WorldWideScience

Sample records for multi-blades collimators dosimetria

  1. Dosimetry of the stereotactic radiosurgery with linear accelerators equipped with micro multi-blades collimators; Dosimetria dos sistemas de radiocirurgia estereotaxica com aceleradores lineares equipados com colimadores micro multi-laminas

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Andre Mozart de Miranda

    2008-07-01

    In this work, absorbed dose to water produced by the radiation beam of a clinical linear accelerator - CLINAC 600C{sup TM} (Varian), with a photon beam of 6 MV, were evaluated both theoretically and experimentally. This determination includes square and circular field configurations, the last one obtained with a micro multi leaf collimator - mMLC m3{sup TM} (Brain Lab). Theoretical evaluation was performed throughout Monte Carlo method. Experimental measurements of Percentage Depth Dose - PDD and derived Tissue Maximum Ratio - TMR curves from CLINAC 600C were validated by comparison with reference values as well as with measurements using different detectors. The results indicate local differences smaller than 5% and average differences smaller than 1,5% for each evaluated field, if they are compared to the previous commissioning values (made in 1999) and to the values of literature. Comparisons of ionization chamber and diode result in an average local difference of -0,6% for PDD measurements, and within 1% for lateral dose profiles, at depth, in the flat region. Diode provides measurements with better spatial resolution. Current output factors of open fields agree with reference values within 1,03% of discrepancy level. Current absorbed dose distributions in water are, now, considered reference values and allow characterization of this CLINAC for patient dose calculation. The photon spectra resulting from simulations with PENELOPE and MCNP codes agree approximately in 80% of the sampled points, in what average energies of (1,6 {+-} 0,3)MeV, with MCNP, and of (1,72 {+-} 0,08)MeV, with PENELOPE, are coincident. The created simple source model of the CLINAC 600C, using the PENELOPE code, allows one to calculate dose distributions in water, for open fields, with discrepancies of the order of {+-} 1,0% in dose and of {+-} 0,1 cm in position, if they are compared to experimental measurements. These values met the initial proposed criteria to validate the simulation

  2. Dosimetry of the stereotactic radiosurgery with linear accelerators equipped with micro multi-blades collimators

    International Nuclear Information System (INIS)

    Vieira, Andre Mozart de Miranda

    2008-01-01

    In this work, absorbed dose to water produced by the radiation beam of a clinical linear accelerator - CLINAC 600C TM (Varian), with a photon beam of 6 MV, were evaluated both theoretically and experimentally. This determination includes square and circular field configurations, the last one obtained with a micro multi leaf collimator - mMLC m3 TM (Brain Lab). Theoretical evaluation was performed throughout Monte Carlo method. Experimental measurements of Percentage Depth Dose - PDD and derived Tissue Maximum Ratio - TMR curves from CLINAC 600C were validated by comparison with reference values as well as with measurements using different detectors. The results indicate local differences smaller than 5% and average differences smaller than 1,5% for each evaluated field, if they are compared to the previous commissioning values (made in 1999) and to the values of literature. Comparisons of ionization chamber and diode result in an average local difference of -0,6% for PDD measurements, and within 1% for lateral dose profiles, at depth, in the flat region. Diode provides measurements with better spatial resolution. Current output factors of open fields agree with reference values within 1,03% of discrepancy level. Current absorbed dose distributions in water are, now, considered reference values and allow characterization of this CLINAC for patient dose calculation. The photon spectra resulting from simulations with PENELOPE and MCNP codes agree approximately in 80% of the sampled points, in what average energies of (1,6 ± 0,3)MeV, with MCNP, and of (1,72 ± 0,08)MeV, with PENELOPE, are coincident. The created simple source model of the CLINAC 600C, using the PENELOPE code, allows one to calculate dose distributions in water, for open fields, with discrepancies of the order of ± 1,0% in dose and of ± 0,1 cm in position, if they are compared to experimental measurements. These values met the initial proposed criteria to validate the simulation model and guarantee

  3. Pan-encephalic irradiation of brain metastases: dosimetric impact of the technique with a rotating collimator without mask in comparison with a multi-blade collimator; Irradiation pan encephalique des metastases cerebrales: impact dosimetrique de la technique avec rotation du collimateur sans cache par comparaison a celle avec collimateur mutilame

    Energy Technology Data Exchange (ETDEWEB)

    Loos, G.; Paulon, R.; Achard, J.L.; Belliere, A.; Biau, J.; Bourry, N.; Chilles, A.; Toledano, I.; Verrelle, O.; Lapeyre, M. [Centre Jean-Perrin, 63 - Clermont-Ferrand (France)

    2010-10-15

    The authors report the dosimetric impacts of two techniques (collimator without mask and multi-blade collimator) on organs at risk as well as the influence of meningeal dead ends when using the technique of conventional pan-encephalic irradiation of brain metastases. Data have been acquired for 10 patients. The use of a multi-blade collimator is better for a pan-encephalic irradiation by two lateral beams in order to reduce the average dose received by the parotids, and particularly if meningeal dead ends are to be treated. The dose received by other organs at risk is equivalent, whichever method is used. Short communication

  4. Collimators

    CERN Document Server

    Wronka, Slawomir

    2013-01-01

    The collimator system of a particle accelerator must efficiently remove stray particles and provide protection against uncontrolled losses. In this article, the basic design concepts of collimators and some realizations are presented.

