WorldWideScience

Sample records for multi-cellular developmental design

  1. A MULTI CRITERIA APPROACH TO DESIGNING THE CELLULAR MANUFACTURING SYSTEM

    Directory of Open Access Journals (Sweden)

    Rika Ampuh Hadiguna

    2005-01-01

    Full Text Available Cellular manufacturing system design problems such as design framework, manufacturing cells layout and layout evaluation. The research objective is developing the framework to designing manufacturing cells with considering the organization and management aspects in shopfloor. In this research have compared the existing layout with proposed layout which applied the multi criteria approach. The proposed method is combining Analytical Hierarchy Process (AHP, Clustering and heuristic approach. The result has show that grouping with Single Linkage Clustering (SLC to be selected as manufacturing cells. The comparison of clustering weight is 0,567, 0,245 and 0,188 for SLC, Complete Linkage Clustering (CLC and Average Linkage Clustering (ALC, respectively. This result shows that generating layout by using grouping result from SLC. The evaluation result shows that types of manufacturing cells better than process layout which used the existing system.

  2. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT in living organisms.

    Directory of Open Access Journals (Sweden)

    Boyin Liu

    Full Text Available Different toxicity tests for carbon nanotubes (CNT have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery.

  3. Flexible Design for α-Duplex Communications in Multi-Tier Cellular Networks

    KAUST Repository

    Alammouri, Ahmad; Elsawy, Hesham; Alouini, Mohamed-Slim

    2016-01-01

    the foreseen FD gains. This paper presents flexible and tractable modeling framework for multi-tier cellular networks with FD BSs and FD/HD UEs. The presented model is based on stochastic geometry and accounts for the intrinsic vulnerability of uplink

  4. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  5. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  6. Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel Girke; Nielsen, Jesper Sejrup; Boysen, Anders

    2012-01-01

    Small regulatory RNA molecules have recently been recognized as important regulatory elements of developmental processes in both eukaryotes and bacteria. We here describe a striking example in Escherichia coli that can switch between a single-cell motile lifestyle and a multi-cellular, sessile....... Our demonstration that basal expression of each of the three RNA species is sufficient to downregulate CsgD synthesis and prevent curli formation indicates that all play a prominent role in the curli regulatory network. Our findings provide the first clue as to how the Rcs signalling pathway...... negatively regulates curli synthesis and increase the number of small regulatory RNAs that act directly on the csgD mRNA to five....

  7. Directed self-assembly of large scaffold-free multi-cellular honeycomb structures

    International Nuclear Information System (INIS)

    Tejavibulya, Nalin; Youssef, Jacquelyn; Bao, Brian; Ferruccio, Toni-Marie; Morgan, Jeffrey R

    2011-01-01

    A significant challenge to the field of biofabrication is the rapid construction of large three-dimensional (3D) living tissues and organs. Multi-cellular spheroids have been used as building blocks. In this paper, we create large multi-cellular honeycomb building blocks using directed self-assembly, whereby cell-to-cell adhesion, in the context of the shape and obstacles of a micro-mold, drives the formation of a 3D structure. Computer-aided design, rapid prototyping and replica molding were used to fabricate honeycomb-shaped micro-molds. Nonadhesive hydrogels cast from these micro-molds were equilibrated in the cell culture medium and seeded with two types of mammalian cells. The cells settled into the honeycomb recess were unable to attach to the nonadhesive hydrogel and so cell-to-cell adhesion drove the self-assembly of a large multi-cellular honeycomb within 24 h. Distinct morphological changes occurred to the honeycomb and its cells indicating the presence of significant cell-mediated tension. Unlike the spheroid, whose size is constrained by a critical diffusion distance needed to maintain cell viability, the overall size of the honeycomb is not limited. The rapid production of the honeycomb building unit, with its multiple rings of high-density cells and open lumen spaces, offers interesting new possibilities for biofabrication strategies.

  8. Flexible Design for α-Duplex Communications in Multi-Tier Cellular Networks

    KAUST Repository

    AlAmmouri, Ahmad

    2016-06-13

    Backward compatibility is an essential ingredient for the success of new technologies. In the context of inband full-duplex (FD) communication, FD base stations (BSs) should support half-duplex (HD) users’ equipment (UEs) without sacrificing the foreseen FD gains. This paper presents flexible and tractable modeling framework for multi-tier cellular networks with FD BSs and FD/HD UEs. The presented model is based on stochastic geometry and accounts for the intrinsic vulnerability of uplink transmissions. The results show that FD UEs are not necessarily required to harvest rate gains from FD BSs. In particular, the results show that adding FD UEs to FD BSs offers a maximum of 5% rate gain over FD BSs and HD UEs case if multi-user diversity is exploited, which is a marginal gain compared to the burden required to implement FD transceivers at the UEs’ side. To this end, we shed light on practical scenarios where HD UEs operation with FD BSs outperforms the operation when both the BSs and UEs are FD and we find a closed form expression for the critical value of the self-interference attenuation power required for the FD UEs to outperform HD UEs.

  9. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  10. Using Developmental Evaluation as a Design Thinking Tool for Curriculum Innovation in Professional Higher Education

    Science.gov (United States)

    Leonard, Simon N.; Fitzgerald, Robert N.; Riordan, Geoffrey

    2016-01-01

    This paper argues for the use of "developmental" evaluation as a design-based research tool for sustainable curriculum innovation in professional higher education. Professional education is multi-faceted and complex with diverse views from researchers, professional practitioners, employers and the world of politics leaving little…

  11. Multi-scale modeling with cellular automata: The complex automata approach

    NARCIS (Netherlands)

    Hoekstra, A.G.; Falcone, J.-L.; Caiazzo, A.; Chopard, B.

    2008-01-01

    Cellular Automata are commonly used to describe complex natural phenomena. In many cases it is required to capture the multi-scale nature of these phenomena. A single Cellular Automata model may not be able to efficiently simulate a wide range of spatial and temporal scales. It is our goal to

  12. Hierarchical cellular designs for load-bearing biocomposite beams and plates

    International Nuclear Information System (INIS)

    Burgueno, Rigoberto; Quagliata, Mario J.; Mohanty, Amar K.; Mehta, Geeta; Drzal, Lawrence T.; Misra, Manjusri

    2005-01-01

    Scrutiny into the composition of natural, or biological materials convincingly reveals that high material and structural efficiency can be attained, even with moderate-quality constituents, by hierarchical topologies, i.e., successively organized material levels or layers. The present study demonstrates that biologically inspired hierarchical designs can help improve the moderate properties of natural fiber polymer composites or biocomposites and allow them to compete with conventional materials for load-bearing applications. An overview of the mechanics concepts that allow hierarchical designs to achieve higher performance is presented, followed by observation and results from flexural tests on periodic and hierarchical cellular beams and plates made from industrial hemp fibers and unsaturated polyester resin biocomposites. The experimental data is shown to agree well with performance indices predicted by mechanics models. A procedure for the multi-scale integrated material/structural analysis of hierarchical cellular biocomposite components is presented and its advantages and limitations are discussed

  13. Multi-Hop Link Capacity of Multi-Route Multi-Hop MRC Diversity for a Virtual Cellular Network

    Science.gov (United States)

    Daou, Imane; Kudoh, Eisuke; Adachi, Fumiyuki

    In virtual cellular network (VCN), proposed for high-speed mobile communications, the signal transmitted from a mobile terminal is received by some wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this paper, we apply the multi-route MHMRC diversity in order to decrease the transmit power and increase the multi-hop link capacity. The transmit power, the interference power and the link capacity are evaluated for DS-CDMA multi-hop VCN by computer simulation. The multi-route MHMRC diversity can be applied to not only DS-CDMA but also other access schemes (i. e. MC-CDMA, OFDM, etc.).

  14. Neuromodulation of hypoglossal motoneurons: cellular and developmental mechanisms.

    Science.gov (United States)

    Bayliss, D A; Viana, F; Talley, E M; Berger, A J

    1997-11-01

    Hypoglossal motoneurons (HMs) in the caudal brainstem have a respiratory-related activity pattern and contribute to control of upper airway resistance. In this review, we focus primarily on signalling mechanisms utilized by neurotransmitters to enhance HM excitability. In particular, we consider: (1) the membrane depolarization induced by a number of different putative transmitters [thyrotropin-releasing hormone (TRH), serotonin (5-HT), norepinephrine (NE)]; and (2) the inhibition of a calcium-dependent spike after hyperpolarization (AHP) by 5-HT and its effect on firing behavior. Potential functional consequences on HM behavior of these different neurotransmitter effects is discussed. In addition, we describe postnatal changes in transmitter effects and suggest potential cellular mechanisms to explain those developmental changes. Most of the data discussed are derived from in vitro electrophysiological recordings performed in preparations from neonatal and adult rats.

  15. Dualities for multi-state probabilistic cellular automata

    International Nuclear Information System (INIS)

    López, F Javier; Sanz, Gerardo; Sobottka, Marcelo

    2008-01-01

    In this paper a new form of duality for probabilistic cellular automata (PCA) is introduced. Using this duality, an ergodicity result for processes having a dual is proved. Also, conditions on the probabilities defining the evolution of the processes for the existence of a dual are provided. The results are applied to wide classes of PCA which include multi-opinion voter models, competition models and the Domany–Kinzel model

  16. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    Science.gov (United States)

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Design of Efficient Full Adder in Quantum-Dot Cellular Automata

    Directory of Open Access Journals (Sweden)

    Bibhash Sen

    2013-01-01

    Full Text Available Further downscaling of CMOS technology becomes challenging as it faces limitation of feature size reduction. Quantum-dot cellular automata (QCA, a potential alternative to CMOS, promises efficient digital design at nanoscale. Investigations on the reduction of QCA primitives (majority gates and inverters for various adders are limited, and very few designs exist for reference. As a result, design of adders under QCA framework is gaining its importance in recent research. This work targets developing multi-layered full adder architecture in QCA framework based on five-input majority gate proposed here. A minimum clock zone (2 clock with high compaction (0.01 μm2 for a full adder around QCA is achieved. Further, the usefulness of such design is established with the synthesis of high-level logic. Experimental results illustrate the significant improvements in design level in terms of circuit area, cell count, and clock compared to that of conventional design approaches.

  18. Rail-Guided Multi-Robot System for 3D Cellular Hydrogel Assembly with Coordinated Nanomanipulation

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-08-01

    Full Text Available The 3D assembly of micro-/nano-building blocks with multi-nanomanipulator coordinated manipulation is one of the central elements of nanomanipulation. A novel rail-guided nanomanipulation system was proposed for the assembly of a cellular vascular-like hydrogel microchannel. The system was equipped with three nanomanipulators and was restricted on the rail in order to realize the arbitrary change of the end-effectors during the assembly. It was set up with hybrid motors to achieve both a large operating space and a 30 nm positional resolution. The 2D components such as the assembly units were fabricated through the encapsulation of cells in the hydrogel. The coordinated manipulation strategies among the multi-nanomanipulators were designed with vision feedback and were demonstrated through the bottom-up assembly of the vascular-like microtube. As a result, the multi-layered microchannel was assembled through the cooperation of the nanomanipulation system.

  19. Adaptive multi-channel downlink assignment for overloaded spectrum-shared multi-antenna overlaid cellular networks

    KAUST Repository

    Radaydeh, Redha Mahmoud

    2012-10-19

    Overlaid cellular technology has been considered as a promising candidate to enhance the capacity and extend the coverage of cellular networks, particularly indoors. The deployment of small cells (e.g. femtocells and/or picocells) in an overlaid setup is expected to reduce the operational power and to function satisfactorily with the existing cellular architecture. Among the possible deployments of small-cell access points is to manage many of them to serve specific spatial locations, while reusing the available spectrum universally. This contribution considers the aforementioned scenario with the objective to serve as many active users as possible when the available downlink spectrum is overloaded. The case study is motivated by the importance of realizing universal resource sharing in overlaid networks, while reducing the load of distributing available resources, satisfying downlink multi-channel assignment, controlling the aggregate level of interference, and maintaining desired design/operation requirements. These objectives need to be achieved in distributed manner in each spatial space with as low processing load as possible when the feedback links are capacity-limited, multiple small-cell access points can be shared, and data exchange between access points can not be coordinated. This contribution is summarized as follows. An adaptive downlink multi-channel assignment scheme when multiple co-channel and shared small-cell access points are allocated to serve active users is proposed. It is assumed that the deployed access points employ isotropic antenna arrays of arbitrary sizes, operate using the open-access strategy, and transmit on shared physical channels simultaneously. Moreover, each active user can be served by a single transmit channel per each access point at a time, and can sense the concurrent interference level associated with each transmit antenna channel non-coherently. The proposed scheme aims to identify a suitable subset of transmit channels

  20. Rapid construction of mechanically- confined multi- cellular structures using dendrimeric intercellular linker.

    Science.gov (United States)

    Mo, Xuejun; Li, Qiushi; Yi Lui, Lena Wai; Zheng, Baixue; Kang, Chiang Huen; Nugraha, Bramasta; Yue, Zhilian; Jia, Rui Rui; Fu, Hong Xia; Choudhury, Deepak; Arooz, Talha; Yan, Jie; Lim, Chwee Teck; Shen, Shali; Hong Tan, Choon; Yu, Hanry

    2010-10-01

    Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications. 2010 Elsevier Ltd. All rights reserved.

  1. Developmental Education Evaluation Model.

    Science.gov (United States)

    Perry-Miller, Mitzi; And Others

    A developmental education evaluation model designed to be used at a multi-unit urban community college is described. The purpose of the design was to determine the cost effectiveness/worth of programs in order to initiate self-improvement. A needs assessment was conducted by interviewing and taping the responses of students, faculty, staff, and…

  2. Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system

    Science.gov (United States)

    Aalaei, Amin; Davoudpour, Hamid

    2012-11-01

    This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.

  3. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  4. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-01-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated

  5. Effects of multi-source feedback on developmental plans for leaders of postgraduate medical education

    DEFF Research Database (Denmark)

    Malling, Bente; Bonderup, Thomas; Mortensen, Lene

    2009-01-01

    for both management and leadership performance areas. The developmental plans mainly focused on management initiatives, whereas plans for the development of leadership performance were few. Areas rated low by all respondents were scarcely represented in CREs' developmental plans. CONCLUSIONS: An MSF...... process might in itself lead to development in administrative areas. However, MSF carried through as a single stand-alone procedure was not sufficient to foster plans for the development of leadership performance.......OBJECTIVES: Multi-source feedback (MSF) is a widely used developmental tool for leaders in organisations including those dealing with health care. This study was performed to examine the effects of an MSF process on developmental plans made by leaders of postgraduate medical education (PGME...

  6. Design of arithmetic circuits in quantum dot cellular automata nanotechnology

    CERN Document Server

    Sridharan, K

    2015-01-01

    This research monograph focuses on the design of arithmetic circuits in Quantum Dot Cellular Automata (QCA). Using the fact that the 3-input majority gate is a primitive in QCA, the book sets out to discover hitherto unknown properties of majority logic in the context of arithmetic circuit designs. The pursuit for efficient adders in QCA takes two forms. One involves application of the new results in majority logic to existing adders. The second involves development of a custom adder for QCA technology. A QCA adder named as hybrid adder is proposed and it is shown that it outperforms existing multi-bit adders with respect to area and delay. The work is extended to the design of a low-complexity multiplier for signed numbers in QCA. Furthermore the book explores two aspects unique to QCA technology, namely thermal robustness and the role of interconnects. In addition, the book introduces the reader to QCA layout design and simulation using QCADesigner. Features & Benefits: This research-based book: ·  �...

  7. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    . Within the developmental hierarchy, each module yields an inter-level relationship that makes it possible for the scaffolding to mediate the production of selectable variations. Awide range of genetic, cellular and morphological mechanisms allows the scaffolding to integrate these modular variations...... to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships selected amongst the ones...

  8. Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method

    International Nuclear Information System (INIS)

    Natsume, Y; Ohsasa, K

    2015-01-01

    A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)

  9. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.

    Directory of Open Access Journals (Sweden)

    Assaf Zaritsky

    Full Text Available Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional

  10. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.

    Science.gov (United States)

    Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2011-01-01

    Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single

  11. Dynamic cellular manufacturing system design considering ...

    Indian Academy of Sciences (India)

    Kamal Deep

    cellular manufacturing system in a company is division of ... designed to be assembled from a small number of stan- ..... contingency part process route in addition to the alternate .... istic industrial manufacturing vision considering multiple.

  12. Generic Automated Multi-function Finger Design

    Science.gov (United States)

    Honarpardaz, M.; Tarkian, M.; Sirkett, D.; Ölvander, J.; Feng, X.; Elf, J.; Sjögren, R.

    2016-11-01

    Multi-function fingers that are able to handle multiple workpieces are crucial in improvement of a robot workcell. Design automation of multi-function fingers is highly demanded by robot industries to overcome the current iterative, time consuming and complex manual design process. However, the existing approaches for the multi-function finger design automation are unable to entirely meet the robot industries’ need. This paper proposes a generic approach for design automation of multi-function fingers. The proposed approach completely automates the design process and requires no expert skill. In addition, this approach executes the design process much faster than the current manual process. To validate the approach, multi-function fingers are successfully designed for two case studies. Further, the results are discussed and benchmarked with existing approaches.

  13. Multi-stability and variable stiffness of cellular solids designed based on origami patterns

    Science.gov (United States)

    Sengupta, Sattam; Li, Suyi

    2017-04-01

    The application of origami-inspired designs to engineered structures and materials has been a subject of much research efforts. These structures and materials, whose mechanical properties are directly related to the geometry of folding, are capable of achieving a host of unique adaptive functions. In this study, we investigate a three-dimensional multistability and variable stiffness function of a cellular solid based on the Miura-Ori folding pattern. The unit cell of such a solid, consisting of two stacked Miura-Ori sheets, can be elastically bistable due to the nonlinear relationship between rigid-folding deformation and crease material bending. Such a bistability possesses an unorthodox property: the critical, unstable configuration lies on the same side of two stable ones, so that two different force-deformation curves co-exist within the same range of deformation. By exploiting such unique stability properties, we can achieve a programmable stiffness change between the two elastically stable states, and the stiffness differences can be prescribed by tailoring the crease patterns of the cell. This paper presents a comprehensive parametric study revealing the correlations between such variable stiffness and various design parameters. The unique properties stemming from the bistability and design of such a unit cell can be advanced further by assembling them into a solid which can be capable of shape morphing and programmable mechanical properties.

  14. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Design and evaluation of cellular power converter architectures

    Science.gov (United States)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  16. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities.

    Science.gov (United States)

    Schmidt, Béla Z; Lehmann, Martin; Gutbier, Simon; Nembo, Erastus; Noel, Sabrina; Smirnova, Lena; Forsby, Anna; Hescheler, Jürgen; Avci, Hasan X; Hartung, Thomas; Leist, Marcel; Kobolák, Julianna; Dinnyés, András

    2017-01-01

    Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.

  17. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    Science.gov (United States)

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to

  18. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sheng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China); Qu, Xiaobo [Griffith School of Engineering, Griffith University, Gold Coast, 4222 Australia (Australia); Xu, Cheng [Department of Transportation Management Engineering, Zhejiang Police College, Hangzhou, 310053 China (China); College of Transportation, Jilin University, Changchun, 130022 China (China); Ma, Dongfang, E-mail: mdf2004@zju.edu.cn [Ocean College, Zhejiang University, Hangzhou, 310058 China (China); Wang, Dianhai [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China)

    2015-10-16

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated.

  19. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    International Nuclear Information System (INIS)

    Jin, Sheng; Qu, Xiaobo; Xu, Cheng; Ma, Dongfang; Wang, Dianhai

    2015-01-01

    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated

  20. The Emergence of Multi-Cellular Robot Organisms through On-line On-board Evolution

    NARCIS (Netherlands)

    Weel, B.P.M.; Haasdijk, E.W.; Eiben, A.E.

    2012-01-01

    We investigate whether a swarm of robots can evolve controllers that cause aggregation into 'multi-cellular' robot organisms without a specific reward to do so. To this end, we create a world where aggregated robots receive more energy than individual ones and enable robots to evolve their

  1. Design Optimization of Irregular Cellular Structure for Additive Manufacturing

    Science.gov (United States)

    Song, Guo-Hua; Jing, Shi-Kai; Zhao, Fang-Lei; Wang, Ye-Dong; Xing, Hao; Zhou, Jing-Tao

    2017-09-01

    Irregularcellular structurehas great potential to be considered in light-weight design field. However, the research on optimizing irregular cellular structures has not yet been reporteddue to the difficulties in their modeling technology. Based on the variable density topology optimization theory, an efficient method for optimizing the topology of irregular cellular structures fabricated through additive manufacturing processes is proposed. The proposed method utilizes tangent circles to automatically generate the main outline of irregular cellular structure. The topological layoutof each cellstructure is optimized using the relative density informationobtained from the proposed modified SIMP method. A mapping relationship between cell structure and relative densityelement is builtto determine the diameter of each cell structure. The results show that the irregular cellular structure can be optimized with the proposed method. The results of simulation and experimental test are similar for irregular cellular structure, which indicate that the maximum deformation value obtained using the modified Solid Isotropic Microstructures with Penalization (SIMP) approach is lower 5.4×10-5 mm than that using the SIMP approach under the same under the same external load. The proposed research provides the instruction to design the other irregular cellular structure.

  2. Designing cellular manufacturing system under risk conditions ...

    African Journals Online (AJOL)

    This paper develops a mathematical modeling to design a cellular manufacturing system. In addition some of the total or portion of the demand of the part types can be subcontracted.. In order to designing the optimal CMS, we needs to detrmined a plan to produce and subcontract parts at a minimum cost and to mitigate the ...

  3. Adaptive pressure-controlled cellular structures for shape morphing I: design and analysis

    International Nuclear Information System (INIS)

    Luo, Quantian; Tong, Liyong

    2013-01-01

    This work investigates adaptive bio-inspired pressure cellular structures for shape morphing. Optimum designs for cellular structures with void and pressure cells are proposed and then structural analyses are conducted. In the present design, a unit cell is comprised of straight and curved walls. When compressed air is pumped into a pressure cell, the curved walls deform in bending due to the pressure difference in two adjacent cells that leads to overall structural deformation in extension. One-dimensional actuation strain up to 35% can be theoretically achieved. In part I, we present basic design concepts and cellular mechanics. Unlike conventional structural analysis for cellular structures, a statically indeterminate unit cell is considered and novel analytical formulations are derived for the present pressurized cellular structures in linear and nonlinear analyses. In part II, we will present experimental testing and finite element analysis to demonstrate the feasibility of the present pressurized cellular actuators for morphing wings and to validate the present cellular mechanics formulations. (paper)

  4. Consistency in multi-viewpoint architectural design

    NARCIS (Netherlands)

    Dijkman, R.M.; Dijkman, Remco Matthijs

    2006-01-01

    This thesis presents a framework that aids in preserving consistency in multi-viewpoint designs. In a multi-viewpoint design each stakeholder constructs his own design part. We call each stakeholder’s design part the view of that stakeholder. To construct his view, a stakeholder has a viewpoint.

  5. Radar Precoder Design for Spectral Coexistence with Coordinated Multi-point (CoMP) System

    OpenAIRE

    Mahal, Jasmin A.; Khawar, Awais; Abdelhadi, Ahmed; Clancy, T. Charles

    2015-01-01

    This paper details the design of precoders for a MIMO radar spectrally coexistent with a MIMO cellular network. We focus on a coordinated multi-point (CoMP) system where a cluster of base stations (BSs) coordinate their transmissions to the intended user. The radar operates in two modes, interference-mitigation mode when it avoids interference with the CoMP system and cooperation mode when it exchanges information with it. Using either the conventional Switched Null Space Projection (SNSP) or...

  6. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  7. Stochastic multi-scale analysis of homogenised properties considering uncertainties in cellular solid microstructures using a first-order perturbation

    Directory of Open Access Journals (Sweden)

    Khairul Salleh Basaruddin

    Full Text Available Randomness in the microstructure due to variations in microscopic properties and geometrical information is used to predict the stochastically homogenised properties of cellular media. Two stochastic problems at the micro-scale level that commonly occur due to fabrication inaccuracies, degradation mechanisms or natural heterogeneity were analysed using a stochastic homogenisation method based on a first-order perturbation. First, the influence of Young's modulus variation in an adhesive on the macroscopic properties of an aluminium-adhesive honeycomb structure was investigated. The fluctuations in the microscopic properties were then combined by varying the microstructure periodicity in a corrugated-core sandwich plate to obtain the variation of the homogenised property. The numerical results show that the uncertainties in the microstructure affect the dispersion of the homogenised property. These results indicate the importance of the presented stochastic multi-scale analysis for the design and fabrication of cellular solids when considering microscopic random variation.

  8. Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

    Science.gov (United States)

    Mishra, Prashant Kumar; Chattopadhyay, Manju K.

    2018-03-01

    Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.

  9. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    Science.gov (United States)

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  10. Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system.

    Science.gov (United States)

    Wei, Yawei; Venayagamoorthy, Ganesh Kumar

    2017-09-01

    To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity. In this paper, a cellular computational network (CCN) approach for frequency situational intelligence (FSI) in a power system is presented. The distributed and scalable computing unit of the CCN framework makes it particularly flexible for customization for a particular set of prediction requirements. Two soft-computing algorithms have been implemented in the CCN framework: a cellular generalized neuron network (CCGNN) and a cellular multi-layer perceptron network (CCMLPN), for purposes of providing multi-timescale frequency predictions, ranging from 16.67 ms to 2 s. These two developed CCGNN and CCMLPN systems were then implemented on two different scales of power systems, one of which installed a large photovoltaic plant. A real-time power system simulator at weather station within the Real-Time Power and Intelligent Systems (RTPIS) laboratory at Clemson, SC, was then used to derive typical FSI results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    Science.gov (United States)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  12. Collaborative multi-layer network coding for cellular cognitive radio networks

    KAUST Repository

    Sorour, Sameh

    2013-06-01

    In this paper, we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in underlay cellular cognitive radio networks. This scheme allows the collocated primary and cognitive radio base-stations to collaborate with each other, in order to minimize their own and each other\\'s packet recovery overheads, and thus improve their throughput, without any coordination between them. This non-coordinated collaboration is done using a novel multi-layer instantly decodable network coding scheme, which guarantees that each network\\'s help to the other network does not result in any degradation in its own performance. It also does not cause any violation to the primary networks interference thresholds in the same and adjacent cells. Yet, our proposed scheme both guarantees the reduction of the recovery overhead in collocated primary and cognitive radio networks, and allows early recovery of their packets compared to non-collaborative schemes. Simulation results show that a recovery overhead reduction of 15% and 40% can be achieved by our proposed scheme in the primary and cognitive radio networks, respectively, compared to the corresponding non-collaborative scheme. © 2013 IEEE.

  13. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  14. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seunghyon [Seoul National University, School of Mechanical and Aerospace Engineering (Korea, Republic of); Kim, Ji-Eun [Korea Research Institute of Standard and Science, Center for NanoSafety Metrology, Division of Convergence Technology (Korea, Republic of); Kim, Daegyu [LG Electronics (Korea, Republic of); Woo, Chang Gyu [Korea Institute of Machinery and Materials, Environmental and Energy Systems Research Division (Korea, Republic of); Pikhitsa, Peter V. [Seoul National University, School of Mechanical and Aerospace Engineering (Korea, Republic of); Cho, Myung-Haing, E-mail: mchotox@snu.ac.kr [Seoul National University, Laboratory of Toxicology, College of Veterinary Medicine (Korea, Republic of); Choi, Mansoo, E-mail: mchoi@snu.ac.kr [Seoul National University, School of Mechanical and Aerospace Engineering (Korea, Republic of)

    2015-09-15

    The cellular toxicity of multi-walled carbon nanotubes (MWCNTs) and onion-like shell-shaped carbon nanoparticles (SCNPs) was investigated by analyzing the comparative cell viability. For the reasonable comparison, physicochemical characteristics were controlled thoroughly such as crystallinity, carbon bonding characteristic, hydrodynamic diameter, and metal contents of the particles. To understand relation between cellular toxicity of the particles and generation of reactive oxygen species (ROS), we measured unpaired singlet electrons of the particles and intracellular ROS, and analyzed cellular toxicity with/without the antioxidant N-acetylcysteine (NAC). Regardless of the presence of NAC, the cellular toxicity of SCNPs was found to be lower than that of MWCNTs. Since both particles show similar crystallinity, hydrodynamic size, and Raman signal with negligible contribution of remnant metal particles, the difference in cell viability would be ascribed to the difference in morphology, i.e., spherical shape (aspect ratio of one) for SCNP and elongated shape (high aspect ratio) for MWCNT.

  15. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles

    International Nuclear Information System (INIS)

    Kang, Seunghyon; Kim, Ji-Eun; Kim, Daegyu; Woo, Chang Gyu; Pikhitsa, Peter V.; Cho, Myung-Haing; Choi, Mansoo

    2015-01-01

    The cellular toxicity of multi-walled carbon nanotubes (MWCNTs) and onion-like shell-shaped carbon nanoparticles (SCNPs) was investigated by analyzing the comparative cell viability. For the reasonable comparison, physicochemical characteristics were controlled thoroughly such as crystallinity, carbon bonding characteristic, hydrodynamic diameter, and metal contents of the particles. To understand relation between cellular toxicity of the particles and generation of reactive oxygen species (ROS), we measured unpaired singlet electrons of the particles and intracellular ROS, and analyzed cellular toxicity with/without the antioxidant N-acetylcysteine (NAC). Regardless of the presence of NAC, the cellular toxicity of SCNPs was found to be lower than that of MWCNTs. Since both particles show similar crystallinity, hydrodynamic size, and Raman signal with negligible contribution of remnant metal particles, the difference in cell viability would be ascribed to the difference in morphology, i.e., spherical shape (aspect ratio of one) for SCNP and elongated shape (high aspect ratio) for MWCNT

  16. Circulating cellular adhesion molecules and risk of diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA).

    Science.gov (United States)

    Pankow, J S; Decker, P A; Berardi, C; Hanson, N Q; Sale, M; Tang, W; Kanaya, A M; Larson, N B; Tsai, M Y; Wassel, C L; Bielinski, S J

    2016-07-01

    To test the hypothesis that soluble cellular adhesion molecules would be positively and independently associated with risk of diabetes. Soluble levels of six cellular adhesion molecules (ICAM-1, E-selectin, VCAM-1, E-cadherin, L-selectin and P-selectin) were measured in participants in the Multi-Ethnic Study of Atherosclerosis, a prospective cohort study. Participants were then followed for up to 10 years to ascertain incident diabetes. Sample sizes ranged from 826 to 2185. After adjusting for age, sex, race/ethnicity, BMI and fasting glucose or HbA1c , four cellular adhesion molecules (ICAM-1, E-selectin, VCAM-1 and E-cadherin) were positively associated with incident diabetes and there was a statistically significant trend across quartiles. Comparing the incidence of diabetes in the highest and lowest quartiles of each cellular adhesion molecule, the magnitude of association was largest for E-selectin (hazard ratio 2.49; 95% CI 1.26-4.93) and ICAM-1 (hazard ratio 1.76; 95% CI 1.22-2.55) in fully adjusted models. Tests of effect modification by racial/ethnic group and sex were not statistically significant for any of the cellular adhesion molecules (P > 0.05). The finding of significant associations between multiple cellular adhesion molecules and incident diabetes may lend further support to the hypothesis that microvascular endothelial dysfunction contributes to risk of diabetes. © 2016 Diabetes UK.

  17. Novel measurement-based indoor cellular radio system design

    OpenAIRE

    Aragón-Zavala, A

    2008-01-01

    A scaleable, measurement-based radio methodology has been created to use for the design, planing and optimisation of in door cellular radio systems. The development of this measurement-based methodology was performed having in mind that measurements are of ten required to valiate radio coverage in a building. Therefore, the concept of using care fully calibrated measurements to design and optimise a system is feasible since these measurements can easily be obtained prior to system deployment ...

  18. A multi-scale convolutional neural network for phenotyping high-content cellular images.

    Science.gov (United States)

    Godinez, William J; Hossain, Imtiaz; Lazic, Stanley E; Davies, John W; Zhang, Xian

    2017-07-01

    Identifying phenotypes based on high-content cellular images is challenging. Conventional image analysis pipelines for phenotype identification comprise multiple independent steps, with each step requiring method customization and adjustment of multiple parameters. Here, we present an approach based on a multi-scale convolutional neural network (M-CNN) that classifies, in a single cohesive step, cellular images into phenotypes by using directly and solely the images' pixel intensity values. The only parameters in the approach are the weights of the neural network, which are automatically optimized based on training images. The approach requires no a priori knowledge or manual customization, and is applicable to single- or multi-channel images displaying single or multiple cells. We evaluated the classification performance of the approach on eight diverse benchmark datasets. The approach yielded overall a higher classification accuracy compared with state-of-the-art results, including those of other deep CNN architectures. In addition to using the network to simply obtain a yes-or-no prediction for a given phenotype, we use the probability outputs calculated by the network to quantitatively describe the phenotypes. This study shows that these probability values correlate with chemical treatment concentrations. This finding validates further our approach and enables chemical treatment potency estimation via CNNs. The network specifications and solver definitions are provided in Supplementary Software 1. william_jose.godinez_navarro@novartis.com or xian-1.zhang@novartis.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata

    Science.gov (United States)

    Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour

    2018-06-01

    The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.

  20. LTE-A cellular networks multi-hop relay for coverage, capacity and performance enhancement

    CERN Document Server

    Yahya, Abid

    2017-01-01

    In this book, three different methods are presented to enhance the capacity and coverage area in LTE-A cellular networks. The scope involves the evaluation of the effect of the RN location in terms of capacity and the determination of the optimum location of the relay that provides maximum achievable data rate for users with limited interference at the cell boundaries. This book presents a new model to enhance both capacity and coverage area in LTE-A cellular network by determining the optimum location for the RN with limited interference. The new model is designed to enhance the capacity of the relay link by employing two antennas in RN. This design enables the relay link to absorb more users at cell edge regions. An algorithm called the Balance Power Algorithm (BPA) is developed to reduce MR power consumption. The book pertains to postgraduate students and researchers in wireless & mobile communications. Provides a variety of methods for enhancing capacity and coverage in LTE-A cellular networks Develop...

  1. Design of multi-specificity in protein interfaces.

    Directory of Open Access Journals (Sweden)

    Elisabeth L Humphris

    2007-08-01

    Full Text Available Interactions in protein networks may place constraints on protein interface sequences to maintain correct and avoid unwanted interactions. Here we describe a "multi-constraint" protein design protocol to predict sequences optimized for multiple criteria, such as maintaining sets of interactions, and apply it to characterize the mechanism and extent to which 20 multi-specific proteins are constrained by binding to multiple partners. We find that multi-specific binding is accommodated by at least two distinct patterns. In the simplest case, all partners share key interactions, and sequences optimized for binding to either single or multiple partners recover only a subset of native amino acid residues as optimal. More interestingly, for signaling interfaces functioning as network "hubs," we identify a different, "multi-faceted" mode, where each binding partner prefers its own subset of wild-type residues within the promiscuous binding site. Here, integration of preferences across all partners results in sequences much more "native-like" than seen in optimization for any single binding partner alone, suggesting these interfaces are substantially optimized for multi-specificity. The two strategies make distinct predictions for interface evolution and design. Shared interfaces may be better small molecule targets, whereas multi-faceted interactions may be more "designable" for altered specificity patterns. The computational methodology presented here is generalizable for examining how naturally occurring protein sequences have been selected to satisfy a variety of positive and negative constraints, as well as for rationally designing proteins to have desired patterns of altered specificity.

  2. Estimating cellular network performance during hurricanes

    International Nuclear Information System (INIS)

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  3. Formalizing Knowledge in Multi-Scale Agent-Based Simulations.

    Science.gov (United States)

    Somogyi, Endre; Sluka, James P; Glazier, James A

    2016-10-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.

  4. Multi-Fidelity Multi-Strategy and Multi-Disciplinary Design Optimization Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Multidisciplinary design and optimization (MDO) tools developed to perform multi-disciplinary analysis based on low fidelity computation methods have been used in...

  5. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  6. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  7. An examination of adaptive cellular protective mechanisms using a multi-stage carcinogenesis model

    International Nuclear Information System (INIS)

    Schollnberger, H.; Stewart, R. D.; Mitchel, R. E. J.; Hofmann, W.

    2004-01-01

    A multi-stage cancer model that describes the putative rate-limiting steps in carcinogenesis was developed and used to investigate the potential impact on lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In this deterministic cancer model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired our unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model accounts for cell birth and death processes. Ita also includes a rate of malignant transformation and a lag period for tumour formation. Cellular defence mechanisms are incorporated into the model by postulating dose and dose rate dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. Sensitivity studies were conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose rate dependent cellular defence mechanisms are incorporated into a multi-stage cancer model. For lung cancer, both linear no-threshold (LNT) and non-LNT shaped responses can be obtained. The reported studied clearly show that it is critical to know whether or not and to what extent multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years). (Author) 11 refs

  8. Life Span Developmental Approach

    OpenAIRE

    Ali Eryilmaz

    2011-01-01

    The Life Span Developmental Approach examines development of individuals which occurs from birth to death. Life span developmental approach is a multi-disciplinary approach related with disciplines like psychology, psychiatry, sociology, anthropology and geriatrics that indicates the fact that development is not completed in adulthood, it continues during the life course. Development is a complex process that consists of dying and death. This approach carefully investigates the development of...

