catalystic systems. 9 refs., 10 figs., 6 tabs.

  3. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mullett, J D [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dodd, R [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Williams, C J [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Triantos, G [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Dearden, G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Shenton, A T [Powertrain Control Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Watkins, K G [Laser Group, Department of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH (United Kingdom); Carroll, S D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Scarisbrick, A D [Ford Motor Company, Dunton Research and Engineering Centre, Laindon, Basildon, Essex, SS15 6EE (United Kingdom); Keen, S [GSI Group, Cosford Lane, Swift Valley, Rugby, Warwickshire, CV21 1QN (United Kingdom)

    2007-08-07

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV{sub IMEP}) and the variance in the peak cylinder pressure position (Var{sub PPP}). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air.

  4. The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine

    International Nuclear Information System (INIS)

    Mullett, J D; Dodd, R; Williams, C J; Triantos, G; Dearden, G; Shenton, A T; Watkins, K G; Carroll, S D; Scarisbrick, A D; Keen, S

    2007-01-01

    This work involves a study on laser ignition (LI) in an internal combustion (IC) engine and investigates the effects on control of engine combustion performance and stability of varying specific laser parameters (beam energy, beam quality, minimum beam waist size, focal point volume and focal length). A Q-switched Nd : YAG laser operating at the fundamental wavelength 1064 nm was successfully used to ignite homogeneous stoichiometric gasoline and air mixtures in one cylinder of a 1.6 litre IC test engine, where the remaining three cylinders used conventional electrical spark ignition (SI). A direct comparison between LI and conventional SI is presented in terms of changes in coefficient of variability in indicated mean effective pressure (COV IMEP ) and the variance in the peak cylinder pressure position (Var PPP ). The laser was individually operated in three different modes by changing the diameter of the cavity aperture, where the results show that for specific parameters, LI performed better than SI in terms of combustion performance and stability. Minimum ignition energies for misfire free combustion ranging from 4 to 28 mJ were obtained for various optical and laser configurations and were compared with the equivalent minimum optical breakdown energies in air

  5. Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines

    International Nuclear Information System (INIS)

    Zhu, Sipeng; Deng, Kangyao; Qu, Shuan

    2014-01-01

    In this paper, an in-cylinder waste heat recovery system especially for turbocharged engines is proposed to improve the thermal efficiencies of internal combustion engines. Simplified recovery processes can be described as follows: superheated steam generated by engine waste heat is injected into the pipe before the turbine to increase the boost pressure of the fresh air; intake valve close timing is adjusted to control the amount of fresh air as the original level, and thus the higher pressure charged air expands in the intake stroke and transfers the pressure energy directly to the crankshaft. In this way, the increased turbine output by the pre-turbine steam injection is finally recovered in the cylinder, which is different from the traditional Rankine cycle. The whole energy transfer processes are studied with thermodynamic analyses and numerical simulations. The results show that the mass flow rate of the injected steam has the biggest influence on the energy transfer processes followed by the temperature of the injected steam. With this in-cylinder waste heat recovery system, the fuel economy of a selected turbocharged diesel engine can be improved by 3.2% at the rated operating point when the injected mass flow ratio is set to be 0.1. - Highlights: • An in-cylinder waste heat recovery system is proposed. • Effects of injected parameters are studied with energy and exergy balance theories. • Variations of operating points on the compressor map are studied in detail. • The fuel economy is improved by 3.2% at the rated operating point

  6. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine

    International Nuclear Information System (INIS)

    Niu, Zhiqiang; Diao, Hai; Yu, Shuhai; Jiao, Kui; Du, Qing; Shu, Gequn

    2014-01-01

    Highlights: • A 3-D model for exhaust-based thermoelectric waste heat recovery is developed. • Various heat, mass and electric transfer characteristics are elucidated. • Channel size needs to be moderate to balance heat transfer and pressure drop. • Bafflers need to be placed at all locations near all TEG modules. • Baffler angle needs to be sufficiently large, especially for downstream locations. - Abstract: Thermoelectric generator (TEG) has attracted considerable attention for the waste heat recovery of internal combustion engine. In this study, a 3-D numerical model for engine exhaust-based thermoelectric generator (ETEG) system is developed. By considering the detailed geometry of thermoelectric generator (TEG) and exhaust channel, the various transport phenomena are investigated, and design optimization suggestions are given. It is found that the exhaust channel size needs to be moderate to balance the heat transfer to TEG modules and pressure drop along channel. Increasing the number of exhaust channels may improve the performance, however, since more space and TEG modules are needed, the system size and cost need to be considered as well. Although only placing bafflers at the channel inlet could increase the heat transfer coefficient for the whole channel, the near wall temperature downstream might decrease significantly, leading to performance degradation of the TEG modules downstream. To ensure effective utilization of hot exhaust gas, the baffler angle needs to be sufficiently large, especially for the downstream locations. Since larger baffler angles increase the pressure drop significantly, it is suggested that variable baffler angles, with the angle increasing along the flow direction, might be a middle course for balancing the heat transfer and pressure drop. A single ETEG design may not be suitable to all the engine operating conditions, and making the number of exhaust channels and baffler angle adjustable according to different engine

  7. Constant speed control of four-stroke micro internal combustion swing engine

    Science.gov (United States)

    Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun

    2015-09-01

    The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.

  8. Fundamental test results of a hydraulic free piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, A.; Ito, T. [Toyohashi University of Technology (Japan). Dept. of Mechanical Engineering

    2004-10-01

    The hydraulic free piston internal combustion engine pump that has been constructed and tested in this work is the opposed piston, two-stroke cycle, uniflow scavenging, direct fuel injection, and compression ignition type. The opposed engine pistons reciprocate the hydraulic pump pistons directly and the hydraulic power to be used in the hydraulic motors is generated. The hydraulic pressure generated is substantially constant. The opposed free pistons rest after every gas cycle and hydraulic power is continuously supplied by a hydraulic accumulator during the free pistons' rest. The smaller the hydraulic flow output, the longer the duration of the rest. Every gas cycle is performed under a fixed working condition independent of hydraulic power output. The test results in this work indicate that the number of gas cycles per second of the free piston engine pump is directly proportional to hydraulic flow output. The opposed free pistons operate every 53.2 s when hydraulic flow output is 1.02 cm{sup 3}/s; at that time hydraulic power output is 0.0124 kW. Hydraulic thermal efficiency, the ratio of hydraulic energy produced to fuel energy consumed, has been measured in the range 0.0124 kW to 4.88 kW of hydraulic power output and it has become clear that hydraulic thermal efficiency in this range is constant. The measured value of hydraulic thermal efficiency is 31 per cent. It has been demonstrated that hydraulic thermal efficiency is kept constant even if hydraulic power output is very small. (author)

  9. A new closed-form thermodynamic model for thermal simulation of spark ignition internal combustion engines

    International Nuclear Information System (INIS)

    Barjaneh, Afshin; Sayyaadi, Hoseyn

    2015-01-01

    Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.

  10. The internal combustion engine; a simple solution for pollution from petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Johnson, G.A.

    1992-01-01

    The internal combustion (IC) engine is an indirect cause of groundwater and soil contamination from petroleum hydrocarbons. Leaking underground storage tank systems that are used to store and distribute fuel for automobiles are a major cause of environmental degradation. That same IC engine which has indirectly caused the pollution is an excellent tool for cleaning up environmental contamination from petroleum releases. An extremely flexible clean-up system using an IC engine was designed, constructed and operated to recover free product, treat contaminated soil and remediate groundwater pollution. The treatment system uses the IC engine for vapor extraction, groundwater pumping, spray aeration and incineration. The IC engine is an excellent incinerator. The petroleum vapors are burned in the IC engine with a supplemental propane fuel. The engine drives a power-takeoff unit and provides energy for an air compressor, water pump, electrical generation and other accessories. Using waste to energy methods multiple techniques are being used in combination with different treatment technologies to optimize the remediation. As the remediation progresses the treatment system can be modified to use additional techniques. Another benefit that is directly associated with the IC engine is the presence of excess heat which is helpful in northern climates. The excess heat has many uses including spray aeration and enhanced biological remediation. The IC engine has several limitations and requires an understanding of the physical and chemical properties of the contamination. As with all environmental remediation, a proper understanding of the Hydrogeological System is critical. When properly applied the IC engine has many advantages over other methods of remediation for petroleum hydrocarbons

  11. Development of the regulation mapping of 1 MW internal combustion engine for diagnostic scopes

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Bonucci, F.

    2009-01-01

    The present work deals with the creation, on the basis of experimental data, of the regulation maps for the 1 MW cogenerative internal combustion engine (ICE) installed at the Engineering Faculty of Perugia University. The regulation logic mapping is necessary for the development of a thermodynamic model of the engine behaviour to simulate the effects of possible malfunctions occurrence, such as deterioration or fouling not directly experienced on the engine. Such a work is carried out as a part of a more general research activity concerning the development of a diagnosis system for the cogenerative plant. Therefore, a first phase of the present work relates to the experimental data gathering campaign and the consequent data analysis to individuate the characteristic parameters of regulation. In the second phase, instead, a neural simulator of the control logic was developed on the basis of the experimental data for the engine operation at full load (initially considered at 980 kW) and during transitory. Consequently, through such a simulator the regulation maps of the engine were determined considering the variation range of all the characteristic parameters. Finally, a more accurate analysis of the experimental data relative to the dependence of the produced electric power at regimen on the fuel valve position, encouraged the authors to develop a further neural simulator able to reproduce the regulation commands for different values of the target power set for the regimen operation. Consequently, also the regulation mapping was revised obtaining a synthetic representation of the regulation logic useful for the implementation in the thermodynamic model of the engine dynamic behaviour

  12. Achievement of the charge exchange work diminishing of an internal combustion engine in part load

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2012-01-01

    Full Text Available Internal combustion engines, used for driving of different cars, occurs not only at full load, but mostly at the part load. The relative load exchange work at the full (nominal engine load is significantly low. At the part load of the IC engine its energy efficiency ηe is significantly lower than in the optimal (nominal field range of the performance parameters. One of the numerous reasons of this effect is regular growing of the relative load exchange work of the IC engine. It is directly connected with the quantitative regulation method commonly used in the IC engines. From the thermodynamic point of view - the main reason of this effect is the throttling process (causing exergy losses occurring in the inlet and outlet channels. The known proposals for solving of this problem are based on applying of the fully electronic control of the motion of inlet, outlet valves and new reference cycles.The idea presented in the paper leads to diminishing the charge exchange work of the IC engines. The problem can be solved using presented in the paper a new concept of the reference cycle (called as eco-cycle of IC engine. The work of the engine basing on the eco-cycle occurs in two 3-stroke stages; the fresh air is delivered only once for both stages, but in range of each stage a new portion of fuel is burned. Normally the charge exchange occurs once during each engine cycle realized. Elaborated proposition bases on the elimination of chosen charge exchange processes and through this the dropping of the charge exchange work can be achieved.

  13. A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Xu, Zhengxin; Ren, Chengqin; Deng, Banglin

    2013-01-01

    In this paper, a novel approach for exhaust heat recovery was proposed to improve IC (internal combustion) engine fuel efficiency and also to achieve the goal for direct usage of methanol as IC engine fuel. An open organic Rankine cycle system using methanol as working medium is coupled to IC engine exhaust pipe for exhaust heat recovery. In the bottom cycle, the working medium first undergoes dissociation and expansion processes, and is then directed back to IC engine as fuel. As the external bottom cycle and the IC engine main cycle are combined together, this scheme forms a combined thermodynamic cycle. Then, this concept was applied to a turbocharged engine, and the corresponding simulation models were built for both of the external bottom cycle and the IC engine main cycle. On this basis, the energy saving potential of this combined cycle was estimated by parametric analyses. Compared to the methanol vapor engine, IC engine in-cylinder efficiency has an increase of 1.4–2.1 percentage points under full load conditions, while the external bottom cycle can increase the fuel efficiency by 3.9–5.2 percentage points at the working pressure of 30 bar. The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points. - Highlights: • A combined thermodynamic cycle using methanol as working medium for IC engine exhaust heat recovery is proposed. • The external bottom cycle of exhaust heat recovery and IC engine working cycle are combined together. • IC engine fuel efficiency could be improved from both in-cylinder working cycle and external bottom cycle. • The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points at full load

  14. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  15. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  16. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  17. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-04-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  18. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-02-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  19. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    Science.gov (United States)

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.

  20. EXPERIMENTAL STUDY OF HOMOGENEOUS MIXTURE COMPRESSION IGNITION IN INTERNAL COMBUSTION ENGINES

    OpenAIRE

    ANTHONY OSWALDO ROQUE CCACYA

    2010-01-01

    Com o intuito de reduzir as emissões e melhorar a combustão em uma maior faixa de rotação e carga de um motor, foi proposto o estudo da combustão por compressão de misturas homogêneas (HCCI), este processo apresenta altas eficiências e baixas emissões, principalmente de NOx e fuligem. Assim, o objetivo do presente trabalho é a determinação das faixas de operação estável em um motor diesel, de alta taxa de compressão (20:1). O combustível utilizado foi gasolina tipo A, tendo em vista a sua gra...

  1. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  2. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  3. Effect of the Miller cycle on the performance of turbocharged hydrogen internal combustion engines

    International Nuclear Information System (INIS)

    Luo, Qing-he; Sun, Bai-gang

    2016-01-01

    Highlights: • The Miller cycle can increase power density for turbocharged hydrogen engines. • The boundaries is limited by the turbocharged system and valve lift. • Broke power and BSFC of using Miller cycle is the best in three technical methods. - Abstract: Hydrogen is a promising energy carrier, and the port fuel injection (PFI) is a fuel-flexible, durable, and relatively cheap method of energy conversion. However, the contradiction of increasing the power density and controlling NOx emissions limits the wide application of PFI hydrogen internal combustion engines. To address this issue, two typical thermodynamic cycles—the Miller and Otto cycles—are studied based on the calculation model proposed in this study. The thermodynamic cycle analyses of the two cycles are compared and results show that the thermal efficiency of the Miller cycle (η_M_i_l_l_e_r) is higher than η_O_t_t_o, when the multiplied result of the inlet pressure and Miller cycle coefficient (δ_Mγ_M) is larger than that of the Otto cycle (i.e., the value of the inlet pressure ratio multiplied by the Miller cycle coefficient is larger than the value of the inlet pressure ratio of the Otto cycle). The results also show that the intake valve closure (IVC) of the Miller cycle is limited by the inlet pressure and valve lift. The two factors show the boundaries of the Miller cycle in increasing the power density of the turbocharged PFI hydrogen engine. The ways of lean burn + Otto cycle (LO), stoichiometric equivalence ratio burn + EGR + Otto cycle (SEO) and Miller cycle in turbocharged hydrogen engine are compared, the results show that the Miller cycle has the highest power density and the lowest BSFC among the three methods at an engine speed of 2800 rpm and NOx emissions below 100 ppm. The brake power of the Miller cycle increases by 37.7% higher than that of the LO and 26.3% higher than that of SEO, when γ_M is 0.7. The BSFC of the Miller cycle decreases by 16% lower than that of

  4. AN ALGORITHM OF ADAPTIVE TORQUE CONTROL IN INJECTOR INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    D. N. Gerasimov

    2015-07-01

    Full Text Available Subject of Research. Internal combustion engine as a plant is a highly nonlinear complex system that works mostly in dynamic regimes in the presence of noise and disturbances. A number of engine characteristics and parameters is not known or known approximately due to the complex structure and multimode operating of the engine. In this regard the problem of torque control is not trivial and motivates the use of modern techniques of control theory that give the possibility to overcome the mentioned problems. As a consequence, a relatively simple algorithm of adaptive torque control of injector engine is proposed in the paper. Method. Proposed method is based on nonlinear dynamic model with parametric and functional uncertainties (static characteristics which are suppressed by means of adaptive control algorithm with single adjustable parameter. The algorithm is presented by proportional control law with adjustable feedback gain and provides the exponential convergence of the control error to the neighborhood of zero equilibrium. It is shown that the radius of the neighborhood can be arbitrary reduced by the change of controller design parameters. Main Results. A dynamical nonlinear model of the engine has been designed for the purpose of control synthesis and simulation of the closed-loop system. The parameters and static functions of the model are identified with the use of data aquired during Federal Test Procedure (USA of Chevrolet Tahoe vehicle with eight cylinders 5,7L engine. The algorithm of adaptive torque control is designed, and the properties of the closed-loop system are analyzed with the use of Lyapunov functions approach. The closed-loop system operating is verified by means of simulation in the MatLab/Simulink environment. Simulation results show that the controller provides the boundedness of all signals and convergence of the control error to the neighborhood of zero equilibrium despite significant variations of engine speed. The

  5. The Impact of Complex Forcing on the Viscous Torsional Vibration Damper’s Work in the Crankshaft of the Rotating Combustion Engine

    OpenAIRE

    Jagiełowicz-Ryznar C.

    2016-01-01

    The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC), including a viscous damper (VD), at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harm...

  6. COOPERATIVE MODE OF ELECTRIC MOTOR AND INTERNAL COMBUSTION ENGINE OPERATION IN THE CONVERSION HYBRID CAR

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-12-01

    Full Text Available In the given article the authors proposed a method to control the car, which is converted into a hybrid one. The electric motor and combustion engine operate alternately in the car. They proposed a device for implementing this method and a circuit design for the device in question. They also calculated the dynamics of the vehicle under the joint acceleration.

  7. The sixth international congress on toxic combustion byproducts. Technical program and abstract book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Topics of this proceedings volume are: technical approaches - waste treatment; general toxicology of combustion byproducts; reaction mechanisms (e.g. formation and decomposition of hydrocarbons and chlorinated hydrocarbons, nitrogen oxides); thermal treatment - reactionas at low temperatures; heterogeneous reactions - heterogeneous systems. (SR)

  8. Device for controlling the composition of the mixture burnt in the combustion spaces of an internal combustion engine. Einrichtung zur Regelung der Zusammensetzung des in den Brennraeumen einer Brennkraftmaschine zur Verbrennung kommenden Betriebsgemisches

    Energy Technology Data Exchange (ETDEWEB)

    Latsch, R; Bianchi, V

    1986-07-31

    The purpose of the invention is to create a device by which the extent of the reaction to the control of the composition of the mixture burnt in the combustion spaces of an internal combustion engine can be measured in a sensitive, responsive and safe way, where the position of the elements detecting the reaction should have a relatively small effect on the accuracy of the measurement and the extent of measurement. According to the invention, this problem is solved by the use of 2 thermal sensors connected to a control device (photo-electric diode, photo-electric transistor), one of which acts catalytically and causes the parts of the gas mixture there to react. The thermal sensor output signals are periodically integrated via the piston work and are entered in the control device. The measured temperature is a measure of how far the method of operation of the internal combustion engine has approached its limits. (HWJ).

  9. [Forensic medical evaluation of a burn injury from combustion of flammable fluids on the human body based on morphological changes in internal organs].

    Science.gov (United States)

    Khushkadamov, Z K

    2009-01-01

    The author describes morphological features of splanchnic organs in the patients that suffered an injury from combustion of flammable fluids at the body surface. The burn injury is a specific form of trauma originating from a combination of several injurious factors including thermoinhalation and intoxication with combustion products in the absence of oxygen in the centre of the hot spot. A rather specific combination of morphological changes in internal organs along with results of laboratory studies provides the most reliable criterion for forensic medical diagnosis of burn injuries from combustion of flammable fluids on the human body.