  5. Collimator

    International Nuclear Information System (INIS)

    1976-01-01

    A collimator, to be used in conjunction with a scintiscanner containing a detector and an optical or electronic means of producing and analyzing signals is discussed in this patent. The author gives a tomograph as an example. The collimator consists of parallel lamellae which can shield the gamma radiation which intersect with each other each along a single straight perpendicular line as opposed to the normal multi-hole collimator. The benefits of this new collimator are better signal to noise ratio, a shorter exposure time is needed, smaller radiation doses may be used and by placing the lamellae closer to each other, the separation ability of the collimator is increased

  6. Collimator kit

    International Nuclear Information System (INIS)

    Jonker, R.R.

    1976-01-01

    A collimator kit having a number of parts which may be assembled in various combinations to provide focusing collimators with different performance characteristics for radioisotope imaging apparatus is described

  7. Variable collimator

    International Nuclear Information System (INIS)

    Richey, J.B.; McBride, T.R.; Covic, J.

    1981-01-01

    A CAT scanning device has two collimators, one on the beam side of the scanned object, and the other on the detector side. Both have adjustable apertures for shaping the beam, and varying the aperture of one collimator automatically produces a corresponding change in the aperture of the other

  8. Variable collimator

    International Nuclear Information System (INIS)

    Richey, J.B.; McBride, T.R.; Covic, J.

    1979-01-01

    This invention describes an automatic variable collimator which controls the width and thickness of X-ray beams in X-ray diagnostic medical equipment, and which is particularly adapted for use with computerized axial tomographic scanners. A two-part collimator is provided which shapes an X-ray beam both prior to its entering an object subject to radiographic analysis and after the attenuated beam has passed through the object. Interposed between a source of radiation and the object subject to radiographic analysis is a first or source collimator. The source collimator causes the X-ray beam emitted by the source of radiation to be split into a plurality of generally rectangular shaped beams. Disposed within the source collimator is a movable aperture plate which may be used to selectively vary the thickness of the plurality of generally rectangular shaped beams transmitted through the source collimator. A second or receiver collimator is interposed between the object subject to radiographic analysis and a series of radiation detectors. The receiver collimator is disposed to receive the attenuated X-ray beams passing through the object subject to radiographic analysis. Located within the receiver collimator are a plurality of movable aperture plates adapted to be displaced relative to a plurality of fixed aperture plates for the purpose of varying the width and thickness of the attenuated X-ray beams transmitted through the object subject to radiographic analysis. The movable aperture plates of the source and receiver collimators are automatically controlled by circuitry which is provided to allow remote operation of the movable aperture plates

  9. Constraint Handling within a Multi-blade Coordinate Framework of a Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2011-01-01

    In this paper the control of a horizontal axis pitch controlled wind turbine using Model Predictive Control is presented. The multi-blade coordinate transformation is utilized to turn the rotating frame time-varying system description into a time-invariant fixed frame system description. Constrai....... Constraints in the rotating frame of reference are not easily described in the fixed frame and a Model Predictive Control formulation accommodating this problem is presented. The presented method is tested with satisfactory results in a numerical simulation....

  10. Monitoring of a Wind Turbine Rotor using a Multi-blade Coordinate Framework

    OpenAIRE

    Henriksen, Lars Christian; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2012-01-01

    In this paper a method to detect asymmetric faults in a wind turbine rotor is presented. The paper describes how fault diagnosis using an observer-based residual generator approach is able to distinguish between the nominal and faulty case by the injection of e.g. a sinusoidal excitation signal into the system. In the case of a wind turbine, an excitation signal is automatically generated by the rotation of the rotor in a turbulent wind eld. Using the multi-blade coordinate transformation, th...

  11. Monitoring of a Wind Turbine Rotor using a Multi-blade Coordinate Framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2012-01-01

    into the system. In the case of a wind turbine, an excitation signal is automatically generated by the rotation of the rotor in a turbulent wind eld. Using the multi-blade coordinate transformation, the detection of asymmetries in the rotor of the wind turbine is greatly improved.......In this paper a method to detect asymmetric faults in a wind turbine rotor is presented. The paper describes how fault diagnosis using an observer-based residual generator approach is able to distinguish between the nominal and faulty case by the injection of e.g. a sinusoidal excitation signal...

  12. Adjustable collimator

    International Nuclear Information System (INIS)

    Carlson, R.W.; Covic, J.; Leininger, G.

    1981-01-01

    In a rotating fan beam tomographic scanner there is included an adjustable collimator and shutter assembly. The assembly includes a fan angle collimation cylinder having a plurality of different length slots through which the beam may pass for adjusting the fan angle of the beam. It also includes a beam thickness cylinder having a plurality of slots of different widths for adjusting the thickness of the beam. Further, some of the slots have filter materials mounted therein so that the operator may select from a plurality of filters. Also disclosed is a servo motor system which allows the operator to select the desired fan angle, beam thickness and filter from a remote location. An additional feature is a failsafe shutter assembly which includes a spring biased shutter cylinder mounted in the collimation cylinders. The servo motor control circuit checks several system conditions before the shutter is rendered openable. Further, the circuit cuts off the radiation if the shutter fails to open or close properly. A still further feature is a reference radiation intensity monitor which includes a tuning-fork shaped light conducting element having a scintillation crystal mounted on each tine. The monitor is placed adjacent the collimator between it and the source with the pair of crystals to either side of the fan beam