  9. A procedure for multi-objective optimization of tire design parameters

    Directory of Open Access Journals (Sweden)

    Nikola Korunović

    2015-04-01

    Full Text Available The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zones inside the tire. It consists of four main stages: pre-analysis, design of experiment, mathematical modeling and multi-objective optimization. Advantage of the proposed procedure is reflected in the fact that multi-objective optimization is based on the Pareto concept, which enables design engineers to obtain a complete set of optimization solutions and choose a suitable tire design. Furthermore, modeling of the relationships between tire design parameters and objective functions based on multiple regression analysis minimizes computational and modeling effort. The adequacy of the proposed tire design multi-objective optimization procedure has been validated by performing experimental trials based on finite element method.

  10. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS, DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    International Nuclear Information System (INIS)

    ANDA, V.S.; EDGEMON, G.L.; HAGENSEN, A.R.; BOOMER, K.D.; CAROTHERS, K.G.

    2009-01-01

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation

  11. Life Span Developmental Approach

    Directory of Open Access Journals (Sweden)

    Ali Eryilmaz

    2011-03-01

    Full Text Available The Life Span Developmental Approach examines development of individuals which occurs from birth to death. Life span developmental approach is a multi-disciplinary approach related with disciplines like psychology, psychiatry, sociology, anthropology and geriatrics that indicates the fact that development is not completed in adulthood, it continues during the life course. Development is a complex process that consists of dying and death. This approach carefully investigates the development of individuals with respect to developmental stages. This developmental approach suggests that scientific disciplines should not explain developmental facts only with age changes. Along with aging, cognitive, biological, and socioemotional development throughout life should also be considered to provide a reasonable and acceptable context, guideposts, and reasonable expectations for the person. There are three important subjects whom life span developmental approach deals with. These are nature vs nurture, continuity vs discontinuity, and change vs stability. Researchers using life span developmental approach gather and produce knowledge on these three most important domains of individual development with their unique scientific methodology.

  12. Computer-based multisensory learning in children with developmental dyslexia.

    Science.gov (United States)

    Kast, Monika; Meyer, Martin; Vögeli, Christian; Gross, Markus; Jäncke, Lutz

    2007-01-01

    Several attempts have been made to remediate developmental dyslexia using various training environments. Based on the well-known retrieval structure model, the memory strength of phonemes and graphemes should be strengthened by visual and auditory associations between graphemes and phonemes. Using specifically designed training software, we examined whether establishing a multitude of visuo-auditory associations might help to mitigate writing errors in children with developmental dyslexia. Forty-three children with developmental dyslexia and 37 carefully matched normal reading children performed a computer-based writing training (15-20 minutes 4 days a week) for three months with the aim to recode a sequential textual input string into a multi-sensory representation comprising visual and auditory codes (including musical tones). The study included four matched groups: a group of children with developmental dyslexia (n=20) and a control group (n=18) practiced with the training software in the first period (3 months, 15-20 minutes 4 days a week), while a second group of children with developmental dyslexia (n=23) (waiting group) and a second control group (n=19) received no training during the first period. In the second period the children with developmental dyslexia and controls who did not receive training during the first period now took part in the training. Children with developmental dyslexia who did not perform computer-based training during the first period hardly improved their writing skills (post-pre improvement of 0-9%), the dyslexic children receiving training strongly improved their writing skills (post-pre improvement of 19-35%). The group who did the training during the second period also revealed improvement of writing skills (post-pre improvement of 27-35%). Interestingly, we noticed a strong transfer from trained to non-trained words in that the children who underwent the training were also better able to write words correctly that were not part

  13. MIDA - Optimizing control room performance through multi-modal design

    International Nuclear Information System (INIS)

    Ronan, A. M.

    2006-01-01

    Multi-modal interfaces can support the integration of humans with information processing systems and computational devices to maximize the unique qualities that comprise a complex system. In a dynamic environment, such as a nuclear power plant control room, multi-modal interfaces, if designed correctly, can provide complementary interaction between the human operator and the system which can improve overall performance while reducing human error. Developing such interfaces can be difficult for a designer without explicit knowledge of Human Factors Engineering principles. The Multi-modal Interface Design Advisor (MIDA) was developed as a support tool for system designers and developers. It provides design recommendations based upon a combination of Human Factors principles, a knowledge base of historical research, and current interface technologies. MIDA's primary objective is to optimize available multi-modal technologies within a human computer interface in order to balance operator workload with efficient operator performance. The purpose of this paper is to demonstrate MIDA and illustrate its value as a design evaluation tool within the nuclear power industry. (authors)

  14. Cellular Automata as a learning process in Architecture and Urban design

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Foged, Isak Worre

    2014-01-01

    . An architectural methodological response to this situation is presented through the development of a conceptual computational design system that allows these dynamics to unfold and to be observed for architectural design decision taking. Reflecting on the development and implementation of a cellular automata based...... design approach on a master level urban design studio this paper will discuss the strategies for dealing with complexity at an urban scale as well as the pedagogical considerations behind applying computational tools and methods to a urban design education....

  15. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Zheng, E-mail: wppzheng@126.com [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Zhu, Yu-Xia [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang [Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Meng, Yue-Zhong [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  17. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    International Nuclear Information System (INIS)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-01-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  18. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    Science.gov (United States)

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  19. Multi-channel service concept design and prototyping

    NARCIS (Netherlands)

    Sperling, C.P.; Simons, L.P.A.; Bouwman, W.A.G.A.

    2007-01-01

    Designing e-services which have to function in a multi-channel context has proved to be challenging for organizations. Previous research has shown that structured design methods are useful to structure the design process. In this paper we proceed from an existing method (which identifies

  20. Multi-valued LSI/VLSI logic design

    Science.gov (United States)

    Santrakul, K.

    A procedure for synthesizing any large complex logic system, such as LSI and VLSI integrated circuits is described. This scheme uses Multi-Valued Multi-plexers (MVMUX) as the basic building blocks and the tree as the structure of the circuit realization. Simple built-in test circuits included in the network (the main current), provide a thorough functional checking of the network at any time. In brief, four major contributions are made: (1) multi-valued Algorithmic State Machine (ASM) chart for describing an LSI/VLSI behavior; (2) a tree-structured multi-valued multiplexer network which can be obtained directly from an ASM chart; (3) a heuristic tree-structured synthesis method for realizing any combinational logic with minimal or nearly-minimal MVMUX; and (4) a hierarchical design of LSI/VLSI with built-in parallel testing capability.

  1. Antireflection coating design for series interconnected multi-junction solar cells

    International Nuclear Information System (INIS)

    Aiken, Daniel J.

    1999-01-01

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub SC)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices

  2. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  3. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.

  4. Resource allocation for phantom cellular networks: Energy efficiency vs spectral efficiency

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.

  5. Resource allocation for phantom cellular networks: Energy efficiency vs spectral efficiency

    KAUST Repository

    Abdelhady, Amr M.

    2016-07-26

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.

  6. Design and optimization of flexible multi-generation systems

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst

    variations and dynamics, and energy system analysis, which fails to consider process integration synergies in local systems. The primary objective of the thesis is to derive a methodology for linking process design practices with energy system analysis for enabling coherent and holistic design optimization...... of flexible multi-generation system. In addition, the case study results emphasize the importance of considering flexible operation, systematic process integration, and systematic assessment of uncertainties in the design optimization. It is recommended that future research focus on assessing system impacts...... from flexible multi-generation systems and performance improvements from storage options....

  7. Mobility Management of Mobile IP Based on Multi-tier Cellular Systems%基于多层小区结构的移动IP移动性管理

    Institute of Scientific and Technical Information of China (English)

    唐宏; 吴中福; 聂能; 赵军; 熊思民

    2003-01-01

    In this paper,several currently existed Mobility Management Schemes of Mobile IP are simply analyzed,and so does the network structure of multi-tier cellular which nowadays is easily seen. Then we propose a few promo-tions on the strategies of mobility management when realizing mobile IP in multi-tier cellular network structure. Thekey of the promotions is that the required type of cell for a MN is determined based on the classification of its mobilitypattern. Consequently,the capacity of system may be increased while the frequency of handoff is decreased.

  8. Regulated open multi-agent systems (ROMAS) a multi-agent approach for designing normative open systems

    CERN Document Server

    Garcia, Emilia; Botti, Vicente

    2015-01-01

    Addressing the open problem of engineering normative open systems using the multi-agent paradigm, normative open systems are explained as systems in which heterogeneous and autonomous entities and institutions coexist in a complex social and legal framework that can evolve to address the different and often conflicting objectives of the many stakeholders involved. Presenting  a software engineering approach which covers both the analysis and design of these kinds of systems, and which deals with the open issues in the area, ROMAS (Regulated Open Multi-Agent Systems) defines a specific multi-agent architecture, meta-model, methodology and CASE tool. This CASE tool is based on Model-Driven technology and integrates the graphical design with the formal verification of some properties of these systems by means of model checking techniques. Utilizing tables to enhance reader insights into the most important requirements for designing normative open multi-agent systems, the book also provides a detailed and easy t...

  9. Smart Toys Designed for Detecting Developmental Delays.

    Science.gov (United States)

    Rivera, Diego; García, Antonio; Alarcos, Bernardo; Velasco, Juan R; Ortega, José Eugenio; Martínez-Yelmo, Isaías

    2016-11-20

    In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc.) to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports.

  10. Smart Toys Designed for Detecting Developmental Delays

    Directory of Open Access Journals (Sweden)

    Diego Rivera

    2016-11-01

    Full Text Available In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc. to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports.

  11. Optimal Design of Gravitational Sewer Networks with General Cellular Automata

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Afshar

    2014-05-01

    Full Text Available In this paper, a Cellular Automata method is applied for the optimal design of sewer networks. The solution of sewer network optimization problems requires the determination of pipe diameters and average pipe cover depths, minimizing the total cost of the sewer network subject to operational constraints. In this paper, the network nodes and upstream and downstream pipe cover depths are considered as CA cells and cell states, respectively, and the links around each cell are taken into account as neighborhood. The proposed method is a general and flexible method for the optimization of sewer networks as it can be used to optimally design both gravity and pumped network due to the use of pipe nodal cover depths as the decision variables. The proposed method is tested against two  gravitational sewer networks and the  comparison of results with other methods such as  Genetic algorithm, Cellular Automata, Ant Colony Optimization Algorithm and Particle Swarm Optimization show the efficiency and effectiveness of the proposed method.

  12. Update schemes of multi-velocity floor field cellular automaton for pedestrian dynamics

    Science.gov (United States)

    Luo, Lin; Fu, Zhijian; Cheng, Han; Yang, Lizhong

    2018-02-01

    Modeling pedestrian movement is an interesting problem both in statistical physics and in computational physics. Update schemes of cellular automaton (CA) models for pedestrian dynamics govern the schedule of pedestrian movement. Usually, different update schemes make the models behave in different ways, which should be carefully recalibrated. Thus, in this paper, we investigated the influence of four different update schemes, namely parallel/synchronous scheme, random scheme, order-sequential scheme and shuffled scheme, on pedestrian dynamics. The multi-velocity floor field cellular automaton (FFCA) considering the changes of pedestrians' moving properties along walking paths and heterogeneity of pedestrians' walking abilities was used. As for parallel scheme only, the collisions detection and resolution should be considered, resulting in a great difference from any other update schemes. For pedestrian evacuation, the evacuation time is enlarged, and the difference in pedestrians' walking abilities is better reflected, under parallel scheme. In face of a bottleneck, for example a exit, using a parallel scheme leads to a longer congestion period and a more dispersive density distribution. The exit flow and the space-time distribution of density and velocity have significant discrepancies under four different update schemes when we simulate pedestrian flow with high desired velocity. Update schemes may have no influence on pedestrians in simulation to create tendency to follow others, but sequential and shuffled update scheme may enhance the effect of pedestrians' familiarity with environments.

  13. Design and implementation of a novel mechanical testing system for cellular solids.

    Science.gov (United States)

    Nazarian, Ara; Stauber, Martin; Müller, Ralph

    2005-05-01

    Cellular solids constitute an important class of engineering materials encompassing both man-made and natural constructs. Materials such as wood, cork, coral, and cancellous bone are examples of cellular solids. The structural analysis of cellular solid failure has been limited to 2D sections to illustrate global fracture patterns. Due to the inherent destructiveness of 2D methods, dynamic assessment of fracture progression has not been possible. Image-guided failure assessment (IGFA), a noninvasive technique to analyze 3D progressive bone failure, has been developed utilizing stepwise microcompression in combination with time-lapsed microcomputed tomographic imaging (microCT). This method allows for the assessment of fracture progression in the plastic region, where much of the structural deformation/energy absorption is encountered in a cellular solid. Therefore, the goal of this project was to design and fabricate a novel micromechanical testing system to validate the effectiveness of the stepwise IGFA technique compared to classical continuous mechanical testing, using a variety of engineered and natural cellular solids. In our analysis, we found stepwise compression to be a valid approach for IGFA with high precision and accuracy comparable to classical continuous testing. Therefore, this approach complements the conventional mechanical testing methods by providing visual insight into the failure propagation mechanisms of cellular solids. (c) 2005 Wiley Periodicals, Inc.

  14. Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)

    Science.gov (United States)

    Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...

  15. The impact of technological innovations on work design in a cellular manufacturing environment

    NARCIS (Netherlands)

    Molleman, E.; Slomp, J.

    2001-01-01

    The impact of developments in market and technology on grouping machinery and work design is analysed. Over time a cellular design changed into a functional system with fewer cells, fewer workers and fewer but more advanced machines. This encourages high utilisation, specialised workers and the

  16. The impact of technological innovations on work design in a cellular manufacturing environment

    NARCIS (Netherlands)

    Molleman, E.; Slomp, J.

    The impact of developments in market and technology on grouping machinery and work design is analysed. Over time a cellular design changed into a functional system with fewer cells, fewer workers and fewer but more advanced machines. This encourages high utilisation, specialised workers and the

  17. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  18. Negotiating designs of multi-purpose reservoir systems in international basins

    Science.gov (United States)

    Geressu, Robel; Harou, Julien

    2016-04-01

    Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.

  19. Cooperative control of multi-agent systems optimal and adaptive design approaches

    CERN Document Server

    Lewis, Frank L; Hengster-Movric, Kristian; Das, Abhijit

    2014-01-01

    Task complexity, communication constraints, flexibility and energy-saving concerns are all factors that may require a group of autonomous agents to work together in a cooperative manner. Applications involving such complications include mobile robots, wireless sensor networks, unmanned aerial vehicles (UAVs), spacecraft, and so on. In such networked multi-agent scenarios, the restrictions imposed by the communication graph topology can pose severe problems in the design of cooperative feedback control systems.  Cooperative control of multi-agent systems is a challenging topic for both control theorists and practitioners and has been the subject of significant recent research. Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs.  It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design.  B...

  20. Designing Class Activities to Meet Specific Core Training Competencies: A Developmental Approach

    Science.gov (United States)

    Guth, Lorraine J.; McDonnell, Kelly A.

    2004-01-01

    This article presents a developmental model for designing and utilizing class activities to meet specific Association for Specialists in Group Work (ASGW) core training competencies for group workers. A review of the relevant literature about teaching group work and meeting core training standards is provided. The authors suggest a process by…

  1. A procedure for multi-objective optimization of tire design parameters

    OpenAIRE

    Nikola Korunović; Miloš Madić; Miroslav Trajanović; Miroslav Radovanović

    2015-01-01

    The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zo...

  2. Design considerations for energy efficient, resilient, multi-layer networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Hansen, Line Pyndt; Ruepp, Sarah Renée

    2016-01-01

    measures. In this complex problem, considerations such as client traffic granularity, applied grooming policies and multi-layer resiliency add even more complexity. A commercially available network planning tool is used to investigate the interplay between different methods for resilient capacity planning......This work investigates different network design considerations with respect to energy-efficiency, under green-field resilient multi-layer network deployment. The problem of energy efficient, reliable multi-layer network design is known to result in different trade-offs between key performance....... Switching off low-utilized transport links has been investigated via a pro-active re-routing applied during the network planning. Our analysis shows that design factors such as the applied survivability strategy and the applied planning method have higher impact on the key performance indicators compared...

  3. Design of a bistable switch to control cellular uptake.

    Science.gov (United States)

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  4. Design and construction of multi research reactor

    International Nuclear Information System (INIS)

    1985-05-01

    This is the report about design and construction of multi research reactor, which introduces the purpose and necessity of the project, business contents, plan of progress of project and budget for the project. There are three appendixes about status of research reactor in other country, a characteristic of research reactor, three charts about evaluation, process and budget for the multi research reactor and three drawings for the project.

  5. Embedded memory design for multi-core and systems on chip

    CERN Document Server

    Mohammad, Baker

    2014-01-01

    This book describes the various tradeoffs systems designers face when designing embedded memory.  Readers designing multi-core systems and systems on chip will benefit from the discussion of different topics from memory architecture, array organization, circuit design techniques and design for test.  The presentation enables a multi-disciplinary approach to chip design, which bridges the gap between the architecture level and circuit level, in order to address yield, reliability and power-related issues for embedded memory.  ·         Provides a comprehensive overview of embedded memory design and associated challenges and choices; ·         Explains tradeoffs and dependencies across different disciplines involved with multi-core and system on chip memory design; ·         Includes detailed discussion of memory hierarchy and its impact on energy and performance; ·         Uses real product examples to demonstrate embedded memory design flow from architecture, to circuit ...

  6. A multi-crucible core-catcher concept: Design considerations and basic results

    International Nuclear Information System (INIS)

    Szabo, I.

    1995-01-01

    A multi-crucible core-catcher concept to be implemented in new light water reactor containments has recently been proposed. This paper deals with conceptual design considerations and the various ways this type of core-catcher could be designed to meet requirements for reactor application. A systematic functional analysis of the multi-crucible core-catcher concept and the results of the preliminary design calculation are presented. Finally, the adequacy of the multi-crucible core-catcher concept for reactor application is discussed. (orig.)

  7. Flexible Multi-Numerology Systems for 5G New Radio

    OpenAIRE

    Yazar, Ahmet; Peköz, Berker; Arslan, Hüseyin

    2018-01-01

    The physical layer of 5G cellular communications systems is designed to achieve better flexibility in an effort to support diverse services and user requirements. OFDM waveform parameters are enriched with flexible multi-numerology structures. This paper describes the differences between Long Term Evolution (LTE) systems and new radio (NR) from the flexibility perspective. Research opportunities for multi-numerology systems are presented in a structured manner. Finally, inter-numerology inter...

  8. Design and development of multi-lane smart electromechanical actuators

    CERN Document Server

    Annaz, Fawaz Yahya

    2014-01-01

    Design and Development of Multi-Lane Smart Electromechanical Actuators presents the design of electromechanical actuators in two types of architectures, namely, Torque Summed Architecture (TSA) and Velocity Summed Architecture, (VSA). It examines them in: * Hardware redundancy, where the architecture is made up of 3 or 4 lanes. * Digital Math Model redundancy, where a more compact two lanes architectures will be presented. The book starts with the very basic concepts and introduces the design process logically so that an understanding of the smart multi-lane systems that drive an aileron

  9. Application of artificial intelligence (AI) methods for designing and analysis of reconfigurable cellular manufacturing system (RCMS)

    CSIR Research Space (South Africa)

    Xing, B

    2009-12-01

    Full Text Available This work focuses on the design and control of a novel hybrid manufacturing system: Reconfigurable Cellular Manufacturing System (RCMS) by using Artificial Intelligence (AI) approach. It is hybrid as it combines the advantages of Cellular...

  10. Design Multi-Sides System Unmanned Surface Vehicle (USV) Rocket

    Science.gov (United States)

    Syam, Rafiudin; Sutresman, Onny; Mappaita, Abdullah; Amiruddin; Wiranata, Ardi

    2018-02-01

    This study aims to design and test USV multislide forms. This system is excellent for maneuvering on the x-y-z coordinates. The disadvantage of a single side USV is that it is very difficult to maneuver to achieve very dynamic targets. While for multi sides system easily maneuvered though x-y-z coordinates. In addition to security defense purposes, multi-side system is also good for maritime intelligence, surveillance. In this case, electric deducted fan with Multi-Side system so that the vehicle can still operate even in reverse condition. Multipleside USV experiments have done with good results. In a USV study designed to use two propulsions.

  11. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    Science.gov (United States)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  12. Cooperative beamforming for dual-hop amplify-and-forward multi-antenna relaying cellular networks

    KAUST Repository

    Xing, Chengwen; Ma, Shaodan; Xia, Minghua; Wu, Yikchung

    2012-01-01

    In this paper, linear beamforming design for amplify-and-forward relaying cellular networks is considered, in which base station, relay station and mobile terminals are all equipped with multiple antennas. The design is based on minimum mean-square-error criterion, and both uplink and downlink scenarios are considered. It is found that the downlink and uplink beamforming design problems are in the same form, and iterative algorithms with the same structure can be used to solve the design problems. For the specific cases of fully loaded or overloaded uplink systems, a novel algorithm is derived and its relationships with several existing beamforming design algorithms for conventional MIMO or multiuser systems are revealed. Simulation results are presented to demonstrate the performance advantage of the proposed design algorithms. © 2012 Published by Elsevier B.V. All rights reserved.

  13. Cooperative beamforming for dual-hop amplify-and-forward multi-antenna relaying cellular networks

    KAUST Repository

    Xing, Chengwen

    2012-11-01

    In this paper, linear beamforming design for amplify-and-forward relaying cellular networks is considered, in which base station, relay station and mobile terminals are all equipped with multiple antennas. The design is based on minimum mean-square-error criterion, and both uplink and downlink scenarios are considered. It is found that the downlink and uplink beamforming design problems are in the same form, and iterative algorithms with the same structure can be used to solve the design problems. For the specific cases of fully loaded or overloaded uplink systems, a novel algorithm is derived and its relationships with several existing beamforming design algorithms for conventional MIMO or multiuser systems are revealed. Simulation results are presented to demonstrate the performance advantage of the proposed design algorithms. © 2012 Published by Elsevier B.V. All rights reserved.

  14. Searching for the Pareto frontier in multi-objective protein design.

    Science.gov (United States)

    Nanda, Vikas; Belure, Sandeep V; Shir, Ofer M

    2017-08-01

    The goal of protein engineering and design is to identify sequences that adopt three-dimensional structures of desired function. Often, this is treated as a single-objective optimization problem, identifying the sequence-structure solution with the lowest computed free energy of folding. However, many design problems are multi-state, multi-specificity, or otherwise require concurrent optimization of multiple objectives. There may be tradeoffs among objectives, where improving one feature requires compromising another. The challenge lies in determining solutions that are part of the Pareto optimal set-designs where no further improvement can be achieved in any of the objectives without degrading one of the others. Pareto optimality problems are found in all areas of study, from economics to engineering to biology, and computational methods have been developed specifically to identify the Pareto frontier. We review progress in multi-objective protein design, the development of Pareto optimization methods, and present a specific case study using multi-objective optimization methods to model the tradeoff between three parameters, stability, specificity, and complexity, of a set of interacting synthetic collagen peptides.

  15. Managing multi-architect collaborative design: case study of design competition for Ground Zero in New York

    NARCIS (Netherlands)

    Sebastian, R.

    2006-01-01

    This paper presents a part of the PhD research by the author that responds to the need of an innovative approach to manage collaborative design in the conceptual design phase of a multi-architect building project. The research studied recent multi-architect building projects in the Netherlands,

  16. Collective Cellular Decision-Making Gives Developmental Plasticity: A Model of Signaling in Branching Roots

    Science.gov (United States)

    McCleery, W. Tyler; Mohd-Radzman, Nadiatul A.; Grieneisen, Veronica A.

    Cells within tissues can be regarded as autonomous entities that respond to their local environment and signaling from neighbors. Cell coordination is particularly important in plants, where root architecture must strategically invest resources for growth to optimize nutrient acquisition. Thus, root cells are constantly adapting to environmental cues and neighbor communication in a non-linear manner. To explain such plasticity, we view the root as a swarm of coupled multi-cellular structures, ''metamers'', rather than as a continuum of identical cells. These metamers are individually programmed to achieve a local objective - developing a lateral root primordia, which aids in local foraging of nutrients. Collectively, such individual attempts may be halted, structuring root architecture as an emergent behavior. Each metamer's decision to branch is coordinated locally and globally through hormone signaling, including processes of controlled diffusion, active polar transport, and dynamic feedback. We present a physical model of the signaling mechanism that coordinates branching decisions in response to the environment. This work was funded by the European Commission 7th Framework Program, Project No. 601062, SWARM-ORGAN.

  17. Proportional fair scheduling with superposition coding in a cellular cooperative relay system

    DEFF Research Database (Denmark)

    Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar

    2013-01-01

    Many works have tackled on the problem of throughput and fairness optimization in cellular cooperative relaying systems. Considering firstly a two-user relay broadcast channel, we design a scheme based on superposition coding (SC) which maximizes the achievable sum-rate under a proportional...... fairness constraint. Unlike most relaying schemes where users are allocated orthogonally, our scheme serves the two users simultaneously on the same time-frequency resource unit by superposing their messages into three SC layers. The optimal power allocation parameters of each SC layer are derived...... by analysis. Next, we consider the general multi-user case in a cellular relay system, for which we design resource allocation algorithms based on proportional fair scheduling exploiting the proposed SC-based scheme. Numerical results show that the proposed algorithms allowing simultaneous user allocation...

  18. Developmental Pathways Are Blueprints for Designing Successful Crops

    Directory of Open Access Journals (Sweden)

    Ben Trevaskis

    2018-06-01

    Full Text Available Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene–gene or gene–environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.

  19. Topology Optimization - Engineering Contribution to Architectural Design

    Science.gov (United States)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2017-10-01

    The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one

  20. Design of a multi beam klystron cavity from its single beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M. [CSIR-Central Electronics Engineering Research Institute, Pilani (India); Janyani, Vijay [Department of ECE, MNIT, Jaipur (India)

    2016-03-09

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  1. Design of a multi beam klystron cavity from its single beam parameters

    International Nuclear Information System (INIS)

    Kant, Deepender; Joshi, L. M.; Janyani, Vijay

    2016-01-01

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  2. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  3. Optimized Energy Efficiency and Spectral Efficiency Resource Allocation Strategies for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr, M.

    2016-01-06

    Multi-teir hetrogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-teir architecture known as Phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that computes the SE and EE resource allocation for Phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and the ration of Phantom cellresource blocks to the total number or resource blocks. We aim to investigate the effect of some system parameters to acheive improved SE or EE performance at a non-significant loss in EE or SE performance, respectively. It was found that the system parameters can be tuned so that the EE solution does not yield a significant loss in the SE performance.

  4. Design, Development and Evaluation of a Pneumatic Seeder for Automatic Planting of Seeds in Cellular Trays

    Directory of Open Access Journals (Sweden)

    E Movahedi

    2014-04-01

    Full Text Available For planting fine seeds in cellular trays, an automatic pneumatic seeder was designed, constructed and evaluated. CATIA software was used to design and analysis the system parts of the seeder. Different parts of the seeder, including vibrating seed hopper, vacuum boom, seed picking nozzles, seed tube, pneumatic system and electronic control unit for automation of the seeder, were designed and constructed. The area of nozzle orifice was used to calculate the required pressure of nozzle tip. The seeder was evaluated using two sizes of trays. Experiments were performed with five replications and the error of planting the seeds in the 105 and 390-cellular trays were 1.9 and 0.46 percent, respectively. The time of planting for 105 and 390 cellular trays reduced from 20 min (for manual seeding to 35 s and from 90 min to 160 s, respectively.

  5. Terminal addition in a cellular world.

    Science.gov (United States)

    Torday, J S; Miller, William B

    2018-07-01

    Recent advances in our understanding of evolutionary development permit a reframed appraisal of Terminal Addition as a continuous historical process of cellular-environmental complementarity. Within this frame of reference, evolutionary terminal additions can be identified as environmental induction of episodic adjustments to cell-cell signaling patterns that yield the cellular-molecular pathways that lead to differing developmental forms. Phenotypes derive, thereby, through cellular mutualistic/competitive niche constructions in reciprocating responsiveness to environmental stresses and epigenetic impacts. In such terms, Terminal Addition flows according to a logic of cellular needs confronting environmental challenges over space-time. A reconciliation of evolutionary development and Terminal Addition can be achieved through a combined focus on cell-cell signaling, molecular phylogenies and a broader understanding of epigenetic phenomena among eukaryotic organisms. When understood in this manner, Terminal Addition has an important role in evolutionary development, and chronic disease might be considered as a form of 'reverse evolution' of the self-same processes. Copyright © 2017. Published by Elsevier Ltd.

  6. Multi-disciplinary coupling for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  7. Multi-dimensional database design and implementation of dam safety monitoring system

    Directory of Open Access Journals (Sweden)

    Zhao Erfeng

    2008-09-01

    Full Text Available To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design was achieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.

  8. MULTI-PERSON DECISION FOR SUSTAINABLE DESIGN ON IBS FLOOR SYSTEM SELECTION

    Directory of Open Access Journals (Sweden)

    Christiono Utomo

    2013-05-01

    Full Text Available Selecting a design solution (choice problem is one of the natures of design decision. If the problem is more complex and involves multi participants, decision aid is necessary. This paper discusses the nature of group judgment and negotiation on multi-criteria decision-making methodologies. It presents a conceptual model of negotiation support in a multi-person decision on building floor system selection. Decision technique (AHP was applied for decision process in a satisfying options and game theory for coalition formation. An n-person cooperative game is represented by a set of all players. The proposed coalition formation model enables each agent to select individually or coalition. It improves the value of building system decision. It further emphasizes the importance of performance evaluation in the design process and value-based decision. The support model can be extended to an automated negotiation and in different building system selection with proper  modification. Keywords: Multi-person, design decision, IBS, floor system selection.

  9. Experimental design for dynamics identification of cellular processes.

    Science.gov (United States)

    Dinh, Vu; Rundell, Ann E; Buzzard, Gregery T

    2014-03-01

    We address the problem of using nonlinear models to design experiments to characterize the dynamics of cellular processes by using the approach of the Maximally Informative Next Experiment (MINE), which was introduced in W. Dong et al. (PLoS ONE 3(8):e3105, 2008) and independently in M.M. Donahue et al. (IET Syst. Biol. 4:249-262, 2010). In this approach, existing data is used to define a probability distribution on the parameters; the next measurement point is the one that yields the largest model output variance with this distribution. Building upon this approach, we introduce the Expected Dynamics Estimator (EDE), which is the expected value using this distribution of the output as a function of time. We prove the consistency of this estimator (uniform convergence to true dynamics) even when the chosen experiments cluster in a finite set of points. We extend this proof of consistency to various practical assumptions on noisy data and moderate levels of model mismatch. Through the derivation and proof, we develop a relaxed version of MINE that is more computationally tractable and robust than the original formulation. The results are illustrated with numerical examples on two nonlinear ordinary differential equation models of biomolecular and cellular processes.

  10. Multi-material topology design of laminates with strength criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    The objective of this paper is to present a novel approach for multi-material topology optimization of laminated composite structures where strength constraints are taken into account together with other global structural performance measures. The topology design problem considered contains very...... many design variables, and when strength criteria are included in the problem, a very large number of criteria functions must be considered in the optimization problem to be solved. Thus, block aggregation methods are introduced, such that global strength measures are obtained. These formulations...... are illustrated for multi-material laminated design problems where the maximum failure index is minimized while compliance and mass constraints are taken into account....

  11. Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment.

    Science.gov (United States)

    Harrill, Joshua A; Freudenrich, Theresa; Wallace, Kathleen; Ball, Kenneth; Shafer, Timothy J; Mundy, William R

    2018-04-05

    Medium- to high-throughput in vitro assays that recapitulate the critical processes of nervous system development have been proposed as a means to facilitate rapid testing and identification of chemicals which may affect brain development. In vivo neurodevelopment is a complex progression of distinct cellular processes. Therefore, batteries of in vitro assays that model and quantify effects on a variety of neurodevelopmental processes have the potential to identify chemicals which may affect brain development at different developmental stages. In the present study, the results of concentration-response screening of 67 reference chemicals in a battery of high content imaging and microplate reader-based assays that evaluate neural progenitor cell proliferation, neural proginitor cell apoptosis, neurite initiation/outgrowth, neurite maturation and synaptogenesis are summarized and compared. The assay battery had a high degree of combined sensitivity (87%) for categorizing chemicals known to affect neurodevelopment as active and a moderate degree of combined specificity (71%) for categorizing chemicals not associated with affects on neurodevelopment as inactive. The combined sensitivity of the assay battery was higher compared to any individual assay while the combined specificity of the assay battery was lower compared to any individual assay. When selectivity of effects for a neurodevelopmental endpoint as compared to general cytotoxicity was taken into account, the combined sensitivity of the assay battery decreased (68%) while the combined specificity increased (93%). The identity and potency of chemicals identified as active varied across the assay battery, underscoring the need for use of a combination of diverse in vitro models to comprehensively screen chemicals and identify those which potentially affect neurodevelopment. Overall, these data indicate that a battery of assays which address many different processes in nervous system development may be used to

  12. Computational Model of Secondary Palate Fusion and Disruption

    Science.gov (United States)

    Morphogenetic events are driven by cell-generated physical forces and complex cellular dynamics. To improve our capacity to predict developmental effects from cellular alterations, we built a multi-cellular agent-based model in CompuCell3D that recapitulates the cellular networks...

  13. Evolutionary optimization and game strategies for advanced multi-disciplinary design applications to aeronautics and UAV design

    CERN Document Server

    Periaux, Jacques; Lee, Dong Seop Chris

    2015-01-01

    Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with c...

  14. I. DEVELOPMENTAL METHODOLOGY AS A CENTRAL SUBDISCIPLINE OF DEVELOPMENTAL SCIENCE.

    Science.gov (United States)

    Card, Noel A

    2017-06-01

    This first chapter introduces the main goals of the monograph and previews the remaining chapters. The goals of this monograph are to provide summaries of our current understanding of advanced developmental methodologies, provide information that can advance our understanding of human development, identify shortcomings in our understanding of developmental methodology, and serve as a flagpost for organizing developmental methodology as a subdiscipline within the broader field of developmental science. The remaining chapters in this monograph address issues in design (sampling and big data), longitudinal data analysis, and issues of replication and research accumulation. The final chapter describes the history of developmental methodology, considers how the previous chapters in this monograph fit within this subdiscipline, and offers recommendations for further advancement. © 2017 The Society for Research in Child Development, Inc.

  15. Computer Modeling of the Earliest Cellular Structures and Functions

    Science.gov (United States)

    Pohorille, Andrew; Chipot, Christophe; Schweighofer, Karl

    2000-01-01

    In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells). the most direct way to test our understanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform proto-cellular functions. Many of these functions, such as import of nutrients, capture and storage of energy. and response to changes in the environment are carried out by proteins bound to membranestructures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (eg. channels), and (c) by what mechanisms such aggregates perform essential proto-cellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each item in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10(exp 6)-10(exp 8) time steps.

  16. A Multi-step and Multi-level approach for Computer Aided Molecular Design

    DEFF Research Database (Denmark)

    . The problem formulation step incorporates a knowledge base for the identification and setup of the design criteria. Candidate compounds are identified using a multi-level generate and test CAMD solution algorithm capable of designing molecules having a high level of molecular detail. A post solution step...... using an Integrated Computer Aided System (ICAS) for result analysis and verification is included in the methodology. Keywords: CAMD, separation processes, knowledge base, molecular design, solvent selection, substitution, group contribution, property prediction, ICAS Introduction The use of Computer...... Aided Molecular Design (CAMD) for the identification of compounds having specific physic...

  17. Research on Parameter Design of Multi - axis Hydrostatic Transmission Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2017-01-01

    Full Text Available In order to obtain reasonable parameters in the design of driving system of multi-axis hydrostatic transmission vehicle, the working principle of single-side drive of hydrostatic transmission vehicle is introduced. The matching and control of engine and hydraulic pump are analyzed. According to the driving equation of vehicle, The driving force required for driving system is determined, and the parameters of hydraulic motor, hydraulic pump, system working pressure and braking system are designed and calculated, which provides the parameter design for driving system of multi-axis hydrostatic transmission Reliable theoretical basis.

  18. Participatory Design of Multi-Use Platforms at Sea

    Directory of Open Access Journals (Sweden)

    Sander van den Burg

    2016-01-01

    Full Text Available European oceans are subject to rapid development. New activities such as aquaculture and ocean energy have gained importance. This triggers interest in “multi-use platforms at sea” (MUPS, i.e., areas at sea in which different activities are combined. MUPS are complex features with regards to technology, governance, and financial, socioeconomic, and environmental aspects. To identify realistic and sustainable solutions and designs for MUPS, the MERMAID project applied a participatory design process (PDP involving a range of stakeholders representing companies, authorities, researchers, and NGOs. This paper evaluates if and how the participatory design process contributed to the design of multi-use platforms. It is based on interviews with the managers of the case study sites and a questionnaire administered to all stakeholders participating in the PDP workshops. Analyzing the four case studies, we conclude that the participatory design process has had a valuable contribution to the development of the four different designs of MUPS, even though the preconditions for carrying out a participatory design process differed between sites. In all four cases, the process has been beneficial in generating new and shared knowledge. It brought new design issues to the table and increased knowledge and understanding among the different stakeholders.

  19. Measuring Developmental Students' Mathematics Anxiety

    Science.gov (United States)

    Ding, Yanqing

    2016-01-01

    This study conducted an item-level analysis of mathematics anxiety and examined the dimensionality of mathematics anxiety in a sample of developmental mathematics students (N = 162) by Multi-dimensional Random Coefficients Multinominal Logit Model (MRCMLM). The results indicate a moderately correlated factor structure of mathematics anxiety (r =…

  20. Multi-disciplinary coupling effects for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  1. Specification of Behavioural Requirements within Compositional Multi-Agent System Design

    OpenAIRE

    Herlea, D.E.; Jonker, C.M.; Treur, J.; Wijngaards, N.J.E.