  10. Efficiency of a new internal combustion engine concept with variable piston motion

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2014-01-01

    Full Text Available This paper presents simulation of working process in a new IC engine concept. The main feature of this new IC engine concept is the realization of variable movement of the piston. With this unconventional piston movement it is easy to provide variable compression ratio, variable displacement and combustion during constant volume. These advantages over standard piston mechanism are achieved through synthesis of the two pairs of non-circular gears. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of IC engines. For this paper Ricardo/WAVE software was used, which provides a fully integrated treatment of time-dependent fluid dynamics and thermodynamics by means of onedimensional formulation. The results obtained herein include the efficiency characteristic of this new heat engine concept. The results show that combustion during constant volume, variable compression ratio and variable displacement have significant impact on improvement of fuel consumption.

  11. A Robust Model Predictive Control for efficient thermal management of internal combustion engines

    International Nuclear Information System (INIS)

    Pizzonia, Francesco; Castiglione, Teresa; Bova, Sergio

    2016-01-01

    Highlights: • A Robust Model Predictive Control for ICE thermal management was developed. • The proposed control is effective in decreasing the warm-up time. • The control system reduces coolant flow rate under fully warmed conditions. • The control strategy operates the cooling system around onset of nucleate boiling. • Little on-line computational effort is required. - Abstract: Optimal thermal management of modern internal combustion engines (ICE) is one of the key factors for reducing fuel consumption and CO_2 emissions. These are measured by using standardized driving cycles, like the New European Driving Cycle (NEDC), during which the engine does not reach thermal steady state; engine efficiency and emissions are therefore penalized. Several techniques for improving ICE thermal efficiency were proposed, which range from the use of empirical look-up tables to pulsed pump operation. A systematic approach to the problem is however still missing and this paper aims to bridge this gap. The paper proposes a Robust Model Predictive Control of the coolant flow rate, which makes use of a zero-dimensional model of the cooling system of an ICE. The control methodology incorporates explicitly the model uncertainties and achieves the synthesis of a state-feedback control law that minimizes the “worst case” objective function while taking into account the system constraints, as proposed by Kothare et al. (1996). The proposed control strategy is to adjust the coolant flow rate by means of an electric pump, in order to bring the cooling system to operate around the onset of nucleate boiling: across it during warm-up and above it (nucleate or saturated boiling) under fully warmed conditions. The computationally heavy optimization is carried out off-line, while during the operation of the engine the control parameters are simply picked-up on-line from look-up tables. Owing to the little computational effort required, the resulting control strategy is suitable for

  12. The Scaling of Loss Pathways and Heat Transfer in Small Scale Internal Combustion Engines

    Science.gov (United States)

    2016-09-16

    to the time required for mass transport in the system and describes how fast combustion will propagate relative to the rate that mass is transported ...it had much lower parasitic losses [117]. 3.6.2. Fuel AKI Reduction and Alternative Fuels As the largest single consumer of transport fuel in the...United States, the Air Force also has a vested interest in alternative fuels. Groenewegen et al. [120] investigated algae and Camelia biodiesels as

  13. Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines

    Science.gov (United States)

    2014-06-20

    was used [9]. Compression ignition (CI) engines rely on auto - ignition to initiate combustion during an engine cycle. During intake, only air flows...9 Figure 2: Four-stroke IC engine cycle. (a) Intake stroke (b) Compression stroke (c) Ignition (d) Power...CAD crank angle degrees CI compression ignition COTS commercial off the shelf CoV coefficient of variance DAQ data acquisition system DI

  14. Exhaust Composition in a Small Internal Combustion Engine Using FTIR Spectroscopy

    Science.gov (United States)

    2015-06-18

    consumption of intake charge by mass xv CAD crank angle degrees CI compression ignition COTS commercial o↵ the shelf CoV coecient of variance C... ignition (SI) and compression ignition (CI). A spark ignition engine ignites the fuel-air mixture via an electric arc across a spark plug located in...two-stroke engines that operate at very high speeds. The heat of combustion is transferred to a fine wire that remains hot enough to auto - ignite the

  15. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    Science.gov (United States)

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  16. Modifying intake flow to increase EGR tolerance in an Internal Combustion Engine

    Science.gov (United States)

    Rubio, Daniel; Drabo, Mebougna; Puzinauskas, Paul

    2010-11-01

    The worldwide effort to reduce vehicle emissions and increase fuel efficiencies has continuously intensified as the need to improve air quality and reduce fuel consumption becomes more acute. Exhaust gas recirculation (EGR) is a method that has long been employed to reduce combustion temperatures and therefore reduce thermal NOx formation and accommodate higher compression ratios and more optimum combustion phasing for improved efficiency. Generally the effective EGR level as a percent of trapped charge is limited by its affect on combustion stability. Inducing flow structures such as swirl, squish and tumble in the trapped charge have proven to extend this EGR limit in homogeneous charge spark-ignited engines at part load, but this enhancement has not been significantly studied at full loads in such engines. This research explored modifying the intake flow into an engine to create tumble and evaluate its effect at high loads in such engines. This exploration included characterizing the flow on a steady flow bench and quantifying the results using engine dynamometer tests.

  17. Self adaptive internal combustion engine control for hydrogen mixtures using piezoelectric transducers for dynamic cylinder pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene

    2004-07-01

    Hydrogen internal combustion engine research at the Hydrogen Research Institute includes the following infrastructure: a 20 square metre test cell, an engine preparation room, a 150 hp dynamometer, exhaust gas analysers and a hydrogen supply. The goal of the research is to develop internal combustion engine technologies that can use hydrogen as a fuel without knocking, backfires, excessive engine wear, and with low emissions. As well as hydrogen, fuels such as biogas are also investigated. Technologies under investigation include adaptive control algorithms, as well as advanced sensors and actuators. The latter include piezolelectrics, optical fibres, nitrogen oxide detectors, and chemical composition detectors. Developments include microprocessor-controlled injection and ignition control systems for both single cylinder and multicylinder engines. Research on the influence of fuel composition on best ignition timing is presented. There is also dynamic cylinder pressure monitoring to prevent knocking make engine state assessments and perform engine calibration. Piezoelectric cylinder pressure sensors are employed, either integrated with the spark plugs, or stand-alone, inserted through separate holes through the cylinder head. tabs, figs.

  18. Proceedings of the 12. meeting of the International Post-Combustion CO{sub 2} Capture Network

    Energy Technology Data Exchange (ETDEWEB)

    Topper, J. [IEA Greenhouse Gas R and D Programme, Cheltenham, Gloucestershire (United Kingdom)] (comp.)

    2009-07-01

    This conference provided a forum to discuss new developments in post combustion capture of carbon dioxide (CO{sub 2}) emissions from fossil-fueled power plants. Since the creation of the Post-Combustion Capture Network in 2000, these conferences have provided exposure to latest research findings, acted as a conduit for trial of latest ideas and served as a means of encouraging trans-national co-operation. As host of the conference, the University of Regina is among the leading institutions in the world with expertise in working on solvent based capture and promoting international activity through the International Test Centre. The topics of discussion ranged from amine based solvent investigations; ammonia as an alternative means of capture; pilot plant progress reports; simulation and modelling studies; latest developments by technology providers; national programs with a special interest in demonstration plant proposals; and more novel techniques such as membranes. The sessions of the conference were entitled: fundamental studies; pilot plant work and scale-up; modelling and plant studies; and commercial and other aspects. This meeting featured 49 presentations, of which 46 have been catalogued separately for inclusion in this database. refs., figs.

  19. Dynamical and quasi-static multi-physical models of a diesel internal combustion engine using Energetic Macroscopic Representation

    International Nuclear Information System (INIS)

    Horrein, L.; Bouscayrol, A.; Cheng, Y.; El Fassi, M.

    2015-01-01

    Highlights: • Internal Combustion Engine (ICE) dynamical and static models. • Organization of ICE model using Energetic Macroscopic Representation. • Description of the distribution of the chemical, thermal and mechanical power. • Implementation of the ICE model in a global vehicle model. - Abstract: In the simulation of new vehicles, the Internal Combustion Engine (ICE) is generally modeled by a static map. This model yields the mechanical power and the fuel consumption. But some studies require the heat energy from the ICE to be considered (i.e. waste heat recovery, thermal regulation of the cabin). A dynamical multi-physical model of a diesel engine is developed to consider its heat energy. This model is organized using Energetic Macroscopic Representation (EMR) in order to be interconnected to other various models of vehicle subsystems. An experimental validation is provided. Moreover a multi-physical quasi-static model is also derived. According to different modeling aims, a comparison of the dynamical and the quasi-static model is discussed in the case of the simulation of a thermal vehicle. These multi-physical models with different simulation time consumption provide good basis for studying the effects of the thermal energy on the vehicle behaviors, including the possibilities of waste heat recovery

  20. Modeling of Combined Heat and Power Plant Based on a Multi-Stage Gasifier and Internal Combustion Engines of Various Power Outputs

    Science.gov (United States)

    Khudyakova, G. I.; Kozlov, A. N.; Svishchev, D. A.

    2017-11-01

    The paper is concerned with an integrated system of internal combustion engine and mini combined heat and power plant (ICE-CHP). The system is based on multi-stage wood biomass gasification. The use of producer gas in the system affects negatively the internal combustion engine performance and, therefore, reduces the efficiency of the ICE-CHP plant. A mathematical model of an internal combustion engine running on low-calorie producer gas was developed using an overview of Russian and foreign manufacturers of reciprocating units, that was made in the research. A thermal calculation was done for four-stroke gas engines of different rated power outputs (30, 100 and 250 kW), running on producer gas (CO2 - 10.2, CO - 45.8, N2 - 38.8%). Thermal calculation demonstrates that the engine exhaust gas temperature reaches 500 - 600°C at the rated power level and with the lower engine power, the temperature gets higher. For example, for an internal combustion engine power of 1000 kW the temperature of exhaust gases equals 400°C. A comparison of the efficiency of engine operation on natural gas and producer gas shows that with the use of producer gas the power output declines from 300 to 250 kWe. The reduction in the effective efficiency in this case makes up 2%. The measures are proposed to upgrade the internal combustion engine to enable it to run on low-calorie producer gas.

  1. Active lubrication applied to internal combustion engines - evaluation of control strategies

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    surface. The behaviour of a main bearing of a medium size combustion engine, operating with radial oil injection and with four different control strategies is analyzed, giving some insights into the minimum fluid film thickness, maximum fluid film pressure, friction losses and maximum vibration levels...... of reducing friction losses and vibrations between the crankshaft and the bearings. The conventional hydrodynamic lubrication is combined with hydrostatic lubrication which is actively modified by radially injecting oil at controllable pressures, through orifices circumferentially located around the bearing...

  2. Stand for Experimental Evaluation of Effects of Hydrogen Use in Internal Combustion Engines

    OpenAIRE

    Levente B.; Lelea D.; Birsan N.

    2015-01-01

    Hydroxy gas or the Brown gas or simply HHO, as it is called more often now days, is a highly flammable gas that has been around since the beginning of the XX-th century, when scientist Yull Brown has dedicated his work to study the properties and means of production of HHO by water electrolysis. In the second half of the century, the oil crisis, the simplicity of HHO production and its high combustion temperature and flame propagation have spurred the interest of ”garage inventors” around the...

  3. Repurposing Mass-produced Internal Combustion Engines Quantifying the Value and Use of Low-cost Internal Combustion Piston Engines for Modular Applications in Energy and Chemical Engineering Industries

    Science.gov (United States)

    L'Heureux, Zara E.

    This thesis proposes that internal combustion piston engines can help clear the way for a transformation in the energy, chemical, and refining industries that is akin to the transition computer technology experienced with the shift from large mainframes to small personal computers and large farms of individually small, modular processing units. This thesis provides a mathematical foundation, multi-dimensional optimizations, experimental results, an engine model, and a techno-economic assessment, all working towards quantifying the value of repurposing internal combustion piston engines for new applications in modular, small-scale technologies, particularly for energy and chemical engineering systems. Many chemical engineering and power generation industries have focused on increasing individual unit sizes and centralizing production. This "bigger is better" concept makes it difficult to evolve and incorporate change. Large systems are often designed with long lifetimes, incorporate innovation slowly, and necessitate high upfront investment costs. Breaking away from this cycle is essential for promoting change, especially change happening quickly in the energy and chemical engineering industries. The ability to evolve during a system's lifetime provides a competitive advantage in a field dominated by large and often very old equipment that cannot respond to technology change. This thesis specifically highlights the value of small, mass-manufactured internal combustion piston engines retrofitted to participate in non-automotive system designs. The applications are unconventional and stem first from the observation that, when normalized by power output, internal combustion engines are one hundred times less expensive than conventional, large power plants. This cost disparity motivated a look at scaling laws to determine if scaling across both individual unit size and number of units produced would predict the two order of magnitude difference seen here. For the first

  4. Multi-point laser spark generation for internal combustion engines using a spatial light modulator

    International Nuclear Information System (INIS)

    Lyon, Elliott; Kuang, Zheng; Dearden, Geoff; Cheng, Hua; Page, Vincent; Shenton, Tom

    2014-01-01

    This paper reports on a technique demonstrating for the first time successful multi-point laser-induced spark generation, which is variable in three dimensions and derived from a single laser beam. Previous work on laser ignition of internal combustion engines found that simultaneously igniting in more than one location resulted in more stable and faster combustion – a key potential advantage over conventional spark ignition. However, previous approaches could only generate secondary foci at fixed locations. The work reported here is an experimental technique for multi-point laser ignition, in which several sparks with arbitrary spatial location in three dimensions are created by variable diffraction of a pulsed single laser beam source and transmission through an optical plug. The diffractive multi-beam arrays and patterns are generated using a spatial light modulator on which computer generated holograms are displayed. A gratings and lenses algorithm is used to accurately modulate the phase of the input laser beam and create multi-beam output. The underpinning theory, experimental arrangement and results obtained are presented and discussed. (paper)

  5. Comparison of catalytic converter performance in internal combustion engine fueled with Ron 95 and Ron 97 gasoline

    Science.gov (United States)

    Leman, A. M.; Rahman, Fakhrurrazi; Jajuli, Afiqah; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Generating ideal stability between engine performance, fuel consumption and emission is one of the main challenges in the automotive industry. The characteristics of engine combustion and creation of emission might simply change with different types of operating parameters. This study aims in investigating the relationship between two types of fuels on the performance and exhaust emission of internal combustion engine using ceramic and metallic catalytic converters. Experimental tests were performed on Mitsubishi 4G93 engine by applying several ranges of engine speeds to determine the conversion of pollutant gases released by the engine. The obtained results specify that the usage of RON 97 equipped with metallic converters might increase the conversion percentage of 1.31% for CO and 126 ppm of HC gases. The metallic converters can perform higher conversion compared to ceramic because in the high space velocities, metallic has higher surface geometry area and higher amount of transverse Peclet number (Pi). Ceramic converters achieved conversion at 2496 ppm of NOx gas, which is higher than the metallic converter.

  6. Optical Engines as Representative Tools in the Development of New Combustion Engine Concepts Moteurs transparents comme outils représentatifs dans le développement de nouveaux concepts des moteurs à combustion interne

    Directory of Open Access Journals (Sweden)

    Kashdan J.

    2011-11-01

    Full Text Available Single cylinder optical engines are used for Internal Combustion (IC engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline Homogeneous Charge Compression Ignition (HCCI and Diesel Low Temperature Combustion (LTC. In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study. The objective was to investigate the principal differences between optical and all-metal engines and understand how these differences ultimately affect mixing, combustion and emissions formation processes. Experimental results reveal the significant impact of differences in combustion chamber wall temperatures between optical and standard engine piston bowls on combustion phasing and engine-out emissions. Quantitative measurements of piston wall temperatures using a laser-induced phosphorescence technique were performed which allowed the subsequent definition of appropriate engine operating strategies so as to compensate for differences in heat transfer properties. Furthermore, differences in combustion chamber geometry were also studied. Geometrical differences can arise as a result of dynamic (compressive/tensile and thermal loading of the extended piston-liner assembly on the optical engine, potentially leading to changes in the effective Compression Ratio. In addition, intake charge dilution in optical engines is often achieved via the use of simulated Exhaust Gas Recirculation

  7. Experimental Study of Ignition by Hot Spot in Internal Combustion Engines

    Science.gov (United States)

    Serruys, Max

    1938-01-01

    In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.

  8. TEM and HRTEM of Soot-in-oil particles and agglomerates from internal combustion engines

    International Nuclear Information System (INIS)

    Fay, M W; Rocca, A La; Shayler, P J

    2014-01-01

    Over time, the performance of lubricating oil in a diesel engine is affected by the build-up of carbon soot produced by the combustion process. TEM and HRTEM are commonly used to investigate the characteristics of individual and agglomerated particles from diesel exhaust, to understand the structure and distribution of the carbon sheets in the primary particles and the nanostructure morphology. However, high resolution imaging of soot-in-oil is more challenging, as mineral oil is a contaminant for the electron microscope and leads to instability under the electron beam. In this work we compare solvent extraction and centrifugation techniques for removing the mineral oil contaminant, and the effect on particle size distribution

  9. FAILURE MECHANISMS OF THERMAL BARRIER COATINGS INTERNAL COMBUSTION ENGINES AND llMPROVEMENTS

    Directory of Open Access Journals (Sweden)

    ADNAN PARLAK

    2003-04-01

    Full Text Available MechanicaJ properties of high performance ceramics have been improved to the point where their use in heat engines is possible. The high temperature strength and low thermal expansion properties of bigh performance ceramics offer an advantage over metals in the development of non-water cooling engine. However, because bard environment in diesel engine combustion chamber, solving the problem of durabiUty of TBC is important. DurabiUty of thermal barrier coatings(TBC is liınited by two main failure mechanisms: Therınal expansion nlİsmatch betwcen bond coat and top coat and bond coat oxidation. Both of these can cause failure of the ceramic top coat. Developments of recent years sholv that bond coats \\Vith higher oxidation resistance tend to have better coating system cyclic lives

  10. Secondary drive of an internal combustion engine for an air presser. Nebenantrieb einer Brennkraftmaschine fuer einen Luftpresser

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.

    1990-04-19

    The invention concerns an air presser propelled by a gearwheel and designed as a piston compressor. The drive gearwheel on the air presser crankshaft meshes with a gearwheel on the camshaft of the internal combustion engine. In the case of these drives, a negative torque of the air presser results when the top dead centre of the air presser piston is reached. This is accompanied by an unpleasant noise. In addition, the driving torque of the camshaft often has negative fractions. If the negative torque of the air presser is superposed by small or negative torques of the camshaft in the re-expansion phase additionally to the air presser wheel there will be a backward acceleration of the camshaft gear which propagates as impact into the rest of the gear drive. The invention prevents the backward acceleration of the camshaft wheel and minimizes stroke momentum and noise in the mesh of the camshaft wheel.

  11. CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS

    Directory of Open Access Journals (Sweden)

    Michał BIAŁY

    2017-03-01

    Full Text Available The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of the gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t determine the load distribution in a dynamic state for the selected kinematic pairs.

  12. New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles

    Science.gov (United States)

    Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.

    2015-10-01

    Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.

  13. Lubricant for corrosion protection of the inner chambers of internal combustion engines. Schutzschmiermittel zum Korrosionsschutz der Innenraeume von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Ettig, A.; Ferke, M.; Fueloep, J.; Gal, L.; Gyoengyoessy, L.; Horvath, R.; Keresztessy, Z.; Keresztessy, M.; Papp, I.

    1987-09-17

    The invention is concerned with lubricants for corrosion protecion in internal combustion engines which contain (a) 85 to 99 weight-% of a base oil and/or engine oil, (b) 0.1 to 1.0 weight-% of a corrosion and simultaneously emulsification inhibitor from a monoester, diester or triester of fatty acids with a double bond, (c) 0.1 to 6.0 weight-% of an additive improving the viscosity index and adhesiveness, from a polyolefin or olefin copolymer or a polyacrylic or polymethacrylic acid ester and also, if necessary (d) 0.1 to 8.0 weight-% of a detergent additive with neutralizing effect. The effect of these protective lubricants is by far better as of those known up to now.