  13. The ARCS radial collimator

    International Nuclear Information System (INIS)

    Stone, M.B.; Abernathy, D.L.; Niedziela, J.L.; Overbay, M.A.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. The collimator is composed of collimating blades (or septa). The septa are 12 micron thick Kapton foils coated on each side with 39 microns of enriched boron carbide ( 10 B 4 C with 10 B > 96%) in an ultra-high vacuum compatible binder. The collimator blades represent an additional 22 m 2 of surface area. In the article we present collimator's design and performance and methodologies for its effective use

  14. Characterization of Embedded BPM Collimators

    CERN Document Server

    VALENTINO, Gianluca

    2015-01-01

    During LS1, 16 tertiary collimators (TCTs) and 2 secondary collimators (TCSGs) in IR6 were replaced by new embedded BPM collimators. The BPM functionality allows the possibility to align the collimators more quickly and therefore be able to respond faster to machine configuration changes, as well as a direct monitoring of the beam orbit at the collimators. Following an initial commissioning phase, an MD was carried out to test the new collimators and acquisition electronics with beam in the LHC.

  15. Multileaf collimator in radiotherapy

    International Nuclear Information System (INIS)

    Jeraj, M.; Robar, V.

    2004-01-01

    Background. Basic goal of radiotherapy treatment is the irradiation of a target volume while minimizing the amount of radiation absorbed in healthy tissue. Shaping the beam is an important way of minimizing the absorbed dose in healthy tissue and critical structures. Conventional collimator jaws are used for shaping a rectangular treatment field; but, as usually treatment volume is not rectangular, additional shaping is required. On a linear accelerator, lead blocks or individually made Cerroben TM blocks are attached onto the treatment head under standard collimating system. Another option is the use of multileaf collimator (MLC). Conclusions. Multileaf collimator is becoming the main tool for beam shaping on the linear accelerator. It is a simple and useful system in the preparation and performance of radiotherapy treatment. Multileaf collimators are reliable, as their manufacturers developed various mechanisms for their precision, control and reliability, together with reduction of leakage and transmission of radiation between and through the leaves. Multileaf collimator is known today as a very useful clinical system for simple field shaping, but its use is getting even more important in dynamic radiotherapy, with the leaves moving during irradiation. This enables a precise dose delivery on any part of a treated volume. Intensity modulated radiotherapy (IMRT), the therapy of the future, is based on the dynamic use of MLC. (author)

  16. The LHC collimators

    CERN Document Server

    Bertarelli, A

    2004-01-01

    In the framework of the LHC Collimator project, TS department has been assigned the task to design the series collimators and to manufacture prototypes to be tested in summer 2004. Their concept must comply with a very demanding specification, entailing a temperature on the collimating jaws not exceeding 50ºC in steady conditions and an unparalleled overall geometrical stability of 25 micro m on a 1200 mm span, meeting, at the same time, the challenging deadlines required by the project schedule. To respond to these tough and sometimes conflicting constraints, the chosen design appeals to a mixture of traditional and innovative technologies, largely drawing from LEP collimator experience. The specification imposes a low-Z material for the collimator jaws, directing the design towards graphite or such novel materials as 2-D and 3-D Carbon/Carbon composites. An accurate mechanical design has allowed to considerably reduce the mechanical play and to optimize the geometrical stability. The mechanical lay-out a...

  17. Cleaning Insertions and Collimation Challenges

    Science.gov (United States)

    Redaelli, S.; Appleby, R. B.; Bertarelli, A.; Bruce, R.; Jowett, J. M.; Lechner, A.; Losito, R.

    High-performance collimation systems are essential for operating efficiently modern hadron machine with large beam intensities. In particular, at the LHC the collimation system ensures a clean disposal of beam halos in the superconducting environment. The challenges of the HL-LHC study pose various demanding requests for beam collimation. In this paper we review the present collimation system and its performance during the LHC Run 1 in 2010-2013. Various collimation solutions under study to address the HL-LHC requirements are then reviewed, identifying the main upgrade baseline and pointing out advanced collimation concept for further enhancement of the performance.

  18. Collimation Cleaning at the LHC with Advanced Secondary Collimator Materials

    CERN Document Server

    AUTHOR|(CDS)2085459; Bruce, Roderik; Mereghetti, Alessio; Redaelli, Stefano; Rossi, A

    2015-01-01

    The LHC collimation system must ensure efficient beam halo cleaning in all machine conditions. The first run in 2010-2013 showed that the LHC performance may be limited by collimator material-related concerns, such as the contribution from the present carbon-based secondary collimators to the machine impedance and, consequently, to the beam instability. Novel materials based on composites are currently under development for the next generation of LHC collimators to address these limitations. Particle tracking simulations of collimation efficiency were performed using the Sixtrack code and a material database updated to model these composites. In this paper, the simulation results will be presented with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  19. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  20. Study of a high spatial resolution {sup 10}B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, F; Buffet, J C; Clergeau, J F; Cuccaro, S; Guérard, B; Khaplanov, A; Manna, Q La; Rigal, J M; Esch, P Van, E-mail: piscitelli@ill.fr [Institut Laue-Langevin (ILL), 6, Jules Horowitz, 38042, Grenoble (France)

    2014-03-01

    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the {sup 3}He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of {sup 3}He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid {sup 10}B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here.