    1999-01-01

    In this paper it is shown how informal and formal specification of behavioural requirements and scenarios for agents and multi-agent systems can be integrated within multi-agent system design. In particular, it is addressed how a compositional

  2. Multi-person and multi-attribute design evaluations using evidential reasoning based on subjective safety and cost analyses

    International Nuclear Information System (INIS)

    Wang, J.; Yang, J.B.; Sen, P.

    1996-01-01

    This paper presents an approach for ranking proposed design options based on subjective safety and cost analyses. Hierarchical system safety analysis is carried out using fuzzy sets and evidential reasoning. This involves safety modelling by fuzzy sets at the bottom level of a hierarchy and safety synthesis by evidential reasoning at higher levels. Fuzzy sets are also used to model the cost incurred for each design option. An evidential reasoning approach is then employed to synthesise the estimates of safety and cost, which are made by multiple designers. The developed approach is capable of dealing with problems of multiple designers, multiple attributes and multiple design options to select the best design. Finally, a practical engineering example is presented to demonstrate the proposed multi-person and multi-attribute design selection approach

  3. Design guidelines for multi-seam mining at Elliot Lake

    International Nuclear Information System (INIS)

    Hedley, D.G.F.

    1978-04-01

    With the current expansion in uranium mining, multi-seam mining could again be practised at Elliot Lake as it was in the 1960s. Information on the dimensions of stopes, pillars, and parting zone was gathered from plans and sections of the relevant closed mines. Discussions were held with personnel familiar with these mines to establish instances of pillar, roof, and parting zone failures. Design guidelines are formulated for stope and pillar dimensions in multi-seam mining for a range of orebody configurations using past practice in a back-analysis approach. Constraints imposed by dip and seam thickness on the choice of equipment and mining layout are evaluated. An attempt is made to bring together the engineering aspects, including rock mechanics, of multi-seam mine design with uranium recovery and other economic factors for three alternative mine layouts: single-seam mining, double-seam mining, and seams-and-parting mining. A series of examples are worked through, showing how the design guidelines can be applied for typical orebody configurations

  4. Multi-dimensional design window search system using neural networks in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    2000-02-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. We apply the present method to the neutronics and thermal hydraulics fields and develop the multi-dimensional design window search system using it. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. The system works on an engineering workstation (EWS) with efficient man-machine interface for pre- and post-processing. This report describes the principle of the present method, the structure of the system, the guidance of the usages of the system, the guideline for the efficient training of neural networks, the instructions of the input data for analysis calculation and so on. (author)

  5. Integrated Process Design and Control of Multi-element Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    2016-01-01

    In this work, integrated process design and control of reactive distillation processes involving multi-elements is presented. The reactive distillation column is designed using methods and tools which are similar in concept to non-reactive distillation design methods, such as driving force approach....... The methods employed in this work are based on equivalent element concept. This concept facilitates the representation of a multi-element reactive system as equivalent binary light and heavy key elements. First, the reactive distillation column is designed at the maximum driving force where through steady...

  6. Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake

    Science.gov (United States)

    Wu, Jie; Li, Hua; Jiang, Xuezheng; Yao, Jin

    2018-02-01

    This paper deals with design, simulation and experimental testing of a novel radial multi-pole multi-layer magnetorheological (MR) brake. This MR brake has an innovative structural design with superposition principle of two magnetic fields generated by the inner coils and the outer coils. The MR brake has several media layers of magnetorheological (MR) fluid located between the inner coils and the outer coils, and it can provide higher torque and higher torque density than conventional single-disk or multi-disk or multi-pole single-layer MR brakes can. In this paper, a brief introduction to the structure of the proposed MR brake was given first. Then, theoretical analysis of the magnetic circuit and the braking torque was conducted. In addition, a 3D electromagnetic model of the MR brake was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. A prototype of the brake was fabricated and several tests were carried out to validate its torque capacity. The results show that the proposed MR brake can produce a maximum braking torque of 133 N m and achieve a high torque density of 25.0 kN m-2, a high torque range of 42 and a high torque-to-power ratio of 0.95 N m W-1.

  7. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  8. Holistic design and implementation of pressure actuated cellular structures

    International Nuclear Information System (INIS)

    Gramüller, B; Köke, H; Hühne, C

    2015-01-01

    Providing the possibility to develop energy-efficient, lightweight adaptive components, pressure-actuated cellular structures (PACS) are primarily conceived for aeronautics applications. The realization of shape-variable flaps and even airfoils provides the potential to safe weight, increase aerodynamic efficiency and enhance agility. The herein presented holistic design process points out and describes the necessary steps for designing a real-life PACS structure, from the computation of truss geometry to the manufacturing and assembly. The already published methods for the form finding of PACS are adjusted and extended for the exemplary application of a variable-camber wing. The transfer of the form-finding truss model to a cross-sectional design is discussed. The end cap and sealing concept is described together with the implementation of the integral fluid flow. Conceptual limitations due to the manufacturing and assembly processes are discussed. The method’s efficiency is evaluated by finite element method. In order to verify the underlying methods and summarize the presented work a modular real-life demonstrator is experimentally characterized and validates the numerical investigations. (paper)

  9. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system.

    Science.gov (United States)

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Wu, Honglu; Sun, Wei

    2016-01-13

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.

  10. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system

    International Nuclear Information System (INIS)

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Sun, Wei; Wu, Honglu

    2016-01-01

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow’s internal features and constituent material’s volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy. (paper)

  11. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.

    Science.gov (United States)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose-lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Robust Transceivers Design for Multi-stream Multi-user MIMO Visible Light Communication

    KAUST Repository

    Sifaou, Houssem

    2017-11-27

    Visible light communication (VLC) is an emerging technique that uses light-emitting diodes to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs, while offering high data rate performance. This paper focuses on the design of precoding and receiving schemes for downlink multi-user multiple-input multiple-output VLC systems using angle diversity receivers. Two major concerns need to be considered while solving such a problem. The first one is related to the inter-user interference, basically inherent to our consideration of a multi-user system, while the second results from the users’ mobility, causing imperfect channel estimates. To address both concerns, we propose robust precoding and receiver that solve the max-min SINR problem. The performance of the proposed VLC design is studied under different working conditions, where a significant gain of the proposed robust transceivers over their non-robust counterparts has been observed.

  13. Robust Transceivers Design for Multi-stream Multi-user MIMO Visible Light Communication

    KAUST Repository

    Sifaou, Houssem; Kammoun, Abla; Park, Kihong; Alouini, Mohamed-Slim

    2017-01-01

    Visible light communication (VLC) is an emerging technique that uses light-emitting diodes to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs, while offering high data rate performance. This paper focuses on the design of precoding and receiving schemes for downlink multi-user multiple-input multiple-output VLC systems using angle diversity receivers. Two major concerns need to be considered while solving such a problem. The first one is related to the inter-user interference, basically inherent to our consideration of a multi-user system, while the second results from the users’ mobility, causing imperfect channel estimates. To address both concerns, we propose robust precoding and receiver that solve the max-min SINR problem. The performance of the proposed VLC design is studied under different working conditions, where a significant gain of the proposed robust transceivers over their non-robust counterparts has been observed.

  14. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    Science.gov (United States)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  15. A review of creep analysis and design under multi-axial stress states

    International Nuclear Information System (INIS)

    Yao, H.-T.; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2007-01-01

    The existence of multi-axial states of stress cannot be avoided in elevated temperature components. It is essential to understand the associated failure mechanisms and to predict the lifetime in practice. Although metal creep has been studied for about 100 years, many problems are still unsolved, in particular for those involving multi-axial stresses. In this work, a state-of-the-art review of creep analysis and engineering design is carried out, with particular emphasis on the effect of multi-axial stresses. The existing theories and creep design approaches are grouped into three categories, i.e., the classical plastic theory (CPT) based approach, the cavity growth mechanism (CGM) based approach and the continuum damage mechanics (CDM) based approach. Following above arrangements, the constitutive equations and design criteria are addressed. In the end, challenges on the precise description of the multi-axial creep behavior and then improving the strength criteria in engineering design are presented

  16. A meta-ontological framework for multi-agent systems design

    OpenAIRE

    Sokolova, Marina; Fernández Caballero, Antonio

    2007-01-01

    The paper introduces an approach to using a meta-ontology framework for complex multi-agent systems design, and illustrates it in an application related to ecological-medical issues. The described shared ontology is pooled from private sub-ontologies, which represent a problem area ontology, an agent ontology, a task ontology, an ontology of interactions, and the multi-agent system architecture ontology.

  17. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel P

    2009-01-12

    the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  18. Multi-objective design of PV-wind-diesel-hydrogen-battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L. [Department of Electrical Engineering, University of Zaragoza, Calle Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-12-15

    This paper presents, for the first time, a triple multi-objective design of isolated hybrid systems minimizing, simultaneously, the total cost throughout the useful life of the installation, pollutant emissions (CO{sub 2}) and unmet load. For this task, a multi-objective evolutionary algorithm (MOEA) and a genetic algorithm (GA) have been used in order to find the best combination of components of the hybrid system and control strategies. As an example of application, a complex PV-wind-diesel-hydrogen-battery system has been designed, obtaining a set of possible solutions (Pareto Set). The results achieved demonstrate the practical utility of the developed design method. (author)

  19. Design and multi-physics optimization of rotary MRF brakes

    Science.gov (United States)

    Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan

    2018-03-01

    Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.

  20. Design, synthesis and cellular metabolism study of 4'-selenonucleosides.

    Science.gov (United States)

    Yu, Jinha; Sahu, Pramod K; Kim, Gyudong; Qu, Shuhao; Choi, Yoojin; Song, Jayoung; Lee, Sang Kook; Noh, Minsoo; Park, Sunghyouk; Jeong, Lak Shin

    2015-01-01

    4'-seleno-homonucleosides were synthesized as next-generation nucleosides, and their cellular phosphorylation was studied to confirm the hypothesis that bulky selenium atom can sterically hinder the approach of cellular nucleoside kinase to the 5'-OH for phosphorylation. 4'-seleno-homonucleosides (n = 2), with one-carbon homologation, were synthesized through a tandem seleno-Michael addition-SN2 ring cyclization. LC-MS analysis demonstrated that they were phosphorylated by cellular nucleoside kinases, resulting in anticancer activity. The bulky selenium atom played a key role in deciding the phosphorylation by cellular nucleoside kinases. [Formula: see text].

  1. Body-insensitive Multi-Mode MIMO Terminal Antenna of Double-Ring Structure

    DEFF Research Database (Denmark)

    Zhao, Kun; Zhang, Shuai; Ishimiya, Katsunori

    2015-01-01

    of mobile terminals. With the multimode excitation, the MIMO cellular antenna can operate at 830-900 MHz, 1700-2200 MHz, and 2400-2700 MHz, for 2G, 3G, and LTE bands, respectively. The MIMO Wi-Fi antenna can cover two Wi-Fi bands from 2.4 to 2.5 GHz and from 5.2 to 5.8 GHz. The effect of a user's body......In this paper, we propose a novel multimode multi-input multi-output (MIMO) antenna system composed of a dual-element MIMO cellular antenna and dual-element MIMO Wi-Fi antenna for mobile terminal applications. The antenna system has a double-ring structure and can be integrated with the metal frame...... on the MIMO cellular antenna is investigated on CTIA standard phantoms and a real user. Since our antenna mainly operates in the loop mode, it has a much lower efficiency loss than conventional mobile antennas in both talking and data modes. Our theoretical analysis and experiments have shown that our design...

  2. Multi-damping earthquake design spectra-compatible motion histories

    International Nuclear Information System (INIS)

    Choi, Dong-Ho; Lee, Sang-Hoon

    2003-01-01

    Two iterative methods of developing time histories compatible with multi-damping spectra are presented. The common method of forcing agreement among design and calculated spectral values at several frequencies and multiple damping values may give poor, even meaningless results. The two simple iterative techniques presented here use acceleration impulse functions for 'correcting' the time histories. In the first method the correction is calculated separately for each frequency and damping value and the maximum corresponding coefficient is used to correct the time history for the iteration. In the second method the solution is further improved by introducing a scale factor at each iteration. The effectiveness of the proposed techniques is illustrated by a comparison of a set of six multi-damping design spectra with spectral responses of a time history

  3. Design mobile satellite system architecture as an integral part of the cellular access digital network

    Science.gov (United States)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  4. Radio resource management scheme and outage analysis for network-assisted multi-hop D2D communications

    Directory of Open Access Journals (Sweden)

    Leila Melki

    2016-11-01

    Full Text Available In a cellular network it's very difficult to make spectrum resource more efficiently. Device-to-Device (D2D technology enables new service opportunities, and provides high throughput and reliable communication while reducing the base station load. For better total performance, short-range D2D links and cellular links share the same radio resource and the management of interference becomes a crucial task. Here we argue that single-hop D2D technology can be used to further improve cellular networks performance if the key D2D radio resource management algorithms are suitably extended to support multi-hop D2D communications. Aiming to establish a new paradigm for the analysis and design of multi-hop D2D communications, We propose a radio resource allocation for multi-hop D2D routes based on interference avoidance approach in LTE-A networks. On top of that, we investigate the outage probability of D2D communication. We first introduce a new definition of outage probability by considering the maximum distance to be allowable for single-hop transmission. Then we study and analyze the outage performance of a multi-hop D2D route. We derive the general closed form expression of outage probability of the multi-hop D2D routes. The results demonstrate that the D2D radio, sharing the same resources as the cellular network, provide higher capacity compared to pure cellular communication where all the data is transmitted through the base station. They also demonstrate that the new method of calculation of D2D multi hop outage probability has better performance than classical method defined in the literature.

  5. Attentional networks in developmental dyscalculia

    Directory of Open Access Journals (Sweden)

    Henik Avishai

    2010-01-01

    Full Text Available Abstract Background Very little is known about attention deficits in developmental dyscalculia, hence, this study was designed to provide the missing information. We examined attention abilities of participants suffering from developmental dyscalculia using the attention networks test - interactions. This test was designed to examine three different attention networks--executive function, orienting and alerting--and the interactions between them. Methods Fourteen university students that were diagnosed as suffering from developmental dyscalculia--intelligence and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder--and 14 matched controls were tested using the attention networks test - interactions. All participants were given preliminary tests to measure mathematical abilities, reading, attention and intelligence. Results The results revealed deficits in the alerting network--a larger alerting effect--and in the executive function networks--a larger congruity effect in developmental dyscalculia participants. The interaction between the alerting and executive function networks was also modulated by group. In addition, developmental dyscalculia participants were slower to respond in the non-cued conditions. Conclusions These results imply specific attentional deficits in pure developmental dyscalculia. Namely, those with developmental dyscalculia seem to be deficient in the executive function and alertness networks. They suffer from difficulty in recruiting attention, in addition to the deficits in numerical processing.

  6. Attentional networks in developmental dyscalculia.

    Science.gov (United States)

    Askenazi, Sarit; Henik, Avishai

    2010-01-07

    Very little is known about attention deficits in developmental dyscalculia, hence, this study was designed to provide the missing information. We examined attention abilities of participants suffering from developmental dyscalculia using the attention networks test - interactions. This test was designed to examine three different attention networks--executive function, orienting and alerting--and the interactions between them. Fourteen university students that were diagnosed as suffering from developmental dyscalculia--intelligence and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder--and 14 matched controls were tested using the attention networks test-interactions. All participants were given preliminary tests to measure mathematical abilities, reading, attention and intelligence. The results revealed deficits in the alerting network--a larger alerting effect--and in the executive function networks--a larger congruity effect in developmental dyscalculia participants. The interaction between the alerting and executive function networks was also modulated by group. In addition, developmental dyscalculia participants were slower to respond in the non-cued conditions. These results imply specific attentional deficits in pure developmental dyscalculia. Namely, those with developmental dyscalculia seem to be deficient in the executive function and alertness networks. They suffer from difficulty in recruiting attention, in addition to the deficits in numerical processing.

  7. Food chain design using multi criteria decision making, an approach to complex design issues

    NARCIS (Netherlands)

    Linnemann, A.R.; Hendrix, E.M.T.; Apaiah, R.K.; Boekel, van M.A.J.S.

    2015-01-01

    Designing a food supply chain for a completely new product involves many stakeholders and knowledge from disciplines in natural and social sciences. This paper describes how Multi Criteria Decision Making (MCDM) facilitated designing a food supply chain in a case of Novel Protein Foods. It made the

  8. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Science.gov (United States)

    Barr, David R. W.; Dudek, Piotr

    2009-12-01

    We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  9. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Directory of Open Access Journals (Sweden)

    David R. W. Barr

    2009-01-01

    Full Text Available We present a software environment for the efficient simulation of cellular processor arrays (CPAs. This software (APRON is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  10. A dynamically reconfigurable logic cell: from artificial neural networks to quantum-dot cellular automata

    Science.gov (United States)

    Naqvi, Syed Rameez; Akram, Tallha; Iqbal, Saba; Haider, Sajjad Ali; Kamran, Muhammad; Muhammad, Nazeer

    2018-02-01

    Considering the lack of optimization support for Quantum-dot Cellular Automata, we propose a dynamically reconfigurable logic cell capable of implementing various logic operations by means of artificial neural networks. The cell can be reconfigured to any 2-input combinational logic gate by altering the strength of connections, called weights and biases. We demonstrate how these cells may appositely be organized to perform multi-bit arithmetic and logic operations. The proposed work is important in that it gives a standard implementation of an 8-bit arithmetic and logic unit for quantum-dot cellular automata with minimal area and latency overhead. We also compare the proposed design with a few existing arithmetic and logic units, and show that it is more area efficient than any equivalent available in literature. Furthermore, the design is adaptable to 16, 32, and 64 bit architectures.

  11. Drosophila melanogaster--the model organism of choice for the complex biology of multi-cellular organisms

    Science.gov (United States)

    Beckingham, Kathleen M.; Armstrong, J. Douglas; Texada, Michael J.; Munjaal, Ravi; Baker, Dean A.

    2005-01-01

    Drosophila melanogaster has been intensely studied for almost 100 years. The sophisticated array of genetic and molecular tools that have evolved for analysis of gene function in this organism are unique. Further, Drosophila is a complex multi-cellular organism in which many aspects of development and behavior parallel those in human beings. These combined advantages have permitted research in Drosophila to make seminal contributions to the understanding of fundamental biological processes and ensure that Drosophila will continue to provide unique insights in the genomic era. An overview of the genetic methodologies available in Drosophila is given here, together with examples of outstanding recent contributions of Drosophila to our understanding of cell and organismal biology. The growing contribution of Drosophila to our knowledge of gravity-related responses is addressed.

  12. Multi-Criteria Approach in Multifunctional Building Design Process

    Science.gov (United States)

    Gerigk, Mateusz

    2017-10-01

    The paper presents new approach in multifunctional building design process. Publication defines problems related to the design of complex multifunctional buildings. Currently, contemporary urban areas are characterized by very intensive use of space. Today, buildings are being built bigger and contain more diverse functions to meet the needs of a large number of users in one capacity. The trends show the need for recognition of design objects in an organized structure, which must meet current design criteria. The design process in terms of the complex system is a theoretical model, which is the basis for optimization solutions for the entire life cycle of the building. From the concept phase through exploitation phase to disposal phase multipurpose spaces should guarantee aesthetics, functionality, system efficiency, system safety and environmental protection in the best possible way. The result of the analysis of the design process is presented as a theoretical model of the multifunctional structure. Recognition of multi-criteria model in the form of Cartesian product allows to create a holistic representation of the designed building in the form of a graph model. The proposed network is the theoretical base that can be used in the design process of complex engineering systems. The systematic multi-criteria approach makes possible to maintain control over the entire design process and to provide the best possible performance. With respect to current design requirements, there are no established design rules for multifunctional buildings in relation to their operating phase. Enrichment of the basic criteria with functional flexibility criterion makes it possible to extend the exploitation phase which brings advantages on many levels.

  13. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2015-05-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other\\'s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network\\'s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network\\'s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. © 2015 IEEE.

  14. Students Negotiating and Designing Their Collaborative Learning Norms: A Group Developmental Perspective in Learning Communities

    Science.gov (United States)

    Hod, Yotam; Ben-Zvi, Dani

    2015-01-01

    This research shows how participants in classroom learning communities (LCs) come to take responsibility over designing their collaborative learning norms. Taking a micro-developmental perspective within a graduate-level course, we examined fine-grained changes in group discourse during a period of rapid change where this responsibility taking…

  15. WetA bridges cellular and chemical development in Aspergillus flavus.

    Directory of Open Access Journals (Sweden)

    Ming-Yueh Wu

    Full Text Available Bridging cellular reproduction and survival is essential for all life forms. Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA→AbaA→WetA. Here, we report that WetA is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in Aspergillus flavus. The deletion of wetA results in the formation of conidia with defective cell walls and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. WetA is also required for normal vegetative growth, hyphal branching, and production of aflatoxins. Targeted and genome-wide expression analyses reveal that WetA exerts feedback control of brlA and that 5,700 genes show altered mRNA levels in the mutant conidia. Functional category analyses of differentially expressed genes in ΔwetA RNA-seq data indicate that WetA contributes to spore integrity and maturity by properly regulating the metabolic pathways of trehalose, chitin, α-(1,3-glucan, β-(1,3-glucan, melanin, hydrophobins, and secondary metabolism more generally. Moreover, 160 genes predicted to encode transcription factors are differentially expressed by the absence of wetA, suggesting that WetA may play a global regulatory role in conidial development. Collectively, we present a comprehensive model for developmental control that bridges spore differentiation and survival in A. flavus.

  16. Extraction of design rules from multi-objective design exploration (MODE) using rough set theory

    International Nuclear Information System (INIS)

    Obayashi, Shigeru

    2011-01-01

    Multi-objective design exploration (MODE) and its application for design rule extraction are presented. MODE reveals the structure of design space from the trade-off information. The self-organizing map (SOM) is incorporated into MODE as a visual data-mining tool for design space. SOM divides the design space into clusters with specific design features. The sufficient conditions for belonging to a cluster of interest are extracted using rough set theory. The resulting MODE was applied to the multidisciplinary wing design problem, which revealed a cluster of good designs, and we extracted the design rules of such designs successfully.

  17. Not just another multi-professional course! Part 2: nuts and bolts of designing a transformed curriculum for multi-professional learning.

    Science.gov (United States)

    Mayers, Pat; Alperstein, Melanie; Duncan, Madeleine; Olckers, Lorna; Gibbs, Trevor

    2006-03-01

    Multi-professional education has traditionally aimed to develop health professionals who are able to collaborate effectively in comprehensive healthcare delivery. The respective professions learn about their differences in order to work together, rather than developing unity in their commitment to a shared vision of professionalism and service. In this, the second of two papers, the 'nuts and bolts' or practicalities of designing a transformed curriculum for a multi-professional course with a difference is described. Guidelines for the curriculum design process, which seeks to be innovative, grounded in theory and relevant to the learning of the students and the ultimately the health of the patients, include: valuing education; gaining buy-in; securing buy-out; defining of roles; seeking consensus; negotiating difference and expediting decisions. The phases of the design process are described, as well as the educational outcomes envisaged during the process. Reflections of the designers, in particular on what it means to be a multi-professional team, and a reconceptualization of multi-professional education are presented as challenges for educators of health professionals.

  18. The Design Space of Multi-Language Development Environments

    DEFF Research Database (Denmark)

    Pfeiffer, Rolf-Helge; Wasowski, Andrzej

    2014-01-01

    Non-trivial software systems integrate many artifacts expressed in multiple modeling and program- ming languages. However, even though these artifacts heavily depend on each other, existing development envi- ronments do not sufficiently support handling relations between artifacts in different...... languages. By means of a literature survey, tool prototyping and experiments we study the design space of multi-language development environments (MLDEs)—tools that consider the cross-language relations as first artifacts. We ask: what is the state of the art in the MLDE space? What are the design choices...... and challenges faced by tool builders? To what extent MLDEs are desired by users, and for what support features? Our main conclusions are that (a) cross-language re- lations are ubiquitous and troublesome in multi-language systems, (b) users highly appreciated cross-language sup- port mechanisms of MLDEs and (c...

  19. Pruning techniques for multi-objective system-level design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.

    2014-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system architectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size of

  20. On Modeling Large-Scale Multi-Agent Systems with Parallel, Sequential and Genuinely Asynchronous Cellular Automata

    International Nuclear Information System (INIS)

    Tosic, P.T.

    2011-01-01

    We study certain types of Cellular Automata (CA) viewed as an abstraction of large-scale Multi-Agent Systems (MAS). We argue that the classical CA model needs to be modified in several important respects, in order to become a relevant and sufficiently general model for the large-scale MAS, and so that thus generalized model can capture many important MAS properties at the level of agent ensembles and their long-term collective behavior patterns. We specifically focus on the issue of inter-agent communication in CA, and propose sequential cellular automata (SCA) as the first step, and genuinely Asynchronous Cellular Automata (ACA) as the ultimate deterministic CA-based abstract models for large-scale MAS made of simple reactive agents. We first formulate deterministic and nondeterministic versions of sequential CA, and then summarize some interesting configuration space properties (i.e., possible behaviors) of a restricted class of sequential CA. In particular, we compare and contrast those properties of sequential CA with the corresponding properties of the classical (that is, parallel and perfectly synchronous) CA with the same restricted class of update rules. We analytically demonstrate failure of the studied sequential CA models to simulate all possible behaviors of perfectly synchronous parallel CA, even for a very restricted class of non-linear totalistic node update rules. The lesson learned is that the interleaving semantics of concurrency, when applied to sequential CA, is not refined enough to adequately capture the perfect synchrony of parallel CA updates. Last but not least, we outline what would be an appropriate CA-like abstraction for large-scale distributed computing insofar as the inter-agent communication model is concerned, and in that context we propose genuinely asynchronous CA. (author)

  1. Multi-robot team design for real-world applications

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1996-10-01

    Many of these applications are in dynamic environments requiring capabilities distributed in functionality, space, or time, and therefore often require teams of robots to work together. While much research has been done in recent years, current robotics technology is still far from achieving many of the real world applications. Two primary reasons for this technology gap are that (1) previous work has not adequately addressed the issues of fault tolerance and adaptivity in multi-robot teams, and (2) existing robotics research is often geared at specific applications and is not easily generalized to different, but related, applications. This paper addresses these issues by first describing the design issues of key importance in these real-world cooperative robotics applications: fault tolerance, reliability, adaptivity, and coherence. We then present a general architecture addressing these design issues (called ALLIANCE) that facilities multi-robot cooperation of small- to medium-sized teams in dynamic environments, performing missions composed of loosely coupled subtasks. We illustrate an implementation of ALLIANCE in a real-world application, called Bounding Overwatch, and then discuss how this architecture addresses our key design issues.

  2. Sordaria macrospora, a model organism to study fungal cellular development.

    Science.gov (United States)

    Engh, Ines; Nowrousian, Minou; Kück, Ulrich

    2010-12-01

    During the development of multicellular eukaryotes, the processes of cellular growth and organogenesis are tightly coordinated. Since the 1940s, filamentous fungi have served as genetic model organisms to decipher basic mechanisms underlying eukaryotic cell differentiation. Here, we focus on Sordaria macrospora, a homothallic ascomycete and important model organism for developmental biology. During its sexual life cycle, S. macrospora forms three-dimensional fruiting bodies, a complex process involving the formation of different cell types. S. macrospora can be used for genetic, biochemical and cellular experimental approaches since diverse tools, including fluorescence microscopy, a marker recycling system and gene libraries, are available. Moreover, the genome of S. macrospora has been sequenced and allows functional genomics analyses. Over the past years, our group has generated and analysed a number of developmental mutants which has greatly enhanced our fundamental understanding about fungal morphogenesis. In addition, our recent research activities have established a link between developmental proteins and conserved signalling cascades, ultimately leading to a regulatory network controlling differentiation processes in a eukaryotic model organism. This review summarizes the results of our recent findings, thus advancing current knowledge of the general principles and paradigms underpinning eukaryotic cell differentiation and development. Copyright © 2010 Elsevier GmbH. All rights reserved.

  3. Role of epigenetics in developmental biology and transgenerational inheritance.

    Science.gov (United States)

    Skinner, Michael K

    2011-03-01

    The molecular mechanisms involved in developmental biology and cellular differentiation have traditionally been considered to be primarily genetic. Environmental factors that influence early life critical windows of development generally do not have the capacity to modify genome sequence, nor promote permanent genetic modifications. Epigenetics provides a molecular mechanism for environment to influence development, program cellular differentiation, and alter the genetic regulation of development. The current review discusses how epigenetics can cooperate with genetics to regulate development and allow for greater plasticity in response to environmental influences. This impacts area such as cellular differentiation, tissue development, environmental induced disease etiology, epigenetic transgenerational inheritance, and the general systems biology of organisms and evolution. Copyright © 2011 Wiley-Liss, Inc.

  4. A computational and cellular solids approach to the stiffness-based design of bone scaffolds.

    Science.gov (United States)

    Norato, J A; Wagoner Johnson, A J

    2011-09-01

    We derive a cellular solids approach to the design of bone scaffolds for stiffness and pore size. Specifically, we focus on scaffolds made of stacked, alternating, orthogonal layers of hydroxyapatite rods, such as those obtained via micro-robotic deposition, and aim to determine the rod diameter, spacing and overlap required to obtain specified elastic moduli and pore size. To validate and calibrate the cellular solids model, we employ a finite element model and determine the effective scaffold moduli via numerical homogenization. In order to perform an efficient, automated execution of the numerical studies, we employ a geometry projection method so that analyses corresponding to different scaffold dimensions can be performed on a fixed, non-conforming mesh. Based on the developed model, we provide design charts to aid in the selection of rod diameter, spacing and overlap to be used in the robotic deposition to attain desired elastic moduli and pore size.

  5. High intensity multi beam design of SANS instrument for Dhruva reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Sohrab, E-mail: abbas@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Désert, S. [Laboratoire Leon Brillouin, CEA, Saclay, 91191 (France)

    2016-05-23

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10{sup −4} Å{sup −1} with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies of agglomerates larger than few tens of nm.

  6. Electricity pricing policy: A neo-institutional, developmental and cross-national policy design map

    Science.gov (United States)

    Koundinya, Sridarshan Umesh

    This dissertation explores the role of ideas and ideology in the mental policy design maps of regulators in the US and in India. The research approach is to describe the regulatory design process in the history of the US electric industry from a neo-institutional and developmental perspective. And then to use the insights of such a study to suggest policy options to a sample of Indian experts. A regulatory process model explores the interactions among normative values, regulatory instruments and historical phases in policy design. A spectrum of seven regulatory instruments--subsidized rates, average cost pricing, marginal cost pricing, time-of-use pricing, ramsey pricing, incentive regulation and spot pricing is examined. A neo-institutional perspective characterizes the process of institutionalizing these regulatory instruments as a design process that infuses them with values beyond mere technical requirements. The process model includes normative values such as efficiency, fairness, free choice and political feasibility. These values arise from an analytical classification of various market metaphors debated in the history of economic thought. The theory of development and co-evolution applied to the history of electricity regulation yields a typology of evolutionary phases in the US. The typology describes hierarchically emergent relationships between supply and demand and among the normative values. The theory hypothesizes technologically contingent relationships between pricing policies and normative values in the historical phases of dependence (or rural), independence (or urban) and interdependence (or informational). The contents of this model are represented as related elements in a policy design map that simplifies the process of designing regulatory instruments in the US. This neo-institutional, developmental policy design map was used to design a survey instrument. The survey was conducted among electricity experts in India to test the hypothesized

  7. [Application of computer-aided osteotomy template design in treatment of developmental dysplasia of the hip with steel osteotomy].

    Science.gov (United States)

    Tong, Kuang; Zhang, Yuanzhi; Zhang, Sheng; Yu, Bin

    2013-06-01

    To provide an accurate method for osteotomy in the treatment of developmental dysplasia of the hip with steel osteotomy by three-dimensional reconstruction and Reverse Engineering technique. Between January 2011 and December 2012, 13 children with developmental dysplasia of the hip underwent steel osteotomy. 3D CT scan pelvic images were obtained and transferred via a DICOM network into a computer workstation to construct 3D models of the hip using Materialise Mimics 14.1 software in STL format. These models were imported into Imageware 12.0 software for steel osteotomy simulation until a stable hip was attained in the anatomical position for dislocation or subluxation of the hip in older children. The osteotomy navigational templates were designed according to the anatomical features after a stable hip was reconstructed. These navigational templates were manufactured using a rapid prototyping technique. The reconstruction hips in these children show good matching property and acetabulum cover. The computer-aided design of osteotomy template provides personalized and accurate solutions in the treatment of developmental dysplasia of the hip with steel osteotomy in older children.

  8. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.

    Science.gov (United States)

    Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine

    2014-12-01

    Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.

  9. Optimum Design of Multi-Function Robot Arm Gripper for Varying Shape Green Product

    Directory of Open Access Journals (Sweden)

    Razali Zol Bahri

    2016-01-01

    Full Text Available The project focuses on thorough experimentally studies of the optimum design of Multi-function Robot Arm Gripper for varying shape green product. The purpose of this project is to design a few of robot arm gripper for multi-functionally grip a green product with varying shape. The main character of the gripper is that it can automated adjust its finger to suit with the shape of the product. An optimum design of multi-function robot arm gripper is verified through experimental study. The expected result is a series of analytical results on the proposal of gripper design and material that will be selected for the gripper. The analysis of the gripper design proposal by using ANSYS and CATIA software is described in detail in this paper.

  10. Multi-objective optimization design method of radiation shielding

    International Nuclear Information System (INIS)

    Yang Shouhai; Wang Weijin; Lu Daogang; Chen Yixue

    2012-01-01

    Due to the shielding design goals of diversification and uncertain process of many factors, it is necessary to develop an optimization design method of intelligent shielding by which the shielding scheme selection will be achieved automatically and the uncertainties of human impact will be reduced. For economical feasibility to achieve a radiation shielding design for automation, the multi-objective genetic algorithm optimization of screening code which combines the genetic algorithm and discrete-ordinate method was developed to minimize the costs, size, weight, and so on. This work has some practical significance for gaining the optimization design of shielding. (authors)

  11. Multi-objective engineering design using preferences

    Science.gov (United States)

    Sanchis, J.; Martinez, M.; Blasco, X.

    2008-03-01

    System design is a complex task when design parameters have to satisy a number of specifications and objectives which often conflict with those of others. This challenging problem is called multi-objective optimization (MOO). The most common approximation consists in optimizing a single cost index with a weighted sum of objectives. However, once weights are chosen the solution does not guarantee the best compromise among specifications, because there is an infinite number of solutions. A new approach can be stated, based on the designer's experience regarding the required specifications and the associated problems. This valuable information can be translated into preferences for design objectives, and will lead the search process to the best solution in terms of these preferences. This article presents a new method, which enumerates these a priori objective preferences. As a result, a single objective is built automatically and no weight selection need be performed. Problems occuring because of the multimodal nature of the generated single cost index are managed with genetic algorithms (GAs).

  12. Design principles and developmental mechanisms underlying retinal mosaics.

    Science.gov (United States)

    Reese, Benjamin E; Keeley, Patrick W

    2015-08-01

    Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  13. Design of a Multi-Bunch BPM for the Next Linear Collider

    International Nuclear Information System (INIS)

    Young, Andrew

    2003-01-01

    The Next Linear Collider (NLC) design requires precise control of colliding trains of high-intensity (1.4 x 10 10 particles/bunch) and low-emittance beams. High-resolution multi-bunch beam position monitors (BPMs) are required to ensure uniformity across the bunch trains with bunch spacing of 1.4ns. A high bandwidth (∼350 MHz) multi-bunch BPM has been designed based on a custom-made stripline sum and difference hybrid on a Teflon-based material. High bandwidth RF couplers were included to allow injection of a calibration tone. Three prototype BPMs were fabricated at SLAC and tested in the Accelerator Test Facility at KEK and in the PEP-II ring at SLAC. Tone calibration data and single-bunch and multi-bunch beam data were taken with high-speed (5Gsa/s) digitizers. Offline analysis determined the deconvolution of individual bunches in the multi-bunch mode by using the measured single bunch response. The results of these measurements are presented in this paper

  14. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    NARCIS (Netherlands)

    Hjorth, J.J.J.; Dawitz, J.; Kroon, T.; da Silva Dias Pires, J.H.; Dassen, V.J.; Berkhout, J.A.; Emperador Melero, J.; Nadadhur, A.G.; Alevra, M.; Toonen, R.F.G.; Heine, V.M.; Mansvelder, H.D.; Meredith, R.M.

    2016-01-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell

  15. Multi-phase alternative current machine winding design | Khan ...

    African Journals Online (AJOL)

    ... single-phase to 18-phase excitation. Experimental results of a five-phase induction machine supplied from a static five-phase supply are provided to support the proposed design. Keywords: AC machine, Multi-phase machine, Stator winding, Five-phase. International Journal of Engineering, Science and Technology, Vol.

  16. Deployable auxetic shape memory alloy cellular antenna demonstrator: design, manufacturing and modal testing

    International Nuclear Information System (INIS)

    Jacobs, S; Coconnier, C; DiMaio, D; Scarpa, F; Martinez, J; Toso, M

    2012-01-01

    This work describes the design, manufacturing and testing of a deployable antenna for deep-space missions based on a hybrid honeycomb truss made of shape memory alloy (SMA). The deployable characteristics are enhanced by the equivalent auxetic (negative Poisson’s ratio) behaviour of the cellular configuration. Specific emphasis is placed on the modal analysis techniques used to test the lightweight SMA structure. (paper)

  17. Design of a centrifugal compressor impeller using multi-objective optimization algorithm

    International Nuclear Information System (INIS)

    Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong; Choi, Jae Ho

    2009-01-01

    This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with ε-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.