  14. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  15. Equipment to reduce the emission of noxious components in the exhaust gas of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Tatsutomi, Y; Inoue, H

    1976-10-21

    The invention concerns an arrangement for the reduction of emission of noxious components in exhaust gas of an internal combustion engine with automatic drive. According to the invention, there is a further switch in parallel with the usual kickdown switch, which is actuated by a temperature sensor and/or choke. If the operating temperature of the engine is below a certain value, or if the choke is pulled out, then the switch is closed. This has the effect that the downstream valve is brought into the same position as that in which the closed kickdown switch would place it. The automatic drive therefore takes up that position, independently of the position of the accelerator pedal, which it would normally occupy only with the accelerator pedal fully pressed down. This guarantees that the engine is always kept at high speed during the hot running phase, which reduces the portion of the noxious gas components emitted.

  16. Fluorescence characteristics of the fuel tracers triethylamine and trimethylamine for the investigation of fuel distribution in internal combustion engines.

    Science.gov (United States)

    Lind, Susanne; Aßmann, Simon; Zigan, Lars; Will, Stefan

    2016-03-01

    Laser-induced fluorescence based on fuel tracers like amines is a suitable measurement technique for mixing studies in internal combustion (IC) engines. Triethylamine has often been used in gasoline IC engines; however, no detailed fluorescence characterization for excitation at 263 or 266 nm is available. Trimethylamine (TMA) exhibits high potential as a gaseous fuel tracer but little information about TMA fluorescence is currently available. A picosecond laser source combined with a streak camera equipped with a spectrograph was used to determine the spectral fluorescence emission and fluorescence decay time of both tracers. The tracers were investigated at various temperatures and pressures in a calibration cell with nitrogen as bath gas. The results provide an in-depth understanding of the fluorescence characteristics of both tracers and allow assessment of their application to the investigation of fuel distribution in IC engines.

  17. Electrically controlled fuel injection device for internal combustion engines with air quantity meter. Elektrisch gesteuerte Kraftstoffeinspritzeinrichtung fuer Brennkraftmaschinen mit Luftmengenmesser

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, B; Soell, W

    1980-12-11

    The invention concerns an electrically controlled preferably intermittently working fuel injection device for internal combustion engines with a throttle valve, a solenoid operated injection valve and a transistor circuit, which supplies electrical pulses used to open the injection valve synchronously to the revolution of the crankshaft. The invention is characterized by the fact that an electrical control device is provided, which extends the individual opening pulses in thrust operation (with the throttle valve closed or nearly closed and with a working speed above the speed). The extension produced by the control device decreases from a value at about 20% for the maximum speed to a value of 0 for the tickover speed. Details of the transistor control are made clear by detailed circuit diagrams and 5 patent claims.

  18. Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine

    International Nuclear Information System (INIS)

    Novella, R.; Dolz, V.; Martín, J.; Royo-Pascual, L.

    2017-01-01

    Highlights: • Enough power in the exhaust gases is available to operate the absorption cycle. • Three engine operating points are presented in the article. • Improvement potential up to 4% is possible in the engine indicated efficiency. • Engine indicated efficiency benefit was experimentally confirmed by direct testing. - Abstract: This paper deals with the thermodynamic analysis of an absorption refrigeration cycle used to cool down the temperature of the intake air in an Internal Combustion Engine using as a heat source the exhaust gas of the engine. The solution of ammonia-water has been selected due to the stability for a wide range of operating temperatures and pressures and the low freezing point. The effects of operating temperatures, pressures, concentrations of strong and weak solutions in the absorption refrigeration cycle were examined to achieve proper heat rejection to the ambient. Potential of increasing Internal Combustion Engine efficiency and reduce pollutant emissions was estimated by means of theoretical models and experimental tests. In order to provide boundary conditions for the absorption refrigeration cycle and to simulate its effect on engine performance, a 0D thermodynamic model was used to reproduce the engine performance when the intake air is cooled. Furthermore, a detailed experimental work was carried out to validate the results in real engine operation. Theoretical results show how the absorption refrigeration system decreases the intake air flow temperature down to a temperature around 5 °C and even lower by using the bottoming waste heat energy available in the exhaust gases in a wide range of engine operating conditions. In addition, the theoretical analysis estimates the potential of the strategy for increasing the engine indicated efficiency in levels up to 4% also at the operating conditions under evaluation. Finally, this predicted benefit in engine indicated efficiency has been experimentally confirmed by direct

  19. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  20. Production, purification and utilization of biogas as fuel for internal combustion engine

    Science.gov (United States)

    Hernandez, Noel M.; Villanueva, Eliseo P.

    2018-03-01

    This study attempts to modify a 4-cylinder gasoline engine to run with a purified compressed biogas as substitute for fossil fuels. Water scrubbing method was used as the easiest purification technique to remove CO2 and iron filing for H2S. The pressurized raw biogas was fed in a low cost made portable floating type gas holder with volume capacity of 0.74 m3. The purified biogas was compressed using a reciprocating compressor through a two stage series of enrichment and moisture removal process using activated alumina into the steel cylinder to improve the quality of the methane content. The enriched biogas was filled in the LPG tank for 20 minutes at 10 bars at an average of 73.67% CH4 with no traces of H2S as storage for engine utilization. The modification involved the installation and mounting of LPG conversion kit. A comparative analysis of the performance and combustion characteristics of the engine was evaluated separately with gasoline and purified compressed biogas using electro-dynamometer as variable loads. The findings show that power output deterioration in compressed biogas was mainly due to high percentage of CO2 and other gases impurities. It also shows that because of the calorific value of biogas, the thermal efficiency is lesser than that of gasoline. It implies that the overall engine performance can be improved by removing undesirable gases in the mixture.

  1. Cost effective simulation-based multiobjective optimization in the performance of an internal combustion engine

    Science.gov (United States)

    Aittokoski, Timo; Miettinen, Kaisa

    2008-07-01

    Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.

  2. The analysis of results received from the programme for calculating the concentration of pollutants from vehicles with internal combustion engines on the crossroads in urban environments

    International Nuclear Information System (INIS)

    Tashevski, Done; Dimitrovski, Mile

    1995-01-01

    The analysis of results and influence of specified factors on the concentration of pollutants on the crossroads with chosen characteristic conditions has been made, on the basis of the programme for calculating the concentration of pollutants from vehicles with internal combustion engines on the crossroads in urban environments. (author)

  3. A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle

    Science.gov (United States)

    Egorov, A. V.; Kozlov, K. E.; Belogusev, V. N.

    2018-01-01

    In this paper, we propose a new method and instruments to identify the torque, the power, and the efficiency of internal combustion engines in transient conditions. This method, in contrast to the commonly used non-demounting methods based on inertia and strain gauge dynamometers, allows controlling the main performance parameters of internal combustion engines in transient conditions without inaccuracy connected with the torque loss due to its transfer to the driving wheels, on which the torque is measured with existing methods. In addition, the proposed method is easy to create, and it does not use strain measurement instruments, the application of which does not allow identifying the variable values of the measured parameters with high measurement rate; and therefore the use of them leads to the impossibility of taking into account the actual parameters when engineering the wheeled vehicles. Thus the use of this method can greatly improve the measurement accuracy and reduce costs and laboriousness during testing of internal combustion engines. The results of experiments showed the applicability of the proposed method for identification of the internal combustion engines performance parameters. In this paper, it was determined the most preferred transmission ratio when using the proposed method.

  4. Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine

    International Nuclear Information System (INIS)

    Andwari, Amin Mahmoudzadeh; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad; Latiff, Zulkarnain Abdul

    2014-01-01

    Highlights: • Investigate the effect of In-EGR, Ex-EGR and octane number on a CAI 2-stroke engine. • Effect of In-EGR, Ex-EGR and octane number on combustion phasing of the engine. • Effect of In-EGR, Ex-EGR and octane number on cyclic variability of the engine. • Identify the CAI combustion upper and lower boundary for operating regions. - Abstract: A two-stroke cycle engine incorporated with a controlled auto-ignition combustion approach presents a high thermodynamic efficiency, ultra-low exhaust emissions and high power-to-weight ratio features for future demand of prime movers. The start of auto-ignition, control of the auto-ignition and its cyclic variability, are major concerns that should be addressed in the combustion timing control of controlled auto-ignition engines. Several studies have been performed to examine the effect of internal exhaust gas recirculation utilization on auto-ignited two-stroke cycle engines. However, far too little attention has been devoted to study on the influence of external exhaust gas recirculation on the cyclic variation and the combustion characteristics of controlled auto-ignition two-stroke cycle engines. The purpose of this study is to examine the influence of external exhaust gas recirculation in combination with internal exhaust gas recirculation on the combustion characteristics and the cyclic variability of a controlled auto-ignition two-stroke engine using fuel with different octane numbers. In a detailed experimental investigation, the combustion-related and pressure-related parameters of the engine are examined and statistically associated with the coefficient of variation and the standard deviation. The outcomes of the investigation indicates that the most influential controlled auto-ignition combustion phasing parameters can be managed appropriately via regulating the internal and external exhaust gas recirculation and fuel octane number. In general, start of auto-ignition and its cyclic variability are

  5. Co-Optima Project E2.2.2: Accelerate Development of ACI/LTC Fuel Effects on RCCI Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Musculus, Mark P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    Many advanced combustion approaches have demonstrated potential for achieving diesel-like thermal efficiency but with much lower pollutant emissions of particulate matter (PM) and nitrogen oxides (NOx). RCCI is one advanced combustion concept, which makes use of in-cylinder blending of two fuels with differing reactivity for improved control of the combustion phasing and rate (Reitz et al., 2015). Previous research and development at ORNL has demonstrated successful implementation of RCCI on a light-duty multi-cylinder engine over a wide range of operating conditions (Curran et al., 2015). Several challenges were encountered when extending the research to practical applications, including limits to the operating range, both for high and low loads. Co-optimizing the engine and fuel aspects of the RCCI approach might allow these operating limits to be overcome. The in-cylinder mechanisms by which fuel properties interact with engine operating condition variables is not well understood, however, in part because RCCI is a new combustion concept that is still being developed, and limited data have been acquired to date, especially using in-cylinder optical/imaging diagnostics. The objective of this work is to use in-cylinder diagnostics in a heavy-duty single-cylinder optical engine at SNL to understand the interplay between fuel properties and engine hardware and operating conditions for RCCI in general, and in particular for the light-duty multi-cylinder all-metal RCCI engine experiments at ORNL.

  6. Stand for Experimental Evaluation of Effects of Hydrogen Use in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Levente B.

    2015-04-01

    Full Text Available Hydroxy gas or the Brown gas or simply HHO, as it is called more often now days, is a highly flammable gas that has been around since the beginning of the XX-th century, when scientist Yull Brown has dedicated his work to study the properties and means of production of HHO by water electrolysis. In the second half of the century, the oil crisis, the simplicity of HHO production and its high combustion temperature and flame propagation have spurred the interest of ”garage inventors” around the world, who started doing practical experiments with HHO injection on personal vehicles and power-generators, in trying to reduce gas mileage, increase the engine performance and lower tailpipe emissions. Today, this technology is being rediscovered, again due to higher fuel prices and this time also due to some increasing concerns over global warming. Many have learned that HHO injection into the IC engine improves the gas mileage and reduces emissions, some reporting fuel savings of up to 40%, while others even claim to have reached the performance of operating their engines on HHO entirely produced onboard of the running vehicle. There are also reports that claim increased life span of the engine and engine lubrication, due to reduction effect of HHO on the solid hydrocarbon depositions onto the engine critical components, like pistons, valves, cylinder walls, etc. In this regard, the University Politehnica Timisoara Department of Mechanical Machines, Equipment and Transportation and Department for Applied Chemistry and Engineering of Inorganic Compounds and Environment, have joined together in a project to study and understand the mechanism that take place during HHO injection to IC engines, quantify the benefits and develop safer, better and more reliable materials for HHO on-demand and on-board production by water electrolysis.

  7. Life cycle comparison of fuel cell vehicles and internal combustion engine vehicles for Canada and the United States

    Science.gov (United States)

    Zamel, Nada; Li, Xianguo

    The objective of this study is to put forward a full analysis of the impact of the difference between the Canadian and American energy realities on the life cycle of fuel cell vehicles and internal combustion engine vehicles. Electricity is a major type of energy used in the transportation sector. Electricity is needed in the production of feedstock of fuel, the production of the fuel, the production of the vehicle material and the assembly of the vehicles. Therefore, it is necessary to investigate the impact of the electricity mix difference between Canada and the United States. In the analysis, the life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extract hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that fuel cell vehicle fuelled by hydrogen has lower energy consumption and greenhouse gas emissions than internal combustion engine vehicle fuelled by conventional gasoline except for hydrogen production using coal as the primary energy source in Canada and the United States. Using the Canadian electricity mix will result in lower carbon dioxide emissions and energy consumption than using the American electricity mix. For the present vehicles, using the Canadian electricity mix will save up to 215.18 GJ of energy and 20.87 t of CO 2 on a per capita basis and 26.53 GJ of energy and 6.8 t of CO 2 on a per vehicle basis. Similarly, for the future vehicles, using the Canadian electricity mix will lower the total carbon dioxide emissions by 21.15 t and the energy consumed is reduced by 218.49 GJ on a per capita basis and 26.53 GJ of energy and 7.22 t of CO 2 on a per vehicle basis. The well-to-tank efficiencies are higher with the

  8. An investigation of volute cross-sectional shape on turbocharger turbine under pulsating conditions in internal combustion engine

    International Nuclear Information System (INIS)

    Yang, Mingyang; Martinez-Botas, Ricardo; Rajoo, Srithar; Yokoyama, Takao; Ibaraki, Seiichi

    2015-01-01

    Highlights: • Cycle averaged efficiency is higher for the volute A (low aspect ratio). • More distorted flow in volute B is the reason for performance deterioration. • Flow in volute B (high aspect ratio) is more sensitive to pulsating flow. - Abstract: Engine downsizing is a proven method for CO_2 reduction in Internal Combustion Engine (ICE). A turbocharger, which reclaims the energy from the exhaust gas to boost the intake air, can effectively improve the power density of the engine thus is one of the key enablers to achieve the engine downsizing. Acknowledging its importance, many research efforts have gone into improving a turbocharger performance, which includes turbine volute. The cross-section design of a turbine volute in a turbocharger is usually a compromise between the engine level packaging and desired performance. Thus, it is beneficial to evaluate the effects of cross-sectional shape on a turbine performance. This paper presents experimental and computational investigation of the influence of volute cross-sectional shape on the performance of a radial turbocharger turbine under pulsating conditions. The cross-sectional shape of the baseline volute (denoted as Volute B) was optimized (Volute A) while the annulus distribution of area-to-radius ratio (A/R) for the two volute configurations are kept the same. Experimental results show that the turbine with the optimized volute A has better cycle averaged efficiency under pulsating flow conditions, for different loadings and frequencies. The advantage of performance is influenced by the operational conditions. After the experiment, a validated unsteady computational fluid dynamics (CFD) modeling was employed to investigate the mechanism by which performance differs between the baseline volute and the optimized version. Computational results show a stronger flow distortion in spanwise direction at the rotor inlet with the baseline volute. Furthermore, compared with the optimized volute, the flow

  9. Supercharging an internal combustion engine by aid of a dual-rotor bi-flux axial compressor

    Science.gov (United States)

    Grǎdinariu, Andrei Cristian; Mihai, Ioan

    2016-12-01

    Internal combustion engines can be supercharged in order to enhance their performances [1-3]. Engine power is proportional to the quantity of fresh fluid introduced into the cylinder. At present, the general tendency is to try to obtain actual specific powers as high as possible, for as small as possible cylinder capacity, without increasing the generated pollution hazards. The present paper investigates the impact of replacing a centrifugal turbo-compressor with an axial double-rotor bi-flux one [4]. The proposed method allows that for the same number of cylinders, an increase in discharged airflow, accompanied by a decrease in fuel consumption. Using a program developed under the MathCad environment, the present work was aimed at studying the way temperature modifies at the end of isentropic compression under supercharging conditions. Taking into account a variation between extreme limits of the ambient temperature, its influence upon the evolution of thermal load coefficient was analyzed considering the air pressure at the compressor cooling system outlet. This analysis was completed by an exergetical study of the heat evacuated through cylinder walls in supercharged engine conditions. The conducted investigation allows verification of whether significant differences can be observed between an axial, dual-rotor, bi-flux compressor and centrifugal compressors.

  10. Passive Sampling and Analysis of Naphthalene in Internal Combustion Engine Exhaust with Retracted SPME Device and GC-MS

    Directory of Open Access Journals (Sweden)

    Nassiba Baimatova

    2017-07-01

    Full Text Available Exhaust gases from internal combustion engines are the main source of urban air pollution. Quantification of Polycyclic aromatic hydrocarbons (PAHs in the exhaust gases is needed for emissions monitoring, enforcement, development, and testing of control technologies. The objective was to develop quantification of gaseous naphthalene in diesel engine exhaust based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME fiber coating and analysis on gas chromatography-mass spectrometry (GC-MS. Extraction of naphthalene with retracted fibers followed Fick’s law of diffusion. Extracted mass of naphthalene was proportional to Cg, t, Dg, T and inversely proportional to Z. Method detection limit (p = 0.95 was 11.5 ppb (0.06 mg·m−3 at t = 9 h, Z = 10 mm and T = 40 °C, respectively. It was found that the % mass extracted of naphthalene by SPME needle assembly depended on the type of fiber. Storage time at different temperatures did not affect analyte losses extracted by polydimethylsiloxane (PDMS 100 µm fiber. The developed method was tested on exhaust gases from idling pickup truck and tractor, and compared side-by-side with a direct injection of sampled exhaust gas method. Time-weighted average (TWA concentrations of naphthalene in exhaust gases from idling pickup truck and a tractor ranged from 0.08 to 0.3 mg·m−3 (15.3–53.7 ppb.