  1. Collimator changer for scintillation camera

    International Nuclear Information System (INIS)

    Jupa, E.C.; Meeder, R.L.; Richter, E.K.

    1976-01-01

    A collimator changing assembly mounted on the support structure of a scintillation camera is described. A vertical support column positioned proximate the detector support column with a plurality of support arms mounted thereon in a rotatable cantilevered manner at separate vertical positions. Each support arm is adapted to carry one of the plurality of collimators which are interchangeably mountable on the underside of the detector and to transport the collimator between a store position remote from the detector and a change position underneath said detector

  2. Collimation: a silicon solution

    CERN Multimedia

    2007-01-01

    Silicon crystals could be used very efficiently to deflect high-energy beams. Testing at CERN has produced conclusive results, which could pave the way for a new generation of collimators. The set of five crystals used to test the reflection of the beams. The crystals are 0.75 mm wide and their alignment is adjusted with extreme precision. This figure shows the deflection of a beam by channelling and by reflection in the block of five crystals. Depending on the orientation of the crystals: 1) The beam passes without "seeing" the crystals and is not deflected 2) The beam is deflected by channelling (with an angle of around 100 μrad) 3) The beam is reflected (with an angle of around 50 μrad). The intensity of the deflected beam is illustrated by the intensity of the spot. The spot of the reflected beam is clearly more intense than that one of the channelled beam, demonstrating the efficiency of t...

  3. Design by theoretical and CFD analyses of a multi-blade screw pump evolving liquid lead for a Generation IV LFR

    Energy Technology Data Exchange (ETDEWEB)

    Ferrini, Marcello [GeNERG - DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); Borreani, Walter [Ansaldo Nucleare S.p.A., Corso F.M. Perrone 25, 16152 Genova (Italy); INFN, Via Dodecaneso 33, 16146 Genova (Italy); Lomonaco, Guglielmo, E-mail: guglielmo.lomonaco@unige.it [GeNERG - DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); INFN, Via Dodecaneso 33, 16146 Genova (Italy); Magugliani, Fabrizio [Ansaldo Nucleare S.p.A., Corso F.M. Perrone 25, 16152 Genova (Italy)

    2016-02-15

    Lead-cooled fast reactor (LFR) has both a long history and a penchant of innovation. With early work related to its use for submarine propulsion dating to the 1950s, Russian scientists pioneered the development of reactors cooled by heavy liquid metals (HLM). More recently, there has been substantial interest in both critical and subcritical reactors cooled by lead (Pb) or lead–bismuth eutectic (LBE), not only in Russia, but also in Europe, Asia, and the USA. The growing knowledge of the thermal-fluid-dynamic properties of these fluids and the choice of the LFR as one of the six reactor types selected by Generation IV International Forum (GIF) for further research and development has fostered the exploration of new geometries and new concepts aimed at optimizing the key components that will be adopted in the Advanced Lead Fast Reactor European Demonstrator (ALFRED), the 300 MW{sub t} pool-type reactor aimed at proving the feasibility of the design concept adopted for the European Lead-cooled Fast Reactor (ELFR). In this paper, a theoretical and computational analysis is presented of a multi-blade screw pump evolving liquid Lead as primary pump for the adopted reference conceptual design of ALFRED. The pump is at first analyzed at design operating conditions from the theoretical point of view to determine the optimal geometry according to the velocity triangles and then modeled with a 3D CFD code (ANSYS CFX). The choice of a 3D simulation is dictated by the need to perform a detailed spatial simulation taking into account the peculiar geometry of the pump as well as the boundary layers and turbulence effects of the flow, which are typically tri-dimensional. The use of liquid Lead impacts significantly the fluid dynamic design of the pump because of the key requirement to avoid any erosion affects. These effects have a major impact on the performance, reliability and lifespan of the pump. Albeit some erosion-related issues remain to be fully addressed, the results

  4. Design by theoretical and CFD analyses of a multi-blade screw pump evolving liquid lead for a Generation IV LFR

    International Nuclear Information System (INIS)

    Ferrini, Marcello; Borreani, Walter; Lomonaco, Guglielmo; Magugliani, Fabrizio

    2016-01-01

    Lead-cooled fast reactor (LFR) has both a long history and a penchant of innovation. With early work related to its use for submarine propulsion dating to the 1950s, Russian scientists pioneered the development of reactors cooled by heavy liquid metals (HLM). More recently, there has been substantial interest in both critical and subcritical reactors cooled by lead (Pb) or lead–bismuth eutectic (LBE), not only in Russia, but also in Europe, Asia, and the USA. The growing knowledge of the thermal-fluid-dynamic properties of these fluids and the choice of the LFR as one of the six reactor types selected by Generation IV International Forum (GIF) for further research and development has fostered the exploration of new geometries and new concepts aimed at optimizing the key components that will be adopted in the Advanced Lead Fast Reactor European Demonstrator (ALFRED), the 300 MW t pool-type reactor aimed at proving the feasibility of the design concept adopted for the European Lead-cooled Fast Reactor (ELFR). In this paper, a theoretical and computational analysis is presented of a multi-blade screw pump evolving liquid Lead as primary pump for the adopted reference conceptual design of ALFRED. The pump is at first analyzed at design operating conditions from the theoretical point of view to determine the optimal geometry according to the velocity triangles and then modeled with a 3D CFD code (ANSYS CFX). The choice of a 3D simulation is dictated by the need to perform a detailed spatial simulation taking into account the peculiar geometry of the pump as well as the boundary layers and turbulence effects of the flow, which are typically tri-dimensional. The use of liquid Lead impacts significantly the fluid dynamic design of the pump because of the key requirement to avoid any erosion affects. These effects have a major impact on the performance, reliability and lifespan of the pump. Albeit some erosion-related issues remain to be fully addressed, the results of