  18. Design of a centrifugal compressor impeller using multi-objective optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong [Inha University, Incheon (Korea, Republic of); Choi, Jae Ho [Samsung Techwin Co., Ltd., Changwon (Korea, Republic of)

    2009-07-01

    This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with {epsilon}-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.

  19. OCRWM Bulletin: Westinghouse begins designing multi-purpose canister

    International Nuclear Information System (INIS)

    1995-01-01

    This publication consists of two parts: OCRWM (Office of Civilian Radioactive Waste Management) Bulletin; and Of Mountains ampersand Science which has articles on the Yucca Mountain project. The OCRWM provides information about OCRWM activities and in this issue has articles on multi-purpose canister design, and transportation cask trailer

  20. OCRWM Bulletin: Westinghouse begins designing multi-purpose canister

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This publication consists of two parts: OCRWM (Office of Civilian Radioactive Waste Management) Bulletin; and Of Mountains & Science which has articles on the Yucca Mountain project. The OCRWM provides information about OCRWM activities and in this issue has articles on multi-purpose canister design, and transportation cask trailer.

  1. A Multimedia Child Developmental Screening Checklist: Design and Validation.

    Science.gov (United States)

    Cheng, Hsin-Yi Kathy; Chen, Li-Ying; Cheng, Chih-Hsiu; Ju, Yan-Ying; Chen, Chia-Ling; Tseng, Kevin C

    2016-10-24

    Identifying disability early in life confers long-term benefits for children. The Taipei City Child Development Screening tool, second version (Taipei II) provides checklists for 13 child age groups from 4 months to 6 years. However, the usability of a text-based screening tool largely depends on the literacy level and logical reasoning ability of the caregivers, as well as language barriers caused by increasing numbers of immigrants. The objectives of this study were to (1) design and develop a Web-based multimedia version of the current Taipei II developmental screening tool, and (2) investigate the measurement equivalence of this multimedia version to the original paper-based version. To develop the multimedia version of Taipei II, a team of experts created illustrations, translations, and dubbing of the original checklists. The developmental screening test was administered to a total of 390 primary caregivers of children aged between 4 months and 6 years. Psychometric testing revealed excellent agreement between the paper and multimedia versions of Taipei II. Good to excellent reliabilities were demonstrated for all age groups for both the cross-mode similarity (mode intraclass correlation range 0.85-0.96) and the test-retest reliability (r=.93). Regarding the usability, the mean score was 4.80 (SD 0.03), indicating that users were satisfied with their multimedia website experience. The multimedia tool produced essentially equivalent results to the paper-based tool. In addition, it had numerous advantages, such as it can facilitate active participation and promote early screening of target populations. Clinicaltrials.gov NCT02359591; https://clinicaltrials.gov/ct2/show/NCT02359591 (Archived by WebCite at http://www.webcitation.org/6l21mmdNn).

  2. Ciona intestinalis notochord as a new model to investigate the cellular and molecular mechanisms of tubulogenesis.

    Science.gov (United States)

    Denker, Elsa; Jiang, Di

    2012-05-01

    Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Multicarrier Block-Spread CDMA for Broadband Cellular Downlink

    Directory of Open Access Journals (Sweden)

    Leus Geert

    2004-01-01

    Full Text Available Effective suppression of multiuser interference (MUI and mitigation of frequency-selective fading effects within the complexity constraints of the mobile constitute major challenges for broadband cellular downlink transceiver design. Existing wideband direct-sequence (DS code division multiple access (CDMA transceivers suppress MUI statistically by restoring the orthogonality among users at the receiver. However, they call for receive diversity and multichannel equalization to improve the fading effects caused by deep channel fades. Relying on redundant block spreading and linear precoding, we design a so-called multicarrier block-spread- (MCBS-CDMA transceiver that preserves the orthogonality among users and guarantees symbol detection, regardless of the underlying frequency-selective fading channels. These properties allow for deterministic MUI elimination through low-complexity block despreading and enable full diversity gains, irrespective of the system load. Different options to perform equalization and decoding, either jointly or separately, strike the trade-off between performance and complexity. To improve the performance over multi-input multi-output (MIMO multipath fading channels, our MCBS-CDMA transceiver combines well with space-time block-coding (STBC techniques, to exploit both multiantenna and multipath diversity gains, irrespective of the system load. Simulation results demonstrate the superior performance of MCBS-CDMA compared to competing alternatives.

  4. Extended Cellular Automata Models of Particles and Space-Time

    Science.gov (United States)

    Beedle, Michael

    2005-04-01

    Models of particles and space-time are explored through simulations and theoretical models that use Extended Cellular Automata models. The expanded Cellular Automata Models consist go beyond simple scalar binary cell-fields, into discrete multi-level group representations like S0(2), SU(2), SU(3), SPIN(3,1). The propagation and evolution of these expanded cellular automatas are then compared to quantum field theories based on the "harmonic paradigm" i.e. built by an infinite number of harmonic oscillators, and with gravitational models.

  5. Design Facilitation as Emerging Practice: Analyzing How Designers Support Multi-stakeholder Co-creation

    Directory of Open Access Journals (Sweden)

    Manuela Aguirre

    Full Text Available Designers increasingly find themselves facilitating large-scale design events. Yet few have explored design facilitation as an emerging practice. This article examines the design facilitation practices used in two Norwegian case studies of multi-stakeholder events. We focus on the contextually designed tools designers create to help them facilitate. We then explore some critical dimensions of design facilitation. When used as visual overlays, facilitators’ explicit knowledge of these dimensions can improve their capacity to analyze, evaluate, and plan how to design and use contextual tools during design events. By plotting how designers use facilitation tools sequentially during events, we render the flow of design facilitation practice visible and accessible. We suggest that an explicit awareness of these dimensions and flows can enable designers to build more inclusive and inspiring tools, orchestrate the flow of long-term participatory processes more deliberately, and better equip participants to work with complex systemic change.

  6. Active Cellular Mechanics and its Consequences for Animal Development

    Science.gov (United States)

    Noll, Nicholas B.

    A central goal of developmental biology is to understand how an organism shapes itself, a process referred to as morphogenesis. While the molecular components critical to determining the initial body plan have been well characterized, the control of the subsequent dynamics of cellular rearrangements which ultimately shape the organism are far less understood. A major roadblock to a more complete picture of morphogenesis is the inability to measure tissue-scale mechanics throughout development and thus answer fundamental questions: How is the mechanical state of the cell regulated by local protein expression and global pattering? In what way does stress feedback onto the larger developmental program? In this dissertation, we begin to approach these questions through the introduction and analysis of a multi-scale model of epithelial mechanics which explicitly connects cytoskeletal protein activity to tissue-level stress. In Chapter 2, we introduce the discrete Active Tension Network (ATN) model of cellular mechanics. ATNs are tissues that satisfy two primary assumptions: that the mechanical balance of cells is dominated by cortical tension and that myosin actively remodels the actin cytoskeleton in a stress-dependent manner. Remarkably, the interplay of these features allows for angle-preserving, i.e. 'isogonal', dilations or contractions of local cell geometry that do not generate stress. Asymptotically this model is stabilized provided there is mechanical feedback on expression of myosin within the cell; we take this to be a strong prediction to be tested. The ATN model exposes a fundamental connection between equilibrium cell geometry and its underlying force network. In Chapter 3, we relax the tension-net approximation and demonstrate that at equilibrium, epithelial tissues with non-uniform pressure have non-trivial geometric constraints that imply the network is described by a weighted `dual' triangulation. We show that the dual triangulation encodes all

  7. Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2004-01-01

    We present an approach to design optimization of multi-cluster embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In this paper, we address design problems which are characteristic to multi-clusters: partitioning of the system functionality...... into time-triggered and event-triggered domains, process mapping, and the optimization of parameters corresponding to the communication protocol. We present several heuristics for solving these problems. Our heuristics are able to find schedulable implementations under limited resources, achieving...... an efficient utilization of the system. The developed algorithms are evaluated using extensive experiments and a real-life example....

  8. Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    We present an approach to design optimization of multi-cluster embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In this paper, we address design problems which are characteristic to multi-clusters: partitioning of the system functionality...... into time-triggered and event-triggered domains, process mapping, and the optimization of parameters corresponding to the communication protocol. We present several heuristics for solving these problems. Our heuristics are able to find schedulable implementations under limited resources, achieving...... an efficient utilization of the system. The developed algorithms are evaluated using extensive experiments and a real-life example....

  9. Developmental immunotoxicity testing of 4-methyl anisole.

    Science.gov (United States)

    Tonk, Elisa C M; Verhoef, Aart; Gremmer, Eric R; van Loveren, Henk; Piersma, Aldert H

    2015-07-01

    The developmental immunotoxicity of 4-methyl anisole (4MA) was investigated in the rat. Four study designs were used, with either premating or post-weaning onset of exposure, continued to postnatal day 50, and with or without additional oral gavage of pups from postnatal day 10 onward. Reduced litter size (benchmark dose lower confidence limit (BMDL) 80mg/kg bw/day) was the most sensitive developmental parameter, with pup relative organ weight effects observed at similar BMDLs, in the absence of maternal toxicity. Eosinophil numbers were reduced at lower doses (BMDL 16mg/kg bw/day). KLH challenge resulted in increased IL-13 and TNF-α responses, and variably reduced IgG production (BMDL 27mg/kg bw/day). T4 levels were reduced by 11% at maximum with a BMDL of 73mg/kg bw/day. Differences between exposure cohorts were limited and were considered to be without biological significance. This study shows that 4MA induces developmental immunotoxicity at doses below those inducing developmental and general toxicity. These observations being independent of the study designs applied suggest that the post-weaning period, included in all designs, is the most relevant sensitive period for inducing 4MA mediated developmental immunotoxicity. Moreover, this study stresses the importance of including developmental immunotoxicity testing by default in regulatory toxicology. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Realisation and qualification of a tissue equivalent proportional counter with a multi-cellular geometry for the individual neutron dosimetry

    International Nuclear Information System (INIS)

    Hoflack, Ch.

    1999-01-01

    The present day dosimetry means for radiations with a strong ionization density cannot fulfill the future radioprotection regulations which will require an individual dosimetry with active dosemeters. The aim of this work is the study and development of an individual dosemeter based on a tissue equivalent proportional counter and with a multi-cellular geometry allowing to reach a sensibility equivalent to environmental dosemeters. A pressure regulation bench has been added to the detector in order to reduce the degassing of the detector parts and to reach a sufficient service life for the implementation of the characterization tests. The hole counter system has been adopted for the first prototypes in order to reduce the sensibility of the wires multiplication system with respect to mechanical vibrations. Tests performed with an internal alpha source have shown that a better electrical efficiency can be reached when more severe mechanical limits are adopted during the construction. The dose equivalent response of the prototype for mono-energy neutrons of 144 keV to 2.5 MeV is analyzed experimentally and by simulation. During experiments with normal incidence neutrons, the prototype fulfills the requirements of the CEI N O 1323 standard for energies comprised between 400 keV and 2.5 MeV, while the simulation indicates a satisfactory response up to 200 keV. A preliminary study of the behaviour of the detector with respect to the neutrons incidence indicates that the multi-cellular geometry is efficient for large angles (the sensibility of the prototype is increased by a factor 3). Finally, simulation studies have to be made to optimize the electrical operation and the geometry of the next prototype. (J.S.)

  11. Developmental and testicular toxicity of butyl benzyl phthalate in the rat and the impact of study design

    NARCIS (Netherlands)

    Piersma AH; Verhoef A; Dormans JAMA; Elvers LH; Valk V de; Biesebeek JD te; Pieters MN; Slob W; LEO

    1999-01-01

    The developmental toxicity of butyl benzyl phthalate was investigated in the rat in an alternative study design using ten treatment groups. The effect of exposure period was studied, and a comparison of reaction to treatment in pregnant versus non-pregnant females was made. The classical data

  12. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-05-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other’s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network’s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network’s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. Furthermore, with the use of fractional cooperation, the average recovery overhead is further reduced by around 5% for the primary network and around 10% for the secondary network when a high fractional cooperation probability is used.

  13. POEMMA (Probe Of Extreme Multi-Messenger Astrophysics) Science and Design

    Science.gov (United States)

    Olinto, Angela V.; Perkins, Jeremy S.; POEMMA Collaboration

    2018-01-01

    In this poster we describe the preliminary design of POEMMA (Probe Of Extreme Multi-Messenger Astrophysics). The two satellites flying in formation consists of an innovative Schmidt telescope design optimized for low energy threshold and large geometry factor for observations. The 4 meter mirror was designed to fit in a dual manifest launch vehicle. A novel corrector lens and fast optics are design to optimized the full field of view to 45 degrees. The large focal surface will be populated by two systems: a multi-anode PMT (MAPMT) array for fluorescence detection and a Silicon PM (SiPM) array for Cherenkov detection around the limb of the Earth. At an altitude of 525 km, the LEO orbit will have a 28.5o inclination the mission can be launched from KSC and have a mission life of 3 years with a 5 year goal. The mission will improve by orders of magnitude the observations of ultra-high energy cosmic rays above tens of EeV and search for neutrinos above tens of PeVs.

  14. Design and implementation of real-time multi-sensor vision systems

    CERN Document Server

    Popovic, Vladan; Cogal, Ömer; Akin, Abdulkadir; Leblebici, Yusuf

    2017-01-01

    This book discusses the design of multi-camera systems and their application to fields such as the virtual reality, gaming, film industry, medicine, automotive industry, drones, etc.The authors cover the basics of image formation, algorithms for stitching a panoramic image from multiple cameras, and multiple real-time hardware system architectures, in order to have panoramic videos. Several specific applications of multi-camera systems are presented, such as depth estimation, high dynamic range imaging, and medical imaging.

  15. Designing beauty the art of cellular automata

    CERN Document Server

    Martínez, Genaro

    2016-01-01

    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  16. Biomechanics of cellular solids.

    Science.gov (United States)

    Gibson, Lorna J

    2005-03-01

    Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.

  17. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    Science.gov (United States)

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi

  18. Multi-channel spintronic transistor design based on magnetoelectric barriers and spin-orbital effects

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a spin transistor design based on spin-orbital interactions in a two-dimensional electron gas, with magnetic barriers induced by a patterned ferromagnetic gate. The proposed device overcomes certain shortcomings of previous spin transistor designs such as long device length and degradation of conductance modulation for multi-channel transport. The robustness of our device for multi-channel transport is unique in spin transistor designs based on spin-orbit coupling. The device is more practical in fabrication and experimental respects compared to previously conceived single-mode spin transistors

  19. Adaptive multi-channel downlink assignment for overloaded spectrum-shared multi-antenna overlaid cellular networks

    KAUST Repository

    Radaydeh, Redha  Mahmoud; Alouini, Mohamed-Slim; Qaraqe, Khalid

    2012-01-01

    setup is expected to reduce the operational power and to function satisfactorily with the existing cellular architecture. Among the possible deployments of small-cell access points is to manage many of them to serve specific spatial locations, while

  20. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    Science.gov (United States)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  1. Designers initiating open innovation with multi-stakeholder through co-reflection sessions

    NARCIS (Netherlands)

    Tomico Plasencia, O.; Lu, Y.; Baha, S.E.; Lehto, P.; Hivikoski, T.; Roozenburg, N.F.M.; Chen, L.; Stappers, P.J.

    2011-01-01

    This paper explores a designerly approach to open innovation initiation as start of the PhD research of the third author. More specifically, it presents the application of co-reflection sessions by designers in a healthcare open innovation project to initiate multi-stakeholder participation.

  2. Full-Duplex Communications in Large-Scale Cellular Networks

    KAUST Repository

    Alammouri, Ahmad

    2016-01-01

    /downlink interference. This thesis presents a tractable framework, based on stochastic geometry, to study FD communications in multi-tier cellular networks. Particularly, we assess the FD communications effect on the network performance and quantify the associated gains

  3. Developmental toxicity of engineered nanomaterials in rodents

    Energy Technology Data Exchange (ETDEWEB)

    Ema, Makoto, E-mail: ema-makoto@aist.go.jp; Gamo, Masashi; Honda, Kazumasa

    2016-05-15

    We summarized significant effects reported in the literature on the developmental toxicity of engineered nanomaterials (ENMs) in rodents. The developmental toxicity of ENMs included not only structural abnormalities, but also death, growth retardation, and behavioral and functional abnormalities. Most studies were performed on mice using an injection route of exposure. Teratogenic effects were indicated when multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), and TiO{sub 2}-nanoparticles were administered to mice during early gestation. Reactive oxygen species levels were increased in placentas and malformed fetuses and their placentas after prenatal exposure to MWCNTs and SWCNTs, respectively. The pre- and postnatal mortalities and growth retardation in offspring increased after prenatal exposure to ENMs. Histopathological and functional abnormalities were also induced in placentas after prenatal exposure to ENMs. Maternal exposure to ENMs induced behavioral alterations, histopathological and biochemical changes in the central nervous system, increased susceptibility to allergy, transplacental genotoxicity, and vascular, immunological, and reproductive effects in offspring. The size- and developmental stage-dependent placental transfer of ENMs was noted after maternal exposure. Silver accumulated in the visceral yolk sac after being injected with Ag-NPs during early gestation. Although currently available data has provided initial information on the potential developmental toxicity of ENMs, that on the developmental toxicity of ENMs is still very limited. Further studies using well-characterized ENMs, state-of the-art study protocols, and appropriate routes of exposure are required in order to clarify these developmental effects and provide information suitable for risk assessments of ENMs. - Highlights: • We review the developmental toxicity studies of engineered nanomaterials (ENMs). • Various developmental endpoints have been

  4. An investigation into the organisation and structural design of multi-computer process-control systems

    International Nuclear Information System (INIS)

    Gertenbach, W.P.

    1981-12-01

    A multi-computer system for the collection of data and control of distributed processes has been developed. The structure and organisation of this system, a study of the general theory of systems and of modularity was used as a basis for an investigation into the organisation and structured design of multi-computer process-control systems. A multi-dimensional model of multi-computer process-control systems was developed. In this model a strict separation was made between organisational properties of multi-computer process-control systems and implementation dependant properties. The model was based on the principles of hierarchical analysis and modularity. Several notions of hierarchy were found necessary to describe fully the organisation of multi-computer systems. A new concept, that of interconnection abstraction was identified. This concept is an extrapolation of implementation techniques in the hardware implementation area to the software implementation area. A synthesis procedure which relies heavily on the above described analysis of multi-computer process-control systems is proposed. The above mentioned model, and a set of performance factors which depend on a set of identified design criteria, were used to constrain the set of possible solutions to the multi-computer process-control system synthesis-procedure

  5. A methodology for designing flexible multi-generation systems

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Viana Ensinas, Adriano; Münster, Marie

    2016-01-01

    An FMG (flexible multi-generation system) consists of integrated and flexibly operated facilities that provide multiple links between the various layers of the energy system. FMGs may facilitate integration and balancing of fluctuating renewable energy sources in the energy system in a cost...... is based on consideration of the following points: Selection, location and dimensioning of processes; systematic heat and mass integration; flexible operation optimization with respect to both short-term market fluctuations and long-term energy system development; global sensitivity and uncertainty...... analysis; biomass supply chains; variable part-load performance; and multi-objective optimization considering economic and environmental performance. Tested in a case study, the methodology is proved effective in screening the solution space for efficient FMG designs, in assessing the importance...

  6. A fuzzy multi-objective optimization model for sustainable reverse logistics network design

    DEFF Research Database (Denmark)

    Govindan, Kannan; Paam, Parichehr; Abtahi, Amir Reza

    2016-01-01

    Decreasing the environmental impact, increasing the degree of social responsibility, and considering the economic motivations of organizations are three significant features in designing a reverse logistics network under sustainability respects. Developing a model, which can simultaneously consider...... a multi-echelon multi-period multi-objective model for a sustainable reverse logistics network. To reflect all aspects of sustainability, we try to minimize the present value of costs, as well as environmental impacts, and optimize the social responsibility as objective functions of the model. In order...... these environmental, social, and economic aspects and their indicators, is an important problem for both researchers and practitioners. In this paper, we try to address this comprehensive approach by using indicators for measurement of aforementioned aspects and by applying fuzzy mathematical programming to design...

  7. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells.

    Science.gov (United States)

    Hagiwara, Masaya; Maruta, Naomichi; Marumoto, Moegi

    2017-06-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left-right asymmetry, and disease pathogenesis of the human lung.

  8. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  9. Multi-objective Design Method for Hybrid Active Power Filter

    Science.gov (United States)

    Yu, Jingrong; Deng, Limin; Liu, Maoyun; Qiu, Zhifeng

    2017-10-01

    In this paper, a multi-objective optimal design for transformerless hybrid active power filter (HAPF) is proposed. The interactions between the active and passive circuits is analyzed, and by taking the interactions into consideration, a three-dimensional objective problem comprising of performance, efficiency and cost of HAPF system is formulated. To deal with the multiple constraints and the strong coupling characteristics of the optimization model, a novel constraint processing mechanism based on distance measurement and adaptive penalty function is presented. In order to improve the diversity of optimal solution and the local searching ability of the particle swarm optimization (PSO) algorithm, a chaotic mutation operator based on multistage neighborhood is proposed. The simulation results show that the optimums near the ordinate origin of the three-dimension space make better tradeoff among the performance, efficiency and cost of HAPF, and the experimental results of transformerless HAPF verify the effectiveness of the method for multi-objective optimization and design.

  10. Multi-objective optimisation for spacecraft design for demise and survivability

    OpenAIRE

    Trisolini, Mirko; Colombo, Camilla; Lewis, Hugh

    2017-01-01

    The paper presents the development of a multi-objective optimisation framework to study the effects that preliminary design choices have on the demisability and the survivability of a spacecraft. Building a spacecraft such that most of it will demise during the re-entry through design-for-demise strategies may lead to design that are more vulnerable to space debris impacts, thus compromising the reliability of the mission. The two models developed to analyse the demisability and the survivabi...

  11. Design of multi-function Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank

  12. Evaluation of Structural Cellular Glass

    Science.gov (United States)

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  13. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements

    Science.gov (United States)

    Welchen, Elina; García, Lucila; Mansilla, Natanael; Gonzalez, Daniel H.

    2014-01-01

    Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number, and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light–dark cycles, and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands. PMID:24409193

  14. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.

    Directory of Open Access Journals (Sweden)

    Elina eWelchen

    2014-01-01

    Full Text Available Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light-dark cycles and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.

  15. The Urban Decision Room : A multi actor design engineering simulation system

    NARCIS (Netherlands)

    Van Loon, P.P.J.; Barendse, P.; Duerink, S.

    2012-01-01

    This paper deals with the definition and construction of a decision based multi actor urban design model which enables the integration of the allocation of a variety of urban land uses with the distribution of different urban functions: the Urban Decision Room. Urban design (and planning) is, among

  16. A Probabilistic Approach for the System-Level Design of Multi-ASIP Platforms

    DEFF Research Database (Denmark)

    Micconi, Laura

    introduce a system-level Design Space Exploration (DSE) for the very early phases of the design that automatizes part of the multi-ASIP design flow. Our DSE is responsible for assigning the tasks to the different ASIPs exploring different platform alternatives. We perform a schedulability analysis for each...

  17. Multi-objective evolutionary optimisation for product design and manufacturing

    CERN Document Server

    2011-01-01

    Presents state-of-the-art research in the area of multi-objective evolutionary optimisation for integrated product design and manufacturing Provides a comprehensive review of the literature Gives in-depth descriptions of recently developed innovative and novel methodologies, algorithms and systems in the area of modelling, simulation and optimisation

  18. Study on Parameter Optimization Design of Drum Brake Based on Hybrid Cellular Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2012-01-01

    Full Text Available In consideration of the significant role the brake plays in ensuring the fast and safe running of vehicles, and since the present parameter optimization design models of brake are far from the practical application, this paper proposes a multiobjective optimization model of drum brake, aiming at maximizing the braking efficiency and minimizing the volume and temperature rise of drum brake. As the commonly used optimization algorithms are of some deficiency, we present a differential evolution cellular multiobjective genetic algorithm (DECell by introducing differential evolution strategy into the canonical cellular genetic algorithm for tackling this problem. For DECell, the gained Pareto front could be as close as possible to the exact Pareto front, and also the diversity of nondominated individuals could be better maintained. The experiments on the test functions reveal that DECell is of good performance in solving high-dimension nonlinear multiobjective problems. And the results of optimizing the new brake model indicate that DECell obviously outperforms the compared popular algorithm NSGA-II concerning the number of obtained brake design parameter sets, the speed, and stability for finding them.

  19. Multi-type Step-wise group screening designs with unequal A-priori ...

    African Journals Online (AJOL)

    ... design with unequal group sizes and obtain values of the group sizes that minimize the expected number of runs.. Keywords: Group Screening, Group factors, multi-type step-wise group screening, expected number of runs, Optimum group screening designs > East African Journal of Statistics Vol. 1 (1) 2005: pp. 49-67 ...

  20. Dynamic supply chain network design with capacity planning and multi-period pricing

    DEFF Research Database (Denmark)

    Fattahi, Mohammad; Mahootchi, Masoud; Govindan, Kannan

    2015-01-01

    This paper addresses a new problem in designing and planning a multi-echelon and multi-product supply chain network over a multi-period horizon in which customer zones have price-sensitive demands. Based on price-demand relationships, a generic method is presented to obtain price levels...... for products and then, a mixed-integer linear programming model is developed. Due to the problem intractability, a simulated annealing algorithm that uses some developed linear relaxation-based heuristics for capacity planning and pricing is presented. Numerical results demonstrate the significance...

  1. Design optimization of multi-layer Silicon Carbide cladding for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@unm.edu [Department of Nuclear Engineering, University of New Mexico, MSC01 1120 1 University of New Mexico, Albuquerque, NM 87131 (United States); NO, Hee Cheon, E-mail: hcno@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2017-01-15

    Highlights: • SiC cladding designs are optimized with a multi-layer structural analysis code. • Layer radial thickness fraction that minimizes cladding fracture probability exists. • The demonstrated procedure is applicable for multi-layer SiC cladding design. • Duplex SiC with the inner composite fraction ∼0.4 is optimal in a reference case. • Increasing composite thermal conductivity markedly decreases SiC cladding stress. - Abstract: A parametric study that demonstrates a methodology for determining the optimum bilayer composition in a duplex SiC cladding is discussed. The structural performance of multi-layer SiC cladding design is significantly affected by radial thickness fraction of each layer. This study shows that there exists an optimal composite/monolith radial thickness fraction that minimizes failure probability for a duplex SiC cladding in steady-state operation. An exemplary reference case study shows that the duplex cladding with the inner composite fraction ∼0.4 and the outer CVD-SiC fraction ∼0.6 is found to be the optimal SiC cladding design for the current PWRs with the reference material choice for CVD-SiC and fiber reinforced composite. A marginal increase in the composite fraction from the presented optimal designs may lead to increase structural integrity by introducing some unquantified merits such as increasing damage tolerance. The major factors that affect the optimum cladding designs are temperature gradients and internal gas pressure. Clad wall thickness, thermal conductivity, and Weibull modulus are among the key design parameters/material properties.

  2. A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems

    NARCIS (Netherlands)

    Hamdy, M.; Nguyen, A.T. (Anh Tuan); Hensen, J.L.M.

    2016-01-01

    Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently. Many multi-objective optimization algorithms have been developed; however few of them are tested in solving building design

  3. Developmental Dyslexia: The Visual Attention Span Deficit Hypothesis

    Science.gov (United States)

    Bosse, Marie-Line; Tainturier, Marie Josephe; Valdois, Sylviane

    2007-01-01

    The visual attention (VA) span is defined as the amount of distinct visual elements which can be processed in parallel in a multi-element array. Both recent empirical data and theoretical accounts suggest that a VA span deficit might contribute to developmental dyslexia, independently of a phonological disorder. In this study, this hypothesis was…

  4. Katanin: A Sword Cutting Microtubules for Cellular, Developmental, and Physiological Purposes

    Directory of Open Access Journals (Sweden)

    Ivan Luptovčiak

    2017-11-01

    Full Text Available KATANIN is a well-studied microtubule severing protein affecting microtubule organization and dynamic properties in higher plants. By regulating mitotic and cytokinetic and cortical microtubule arrays it is involved in the progression of cell division and cell division plane orientation. KATANIN is also involved in cell elongation and morphogenesis during plant growth. In this way KATANIN plays critical roles in diverse plant developmental processes including the development of pollen, embryo, seed, meristem, root, hypocotyl, cotyledon, leaf, shoot, and silique. KATANIN-dependent microtubule regulation seems to be under the control of plant hormones. This minireview provides an overview on available KATANIN mutants and discusses advances in our understanding of KATANIN biological roles in plants.

  5. The cellular response of Saccharomyces cerevisiae to multi-walled carbon nanotubes (MWCNTs

    Directory of Open Access Journals (Sweden)

    Chantelle L. Phillips

    2015-03-01

    Full Text Available Nanoparticles (NPs especially those of carbon nanotubes (CNTs have remarkable properties that are very desirable in various biological and biomedical applications. This has necessitated the rapid study of CNT toxicities, to augment their safe use, particularly, in yeast cells. The yeast cell; Saccharomyces cerevisiae is a widely used industrial and biological organism with very limited data regarding their cellular behaviour in NPs. The current study examines the cellular response of S. cerevisiae to MWCNTs. The CNTs were produced by the swirled floating catalytic chemical vapour deposition (SFCCVD method and covalently functionalised using 1,3-dipolar cycloaddition. The CNT properties such as size, surface area, quality and surface vibrations were characterized using TEM, SEM, BET, TGA and Raman spectroscopy, respectively. The cellular uptake was confirmed with a FITC functionalised MWCNTs using 1H NMR, SEM and TEM. The CNT concentrations of 2–40 μg/ml were used to determine the cellular response through cell growth phases and cell viability characteristics. The TEM and SEM analyses showed the production of MWCNTs with an average diameter of 53 ± 12 nm and a length of 2.5 ± 0.5 μm. The cellular uptake of FITC-MWCNTs showed 100% internalisation in the yeast cells. The growth curve responses to the MWCNT doses showed no significant differences at P > 0.05 on the growth rate and viability of the S. cerevisiae cells.

  6. Complex Automata: Multi-scale Modeling with Coupled Cellular Automata

    NARCIS (Netherlands)

    Hoekstra, A.G.; Caiazzo, A.; Lorenz, E.; Falcone, J.-L.; Chopard, B.; Hoekstra, A.G.; Kroc, J.; Sloot, P.M.A.

    2010-01-01

    Cellular Automata (CA) are generally acknowledged to be a powerful way to describe and model natural phenomena [1-3]. There are even tempting claims that nature itself is one big (quantum) information processing system, e.g. [4], and that CA may actually be nature’s way to do this processing [5-7].

  7. On the synthesis of a bio-inspired dual-cellular fluidic flexible matrix composite adaptive structure based on a non-dimensional dynamics model

    International Nuclear Information System (INIS)

    Li, Suyi; Wang, K W

    2013-01-01

    A recent study investigated the dynamic characteristics of an adaptive structure concept featuring dual fluidic flexible matrix composite (F 2 MC) cells inspired by the configuration of plant cells and cell walls. This novel bio-inspired system consists of two F 2 MC cells with different fiber angles connected through internal fluid circuits. It was discovered that the dual F 2 MC cellular structure can be characterized as a two degree of freedom damped mass–spring oscillator, and can be utilized as a vibration absorber or an enhanced actuator under different operation conditions. These results demonstrated that the concept is promising and further investigations are needed to develop methodologies for synthesizing future multi-cellular F 2 MC structural systems. While interesting, the previous study focused on specific case studies and analysis. That is, the outcome did not provide insight that could be generalized, or tools for synthesizing a multiple F 2 MC cellular structure. This paper attempts to address this important issue by developing a non-dimensional dynamic model, which reveals good physical insights as well as identifying crucial constitutive parameters for F 2 MC cellular design. Working with these parameters, rather than physical variables, can greatly simplify the mathematics involved in the study. A synthesis tool is then developed for the dual-cellular structure, and it is found that for each set of achievable target poles and zero, there exist multiple F 2 MC cellular designs, forming a design space. The presented physical insights and synthesis tool for the dual-cellular structure will be the building blocks for future investigation on cellular structures with a larger number of cells. (paper)

  8. Single Cell Force Spectroscopy for Quantification of Cellular Adhesion on Surfaces

    Science.gov (United States)

    Christenson, Wayne B.

    Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is alpha Mbeta2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering

  9. Scalable Multi-core Architectures Design Methodologies and Tools

    CERN Document Server

    Jantsch, Axel

    2012-01-01

    As Moore’s law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallalization of the computation and 3D integration technologies lead to distributed memory architectures. This book provides a current snapshot of industrial and academic research, conducted as part of the European FP7 MOSART project, addressing urgent challenges in many-core architectures and application mapping.  It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies. Describes trends towards distributed memory architectures and distributed power management; Integrates Network on Chip with distributed, shared memory architectures; Demonstrates novel design methodologies and frameworks for multi-core design space exploration; Shows how midll...

  10. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors

    International Nuclear Information System (INIS)

    Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W.

    2016-01-01

    This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.

  11. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2016-05-15

    This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.

  12. Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.

    Science.gov (United States)

    Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter

    2016-06-30

    Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage

  13. Novel Design for Quantum Dots Cellular Automata to Obtain Fault-Tolerant Majority Gate

    International Nuclear Information System (INIS)

    Razieh Farazkish, R.; Sayedsalehi, S.; Navi, K.

    2012-01-01

    Quantum-dot Cellular Automata (QCA) is one of the most attractive technologies for computing at nano scale. The principle element in QCA is majority gate. In this paper, fault-tolerance properties of the majority gate is analyzed. This component is suitable for designing fault-tolerant QCA circuits. We analyze fault-tolerance properties of three-input majority gate in terms of misalignment, missing, and dislocation cells. In order to verify the functionality of the proposed component some physical proofs using kink energy (the difference in electrostatic energy between the two polarization states) and computer simulations using QCA Designer tool are provided. Our results clearly demonstrate that the redundant version of the majority gate is more robust than the standard style for this gate.

  14. Novel Design for Quantum Dots Cellular Automata to Obtain Fault-Tolerant Majority Gate

    Directory of Open Access Journals (Sweden)

    Razieh Farazkish

    2012-01-01

    Full Text Available Quantum-dot Cellular Automata (QCA is one of the most attractive technologies for computing at nanoscale. The principle element in QCA is majority gate. In this paper, fault-tolerance properties of the majority gate is analyzed. This component is suitable for designing fault-tolerant QCA circuits. We analyze fault-tolerance properties of three-input majority gate in terms of misalignment, missing, and dislocation cells. In order to verify the functionality of the proposed component some physical proofs using kink energy (the difference in electrostatic energy between the two polarization states and computer simulations using QCA Designer tool are provided. Our results clearly demonstrate that the redundant version of the majority gate is more robust than the standard style for this gate.

  15. Multi-machine power system stabilizers design using chaotic optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-07-15

    In this paper, a multiobjective design of the multi-machine power system stabilizers (PSSs) using chaotic optimization algorithm (COA) is proposed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The PSSs parameters tuning problem is converted to an optimization problem which is solved by a chaotic optimization algorithm based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Two different objective functions are proposed in this study for the PSSs design problem. The first objective function is the eigenvalues based comprising the damping factor, and the damping ratio of the lightly damped electro-mechanical modes, while the second is the time domain-based multi-objective function. The robustness of the proposed COA-based PSSs (COAPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed COAPSS are demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices. In addition, the potential and superiority of the proposed method over the classical approach and genetic algorithm is demonstrated.

  16. Policy Design of Multi-Year Crop Insurance Contracts with Partial Payments.

    Directory of Open Access Journals (Sweden)

    Ying-Erh Chen

    Full Text Available Current crop insurance is designed to mitigate monetary fluctuations resulting from yield losses for a specific year. However, yield realization tendency can vary from year to year and may depend on the correlation of yield realizations across years. When the current single-year Yield Protection (YP and Area Risk Protection Insurance (ARPI contracts are extended to multiple periods, actuarially fair premium rate is expected to decrease as poor yield realizations in a year can be offset by another year's better yield realizations. In this study, we first use simulations to demonstrate how significant premium savings are possible when coverage is based on the sum of yields across years rather than on a year-by-year basis. We then describe the design of a multi-year framework of crop insurance and model the insurance using a copula approach. Insurance terms are extended to more than a year and the premium, liability, and indemnity are determined by a multi-year term. Moreover, partial payment is provided at the end of each term to offset the possibility of significant loss in a single term. County-level data obtained from the U.S. Department of Agriculture are used to demonstrate the implementations of the proposed multi-year crop insurance. The proposed multi-year plan would benefit farmers by offering insurance guarantees across years for significantly lower costs.

  17. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz

    2017-03-28

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  18. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Alouini, Mohamed-Slim

    2017-01-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  19. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing.

    Science.gov (United States)

    Hessel, Ellen V S; Staal, Yvonne C M; Piersma, Aldert H

    2018-03-13

    Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Contribution of cellular autolysis to tissular functions during plant development

    OpenAIRE

    Escamez, Sacha; Tuominen, Hannele

    2017-01-01

    Plant development requires specific cells to be eliminated in a predictable and genetically regulated manner referred to as programmed cell death (PCD). However, the target cells do not merely die but they also undergo autolysis to degrade their cellular corpses. Recent progress in understanding developmental cell elimination suggests that distinct proteins execute PCD sensu stricto and autolysis. In addition, cell death alone and cell dismantlement can fulfill different functions. Hence, it ...