  11. Numerical study with experimental comparison of pressure waves in the air intake system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Carlos E.G.; Vielmo, Horacio A. [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Mechanical Engineering Dept.], E-mails: vielmoh@mecanica.ufrgs.br; Hanriot, Sergio M. [Pontifical Catholic University of Minas Gerais (PUC-Minas), Belo Horizonte, MG (Brazil). Mechanical Engineering Dept.], E-mail: hanriot@pucminas.br

    2010-07-01

    The work investigates the pressure waves behavior in the intake system of an internal combustion engine. For the purpose of examining this problem, it was chosen an experimental study in order to validate the results of the present simulation. At the literature there are several experimental studies, and some numerical simulations, but the most of the numerical studies treat the problem only in one dimension in practical problems, or two dimensions in specific problems. Using a CFD code it is possible to analyze more complex systems, including tridimensional effects. The pulsating phenomenon is originated from the periodic movement of the intake valve, and produces waves that propagate within the system. The intake system studied was composed by a straight pipe connected to a 1000 cc engine with a single operating cylinder. The experiments were carried out in a flow bench. In the present work, the governing equations was discretized by Finite Volumes Method with an explicit formulation, and the time integration was made using the multi-stage Runge-Kutta time stepping scheme. The solution is independent of mesh or time step. The numerical analysis presents a good agreement with the experimental results. (author)

  12. STUDIES AND EXPERIMENTAL RESEARCH CONCERNING THE PERFORMANCES OF THE INTERNAL COMBUSTION ENGINE, CONTROLLED OVER THE POWERTRAIN CONTROL MODULE

    Directory of Open Access Journals (Sweden)

    Narcis URICANU

    2012-05-01

    Full Text Available the paper present how can be controlled a road vehicle through a powertrain control module, a type of ECU, programmable ECU (Electronic Control Unit, when we want to increase the performances of the engine, compared with the standard performances of the engine. The programmable ECU is a control system which replaces the ECU from the vehicle and is able to manage, better than the standard ECU, the behaviour of the spark ignition engine on increasing the performances. Sports cars need to obtain the best performances from them engine, the specific regimes at which them must function impose certain limits which will be achieved during the competition. Nowadays the vehicles designers and engineering, working for the production cars, have adopted many solutions from the race cars area, due to the advantage offered by these elements (lightweight materials, fasts responses, high speeds and system like programmable ECU. To obtain more power on the engine, we have to find and applied the best solution concerning the internal combustion processes and the consequences concerning the exhaust. This papers present who can be increased the performances of the spark ignition engine through the air-flow ratio, controlled by the programmable ECU and with the sensors help, like water temperature sensor, intake air temperature sensor, throttle position sensor, lambda sensor

  13. Identification of black-box linear models : the case of thermal periodic contact of exhaust valves in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Shojaeefard, M.H.; Fazelpour, M. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Automotive Engineering; Goudarzi, K. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2009-07-01

    In internal combustion engines, hot exhaust gases that pass through the exhaust valve lead to high temperatures in the exhaust valve and the valve seat. Heat must be transferred from the exhaust valve to valve seat as they come in contact with each other during the opening and closing cycle in order to avoid damaging the exhaust valve. The heat transfer rate from the valve to valve seat is a function of many factors, including the thermal contact conductance (TCC) between the valve and valve seat. The objective of this study was to experimentally calculate the TCC for six different frequencies in the quasi-steady-state condition and also to obtain a transfer function to estimate the exhaust valve temperature by using black-box models of system identification. Periodic contact was taken into consideration in the study. The paper presented the experimental setup including the loading system, heat and cooling system, temperature measurement system, specimens properties, and data acquisition system. The paper also described the test procedure and experimental results. System identification was also described. It was concluded that the TCC decreased as the frequency of contact increased. The temperature transfer function was calculated by using the system identification method and having the temperatures at both sides of the contact surface. By knowing the temperature of one rod, the temperature of the other rod was estimated with high accuracy. 16 refs., 4 tabs., 7 figs.

  14. Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming

    International Nuclear Information System (INIS)

    Poran, Arnon; Tartakovsky, Leonid

    2015-01-01

    This article discusses the concept of a direct-injection ICE (internal combustion engine) with thermo-chemical recuperation realized through SRM (steam reforming of methanol). It is shown that the energy required to compress the reformate gas prior to its injection into the cylinder is substantial and has to be accounted for. Results of the analysis prove that the method of reformate direct-injection is unviable when the reforming is carried-out under atmospheric pressure. To reduce the energy penalty resulted from the gas compression, it is suggested to implement a high-pressure reforming process. Effects of the injection timing and the injector's flow area on the ICE-SRM system's fuel conversion efficiency are studied. The significance of cooling the reforming products prior to their injection into the engine-cylinder is demonstrated. We show that a direct-injection ICE with high-pressure SRM is feasible and provides a potential for significant efficiency improvement. Development of injectors with greater flow area shall contribute to further efficiency improvements. - Highlights: • Energy needed to compress the reformate is substantial and has to be accounted for. • Reformate direct-injection is unviable if reforming is done at atmospheric pressure. • Direct-injection engine with high-pressure methanol reforming is feasible. • Efficiency improvement by 12–14% compared with a gasoline-fed engine was shown

  15. Internal Combustion Engines as the Main Source of Ultrafine Particles in Residential Neighborhoods: Field Measurements in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Jitka Stolcpartova

    2015-11-01

    Full Text Available Ultrafine particles (UFP, diameter < 100 nm exposure has already been associated with adverse effects on human health. Spatial distribution of UFP is non-uniform; they concentrate in the vicinity of the source, e.g. traffic, because of their short lifespan. This work investigates spatial distribution of UFP in three areas in the Czech Republic with different traffic load: High traffic (Prague neighborhood—Sporilov, commuter road vicinity (Libeznice, and a small city with only local traffic (Celakovice. Size-resolved measurements of particles in the 5–500 nm range were taken with a particle classifier mounted, along with batteries, GPS and other accessories, on a handcart and pushed around the areas, making one-minute or longer stops at places of interest. Concentrations along main roads were elevated in comparison with places farther from the road; this pattern was observed in all sites, while particle number distributions both close and away from main roads had similar patterns. The absence of larger particles, the relative absence of higher concentrations of particles away from the main roads, and similar number distributions suggest that high particle number concentrations cannot be readily attributed to sources other than internal combustion engines in vehicles and mobile machinery (i.e., mowers and construction machines.

  16. Power generation and gaseous emissions performance of an internal combustion engine fed with blends of soybean and beef tallow biodiesel.

    Science.gov (United States)

    Schirmer, Waldir Nagel; Gauer, Mayara Ananda; Tomaz, Edson; Rodrigues, Paulo Rogério Pinto; de Souza, Samuel Nelson Melegari; Chaves, Luiz Inácio; Villetti, Lucas; Olanyk, Luciano Zart; Cabral, Alexandre Rodrigues

    2016-01-01

    This study aimed to compare the performance of an internal combustion engine fed with blends of biodiesel produced from soybean and diesel, and blends of biodiesel produced from beef tallow and diesel. Performance was evaluated in terms of power generated at low loading conditions (0.5, 1.0 and 1.5 kW) and emission of organic and inorganic pollutants. In order to analyse inorganic gases (CO, SO2 and NOx), an automatic analyser was used and the organic emissions (benzene, toluene, ethylbenzene and xylene - BTEX) were carried out using a gas chromatograph. The results indicate that the introduction of the two biodiesels in the fuel caused a reduction in CO, SO2 and BTEX emissions. In addition, the reduction was proportional to the increase in loading regime. Beef tallow biodiesels presented better results regarding emission than soybean biodiesels. The use of pure biodiesels also presented a net reduction in pollutant gas emissions without hindering the engine generator performance.

  17. Effects of alloying elements on the microstructure and fatigue properties of cast iron for internal combustion engine exhaust manifolds

    Science.gov (United States)

    Eisenmann, David J.

    In the design of exhaust manifolds for internal combustion engines the materials used must exhibit resistance to corrosion at high temperatures while maintaining a stable microstructure. Cast iron has been used for manifolds for many years by auto manufacturers due to a combination of suitable mechanical properties, low cost, and ease of casting. Over time cast iron is susceptible to microstructural changes, corrosion, and oxidation which can result in failure due to fatigue. This thesis seeks to answer the question: "Can observed microstructural changes and measured high temperature fatigue life in cast iron alloys be used to develop a predictive model for fatigue life?" the importance of this question lies in the fact that there is little data for the behavior of cast iron alloys at high temperature. For this study two different types of cast iron, 50HS and HSM will be examined. Of particular concern for the high Si+C cast irons (and Mo in the case of the HSM cast iron) are subsurface microstructural changes that result due to heat treatment including (1) decarburization, (2) ferrite formation, (3) graphitization, (4) internal oxidation of the Si, (5) high temperature fatigue resistance, and (6) creep potential. Initial results obtained include microstructure examination after being exposed to high temperatures, grain size, nodule size, and hardness measurements. The initial examinations concluded that both cast irons performed fairly similarly, although the microstructure of the HSM samples did show slightly better resistance to high temperature as compared to that of the 50HS. Follow on work involved high temperature fatigue testing of these two materials in order to better determine if the newer alloy, HSM is a better choice for exhaust manifolds. Correlations between fatigue performance and microstructure were made and discussed, with the results examined in light of current and proposed models for predicting fatigue performance based on computational methods

  18. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  19. Experimental analysis of micro-cogeneration units based on reciprocating internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Possidente, R.; Sibilio, S. [Seconda Universita di Napoli, Dipartimento di Storia e Processi dell' ambiente Antropizzato (DiSPAMA), Borgo San Lorenzo, Aversa, CE (Italy); Roselli, C.; Sasso, M. [Dipartimento di Ingegneria, Universita degli Studi del Sannio, Benevento (Italy)

    2006-07-01

    The cogeneration, or the combined production of electric and/or mechanical and thermal energy, is a well-established technology now, which has important environmental benefits and has been noted by the European Community as one of the first elements to save primary energy, to avoid network losses and to reduce the greenhouse gas emissions. In particular, our interest will be focused on the micro-cogeneration, MCHP (electric power up to 15 kW), which represents a valid and interesting application of this technology which refers, above all, to residential and light commercial users [M. Dentice d'Accadia, M. Sasso, S. Sibilio, Cogeneration for energy saving in household applications, in: P. Bertoldi, A. Ricci, A. de Almeida (Eds.), Energy Efficiency in Household Appliances and Lighting, Springer, Berlin, 2001, pp. 210-221; Directive 2004/8/EC of the European Parliament and of the Council of the 11 February 2004 on the promotion of cogeneration based on the useful heat demand in the internal energy market and amending Directive 92/42/EEC, Official Journal of the European Union (2004)]. In particular, our work group started a R and D programme on micro-cogeneration in 1995: a laboratory, equipped with the most common appliances (washing-machine, dishwasher, storage water heater, ...), has been built and some MCHP prototypes have been tested too. In this article, the results of an intense experimental activity on three different micro-cogenerators, one of them made in Japan and in a pre-selling phase, are reported. In a previous paper a detailed analysis of the test facility, with the description of the equipment and the data acquisition systems, can be found [M. Dentice d'Accadia, M. Sasso, S. Sibilio, R. Vanoli, Micro-combined heat and power in residential and light commercial applications, Applied Thermal Engineering 23 (2003) 1247-1259]. A typical 3-E (Energetic, Economic and Environmental) approach has been performed to compare the proposed energy system

  20. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    OpenAIRE

    Galindo, José; Dolz Ruiz, Vicente; Royo-Pascual, Lucía; Haller, R.; Melis, J.

    2016-01-01

    Waste heat recovery (WHR) in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE). Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimenta...

  1. Impacts of NOx reducing antioxidant additive on performance and emissions of a multi-cylinder diesel engine fueled with Jatropha biodiesel blends

    International Nuclear Information System (INIS)

    Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Arbab, M.I.; Masum, B.M.; Sanjid, A.

    2014-01-01

    Highlights: • Environmental benefits of JB blends were found but adverse impact on NO x . • Addition of 0.15% (m) DPPD in JB20, average reduction in NO up to 16.54%. • In some cases, engine power is reduced with DPPD additive. • Emissions of HC and CO for JB blends with DPPD were lower compared to diesel. • Addition of DPPD in JB blends reduction of EGT was found. - Abstract: Energy requirements are increasing rapidly due to fast industrialization and the increased number of vehicles on the road. The use of biodiesel in diesel engines instead of diesel results in the proven reduction of harmful exhaust emissions. However, most researchers have reported that they produce higher NO x emissions compared to diesel, which is a deterrent to the expansion of the market for these fuels. Several proposed pathways try to account for NO x formation during the combustion process. Among them, the Fenimore mechanism explains that fuel radicals formed during the combustion process react with nitrogen from the air to form NO x . It could be proposed that if these radical reactions could be terminated, the NO x formation rate for biodiesel combustion would decrease. An experimental study was conducted on a four-cylinder diesel engine to evaluate the performance and emission characteristics of Jatropha biodiesel blends (JB5, JB10, JB15 and JB20) with and without the addition of N,N′-diphenyl-1,4-phenylenediamine (DPPD) antioxidant. For each tested fuel, the engine performance and emissions were measured at engine speeds 1000–4000 rpm at an interval of 500 rpm under the full throttle condition. The results showed that this antioxidant additive could reduce NO x emissions significantly with a slight penalty in terms of engine power and Brake Specific Fuel Consumption (BSFC) as well as CO and HC emissions. However, when compared to diesel combustion, the emissions of HC and CO with the addition of the DPPD additive were found to be nearly the same or lower. By the

  2. Assessing the damage importance rank in acoustic diagnostics of technical conditions of the internal combustion engine with multi-valued logical decision trees

    Directory of Open Access Journals (Sweden)

    Deptuła Adam

    2017-01-01

    Full Text Available This paper presents possible applications of acoustic diagnostics in inspecting the technical condition of an internal combustion engine with autoignition on the example of the Fiat drive unit with the common rail system. As a result of measuring the sound pressure level for specific faults and comparing the noise generated by the motor running smoothly, the detailed maps of changes in the acoustic spectrum may be generated. These results may be helpful in future diagnostics of internal combustion engines. In the paper, we present the results from the scientific works in the area of research, design and operation of internal combustion engines, conducted at the Department of Automotive Engineering, in cooperation with the Laboratory of Hydraulic Drives & Vibroacoustics of Machines at the Wroclaw University of Technology. The broader study has so far allowed us to develop an authoritative method of identifying the type of engine damage using gametree structures. The present works assess the possibility of using multi-valued logic trees.

  3. Air to fuel ratio sensor for internal combustion engine control system; Nainen kikan no nensho seigyoyo kunen hi sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, M.; Kawai, T.; Yamada, T.; Nishio [NGK Spark Plug Co. Ltd., Aichi (Japan)

    1998-06-01

    Air to fuel ratio sensor is used for emission control system of three-way catalyst, and constitutes the important functional part of combustion control system. For further precise combustion control application, universal air to fuel ratio heated exhaust gas oxygen sensor (UEGO sensor) has been developed. This paper introduces heater control system for constant element temperature of UEGO sensor. By the heater wattage feedback control of sensing cell impedance, the change of sensor element temperature is decreased. 9 refs., 13 figs.

  4. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles

    International Nuclear Information System (INIS)

    Ma Hongrui; Balthasar, Felix; Tait, Nigel; Riera-Palou, Xavier; Harrison, Andrew

    2012-01-01

    Electric vehicles have recently been gaining increasing worldwide interest as a promising potential long-term solution to sustainable personal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissions. However, their true ability to contribute to greenhouse gas (GHG) emissions reductions can only be properly assessed by comparing a life cycle assessment of their GHG emissions with a similar assessment for conventional internal combustion vehicles (ICVs). This paper presents an analysis for vehicles typically expected to be introduced in 2015 in two example markets (the UK and California), taking into account the impact of three important factors: •Like-for-like vehicle comparison and effect of real-world driving conditions. •Accounting for the GHG emissions associated with meeting the additional electricity demand for charging the batteries. •GHG emissions associated with vehicle manufacture, disposal, etc. This work demonstrates that all of these factors are important and emphasises that it is therefore crucial to clearly define the context when presenting conclusions about the relative GHG performance of BEVs and ICVs – such relative performance depends on a wide range of factors, including the marginal regional grid GHG intensity, vehicle size, driving pattern, loading, etc. - Highlights: ► Develops new insights into the life cycle GHG emissions of electric vehicles. ► Addresses like-for-like vehicle comparison and effect of real-world driving. ► Accounts for marginal GHG intensity of the electricity used to charge EVs. ► Accounts for the GHG emissions associated with vehicle manufacture and disposal.

  5. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    Science.gov (United States)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  6. Modeling, simulation, parametric study and economic assessment of reciprocating internal combustion engine integrated with multi-effect desalination unit

    International Nuclear Information System (INIS)

    Salimi, Mohsen; Amidpour, Majid

    2017-01-01

    Highlights: • Integration of small MED unit with gas engine power cycle is studied in this paper. • Modeling, simulation, parametric study and sensitivity analysis were performed. • A thermodynamic model for heat recovery and power generation of the gas engine has been presented. • Annualized Cost of System (ACS) has been employed for economic assessment. • Economic feasibilty dependence of integrated system on natural gas and water prices has been investigated. - Abstract: Due to thermal nature of multi-effect desalination (MED), its integration with a suitable power cycle is highly desirable for waste heat recovery. One of the proper power cycle for proposed integration is internal combustion engine (ICE). The exhaust gas heat of ICE is used to produce motive steam for the required heat for the first effect of MED system. Also, the water jacket heat is utilized in a heat exchanger to pre-heat the seawater. This paper studies a thermodynamic model for a tri-generation system composed of ICE integrated with MED. The ICE thermodynamic model has been used in place of different empirical efficiency relations to estimate performance – load curves reasonably. The entire system performance has been coded in MATLAB, and the results of proposed thermodynamic model for the engine have been verified by manufacturer catalogue. By increasing the engine load from 40% to 100%, the water production of MED unit will increase from 4.38 cubic meters per day to 26.78 cubic meters per day and the tri-generation efficiency from 31% to 56%. Economic analyses of the MED unit integrated with ICE was performed based on Annualized Cost of System method. This integration makes the system more economical. It has been determined that in higher market prices for fresh water (more than 7 US$ per cubic meter), the increase in effects number is more significant to the period of return decrement.

  7. Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation

    International Nuclear Information System (INIS)

    Galvin, Ray

    2016-01-01

    Highlights: • Vehicle rebound effects have been investigated for distance but not speed. • We investigate speed rebounds for an e- and an ICE-car in controlled lab tests. • We develop a mathematical model to include these with distance rebound effects. • The e-car shows 20% speed rebound comparing 1975 and modern driving styles. • The ICE-car shows speed rebound due to lock-in from auto gear ratios. - Abstract: Rebound effect studies of road vehicle travel focus mostly on increases in distance traveled after increases in energy efficiency. Average journeying speed also increases with energy efficiency, but rebound studies avoid quantifying speed-related rebound effects. This may underestimate rebound effects by around 60%. This study offers a first attempt to show how increases in speed and acceleration contribute to rebound effects, and how these can be quantified. Its empirical data is dynamometer test results for a plug-in electric car and an internal combustion engine (ICE) pick-up van with automatic transmission, each on the WLTP and NEDC drive cycles, representing driving styles from today and 1975 respectively. Rebound effects are estimated by comparing the WLTP and NEDC results, using typical 1975 energy efficiencies for the NEDC. The electric car shows a 20.5% speed rebound effect, and a mathematical development sets out how speed rebound effects can be included in traditional rebound effect analyses. Results for the ICE-vehicle do not allow a direct rebound effect estimate due to wasteful engine revving on the NEDC and wrong gear ratios for sedate travel. However, this can be seen as a form of ‘transformational’ rebound effect, where vehicle design locks drivers into fast driving styles.