  5. Wakefields in SLAC linac collimators

    Directory of Open Access Journals (Sweden)

    A. Novokhatski

    2014-12-01

    Full Text Available When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  6. Fermilab Recycler Collimation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. C. [Fermilab; Adamson, P. [Fermilab; Ainsworth, R. [Fermilab; Capista, D. [Fermilab; Hazelwood, K. [Fermilab; Kourbanis, I. [Fermilab; Mokhov, N. V. [Fermilab; Morris, D. K. [Fermilab; Murphy, M. [Fermilab; Sidorov, V. [Fermilab; Stern, E. [Fermilab; Tropin, I. [Fermilab; Yang, M-J. [Fermilab

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  7. Requirements for the LHC collimation system

    CERN Document Server

    Assmann, R W; Brugger, M; Bruno, L; Burkhardt, H; Burtin, G; Dehning, Bernd; Fischer, C; Goddard, B; Gschwendtner, E; Hayes, M; Jeanneret, J B; Jung, R; Kain, V; Kaltchev, D I; Lamont, M; Schmidt, R; Vossenberg, Eugène B; Weisse, E; Wenninger, J

    2002-01-01

    The LHC requires efficient collimation during all phases of the beam cycle. Collimation plays important roles in prevention of magnet quenches from regular beam diffusion, detection of abnormal beam loss and subsequent beam abort, radiation protection, and passive protection of the superconducting magnets in case of failures. The different roles of collimation and the high beam power in the LHC impose many challenges for the design of the collimation system. In particular, the collimators must be able to withstand the expected particle losses. The requirements for the LHC collimation system are presented.

  8. Automatic Angular alignment of LHC Collimators

    CERN Document Server

    Azzopardi, Gabriella; Salvachua Ferrando, Belen Maria; Mereghetti, Alessio; Bruce, Roderik; Redaelli, Stefano; CERN. Geneva. ATS Department

    2017-01-01

    The LHC is equipped with a complex collimation system to protect sensitive equipment from unavoidable beam losses. Collimators are positioned close to the beam using an alignment procedure. Until now they have always been aligned assuming no tilt between the collimator and the beam, however, tank misalignments or beam envelope angles at large-divergence locations could introduce a tilt limiting the collimation performance. Three different algorithms were implemented to automatically align a chosen collimator at various angles. The implementation was tested on a number of collimators during this MD and no human intervention was required.

  9. Movable collimator for positron annihilation imaging device

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    A positron annihilation imaging device having two circular arrays of detectors disposed in spaced apart parallel planes wherein axially movable annular collimator rings are generally disposed in a pair of opposite planes outside the associated planes of the collimators to each collimator being movable toward the opposite collimator and a central collimator of annular configuration generally disposed between the two rows of detectors but being split into two rings which may be separated, the outer and inner collimators serving to enhance data readout and imaging

  10. Field factors for asymmetric collimators

    International Nuclear Information System (INIS)

    Turner, J.R.; Butler, A.P.H.

    1996-01-01

    In recent years manufacturers have been supplying linear accelerators with either a single pair or a dual pair of collimators. The use of a model to relate off-axis field factors to on-axis field factors obviates the need for repeat measurements whenever the asymmetric collimators are employed. We have investigated the variation of collimator scatter Sc, with distance of the central ray x from the central axis for a variety of non square field sizes. Collimator scatter was measured by in-air measurements with a build-up cap. The Primaty-Off-Centre-Ratio (POCR) was measured in-air by scanning orthogonally across the beam with an ionization chamber. The result of the investigation is the useful prediction of off-axis field factors for a range of rectangular asymmetric fields using the simple product of the on-axis field factor and the POCR in air. The effect of asymmetry on the quality of the beam and hence the percent depth dose will be discussed. (author)

  11. Crystal collimator systems for high energy frontier

    CERN Document Server

    AUTHOR|(CDS)2100516; Tikhomirov, Viktor; Lobko, Alexander

    2017-01-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simu...

  12. Development of tungsten collimators for industrial radiography

    International Nuclear Information System (INIS)

    Varkey, P.A.; Verma, P.B.; Jayakumar, T.K.; Mammachan, M.K.

    2001-01-01

    Collimators are essential components of industrial radiography set up as it provides radiation safety to persons involved in the radiography work. A collimator with optimum design features also helps in reducing the scattered radiation which in turn results in radiographs having better sensitivity. This papers describes the salient design features of the tungsten collimators developed by the BRIT, for industrial radiography. (author)

  13. Positron annihilation imaging device having movable collimator

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    This patent application relates to a positron annihilation imaging device comprising two circular arrays of detectors disposed in spaced apart parallel planes and circumferentially offset by half the detector spacing, axially movable annular outer collimator rings, generally disposed in a pair of opposite planes outside the associated planes of the detectors, each collimator being movable toward the opposite collimator. An inner collimator of annular configuration is disposed between the two rows of detectors and is formed in two rings which may be separated axially. The outer and inner collimators serve to enhance data readout and imaging. (author)

  14. The design and construction of modulation collimators

    International Nuclear Information System (INIS)

    Oda, M.; Muranaka, N.; Matsuoka, M.; Miyamoto, S.; Ogawara, Y.