  1. Limited Scope Design Study for Multi-Sensor Towbody

    Science.gov (United States)

    2016-06-01

    ports 2 Leak sensors 1 Electrical Surface supply voltage 300 V nominal (250–425 Vdc) Towbody output voltages 48/24/12 Vdc Load power...shallow water (អ m) at thousands of current and former Department of Defense (DoD) sites encompassing millions of acres. This design study...addresses the munitions remediation in shallow water problem with a system that uses a Multi-Sensor Towbody (MuST) and surface vessel with support

  2. Theoretical aspects of cellular decision-making and information-processing.

    Science.gov (United States)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2012-01-01

    Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.

  3. Design and experimental investigation of a Multi-segment plate concentrated photovoltaic solar energy system

    International Nuclear Information System (INIS)

    Wang, Gang; Chen, Zeshao; Hu, Peng

    2017-01-01

    Highlights: • A multi-segment plate concentrated photovoltaic solar energy system was proposed. • A prototype of this new concentrator was developed for experimental investigation. • Experimental investigation results showed a good concentrating uniformity. - Abstract: Solar energy is one of the most promising renewable energies and meaningful for the sustainable development of energy source. A multi-segment plate concentrated photovoltaic (CPV) solar power system was proposed in this paper, the design principle of the multi-segment plate concentrator of this solar power system was given, which could provide uniform solar radiation flux density distribution on solar cells. A prototype of this multi-segment plate CPV solar power system was developed for the experimental study, aiming at the investigations of solar radiation flux density distribution and PV performances under this concentrator design. The experimental results showed that the solar radiation flux density distribution provided by the multi-segment plate concentrator had a good uniformity, and the number and temperature of solar cells both influence the photoelectric transformation efficiency of the CPV solar power system.

  4. Why Are There Developmental Stages in Language Learning? A Developmental Robotics Model of Language Development.

    Science.gov (United States)

    Morse, Anthony F; Cangelosi, Angelo

    2017-02-01

    Most theories of learning would predict a gradual acquisition and refinement of skills as learning progresses, and while some highlight exponential growth, this fails to explain why natural cognitive development typically progresses in stages. Models that do span multiple developmental stages typically have parameters to "switch" between stages. We argue that by taking an embodied view, the interaction between learning mechanisms, the resulting behavior of the agent, and the opportunities for learning that the environment provides can account for the stage-wise development of cognitive abilities. We summarize work relevant to this hypothesis and suggest two simple mechanisms that account for some developmental transitions: neural readiness focuses on changes in the neural substrate resulting from ongoing learning, and perceptual readiness focuses on the perceptual requirements for learning new tasks. Previous work has demonstrated these mechanisms in replications of a wide variety of infant language experiments, spanning multiple developmental stages. Here we piece this work together as a single model of ongoing learning with no parameter changes at all. The model, an instance of the Epigenetic Robotics Architecture (Morse et al 2010) embodied on the iCub humanoid robot, exhibits ongoing multi-stage development while learning pre-linguistic and then basic language skills. Copyright © 2016 Cognitive Science Society, Inc.

  5. Examining the Criterion-Related Validity of the Pervasive Developmental Disorder Behavior Inventory

    Science.gov (United States)

    McMorris, Carly A.; Perry, Adrienne

    2015-01-01

    The Pervasive Developmental Disorder Behavior Inventory is a questionnaire designed to aid in the diagnosis of pervasive developmental disorders or autism spectrum disorders. The Pervasive Developmental Disorder Behavior Inventory assesses adaptive and maladaptive behaviors associated with pervasive developmental disorders and provides an…

  6. Multi-modal distribution crossover method based on two crossing segments bounded by selected parents applied to multi-objective design optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ariyarit, Atthaphon; Kanazaki, Masahiro [Tokyo Metropolitan University, Tokyo (Japan)

    2015-04-15

    This paper discusses airfoil design optimization using a genetic algorithm (GA) with multi-modal distribution crossover (MMDX). The proposed crossover method creates four segments from four parents, of which two segments are bounded by selected parents and two segments are bounded by one parent and another segment. After these segments are defined, four offsprings are generated. This study applied the proposed optimization to a real-world, multi-objective airfoil design problem using class-shape function transformation parameterization, which is an airfoil representation that uses polynomial function, to investigate the effectiveness of this algorithm. The results are compared with the results of the blend crossover (BLX) and unimodal normal distribution crossover (UNDX) algorithms. The objective of these airfoil design problems is to successfully find the optimal design. The outcome of using this algorithm is superior to that of the BLX and UNDX crossover methods because the proposed method can maintain higher diversity than the BLX and UNDX methods. This advantage is desirable for real-world problems.

  7. Multi-modal distribution crossover method based on two crossing segments bounded by selected parents applied to multi-objective design optimization

    International Nuclear Information System (INIS)

    Ariyarit, Atthaphon; Kanazaki, Masahiro

    2015-01-01

    This paper discusses airfoil design optimization using a genetic algorithm (GA) with multi-modal distribution crossover (MMDX). The proposed crossover method creates four segments from four parents, of which two segments are bounded by selected parents and two segments are bounded by one parent and another segment. After these segments are defined, four offsprings are generated. This study applied the proposed optimization to a real-world, multi-objective airfoil design problem using class-shape function transformation parameterization, which is an airfoil representation that uses polynomial function, to investigate the effectiveness of this algorithm. The results are compared with the results of the blend crossover (BLX) and unimodal normal distribution crossover (UNDX) algorithms. The objective of these airfoil design problems is to successfully find the optimal design. The outcome of using this algorithm is superior to that of the BLX and UNDX crossover methods because the proposed method can maintain higher diversity than the BLX and UNDX methods. This advantage is desirable for real-world problems.

  8. A new optimization method based on cellular automata for VVER-1000 nuclear reactor loading pattern

    International Nuclear Information System (INIS)

    Fadaei, Amir Hosein; Setayeshi, Saeed

    2009-01-01

    This paper presents a new and innovative optimization technique, which uses cellular automata for solving multi-objective optimization problems. Due to its ability in simulating the local information while taking neighboring effects into account, the cellular automata technique is a powerful tool for optimization. The fuel-loading pattern in nuclear reactor cores is a major optimization problem. Due to the immensity of the search space in fuel management optimization problems, finding the optimum solution requires a huge amount of calculations in the classical method. The cellular automata models, based on local information, can reduce the computations significantly. In this study, reducing the power peaking factor, while increasing the initial excess reactivity inside the reactor core of VVER-1000, which are two apparently contradictory objectives, are considered as the objective functions. The result is an optimum configuration, which is in agreement with the pattern proposed by the designer. In order to gain confidence in the reliability of this method, the aforementioned problem was also solved using neural network and simulated annealing, and the results and procedures were compared.

  9. VIII. THE PAST, PRESENT, AND FUTURE OF DEVELOPMENTAL METHODOLOGY.

    Science.gov (United States)

    Little, Todd D; Wang, Eugene W; Gorrall, Britt K

    2017-06-01

    This chapter selectively reviews the evolution of quantitative practices in the field of developmental methodology. The chapter begins with an overview of the past in developmental methodology, discussing the implementation and dissemination of latent variable modeling and, in particular, longitudinal structural equation modeling. It then turns to the present state of developmental methodology, highlighting current methodological advances in the field. Additionally, this section summarizes ample quantitative resources, ranging from key quantitative methods journal articles to the various quantitative methods training programs and institutes. The chapter concludes with the future of developmental methodology and puts forth seven future innovations in the field. The innovations discussed span the topics of measurement, modeling, temporal design, and planned missing data designs. Lastly, the chapter closes with a brief overview of advanced modeling techniques such as continuous time models, state space models, and the application of Bayesian estimation in the field of developmental methodology. © 2017 The Society for Research in Child Development, Inc.

  10. [Fanconi anemia: cellular and molecular features].

    Science.gov (United States)

    Macé, G; Briot, D; Guervilly, J-H; Rosselli, F

    2007-02-01

    Fanconi anemia (FA) is a recessive human cancer prone syndrome featuring bone marrow failure, developmental abnormalities and hypersensitivity to DNA crosslinking agents exposure. 11 among 12 FA gene have been isolated. The biochemical functions of the FANC proteins remain poorly understood. Anyhow, to cope with DNA crosslinks a cell needs a functional FANC pathway. Moreover, the FANC proteins appear to be involved in cell protection against oxidative damage and in the control of TNF-alpha activity. In this review, we describe the current understanding of the FANC pathway and we present how it may be integrated in the complex networks of proteins involved in maintaining the cellular homeostasis.

  11. Cellular internalisation kinetics and cytotoxic properties of statistically designed and optimised neo-geometric copper nanocrystals.

    Science.gov (United States)

    Murugan, Karmani; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2017-09-01

    This study aimed to highlight a statistic design to precisely engineer homogenous geometric copper nanoparticles (CuNPs) for enhanced intracellular drug delivery as a function of geometrical structure. CuNPs with a dual functionality comprising geometric attributes for enhanced cell uptake and exerting cytotoxic activity on proliferating cells were synthesized as a novel drug delivery system. This paper investigated the defined concentrations of two key surfactants used in the reaction to mutually control and manipulate nano-shape and optimisation of the geometric nanosystems. A statistical experimental design comprising a full factorial model served as a refining factor to achieve homogenous geometric nanoparticles using a one-pot method for the systematic optimisation of the geometric CuNPs. Shapes of the nanoparticles were investigated to determine the result of the surfactant variation as the aim of the study and zeta potential was studied to ensure the stability of the system and establish a nanosystem of low aggregation potential. After optimisation of the nano-shapes, extensive cellular internalisation studies were conducted to elucidate the effect of geometric CuNPs on uptake rates, in addition to the vital toxicity assays to further understand the cellular effect of geometric CuNPs as a drug delivery system. In addition to geometry; volume, surface area, orientation to the cell membrane and colloidal stability is also addressed. The outcomes of the study demonstrated the success of homogenous geometric NP formation, in addition to a stable surface charge. The findings of the study can be utilized for the development of a drug delivery system for promoted cellular internalisation and effective drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Design and Optimization of Gearless Drives using Multi-Physics Approach

    DEFF Research Database (Denmark)

    Andersen, Søren Bøgh

    . The optimization resulted in a mass reduction of 4.0% and a decrease of losses of 9.9% compared to the original drive design. The thesis also opens new research fronts and highlights three new necessary research aspects for further development of the design processes of large gearless drives based on a multi......Many different technical areas are involved in the design process of large gearless drives for the mining industry, aiming at correctly describing the electrical-mechanical-thermal behavior of the drive. So far, these various technical areas are being treated more or less separately...

  13. Reference design (MK-I and MK-II) for experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiaki; Suzuki, Kunihiko; Sato, Sadao

    1975-10-01

    This report summarizes the results of a study on thermal and mechanical performances of the core, which are obtained in course of reference design (Mk-I and Mk-II) for the experimental multi-purpose VHTR: (1) Design criteria, design methods and design data. These bases are also discussed in order to refer in the case of proceeding a next design work. (2) The results of performance analysis such as the initial core and its prediction for the irradiated core. (auth.)

  14. Multi-Disciplinary Design Optimization Using WAVE

    Science.gov (United States)

    Irwin, Keith

    2000-01-01

    develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.

  15. Design of a fault-tolerant reversible control unit in molecular quantum-dot cellular automata

    Science.gov (United States)

    Bahadori, Golnaz; Houshmand, Monireh; Zomorodi-Moghadam, Mariam

    Quantum-dot cellular automata (QCA) is a promising emerging nanotechnology that has been attracting considerable attention due to its small feature size, ultra-low power consuming, and high clock frequency. Therefore, there have been many efforts to design computational units based on this technology. Despite these advantages of the QCA-based nanotechnologies, their implementation is susceptible to a high error rate. On the other hand, using the reversible computing leads to zero bit erasures and no energy dissipation. As the reversible computation does not lose information, the fault detection happens with a high probability. In this paper, first we propose a fault-tolerant control unit using reversible gates which improves on the previous design. The proposed design is then synthesized to the QCA technology and is simulated by the QCADesigner tool. Evaluation results indicate the performance of the proposed approach.

  16. Cooperative joint precoding in a downlink cellular system with shared relay: Design and performance evaluation

    KAUST Repository

    Kwon, JaeWoo; Park, Kihong; Ko, Youngchai; Yang, Hongchuan

    2012-01-01

    In this paper, we investigate a relay enhanced cellular system, where a relay station is located in the overlap area served by two base stations. We propose cooperative joint precoding schemes for the downlink transmission of such relay enhanced cellular system to maximize the system capacity while minimizing the interference at both the relay station and the mobile stations. We formulate the optimization problems to maximize the system capacity and design the multiuser precoding vectors at each base station and the relay station. We quantify the ergodic rate performance of the proposed multiuser precoding schemes through statistical analysis. The extensively derived ergodic expressions will facilitate the accurate performance evaluation of the proposed transmission schemes. Numerical results show that the proposed schemes can effectively cancel the interference and improve the sum rate and the outage performance for cell edge users. © 2002-2012 IEEE.

  17. Cooperative joint precoding in a downlink cellular system with shared relay: Design and performance evaluation

    KAUST Repository

    Kwon, JaeWoo

    2012-10-01

    In this paper, we investigate a relay enhanced cellular system, where a relay station is located in the overlap area served by two base stations. We propose cooperative joint precoding schemes for the downlink transmission of such relay enhanced cellular system to maximize the system capacity while minimizing the interference at both the relay station and the mobile stations. We formulate the optimization problems to maximize the system capacity and design the multiuser precoding vectors at each base station and the relay station. We quantify the ergodic rate performance of the proposed multiuser precoding schemes through statistical analysis. The extensively derived ergodic expressions will facilitate the accurate performance evaluation of the proposed transmission schemes. Numerical results show that the proposed schemes can effectively cancel the interference and improve the sum rate and the outage performance for cell edge users. © 2002-2012 IEEE.

  18. Multi objective decision making in hybrid energy system design

    Science.gov (United States)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component

  19. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7T and 7T.

    Science.gov (United States)

    Frass-Kriegl, Roberta; Laistler, Elmar; Hosseinnezhadian, Sajad; Schmid, Albrecht Ingo; Moser, Ewald; Poirier-Quinot, Marie; Darrasse, Luc; Ginefri, Jean-Christophe

    2016-12-01

    A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7T and 7T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B 1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B 1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Research of the application of multi-group libraries based on ENDF/B-VII library in the reactor design

    International Nuclear Information System (INIS)

    Mi Aijun; Li Junjie

    2010-01-01

    In this paper the multi-group libraries were constructed by processing ENDF/B-VII neutron incident files into multi-group structure, and the application of the multi-group libraries in the pressurized-water reactor(PWR) design was studied. The construction of the multi-group library is realized by using the NJOY nuclear data processing system. The code can process the neutron cross section files form ENDF format to MATXS format which was required in SN code. Two dimension transport theory code of discrete ordinates DORT was used to verify the multi-group libraries and the method of the construction by comparing calculations for some representative benchmarks. We made the PWR shielding calculation by using the multi-group libraries and studied the influence of the parameters involved during the construction of the libraries such as group structure, temperatures and weight functions on the shielding design of the PWR. This work is the preparation for the construction of the multi-group library which will be used in PWR shielding design in engineering. (authors)

  1. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    Science.gov (United States)

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. © 2015 Wiley Periodicals, Inc.

  2. Cellular therapies for heart disease: unveiling the ethical and public policy challenges.

    Science.gov (United States)

    Raval, Amish N; Kamp, Timothy J; Hogle, Linda F

    2008-10-01

    Cellular therapies have emerged as a potential revolutionary treatment for cardiovascular disease. Promising preclinical results have resulted in a flurry of basic research activity and spawned multiple clinical trials worldwide. However, the optimal cell type and delivery mode have not been determined for target patient populations. Nor have the mechanisms of benefit for the range of cellular interventions been clearly defined. Experiences to date have unveiled a myriad of ethical and public policy challenges which will affect the way researchers and clinicians make decisions for both basic and clinical research. Stem cells derived from embryos are at the forefront of the ethical and political debate, raising issues of which derivation methods are morally and socially permissible to pursue, as much as which are technically feasible. Adult stem cells are less controversial; however, important challenges exist in determining study design, cell processing, delivery mode, and target patient population. Pathways to successful commercialization and hence broad accessibility of cellular therapies for heart disease are only beginning to be explored. Comprehensive, multi-disciplinary and collaborative networks involving basic researchers, clinicians, regulatory officials and policymakers are required to share information, develop research, regulatory and policy standards and enable rational and ethical cell-based treatment approaches.

  3. Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes

    Science.gov (United States)

    Liu, Dun; Wang, Lijun; Wang, Zhigang; Cuschieri, Alfred

    2012-07-01

    To date, there has not been an agreement on the best methods for the characterisation of multi-walled carbon nanotube (MWCNT) toxicity. The length of MWCNTs has been identified as a factor in in vitro and in vivo studies, in addition to their purity and biocompatible coating. Another unresolved issue relates to the variable toxicity of MWCNTs on different cell types. The present study addressed the effects of MWCNTs' length on mammalian immune and epithelial cancer cells RAW264.7 and MCF-7, respectively. Our data confirm that MWCNTs induce cytotoxicity in a length- and cell type-dependent manner. Whereas, longer (3 to 14 μm) MWCNTs exert high toxicity, especially to RAW264.7 cells, shorter (1.5 μm) MWCNTs are significantly less cytotoxic. These findings confirm that the degree of biocompatibility of MWCNTs is closely related to their length and that immune cells appear to be more susceptible to damage by MWCNTs. Our study also indicates that MWCNT nanotoxicity should be analysed for various components of cellular response, and cytotoxicity data should be validated by the use of more than one assay system. Results from chromogenic-based assays should be confirmed by trypan blue exclusion.

  4. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope.

    Science.gov (United States)

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2016-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy.

  5. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    Science.gov (United States)

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  6. Multi-stage LLC resonant converters designed for wide output voltage ranges

    OpenAIRE

    Tsang, C.-W.; Bingham, C. M.; Foster, M. P.; Stone, D. A.; Leech, J. M.

    2016-01-01

    The paper describes a novel multi-stage LLC resonant converter topology for facilitating wide output voltage ranges. This is achieved by combining the gain range of a capacitor-diode clamped LLC resonant converter with that of a traditional LLC resonant converter. A prototype converter is designed and commissioned to illustrate the design procedure and demonstrate resulting operational characteristics. Experimental results are used to show operational characteristics of the proposed conver...

  7. PERFORMANCE ENHANCEMENT OF A MINIATURE STIRLING CRYOCOOLER WITH A MULTI MESH REGENERATOR DESIGN

    Directory of Open Access Journals (Sweden)

    KISHOR KUMAR V. V.

    2017-06-01

    Full Text Available A parametric study has been carried out using the software REGEN 3.3 to optimize the regenerator of a miniature Stirling cryocooler operating with a warm end temperature of 300 K and cold end temperature of 80 K. Regenerator designs which produce the maximum coefficient of performance (COP of the system is considered as an optimized regenerator. The length and diameter of the regenerator were fixed from the cooler system requirements. Single mesh regenerators made of 200, 250, 300, 400 and 450 Stainless Steel wire meshes were considered and the optimum phase angle and mesh size were obtained. A maximum COP of 0.1475 was obtained for 300 mesh regenerator at 70° phase angle. Then multi mesh regenerators were considered with finer mesh on the cold end and coarser mesh on the hot end. The optimum size and length of each mesh in the multi mesh regenerator and the optimum phase angle were calculated. The maximum COP of 0.156 was obtained for 200 300-400 multi mesh regenerator at 70° phase angle. The COP and net refrigeration obtained for an optimized multi mesh regenerator was found to be significantly higher than that of a single mesh regenerator. Thus a multi mesh regenerator design with a proper combination of regenerator mesh size and length can enhance the regenerator effectiveness.

  8. Impaired activity of CCA-adding enzyme TRNT1 impacts OXPHOS complexes and cellular respiration in SIFD patient-derived fibroblasts.

    Science.gov (United States)

    Liwak-Muir, Urszula; Mamady, Hapsatou; Naas, Turaya; Wylie, Quinlan; McBride, Skye; Lines, Matthew; Michaud, Jean; Baird, Stephen D; Chakraborty, Pranesh K; Holcik, Martin

    2016-06-18

    SIFD (Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay) is a novel form of congenital sideroblastic anemia associated with B-cell immunodeficiency, periodic fevers, and developmental delay caused by mutations in the CCA-adding enzyme TRNT1, but the precise molecular pathophysiology is not known. We show that the disease causing mutations in patient-derived fibroblasts do not affect subcellular localization of TRNT1 and show no gross morphological differences when compared to control cells. Analysis of cellular respiration and oxidative phosphorylation (OXPHOS) complexes demonstrates that both basal and maximal respiration rates are decreased in patient cells, which may be attributed to an observed decrease in the abundance of select proteins of the OXPHOS complexes. Our data provides further insight into cellular pathophysiology of SIFD.

  9. Application of neural network to multi-dimensional design window search

    International Nuclear Information System (INIS)

    Kugo, T.; Nakagawa, M.

    1996-01-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly such a work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. A principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network as a substitute of an analysis code. We apply the present method to a fuel pin design of high conversion light water reactors for the neutronics and thermal hydraulics fields to demonstrate performances of the method. (author)

  10. Design of homo-organic acid producing strains using multi-objective optimization

    DEFF Research Database (Denmark)

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk

    2015-01-01

    Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic ...

  11. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin

    Science.gov (United States)

    McDonell, Laura M.; Kernohan, Kristin D.; Boycott, Kym M.; Sawyer, Sarah L.

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis. PMID:26152202

  12. Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf

    of evolutionary computation, a choice was made to use multi-objective algorithms for the purpose of aiding in automatic controller design. More specifically, the choice was made to use the Non-dominated Sorting Genetic Algorithm II (NSGAII), which is one of the most potent algorithms currently in use...... for automatic controller design. However, because the field of evolutionary computation is relatively unknown in the field of control engineering, this thesis also includes a comprehensive introduction to the basic field of evolutionary computation as well as a description of how the field has previously been......In order to design the controllers of tomorrow, a need has risen for tools that can aid in the design of these. A desire to use evolutionary computation as a tool to achieve that goal is what gave inspiration for the work contained in this thesis. After having studied the foundations...

  13. Algorithm Design of CPCI Backboard's Interrupts Management Based on VxWorks' Multi-Tasks

    Science.gov (United States)

    Cheng, Jingyuan; An, Qi; Yang, Junfeng

    2006-09-01

    This paper begins with a brief introduction of the embedded real-time operating system VxWorks and CompactPCI standard, then gives the programming interfaces of Peripheral Controller Interface (PCI) configuring, interrupts handling and multi-tasks programming interface under VxWorks, and then emphasis is placed on the software frameworks of CPCI interrupt management based on multi-tasks. This method is sound in design and easy to adapt, ensures that all possible interrupts are handled in time, which makes it suitable for data acquisition systems with multi-channels, a high data rate, and hard real-time high energy physics.

  14. A robust PSSs design using PSO in a multi-machine environment

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Safari, A.; Aghmasheh, R. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-04-15

    In this paper, multi-objective design of multi-machine power system stabilizers (PSSs) using particle swarm optimization (PSO) is proposed. The potential of the proposed approach for optimal setting of the widely used conventional lead-lag PSSs has been investigated. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electromechanical modes of all machines to a prescribed zone in the s-plane. The PSSs parameters tuning problem is converted to an optimization problem with the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes, which is solved by a PSO algorithm which has a strong ability to find the most optimistic results. The robustness of the proposed PSO-based PSSs (PSOPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed PSOPSS are compared with the genetic algorithm based tuned PSS and classical PSSs through eigenvalue analysis, nonlinear time-domain simulation and some performance indices to illustrate its robust performance for a wide range of loading conditions.

  15. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  16. Adder design using a 5-input majority gate in a novel “multilayer gate design paradigm” for quantum dot cellular automata circuits

    International Nuclear Information System (INIS)

    Kumar, Rohit; Ghosh, Bahniman; Gupta, Shoubhik

    2015-01-01

    This paper proposes a novel design paradigm for circuits designed in quantum dot cellular automata (QCA) technology. Previously reported QCA circuits in the literature have generally been designed in a single layer which is the main logical block in which the inverter and majority gate are on the base layer, except for the parts where multilayer wire crossing was used. In this paper the concept of multilayer wire crossing has been extended to design logic gates in multilayers. Using a 5-input majority gate in a multilayer, a 1-bit and 2-bit adder have been designed in the proposed multilayer gate design paradigm. A comparison has been made with some adders reported previously in the literature and it has been shown that circuits designed in the proposed design paradigm are much more efficient in terms of area, the requirement of QCA cells in the design and the input–output delay of the circuit. Over all, the availability of one additional spatial dimension makes the design process much more flexible and there is scope for the customizability of logic gate designs to make the circuit compact. (paper)

  17. Deposition dynamics of multi-solvent bioinks

    Science.gov (United States)

    Kaneelil, Paul; Pack, Min; Cui, Chunxiao; Han, Li-Hsin; Sun, Ying

    2017-11-01

    Inkjet printing cellular scaffolds using bioinks is gaining popularity due to the advancement of printing technology as well as the growing demands of regenerative medicine. Numerous studies have been conducted on printing scaffolds of biomimetic structures that support the cell production of human tissues. However, the underlying physics of the deposition dynamics of bioinks remains elusive. Of particular interest is the unclear deposition dynamics of multi-solvent bioinks, which is often used to tune the micro-architecture formation. Here we systematically studied the effects of jetting frequency, solvent properties, substrate wettability, and temperature on the three-dimensional deposition patterns of bioinks made of Methacrylated Gelatin and Carboxylated Gelatin. The microflows inside the inkjet-printed picolitre drops were visualized using fluorescence tracer particles to decipher the complex processes of multi-solvent evaporation and solute self-assembly. The evolution of droplet shape was observed using interferometry. With the integrated techniques, the interplay of solvent evaporation, biopolymer deposition, and multi-drop interactions were directly observed for various ink and substrate properties, and printing conditions. Such knowledge enables the design and fabrication of a variety of tissue engineering scaffolds for potential use in regenerative medicine.

  18. Multi-operator collaboration for green cellular networks under roaming price consideration

    KAUST Repository

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim

    2014-01-01

    This paper investigates the collaboration between multiple mobile operators to optimize the energy efficiency of cellular networks. Our framework studies the case of LTE-Advanced networks deployed in the same area and owning renewable energy generators. The objective is to reduce the CO2 emissions of cellular networks via collaborative techniques and using base station sleeping strategy while respecting the network quality of service. Low complexity and practical algorithm is employed to achieve green goals during low traffic periods. Cooperation decision criteria are also established basing on derived roaming prices and profit gains of competitive mobile operators. Our numerical results show a significant save in terms of CO2 compared to the non-collaboration case and that cooperative mobile operator exploiting renewables are more awarded than traditional operators.

  19. Multi-operator collaboration for green cellular networks under roaming price consideration

    KAUST Repository

    Ghazzai, Hakim

    2014-09-01

    This paper investigates the collaboration between multiple mobile operators to optimize the energy efficiency of cellular networks. Our framework studies the case of LTE-Advanced networks deployed in the same area and owning renewable energy generators. The objective is to reduce the CO2 emissions of cellular networks via collaborative techniques and using base station sleeping strategy while respecting the network quality of service. Low complexity and practical algorithm is employed to achieve green goals during low traffic periods. Cooperation decision criteria are also established basing on derived roaming prices and profit gains of competitive mobile operators. Our numerical results show a significant save in terms of CO2 compared to the non-collaboration case and that cooperative mobile operator exploiting renewables are more awarded than traditional operators.

  20. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  1. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    International Nuclear Information System (INIS)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha; Chennamangalam, Jayanth; Rao, K. B. Raghavendra; Somashekar, R.; Ezhilarasi, M. S.; Sujatha, S.; Kasturi, S.; Sandhya, P.; Duraichelvan, R.; Amiri, Shahram; Aswathappa, H. A.; Sarabagopalan, G.; Ananda, H. M.; Anderson, Gary; Bauserman, Jonah; Beaudet, Carla; Bloss, Marty; Barve, Indrajit V.

    2013-01-01

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

  2. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha; Chennamangalam, Jayanth; Rao, K. B. Raghavendra; Somashekar, R.; Ezhilarasi, M. S.; Sujatha, S.; Kasturi, S.; Sandhya, P.; Duraichelvan, R.; Amiri, Shahram; Aswathappa, H. A.; Sarabagopalan, G.; Ananda, H. M. [Raman Research Institute, Bangalore (India); Anderson, Gary; Bauserman, Jonah; Beaudet, Carla; Bloss, Marty [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV (United States); Barve, Indrajit V. [Indian Institute of Astrophysics, Bangalore (India); and others

    2013-01-15

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

  3. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    Directory of Open Access Journals (Sweden)

    Kathleen M. Gilbert

    2014-01-01

    Full Text Available Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE from gestational day (GD 0 to postnatal day (PND 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0 and early-life only (PND0-PND49. The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences.

  4. Neural progenitor cells as models for high-throughput screens of developmental neurotoxicity: State of the science

    NARCIS (Netherlands)

    Breier, J.M.; Gassmann, K.; Kayser, R.; Stegeman, H.; Groot, D.de; Fritsche, E.; Shafer, T.J.

    2010-01-01

    In vitro, high-throughput methods have been widely recommended as an approach to screen chemicals for the potential to cause developmental neurotoxicity and prioritize them for additional testing. The choice of cellular models for such an approach will have important ramifications for the accuracy,

  5. Integrated Transceivers for Millimeter Wave and Cellular Communication

    OpenAIRE

    TIRED, TOBIAS

    2016-01-01

    Abstract:This doctoral thesis is addresses two topics in integrated circuit design: multiband direct conversion cellular receivers for cellular frequencies and beam steering transmitters for millimeter wave communication for the cellular backhaul. The trend towards cellular terminals supporting ever more different frequency bands has resulted in complex radio frontends with a large number of RF inputs. Common receivers have, for performance reasons, in the past used differential RF inputs. Ho...

  6. The design and implementation of a PC based multi-channel scaler system

    International Nuclear Information System (INIS)

    Wang Qiang; Chinese Academy of Sciences, Beijing; Jin Dapeng; Liu Zhen'an; Zhao Dixin

    2007-01-01

    A multi-channel scaler system is designed for the system check and status monitoring of the BESIII trigger system. It is composed of a PC, two PCI interface multi-channel scaler cards, the corresponding drivers and user programs. Total 64 signals can be scaled and monitored in real time. The scaled data are recorded locally and some of them are distributed to the online system. In this paper, the hardware structure, software development and long time running stability of the system are introduced. (authors)

  7. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    Science.gov (United States)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  8. Distributed collaborative probabilistic design of multi-failure structure with fluid-structure interaction using fuzzy neural network of regression

    Science.gov (United States)

    Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen

    2018-05-01

    To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.

  9. [Contemporary cognitive theories about developmental dyscalculia].

    Science.gov (United States)

    Castro-Cañizares, D; Estévez-Pérez, N; Reigosa-Crespo, V

    To analyze the current theories describing the cognitive mechanisms underlying developmental dyscalculia. The four most researched hypotheses concerning the cognitive deficits related to developmental dyscalculia, as well as experimental evidences supporting or refusing them are presented. The first hypothesis states that developmental dyscalculia is consequence of domain general cognitive deficits. The second hypothesis suggests that it is due to a failure in the development of specialized brain systems dedicated to numerosity processing. The third hypothesis asserts the disorder is caused by a deficit in accessing quantity representation through numerical symbols. The last hypothesis states developmental dyscalculia appears as a consequence of impairments in a generalized magnitude system dedicated to the processing of continuous and discrete magnitudes. None of the hypotheses has been proven more plausible than the rest. Relevant issues rose by them need to be revisited and answered in the light of new experimental designs. In the last years the understanding of cognitive disorders involved in developmental dyscalculia has remarkably increased, but it is nonetheless insufficient. Additional research is required in order to achieve a comprehensive cognitive model of numerical processing development and its disorders. This will improve the diagnostic precision and the effectiveness of developmental dyscalculia intervention strategies.

  10. Reducing residual stresses and deformations in selective laser melting through multi-level multi-scale optimization of cellular scanning strategy

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2016-01-01

    . A multilevel optimization strategy is adopted using a customized genetic algorithm developed for optimizing cellular scanning strategy for selective laser melting, with an objective of reducing residual stresses and deformations. The resulting thermo-mechanically optimized cellular scanning strategies......, a calibrated, fast, multiscale thermal model coupled with a 3D finite element mechanical model is used to simulate residual stress formation and deformations during selective laser melting. The resulting reduction in thermal model computation time allows evolutionary algorithm-based optimization of the process...

  11. Multi-objective three stage design optimization for island microgrids

    International Nuclear Information System (INIS)

    Sachs, Julia; Sawodny, Oliver

    2016-01-01

    Highlights: • An enhanced multi-objective three stage design optimization for microgrids is given. • Use of an optimal control problem for the calculation of the optimal operation. • The inclusion of a detailed battery model with CC/CV charging control. • The determination of a representative profile with optimized number of days. • The proposed method finds its direct application in a design tool for microgids. - Abstract: Hybrid off-grid energy systems enable a cost efficient and reliable energy supply to rural areas around the world. The main potential for a low cost operation and uninterrupted power supply lies in the optimal sizing and operation of such microgrids. In particular, sudden variations in load demand or in the power supply from renewables underline the need for an optimally sized system. This paper presents an efficient multi-objective model based optimization approach for the optimal sizing of all components and the determination of the best power electronic layout. The presented method is divided into three optimization problems to minimize economic and environmental objectives. This design optimization includes detailed components models and an optimized energy dispatch strategy which enables the optimal design of the energy system with respect to an adequate control for the specific configuration. To significantly reduce the computation time without loss of accuracy, the presented method contains the determination of a representative load profile using a k-means clustering method. The k-means algorithm itself is embedded in an optimization problem for the calculation of the optimal number of clusters. The benefits in term of reduced computation time, inclusion of optimal energy dispatch and optimization of power electronic architecture, of the presented optimization method are illustrated using a case study.

  12. Multi-board concept - a scenario based approach for supporting product quality and life cycle oriented design

    DEFF Research Database (Denmark)

    Robotham, Antony John; Hertzum, Morten

    2000-01-01

    This paper will describe the multi-board concept, which is a working approach for supporting life cycle oriented design and product quality. Aspects of this concept include construction of a common working environment where multiple display boards depict scenarios of the product life cycle...... to believe that the multi-board concept promises to be a useful means of communication amongst the design team. We be-lieve that it fosters a thorough understanding of life cycle events, which, in turn, inspires the design of innovative products of the highest quality......., creating a shared quality mindset amongst design-ers, and developing creativity and synthesis in product design. The appropriateness of scenarios for supporting life cycle oriented design will be ar-gued and preliminary results from early experi-mentation will be presented.Initial results lead us...

  13. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

    International Nuclear Information System (INIS)

    Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene

    2016-01-01

    Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

  14. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    Science.gov (United States)

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.

  15. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  16. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  17. A computer program (FUGI) for design and operation of a conveyor type irradiator with multi-tier and multi-layer

    International Nuclear Information System (INIS)

    Hoshi, Tatsuo; Aggarwal, K.S.

    1976-10-01

    A computer program (FUGI) was established to facilitate the determination of factors related to design and operation of a conveyor type irradiator with multi-tier and multi-layer. The factors determined by this program are as follows: (1) maximum dose, minimum dose and dose uniformity in irradiated material; (2) dose rate distribution on the path of irradiated material; (3) mass flow rate of irradiated material; (4) requisite activity of source; (5) requisite speed of conveyor; (6) utilization efficiency. This program partly uses the program FUDGE 4A for determination of dose rate in irradiated material in static state by Galanter and Krishnamurthy. (auth.)

  18. Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.

    Science.gov (United States)

    Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta

    2018-05-17

    Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.

  19. Design And Construction Of Digital Multi-Meter Using PIC Microcontroller

    Directory of Open Access Journals (Sweden)

    Khawn Nue

    2015-07-01

    Full Text Available Abstract This thesis describes the design and construction of digital multi-meter using PIC microcontroller. In this system a typical multi-meter may include features such as the ability to measure ACDC voltage DC current resistance temperature diodes frequency and connectivity. This design uses of the PIC microcontroller voltage rectifiers voltage divide potentiometer LCD and other instruments to complete the measure. When we used what we have learned of microprocessors and adjust the program to calculate and show the measures in the LCD keypad selected the modes. The software programming has been incorporated using MPLAB and PROTEUS. In this system the analogue input is taken directly to the analogue input pin of the microcontroller without any other processing. So the input range is from 0V to 5V the maximum source impedance is 2k5 for testing use a 1k pot. To improve the circuit adds an op-amp in front to present greater impedance to the circuit under test. The output impedance of the op-amp will be low which a requirement of the PIC analogue input is.

  20. Application of neural network to multi-dimensional design window search in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    1999-01-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. The present method is applied to the neutronics and thermal hydraulics fields. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. To verify the applicability of the present method to the neutronics and the thermal hydraulics design, we have applied it to high conversion water reactors and examined effects of the structure of the neural network and the number of teaching patterns on the accuracy of the design window estimated by the neural network. From the results of the applications, a guideline to apply the present method is proposed and the present method can predict an appropriate design window in a reasonable computation time by following the guideline. (author)

  1. Developmental framework to validate future designs of ballistic neck protection.

    Science.gov (United States)

    Breeze, J; Midwinter, M J; Pope, D; Porter, K; Hepper, A E; Clasper, J

    2013-01-01

    The number of neck injuries has increased during the war in Afghanistan, and they have become an appreciable source of mortality and long-term morbidity for UK servicemen. A three-dimensional numerical model of the neck is necessary to allow simulation of penetrating injury from explosive fragments so that the design of body armour can be optimal, and a framework is required to validate and describe the individual components of this program. An interdisciplinary consensus group consisting of military maxillofacial surgeons, and biomedical, physical, and material scientists was convened to generate the components of the framework, and as a result it incorporates the following components: analysis of deaths and long-term morbidity, assessment of critical cervical structures for incorporation into the model, characterisation of explosive fragments, evaluation of the material of which the body armour is made, and mapping of the entry sites of fragments. The resulting numerical model will simulate the wound tract produced by fragments of differing masses and velocities, and illustrate the effects of temporary cavities on cervical neurovascular structures. Using this framework, a new shirt to be worn under body armour that incorporates ballistic cervical protection has been developed for use in Afghanistan. New designs of the collar validated by human factors and assessment of coverage are currently being incorporated into early versions of the numerical model. The aim of this paper is to describe this developmental framework and provide an update on the current progress of its individual components. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. Design for Sustainability of Industrial Symbiosis based on Emergy and Multi-objective Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2016-01-01

    approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable...... performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied...