  8. A high efficiency 10 kWe microcogenerator based on an Atkinson cycle internal combustion engine

    International Nuclear Information System (INIS)

    Capaldi, Pietro

    2014-01-01

    The paper focuses on the design and the overall performance of a 10 kW electric power microcogeneration plant suitable for local energy production, based on an Atkinson-cycle internal combustion engine prototype and entirely set by Istituto Motori of the Italian National Research Council. The engine was originally a wide-spread Diesel automotive unit, then converted into a methane spark ignition system and finally modified to perform an Atkinson/Miller cycle with an extended expansion, capable of a higher global efficiency and low gaseous emissions. The paper starts by defining the ratio which leaded to this specific choice among many other automotive and industrial engines, in order to obtain a reliable, long endurance, cost effective, high efficiency base, suitable for microcogeneration in residential or commercial applications. The new engine has been coupled with a liquid cooled induction generator, a set of heat exchangers and finally placed in a sealed containing case, to reduce both noise emission and heat losses. Then the plant has been tested as an electricity and heat production system, ready for grid connection thanks to a new designed management/control system. During endurance test a complete description of its functioning behaviour has been given. - Highlights: • A new high efficiency microcogenerator based on an Atkinson/Miller cycle engine. • Atkinson cycle together with stoichiometric operation deliver better performance. • A cost-effective microcogenerator based on widespread elements (automotive engine). • The chosen automotive engine has heavy duty characteristics (Diesel derived). • A conversion criteria from a Diesel to an Atkinson cycle engine was individuated

  9. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery

    International Nuclear Information System (INIS)

    Peris, Bernardo; Navarro-Esbrí, Joaquín; Molés, Francisco

    2013-01-01

    This work is focused on waste heat recovery of jacket cooling water from Internal Combustion Engines (ICEs). Cooling water heat does not always find use due to its low temperature, typically around 90 °C, and usually is rejected to the ambient despite its high thermal power. An efficient way to take benefit from the ICE cooling water waste heat can be to increase the power output through suitable bottoming Organic Rankine Cycles (ORCs). Thereby, this work simulates six configurations using ten non flammable working fluids and evaluates their performances in efficiency, safety, cost and environmental terms. Results show that the Double Regenerative ORC using SES36 gets the maximum net efficiency of 7.15%, incrementing the ICE electrical efficiency up to 5.3%, although requires duplicating the number of main components and high turbine size. A more rigorous analysis, based on the system feasibility, shows that small improvements in the basic cycle provide similar gains compared to the most complex schemes proposed. So, the single Regenerative ORC using R236fa and the Reheat Regenerative ORC using R134a seem suitable cycles which provide a net efficiency of 6.55%, incrementing the ICE electrical efficiency up to 4.9%. -- Highlights: • Suitable bottoming cycles for ICE cooling water waste heat recovery are studied. • Non flammable working fluids and various ORC configurations are evaluated. • Double regenerative cycle using SES36 is the most efficient configuration. • Regenerative and reheat regenerative ORCs seem feasible cycles. • Electrical efficiency of the ICE can be improved up to 5.3%

  10. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tunestaal, Per

    2000-03-01

    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  11. Estimation of a noise level using coarse-grained entropy of experimental time series of internal pressure in a combustion engine

    International Nuclear Information System (INIS)

    Litak, Grzegorz; Taccani, Rodolfo; Radu, Robert; Urbanowicz, Krzysztof; HoIyst, Janusz A.; Wendeker, MirosIaw; Giadrossi, Alessandro

    2005-01-01

    We report our results on non-periodic experimental time series of pressure in a single cylinder spark ignition engine. The experiments were performed for different levels of loading. We estimate the noise level in internal pressure calculating the coarse-grained entropy from variations of maximal pressures in successive cycles. The results show that the dynamics of the combustion is a non-linear multidimensional process mediated by noise. Our results show that so defined level of noise in internal pressure is not monotonous function of loading

  12. Fuels and Combustion | Transportation Research | NREL

    Science.gov (United States)

    Fuels and Combustion Fuels and Combustion This is the March 2015 issue of the Transportation and , combustion strategy, and engine design hold the potential to maximize vehicle energy efficiency and performance of low-carbon fuels in internal combustion engines with a whole-systems approach to fuel chemistry

  13. Control of the low-load region in partially premixed combustion

    Science.gov (United States)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  14. Experimental investigation of the fluid dynamic efficiency of a high performance multi-valve internal combustion engine during the intake phase: Influence of valve-valve interference phenomena

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2013-01-01

    Full Text Available The purpose of the present work is the analysis of the fluid dynamic behavior of a high performance internal combustion engine during the intake phase. In particular, a four-valve spark-ignition engine has been characterized at the steady flow rig. Dimensionless discharge coefficients have been used to define the global fluid dynamic efficiency of the intake system, while the Laser Doppler Anemometry (LDA technique has been employed to evaluate the mean flow in the valve curtain area and to characterise the interference phenomena between the two intake valves. The investigation has shown the significant influence of the valve lift on the volumetric efficiency of the intake apparatus. Moreover, the experimental analysis has highlighted that the valve-valve interference phenomena have a relevant impact on the head breathability, on the flow development within the combustion chamber and on the velocity standard deviations.

  15. ProMotor - a technology programme of internal combustion engines; Moottoritekniikan teknologiaohjelma ProMOTOR 1999-2003. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The technology program ProMOTOR, related to the technology of internal combustion engines, covered the whole chain from fuels to engine, and from engine combustion to exhaust gas clean-up. One of the main challenges in the engine sector is to decrease emissions significantly. In order to meet this challenge, the whole chain has to be considered. The program was designed in close cooperation with the national industry of this sector. The main objective of the program was to support product development of the engine- related industry in order to develop and maintain international competitiveness. Corporate projects formed a substantial part of the program, amounting to about 70% of the whole budget volume. Good results were achieved in every sector of the program. In the sector of 'Engine Theory' great efforts were directed to the development of calculation and simulation procedures and protocols. The efforts paid off, and significant progress was achieved. Close international cooperation and academic theses give indication of the high level. In addition to computational work optical method to study incylinder phenomena was developed. Research infrastructure was improved in many different areas. A new research engine, EVE (Extreme Value Engine), makes it possible to vary the operational parameters and the engine process in such ways which are not possible in ordinary engines. A very high boost pressure and freely selectable valve timing are important new features providing more freedom in testing. The mechanical structure of this engine, which is designed for extremely high mean effective pressures, is unique. A research device for piston ring tribology and a large bearing test rig were also designed and constructed for tribology research. The research facilities for work on heavy vehicles and engines improved significantly. Today it is possible to run complete heavy-duty vehicles on a chassis dynamometer and test engines, for example, according to

  16. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    Science.gov (United States)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  17. Life cycle analysis of vehicles powered by a fuel cell and by internal combustion engine for Canada

    Science.gov (United States)

    Zamel, Nada; Li, Xianguo

    The transportation sector is responsible for a great percentage of the greenhouse gas emissions as well as the energy consumption in the world. Canada is the second major emitter of carbon dioxide in the world. The need for alternative fuels, other than petroleum, and the need to reduce energy consumption and greenhouse gases emissions are the main reasons behind this study. In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. The data collected from the literature shows that the energy consumption for the production of 1 kg of aluminum is five times higher than that of 1 kg of steel, although higher aluminum content makes vehicles lightweight and more energy efficient during the vehicle use stage. Greenhouse gas regulated emissions and energy use in transportation (GREET) software has been used to analyze the fuel life cycle. The life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting, and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that the use of coal to obtain hydrogen generates the highest emissions and consumes the highest energy. Comparing the overall life cycle of an ICEV and a FCV, the total emissions of an FCV are 49% lower than an ICEV and the energy consumption of FCV is 87% lower than that of ICEV. Further, CO 2 emissions during the hydrogen fuel production in a central plant can be easily captured and sequestrated. The comparison carried out in this study between FCV and ICEV is extended to

  18. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  19. Investigation on the Effects of Internal EGR by Variable Exhaust Valve Actuation with Post Injection on Auto-ignited Combustion and Emission Performance

    Directory of Open Access Journals (Sweden)

    Insu Cho

    2018-04-01

    Full Text Available Variable valve mechanisms are usually applied to a gasoline combustion engine to improve its power performance by controlling the amount of intake air according to the operating load. These mechanisms offer one possibility of resolving the conflict of objectives between a further reduction of raw emissions and an improvement in fuel efficiency. In recent years, variable valve control systems have become extremely important in the diesel combustion engine. Importantly, it has been shown that there are several potential benefits of applying variable valve timing (VVT to a compression ignition engine. Valve train variability could offer one option to achieve the reduction goals of engine-out emissions and fuel consumption. The aim of this study was to investigate the effects on part load combustion and emission performance of internal exhaust gas recirculation (EGR by variable exhaust valve lift actuation using a cam-in-cam system, which is an electronically variable valve device with a variable inside cam retarded to about 30 degrees. Numerical simulation based on GT-POWER has been performed to predict the NOx reduction strategy at the part load operating point of 1200 rpm in a four-valve diesel engine. A GT-POWER model of a common-rail direct injection engine with internal EGR was built and verified with experimental data. As a result, large potential for reducing NOx emissions through the use of exhaust valve control has been identified. Namely, it is possible to utilize heat efficiently as recompression of retarded post injection with downscaled specification of the exhaust valve rather than the intake valve, even if the CIC V1 condition with a reduction of the exhaust valve has a higher internal EGR rate of about 2% compared to that of the CIC V2 condition.

  20. Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

    Energy Technology Data Exchange (ETDEWEB)

    LeePhD, John [Aramco Services Company; TzanetakisPhD, Tom [Aramco Services Company; Travers, Michael [Aramco Services Company; Storey, John Morse [ORNL; DeBusk, Melanie Moses [ORNL; Lance, Michael J [ORNL; Partridge Jr, William P [ORNL

    2017-01-01

    With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA s heavy-duty emission testing cycles. Without any modification to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles. Overall lower CO2 emissions and fuel consumption were also measured for naphtha due in part to its higher heating value and higher hydrogen to carbon ratio. Engine-out and tailpipe NOx emissions were lower for naphtha fuel at the same catalyst conversion levels and measured particulate matter (PM) emissions were also lower when using naphtha due to its higher volatility and lower aromatic content compared to ULSD. To help assess the potential impact on diesel particulate filter design and operation, engine-out PM samples were collected and characterized at the B50 operating point. A significant reduction in elemental carbon (EC) within the particulate emissions was found when using naphtha compared to ULSD.

  1. A feasibility study of dynamic stress analysis inside a running internal combustion engine using synchrotron X-ray beams.

    Science.gov (United States)

    Baimpas, Nikolaos; Drakopoulos, Michael; Connolley, Thomas; Song, Xu; Pandazaras, Costas; Korsunsky, Alexander M

    2013-03-01

    The present investigation establishes the feasibility of using synchrotron-generated X-ray beams for time-resolved in situ imaging and diffraction of the interior components of an internal combustion engine during its operation. The demonstration experiment was carried out on beamline I12 (JEEP) at Diamond Light Source, UK. The external hutch of the JEEP instrument is a large-scale engineering test bed for complex in situ processing and simulation experiments. The hutch incorporates a large capacity translation and rotation table and a selection of detectors for monochromatic and white-beam diffraction and imaging. These capabilities were used to record X-ray movies of a motorcycle internal combustion engine running at 1850 r.p.m. and to measure strain inside the connecting rod via stroboscopic X-ray diffraction measurement. The high penetrating ability and high flux of the X-ray beam at JEEP allowed the observation of inlet and outlet valve motion, as well as that of the piston, connecting rod and the timing chain within the engine. Finally, the dynamic internal strain within the moving connecting rod was evaluated with an accuracy of ~50 × 10(-6).

  2. Thermocouples used in emission systems of internal combustion engines; Thermoelemente fuer den Einsatz in Abgassystemen von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Augustin, Silke; Froehlich, Thomas; Mammen, Helge [Technische Univ. Illmenau (Germany). Inst. fuer Prozessmess- und Sensortechnik; Ament, Christoph; Guether, Thomas [Technische Univ. Illmenau (Germany). Inst. fuer Automatisierungs- und Systemtechnik

    2012-11-01

    Thermocouples used in exhaust systems of combustion engines are exposed to high temperature gradients and temperature leaps ({Delta}T > 900 K), high flow speeds and pressure. When constructing these thermocouples, a compromise is needed between the resulting high demands on the mechanical-thermal stability, accuracy and the fast response time demanded by the servo-control of the motors. Additionally, a numerical correction of the measured signal may contribute to an improved sensor dynamics. (orig.)

  3. Development of an exhaust sensor for control of internal combustion engines and exhaust treatment systems - CatSens. Final report; Entwicklung eines Abgassensors zur Regelung von Verbrennungsmotoren und Abgasnachbehandlungssystemen - CatSens. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lepperhoff, G.; Milanovic, I.

    2002-05-01

    A sensor system for controlling combustion processes in small-scale furnaces and internal combustion engines and for on-board diagnosis of exhaust treatment systems, e.g. NO{sub x} adsorber catalytic converters in motor cars, was developed. [German] Im Rahmen des Verbundprojektes soll ein Sensorsystem zur Regelung der Verbrennungsprozesse in Kleinfeuerungsanlagen und Verbrennungsmotoren sowie zur Regelung und Ueberwachung (On-Board Diagnose) von Abgasnachbehandlungseinrichtungen wie z.B. NO{sub x}-Adsorberkatalysatoren in Kraftfahrzeugen, entwickelt werden. (orig.)

  4. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors; Etude de la tenue de la gaine interne pour-element combustible a refroidissement interne et externe d'un reacteur graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boudouresque, B; Courcon, P; Lestiboubois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm{sup 2} gas pressure, should remain in contact with the fuel. (authors) [French] La cartouche d'un element combustible annulaire, a refroidissement interne et externe pour reacteur graphite-gaz, est composee d'un tube combustible en uranium, d'une gaine externe et d'une gaine interne en alliage de magnesium. Pour que l'echange thermique entre la gaine interne et le combustible soit bon, il faut que la gaine reste appliquee sur l'uranium quel que soit le regime de temperature. Cette note a pour but de montrer comment, d'apres une etude theorique, le jeu combustible-gaine interne varie au cours des operations de gainage, de chargement dans le reacteur, et des cyclages thermiques. Les parametres suivants sont etudies: diametres de tube, pression du gaz caloporteur, temperature d'entree du gaz, plasticite de l'alliage de gaine. Il est montre que, quel que soit le regime de fonctionnement, la gaine interne d'un element 77 x 95, en projet pour un reacteur graphite-gaz sous pression de 40 kg/cm{sup 2}, doit rester appliquee sur le combustible. (auteurs)

  5. Performance analysis of single stage libr-water absorption machine operated by waste thermal energy of internal combustion engine: Case study

    Science.gov (United States)

    Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat

    2017-09-01

    Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.

  6. Comparative analysis between a PEM fuel cell and an internal combustion engine driving an electricity generator: Technical, economical and ecological aspects

    International Nuclear Information System (INIS)

    Braga, Lúcia Bollini; Silveira, Jose Luz; Evaristo da Silva, Marcio; Machin, Einara Blanco; Pedroso, Daniel Travieso; Tuna, Celso Eduardo

    2014-01-01

    In the recent years the fuel cells have received much attention. Among various technologies, the Proton Exchange Membrane Fuel Cell (PEMFC) is currently the most appropriate and is used in several vehicles prototype. A comparative technical, economical and ecological analysis between an Internal Combustion Engine fueled with Diesel driving an electricity Generator (ICE-G) and a PEMFC fed by hydrogen produced by ethanol steam reforming was performed. The technical analysis showed the advantages of the PEMFC in comparison to the ICE-G based in energetic and exergetic aspects. The economic analysis shows that fuel cells are not economic competitive when compared to internal combustion engine driving an electricity generator with the same generation capacity; it will only be economically feasible in a long term; due to the large investments required. The environmental analysis was based on concepts of CO 2 equivalent, pollution indicator and ecological efficiency. Different to the ICE-G system, the Fuel Cell does not emit pollutants directly and the emission related to this technology is linked mainly with hydrogen production. The ecological efficiency of PEMFC was 96% considering the carbon dioxide cycle, for ICE-G system this parameter reach 51%. -- Highlights: • The exergetic efficiency of ICE-G was 22% and for the fuel cell was 40%. • The PEM fuel cell at long-term become economically competitive compared to ICE-G. • The ecological efficiency of PEM fuel cell was 96% and Diesel ICE-G was 51%

  7. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  8. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  9. Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering

    International Nuclear Information System (INIS)

    Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J.

    1998-01-01

    Papers are arranged under the following topical sections: Fuels and combustion technologies; Low NOx burner applications; Low cost solutions to utility NOx compliance issues; Coal combustion--Retrofit experiences, low NOx, and efficiency; Highly preheated air combustion; Combustion control and optimization; Advanced technology for gas fuel combustion; Spray combustion and mixing; Efficient power generation using gas turbines; Safety issues in power industry; Efficient and environmentally benign conversion of wastes to energy; Artificial intelligence monitoring, control, and optimization of power plants; Combustion modeling and diagnostics; Advanced combustion technologies and combustion synthesis; Aero and industrial gas turbine presentations IGTI gas turbine division; NOx/SO 2 ; Plant cooling water system problems and solutions; Issues affecting plant operations and maintenance; and Costs associated with operating and not operating a nuclear power plant. Papers within scope have been processed separately for inclusion on the database

  10. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery

    International Nuclear Information System (INIS)

    Conklin, James C.; Szybist, James P.

    2010-01-01

    A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEP steam ). The valve closing timing for maximum MEP steam is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEP steam calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEP combustion ) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy.

  11. Dictionary of engines. The internal combustion engine from A-Z; Lexikon Motorentechnik. Der Verbrennungsmotor von A-Z

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, F. (ed.); Basshuysen, R. van

    2004-04-01

    This dictionary describes current engine technology and gives an outlook to the future. Cross-references, broader and narrower terms ensure optimal user guidance. Entries do not stand alone but provide content-oriented information. About 4,500 terms are included from A-Z, providing an outline of subjects like exhaust systems, acoustics, supercharging, combustion chamber, injection systems, control, flame propagation, mixing, catalytic converters, pistons, fuels, cooling, crank casing, stratified charging, lambda control, camshaft, oil, particulate filters, sensors/actuators, pollutants, valves, combustion processes, efficiency, ignition, cylinder head. The dictionary is for development engineers in the motor car industry, in component and system development in the supply industry, university teachers and students, foremen in motor car repair shops, etc. (orig.) [German] Das Lexikon Motorentechnik ist ein Nachschlagewerk, das die aktuelle Motorentechnik umfassend beschreibt und Ausblicke in der Zukunft ermoeglicht. Das ausgefeilte System aus Querverweisen fuehrt alle Unterbegriffe zum Hauptbegriff und ermoeglicht so eine optimale Benutzerfuehrung. Dadurch stehen die Stichwoerter nicht isoliert, sondern es werden inhaltlich zusammenhaengende Betrachtungen moeglich. Der Inhalt umfasst 4 500 Begriffe von A-Z wie z.B.: Abgastechnik, Akustik, Aufladung, Brennraum, Einspritzsysteme, Elektronische Motorsteuerung, Flammenausbreitung, Gemischbildung, Katalysator, Kolben, Kraftstoff, Kuehlung, Kurbelgehaeuse, Kurbeltrieb, Ladungswechsel, Lambda-Regelung, Nockenwelle, Oel, Partikelfilter, Sensoren/Aktuatoren, Schadstoffe, Ventiltrieb, Verbrennungsverfahren, Wirkungsgrad, Zuendung, Zylinderkopf. Die Zielgruppen waeren Ingenieure in Motoren- und Fahrzeugentwicklung der Automobilindustrie, Ingenieure in der Komponenten- und Systementwicklung der Zuliefererindustrie, Professoren und Studenten an Hochschulen mit Schwerpunkt Kraftfahrzeugtechnik, Meister in Kfz-Werkstaetten. (orig.)

  12. Evolution des modèles mathématiques directs appliqués aux moteurs à combustion interne Evolution of Direct Mathematical Models Applied to Internal-Combustion Engines

    Directory of Open Access Journals (Sweden)

    Rumiano N.

    2006-11-01

    Full Text Available Cet article rend compte de l'évolution présente et future des modèles mathématiques directs de simulation dans les moteurs. Ceux-ci sont basés sur la résolution des équations de Navier-Stokes, et deviennent peu à peu une nécessité surtout en ce qui concerne la combustion hétérogène. Après un aperçu sur l'état actuel des algorithmes de calcul et des sous-modèles physiques utilisés, on présente une revue des principaux codes de calcul appliqués au moteur, avec quelques-uns de leurs résultats. Après avoir évoqué les obstacles rencontrés lors de leur mise en oeuvre, on aborde l'évolution prévisible lors des prochaines années, tant pour les techniques de calcul que pour les codes eux-mêmes. This article describes the present and future evolution of direct mathematical models used for engine simulation. These models are based on the solving of Navier-Stokes equations and are gradually becoming an absolute necessity, especially with regard to heterogeneous combustion. Alter briefly describing the present state of the computing algorithms and physical submodels used, the leading computing codes applied to engines are reviewed, with some of their results. Then the stumbling blocks encountered during the implementation of these codes are described, followed by the foresable evolution in the next few years, for both computing techniques and the codes themselves.