    1976-01-01

    The technique of the modulation collimator is reviewed as a device to provide seemingly conflicting properties: high angular resolution, wide aperture and large brightness. The method of synthesizing a two-dimensional image of a source from several one-dimensional scans is discussed. Several methods of achieving angular resolution higher than the FWHM of the transmission window of the collimator are presented. The source structure may be reconstructed by means of one or more bigrid modulation collimators. Design problems of modulation collimators are discussed in relation to the collimator constructed for a balloon experiment under the collaboration of the UCSD group and the Tokyo group. (Auth.)

  15. Multileaf collimator and related apparatus

    International Nuclear Information System (INIS)

    Brown, K.J.

    1989-01-01

    In radiotherapy apparatus using a multileaf collimator, the adjustment positions of the individual leaves can be determined optically by means of a video camera which observes the leaves via a radiation transparent mirror in the beam path. In order to overcome problems of low contrast and varying object brightness, the improvement comprises adding retroreflectors to the collimator leaves whose positions are known relative to the inner edge of the respective leaf. The retroreflectors can extend along the length of the leaf or they can be small. For setting up, corresponding manually adjustable optical diaphragm leaves can be used to project an optical simulation of the treatment area onto the patient, retroreflectors being similarly located relative to the shadow-casting edge of the leaves. (author)

  16. Digital chest radiography: collimation and dose reduction

    DEFF Research Database (Denmark)

    Debess, Jeanne; Johnsen, Karen Kirstine; Vejle-Sørensen, Jens Kristian

    ,3 mAs and SID SID of 180 centimetres using a phantom and lithium fluoride thermo luminescence dosimeter (TLD). Dose to risk organs mamma, thyroid and colon are measured at different collimations with one-centimetre steps. TLD results are used to estimate dose reduction for different collimations...... at the conference. Conclusion: Collimation improvement in basic chest radiography can reduce the radiation to female patients at chest x-ray examinations....

  17. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, R.J.

    1977-01-01

    A collimator is provided for a scintillation camera system in which a detector precesses in an orbit about a patient. The collimator is designed to have high resolution and lower sensitivity with respect to radiation traveling in paths laying wholly within planes perpendicular to the cranial-caudal axis of the patient. The collimator has high sensitivity and lower resolution to radiation traveling in other planes. Variances in resolution and sensitivity are achieved by altering the length, spacing or thickness of the septa of the collimator

  18. Computer technique for evaluating collimator performance

    International Nuclear Information System (INIS)

    Rollo, F.D.

    1975-01-01

    A computer program has been developed to theoretically evaluate the overall performance of collimators used with radioisotope scanners and γ cameras. The first step of the program involves the determination of the line spread function (LSF) and geometrical efficiency from the fundamental parameters of the collimator being evaluated. The working equations can be applied to any plane of interest. The resulting LSF is applied to subroutine computer programs which compute corresponding modulation transfer function and contrast efficiency functions. The latter function is then combined with appropriate geometrical efficiency data to determine the performance index function. The overall computer program allows one to predict from the physical parameters of the collimator alone how well the collimator will reproduce various sized spherical voids of activity in the image plane. The collimator performance program can be used to compare the performance of various collimator types, to study the effects of source depth on collimator performance, and to assist in the design of collimators. The theory of the collimator performance equation is discussed, a comparison between the experimental and theoretical LSF values is made, and examples of the application of the technique are presented

  19. VMAT optimization with dynamic collimator rotation.

    Science.gov (United States)

    Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke

    2018-04-16

    Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc

  20. Some new insights into collimator design

    International Nuclear Information System (INIS)

    Metz, C.E.; Atkins, F.B.; Tsui, B.M.W.; Beck, R.N.

    1978-01-01

    Relationships among collimator design parameters, physical properties of the resulting images, and human observer performance are discussed. The insight provided by these relationships hopefully will prove useful to the individual who must design or select a collimator for a particular imaging task

  1. Construction and Bench Testing of a Rotatable Collimator for the LHC Collimation Upgrade

    International Nuclear Information System (INIS)

    Smith, Jeffrey

    2010-01-01

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. The Phase II collimators must be robust in various operating conditions and accident scenarios. This paper reports on the final construction and testing of the prototype collimator to be installed in the SPS (Super Proton Synchrotron) at CERN. Bench-top measurements will demonstrate that the device is fully operational and has the mechanical and vacuum characteristics acceptable for installation in the SPS.