  3. Presenting a Multi-level Superstructure Optimization Approach for Mechatronic System Design

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Bech, Michael Møller

    2010-01-01

    Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control) and descr......Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control......) and describe the interface between the technologies, whereas the lack of well-established, systematic engineering methods to form the basic set-off in analysis and design of complete mechatronic systems has been obvious. The focus of the current paper is therefore to present an integrated design approach...... for mechatronic system design, utilizing a multi-level superstructure optimization based approach. Finally two design examples are presented and the possibilities and limitations of the approach are outlined....

  4. Enzyme-sharing as a cause of multi-stationarity in signalling systems

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2012-01-01

    Multi-stationarity in biological systems is a mechanism of cellular decision-making. In particular, signalling pathways regulated by protein phosphorylation display features that facilitate a variety of responses to different biological inputs. The features that lead to multi-stationarity are of ......Multi-stationarity in biological systems is a mechanism of cellular decision-making. In particular, signalling pathways regulated by protein phosphorylation display features that facilitate a variety of responses to different biological inputs. The features that lead to multi......-stationarity are of particular interest to determine, as well as the stability, properties of the steady states. In this paper, we determine conditions for the emergence of multi-stationarity in small motifs without feedback that repeatedly occur in signalling pathways. We derive an explicit mathematical relationship ¿ between...... identify characteristics of the motifs that lead to multi-stationarity, and extend the view that multi-stationarity in signalling pathways arises from multi-site phosphorylation. Our approach relies on mass-action kinetics, and the conclusions are drawn in full generality without resorting to simulations...

  5. Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks

    NARCIS (Netherlands)

    Miandoabchi, Elnaz; Farahani, Reza Zanjirani; Dullaert, Wout; Szeto, W. Y.

    This paper addresses a bi-modal multi-objective discrete urban road network design problem with automobile and bus flow interaction. The problem considers the concurrent urban road and bus network design in which the authorities play a major role in designing bus network topology. The road network

  6. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  7. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  8. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  9. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  10. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  11. A Novel Cellular Handset Design for an Enhanced Antenna Performance and a Reduced SAR in the Human Head

    Directory of Open Access Journals (Sweden)

    Salah I. Al-Mously

    2008-01-01

    Full Text Available This paper presents a novel cellular handset design with a bottom-mounted short loaded-whip antenna. This new handset design is modeled and simulated using a finite difference time-domain (FDTD-based platform SEMCAD. The proposed handset is based on a current commercially available bar-phone type with a curvature shape, keypad positioned above the screen, and top-mounted antenna. The specific absorption rates (SARs are determined computationally in the specific anthropomorphic mannequin (SAM and anatomically correct model of a human head when exposed to the EM-field radiation of the proposed cellular handset and the handset with top-mounted antenna. The two cellular handsets are simulated to operate at both GSM standards, 900 MHz as well as 1800 MHz, having different antenna dimensions and intput power of 0.6 W and 0.125 W, respectively. The proposed human hand holding the two handset models is a semirealistic hand model consists of three tissues: skin, muscle, and bone. The simulations are conducted with handset positions based on the IEEE standard 1528-2003. The results show that the proposed handset has a significant improvement of antenna efficiency when it is hand-held close to head, as compared with the handset of top-mounted antenna. Also, the results show that a significant reduction of the induced SAR in the human head-tissues can be achieved with the proposed handset.

  12. Divide and control: split design of multi-input DNA logic gates.

    Science.gov (United States)

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2015-01-18

    Logic gates made of DNA have received significant attention as biocompatible building blocks for molecular circuits. The majority of DNA logic gates, however, are controlled by the minimum number of inputs: one, two or three. Here we report a strategy to design a multi-input logic gate by splitting a DNA construct.

  13. CCLab--a multi-objective genetic algorithm based combinatorial library design software and an application for histone deacetylase inhibitor design.

    Science.gov (United States)

    Fang, Guanghua; Xue, Mengzhu; Su, Mingbo; Hu, Dingyu; Li, Yanlian; Xiong, Bing; Ma, Lanping; Meng, Tao; Chen, Yuelei; Li, Jingya; Li, Jia; Shen, Jingkang

    2012-07-15

    The introduction of the multi-objective optimization has dramatically changed the virtual combinatorial library design, which can consider many objectives simultaneously, such as synthesis cost and drug-likeness, thus may increase positive rates of biological active compounds. Here we described a software called CCLab (Combinatorial Chemistry Laboratory) for combinatorial library design based on the multi-objective genetic algorithm. Tests of the convergence ability and the ratio to re-take the building blocks in the reference library were conducted to assess the software in silico, and then it was applied to a real case of designing a 5×6 HDAC inhibitor library. Sixteen compounds in the resulted library were synthesized, and the histone deactetylase (HDAC) enzymatic assays proved that 14 compounds showed inhibitory ratios more than 50% against tested 3 HDAC enzymes at concentration of 20 μg/mL, with IC(50) values of 3 compounds comparable to SAHA. These results demonstrated that the CCLab software could enhance the hit rates of the designed library and would be beneficial for medicinal chemists to design focused library in drug development (the software can be downloaded at: http://202.127.30.184:8080/drugdesign.html). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Multi-purpose hydrogen isotopes separation plant design

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.; Suppiah, S.; Castillo, I. [Atomic Energy of Canada Limited - AECL, Chalk River, ON (Canada)

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overall plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)

  15. Design and Analysis of Multi-Phase BLDC Motors for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    G. Boztas

    2018-04-01

    Full Text Available This paper presents a design and analysis of multi-phase brushless direct current (BLDC motor for electric vehicles (EV. In this work, hub-wheels having 110Nm, 900rpm rated values have been designed for the proposed EV. This EV can produce 440 Nm without using transmission, differential and other mechanical components which have very high losses due to the mechanical fraction. The motors to be used in the EV have been designed as 3-, 5- and 7-phase by Infolytica/Motor Solve Software to compare their performances at the same load conditions. The same rotor geometry has been utilized for the motors. However, slot numbers and dimensions of the stator have been determined by considering the motor phase number. Performance curves of phase-currents, output powers, torques, efficiencies and power factors have been presented for these motors at the same operating conditions. It can be possible to use lower power switches in motor drive system thanks to the phase current reduction since the phase currents decrease proportionally to motor phase number. This work shows that the multi-phase BLDC motors are a good alternative in order to obtain lower torque and lower power inverter structure than the 3-phase BLDC motors which are used as standard.

  16. A multi-channel scaler designed with programmable logic device

    International Nuclear Information System (INIS)

    Sun Yongjie; Li Cheng; Xing Tao; Zhang Junjie

    2004-01-01

    This scaler used programmable logic device is a design for the electronics of telescope system of the beam. The scaler can scale 30 ECL inputs at the same time. With the EPP (Enhanced Parallel Port) modes of the Parallel Port, the transmitted rate of data is 2 MB/s. This scaler can be used in the position system of MWPC (Multi-Wires Proportional Chamber). Tested with particles of 5 x 10 3 /s, the scaler gives a credible and stable result. (authors)

  17. Information Design for Synchronization and Co-ordination of Modern, Complex, Multi-National Operations

    Science.gov (United States)

    2011-06-01

    1 16th ICCRTS Information design for synchronization and co-ordination of modern, complex, multi- national operations “Collective C2 in...REPORT DATE JUN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Information design for synchronization and co...at 11th ICCRTS) who emphasise that information needs to be designed, not merely found or catalogued, to achieve synchronizations and co-ordinations

  18. New multifunctional lightweight materials based on cellular metals - manufacturing, properties and applications

    International Nuclear Information System (INIS)

    Stephani, Guenter; Quadbeck, Peter; Andersen, Olaf

    2009-01-01

    Cellular metallic materials are a new class of materials which have been the focus of numerous scientific studies over the past few years. The increasing interest in cellular metals is due to the fact that the introduction of pores into the materials significantly lowers the density. These highly porous materials also possess combinations of properties which are not possible to achieve with other materials. Besides the drastic weight and material savings that arise from the cell structure, there are also other application-specific benefits such as noise and energy absorption, heat insulation, mechanical damping, filtration effects and also catalytic properties. Cellular metallic materials are hence multi-functional lightweight materials.

  19. A sustainable manufacturing system design: A fuzzy multi-objective optimization model.

    Science.gov (United States)

    Nujoom, Reda; Mohammed, Ahmed; Wang, Qian

    2017-08-10

    In the past decade, there has been a growing concern about the environmental protection in public society as governments almost all over the world have initiated certain rules and regulations to promote energy saving and minimize the production of carbon dioxide (CO 2 ) emissions in many manufacturing industries. The development of sustainable manufacturing systems is considered as one of the effective solutions to minimize the environmental impact. Lean approach is also considered as a proper method for achieving sustainability as it can reduce manufacturing wastes and increase the system efficiency and productivity. However, the lean approach does not include environmental waste of such as energy consumption and CO 2 emissions when designing a lean manufacturing system. This paper addresses these issues by evaluating a sustainable manufacturing system design considering a measurement of energy consumption and CO 2 emissions using different sources of energy (oil as direct energy source to generate thermal energy and oil or solar as indirect energy source to generate electricity). To this aim, a multi-objective mathematical model is developed incorporating the economic and ecological constraints aimed for minimization of the total cost, energy consumption, and CO 2 emissions for a manufacturing system design. For the real world scenario, the uncertainty in a number of input parameters was handled through the development of a fuzzy multi-objective model. The study also addresses decision-making in the number of machines, the number of air-conditioning units, and the number of bulbs involved in each process of a manufacturing system in conjunction with a quantity of material flow for processed products. A real case study was used for examining the validation and applicability of the developed sustainable manufacturing system model using the fuzzy multi-objective approach.

  20. Physical-Layer Design for Next-Generation Cellular Wireless Systems

    NARCIS (Netherlands)

    Foschini, Gerard J.; Huang, Howard C.; Mullender, Sape J.; Venkatesan, Sivarama; Viswanathan, Harish

    The conventional cellular architecture will remain an integral part of nextgeneration wireless systems, providing high-speed packet data services directly to mobile users and also backhaul service for local area networks. In this paper, we present several proposals addressing the challenges

  1. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally.

    Science.gov (United States)

    Barrett, Catherine E; Hennessey, Thomas M; Gordon, Katelyn M; Ryan, Steve J; McNair, Morgan L; Ressler, Kerry J; Rainnie, Donald G

    2017-01-01

    The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes.

  2. Testing the Developmental Origins of Health and Disease Hypothesis for Psychopathology Using Family-Based Quasi-Experimental Designs

    Science.gov (United States)

    D’Onofrio, Brian M.; Class, Quetzal A.; Lahey, Benjamin B.; Larsson, Henrik

    2014-01-01

    The Developmental Origin of Health and Disease (DOHaD) hypothesis is a broad theoretical framework that emphasizes how early risk factors have a causal influence on psychopathology. Researchers have raised concerns about the causal interpretation of statistical associations between early risk factors and later psychopathology because most existing studies have been unable to rule out the possibility of environmental and genetic confounding. In this paper we illustrate how family-based quasi-experimental designs can test the DOHaD hypothesis by ruling out alternative hypotheses. We review the logic underlying sibling-comparison, co-twin control, offspring of siblings/twins, adoption, and in vitro fertilization designs. We then present results from studies using these designs focused on broad indices of fetal development (low birth weight and gestational age) and a particular teratogen, smoking during pregnancy. The results provide mixed support for the DOHaD hypothesis for psychopathology, illustrating the critical need to use design features that rule out unmeasured confounding. PMID:25364377

  3. Load-aware modeling for uplink cellular networks in a multi-channel environment

    KAUST Repository

    AlAmmouri, Ahmad

    2014-09-01

    We exploit tools from stochastic geometry to develop a tractable analytical approach for modeling uplink cellular networks. The developed model is load aware and accounts for per-user power control as well as the limited transmit power constraint for the users\\' equipment (UEs). The proposed analytical paradigm is based on a simple per-user power control scheme in which each user inverts his path-loss such that the signal is received at his serving base station (BS) with a certain power threshold ρ Due to the limited transmit power of the UEs, users that cannot invert their path-loss to their serving BSs are allowed to transmit with their maximum transmit power. We show that the proposed power control scheme not only provides a balanced cell center and cell edge user performance, it also facilitates the analysis when compared to the state-of-the-art approaches in the literature. To this end, we discuss how to manipulate the design variable ρ in response to the network parameters to optimize one or more of the performance metrics such as the outage probability, the network capacity, and the energy efficiency.

  4. A multi-period distribution network design model under demand uncertainty

    Science.gov (United States)

    Tabrizi, Babak H.; Razmi, Jafar

    2013-05-01

    Supply chain management is taken into account as an inseparable component in satisfying customers' requirements. This paper deals with the distribution network design (DND) problem which is a critical issue in achieving supply chain accomplishments. A capable DND can guarantee the success of the entire network performance. However, there are many factors that can cause fluctuations in input data determining market treatment, with respect to short-term planning, on the one hand. On the other hand, network performance may be threatened by the changes that take place within practicing periods, with respect to long-term planning. Thus, in order to bring both kinds of changes under control, we considered a new multi-period, multi-commodity, multi-source DND problem in circumstances where the network encounters uncertain demands. The fuzzy logic is applied here as an efficient tool for controlling the potential customers' demand risk. The defuzzifying framework leads the practitioners and decision-makers to interact with the solution procedure continuously. The fuzzy model is then validated by a sensitivity analysis test, and a typical problem is solved in order to illustrate the implementation steps. Finally, the formulation is tested by some different-sized problems to show its total performance.

  5. Component Functional Allocations of the ESF Multi-loop Controller for the KNICS ESF-CCS Design

    International Nuclear Information System (INIS)

    Hur, Seop; Choi, Jong Kyun; Kim, Dong Hoon; Kim, Ho; Kim, Seong Tae

    2006-01-01

    The safety related components in nuclear power plants are traditionally controlled by single-loop controllers. Traditional single-loop controller systems utilize dedicated processors for each component but that components independence is compromised through a sharing of power supplies, auxiliary logic modules and auxiliary I/O cards. In the new design of the ESF-CCS, the multi-loop controllers with data networks are widely used. Since components are assigned to ESF-CCS functional groups in a manner consistent with their process relationship, the effects of the failures are predictable and manageable. Therefore, the key issues for the design of multi-loop controller is to allocate the components to the each multi-loop controller through plant and function analysis and grouping. This paper deals with an ESF component functional allocation which is performed through allocation criteria and a fault analysis

  6. Design of mini-multi-gas monitoring system based on IR absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Q.L.; Zhang, W.D.; Xue, C.Y.; Xiong, J.J.; Ma, Y.C.; Wen, F. [Northern University of China, Taiyuan (China)

    2008-07-15

    In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually all incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use file mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.

  7. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Miles Miller

    Full Text Available Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism, demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in

  8. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity.

    Science.gov (United States)

    Miller, Miles; Hafner, Marc; Sontag, Eduardo; Davidsohn, Noah; Subramanian, Sairam; Purnick, Priscilla E M; Lauffenburger, Douglas; Weiss, Ron

    2012-01-01

    Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and

  9. Cellular and molecular mechanisms coordinating pancreas development.

    Science.gov (United States)

    Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa

    2017-08-15

    The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.

  10. Design of a Push-Broom Multi-Beam Radiometer for Future Ocean Observations

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2015-01-01

    The design of a push-broom multi-beam radiometer for future ocean observations is described. The radiometer provides a sensitivity one order of magnitude higher than a traditional conical scanning radiometer, and has the big advantage of being fully stationary relative to the satellite platform...

  11. Understanding retirement: the promise of life-span developmental frameworks.

    Science.gov (United States)

    Löckenhoff, Corinna E

    2012-09-01

    The impending retirement of large population cohorts creates a pressing need for practical interventions to optimize outcomes at the individual and societal level. This necessitates comprehensive theoretical models that acknowledge the multi-layered nature of the retirement process and shed light on the dynamic mechanisms that drive longitudinal patterns of adjustment. The present commentary highlights ways in which contemporary life-span developmental frameworks can inform retirement research, drawing on the specific examples of Bronfenbrenner's Ecological Model, Baltes and Baltes Selective Optimization with Compensation Framework, Schulz and Heckhausen's Motivational Theory of Life-Span Development, and Carstensen's Socioemotional Selectivity Theory. Ultimately, a life-span developmental perspective on retirement offers not only new interpretations of known phenomena but may also help to identify novel directions for future research as well as promising pathways for interventions.

  12. Fluid Flow and Heat Transfer in Cellular Solids

    OpenAIRE

    Ettrich, Jörg

    2014-01-01

    To determine the characteristics and properties of cellular solids for an application, and to allow a systematic practical use by means of correlations and modelling approaches, we perform experimental investigations and develop numerical methods. In view of coupled multi-physics simulations, we employ the phase-field method. Finally, the applicability is demonstrated exemplarily for open-cell metal foams, providing qualitative and quantitative comparison with experimental data.

  13. Constructivist developmental theory is needed in developmental neuroscience

    Science.gov (United States)

    Arsalidou, Marie; Pascual-Leone, Juan

    2016-12-01

    Neuroscience techniques provide an open window previously unavailable to the origin of thoughts and actions in children. Developmental cognitive neuroscience is booming, and knowledge from human brain mapping is finding its way into education and pediatric practice. Promises of application in developmental cognitive neuroscience rests however on better theory-guided data interpretation. Massive amounts of neuroimaging data from children are being processed, yet published studies often do not frame their work within developmental models—in detriment, we believe, to progress in this field. Here we describe some core challenges in interpreting the data from developmental cognitive neuroscience, and advocate the use of constructivist developmental theories of human cognition with a neuroscience interpretation.

  14. Design, Fabrication and Computational Characterization of a 3D Micro-Valve Built by Multi-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Stratos Galanopoulos

    2014-08-01

    Full Text Available We report on the design, modeling and fabrication by multi-photon polymerization of a complex medical fluidic device. The physical dimensions of the built micro-valve prototype are compared to those of its computer-designed model. Important fabrication issues such as achieving high dimensional resolution and ability to control distortion due to shrinkage are presented and discussed. The operational performance of both multi-photon and CAD-created models under steady blood flow conditions was evaluated and compared through computational fluid dynamics analysis.

  15. Partial differential equations for self-organization in cellular and developmental biology

    International Nuclear Information System (INIS)

    Baker, R E; Gaffney, E A; Maini, P K

    2008-01-01

    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field. (invited article)

  16. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    Science.gov (United States)

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  17. POBE: A Computer Program for Optimal Design of Multi-Subject Blocked fMRI Experiments

    Directory of Open Access Journals (Sweden)

    Bärbel Maus

    2014-01-01

    Full Text Available For functional magnetic resonance imaging (fMRI studies, researchers can use multi-subject blocked designs to identify active brain regions for a certain stimulus type of interest. Before performing such an experiment, careful planning is necessary to obtain efficient stimulus effect estimators within the available financial resources. The optimal number of subjects and the optimal scanning time for a multi-subject blocked design with fixed experimental costs can be determined using optimal design methods. In this paper, the user-friendly computer program POBE 1.2 (program for optimal design of blocked experiments, version 1.2 is presented. POBE provides a graphical user interface for fMRI researchers to easily and efficiently design their experiments. The computer program POBE calculates the optimal number of subjects and the optimal scanning time for user specified experimental factors and model parameters so that the statistical efficiency is maximised for a given study budget. POBE can also be used to determine the minimum budget for a given power. Furthermore, a maximin design can be determined as efficient design for a possible range of values for the unknown model parameters. In this paper, the computer program is described and illustrated with typical experimental factors for a blocked fMRI experiment.

  18. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  19. Energy Efficient Resource Allocation for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr

    2016-04-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a

  20. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions.

    Science.gov (United States)

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N

    2007-05-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.

  1. Functional Anthology of Intrinsic Disorder. II. Cellular Components, Domains, Technical Terms, Developmental Processes and Coding Sequence Diversities Correlated with Long Disordered Regions

    Science.gov (United States)

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes ~90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes and coding sequence diversities possessing strong positive and negative correlation with long disordered regions. PMID:17391015

  2. Multi-Stable Morphing Cellular Structures

    Science.gov (United States)

    2015-05-14

    stiffness on critical buckling load and arch stres - ses. It should be noted that although the arches in these studies snapped-through, they did not...switch roles in moving the VMT back from the second to the first stable equilibrium state. A prototype is designed and fabricated and the transition...pulling forward on the insert on the right blade and assisting its deployment. During this process the cable 3-4-1 goes slack and plays no role , but if

  3. Lattice Designs in Standard and Simple Implicit Multi-linear Regression

    OpenAIRE

    Wooten, Rebecca D.

    2016-01-01

    Statisticians generally use ordinary least squares to minimize the random error in a subject response with respect to independent explanatory variable. However, Wooten shows illustrates how ordinary least squares can be used to minimize the random error in the system without defining a subject response. Using lattice design Wooten shows that non-response analysis is a superior alternative rotation of the pyramidal relationship between random variables and parameter estimates in multi-linear r...

  4. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective.

    Science.gov (United States)

    Zirra, Alexandra; Wiethoff, Sarah; Patani, Rickie

    2016-01-01

    Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.

  5. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Alexandra Zirra

    2016-01-01

    Full Text Available Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.

  6. Protocell design through modular compartmentalization.

    Science.gov (United States)

    Miller, David; Booth, Paula J; Seddon, John M; Templer, Richard H; Law, Robert V; Woscholski, Rudiger; Ces, Oscar; Barter, Laura M C

    2013-10-06

    De novo synthetic biological design has the potential to significantly impact upon applications such as energy generation and nanofabrication. Current designs for constructing organisms from component parts are typically limited in scope, as they utilize a cut-and-paste ideology to create simple stepwise engineered protein-signalling pathways. We propose the addition of a new design element that segregates components into lipid-bound 'proto-organelles', which are interfaced with response elements and housed within a synthetic protocell. This design is inspired by living cells, which utilize multiple types of signalling molecules to facilitate communication between isolated compartments. This paper presents our design and validation of the components required for a simple multi-compartment protocell machine, for coupling a light transducer to a gene expression system. This represents a general design concept for the compartmentalization of different types of artificial cellular machinery and the utilization of non-protein signal molecules for signal transduction.

  7. Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I.; Careaga Houck, A. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); AlGhamdi, J. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Department of Chemistry, College of Science, University of Dammam, Dammam (Saudi Arabia); Youcef-Toumi, K. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-01-15

    This paper presents the design and control of a high-speed and large-range atomic force microscopy (AFM). A multi-actuation scheme is proposed where several nano-positioners cooperate to achieve the range and speed requirements. A simple data-based control design methodology is presented to effectively operate the AFM scanner components. The proposed controllers compensate for the coupled dynamics and divide the positioning responsibilities between the scanner components. As a result, the multi-actuated scanner behavior is equivalent to that of a single X–Y–Z positioner with large range and high speed. The scanner of the designed AFM is composed of five nano-positioners, features 6 μm out-of-plane and 120 μm lateral ranges and is capable of high-speed operation. The presented AFM has a modular design with laser spot size of 3.5 μm suitable for small cantilever, an optical view of the sample and probe, a conveniently large waterproof sample stage and a 20 MHz data throughput for high resolution image acquisition at high imaging speeds. This AFM is used to visualize etching of calcite in a solution of sulfuric acid. Layer-by-layer dissolution and pit formation along the crystalline lines in a low pH environment is observed in real time. - Highlights: • High-speed AFM imaging is extended to large lateral and vertical scan ranges. • A general multi-actuation approach to atomic force microscopy is presented. • A high-speed AFM is designed and implemented based on the proposed method. • Multi-actuator control is designed auxiliary to a PID unit to maintain flexibility. • Influence of calcite crystal structure on dissolution is visualized in video form.

  8. Summary of the experimental multi-purpose very high temperature gas cooled reactor design

    International Nuclear Information System (INIS)

    1984-12-01

    The report presents the design of Multi-purpose Very High Temperature Gas Cooled Reactor (the Experimental VHTR) based on the second stage of detailed design which was completed on March 1984, in the from of ''An application of reactor construction permit Appendix 8''. The Experimental VHTR is designed to satisfy with the design specification for the reactor thermal output 50 MW and reactor outlet temperature 950 0 C. The adequacy of the design is also checked by the safety analysis. The planning of plant system and safety is summarized such as safety design requirements and conformance with them, seismic design and plant arrangement. Concerning with the system of the Experimental VHTR the design basis, design data and components are described in the order. (author)

  9. A novel approach in optimization problem for research reactors fuel plate using a synergy between cellular automata and quasi-simulated annealing methods

    International Nuclear Information System (INIS)

    Barati, Ramin

    2014-01-01

    Highlights: • An innovative optimization technique for multi-objective optimization is presented. • The technique utilizes combination of CA and quasi-simulated annealing. • Mass and deformation of fuel plate are considered as objective functions. • Computational burden is significantly reduced compared to classic tools. - Abstract: This paper presents a new and innovative optimization technique utilizing combination of cellular automata (CA) and quasi-simulated annealing (QSA) as solver concerning conceptual design optimization which is indeed a multi-objective optimization problem. Integrating CA and QSA into a unified optimizer tool has a great potential for solving multi-objective optimization problems. Simulating neighborhood effects while taking local information into account from CA and accepting transitions based on decreasing of objective function and Boltzmann distribution from QSA as transition rule make this tool effective in multi-objective optimization. Optimization of fuel plate safety design while taking into account major goals of conceptual design such as improving reliability and life-time – which are the most significant elements during shutdown – is a major multi-objective optimization problem. Due to hugeness of search space in fuel plate optimization problem, finding optimum solution in classical methods requires a huge amount of calculation and CPU time. The CA models, utilizing local information, require considerably less computation. In this study, minimizing both mass and deformation of fuel plate of a multipurpose research reactor (MPRR) are considered as objective functions. Results, speed, and qualification of proposed method are comparable with those of genetic algorithm and neural network methods applied to this problem before

  10. Design of Networks-on-Chip for Real-Time Multi-Processor Systems-on-Chip

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2012-01-01

    This paper addresses the design of networks-on-chips for use in multi-processor systems-on-chips - the hardware platforms used in embedded systems. These platforms typically have to guarantee real-time properties, and as the network is a shared resource, it has to provide service guarantees...... (bandwidth and/or latency) to different communication flows. The paper reviews some past work in this field and the lessons learned, and the paper discusses ongoing research conducted as part of the project "Time-predictable Multi-Core Architecture for Embedded Systems" (T-CREST), supported by the European...

  11. Mechanisms and cellular functions of intramembrane proteases.

    Science.gov (United States)

    Urban, Siniša

    2013-12-01

    The turn of the millennium coincided with the branding of a fundamentally different class of enzyme - proteases that reside immersed inside the membrane. This new field was the convergence of completely separate lines of research focused on cholesterol homeostasis, Alzheimer's disease, and developmental genetics. None intended their ultimate path, but soon became a richly-integrated fabric for an entirely new field: regulated intramembrane proteolysis. Our aim in this Special Issue is to focus on the ancient and nearly ubiquitous enzymes that catalyze this unexpected yet important reaction. The pace of progress has been dramatic, resulting in a rapidly-expanding universe of known cellular functions, and a paradigm shift in the biochemical understanding of these once heretical enzymes. More recently, the first therapeutic successes have been attained by targeting an intramembrane protease. We consider these advances and identify oncoming opportunities in four parts: growing spectra of cellular roles, insights into biochemical mechanisms, therapeutic strategies, and newly-emerging topics. Recent studies also expose challenges for the future, including non-linear relationships between substrate identification and physiological functions, and the need for potent and specific, not broad-class, inhibitors. © 2013.

  12. Multi-GPU parallel algorithm design and analysis for improved inversion of probability tomography with gravity gradiometry data

    Science.gov (United States)

    Hou, Zhenlong; Huang, Danian

    2017-09-01

    In this paper, we make a study on the inversion of probability tomography (IPT) with gravity gradiometry data at first. The space resolution of the results is improved by multi-tensor joint inversion, depth weighting matrix and the other methods. Aiming at solving the problems brought by the big data in the exploration, we present the parallel algorithm and the performance analysis combining Compute Unified Device Architecture (CUDA) with Open Multi-Processing (OpenMP) based on Graphics Processing Unit (GPU) accelerating. In the test of the synthetic model and real data from Vinton Dome, we get the improved results. It is also proved that the improved inversion algorithm is effective and feasible. The performance of parallel algorithm we designed is better than the other ones with CUDA. The maximum speedup could be more than 200. In the performance analysis, multi-GPU speedup and multi-GPU efficiency are applied to analyze the scalability of the multi-GPU programs. The designed parallel algorithm is demonstrated to be able to process larger scale of data and the new analysis method is practical.

  13. Design and manufacture of multi-electrode ion chamber for absolute photon-flux measurements of soft x-rays

    International Nuclear Information System (INIS)

    Yoshigoe, Akitaka; Teraoka, Yuden

    2001-03-01

    In order to measure the absolute photon-flux of soft x-rays at the photon energy region from 500 eV to 1500 eV, a sealed gas ion chamber with multi-electrodes was designed and manufactured. Actually we succeeded in measuring the photon-flux at the soft x-ray beamline, BL23SU, in the SPring-8. This report concretely describes the design and the adjustment of the sealed gas ion chamber with multi-electrodes. (author)

  14. System Design for Demand Controlled Ventilation in Multi-Family Dwellings

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer

    2011-01-01

    This paper presents an investigation into solutions for the system design of a centralized DCV system in multi-family dwellings. The design focused on simple and inexpensive solutions. A cost benefit estimate showed that the initial cost of implementing DCV in a system with an efficient heat...... exchanger should not exceed 3400 DKK per dwelling in regions with weather conditions similar to the Danish climate. A design expected to fulfil this requirement was investigated in detail with regard to its electricity consumption by evaluation of different control strategies. Systems with variable airflows...... load reduces throttling and energy can be saved. A static pressure reset strategy was applied to a dwelling-specific DCV system where the airflow varied between three fixed rates. The system performance was evaluated for two diffusers. The annual electricity consumption was reduced by 20% to 30% when...

  15. Realizing the Potential of Adolescence to Prevent Transgenerational Conditioning of Noncommunicable Disease Risk: Multi-Sectoral Design Frameworks

    Directory of Open Access Journals (Sweden)

    Jacquie L. Bay

    2016-07-01

    Full Text Available Evidence from the field of Developmental Origins of Health and Disease (DOHaD demonstrates that early life environmental exposures impact later-life risk of non-communicable diseases (NCDs. This has revealed the transgenerational nature of NCD risk, thus demonstrating that interventions to improve environmental exposures during early life offer important potential for primary prevention of DOHaD-related NCDs. Based on this evidence, the prospect of multi-sectoral approaches to enable primary NCD risk reduction has been highlighted in major international reports. It is agreed that pregnancy, lactation and early childhood offer significant intervention opportunities. However, the importance of interventions that establish positive behaviors impacting nutritional and non-nutritional environmental exposures in the pre-conceptual period in both males and females, thus capturing the full potential of DOHaD, must not be overlooked. Adolescence, a period where life-long health-related behaviors are established, is therefore an important life-stage for DOHaD-informed intervention. DOHaD evidence underpinning this potential is well documented. However, there is a gap in the literature with respect to combined application of theoretical evidence from science, education and public health to inform intervention design. This paper addresses this gap, presenting a review of evidence informing theoretical frameworks for adolescent DOHaD interventions that is accessible collectively to all relevant sectors.

  16. Design, experimental investigation and multi-objective optimization of a small-scale radial compressor for heat pump applications

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, J. [Fischer Engineering Solutions AG, Birkenweg 3, CH-3360 Herzogenbuchsee (Switzerland); Favrat, D. [Ecole Polytechnique Federale de Lausanne, EPFL STI IGM LENI, Station 9, CH-1015 Lausanne (Switzerland)

    2010-01-15

    The main driver for small scale turbomachinery in domestic heat pumps is the potential for reaching higher efficiencies than volumetric compressors currently used and the potential for making the compressor oil-free, bearing a considerable advantage in the design of advanced multi-stage heat pump cycles. An appropriate turbocompressor for driving domestic heat pumps with a high temperature lift requires the ability to operate on a wide range of pressure ratios and mass flows, confronting the designer with the necessity of a compromise between range and efficiency. The present publication shows a possible way to deal with that difficulty, by coupling an appropriate modeling tool to a multi-objective optimizer. The optimizer manages to fit the compressor design into the possible specifications field while keeping the high efficiency on a wide operational range. The 1D-tool used for the compressor stage modeling has been validated by experimentally testing an initial impeller design. The excellent experimental results, the agreement with the model and the linking of the model to a multi-objective optimizer will allow to design radial compressor stages managing to fit the wide operational range of domestic heat pumps while keeping the high efficiency level. (author)

  17. Developmental trends in adaptive memory.

    Science.gov (United States)

    Otgaar, Henry; Howe, Mark L; Smeets, Tom; Garner, Sarah R

    2014-01-01

    Recent studies have revealed that memory is enhanced when information is processed for fitness-related purposes. The main objective of the current experiments was to test developmental trends in the evolutionary foundation of memory using different types of stimuli and paradigms. In Experiment 1, 11-year-olds and adults were presented with neutral, negative, and survival-related DRM word lists. We found a memory benefit for the survival-related words and showed that false memories were more likely to be elicited for the survival-related word lists than for the other lists. Experiment 2 examined developmental trends in the survival processing paradigm using neutral, negative, and survival-related pictures. A survival processing advantage was found for survival-related pictures in adults, for negative pictures in 11/12-year-olds, and for neutral pictures in 7/8-year-olds. In Experiment 3, 11/12-year-olds and adults had to imagine the standard survival scenario or an adapted survival condition (or pleasantness condition) that was designed to reduce the possibilities for elaborative processing. We found superior memory retention for both survival scenarios in children and adults. Collectively, our results evidently show that the survival processing advantage is developmentally invariant and that certain proximate mechanisms (elaboration and distinctiveness) underlie these developmental trends.

  18. Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata.

    Science.gov (United States)

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.

  19. Multi-Objective Resource Allocation Scheme for D2D Multicast with QoS Guarantees in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Fangmin Li

    2016-09-01

    Full Text Available Device-to-device (D2D multicast communication can greatly improve the spectrum utilization in a content delivery scenario. However, the co-channel interference and power consumption brought by D2D bring new challenges. All the D2D multicast groups expect to achieve a higher system capacity with less extra energy cost. In this paper, we investigate the uplink resource allocation issue when D2D multicast groups share the resources with other cellular uses (CUs, while guaranteeing a certain level of quality of service (QoS to CUs and D2D users. Firstly we address a flexible tradeoff framework in which the system power consumption and the system capacity (i.e., the number of admitted D2D links are assigned with different weight factors so that these two objectives are jointly considered. Then we propose an efficient resource optimization scheme, which comprises sub-channel allocation and signal-to-interference- plus-noise ratio (SINR assignment. Numerical results validate the effectiveness of the proposed framework, and demonstrate the advantages in dealing with the proposed multi-objective optimization problem.

  20. Probabilistic Design and Management of Sustainable Concrete Infrastructure Using Multi-Physics Service Life Models

    DEFF Research Database (Denmark)

    Lepech, Michael; Geiker, Mette; Michel, Alexander

    This paper looks to address the grand challenge of integrating construction materials engineering research within a multi-scale, inter-disciplinary research and management framework for sustainable concrete infrastructure. The ultimate goal is to drive sustainability-focused innovation and adoption...... cycles in the broader architecture, engineering, construction (AEC) industry. Specifically, a probabilistic design framework for sustainable concrete infrastructure and a multi-physics service life model for reinforced concrete are presented as important points of integration for innovation between...... design, consists of concrete service life models and life cycle assessment (LCA) models. Both types of models (service life and LCA) are formulated stochastically so that the service life and time(s) to repair, as well as total sustainability impact, are described by a probability distribution. A central...

  1. Load-aware modeling for uplink cellular networks in a multi-channel environment

    KAUST Repository

    Alammouri, Ahmad; Elsawy, Hesham; Alouini, Mohamed-Slim

    2014-01-01

    We exploit tools from stochastic geometry to develop a tractable analytical approach for modeling uplink cellular networks. The developed model is load aware and accounts for per-user power control as well as the limited transmit power constraint

  2. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    Science.gov (United States)

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  3. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-04-01

    This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.

  4. The design of multi-channel pulse amplitude analyzer based on ARM micro controller

    International Nuclear Information System (INIS)

    Li Hai; Li Xiang; Liu Caixue

    2010-01-01

    It introduces the design of multi-channel pulse amplitude analyzer based on embedded ARM micro-controller. The embedded and real-time system μC/OS-II builds up the real-time and stability of the system and advances the integration. (authors)

  5. An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata

    Science.gov (United States)

    Seyedi, Saeid; Navimipour, Nima Jafari

    2018-03-01

    Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal-Oxide-Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.