  13. Numerical simulation coupling with experimental study on the non-uniform of each cylinder gas exchange and working processes of a multi-cylinder gasoline engine under transient conditions

    International Nuclear Information System (INIS)

    Zhou, Feng; Fu, Jianqin; Shu, Jun; Liu, Jingping; Wang, Shuqian; Feng, Renhua

    2016-01-01

    Highlights: • An approach is presented to detect the CTCV of engine under transient conditions. • The range and influence factors of CTCV of engine performances were revealed. • The maximum relative deviation of IMEP in each cylinder is larger than ±30%. • There appears a symmetry relation between CTCV of RGF and excess air coefficient. - Abstract: Cylinder-to-cylinder variation is unavoidable in multi-cylinder engine and has a severe impact on engine performance. To explore the cylinder-to-cylinder variation of engine under transient conditions, a hybrid method of dynamic signal measurement coupling with gas dynamics and thermodynamics processes simulation is presented to detect the parameters of engine. Then, this method is applied to an automobile engine under road test conditions, and the continuous state and performance parameters of each cylinder were obtained from cycle to cycle. On this basis, the range and influence factors of non-uniform of engine performance parameters were analyzed. The results show that, under transient conditions, the relative deviation of excess air coefficient in each cylinder is within ±5%, which is mainly affected by intake average pressure in low to medium speed operating regions but influenced by exhaust pressure wave and residual gas fraction in high-speed and high-load operating regions. There appears a symmetry relation between the non-uniform of RGF and excess air coefficient. The relative deviation of indicated mean effective pressure in each cylinder depends largely on the gas exchange performance, including excess air coefficient and residual gas fraction, and the maximum is larger than ±30%.

  14. Calibration and validation of a model for simulating thermal and electric performance of an internal combustion engine-based micro-cogeneration device

    International Nuclear Information System (INIS)

    Rosato, A.; Sibilio, S.

    2012-01-01

    The growing worldwide demand for more efficient and less polluting forms of energy production has led to a renewed interest in the use of micro-cogeneration technologies in the residential. Among the others technologies, internal combustion engine-based micro-cogeneration devices are a market-ready technology gaining an increasing appeal thanks to their high efficiency, fuel flexibility, low emissions, low noise and vibration. In order to explore and assess the feasibility of using internal combustion engine-based cogeneration systems in the residential sector, an accurate and practical simulation model that can be used to conduct sensitivity and what-if analyses is needed. A residential cogeneration device model has been developed within IEA/ECBCS Annex 42 and implemented into a number of building simulation programs. This model is potentially able to accurately predict the thermal and electrical outputs of the residential cogeneration devices, but it relies almost entirely on empirical data because the model specification uses experimental measurements contained within a performance map to represent the device specific performance characteristics coupled with thermally massive elements to characterize the device's dynamic thermal performance. At the Built Environment Control Laboratory of Seconda Università degli studi di Napoli, an AISIN SEIKI micro-cogeneration device based on natural gas fuelled reciprocating internal combustion engine is available. This unit has been intensively tested in order to calibrate and validate the Annex 42 model. This paper shows in detail the series of experiments conducted for the calibration activity and examines the validity of this model by contrasting simulation predictions to measurements derived by operating the system in electric load following control strategy. The statistical comparison was made both for the whole database and the segregated data by system mode operation. The good agreement found in the predictions of

  15. CONCEPTION OF USE VIBROACOUSTIC SIGNALS AND NEURAL NETWORKS FOR DIAGNOSING OF CHOSEN ELEMENTS OF INTERNAL COMBUSTION ENGINES IN CAR VEHICLES

    Directory of Open Access Journals (Sweden)

    Piotr CZECH

    2014-03-01

    Full Text Available Currently used diagnostics systems are not always efficient and do not give straightforward results which allow for the assessment of the technological condition of the engine or for the identification of the possible damages in their early stages of development. Growing requirements concerning durability, reliability, reduction of costs to minimum and decrease of negative influence on the natural environment are the reasons why there is a need to acquire information about the technological condition of each of the elements of a vehicle during its exploitation. One of the possibilities to achieve information about technological condition of a vehicle are vibroacoustic phenomena. Symptoms of defects, achieved as a result of advanced methods of vibroacoustic signals processing can serve as models which can be used during construction of intelligent diagnostic system based on artificial neural networks. The work presents conception of use artificial neural networks in the task of combustion engines diagnosis.

  16. Generation of rotary vibrations in internal combustion engines with elastically coupled electric power systems; Erzeugung von verbrennungsmotorischen Drehschwingungen mit elastisch gekoppelten elektrischen Antrieben

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, Jens Werner [Rostock Univ. (Germany). Inst. fuer Antriebstechnik und Mechatronik

    2004-07-01

    The design of motor car powertrains requires simulations as well as prototype tests. For the simulations, prototype parameters must be identified on test rigs, simulation results must be verified, and life tests must be carried out. This necessitates realistic and reproducible excitation of vibrations. Thee book describes the development and construction of a test rig which, with the aid of electric power systems, induces rotary vibrations like those which may occur in internal combustion engines due to gas forces and unbalanced mass forces. In combination with excess resonance, the test stand achieves high dynamics with average rotary momenta up to 600 Nm. The development process is documented, from test stand design with specially developed servo-engines to the control hardware to modelling, control element design, and commissioning. (orig.)

  17. U.S. Department of Energy FreedomCar & Vehicle Technologies Program CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion engine Vehicle -- Status Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-01

    The CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion Engine Vehicle was undertaken to define the requirements to achieve a California Air Resource Board Executive Order for a hydrogenfueled vehicle retrofit kit. A 2005 to 2006 General Motors Company Sierra/Chevrolet Silverado 1500HD pickup was assumed to be the build-from vehicle for the retrofit kit. The emissions demonstration was determined not to pose a significant hurdle due to the non-hydrocarbon-based fuel and lean-burn operation. However, significant work was determined to be necessary for Onboard Diagnostics Level II compliance. Therefore, it is recommended that an Experimental Permit be obtained from the California Air Resource Board to license and operate the vehicles for the durability of the demonstration in support of preparing a fully compliant and certifiable package that can be submitted.

  18. A method of controlling a large two-stroke turbocharged internal combustion engine and an engine for use in this method

    Energy Technology Data Exchange (ETDEWEB)

    Kjemtrup, N; Grone, O S

    1994-03-03

    A large two-stroke turbocharged internal combusted engine has a reactor for reduction of the NO[sub x]-content in the exhaust gas connected upstream of the turbocharger. At least one sensor measures at least one engine parameter and in a control unit it is determined whether the reactor is heated by the exhaust gas, which heating may cause reduced energy supply to the turbocharger. When this is the case the control unit opens for supply of supplementary air or gas to the engine which may be effected by starting an auxiliary blower and/or by actuating a control means in a bypass conduit so that a large amount of exhaust gas with a corresponding increase in the power is delivered to the turbocharger turbine. (author) figs.

  19. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cervello, C. [Conselleria de Cultura, Educacion y Deporte, Generalitat Valenciana (Spain)

    2008-12-15

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation. (author)

  20. Influence of the single EGR valve usability on development of the charge directed to individual cylinders of an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Krakowian Konrad

    2017-01-01

    Full Text Available Exhaust gas recirculation systems (EGR, aside to a catalytic converters, are nowadays widely used in piston internal combustion engines to reduce nitrogen oxides (NOx in the exhaust gas. They are characterized in that a portion of exhaust gases from the exhaust manifold is recirculated (via a condenser, and directed to a particular valve. The valve, depending on the current engine load and speed, doses the appropriate amount of exhaust gas into the exhaust manifold. Moreover, its location has a significant impact on the diverse formation of nitrogen oxides and fumes smokiness from the individual cylinders of the engine, which is a result of uneven propagation of exhaust gas into the channels of the intake manifold. This article contains the results of numerical characterized charges formed in symmetrical intake manifold with a centrally–placed EGR valve. Simulations were performed for the original intake system derived from the two-liter, turbocharged VW diesel engine.

  1. Device for the catalytic after-burning of exhaust gases in the exhaust gas system of an internal-combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Lange, K

    1975-06-19

    The invention deals with a device which protects the catalyst for the after-burning of exhaust gases against damage by high temperatures. When the catalyst temperature reaches a certain limiting value, a throttle is activated by an electrical control device influenced by a temperature sensor via a servomotor. The throttle valve opens a by-pass for the exhaust gases which had previously flowed through the system for catalytic after-burning. In order to prevent the throttle from rusting due to its rare use, it is regularly put into use after switching off the ignition of the internal-combustion engine by the still briefly present oil pressure in the engine via an oil pressure switch and the mentioned control device.

  2. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    International Nuclear Information System (INIS)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A.; Cervello, C.

    2008-01-01

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation

  3. Influence of the single EGR valve usability on development of the charge directed to individual cylinders of an internal combustion engine

    Science.gov (United States)

    Krakowian, Konrad; Kaźmierczak, Andrzej; Górniak, Aleksander; Wróbel, Radosław

    2017-11-01

    Exhaust gas recirculation systems (EGR), aside to a catalytic converters, are nowadays widely used in piston internal combustion engines to reduce nitrogen oxides (NOx) in the exhaust gas. They are characterized in that a portion of exhaust gases from the exhaust manifold is recirculated (via a condenser), and directed to a particular valve. The valve, depending on the current engine load and speed, doses the appropriate amount of exhaust gas into the exhaust manifold. Moreover, its location has a significant impact on the diverse formation of nitrogen oxides and fumes smokiness from the individual cylinders of the engine, which is a result of uneven propagation of exhaust gas into the channels of the intake manifold. This article contains the results of numerical characterized charges formed in symmetrical intake manifold with a centrally-placed EGR valve. Simulations were performed for the original intake system derived from the two-liter, turbocharged VW diesel engine.

  4. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  5. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  6. Investigation on combustion parameters of palm biodiesel operating with a diesel engine

    Directory of Open Access Journals (Sweden)

    M.H.M. Yasin

    2015-12-01

    Full Text Available Biodiesel is a renewable and decomposable fuel which is derived from edible and non-edible oils. It has different properties compared to conventional diesel but can be used directly in diesel engines. Different fuel properties characterise different combustion-phasing parameters such as cyclic variations of Indicated Mean Effective Pressure (IMEP and maximum pressure (Pmax. In this study, cyclic variations of combustion parameters such as IMEP and Pmax were investigated using a multi-cylinder diesel engine operating with conventional diesel and palm biodiesel. The experiments were conducted using different engine loads; 20, 40, and 60% at a constant engine speed of 2500 rpm. The coefficient of variation (COV and standard deviation of parameters were used to evaluate the cyclic variations of the combustion phasing parameters for the test fuels at specific engine test conditions. It was observed that palm biodiesel has lower COV IMEP compared to conventional diesel but is higher in COV Pmax at higher engine loads respectively. In addition, palm biodiesel tends to have a higher recurrence for the frequency distribution for maximum pressure. It can be concluded from the study that the fuel properties of palm biodiesel have influenced most of the combustion parameters.

  7. Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends

    International Nuclear Information System (INIS)

    Elfasakhany, Ashraf

    2014-01-01

    Highlights: • Using of 3 and 7 vol.% n-butanol blends in SI engine is studied for the first time. • Engine performance and emissions depend on both engine speed and blend rates. • CO and UHC for blended fuels are maximum at 3000–3100 r/min. • The higher the rate of n-butanol, the lower the emissions and performance. • This study strongly supports using low blend rates of n-butanol (<10 vol.%) in ICE. - Abstract: In this paper, exhaust emissions and engine performance have been experimentally studied for neat gasoline and gasoline/n-butanol blends in a wide range of working speeds (2600–3400 r/min) without any tuning or modification on the gasoline engine systems. The experiment has the ability of evaluating performance and emission characteristics, such as break power, torque, in-cylinder pressure, volumetric efficiency, exhaust gas temperature and concentrations of CO 2 , CO and UHC. Results of the engine test indicated that using n-butanol–gasoline blended fuels slightly decrease the output torque, power, volumetric efficiency, exhaust gas temperature and in-cylinder pressure of the engine as a result of the leaning effect caused by the n-butanol addition; CO, CO 2 and UHC emissions decrease dramatically for blended fuels compared to neat gasoline because of the improved combustion since n-butanol has extra oxygen, which allows partial reduction of the CO and UHC through formation of CO 2 . It was also noted that the exhaust emissions depend on the engine speed rather than the n-butanol contents

  8. Using neuronal nets for modelling and control of internal combustion engines; Der Einsatz neuronaler Netze zur Modellierung, Steuerung und Regelung von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R.; Hafner, M.; Mueller, N.; Schueler, M. [Technische Univ. Darmstadt (Germany). Inst. fuer Regelungstechnik

    1999-07-01

    Design and testing of digital electronic control systems necessitate relatively accurate mathematical models of the static and dynamic characteristics of internal combustion engines. Control variables are injection volume, injection angle, ignition point and several others, which means a large number of characteristic fields and long measuring times in engine test stands. Neuronal nets enable a more compact description than characteristic field grids and are also more easily adaptable in test stand measurements. The contribution describes a particularly favourable local linear radial basis function net (LOLIMOT) and shows how it can be used for modelling the steady-state and dynamic exhaust characteristics of a diesel engine and the dynamic characteristics of an exhaust turbocharger. It also shows how combustion chamber control with adaptive control of the ignition pooint can be designed for a spark ignition engine with the aid of a neuronal net. [German] Entwurf und Test von digitalelektronischen Steuerungen und Regelungen erfordern in zunehmendem Masse relativ genaue mathematische Modelle fuer das statische und dynamische Gesamtverhalten von Verbrennungsmotoren. Ausser den Stellgroessen Einspritzmenge, Einspritzwinkel und Zuendzeitpunkt kommen noch weitere Stellgroessen hinzu. Die Zahl der in modernen Motorsteuerungen zu realisierenden Kennfelder steigt deshalb sehr stark an und damit auch die erforderliche Messzeit an Motorenpruefstaenden. Kuenstliche neuronale Netze bieten nun die Moeglichkeit, mehrdimensionale Kennfelder wesentlich kompakter zu beschreiben als Rasterkennfelder. Sie erlauben ausserdem eine wesentlich bessere Adaption bei Pruefstandsversuchen. Im Beitrag wird ein besonders geeignetes lokal lineares Radial-Basis-Funktions-Netz (LOLIMOT) beschrieben und dessen Anwendung gezeigt zur Modellierung des stationaeren und dynamischen Abgasverhaltens eines Dieselmotors und des dynamischen Verhaltens eines Abgas-Turboladers. Dann wird gezeigt, wie man eine

  9. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  10. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  11. Design and operational procedures for ORC-based systems coupled with internal combustion engines driving electrical generators at full and partial load

    International Nuclear Information System (INIS)

    Badescu, Viorel; Aboaltabooq, Mahdi Hatf Kadhum; Pop, Horatiu; Apostol, Valentin; Prisecaru, Malina; Prisecaru, Tudor

    2017-01-01

    Highlights: • Waste heat recovery from Internal Combustion Engines (ICEs). • Organic Ranking Cycle (ORC) systems driving Electric Generators (EGs). • ICE-EG partial load operation. • Optimum design geometry of ORC system. • Optimum operation of ORC system at partial EG load. - Abstract: This paper refers to recovering waste heat from the hot gases exhausted by internal combustion engines (ICEs) driving electric generators (EGs) at full and partial load. The topic is of particular interest for developing countries where electric grids are underdeveloped or missing and electricity is generated locally by using classical fuels. The heat recovery system is based on an Organic Rankine Cycle (ORC). A novel method is proposed for the optimum design of ORC-based systems operating in combination with ICE at partial EG loads. First, ORC-based systems coupled with ICEs operating at full EG load is treated. Specific results for the operation at full EG load are as follows: (i) the optimum superheating increment ranges between 30 and 40 °C, depending on the type of the working fluids; (ii) a pinch point temperature difference exits between the flue gas temperature and the working fluid at the evaporator inlet; (iii) the total area of the evaporator is very close to the total area of the condenser, a fact which facilitates manufacturing; (iv) the surface area of the preheater zone is about 75% of the total surface area, while those of the boiler zone and superheater zone is about 13.5% and 11.5%, respectively. Second, the case of the ORC-based systems coupled with ICEs operating at partial EG load is considered. Specific results for this case are as follows: (v) the net power may be maximized by optimizing the working fluid mass flow rate; (vi) when the ICE is coupled with an ORC-based system, the overall thermal efficiency of the combined system, η ICE-ORC , is higher than the thermal efficiency of the ICE operating alone. As an example, for the case treated here,

  12. H{sub 2}S and CO{sub 2} filtration of biogas used in internal combustion engines for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Huertas, Jose Ignacio; Izquierdo, Sebastian [Instituto Tecnologico y de Estudios Superiores de Monterrey, (Mexico)]. E-mail: jhuertas@itesm.mx

    2009-09-15

    Currently, there is an increasing interest in connecting thousands of small electrical plants powered by renewable energy sources to national electrical grids. The use of biogas as fuel for internal combustion engines connected to an electric generator is emerging as one of the most attractive alternatives because of its very low cost benefit ratio and very high positive impact on the environment. However, the use of biogas to generate electricity has been limited by its high content of H{sub 2}S ({approx}3500 ppm) and CO{sub 2} ({approx}40%). CO{sub 2} presence reduces the energetic density of the fuel and therefore the power output of the system. The high content of H{sub 2}S corrodes important components of the engine like the combustion chamber, bronze gears and the exhaust system. This work aims to design and manufacture a low-cost industrial filter for this application. Among the different available methodologies, CaO, NaOH and amines where selected as the most appropriate for a typical farm application of 100 kW electric generations. Since there is not reported data for the H{sub 2}S absorbing capacity of these substances, it was proposed to measure it by means of a bubbler. It is an experimental set up where the gas stream passes through a fixed amount of the absorbing substance until it becomes saturated. The absorbing capacity is determined as the amount of substance being trapped divided by the mass of the absorbing substance being used. Results showed an absorbing capacity of 2.8, 41.4 and 124.8 g of H{sub 2}S per Kg of NaOH, CaO and monoethanolamine respectively. A gas absorbing system of amines was designed and manufactured for H{sub 2}S and CO{sub 2} biogas filtration. Three different types of amines were evaluated: Monoethanolamine, Diethanolamine, and methyldiethanolamine. Results show that all the amines require a ratio of amines to biogas flow of 0.7 to obtain a 95% of H{sub 2}S filtering efficiency. This data represent only a 30% of H{sub 2}S

  13. Desempeño y emisiones de un motor de combustión interna con combustible dual Diesel – Gas natural ;Performance and emissions study of an internal combustion engine with dual fuel diesel - natural gas

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2015-04-01

    Full Text Available Muchos de los problemas reportados para los sistemas duales diesel- gas natural ocurren por mala dosificación del gas. Por esta razón se adaptó un sistema de alimentación dual con inyección electrónica de gas natural a un motor de combustión interna encendido por compresión. Se plantea un diseño experimental controlando el dosado de gas natural.Como resultado se obtiene un análisis comparativo entre los valoresde desempeño y emisiones desde la operación Diesel y Diesel-Gas natural. A partir de este análisis es posible observar que el desempeño del motor no se ve afectado por la operación del motor bajo el esquema Dual Diesel-GN, es decir que el motor funcionando bajo modo dual puede sostener las cargas solicitadas al motor. También se observa que la eficiencia volumétrica mejora bajo todas las condiciones de operación dual y las emisiones son mejores sólo cuando el motor trabaja a altas cargas. Many of the problems reported for dual diesel-natural gas systems occur due to poor gas dosage. For this reason a natural gas electronic injection feeding system was adapted to a compression ignitios internal combustion engine. An experimental design controlling the natural gas dosage is considered. As a result a comparative analysis between performance and emissions from the Diesel-and diesel-Natural Gas operation is obtained. From this analysis it is possible to see that engine performance is not affected by operation of the engine under the dual mode, i.e. the motor running under dual mode can support the loads applied to the engine. It is also observed that the volumetric efficiency improves under all conditions of operation and emissions from the dual mode of operation are better only when working at high engine loads.