  2. A study of RHIC crystal collimation

    International Nuclear Information System (INIS)

    Trbojevic, D.; Harrison, M.; Parker, B.; Thompson, P.; Stevens, A.; Biryukov, V.; Mokhov, N.; Drozhdin, A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) will experience increasing longitudinal and transverse heavy ion emittances, mostly due to intra-beam scattering (IBS). The experiments in RHIC are expected to not only have reduced luminosities due to IBS but also background caused by beam halo. Primary betatron collimators will be used to remove the large amplitude particles. The efficiency of the primary collimator in RHIC strongly depends on the alignment of the jaws which needs to be within about ten micro-radians for the optimum conditions. As proposed by V. biryukov bent crystals could be used to improve the efficiency of an existing collimation system by installing them upstream of the collimator jaws. Bent crystals have been successfully used in SPS, Protvino and Fermilab for extraction of the beam particles channeled through them. This study examines possible improvements of the primary collimator system for heavy ions at RHIC by use of bent crystals. Bent crystals will reduce the collimator jaws alignment requirement and will increase collimator efficiency thereby reducing detector background

  3. Spike Pattern Recognition for Automatic Collimation Alignment

    CERN Document Server

    Azzopardi, Gabriella; Salvachua Ferrando, Belen Maria; Mereghetti, Alessio; Redaelli, Stefano; CERN. Geneva. ATS Department

    2017-01-01

    The LHC makes use of a collimation system to protect its sensitive equipment by intercepting potentially dangerous beam halo particles. The appropriate collimator settings to protect the machine against beam losses relies on a very precise alignment of all the collimators with respect to the beam. The beam center at each collimator is then found by touching the beam halo using an alignment procedure. Until now, in order to determine whether a collimator is aligned with the beam or not, a user is required to follow the collimator’s BLM loss data and detect spikes. A machine learning (ML) model was trained in order to automatically recognize spikes when a collimator is aligned. The model was loosely integrated with the alignment implementation to determine the classification performance and reliability, without effecting the alignment process itself. The model was tested on a number of collimators during this MD and the machine learning was able to output the classifications in real-time.

  4. Collimator for the SPS extracted beam

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  5. Freeform lens design for LED collimating illumination.

    Science.gov (United States)

    Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang

    2012-05-07

    We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.

  6. The Mechanical Design for the LHC Collimators

    CERN Document Server

    Bertarelli, A; Assmann, R W; Chiaveri, Enrico; Kurtyka, T; Mayer, M; Perret, R; Sievers, P

    2004-01-01

    The design of the LHC collimators must comply with the very demanding specifications entailed by the highly energetic beam handled in the LHC: these requirements impose a temperature on the collimating jaws not exceeding 50ºC in steady operations and an unparalleled overall geometrical stability of 25 micro-m on a 1200 mm span. At the same time, the design phase must meet the challenging deadlines required by the general time schedule. To respond to these tough and sometimes conflicting constraints, the chosen design appeals to a mixture of traditional and innovative technologies, largely drawing from LEP collimator experience. The specifications impose a low-Z material for the collimator jaws, directing the design towards such graphite or such novel materials as 3-d Carbon/carbon composites. An accurate mechanical design has allowed to considerably reduce mechanical play and optimize geometrical stability. Finally, all mechanical studies were supported by in-depth thermo-mechanical analysis concerning tempe...

  7. Loss Control and Collimation for the LHC

    Science.gov (United States)

    Burkhardt, H.

    2005-06-01

    The total energy stored in the LHC is expected to reach 360 Mega Joule, which is about two orders of magnitude higher than in HERA or the Tevatron. Damage and quench protection in the LHC require a highly efficient and at the same time very robust collimation system. The currently planned system, the status of the project and the expected performance of the collimation system from injection up to operation with colliding beams will be presented.

  8. Loss Control and Collimation for the LHC

    International Nuclear Information System (INIS)

    Burkhardt, H.

    2005-01-01

    The total energy stored in the LHC is expected to reach 360 Mega Joule, which is about two orders of magnitude higher than in HERA or the Tevatron. Damage and quench protection in the LHC require a highly efficient and at the same time very robust collimation system. The currently planned system, the status of the project and the expected performance of the collimation system from injection up to operation with colliding beams will be presented

  9. Crystal collimator systems for high energy frontier

    Science.gov (United States)

    Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.

    2017-07-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.

  10. Collimator setting optimization in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Williams, M.; Hoban, P.

    2001-01-01

    Full text: The aim of this study was to investigate the role of collimator angle and bixel size settings in IMRT when using the step and shoot method of delivery. Of particular interest is minimisation of the total monitor units delivered. Beam intensity maps with bixel size 10 x 10 mm were segmented into MLC leaf sequences and the collimator angle optimised to minimise the total number of MU's. The monitor units were estimated from the maximum sum of positive-gradient intensity changes along the direction of leaf motion. To investigate the use of low resolution maps at optimum collimator angles, several high resolution maps with bixel size 5 x 5 mm were generated. These were resampled into bixel sizes, 5 x 10 mm and 10 x 10 mm and the collimator angle optimised to minimise the RMS error between the original and resampled map. Finally, a clinical IMRT case was investigated with the collimator angle optimised. Both the dose distribution and dose-volume histograms were compared between the standard IMRT plan and the optimised plan. For the 10 x 10 mm bixel maps there was a variation of 5% - 40% in monitor units at the different collimator angles. The maps with a high degree of radial symmetry showed little variation. For the resampled 5 x 5 mm maps, a small RMS error was achievable with a 5 x 10 mm bixel size at particular collimator positions. This was most noticeable for maps with an elongated intensity distribution. A comparison between the 5 x 5 mm bixel plan and the 5 x 10 mm showed no significant difference in dose distribution. The monitor units required to deliver an intensity modulated field can be reduced by rotating the collimator and aligning the direction of leaf motion with the axis of the fluence map that has the least intensity. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  11. A variable angle slant-hole collimator

    International Nuclear Information System (INIS)

    Moore, R.H.; Alpert, N.M.; Strauss, H.W.