  6. Dynamic cellular manufacturing system considering machine failure and workload balance

    Science.gov (United States)

    Rabbani, Masoud; Farrokhi-Asl, Hamed; Ravanbakhsh, Mohammad

    2018-02-01

    Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (part/machine cell) formation as well as the operators' assignment to the cells. The first objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally, a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two algorithms are compared with respect to five different comparison metrics.

  7. Methodology, Algorithms, and Emerging Tool for Automated Design of Intelligent Integrated Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Andreas König

    2009-11-01

    Full Text Available The emergence of novel sensing elements, computing nodes, wireless communication and integration technology provides unprecedented possibilities for the design and application of intelligent systems. Each new application system must be designed from scratch, employing sophisticated methods ranging from conventional signal processing to computational intelligence. Currently, a significant part of this overall algorithmic chain of the computational system model still has to be assembled manually by experienced designers in a time and labor consuming process. In this research work, this challenge is picked up and a methodology and algorithms for automated design of intelligent integrated and resource-aware multi-sensor systems employing multi-objective evolutionary computation are introduced. The proposed methodology tackles the challenge of rapid-prototyping of such systems under realization constraints and, additionally, includes features of system instance specific self-correction for sustained operation of a large volume and in a dynamically changing environment. The extension of these concepts to the reconfigurable hardware platform renders so called self-x sensor systems, which stands, e.g., for self-monitoring, -calibrating, -trimming, and -repairing/-healing systems. Selected experimental results prove the applicability and effectiveness of our proposed methodology and emerging tool. By our approach, competitive results were achieved with regard to classification accuracy, flexibility, and design speed under additional design constraints.

  8. A Cross-Layer Routing Design for Multi-Interface Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Tsai

    2009-01-01

    Full Text Available In recent years, Wireless Mesh Networks (WMNs technologies have received significant attentions. WMNs not only accede to the advantages of ad hoc networks but also provide hierarchical multi-interface architecture. Transmission power control and routing path selections are critical issues in the past researches of multihop networks. Variable transmission power levels lead to different network connectivity and interference. Further, routing path selections among different radio interfaces will also produce different intra-/interflow interference. These features tightly affect the network performance. Most of the related works on the routing protocol design do not consider transmission power control and multi-interface environment simultaneously. In this paper, we proposed a cross-layer routing protocol called M2iRi2 which coordinates transmission power control and intra-/interflow interference considerations as routing metrics. Each radio interface calculates the potential tolerable-added transmission interference in the physical layer. When the route discovery starts, the M2iRi2 will adopt the appropriate power level to evaluate each interface quality along paths. The simulation results demonstrate that our design can enhance both network throughput and end-to-end delay.

  9. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    Science.gov (United States)

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  10. A generalized cellular automata approach to modeling first order ...

    Indian Academy of Sciences (India)

    system, consisting of space, time and state, structured with simple local rules without ... Sensitivity analysis of a stochastic cellular automata model. 413 ..... Baetens J M and De Baets B 2011 Design and parameterization of a stochastic cellular.

  11. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    Science.gov (United States)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  12. Distinguishing epigenetic marks of developmental and imprinting regulation

    Directory of Open Access Journals (Sweden)

    McEwen Kirsten R

    2010-01-01

    Full Text Available Abstract Background The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. Results Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. Conclusion A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two

  13. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method

    Science.gov (United States)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability.

  14. Multi-objective optimization of generalized reliability design problems using feature models-A concept for early design stages

    International Nuclear Information System (INIS)

    Limbourg, Philipp; Kochs, Hans-Dieter

    2008-01-01

    Reliability optimization problems such as the redundancy allocation problem (RAP) have been of considerable interest in the past. However, due to the restrictions of the design space formulation, they may not be applicable in all practical design problems. A method with high modelling freedom for rapid design screening is desirable, especially in early design stages. This work presents a novel approach to reliability optimization. Feature modelling, a specification method originating from software engineering, is applied for the fast specification and enumeration of complex design spaces. It is shown how feature models can not only describe arbitrary RAPs but also much more complex design problems. The design screening is accomplished by a multi-objective evolutionary algorithm for probabilistic objectives. Comparing averages or medians may hide the true characteristics of this distributions. Therefore the algorithm uses solely the probability of a system dominating another to achieve the Pareto optimal set. We illustrate the approach by specifying a RAP and a more complex design space and screening them with the evolutionary algorithm

  15. Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus

    Science.gov (United States)

    Title (20 words): Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus. Introduction (120 words): Polybrominated diphenyl ethers (PBDE5) possess neurotoxic effects similar to those of PCBs. The cellular a...

  16. Myokit: A simple interface to cardiac cellular electrophysiology.

    Science.gov (United States)

    Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A

    2016-01-01

    Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Design of Multi-core Fiber Patch Panel for Space Division Multiplexing Implementations

    DEFF Research Database (Denmark)

    Gonzalez, Luz E.; Morales, Alvaro; Rommel, Simon

    2018-01-01

    A multi-core fiber (MCF) patch panel was designed, allowing easy coupling of individual signals to and from a 7-core MCF. The device was characterized, measuring insertion loss and cross talk, finding highest insertion loss and lowest crosstalk at 1300 nm with values of 9.7 dB and -36.5 d...

  18. Accelerating solving the dynamic multi-objective nework design problem using response surface methods

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel C.J.; Viti, F.; Immers, B.; Tampere, C.

    2011-01-01

    Multi objective optimization of externalities of traffic solving a network design problem in which Dynamic Traffic Management measures are used, is time consuming while heuristics are needed and solving the lower level requires solving the dynamic user equilibrium problem. Use of response surface

  19. An FPGA design flow for reconfigurable network-based multi-processor systems on chip

    NARCIS (Netherlands)

    Kumar, A.; Hansson, M.A; Huisken, J.; Corporaal, H.

    2007-01-01

    Multi-processor systems on chip (MPSoC) platforms are becoming increasingly more heterogeneous and are shifting towards a more communication-centric methodology. Networks on chip (NoC) have emerged as the design paradigm for scalable on-chip communication architectures. As the system complexity

  20. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model.

    Science.gov (United States)

    Bisig, Christoph; Roth, Michèle; Müller, Loretta; Comte, Pierre; Heeb, Norbert; Mayer, Andreas; Czerwinski, Jan; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-11-01

    Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NO x , and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×10 2 #/cm 3 (E0), 1×10 5 #/cm 3 (E10), 3×10 3 #/cm 3 (E85), and 2.8×10 6 #/cm 3 (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2,3-dioxygenase 1

  1. Design of multi-phase dynamic chemical networks

    Science.gov (United States)

    Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.

    2017-08-01

    Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.

  2. Developmental Advising for Marginalized Community College Students: An Action Research Study

    Science.gov (United States)

    Jones, Terrica S.

    2013-01-01

    The purpose of this action research study was to understand, evaluate, and improve the developmental advising practices used at a Washington State community college. This action research study endeavored to strengthen the developmental advising model originally designed to support the college's marginalized students. Guiding questions for the…

  3. Design and performance of a multi-channel, multi-sampling, PSD-enabling integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Engel, G.L., E-mail: gengel@siue.ed [Department of Electrical and Computer Engineering, VLSI Design Research Laboratory, Southern Illinois University Edwardsville, Engineering Building, Room 3043 Edwardsville, IL 62026 1081 (United States); Hall, M.J.; Proctor, J.M. [Department of Electrical and Computer Engineering, VLSI Design Research Laboratory, Southern Illinois University Edwardsville, Engineering Building, Room 3043 Edwardsville, IL 62026 1081 (United States); Elson, J.M.; Sobotka, L.G.; Shane, R.; Charity, R.J. [Departments of Chemistry and Physics, Washington University, Saint Louis, MO 63130 (United States)

    2009-12-21

    This paper presents the design and test results of an eight-channel prototype integrated circuit chip intended to greatly simplify the pulse-processing electronics needed for large arrays of scintillation detectors. Because the chip design employs (user-controlled) multi-region charge integration, particle identification is incorporated into the basic design. Each channel on the chip also contains a time-to-voltage converter which provides relative time information. The pulse-height integrals and the relative time are all stored on capacitors and are either reset, after a user controlled time, or sequentially read out if acquisition of the event is desired. Each of the three pulse-height sub-channels consists of a gated integrator with eight programmable charging rates and an externally programmable gate generator that defines the start (with four time ranges) and width (with four time ranges) of the gate relative to an external discriminator signal. The chip supports three triggering modes, two time ranges, two power modes, and produces four sparsified analog pulse trains (three for the integrators and another for the time) with synchronized addresses for off-chip digitization with a pipelined ADC. The eight-channel prototype chip occupies an area of 2.8 mmx5.7 mm, dissipates 60 mW (low-power mode), and was fabricated in the AMI 0.5-mum process (C5N).

  4. Design and performance of a multi-channel, multi-sampling, PSD-enabling integrated circuit

    International Nuclear Information System (INIS)

    Engel, G.L.; Hall, M.J.; Proctor, J.M.; Elson, J.M.; Sobotka, L.G.; Shane, R.; Charity, R.J.

    2009-01-01

    This paper presents the design and test results of an eight-channel prototype integrated circuit chip intended to greatly simplify the pulse-processing electronics needed for large arrays of scintillation detectors. Because the chip design employs (user-controlled) multi-region charge integration, particle identification is incorporated into the basic design. Each channel on the chip also contains a time-to-voltage converter which provides relative time information. The pulse-height integrals and the relative time are all stored on capacitors and are either reset, after a user controlled time, or sequentially read out if acquisition of the event is desired. Each of the three pulse-height sub-channels consists of a gated integrator with eight programmable charging rates and an externally programmable gate generator that defines the start (with four time ranges) and width (with four time ranges) of the gate relative to an external discriminator signal. The chip supports three triggering modes, two time ranges, two power modes, and produces four sparsified analog pulse trains (three for the integrators and another for the time) with synchronized addresses for off-chip digitization with a pipelined ADC. The eight-channel prototype chip occupies an area of 2.8 mmx5.7 mm, dissipates 60 mW (low-power mode), and was fabricated in the AMI 0.5-μm process (C5N).

  5. Location and cellular stages of NK cell development

    Science.gov (United States)

    Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A

    2013-01-01

    The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice. PMID:24055329

  6. On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control

    KAUST Repository

    Elsawy, Hesham; Hossain, Ekram

    2014-01-01

    Using stochastic geometry, we develop a tractable uplink modeling paradigm for outage probability and spectral efficiency in both single and multi-tier cellular wireless networks. The analysis accounts for per user equipment (UE) power control

  7. Multi-Step Usage of in Vivo Models During Rational Drug Design and Discovery

    Directory of Open Access Journals (Sweden)

    Charles H. Williams

    2011-04-01

    Full Text Available In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design.

  8. Design of multi-core fiber patch panel for space division multiplexing implementations

    NARCIS (Netherlands)

    González, Luz E.; Morales, Alvaro; Rommel, Simon; Jørgensen, Bo F.; Porras-Montenegro, N.; Tafur Monroy, Idelfonso

    2018-01-01

    A multi-core fiber (MCF) patch panel was designed, allowing easy coupling of individual signals to and from a 7-core MCF. The device was characterized, measuring insertion loss and cross talk, finding highest insertion loss and lowest crosstalk at 1300 nm with values of 9.7 dB and -36.5 dB

  9. A Computational model for compressed sensing RNAi cellular screening

    Directory of Open Access Journals (Sweden)

    Tan Hua

    2012-12-01

    Full Text Available Abstract Background RNA interference (RNAi becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. Results In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi, which employs a unique combination of group of small interfering RNAs (siRNAs to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear, which is ill-posed in general. However, the recently developed compressed sensing (CS theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. Conclusions This csRNAi system is very promising in saving both time and cost for large-scale RNAi

  10. Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Duan, Chen; Wang, Xinggang; Shu, Shuiming; Jing, Changwei; Chang, Huawei

    2014-01-01

    Highlights: • An improved thermodynamic model taking into account irreversibility parameter was developed. • A multi-objective optimization method for designing Stirling engine was investigated. • Multi-objective particle swarm optimization algorithm was adopted in the area of Stirling engine for the first time. - Abstract: In the recent years, the interest in Stirling engine has remarkably increased due to its ability to use any heat source from outside including solar energy, fossil fuels and biomass. A large number of studies have been done on Stirling cycle analysis. In the present study, a mathematical model based on thermodynamic analysis of Stirling engine considering regenerative losses and internal irreversibilities has been developed. Power output, thermal efficiency and the cycle irreversibility parameter of Stirling engine are optimized simultaneously using Particle Swarm Optimization (PSO) algorithm, which is more effective than traditional genetic algorithms. In this optimization problem, some important parameters of Stirling engine are considered as decision variables, such as temperatures of the working fluid both in the high temperature isothermal process and in the low temperature isothermal process, dead volume ratios of each heat exchanger, volumes of each working spaces, effectiveness of the regenerator, and the system charge pressure. The Pareto optimal frontier is obtained and the final design solution has been selected by Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP). Results show that the proposed multi-objective optimization approach can significantly outperform traditional single objective approaches

  11. Contribution of cellular autolysis to tissular functions during plant development.

    Science.gov (United States)

    Escamez, Sacha; Tuominen, Hannele

    2017-02-01

    Plant development requires specific cells to be eliminated in a predictable and genetically regulated manner referred to as programmed cell death (PCD). However, the target cells do not merely die but they also undergo autolysis to degrade their cellular corpses. Recent progress in understanding developmental cell elimination suggests that distinct proteins execute PCD sensu stricto and autolysis. In addition, cell death alone and cell dismantlement can fulfill different functions. Hence, it appears biologically meaningful to distinguish between the modules of PCD and autolysis during plant development. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  13. Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.

    Science.gov (United States)

    Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian

    2015-12-16

    Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.

  14. PSS and TCSC damping controller coordinated design using PSO in multi-machine power system

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Safari, A.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-12-15

    The paper develops a new design procedure for simultaneous coordinated designing of the thyristor controlled series capacitor (TCSC) damping controller and power system stabilizer (PSS) in multi-machine power system. The coordinated design problem of PSS and TCSC damping controllers over a wide range of loading conditions is converted to an optimization problem with the time domain-based objective function that is solved by a particle swarm optimization (PSO) technique which has a strong ability to find the most optimistic results. By minimizing the proposed fitness function in which oscillatory characteristics between areas are included and thus the interactions among the TCSC controller and PSS under transient conditions in the multi-machine power system are improved. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the uncoordinated designed stabilizers of the PSS and the TCSC damping controller.

  15. canvasDesigner: A versatile interactive high-resolution scientific multi-panel visualization toolkit.

    Science.gov (United States)

    Zhang, Baohong; Zhao, Shanrong; Neuhaus, Isaac

    2018-05-03

    We present a bioinformatics and systems biology visualization toolkit harmonizing real time interactive exploring and analyzing of big data, full-fledged customizing of look-n-feel, and producing multi-panel publication-ready figures in PDF format simultaneously. Source code and detailed user guides are available at http://canvasxpress.org, https://baohongz.github.io/canvasDesigner, and https://baohongz.github.io/canvasDesigner/demo_video.html. isaac.neuhaus@bms.com, baohong.zhang@pfizer.com, shanrong.zhao@pfizer.com. Supplementary materials are available at https://goo.gl/1uQygs.

  16. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    Science.gov (United States)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  17. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection.

    Directory of Open Access Journals (Sweden)

    Remy Froissart

    2005-03-01

    Full Text Available Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5 to 4 x 10(-5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.

  18. Low-Radiation Cellular Inductive Powering of Rodent Wireless Brain Interfaces: Methodology and Design Guide.

    Science.gov (United States)

    Soltani, Nima; Aliroteh, Miaad S; Salam, M Tariqus; Perez Velazquez, Jose Luis; Genov, Roman

    2016-08-01

    This paper presents a general methodology of inductive power delivery in wireless chronic rodent electrophysiology applications. The focus is on such systems design considerations under the following key constraints: maximum power delivery under the allowable specific absorption rate (SAR), low cost and spatial scalability. The methodology includes inductive coil design considerations within a low-frequency ferrite-core-free power transfer link which includes a scalable coil-array power transmitter floor and a single-coil implanted or worn power receiver. A specific design example is presented that includes the concept of low-SAR cellular single-transmitter-coil powering through dynamic tracking of a magnet-less receiver spatial location. The transmitter coil instantaneous supply current is monitored using a small number of low-cost electronic components. A drop in its value indicates the proximity of the receiver due to the reflected impedance of the latter. Only the transmitter coil nearest to the receiver is activated. Operating at the low frequency of 1.5 MHz, the inductive powering floor delivers a maximum of 15.9 W below the IEEE C95 SAR limit, which is over three times greater than that in other recently reported designs. The power transfer efficiency of 39% and 13% at the nominal and maximum distances of 8 cm and 11 cm, respectively, is maintained.

  19. Reserch on Urban Spatial Expansion Model Based on Multi-Object Gray Decision-Making and Ca: a Case Study of Pidu District, Chengdu City

    Science.gov (United States)

    Liu, Z.; Li, Y.

    2018-04-01

    This paper from the perspective of the Neighbor cellular space, Proposed a new urban space expansion model based on a new multi-objective gray decision and CA. The model solved the traditional cellular automata conversion rules is difficult to meet the needs of the inner space-time analysis of urban changes and to overcome the problem of uncertainty in the combination of urban drivers and urban cellular automata. At the same time, the study takes Pidu District as a research area and carries out urban spatial simulation prediction and analysis, and draws the following conclusions: (1) The design idea of the urban spatial expansion model proposed in this paper is that the urban driving factor and the neighborhood function are tightly coupled by the multi-objective grey decision method based on geographical conditions. The simulation results show that the simulation error of urban spatial expansion is less than 5.27 %. The Kappa coefficient is 0.84. It shows that the model can better capture the inner transformation mechanism of the city. (2) We made a simulation prediction for Pidu District of Chengdu by discussing Pidu District of Chengdu as a system instance.In this way, we analyzed the urban growth tendency of this area.presenting a contiguous increasing mode, which is called "urban intensive development". This expansion mode accorded with sustainable development theory and the ecological urbanization design theory.

  20. Multi dimensional analysis of Design Basis Events using MARS-LMR

    International Nuclear Information System (INIS)

    Woo, Seung Min; Chang, Soon Heung

    2012-01-01

    Highlights: ► The one dimensional analyzed sodium hot pool is modified to a three dimensional node system, because the one dimensional analysis cannot represent the phenomena of the inside pool of a big size pool with many compositions. ► The results of the multi-dimensional analysis compared with the one dimensional analysis results in normal operation, TOP (Transient of Over Power), LOF (Loss of Flow), and LOHS (Loss of Heat Sink) conditions. ► The difference of the sodium flow pattern due to structure effect in the hot pool and mass flow rates in the core lead the different sodium temperature and temperature history under transient condition. - Abstract: KALIMER-600 (Korea Advanced Liquid Metal Reactor), which is a pool type SFR (Sodium-cooled Fast Reactor), was developed by KAERI (Korea Atomic Energy Research Institute). DBE (Design Basis Events) for KALIMER-600 has been analyzed in the one dimension. In this study, the one dimensional analyzed sodium hot pool is modified to a three dimensional node system, because the one dimensional analysis cannot represent the phenomena of the inside pool of a big size pool with many compositions, such as UIS (Upper Internal Structure), IHX (Intermediate Heat eXchanger), DHX (Decay Heat eXchanger), and pump. The results of the multi-dimensional analysis compared with the one dimensional analysis results in normal operation, TOP (Transient of Over Power), LOF (Loss of Flow), and LOHS (Loss of Heat Sink) conditions. First, the results in normal operation condition show the good agreement between the one and multi-dimensional analysis. However, according to the sodium temperatures of the core inlet, outlet, the fuel central line, cladding and PDRC (Passive Decay heat Removal Circuit), the temperatures of the one dimensional analysis are generally higher than the multi-dimensional analysis in conditions except the normal operation state, and the PDRC operation time in the one dimensional analysis is generally longer than

  1. A new multi objective optimization model for designing a green supply chain network under uncertainty

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Saffar

    2015-01-01

    Full Text Available Recently, researchers have focused on how to minimize the negative effects of industrial activities on environment. Consequently, they work on mathematical models, which minimize the environmental issues as well as optimizing the costs. In the field of supply chain network design, most managers consider economic and environmental issues, simultaneously. This paper introduces a bi-objective supply chain network design, which uses fuzzy programming to obtain the capability of resisting uncertain conditions. The design considers production, recovery, and distribution centers. The advantage of using this model includes the optimal facilities, locating them and assigning the optimal facilities to them. It also chooses the type and the number of technologies, which must be bought. The fuzzy programming converts the multi objective model to an auxiliary crisp model by Jimenez approach and solves it with ε-constraint. For solving large size problems, the Multi Objective Differential Evolutionary algorithm (MODE is applied.

  2. Correlation Between Mothers' Depression and Developmental Delay in Infants Aged 6-18 Months.

    Science.gov (United States)

    Vameghi, Roshanak; Amir Ali Akbari, Sedigheh; Sajjadi, Homeira; Sajedi, Firoozeh; Alavimajd, Hamid

    2015-08-23

    Regarding the importance of children's developmental status and various factors that delay their development, this study was conducted to examine the correlation between mothers' depression levels and the developmental delay in infants. This descriptive study was performed on 1053 mothers and their infants' age 6 to18 month-old in medical centers affiliated with Shahid Beheshti University of Medical Sciences, Iran, in 2014-2015. The participants were selected through multi-stage random sampling. The following instruments were used in this study: A demographic and obstetric specification questionnaire, infant specification questionnaire, the Beck Depression Inventory, and the Ages and Stages Questionnaire to determine the status of the children's development. The data were analyzed using SPSS19 software, Mann-Whitney; independent T-test and logistic-Regression tests were used. The results showed that 491 mothers (46.7%) suffered mild to extremely severe depression. The delay in infant development was 11.8%. The Mann-Whitney test showed a correlation between mothers' depression levels and developmental delay in infants (P=0.001). Moreover, there was a significant correlation between mothers' depression and developmental delays in gross-motor and problem-solving skills (Pmothers' depression and infant development, it is recommended to screen mothers for depression in order to perform early interventions in developmental delay.

  3. Leading multi-professional teams in the children's workforce: an action research project.

    Science.gov (United States)

    Stuart, Kaz

    2012-01-01

    The 2004 Children Act in the UK saw the introduction of integrated working in children's services. A raft of change followed with processes designed to make joint working easier, and models and theories to support the development of integrated work. This paper explores the links between key concepts and practice. A practitioner action research approach is taken using an autoethnographic account kept over six months. The research question was, to what extent is this group collaborating? When the architecture of practice was revealed, differences between espoused and real practice could be seen. Whilst understanding and displaying the outward signs of an effective multi professional group, the individuals did not trust one another. This was exhibited by covert interprofessional issues. As a result, collaborative inertia was achieved. This realisation prompted them to participate in further developmental and participative action research. The paper concludes that trust and relational agency are central to effective leadership of multi professional teams.

  4. Design of High-Precision Infrared Multi-Touch Screen Based on the EFM32

    Directory of Open Access Journals (Sweden)

    Zhong XIAOLING

    2014-07-01

    Full Text Available Due to the low accuracy of traditional infrared multi-touch screen, it’s difficult to ascertain the touch point. Putting forward a design scheme based on ARM Cortex-M3 kernel EFM32 processor of high precision infrared multi-touch screen. Using tracking scanning area algorithm after accessed electricity for the first time to scan, it greatly improved the scanning efficiency and response speed. Based on the infrared characteristic difference, putting forward a data fitting algorithm, employing the subtraction relationship between the covering area and sampling value to curve fitting, concluding the infrared sampling value of subtraction characteristic curve, establishing a sampling value differential data tables, at last ensuring the precise location of touch point. Besides, practices have proved that the accuracy of the infrared touch screen can up to 0.5 mm. The design uses standard USB port which connected to the PC can also be widely used in various terminals.

  5. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method.

    Science.gov (United States)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.

    Science.gov (United States)

    Gao, Fei; Zhang, Rui; Zhou, Diange; Wang, Xiaoying; Huang, Kefu; Zhang, Jue

    2016-10-01

    Musculoskeletal MR imaging under multi-angle situations plays an increasingly important role in assessing joint and muscle tissues system. However, there are still limitations due to the closed structures of most conventional RF coils. In this study, a time-harmonic target-field method was employed to design open multi-purpose coil (OMC) for multi-angle musculoskeletal MR imaging. The phantom imaging results suggested that the proposed OMC could achieve homogeneously distributed magnetic field and high signal-to-noise ratio (SNR) of 239.04±0.83 in the region of interest (ROI). The maximum temperature in the heating hazard test was 16°C lower than the standard regulation, which indicated the security of the designed OMC. Furthermore, to demonstrate the effectiveness of the proposed OMC for musculoskeletal MR imaging, especially for multi-angle imaging, a healthy volunteer was examined for MR imaging of elbow, ankle and knee using OMC. The in vivo imaging results showed that the proposed OMC is effective for MR imaging of musculoskeletal tissues at different body parts, with satisfied B1 field homogeneity and SNR. Moreover, the open structure of the OMC could provide a large joint movement region. The proposed open multi-purpose coil is feasible for musculoskeletal MR imaging, and potentially, it is more suitable for the evaluation of musculoskeletal tissues under multi-angle conditions. Copyright © 2016. Published by Elsevier Inc.

  7. Physics considerations in MV-CBCT multi-layer imager design.

    Science.gov (United States)

    Hu, Yue-Houng; Fueglistaller, Rony; Myronakis, Marios E; Rottmann, Joerg; Wang, Adam; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Huber, Pascal; Star-Lack, Josh M; Berbeco, Ross I

    2018-05-30

    Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting imager noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will

  8. Cross-Layer Design and Analysis of Downlink Communications in Cellular CDMA Systems

    Directory of Open Access Journals (Sweden)

    Sun Jin Yuan

    2006-01-01

    Full Text Available A cellular CDMA network with voice and data communications is considered. Focusing on the downlink direction, we seek for the overall performance improvement which can be achieved by cross-layer analysis and design, taking physical layer, link layer, network layer, and transport layer into account. We are concerned with the role of each single layer as well as the interaction among layers, and propose algorithms/schemes accordingly to improve the system performance. These proposals include adaptive scheduling for link layer, priority-based handoff strategy for network admission control, and an algorithm for the avoidance of TCP spurious timeouts at the transport layer. Numerical results show the performance gain of each proposed scheme over independent performance of an individual layer in the wireless mobile network. We conclude that the system performance in terms of capacity, throughput, dropping probability, outage, power efficiency, delay, and fairness can be enhanced by jointly considering the interactions across layers.

  9. Bistable switches control memory and plasticity in cellular differentiation

    Science.gov (United States)

    Wang, Lei; Walker, Brandon L.; Iannaccone, Stephen; Bhatt, Devang; Kennedy, Patrick J.; Tse, William T.

    2009-01-01

    Development of stem and progenitor cells into specialized tissues in multicellular organisms involves a series of cell fate decisions. Cellular differentiation in higher organisms is generally considered irreversible, and the idea of developmental plasticity in postnatal tissues is controversial. Here, we show that inhibition of mitogen-activated protein kinase (MAPK) in a human bone marrow stromal cell-derived myogenic subclone suppresses their myogenic ability and converts them into satellite cell-like precursors that respond to osteogenic stimulation. Clonal analysis of the induced osteogenic response reveals ultrasensitivity and an “all-or-none” behavior, hallmarks of a bistable switch mechanism with stochastic noise. The response demonstrates cellular memory, which is contingent on the accumulation of an intracellular factor and can be erased by factor dilution through cell divisions or inhibition of protein synthesis. The effect of MAPK inhibition also exhibits memory and appears to be controlled by another bistable switch further upstream that determines cell fate. Once the memory associated with osteogenic differentiation is erased, the cells regain their myogenic ability. These results support a model of cell fate decision in which a network of bistable switches controls inducible production of lineage-specific differentiation factors. A competitive balance between these factors determines cell fate. Our work underscores the dynamic nature of cellular differentiation and explains mechanistically the dual properties of stability and plasticity associated with the process. PMID:19366677

  10. 3D Visualization of Developmental Toxicity of 2,4,6-Trinitrotoluene in Zebrafish Embryogenesis Using Light-Sheet Microscopy

    Directory of Open Access Journals (Sweden)

    Juneyong Eum

    2016-11-01

    Full Text Available Environmental contamination by trinitrotoluene is of global concern due to its widespread use in military ordnance and commercial explosives. Despite known long-term persistence in groundwater and soil, the toxicological profile of trinitrotoluene and other explosive wastes have not been systematically measured using in vivo biological assays. Zebrafish embryos are ideal model vertebrates for high-throughput toxicity screening and live in vivo imaging due to their small size and transparency during embryogenesis. Here, we used Single Plane Illumination Microscopy (SPIM/light sheet microscopy to assess the developmental toxicity of explosive-contaminated water in zebrafish embryos and report 2,4,6-trinitrotoluene-associated developmental abnormalities, including defects in heart formation and circulation, in 3D. Levels of apoptotic cell death were higher in the actively developing tissues of trinitrotoluene-treated embryos than controls. Live 3D imaging of heart tube development at cellular resolution by light-sheet microscopy revealed trinitrotoluene-associated cardiac toxicity, including hypoplastic heart chamber formation and cardiac looping defects, while the real time PCR (polymerase chain reaction quantitatively measured the molecular changes in the heart and blood development supporting the developmental defects at the molecular level. Identification of cellular toxicity in zebrafish using the state-of-the-art 3D imaging system could form the basis of a sensitive biosensor for environmental contaminants and be further valued by combining it with molecular analysis.

  11. MA-IS: Design of Information System in a Multi-Agents Environment

    Directory of Open Access Journals (Sweden)

    Roberto Paiano

    2009-08-01

    Full Text Available The complexity of the information systems has recently had a remarkable increase, mostly thanks to the enormous impact that it has had in the multi-agent system (MAS area; hence the need to integrate two systems and obtain an IS that takes advantage of the potentialities of the MAS. To this purpose, a methodology to analyze and design a multi-agent system is needed. In order to define such a methodology, which should take into account all the aspects of the MAS, first we need to establish not only a conceptual model of the system but also a communication level model. In this paper we propose the use of DDS framework for the communication level and the use of the BWW ontology for representation and design of the domain knowledge base. The idea of the above-mentioned methodology was conceived in the SISTDE project, which uses the ontology for the description of the domain, so as to provide the agents with a knowledge base that concurs to define their behaviour according to external events. In addition to this, the experience we have matured in the IS modelling using the BWW ontology is a key-point of our approach.

  12. Multi-scale modeling in morphogenesis: a critical analysis of the cellular Potts model.

    Directory of Open Access Journals (Sweden)

    Anja Voss-Böhme

    Full Text Available Cellular Potts models (CPMs are used as a modeling framework to elucidate mechanisms of biological development. They allow a spatial resolution below the cellular scale and are applied particularly when problems are studied where multiple spatial and temporal scales are involved. Despite the increasing usage of CPMs in theoretical biology, this model class has received little attention from mathematical theory. To narrow this gap, the CPMs are subjected to a theoretical study here. It is asked to which extent the updating rules establish an appropriate dynamical model of intercellular interactions and what the principal behavior at different time scales characterizes. It is shown that the longtime behavior of a CPM is degenerate in the sense that the cells consecutively die out, independent of the specific interdependence structure that characterizes the model. While CPMs are naturally defined on finite, spatially bounded lattices, possible extensions to spatially unbounded systems are explored to assess to which extent spatio-temporal limit procedures can be applied to describe the emergent behavior at the tissue scale. To elucidate the mechanistic structure of CPMs, the model class is integrated into a general multiscale framework. It is shown that the central role of the surface fluctuations, which subsume several cellular and intercellular factors, entails substantial limitations for a CPM's exploitation both as a mechanistic and as a phenomenological model.

  13. Design and implementation of space physics multi-model application integration based on web

    Science.gov (United States)

    Jiang, Wenping; Zou, Ziming

    independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.

  14. Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.

    Science.gov (United States)

    Parameswaran, Ramya; Tian, Bozhi

    2018-05-15

    these rationally designed materials either intra- or extracellularly. We last delve into the use of these materials in sensing mechanical forces and electrical signals in various cellular systems as well as in instructing cellular behaviors. Future research in this area may shift the paradigm in fundamental biophysical research and biomedical applications through (1) the design and synthesis of new semiconductor-based materials and devices that interact specifically with targeted cells, (2) the clarification of many developmental, physiological, and anatomical aspects of cellular communications, (3) an understanding of how signaling between cells regulates synaptic development (e.g., information like this would offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases), (4) and the creation of new cellular materials that have the potential to open up completely new areas of application, such as in hybrid information processing systems.

  15. Grid Filter Design for a Multi-Megawatt Medium-Voltage Voltage Source Inverter

    DEFF Research Database (Denmark)

    Rockhill, A.A.; Liserre, Marco; Teodorescu, Remus

    2011-01-01

    This paper describes the design procedure and performance of an LCL grid filter for a medium-voltage neutral point clamped (NPC) converter to be adopted for a multimegawatt wind turbine. The unique filter design challenges in this application are driven by a combination of the medium voltage...... converter, a limited allowable switching frequency, component physical size and weight concerns, and the stringent limits for allowable injected current harmonics. Traditional design procedures of grid filters for lower power and higher switching frequency converters are not valid for a multi......-megawatt filter connecting a medium-voltage converter switching at low frequency to the electric grid. This paper demonstrates a frequency domain model based approach to determine the optimum filter parameters that provide the necessary performance under all operating conditions given the necessary design...

  16. Investigation of a Developmental Model of Risk for Depression and Suicidality Following Spousal Bereavement

    Science.gov (United States)

    Johnson, Jeffrey G.; Zhang, Baohui; Prigerson, Holly G.

    2008-01-01

    Data from a community-based multi-wave investigation were used to examine a developmental model of risk for depression and suicidality following the death of a spouse. Measures of perceived parental affection and control during childhood were administered to 218 widowed adults 11 months after the death of the spouse. Self-esteem, spousal…

  17. Impaired Letter-String Processing in Developmental Dyslexia: What Visual-to-Phonology Code Mapping Disorder?

    Science.gov (United States)

    Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel

    2012-01-01

    Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In…

  18. Fault-tolerant design approach for reliable offshore multi-megawatt variable frequency converters

    Directory of Open Access Journals (Sweden)

    N. Vedachalam

    2016-09-01

    Full Text Available Inverters play a key role in realizing reliable multi-megawatt power electronic converters used in offshore applications, as their failure leads to production losses and impairs safety. The performance of high power handing semiconductor devices with high speed control capabilities and redundant configurations helps in realizing a fault-tolerant design. This paper describes the reliability modeling done for an industry standard, 3-level neutral point clamped multi-megawatt inverter, the significance of semiconductor redundancy in reducing inverter failure rates, and proposes methods for achieving static and dynamic redundancy in series connected press pack type insulated gate bipolar transistors (IGBT. It is identified that, with the multi megawatt inverter having 3+2 IGBT in each half leg with dynamic redundancy incorporated, it is possible to reduce the failure rate of the inverter from 53.8% to 15% in 5 years of continuous operation. The simulation results indicate that with dynamic redundancy, it is possible to force an untriggered press pack IGBT to short circuit in <1s, when operated with a pulse width modulation frequency of 1kHz.

  19. Simulating the Conversion of Rural Settlements to Town Land Based on Multi-Agent Systems and Cellular Automata

    Science.gov (United States)

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472

  20. Selection of a turbine cooling system applying multi-disciplinary design considerations.

    Science.gov (United States)

    Glezer, B

    2001-05-01

    The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.

  1. A novel gripper design for multi hand tools grasping under tight clearance constraints and external torque effect

    KAUST Repository

    Shaqura, Mohammad; Shamma, Jeff S.

    2017-01-01

    A robotic multi tool gripper design and implementation is presented in this paper. The proposed design targets applications where an actuation task is performed using a wide selection of standard hand tools. The manipulation motion is assumed

  2. "Slit Mask Design for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph"

    Science.gov (United States)

    Williams, Darius; Marshall, Jennifer L.; Schmidt, Luke M.; Prochaska, Travis; DePoy, Darren L.

    2018-01-01

    The Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS) is currently in development for the Giant Magellan Telescope (GMT). GMACS will employ slit masks with a usable diameter of approximately 0.450 m for the purpose of multi-slit spectroscopy. Of significant importance are the design constraints and parameters of the multi-object slit masks themselves as well as the means for mapping astronomical targets to physical mask locations. Analytical methods are utilized to quantify deformation effects on a potential slit mask due to thermal expansion and vignetting of target light cones. Finite element analysis (FEA) is utilized to simulate mask flexure in changing gravity vectors. The alpha version of the mask creation program for GMACS, GMACS Mask Simulator (GMS), a derivative of the OSMOS Mask Simulator (OMS), is introduced.

  3. Guidelines for the structural design of experimental multi-purpose VHTR at the elevated temperature services

    International Nuclear Information System (INIS)

    Nomura, Sueo; Uga, Takeo; Miyamoto, Yoshiaki; Muto, Yasushi; Ikushima, Takeshi

    1976-02-01

    The guidelines are presented for structural design of the experimental multi-purpose VHTR(Very High Temperature Reactor) at the elevated temperature services. Covered are features of the VHTR structural design, specifications, safety design, seismic design, failure modes to be considered, stress criteria for various load combinations and the mechanical properties of the materials. The guidelines were prepared by referring to safety criteria of high-temperature gas cooled reactors, ASME Boiler and Pressure Vessel code, Section III, case 1592 and the domestic seismic design guide of nuclear power facilities. (auth.)