  14. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  15. Modeling and optimization of a shell and louvered fin mini-tubes heat exchanger in an ORC powered by an internal combustion engine

    International Nuclear Information System (INIS)

    Mastrullo, Rita; Mauro, Alfonso William; Revellin, Rémi; Viscito, Luca

    2015-01-01

    Highlights: • New ORC HEX design. • Dedicated model. • On-road uses. • Simulations for real ICEs’ conditions. - Abstract: Waste heat recovery from exhaust gases of internal combustion engines (ICEs) is an interesting option to increase energy conversion efficiency, especially on on-road applications. Organic Rankine cycles (ORCs) fit well the temperature levels available. Current research interests are devoted to the definition of new design solutions to improve each part of the energy conversion process. Concerning the heat recovery, new concepts for heat exchangers are required to reduce their weight, the refrigerant charge and the related environmental concerns. At the same time, a high performance of the whole system must be kept. In this paper, a new design is introduced related to a shell and louvered fin mini-tubes heat exchanger. Modeling and simulation results are presented to define an optimal design in the whole map of working conditions for a heavy duty diesel engine and a light duty gasoline engine, in order to maximize the overall system efficiency (ORC+ICE). The length and weight of the heat exchanger are consistent with the use in automotive and truck applications, while an increase of the overall system efficiency up to 9% can be achieved

  16. Methods of Assessing the Resource of the Crankshaft Bearing of Internal Combustion Engine Based on the Calculation of Hydro-Mechanical Characteristics

    Directory of Open Access Journals (Sweden)

    I.G. Levanov

    2015-09-01

    Full Text Available The purpose of the article is to develop a tool to assess the theoretical resource crankshaft bearings of internal combustion engine. As a result, two methods for evaluating of the theoretical resource crankshaft bearings have been developed on the basis of the calculation of hydro-mechanical characteristics of bearings: the minimum film thickness and the extent of the zone of boundary friction. Under the theoretical resource of crankshaft bearing it is understood that during his work an increase of the radial clearance in the area of potential exposure (boundary friction is over the limit. The first technique is based on the bearing life dependence on the ratio between the minimum film thickness and its maximum allowable value. The second technique is based on the molecular-mechanical theory of friction and wear fatigue theory. Thus, these techniques may be used to estimate the resource of the crankshaft journal bearings at the design and finishing stage. However, some parameters of mathematical models have to be determined from the experimental test. The use of molecular-mechanical theory of friction and wear fatigue theory takes into account the influence of the physical and mechanical properties of a bearing material on his life.

  17. An investigation of the techno-economic impact of internal combustion engine based cogeneration systems on the energy requirements and greenhouse gas emissions of the Canadian housing stock

    International Nuclear Information System (INIS)

    Asaee, S. Rasoul; Ugursal, V. Ismet; Beausoleil-Morrison, Ian

    2015-01-01

    This study provides a techno-economic evaluation of retrofitting internal combustion engine (ICE) based cogeneration systems in the Canadian housing stock (CHS). The study was conducted using the Canadian Hybrid Residential End-Use Energy and GHG Emissions Model (CHREM). CHREM includes close to 17,000 unique house files that are statistically representative of the Canadian housing stock. The cogeneration system performance was evaluated using a high resolution integrated building performance simulation software. It is assumed that the ICE cogeneration system is retrofitted into all houses that currently use a central space heating system and have a suitable basement or crawl space. The GHG emission intensity factor associated with marginal electricity generation in each province is used to estimate the annual GHG emissions reduction due to the cogeneration system retrofit. The results show that cogeneration retrofit yields 13% energy savings in the CHS. While the annual GHG emissions would increase in some provinces due to cogeneration retrofits, the total GHG emissions of the CHS would be reduced by 35%. The economic analysis indicates that ICE cogeneration system retrofits may provide an economically feasible opportunity to approach net/nearly zero energy status for existing Canadian houses. - Highlights: • Techno-economic evaluation ICE cogeneration systems for Canadian housing is reported. • ICE cogeneration retrofit could yield 13% annual energy savings in Canadian housing. • Annual GHG emissions of Canadian housing could decrease by 35% with ICE cogeneration. • But, in some provinces, GHG emissions would increase as a result of ICE cogeneration

  18. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Hazem [Farmingdale State College, NY (United States)

    2017-03-10

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as well as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.

  19. Unsteady analysis of a bottoming Organic Rankine Cycle for exhaust heat recovery from an Internal Combustion Engine using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zhang, Tao; Zhu, Tong; An, Wei; Song, Xu; Liu, Liuchen; Liu, Hao

    2016-01-01

    Highlights: • An optimization model of ORC for the recovery of ICE exhaust heat is established. • Three unsteady parameters are considered for the design of ICE-ORC system. • The unsteady performances of ICE-ORC are illustrated using Monte Carlo simulation. - Abstract: An optimization model is developed to maximize the net power output of a bottoming Organic Rankine Cycle (ORC) with ten working fluids for exhaust heat recovery from an Internal Combustion Engine (ICE) theoretically. The ICE-ORC system is influenced by several unsteady parameters which make it difficult to determine the optimal design parameters. Therefore, we introduce probability density functions in order to investigate the impacts of the ICE power output, the sink temperature and the pinch point temperature difference on the ORC performances. Each unsteady parameter is illustrated to analyze the performances of the ICE-ORC system. Furthermore, Monte Carlo simulation is introduced to investigate the role played by the unsteady parameters, each of which obeys different probability distributions. By these methods, we obtained the convergence values, the frequency distributions and the cumulative probability distributions of various performance parameters. These results can provide valuable suggestions for the design of ICE-ORC system.

  20. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  1. Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    Directory of Open Access Journals (Sweden)

    N. Yu. Dudareva

    2015-01-01

    Full Text Available The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units, which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can

  2. Investigation of diesel engine for low exhaust emissions with different combustion chambers

    Directory of Open Access Journals (Sweden)

    Ghodke Pundlik R.

    2015-01-01

    Full Text Available Upcoming stringent Euro-6 emission regulations for passenger vehicle better fuel economy, low cost are the key challenges for engine development. In this paper, 2.2L, multi cylinder diesel engine have been tested for four different piston bowls designed for compression ratio of CR 15.5 to improve in cylinder performance and reduce emissions. These combustion chambers were verified in CFD at two full load points. 14 mode points have been derived using vehicle model run in AVL CRUISE software as per NEDC cycle based on time weightage factor. Base engine with compression ratio CR16.5 for full load performance and 14-mode points on Engine test bench was taken as reference for comparison. The bowl with flat face on bottom corner has shown reduction 25% and 12 % NOx emissions at 1500 and 3750 rpm full load points at same level of Soot emissions. Three piston bowls were tested for full load performance and 14 mode points on engine test bench and combustion chamber ‘C’ has shown improvement in thermal efficiency by 0.8%. Combinations of cooled EGR and combustion chamber ‘C’ with geometrical changes in engine have reduced exhaust NOx, soot and CO emissions by 22%, 9 % and 64 % as compared to base engine at 14 mode points on engine test bench.

  3. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  4. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  5. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  6. Improved Combustion Products Monitor for the ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer – Combustion Products, used on the International Space Station as a warning monitor of smoldering or combustion events, is being...

  7. Improved Combustion Products Monitor for the ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer - Combustion Products is used on the International Space Station as a warning monitor of smoldering or combustion events and, after...

  8. Determination of (BTEX) of the gasoline's combustion in Ecuador

    International Nuclear Information System (INIS)

    Garcia, Nelson; Insuasti, Alicia

    1998-01-01

    The contents of benzene, toluene, ethyl benzene and xylenes (BTEX) were determined and quantified in the gasoline's combustion on an internal combustion engine. Gas chromatography with flame ionization detector were used for chemical determinations

  9. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zihan [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Srinivasan, Kalyan K. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Krishnan, Sundar R. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Som, Sibendu [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Transportation Research

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.

  10. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  11. Modeling the lubrication, dynamics, and effects of piston dynamic tilt of twin-land oil control rings in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Tian, T.; Wong, V.W.

    2000-01-01

    A theoretical model was developed to study the lubrication, friction, dynamics, and oil transport of twin-land oil control rings (TLOCR) in internal combustion engines. A mixed lubrication model with consideration of shear-thinning effects of multigrade oils was used to describe the lubrication between the running surfaces of the two lands and the liner. Oil squeezing and asperity contact were both considered for the interaction between the flanks of the TLOCR and the ring groove. Then, the moments and axial forces from TLOCR/liner lubrication and TLOCR/groove interaction were coupled into the dynamic equations of the TLOCR. Furthermore, effects of piston dynamic tilt were considered in a quasi three-dimensional manner so that the behaviors of the TLOCR at different circumferential location could be studied. As a first step, variation of the third land pressure was neglected. The model predictions were illustrated via an SI engine. One important finding is that around thrust and anti-thrust sides, the difference between the minimum oil film thickness of two lands can be as high as several micrometers due to piston dynamic tilt. As a result, at thrust and anti-thrust sides, significant oil can pass under one land of the TLOCR along the bore, although the other land perfectly seals the bore. Then, the capabilities of the model were further explained by studying the effects of ring tension and torsional resistance on the lubrication and oil transport between the lands and the liner. The effects of oil film thickness on the flanks of the ring groove on the dynamics of the TLOCR were also studied. Friction results show that boundary lubrication contributes significantly to the total friction of the TLOCR.

  12. A Modified Version of the RNG k–ε Turbulence Model for the Scale-Resolving Simulation of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Vesselin Krassimirov Krastev

    2017-12-01

    Full Text Available The unsteady and random character of turbulent flow motion is a key aspect of the multidimensional modeling of internal combustion engines (ICEs. A typical example can be found in the prediction of the cycle-to-cycle variability (CCV in modern, highly downsized gasoline direct injection (GDI engines, which strongly depends on the accurate simulation of turbulent in-cylinder flow structures. The current standard for turbulence modeling in ICEs is still represented by the unsteady form of Reynold-averaged Navier Stokes equations (URANS, which allows the simulation of full engine cycles at relatively low computational costs. URANS-based methods, however, are only able to return a statistical description of turbulence, as the effects of all scales of motion are entirely modeled. Therefore, during the last decade, scale-resolving methods such as large eddy simulation (LES or hybrid URANS/LES approaches are gaining increasing attention among the engine-modeling community. In the present paper, we propose a scale-resolving capable modification of the popular RNG k– ε URANS model. The modification is based on a detached-eddy simulation (DES framework and allows one to explicitly set the behavior (URANS, DES or LES of the model in different zones of the computational domain. The resulting zonal formulation has been tested on two reference test cases, comparing the numerical predictions with the available experimental data sets and with previous computational studies. Overall, the scale-resolved part of the computed flow has been found to be consistent with the expected flow physics, thus confirming the validity of the proposed simulation methodology.

  13. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  14. Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.; Giakoumis, E.G.

    2008-01-01

    A previously developed and validated zero-dimensional, multi-zone, thermodynamic combustion model for the prediction of spark ignition (SI) engine performance and nitric oxide (NO) emissions has been extended to include second-law analysis. The main characteristic of the model is the division of the burned gas into several distinct zones, in order to account for the temperature and chemical species stratification developed in the burned gas during combustion. Within the framework of the multi-zone model, the various availability components constituting the total availability of each of the multiple zones of the simulation are identified and calculated separately. The model is applied to a multi-cylinder, four-stroke, turbocharged and aftercooled, natural gas (NG) SI gas engine running on synthesis gas (syngas) fuel. The major part of the unburned mixture availability consists of the chemical contribution, ranging from 98% at the inlet valve closing (IVC) event to 83% at the ignition timing of the total availability for the 100% load case, which is due to the presence of the combustible fuel. On the contrary, the multiple burned zones possess mainly thermomechanical availability. Specifically, again for the 100% load case, the total availability of the first burned zone at the exhaust valve opening (EVO) event consists of thermomechanical availability approximately by 90%, with similar percentages for all other burned zones. Two definitions of the combustion exergetic efficiency are used to explore the degree of reversibility of the combustion process in each of the multiple burned zones. It is revealed that the crucial factor determining the thermodynamic perfection of combustion in each burned zone is the level of the temperatures at which combustion occurs in the zone, with minor influence of the whole temperature history of the zone during the complete combustion phase. The availability analysis is extended to various engine loads. The engine in question is

  15. Fatigue of internal combustion engines

    Science.gov (United States)

    Dumanois, P

    1924-01-01

    The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.

  16. Cálculo de la temperatura en el interior de la cámara de combustión en motores de combustión interna. // Calculation of temperature into combustion chamber of internal combustion engines.

    Directory of Open Access Journals (Sweden)

    F. Soto Pau

    2002-05-01

    Full Text Available El trabajo aquí presentado tiene como objetivo llegar a expresiones de cálculo de la temperatura en el interior de la cámarade combustión como vía de diagnostico de la combustión en motores térmicos. Este trabajo consiste en un modelo físicomatemático,el cual usa como herramientas fundamentalmente, los valores de presión medidos en el interior de la cámarade combustión, las características geométricas del motor y todos los valores normalmente medidos en el bancodinamométrico. El procesamiento teórico de este modelo consiste fundamentalmente en la determinación de la evoluciónde la combustión a partir de la curva de presión, basada en la Primera Ley de la Termodinámica, adoptando Modelo deGases Perfectos. A partir de la posición angular de cierre de la válvula de admisión es posible calcular la derivada de latemperatura en relación a la posición angular del cigüeñal para los gases quemados T&b y no quemados T&u . Teniendo estosvalores de T&u y T&b calculados, es posible integrar numéricamente las temperaturas utilizando el método de integración deEuler. Conociendo la composición química del combustible, es posible calcular la temperatura adiabática de llama, estesería el valor de temperatura inicial Tb que nos permitiría calcular un valor de entalpía específica de los gases quemados. Deigual forma con el valor de la temperatura inicial para los gases no quemados Tu se tiene el valor de temperatura inicial parael proceso de integración.Palabras claves: Proceso de combustión en motores térmicos, temperatura en el interior de la cámara decombustión, presión en el interior de la cámara de combustión.____________________________________________________________________________Abstract.This paper presents calculation expressions of the temperature inside the combustion chamber in order to diagnose thecombustion in termic engines. This analysis consists in a physical-mathematical model, which uses

  17. Study proposal for the use of biodiesel from 'pinhao manso' (Jatropha curcas L.) in internal combustion engines; Proposta de estudo para uso do biodiesel de pinhao manso em motores de combustao interna

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Robson Leal da [Universidade Federal da Grande Dourados (UFGD), MS (Brazil). Fac. de Ciencias Exatas. Dept. de Engenharia de Producao], e-mail: rlealsilva@hotmail.com; Pimentel, Carlos Alberto Rocha [Fundacao Universidade Federal do Tocantins (UFT), Araguaina, TO (Brazil). Dept. de Matematica], e-mail: pimentel@uft.edu.br

    2008-07-01

    In this work, a preliminary study is proposed as a general glimpse looking into the recent motivation in using biodiesel, from 'pinhao manso'. From that initial revision, a research proposal aims to evaluate the performance parameters in an internal combustion engine or turbines working with oil, mainly produced from plants crops in Tocantins state. Both equipment are used as electrical energy generators in regions were it is not easily available or non-existent. Some parameters to be analyzed in the research proposal are the thermal performance and gases emissions resulting from diesel-biodiesel mixture combustion, as CO, NOx , SO{sub 2} and others. At the ending, some points of view with respect to the potential effects of renewable energy sources usage in Brazil are presented and discussed. (author)

  18. A new power station with clean combustion of coal residues financed by the Commission wins an international prize. Una nueva central electrica de combustion limpia de residuos de carbon financiada por la Comision gana un premio internacional

    Energy Technology Data Exchange (ETDEWEB)

    Furfari, S. (Commission of the European Communities, Brussels (Belgium). Directorate General for Energy, Energy Technology Unit)

    1993-07-01

    Between 1987 and 1989 10,55 million ecus were given by the European Commission's Demonstration Programme for the construction of the Emile Huchet power station using circulating fluidized bed combustion technology. The power station was constructed jointly by Charbonnages de France, COREAL, Stein Industrie and Lurgi. An important feature was its ability to burn coal preparation wastes cleanly. Despite burning poor quality fuel its emissions are well below the maximum standards. Other stations of this type are now planned in France.

  19. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  20. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  1. Investigating the effect of crevice flow on internal combustion engines using a new simple crevice model implemented in a CFD code

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Kosmadakis, G.M.; Dimaratos, A.M.; Pariotis, E.G.

    2011-01-01

    A theoretical investigation is conducted to examine the way the crevice regions affect the mean cylinder pressure, the in-cylinder temperature, and the velocity field of internal combustion engines running at motoring conditions. For the calculation of the wall heat flux, a wall heat transfer formulation developed by the authors is used, while for the simulation of the crevices and the blow-by a newly developed simplified simulation model is presented herein. These sub-models are incorporated into an in-house Computational Fluid Dynamics (CFD) code. The main advantage of the new crevice model is that it can be applied in cases where no detailed information of the ring-pack configuration is available, which is important as this information is rarely known or may have been altered during the engine's life. Thus, an adequate estimation of the blow-by effect on the cylinder pressure can be drawn. To validate the new model, the measured in-cylinder pressure traces of a diesel engine, located at the authors' laboratory, running under motoring conditions at four engine speeds were used as reference, together with measured velocity profiles and turbulence data of a motored spark-ignition engine. Comparing the predicted and measured cylinder pressure traces of the diesel engine for all cases examined, it is observed that by incorporating the new crevice sub-model into the in-house CFD code, significant improvements on the predictive accuracy of the model is obtained. The calculated cylinder pressure traces almost coincide with the measured ones, thus avoiding the use of any calibration constants as would have been the case with the crevice effect omitted. Concerning the radial and swirl velocity profiles and the turbulent kinetic energy measured in the spark-ignition engine, the validation process revealed that the developed crevice model has a minor influence on the aforementioned parameters. The theoretical study has been extended by investigating in the same spark

  2. Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship

    International Nuclear Information System (INIS)

    Choi, Byung Chul; Kim, Young Min

    2013-01-01

    A dual loop waste heat recovery power generation system that comprises an upper trilateral cycle and a lower organic Rankine cycle, in which discharged exhaust gas heat is recovered and re-used for propulsion power, was theoretically applied to an internal combustion engine for propulsion in a 6800 TEU container ship. The thermodynamic properties of this exhaust gas heat recovery system, which vary depending on the boundary temperature between the upper and lower cycles, were also investigated. The results confirmed that this dual loop exhaust gas heat recovery power generation system exhibited a maximum net output of 2069.8 kW, and a maximum system efficiency of 10.93% according to the first law of thermodynamics and a maximum system exergy efficiency of 58.77% according to the second law of thermodynamics. In this case, the energy and exergy efficiencies of the dual loop system were larger than those of the single loop trilateral cycle. Further, in the upper trilateral cycle, the volumetric expansion ratio of the turbine could be considerably reduced to an adequate level to be employed in the practical system. When this dual loop exhaust gas heat recovery power generation system was applied to the main engine of the container ship, which was actually in operation, a 2.824% improvement in propulsion efficiency was confirmed in comparison to the case of a base engine. This improvement in propulsion efficiency resulted in about 6.06% reduction in the specific fuel oil consumption and specific CO 2 emissions of the main engine during actual operation. - Highlights: • WHRS was theoretically applied to exhaust gas of a main engine for ship propulsion. • A dual loop EG-WHRS using water and R1234yf as working fluids has been suggested. • Limitation of single loop trilateral cycle was improved by the dual loop system. • The propulsion efficiency of 2.824% was improved by the dual loop EG-WHRS. • This resulted in about 6.06% reduction in the SFOC and specific CO

  3. PROTOTIPE ALAT PENGEKSTRAK PATI SAGU TIPE MIXER ROTARY BLADE BERTENAGA MOTOR BAKAR Prototype of Mixer Rotary Blade of Sago Starch Extractor Powered by Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Darma Darma

    2012-05-01

    Full Text Available Papua and West Papua Province have a large potential of sago. Approximately 994,000 hectares, mostly natural sago forest was existed in this area. Sago starch has long been an important source of nutrition troughout Papua. Product of sago palm is not only starch as source of carbohydrate for food stuff, but also for basic material of industries such as paper, plywood, hardboard, and food indutries. Traditional methods are used for starch extraction in almost all part of Papu, which is not efficient and production capacity is very low. The effort to increase sago starch production could be carry out by introducing mechanical equipment (traditional to mechanized processing. The objective of this research was to design mixer rotary blade of sago starch extraction powered by internal combustion engine. The result was prototype of mechanical sago starch extractor. The prototype has high performance with extraction capacity 160 kg of disintegrated pith per hour or equal to 33 kg of wet starch per hour, extractable starch more than 99 % while starch losses in hampas less lhan 1 %. Hopefully, application of this machine to the sago farmer will transform agricultural system from subsistence to commercial. It means that increasing of economic income. In conclusion, technically and economically this prototype was feasible. ABSTRAK Provinsi Papua dan Papua Barat memiliki potensi sagu yang sangat besar. Sekitar 994.000 hektar yang sebagian besar merupakan hutan sagu alam terdapat di kedua provinsi ini. Pati sagu telah lama digunakan sebagai sumber nutrisi bagi penduduk asli papua. Pati sagu tidak hanya digunakan sebagai sumber karbohidrat, namun juga digunakan seba- gai bahan dasar industri kertas, plywood, hardbord, dan pangan. Pengolahan sagu secara tradisional yang dilakukan oleh masyarakat tidak efisien dan kapasitas produksinya sangat rendah. Peningkatan produksi dapat dilakukan dengan mengintroduksi peralatan pengolahan mekanis untuk merubah metode

  4. The Impact of Complex Forcing on the Viscous Torsional Vibration Damper’s Work in the Crankshaft of the Rotating Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jagiełowicz-Ryznar C.

    2016-12-01

    Full Text Available The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC, including a viscous damper (VD, at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harmonic of a forcing moment. The calculations results of MC vibration, depending on the amplitude of the 2nd harmonic of the forcing moment, for the first form of the torsional vibration, were shown. Higher forms of torsional vibrations have no practical significance. The calculations assume the optimum damping coefficient VD, when the simple harmonic forcing is equal to the base critical velocity of the MC crankshaft.

  5. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  6. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  7. Analysis of the internal temperature of the combustion chamber of a compact system of co-generation; Analise das temperaturas internas da camara de combustao de um sistema compacto de co-geracao

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Joao B.F. [Universidade de Fortaleza (UNIFOR), CE (Brazil)], email: furlan@unifor.br; Couto, Heraldo S. [Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP (Brazil)], email: heraldo@lcp.inpe.br; Holanda, Carlos A.M. de [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Metalurgica e de Materiais], email: almir@metalmat.ufc.br

    2008-07-01

    Nowadays, the energy deficit represents one of the biggest governmental challenges, since there is still a great number of communities living in areas without electricity energy; and thus without access to electro-electronic equipment such as television, refrigerators, computers. The main focus of this work is to present the possibility of electricity energy generation in conjunction with the frozen or hot water production in for places without electricity transmission nets or even any type of alternative power plants. The system is based on the standard air cycle called Brayton cycle composed of a turbo-compressor model 4LGZ from BorgWarner, a combustion chamber, a power turbine, a heat exchanger, a water-ammonia chiller, a 5.0 kV A generator, and a command panel for automation and distribution of energy. This system that uses natural gas or LPG, will supply electric energy from the generator, hot water from the heat exchange with the gases of combustion, and water frozen from chiller using as the hot source the gases proceeding from the power system. The prototype is already being tested and the first results obtained are excellent. In this paper, we analyze the internal combustion chamber temperatures. (author)

  8. Gasoline Engine HCCI Combustion - Extending the high load limit

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Daniel

    2012-07-01

    -way catalyst to reduce the excess NOX. Intake air boosting was also experimented on and is discussed as an alternative method or as a method to use in combination with charge stratification. During the project, experiments have been conducted with a productionlike multi-cylinder engine and a single-cylinder research engine to investigate the potential of various strategies for raising the high load limit of HCCI when using gasoline or gasoline-like fuels. To explain observed phenomena, optical experiments were conducted in which high-speed video was used to capture light from the combustion and the residuals. A method was developed to extract pressure oscillations from these measurements and to correlate them to the combustion. Laser-based experiments were further used to analyse fuel and temperature distributions before the combustion to investigate their effects on combustion and pressure oscillations. Based on the acquired data, plausible reasons why charge stratification can reduce ringing, and the circumstances in which it can do so, are presented. The thesis also shows the extent to which the load can be increased using the strategy, and the resulting efficiency penalties, observed in both the production-like gasoline engine and single-cylinder research engine. Finally, the various strategies for load extension using combinations of charge stratification, EGR and boosting were compared to operating the engine in two-stroke HCCI mode. Although two-stroke operation was investigated very briefly, in an engine not designed for it, indications were obtained that this might be a much better alternative, since it provided higher loads, more stable combustion, less ringing, low NOX levels and higher efficiency than any of the other tested load extension strategies.

  9. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  10. Exhaust gas recirculation – Zero dimensional modelling and characterization for transient diesel combustion control

    International Nuclear Information System (INIS)

    Asad, Usman; Tjong, Jimi; Zheng, Ming

    2014-01-01

    Highlights: • Zero-dimensional EGR model for transient diesel combustion control. • Detailed analysis of EGR effects on intake, cylinder charge and exhaust properties. • Intake oxygen validated as an operating condition-independent measure of EGR. • Quantified EGR effectiveness in terms of NOx emission reduction. • Twin lambda sensor technique for estimation of EGR/in-cylinder parameters. - Abstract: The application of exhaust gas recirculation (EGR) during transient engine operation is a challenging task since small fluctuations in EGR may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency. Moreover, the intake charge dilution at any EGR ratio is a function of engine load and intake pressure, and typically changes during transient events. Therefore, the management of EGR during transient engine operation or advanced combustion cycles (that are inherently less stable) requires a fundamental understanding of the transient EGR behaviour and its impact on the intake charge development. In this work, a zero-dimensional EGR model is described to estimate the transient (cycle-by-cycle) progression of EGR and the time (engine cycles) required for its stabilization. The model response is tuned to a multi-cylinder engine by using an overall engine system time-constant and shown to effectively track the transient EGR changes. The impact of EGR on the actual air–fuel ratio of the cylinder charge is quantified by defining an in-cylinder excess-air ratio that accounts for the oxygen in the recycled exhaust gas. Furthermore, a twin lambda sensor (TLS) technique is implemented for tracking the intake dilution and in-cylinder excess-air ratio in real-time. The modelling and analysis results are validated against a wide range of engine operations, including transient and steady-state low temperature combustion tests

  11. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  12. 内燃机附壁油膜蒸发的一维解析%An analytical solution for wall-film evaporation in internal combustion engines

    Institute of Scientific and Technical Information of China (English)

    刘红; 闫燕安; 尹洪超; 贾明; 解茂昭

    2016-01-01

    The uncombusted film of fuel on the piston chamber walls of an internal combustion engine is a primaty source of pollutant discharge. In order to solve this problem, an equation for predicting the evaporation rate of the wall film was proposed. In addition, a one⁃dimensional unstable⁃state mathematical model was established to evalu⁃ate the heating and evaporation characteristics of the wall film. The conduction between the film and the wall, the convection between the film and the ambient air as well as the quantity of heat transferred by heat convection and e⁃vaporation of the wall film were considered in this new method. The transient behavior of an n⁃dodecane fuel at high ambient temperature and pressure was predicted by the new model, which provides an analytical solution for the temperature distribution within the fuel film. The results show that the process of wall⁃film heating and evaporation can be divided into three distinct stages, including an initial rapid heating stage, a stable heating and evaporation stage, and a final stage. The investigations show that the evaporation rate is higher for conditions of a thinner initial wall⁃film thickness, higher ambient temperature and convection rate, and lower ambient pressure.%内燃机中附壁油膜是产生污染物排放的重要原因,针对该问题,本文提出了一个用于预测附壁油膜蒸发率的方程,并建立了一维非稳态数学模型来分析附壁油膜的加热和蒸发特性。该模型考虑了油膜与壁面的热传导,与空气的对流换热以及自身蒸发所释放的热量。应用所建立的模型预测了正十二烷在高温高压环境中的瞬态加热蒸发过程,考虑了油膜物性随温度的变化,得到了不同时刻不同位置附壁油膜温度分布的解析解。结果表明:附壁油膜的加热蒸发过程大致可以分为3个阶段,即初始表面快速加热阶段,稳定加热蒸发阶段和末尾阶段;在较薄

  13. Process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. Verfahren zur Herstellung eines Filterstoffes zur Reinigung von industriellen oder Brennkraftmaschinen-Abgasen und ein hiernach hergestellter Filterstoff

    Energy Technology Data Exchange (ETDEWEB)

    Bumbalek, A.

    1986-01-02

    This is a process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. The filter material is manufactured from the mineralized combustion product of peel of tropical fruits burnt at a temperature of 820/sup 0/C to 840/sup 0/C in an oxidising atmosphere excluding the production of carbon, particularly using banana skins and orange peels, which product is granulated with carrier materials or compressed.

  14. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  15. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  16. Development and validation of an Eulerian model towards the simulation of fuel injection in internal combustion engines; Developpement et validation d'un modele eulerien en vue de la simulation des jets de carburants dans les moteurs a combustion interne

    Energy Technology Data Exchange (ETDEWEB)

    Truchot, B.

    2005-12-15

    The objective of this work is to develop an Eulerian two phase model to improve the prediction of fuel injection in internal combustion engines, particularly the dense liquid zone close to the nozzle. Lagrangian models, usually used in engine simulations, are based on the assumption of dispersed two phase flows with low liquid volume fraction, which is not fulfilled in the case of direct injection engine technology. Different Eulerian approaches are available in the literature. Physical phenomena that occur near the nozzle and characteristics of each model lead to the choice of a two fluids two pressures model. Several open terms appear in the equations of the model: exchange between the two phases and turbulent correlations. Closures of exchange terms are based on the spherical droplets hypothesis while a RANS approach is adopted to close turbulent correlations. This model has been integrated in the IFP CFD code, IFP-C3D. Several numerical tests and analytical validations (for single and two phase flows) have been then carried out in order to check the correct implementation of equations and the predictivity of the model and closures. Modifications in the turbulent model of the gas have required validations in both the gas phase (flow behind a sudden enlargement) and the liquid phase (pure liquid injection). A two phase mixing layer has been then used to validate the whole model. Finally, injection tests have been achieved under realistic conditions (similar to those encountered in automotive engines) in order to check the feasibility of engine computations using the developed Eulerian approach. These tests have also allowed to check the compatibility of this approach with the specificities of engine simulations (especially mesh movement). (author)

  17. DIAGNOSIS OF FAILURE OF COMBUSTION IN THE COMBUSTION CHAMBER WITH A THERMOVISION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev

    2014-01-01

    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  18. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  19. Project of multiple controller models for the maintenance of air/fuel ratio in natural gas internal combustion motors; Projeto de controladores multiplos modelos para manutencao da relacao ar/combustivel em motores de combustao interna movidos a gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Junior, Fernando Sousa e; Fleury, Agenor de Toledo [Sao Paulo Univ. SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mails: ffreitas@usp.br; agfleury@ipt.br

    2006-07-01

    The objective of this work is the study of advanced control techniques for the reduction of pollutant gases generated by internal combustion engines powered by natural gas. In this paper three techniques are applied to control the fuel injection and the ignition timing: the Generalized Predictive Control (GPC), the Linear Quadratic Regulator (LQR) and H{infinity} Control by Linear Matrix Inequalities (LMI). To each one of those techniques were developed a multiple model structure seeking to include the vast operation region of the engine. The controller's performance is measured by the efficiency in maintaining the fuel/air ratio around 1% of maximum deviation in relation to the stoichiometric value. The results show the possibility of controlling pollutant emission generated by this kind of engine to conform to international emission standards, improving life quality. (author)

  20. Hydrogen utilization international clean energy system (WE-NET). Subtask 8. Development of hydrogen combustion turbines (development of combustion control technology); Suiso riyo kokusai clean energy system (WE-NET). Subtask 8. Suiso nensho turbine no kaihatsu nensho seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the fiscal 1996 developmental results of hydrogen burning turbine combustion technology in the hydrogen utilization international clean energy system (WE-NET) project. A test was conducted on an annular type combustor where oxygen is mixed with steam (inert gas) at burner and fired with hydrogen. Appropriate flame shape and cooling/dilution vapor distribution were attempted, and various data on combustion were measured for improvement. Mixture and flame holding were improved by developing a can type combustor (1) where oxygen is diluted with steam after firing oxygen and hydrogen around burner and by strengthening circulation in the combustor. Improvement such as appropriate steam distribution, etc. is needed. A can type combustor (2) was tested in which the premixed oxygen and hydrogen is supplied from scoop and fired with hydrogen. By supplying part of oxygen from the primary scoop, the residual hydrogen and oxygen concentration around the stoichiometric ratio can be reduced. Concentration of the residual oxygen can be measured by the absorption light method, but it is difficult to adopt the non-contact measuring method to hydrogen. An outlook for the gas temperature measuring method was obtained. 12 refs., 121 figs., 27 tabs.

  1. Scale Effects on Solid Rocket Combustion Instability Behaviour

    OpenAIRE

    David R. Greatrix

    2011-01-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combusti...

  2. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  3. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  4. Example Problems in LES Combustion

    Science.gov (United States)

    2016-09-26

    Lesieur, M., Turbulence in Fluids , 2nd Revised Ed., Fluid Mechanics and Its Applications, Vol. 1, Kluwer Academic Publishers, Boston, Massachusetts, 1990...34, Journal of Fluid Mechanics , Vol. 238, 1992, pp. 155-185. 5. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2, Computational...reaction mechanisms for the oxidation of hydrocarbon fuels in flames", Combustion Science and Technology, Vol. 27, 1981, pp. 31-43. 14. Spalding, D.B

  5. COMBUSTION OPTIMIZATION IN SPARK IGNITION ENGINES

    OpenAIRE

    Barhm Mohamad; Gabor Szebesi; Betti Bollo

    2017-01-01

    The blending technique used in internal combustion engines can reduce emission of toxic exhaust components and noises, enhance overall energy efficiency and reduce fuel costs. The aim of the study was to compare the effects of dual alcohols (methanol and ethanol) blended in gasoline fuel (GF) against performance, combustion and emission characteristics. Problems arise in the fuel delivery system when using the highly volatile methanol - gasoline blends. This problem is reduced by using specia...

  6. Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Haiwen Song

    2016-01-01

    Full Text Available Effects of oxygen content of fuels on combustion characteristics and emissions were investigated on both an optical single cylinder direct injection (DI diesel engine and a multi-cylinder engine. Three fuels were derived from conventional diesel fuel (Finnish City diesel summer grade by blending Rapeseed Methyl Ester (RME or Diglyme and Butyl-Diglyme of different quantities to make their oxygen content 3%, 3% and 9%, respectively. The experimental results with three tested fuels show that the fuel spray development was not affected apparently by the oxygenating. Compared with the base fuel, the ignition delay to pilot injection was shortened by 0%, 11% and 19% for three oxygenated fuels, respectively. The ignition delay to main injection was shortened by 10%, 19% and 38%, respectively. With regard to emissions, the smoke level was reduced by 24% to 90%, depending on fuel properties and engine running conditions. The penalties of increased NOx emissions and fuel consumption were up to 19% and 24%, respectively.

  7. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    Science.gov (United States)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  8. Electromotor actuators with integrated electronics for control of modern internal combustion engines; Elektromotorische Steller mit integrierter Elektronik zur Regelung moderner Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Krome, J.; Dorissen, H.T.; Duerkopp, K. [Hella KG Hueck and Co., Lippstadt (Germany)

    2002-07-01

    Combustion and emission specifications make increasing demands on motor car control systems, and pneumatic control elements are getting replaced by specialized electromotor systems. The contribution describes an electromotor actuator with integrated electronics which is suited for the extreme conditions inside motor engines and is already produced in series in turbo-supercharger engines with variable turbine geometries. [German] Durch die gestiegenen Anforderungen an Verbrauch und Emissionen werden auch immer hoehere Ansprueche an Stell- und Regelsysteme im Kraftfahrzeug gestellt. Dies fuehrt unter anderem dazu, dass die heute eingesetzten pneumatischen Stellsysteme zunehmend durch spezialisierte elektromotorische Systeme ersetzt werden. In diesem Beitrag wird ein elektromotorischer Aktuator mit integrierter Elektronik vorgestellt. Der Steller ist fuer die extremen Umgebungsbedingungen von Motoranbauteilen qualifiziert und wird bereits in Serie zur Verstellung von Turboladern mit variabler Turbinengeometrie eingesetzt. (orig.)

  9. Variable valve trains for internal combustion engines to control the valve height and the opening time; Variable Ventiltriebe fuer Verbrennungsmotoren zur Veraenderung von Ventilhub und Oeffnungsdauer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Gunther [ThyssenKrupp Presta TecCenter AG, Eschen (Liechtenstein). R and D Projects

    2009-11-15

    The PDVC (Presta Delta Valve Control) continuously variable valve lift system is a mechanical system of valve control for achieving optimum performance and resulting in improved fuel consumption and reduced emissions across the entire operating range of the combustion engine. The continuous variability allows for engine load control by adjusting the valve height and therefore can also be used to replace the traditional throttle. The advantages are lower fuel consumption, reduction in emissions, quicker engine response, higher torque during the low speed range as well as more stable idling. The PSVC (Presta Shiftable Valve Control) is a 3 step shiftable valve lift system that offers the possibility to achieve a major part of these performance and associated consumption benefits with a simpler and therefore more cost-effective system. (orig.)

  10. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    Directory of Open Access Journals (Sweden)

    Janovcová Martina

    2015-01-01

    Full Text Available Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air – water, air is the primary low – energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  11. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  12. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  13. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  14. Socket for a central connection for measuring equipment into a transistor ignition system of an internal combustion engine. Steckdose einer Zentralsteckverbindung fuer den Anschluss von Messgeraeten an eine Transistorzuendung einer Brennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, H

    1980-09-25

    The invention refers to the socket of a central connection for measuring equipment into a transistor ignition system of an internal combustion engine. Various cables are looped into the transistor ignition system via the pins of this socket. By plugging in a multi-pole plug, the individual circuits of the ignition system are made. In this way, apart from connecting the measuring equipment for testing the transistor ignition system, it is possible to prevent the ignition system working in case of theft of the vehicle, by inserting a 'blind plate' which leaves individual circuits of the transistor system open. Structural details of this cylindrical socket and the multiple plug are explained in some crossection diagrams. The ideas of the invention are described in 7 patent claims.

  15. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  16. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  17. Combustive management of oil spills

    International Nuclear Information System (INIS)

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris

  18. System and method for engine combustion

    Science.gov (United States)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  19. Unraveling advanced compression ignition combustion using optical diagnostics

    OpenAIRE

    Zegers, R.P.C.

    2012-01-01

    Despite the expected upsurge of hybrid and electric cars in the coming decades, internal combustion will remain the main power supply for (long-distance) transport. Buses, trucks, ships and airplanes will still rely on combustion engines. Nevertheless, emission legislation is becoming more stringent and the oil price continues to rise. Consequently, there still exists a serious interest in new developments that may improve combustion efficiency and fuel flexibility, and reduce emissions; both...

  20. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.