  4. Toward Efficient Design of Reversible Logic Gates in Quantum-Dot Cellular Automata with Power Dissipation Analysis

    Science.gov (United States)

    Sasamal, Trailokya Nath; Singh, Ashutosh Kumar; Ghanekar, Umesh

    2018-04-01

    Nanotechnologies, remarkably Quantum-dot Cellular Automata (QCA), offer an attractive perspective for future computing technologies. In this paper, QCA is investigated as an implementation method for designing area and power efficient reversible logic gates. The proposed designs achieve superior performance by incorporating a compact 2-input XOR gate. The proposed design for Feynman, Toffoli, and Fredkin gates demonstrates 28.12, 24.4, and 7% reduction in cell count and utilizes 46, 24.4, and 7.6% less area, respectively over previous best designs. Regarding the cell count (area cover) that of the proposed Peres gate and Double Feynman gate are 44.32% (21.5%) and 12% (25%), respectively less than the most compact previous designs. Further, the delay of Fredkin and Toffoli gates is 0.75 clock cycles, which is equal to the delay of the previous best designs. While the Feynman and Double Feynman gates achieve a delay of 0.5 clock cycles, equal to the least delay previous one. Energy analysis confirms that the average energy dissipation of the developed Feynman, Toffoli, and Fredkin gates is 30.80, 18.08, and 4.3% (for 1.0 E k energy level), respectively less compared to best reported designs. This emphasizes the beneficial role of using proposed reversible gates to design complex and power efficient QCA circuits. The QCADesigner tool is used to validate the layout of the proposed designs, and the QCAPro tool is used to evaluate the energy dissipation.

  5. Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata

    Science.gov (United States)

    Moharrami, Elham; Navimipour, Nima Jafari

    2018-04-01

    Some new technologies such as Quantum-dot Cellular Automata (QCA) is suggested to solve the physical limits of the Complementary Metal-Oxide Semiconductor (CMOS) technology. The QCA as one of the novel technologies at nanoscale has potential applications in future computers. This technology has some advantages such as minimal size, high speed, low latency, and low power consumption. As a result, it is used for creating all varieties of memory. Counter circuits as one of the important circuits in the digital systems are composed of some latches, which are connected to each other in series and actually they count input pulses in the circuit. On the other hand, the reversible computations are very important because of their ability in reducing energy in nanometer circuits. Improving the energy efficiency, increasing the speed of nanometer circuits, increasing the portability of system, making smaller components of the circuit in a nuclear size and reducing the power consumption are considered as the usage of reversible logic. Therefore, this paper aims to design a two-bit reversible counter that is optimized on the basis of QCA using an improved reversible gate. The proposed reversible structure of 2-bit counter can be increased to 3-bit, 4-bit and more. The advantages of the proposed design have been shown using QCADesigner in terms of the delay in comparison with previous circuits.

  6. Cellular modeling of fault-tolerant multicomputers

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G

    1987-01-01

    Work described was concerned with a novel method for investigation of fault tolerance in large regular networks of computers. Motivation was to provide a technique useful in rapid evaluation of highly reliable systems that exploit the low cost and ease of volume production of simple microcomputer components. First, a system model and simulator based upon cellular automata are developed. This model is characterized by its simplicity and ease of modification when adapting to new types of network. Second, in order to test and verify the predictive capabilities of the cellular system, a more-detailed simulation is performed based upon an existing computational model, that of the Transputer. An example application is used to exercise various systems designed using the cellular model. Using this simulator, experimental results are obtained both for existing well-understood configurations and for more novel types also developed here. In all cases it was found that the cellular model and simulator successfully predicted the ranking in reliability improvement of the systems studied.

  7. Multi-objective genetic algorithm for solving N-version program design problem

    Energy Technology Data Exchange (ETDEWEB)

    Yamachi, Hidemi [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan) and Department of Production and Information Systems Engineering, Tokyo Metropolitan Institute of Technology, Hino, Tokyo 191-0065 (Japan)]. E-mail: yamachi@nit.ac.jp; Tsujimura, Yasuhiro [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan)]. E-mail: tujimr@nit.ac.jp; Kambayashi, Yasushi [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan)]. E-mail: yasushi@nit.ac.jp; Yamamoto, Hisashi [Department of Production and Information Systems Engineering, Tokyo Metropolitan Institute of Technology, Hino, Tokyo 191-0065 (Japan)]. E-mail: yamamoto@cc.tmit.ac.jp

    2006-09-15

    N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently. We formulate the optimal design problem of NVP as a bi-objective 0-1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process. The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost.

  8. Multi-objective genetic algorithm for solving N-version program design problem

    International Nuclear Information System (INIS)

    Yamachi, Hidemi; Tsujimura, Yasuhiro; Kambayashi, Yasushi; Yamamoto, Hisashi

    2006-01-01

    N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently. We formulate the optimal design problem of NVP as a bi-objective 0-1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process. The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost

  9. Engineering design of the EURISOL multi-MW spallation target

    CERN Document Server

    Herrera-Martínez, A; Ashrafi-Nik, M; Samec, K; Freibergs, J; Platacis, E

    2007-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1...

  10. ENGINEERING DESIGN OF THE EURISOL MULTI-MW SPALLATION TARGET

    CERN Document Server

    Adonai Herrera-Martinez*, Yacine Kadi, Morteza Ashrafi-Nik, Karel Samec, Janis Freibergs, Ernests Platacis

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order ...

  11. Making developmental biology relevant to undergraduates in an era of economic rationalism in Australia.

    Science.gov (United States)

    Key, Brian; Nurcombe, Victor

    2003-01-01

    This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.

  12. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    Science.gov (United States)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  13. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    Science.gov (United States)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    Science.gov (United States)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  15. Multi-Language and Multi-Purpose Educational Tool for Kids

    DEFF Research Database (Denmark)

    Holmen, Hee; Valente, Andrea; Marchetti, E.

    2005-01-01

    ‘Crazipes’ is one of the prototype games within SMAALL, a multi-language and multi-purpose games project for young kids of age 3-5 years old. The main goal of SMAALL is to expose young learners in multi-purpose and multi-module games. In the prototype of Crazipes, the game is designed to teach fo...

  16. Bridging developmental systems theory and evolutionary psychology using dynamic optimization.

    Science.gov (United States)

    Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H

    2013-07-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach. © 2013 Blackwell Publishing Ltd.

  17. Design and experimental study of a multi-modal piezoelectric energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xing Yu [School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing (China); Oyadiji, S. Olutunde [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester (United States)

    2017-01-15

    A multi-modal piezoelectric vibration energy harvester is designed in this article. It consists of a cantilevered base beam and some upper and lower layer beams with rigid masses bonded between the beams as spacers. For a four-layer harvester subjected to random base excitations, relocating the mass positions leads to the generation of up to four close resonance frequencies over the frequency range from 10 Hz to 100 Hz with relative large power output. The harvesters are connected with a resistance decade box and the frequency response functions of the voltage and power on resistive loads are determined. The experimental results are validated with the simulation results using the finite element method. On a certain level of power output, the experimental results show that the multi-modal harvesters can generate a frequency band that is more than two times greater than the frequency band produced by a cantilevered beam harvester.

  18. Changing paradigm from one target one ligand towards multi target directed ligand design for key drug targets of Alzheimer disease: An important role of Insilco methods in multi target directed ligands design.

    Science.gov (United States)

    Kumar, Akhil; Tiwari, Ashish; Sharma, Ashok

    2018-03-15

    Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis is not able to provide complete solution of AD due to multifactorial nature of disease and one target one drug seems to fail to provide better treatment against AD. Moreover, current available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So the current AD drug discovery research shifting towards new approach for better solution that simultaneously modulate more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs. Drug discovery project is tedious, costly and long term project. Moreover, multi target AD drug discovery added extra challenges such as good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off target side effect and crossing of the blood brain barrier. These hurdles may be addressed by insilico methods for efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here we are summarizing some of the most prominent and computationally explored single target against AD and further we discussed successful example of dual or multiple inhibitors for same targets. Moreover we focused on ligand and structure based computational approach to design MTDL against AD. However is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy are useful in future MTDLs drug discovery alone or in combination with fragment based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug

  19. Building clinical networks: a developmental evaluation framework.

    Science.gov (United States)

    Carswell, Peter; Manning, Benjamin; Long, Janet; Braithwaite, Jeffrey

    2014-05-01

    Clinical networks have been designed as a cross-organisational mechanism to plan and deliver health services. With recent concerns about the effectiveness of these structures, it is timely to consider an evidence-informed approach for how they can be developed and evaluated. To document an evaluation framework for clinical networks by drawing on the network evaluation literature and a 5-year study of clinical networks. We searched literature in three domains: network evaluation, factors that aid or inhibit network development, and on robust methods to measure network characteristics. This material was used to build a framework required for effective developmental evaluation. The framework's architecture identifies three stages of clinical network development; partner selection, network design and network management. Within each stage is evidence about factors that act as facilitators and barriers to network growth. These factors can be used to measure progress via appropriate methods and tools. The framework can provide for network growth and support informed decisions about progress. For the first time in one place a framework incorporating rigorous methods and tools can identify factors known to affect the development of clinical networks. The target user group is internal stakeholders who need to conduct developmental evaluation to inform key decisions along their network's developmental pathway.

  20. Conceptual framework for potential implementations of multi criteria decision making (MCDM) methods for design quality assessment

    NARCIS (Netherlands)

    Harputlugil, T.; Prins, M.; Tanju Gültekin, A.; Ilker Topçu, Y.

    2011-01-01

    Architectural design can be considered as a process influenced by many stakeholders, each of which has different decision power. Each stakeholder might have his/her own criteria and weightings depending on his/her own perspective and role. Hence design can be seen as a multi-criteria decision making

  1. The search for evolutionary developmental origins of aging in zebrafish: a novel intersection of developmental and senescence biology in the zebrafish model system.

    Science.gov (United States)

    Kishi, Shuji

    2011-09-01

    Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and

  2. Polar vessel hullform design based on the multi-objective optimization NSGA II

    Directory of Open Access Journals (Sweden)

    DUAN Fei

    2017-12-01

    Full Text Available [Objectives] With the increasing exploitation of the Arctic abundant oil and gas resources, a large number of ships which meet the polar navigational requirements are needed.[Methods] In this paper, the fast elitist Non-Dominated Sorting Genetic Algorithm (NSGA Ⅱ is applied to the hull optimization, and the multi-objective optimization method of polar vessel design is proposed. With the optimization goal of resistance and icebreaking resistance, filtering hull forms through the standard of polar vessel displacement and EEDI, fast ship hull optimization that satisfy the ice-ship dead weight and EEDI requirements has been achieved. Taking a 65 000 t shuttle tanker as an example, full parametric modeling method is adopted, the hull optimization of three different bow forms is conducted through the polar vessel multi-objective optimization method.[Results] The ship hull after optimization can satisfy the IA class navigation require, where the resistance in calm water decreases up to 12.94%, and the minimum propulsion power in ice field has a 27.36% reduction.[Conclusions] The feasibility and validity of the NSGA Ⅱ applying in polar vessel design is verified.

  3. Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation

    NARCIS (Netherlands)

    Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M.; van Schijndel, A.W.M.; de Wilde, P.

    2018-01-01

    Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently for large solution spaces and each requires

  4. Design of multi materials combining crystalline and amorphous metallic alloys

    International Nuclear Information System (INIS)

    Volland, A.; Ragani, J.; Liu, Y.; Gravier, S.; Suéry, M.; Blandin, J.J.

    2012-01-01

    Highlights: ► Elaboration of multi materials associating metallic glasses and conventional crystalline alloys by co-deformation performed at temperatures close to the glass transition temperature of the metallic glasses. ► Elaboration of filamentary metal matrix composites with a core in metallic glass by co extrusion. ► Sandwich structures produced by co-pressing. ► Detection of atomic diffusion from the glass to the crystalline alloys during the processes. ► Good interfaces between the metallic glasses and the crystalline alloys, as confirmed by mechanical characterisation. - Abstract: Multi materials, associating zirconium based bulk metallic glasses and crystalline metallic alloys like magnesium alloys or copper are elaborated by co-deformation processing performed in the supercooled liquid regions (SLR) of the bulk metallic glasses. Two processes are investigated: co-extrusion and co-pressing. In the first case, filamentary composites with various designs can be produced whereas in the second case sandwich structures are obtained. The experimental window (temperature, time) in which processing can be carried out is directly related to the crystallisation resistance of the glass which requires getting information about the crystallisation conditions in the selected metallic glasses. Thermoforming windows are identified for the studied BMGs by thermal analysis and compression tests in their SLR. The mechanical properties of the produced multi materials are investigated thanks to specifically developed mechanical devices and the interfaces between the amorphous and the crystalline alloys are characterised.

  5. MODERNIZATION OF TECHNOLOGICAL LINE FOR CELLULAR EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2014-06-01

    As part of the modernization of the cellular extrusion technology the extrusion head was designed and made. During the designing and modeling of the head the Auto CAD programe was used. After the prototyping the extrusion head was tested. In the article specification of cellular extrusion process of thermoplastics was presented. In the research, the endothermal chemical blowing agents in amount 1,0% by mass were used. The quantity of used blowing agent has a direct influence on density and structure of the extruded product of modified polymers. However, these properties have further influence on porosity, impact strength, hardness, tensile strength and another.

  6. A developmental perspective on early-life exposure to neurotoxicants.

    Science.gov (United States)

    Bellinger, David C; Matthews-Bellinger, Julia A; Kordas, Katarzyna

    2016-09-01

    Studies of early-life neurotoxicant exposure have not been designed, analyzed, or interpreted in the context of a fully developmental perspective. The goal of this paper is to describe the key principles of a developmental perspective and to use examples from the literature to illustrate the relevance of these principles to early-life neurotoxicant exposures. Four principles are discussed: 1) the effects of early-life neurotoxicant exposure depend on a child's developmental context; 2) deficits caused by early-life exposure initiate developmental cascades that can lead to pathologies that differ from those observed initially; 3) early-life neurotoxicant exposure has intra-familial and intergenerational impacts; 4) the impacts of early-life neurotoxicant exposure influence a child's ability to respond to future insults. The first principle is supported by considerable evidence, but the other three have received much less attention. Incorporating a developmental perspective in studies of early-life neurotoxicant exposures requires prospective collection of data on a larger array of covariates than usually considered, using analytical approaches that acknowledge the transactional processes between a child and the environment and the phenomenon of developmental cascades. Consideration of early-life neurotoxicant exposure within a developmental perspective reveals that many issues remain to be explicated if we are to achieve a deep understanding of the societal health burden associated with early-life neurotoxicant exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Leading multi-professional teams in the children’s workforce: an action research project

    Directory of Open Access Journals (Sweden)

    Karen Stuart

    2012-01-01

    Full Text Available Introduction: The 2004 Children Act in the UK saw the introduction of integrated working in children's services. A raft of change followed with processes designed to make joint working easier, and models and theories to support the development of integrated work. This paper explores the links between key concepts and practice.Methods: A practitioner action research approach is taken using an autoethnographic account kept over six months. The research question was, to what extent is this group collaborating?Results: When the architecture of practice was revealed, differences between espoused and real practice could be seen. Whilst understanding and displaying the outward signs of an effective multi professional group, the individuals did not trust one another. This was exhibited by covert interprofessional issues. As a result, collaborative inertia was achieved. This realisation prompted them to participate in further developmental and participative action research.Conclusion: The paper concludes that trust and relational agency are central to effective leadership of multi professional teams.

  8. Leading multi-professional teams in the children’s workforce: an action research project

    Directory of Open Access Journals (Sweden)

    Karen Stuart

    2012-01-01

    Full Text Available Introduction: The 2004 Children Act in the UK saw the introduction of integrated working in children's services. A raft of change followed with processes designed to make joint working easier, and models and theories to support the development of integrated work. This paper explores the links between key concepts and practice. Methods: A practitioner action research approach is taken using an autoethnographic account kept over six months. The research question was, to what extent is this group collaborating? Results: When the architecture of practice was revealed, differences between espoused and real practice could be seen. Whilst understanding and displaying the outward signs of an effective multi professional group, the individuals did not trust one another. This was exhibited by covert interprofessional issues. As a result, collaborative inertia was achieved. This realisation prompted them to participate in further developmental and participative action research. Conclusion: The paper concludes that trust and relational agency are central to effective leadership of multi professional teams.

  9. Enabling People with Developmental Disabilities to Actively Perform Designated Occupational Activities according to Simple Instructions with a Nintendo Wii Remote Controller by Controlling Environmental Stimulation

    Science.gov (United States)

    Shih, Ching-Hsiang; Wang, Shu-Hui; Chang, Man-Ling; Shih, Ching-Hsiang

    2012-01-01

    The latest researches have adopted software technology, turning the Nintendo Wii Remote Controller into a high performance three-dimensional object orientation detector. This study extended Wii Remote Controller functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple…

  10. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    Science.gov (United States)

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  11. Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT

    International Nuclear Information System (INIS)

    Shokouhi, S; Peterson, T E; Metzler, S D; Wilson, D W

    2009-01-01

    We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.

  12. Value of diffusion-Weighted imaging in evaluating the cellularity density of prostate cancer

    International Nuclear Information System (INIS)

    Liu Jingang; Wang Xizhen; Wang Bin; Niu Qingliang; Liu Qiang

    2008-01-01

    Objective: To study the cellularity density of prostate cancer (PCa) with diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC). Methods: 38 patients with histologically proven prostate cancer (PCa) underwent DWI with a 1.5 T MR scanner using a pelvic phased array multi-coil. The ADC values of PCa, benign prostatic hyperplasia (BPH), and peripheral zone (PZ) were calculated. The cellularity density of PCa was recorded according to hematoxylin and eosin (HE) staining. The relationship between ADC value and cellularity density of PCa was analyzed with Pearson correlation coefficient. Results: The ADC values of PCa, BPH, and PZ were (49.32±12.68)×10 -5 mm 2 /s, (86.73±26.75)×10 -5 mm 2 /s and (126.25±27.21)×10 -5 mm 2 /s, respectively. The ADC value of PCa was significantly lower than that of BPH and PZ (P<005). The cellularity density of PCa was 12.9%. The ADC value reversely related to the cellularity density of prostate cancer (r=-0.646, P<005). Conclusion: The ADC value can reflect the cellularity density of PCa. (authors)

  13. Back up core designs for the experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Aochi, Tetsuo; Yasuno, Takehiko; Miyamoto, Yoshiaki; Shindo, Ryuichi; Ikushima, Takeshi

    1979-02-01

    For the Experimental Multi-Purpose Very High Temperature Reactor (thermal power 50 MW and reactor outlet helium temperature 1000 0 C), design studies have been made of two backup cores loaded with new-type fuel elements. The purpose is to improve core operational characteristics, especially in thermohydraulics, of the reference design core consisting of pin-in-block type fuel elements having externally cooled hollow fuel rods. In this report are described the design principles and the analyses made of nuclear, thermal and hydraulic, fuel, and safety performances to determine the backup fuel and core design parameters. The first backup core (SP fuel core) is composed of fuel elements with internally cooled fuel rods (semi-pin), 36 rods in each standard element and 18 rods in each control element. The second backup core (MH fuel core) is composed of multihole fuel elements. 102 fuel and 54 coolant holes in each standard element and 30 fuel and 18 coolant holes in each control element. Either of the cores has 73 fuel columns 4 m high; the arrangement of active core and reactor internal structures is the same as that in the reference design. The backup cores meet nearly all design requirements of the VHTR, permitting the rated power operation with coolant Reynolds number of over 10,000 in the SP core and over 6,000 in the MH core. (author)

  14. Extended evolutionary psychology: the importance of transgenerational developmental plasticity

    Directory of Open Access Journals (Sweden)

    Karola eStotz

    2014-08-01

    Full Text Available What kind mechanisms one deems central for the evolutionary process deeply influences one’s understanding of the nature of organisms, including cognition. Reversely, adopting a certain approach to the nature of life and cognition and the relationship between them or between the organism and its environment should affect one’s view of evolutionary theory. This paper explores this reciprocal relationship in more detail. In particular it argues that the view of living and cognitive systems, especially humans, as deeply integrated beings embedded in and transformed by their genetic, epigenetic (molecular and cellular, behavioral, ecological, socio-cultural and cognitive-symbolic legacies calls for an extended evolutionary synthesis that goes beyond either a theory of genes juxtaposed against a theory of cultural evolution and or even more sophisticated theories of gene-culture coevolution and niche construction. Environments, particularly in the form of developmental environments, do not just select for variation, they also create new variation by influencing development through the reliable transmission of non-genetic but heritable information. This paper stresses particularly views of embodied, embedded, enacted and extended cognition, and their relationship to those aspects of extended inheritance that lie between genetic and cultural inheritance, the still grey area of epigenetic and behavioral inheritance systems that play a role in parental effect. These are the processes that can be regarded as transgenerational developmental plasticity and that I think can most fruitfully contribute to, and be investigated by, developmental psychology.

  15. Extended evolutionary psychology: the importance of transgenerational developmental plasticity.

    Science.gov (United States)

    Stotz, Karola

    2014-01-01

    What kind mechanisms one deems central for the evolutionary process deeply influences one's understanding of the nature of organisms, including cognition. Reversely, adopting a certain approach to the nature of life and cognition and the relationship between them or between the organism and its environment should affect one's view of evolutionary theory. This paper explores this reciprocal relationship in more detail. In particular it argues that the view of living and cognitive systems, especially humans, as deeply integrated beings embedded in and transformed by their genetic, epigenetic (molecular and cellular), behavioral, ecological, socio-cultural and cognitive-symbolic legacies calls for an extended evolutionary synthesis that goes beyond either a theory of genes juxtaposed against a theory of cultural evolution and or even more sophisticated theories of gene-culture coevolution and niche construction. Environments, particularly in the form of developmental environments, do not just select for variation, they also create new variation by influencing development through the reliable transmission of non-genetic but heritable information. This paper stresses particularly views of embodied, embedded, enacted and extended cognition, and their relationship to those aspects of extended inheritance that lie between genetic and cultural inheritance, the still gray area of epigenetic and behavioral inheritance systems that play a role in parental effect. These are the processes that can be regarded as transgenerational developmental plasticity and that I think can most fruitfully contribute to, and be investigated by, developmental psychology.

  16. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    Directory of Open Access Journals (Sweden)

    Susanta K Behura

    Full Text Available Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1 are components of developmental signaling pathways, 2 regulate fundamental developmental processes, 3 are critical for the development of tissues of vector importance, 4 function in developmental processes known to have diverged within insects, and 5 encode microRNAs (miRNAs that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  17. The epidermis of grhl3-null mice displays altered lipid processing and cellular hyperproliferation.

    Science.gov (United States)

    Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M; Jane, Stephen M

    2005-04-01

    The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin.

  18. Uplink Interference Analysis for Two-tier Cellular Networks with Diverse Users under Random Spatial Patterns

    OpenAIRE

    Bao, Wei; Liang, Ben

    2013-01-01

    Multi-tier architecture improves the spatial reuse of radio spectrum in cellular networks, but it introduces complicated heterogeneity in the spatial distribution of transmitters, which brings new challenges in interference analysis. In this work, we present a stochastic geometric model to evaluate the uplink interference in a two-tier network considering multi-type users and base stations. Each type of tier-1 users and tier-2 base stations are modeled as independent homogeneous Poisson point...

  19. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  20. multiPDEVS: A Parallel Multicomponent System Specification Formalism

    Directory of Open Access Journals (Sweden)

    Damien Foures

    2018-01-01

    Full Text Available Based on multiDEVS formalism, we introduce multiPDEVS, a parallel and nonmodular formalism for discrete event system specification. This formalism provides combined advantages of PDEVS and multiDEVS approaches, such as excellent simulation capabilities for simultaneously scheduled events and components able to influence each other using exclusively their state transitions. We next show the soundness of the formalism by giving a construction showing that any multiPDEVS model is equivalent to a PDEVS atomic model. We then present the simulation procedure associated, usually called abstract simulator. As a well-adapted formalism to express cellular automata, we finally propose to compare an implementation of multiPDEVS formalism with a more classical Cell-DEVS implementation through a fire spread application.

  1. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    International Nuclear Information System (INIS)

    Renfro, G.G.

    1994-01-01

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices

  2. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure.

    Science.gov (United States)

    Chu, H K; Huan, Z; Mills, J K; Yang, J; Sun, D

    2015-02-07

    Cell manipulation is imperative to the areas of cellular biology and tissue engineering, providing them a useful tool for patterning cells into cellular patterns for different analyses and applications. This paper presents a novel approach to perform three-dimensional (3D) cell manipulation and patterning with a multi-layer engineered scaffold. This scaffold structure employed dielectrophoresis as the non-contact mechanism to manipulate cells in the 3D domain. Through establishing electric fields via this multi-layer structure, the cells in the medium became polarized and were attracted towards the interior part of the structure, forming 3D cellular patterns. Experiments were conducted to evaluate the manipulation and the patterning processes with the proposed structure. Results show that with the presence of a voltage input, this multi-layer structure was capable of manipulating different types of biological cells examined through dielectrophoresis, enabling automatic cell patterning in the time-scale of minutes. The effects of the voltage input on the resultant cellular pattern were examined and discussed. Viability test was performed after the patterning operation and the results confirmed that majority of the cells remained viable. After 7 days of culture, 3D cellular patterns were observed through SEM. The results suggest that this scaffold and its automated dielectrophoresis-based patterning mechanism can be used to construct artificial tissues for various tissue engineering applications.

  3. Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design

    DEFF Research Database (Denmark)

    Bach, L.; Kaiser, W.; Reithmaier, J.P.

    2003-01-01

    Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device.......Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device....

  4. Multi-parameter optimization design of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Huai, Xiulan

    2016-01-01

    Highlights: • The optimal condition can be obtained by multi-parameter optimization. • Exergy and thermal efficiencies are employed as objective function. • Exergy efficiency increases at the expense of heat losses. • The heat obtained by working fluid increases as thermal efficiency grows. - Abstract: The design parameters of parabolic trough solar receiver are interrelated and interact with one another, so the optimal performance of solar receiver cannot be obtained by the convectional single-parameter optimization. To overcome the shortcoming of single-parameter optimization, a multi-parameter optimization of parabolic trough solar receiver is employed based on genetic algorithm in the present work. When the thermal efficiency is taken as the objective function, the heat obtained by working fluid increases while the average temperature of working fluid and wall temperatures of solar receiver decrease. The average temperature of working fluid and the wall temperatures of solar receiver increase while the heat obtained by working fluid decreases generally by taking the exergy efficiency as an objective function. Assuming that the solar radiation intensity remains constant, the exergy obtained by working fluid increases by taking exergy efficiency as the objective function, which comes at the expense of heat losses of solar receiver.

  5. On the design of multi-rate tracking controllers : application to rotorcraft guidance and control

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Silvestre, C.J.; Cunha, R.

    2010-01-01

    This paper presents a new methodology for the design and implementation of gain-scheduled controllers for multi-rate systems. The proposed methodology provides a natural way to address the integrated guidance and control problem for autonomous vehicles when the outputs are sampled at different

  6. New cellular automaton designed to simulate geometration in gel electrophoresis

    Science.gov (United States)

    Krawczyk, M. J.; Kułakowski, K.; Maksymowicz, A. Z.

    2002-08-01

    We propose a new kind of cellular automaton to simulate transportation of molecules of DNA through agarose gel. Two processes are taken into account: reptation at strong electric field E, described in the particle model, and geometration, i.e. subsequent hookings and releases of long molecules at and from gel fibres. The automaton rules are deterministic and they are designed to describe both processes within one unified approach. Thermal fluctuations are not taken into account. The number of simultaneous hookings is limited by the molecule length. The features of the automaton are: (i) the size of the cell neighbourhood for the automaton rule varies dynamically, from nearest neighbors to the entire molecule; (ii) the length of the time step is determined at each step according to dynamic rules. Calculations are made up to N=244 reptons in a molecule. Two subsequent stages of the motion are found. Firstly, an initial set of random configurations of molecules is transformed into a more ordered phase, where most molecules are elongated along the applied field direction. After some transient time, the mobility μ reaches a constant value. Then, it varies with N as 1/ N for long molecules. The band dispersion varies with time t approximately as Nt1/2. Our results indicate that the well-known plateau of the mobility μ vs. N does not hold at large electric fields.

  7. Dynamic CRM occupancy reflects a temporal map of developmental progression.

    Science.gov (United States)

    Wilczyński, Bartek; Furlong, Eileen E M

    2010-06-22

    Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.

  8. The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Renee Wei-Yan Chow

    2017-04-01

    Full Text Available The zebrafish (Danio rerio is a powerful vertebrate model to study cellular and developmental processes in vivo. The optical clarity and their amenability to genetic manipulation make zebrafish a model of choice when it comes to applying optical techniques involving genetically encoded photoresponsive protein technologies. In recent years, a number of fluorescent protein and optogenetic technologies have emerged that allow new ways to visualize, quantify, and perturb developmental dynamics. Here, we explain the principles of these new tools and describe some of their representative applications in zebrafish.

  9. Design of Instant Messaging System of Multi-language E-commerce Platform

    Science.gov (United States)

    Yang, Heng; Chen, Xinyi; Li, Jiajia; Cao, Yaru

    2017-09-01

    This paper aims at researching the message system in the instant messaging system based on the multi-language e-commerce platform in order to design the instant messaging system in multi-language environment and exhibit the national characteristics based information as well as applying national languages to e-commerce. In order to develop beautiful and friendly system interface for the front end of the message system and reduce the development cost, the mature jQuery framework is adopted in this paper. The high-performance server Tomcat is adopted at the back end to process user requests, and MySQL database is adopted for data storage to persistently store user data, and meanwhile Oracle database is adopted as the message buffer for system optimization. Moreover, AJAX technology is adopted for the client to actively pull the newest data from the server at the specified time. In practical application, the system has strong reliability, good expansibility, short response time, high system throughput capacity and high user concurrency.

  10. Structural design and analysis of the multi-function waste tanks

    International Nuclear Information System (INIS)

    Farnworth, S.K.; Stine, M.D.; Miller, L.K.

    1993-10-01

    This paper describes structural design and analysis procedures to be used for the Multi-function Waste Tank Facility underground waste storage tanks proposed for the Hanford Site. The Multi-function Waste Tank Facility will consist of four one-million-gallon nominal capacity, double-shell, underground waste storage tanks and will include the associated process and control systems and aboveground structures. The tanks will consist of an inner primary steel tank and an outer secondary reinforced-concrete steel-lined tank. The primary tank head will be structurally attached to the concrete dome. A supporting layer of material will be placed between the bottom of the primary steel tank and the bottom of the steel liner on the secondary tank. The tank analysis is undertaken jointly by a team of engineers and analysts representing Kaiser Engineers Hanford, the site architect/engineer, and Westinghouse Hanford Company, the site management and operating contractor. This analysis is planned in several phases. Heat transfer solutions will address the anticipated mixing pump and cyclic fill/drain environment to provide steel and concrete temperature distributions. With this information, an in situ static analysis of the reinforced-concrete secondary tank will be carried out over the structure design life and will give material states and deformations along with strength and stability checks. Seismic analysis, accounting for soil-structure interaction and liquid loads, will be conducted with the most conservative material state, and the in situ deformations will be incorporated. Finally, penetrations and other components will be analyzed

  11. Structural design and analysis of the multi-function waste tanks

    International Nuclear Information System (INIS)

    Farnworth, S.K.; Stine, M.D.; Miller, L.K.

    1993-01-01

    This paper describes structural design and analysis procedures to be used for the Multi-function Waste Tank Facility underground waste storage tanks proposed for the Hanford Site. The Multi-function Waste Tank Facility will consist of four one-million-gallon nominal capacity, double-shell, underground waste storage tanks and will include the associated process and control systems and aboveground structures. The tanks will consist of an inner primary steel tank and an outer secondary reinforced-concrete steel-linked tank. The primary tank head will be structurally attached to the concrete dome. A supporting layer of material will be placed between the bottom of the primary steel tank and the bottom of the steel linear on the secondary tank. The tank analysis is undertaken jointly by a team of engineers and analysts representing Kaiser Engineers Hanford, the site architect/engineer, and Westinghouse Hanford Company, the site management and operating contractor. This analysis is planned in several phases. Heat transfer solutions will address the anticipated mixing pump and cyclic fill/drain environment to provide steel and concrete temperature distributions. With this information, an in situ static analysis of the reinforced-concrete secondary tank will be carried out over the structure design life and will give material states and deformations along with strength and stability checks. Seismic analysis, accounting for soil-structure interaction and liquid loads, will be conducted with the most conservative material state, and the in situ deformations will be incorporated. Finally, penetrations and other components will be analyzed

  12. An Efficient Multi-objective Approach for Designing of Communication Interfaces in Smart Grids

    DEFF Research Database (Denmark)

    Ghasemkhani, Amir; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2016-01-01

    The next generation of power systems require to use smart grid technologies due to their unique features like high speed, reliable and secure data communications to monitor, control and protect system effectively. Hence, one of the main requirements of achieving a smart grid is optimal designing...... of telecommunication systems. In this study, a novel dynamic Multi-Objective Shortest Path (MOSP) algorithm is presented to design a spanning graph of a communication infrastructure using high speed Optimal Power Ground Wire (OPGW) cables and Phasor Measurement Units (PMUs). Applicability of the proposed model...

  13. Recent development of cellular manufacturing systems

    Indian Academy of Sciences (India)

    be manufactured in a cell, and the machines, which will comprise that cell, can be ... approaches for the CF problem which is referred to as Production Flow Analysis (PFA). ... programming model of cellular manufacturing system design which ...

  14. Multi-objective group scheduling with learning effect in the cellular manufacturing system

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Taghavi-fard

    2011-01-01

    Full Text Available Group scheduling problem in cellular manufacturing systems consists of two major steps. Sequence of parts in each part-family and the sequence of part-family to enter the cell to be processed. This paper presents a new method for group scheduling problems in flow shop systems where it minimizes makespan (Cmax and total tardiness. In this paper, a position-based learning model in cellular manufacturing system is utilized where processing time for each part-family depends on the entrance sequence of that part. The problem of group scheduling is modeled by minimizing two objectives of position-based learning effect as well as the assumption of setup time depending on the sequence of parts-family. Since the proposed problem is NP-hard, two meta heuristic algorithms are presented based on genetic algorithm, namely: Non-dominated sorting genetic algorithm (NSGA-II and non-dominated rank genetic algorithm (NRGA. The algorithms are tested using randomly generated problems. The results include a set of Pareto solutions and three different evaluation criteria are used to compare the results. The results indicate that the proposed algorithms are quite efficient to solve the problem in a short computational time.

  15. EURISOL-DS Overall Design of the Multi-MW Target Station

    CERN Document Server

    Olivier Choisnet, Cyril Kharoua, Yacine Kadi, Karel Samec (CERN)

    The EURISOL Design Study investigated the feasibility of a complex instrument to push back the boundaries of current physics knowledge amidst today’s ever-increasing need for realism due to constraints imposed by safety, performance and, not least, budgetary responsibility.In order to attend to these concerns, the EURISOL Multi-Megawatt converter target, its associated fission targets and the three 100 kW direct targets are all integrated into a single facility housing the ancillary equipment as well. The overall layout of the facility, its functional break-down and the main modes of operation are presented in the current report.

  16. Multi-load Optimal Design of Burner-inner-liner Under Performance Index Constraint by Second-Order Polynomial Taylor Series Method

    Directory of Open Access Journals (Sweden)

    Tu Gaoqiao

    2016-01-01

    Full Text Available Using maximum expansion pressure of n-decane, the aeroengine burner-inner-liner combustion pressure load is computed. Aerodynamic loads are obtained from internal gas pressure load and gas momentum. Multi-load second-order Taylor series equations are established using multi-variant polynomials and their sensitivities. Optimal designs are carried out using various performance index constraints. When 0.25 to 0.8 rectifications of different design variants are implemented, they converge under 5×10‒4 d-norm difference ratio.

  17. Femoral hip prosthesis design for Thais using multi-objective shape optimization

    International Nuclear Information System (INIS)

    Virulsri, Chanyaphan; Tangpornprasert, Pairat; Romtrairat, Parineak

    2015-01-01

    Highlights: • A multi-objective shape optimization was proposed to design hip prosthesis for Thais. • The prosthesis design was optimized in terms of safety of both cement and prosthesis. • The objective functions used the Soderberg fatigue strength formulations. • Safety factors of the cement and prosthesis are 1.200 and 1.109 respectively. • The newly designed prosthesis also fits well with chosen small-sized Thai femurs. - Abstract: The long-term success of Total Hip Arthroplasty (THA) depends largely on how well the prosthetic components fit the bones. The majority of cemented femoral hip prosthesis failures are due to aseptic loosening, which is possibly caused by cracking of the cement mantle. The strength of cement components is a function of cement mantles having adequate thickness. Since the size and shape of cemented femoral hip prostheses used in Thailand are based on designs for a Caucasian population, they do not properly conform to most Thai patients’ physical requirements. For these reasons, prostheses designed specifically for Thai patients must consider the longevity and functionality of both cement and prosthesis. The objective of this study was to discover a new design for femoral hip prostheses which is not only optimal and safe in terms of both cement and prosthesis, but also fits the selected Thai femur. This study used a small-sized Thai femoral model as a reference model for a new design. Biocompatible stainless steel 316L (SS316L) and polymethylmethacrylate (PMMA) were selected as raw materials for the prosthesis and bone cement respectively. A multi-objective shape optimization program, which is an interface between optimization C program named NSGA-II and a finite element program named ANSYS, was used to optimize longevity of femoral hip prostheses by varying shape parameters at assigned cross-sections of the selected geometry. Maximum walking loads of sixty-kilograms were applied to a finite element model for stress and

  18. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  19. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Directory of Open Access Journals (Sweden)

    Eric Young

    2010-01-01

    Full Text Available The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1 the process units and associated streams of the central dogma, (2 the intrinsic regulatory mechanisms, and (3 the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  20. Synthetic biology: tools to design, build, and optimize cellular processes.

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.