    1983-01-01

    A variable-angle slant-hole (VASH) collimator was constructed to show the feasibility of using multiple sliding plates to achieve a range of collimator channel inclinations. One hundred and sixty tungsten plates, 0.125 mm thick and 14 cm square, were photoetched to produce 3025 1.5-mm2 holes in each plate, separated by 0.8-mm septa. Along with the collimator holes, registration holes and positioning grooves were also etched. The plates were placed in a holder and stacked to form a collimator 2.0 cm high. The holder permitted the plates to be sheared to achieve viewing angles from 0 to 40 degrees from the vertical. Resolution and sensitivity were determined both across and along the shear directions. Resolution of a thin /sup 99m/Tc source, 1.24 mm diam and 7 cm long, located 5 cm from the collimator face in air, was 1.1 cm FWHM at 0 degree shear and remained unchanged with increasing slant. The resolution was similar both across and along the shear plane. Sensitivity was determined with a point source placed 7 cm from the collimator face. At 0 degree slant the sensitivity was 169 cps/MBq (6.24 csp/mu Ci). A general all purpose (GAP) collimator had a FWHM of 1 cm for the line source in air at 5 cm, and a sensitivity of 205 cps/MBq (7.58 cps/mu Ci) for the point source at 7 cm. The data suggest that a variable-angle slant-hole collimator can be constructed of laminated plates

  12. Soller collimators for small angle neutron scattering

    International Nuclear Information System (INIS)

    Crawford, R.K.; Epperson, J.E.; Thiyagarajan, P.

    1989-01-01

    The neutron beam transmitted through the soller collimators on the SAD (Small Angle Diffractometer) instrument at IPNS (Intense Pulsed Neutron Source) showed wings about the main beam. These wings were quite weak, but were sufficient to interfere with the low-Q scattering data. General considerations of the theory of reflection from homogeneous absorbing media, combined with the results from a Monte Carlo simulation, suggested that these wings were due to specular reflection of neutrons from the absorbing material on the surfaces of the collimator blades. The simulations showed that roughness of the surface was extremely important, with wing background variations of three orders of magnitude being observed with the range of roughness values used in the simulations. Based on the results of these simulations, new collimators for SAD were produced with a much rougher 10 B-binder surface coating on the blades. These new collimators were determined to be significantly better than the original SAD collimators. This work suggests that any soller collimators designed for use with long wavelengths should be fabricated with such a rough surface coating, in order to eliminate (or at least minimize) the undesirable reflection effects which otherwise seem certain to occur. 4 refs., 6 figs

  13. Apparatus and method for variable angle slant hole collimator

    Science.gov (United States)

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  14. Embedded Collimator Beam Position Monitors

    CERN Document Server

    Bertarelli, A; Dallocchio, A; Gasior, M; Gentini, L; Nosych, A

    2011-01-01

    The LHC col­li­ma­tion sys­tem is cru­cial for safe and re­li­able op­er­a­tion of pro­ton beams with 350 MJ stored en­er­gy. Cur­rent­ly the col­li­ma­tor set-up is per­formed by ob­serv­ing beam loss­es when ap­proach­ing the colli­ma­tor jaws to the beam. For all 100 LHC mov­able col­li­ma­tors the pro­ce­dure may take sev­er­al hours and since it has to be re­peat­ed whenev­er the beam con­fig­u­ra­tion changes sig­nif­i­cant­ly, the col­li­ma­tor setup has an im­por­tant im­pact on the over­all ma­chine op­er­a­tion efficien­cy. To re­duce the col­li­ma­tor setup time by two or­ders of magni­tude the next gen­er­a­tion of the LHC col­li­ma­tors will be equipped with but­ton beam po­si­tion mon­i­tors (BPMs) em­bed­ded into the collimator jaws. This paper de­scribes the BPM de­sign and pre­sents proto­type re­sults ob­tained with beam in the CERN-SPS.

  15. Parasternal lymphoscintigraphy using the bilateral collimator

    International Nuclear Information System (INIS)

    Ohtake, Eiji; Iio, Masahiro; Toyama, Hinako; Kawaguchi, Shinichiro; Murata, Hajime

    1981-01-01

    A new method for measuring the depth of the parasternal lymph node was studied. The bilateral collimator used in this study consisted of two arrays of parallel holes which were slanted at +-30 degrees, respectively, to the vertical line. When the collimator was set to image the object in both sides of the field, the object and the dual images formed a regular triangle. The distance (D) from the image (crystal) plane to the object can be expressed by the equation: D = 1/2.L.cot30 0 = 0.866.L where L is the interval between the dual images calibrated to the real length. The distance from the collimator surface to the object is obtained by subtracting the effective thickness (T) between the image plane and the collimator surface from D. T was experimentally measured by the above equation, placing point sources on the collimator surface. The principle was applied to measure the depth of the parasternal lymph node. The parasternal lymphoscintigram was obtained four hours after bilateral subcostal injection of sup(99m)Tc-sulfur colloid and the image was taken by a Searle Pho/Gamma LFOV camera equipped with the bilateral collimator. When the scintigraphic image was made, radioactive markers were placed at the body surface to measure the distance from the collimator surface to the body surface Nineteen patients were examined. As a result, the lymph nodes were found to be located in the depths ranging widely from 0.4 to 6.5 cm from the anterior surface of the chest wall. These lymph nodes were thought to contain the deeply seated mediastinal nodes, and the superficial nodes located directly beneath the skin. Model studies were also performed to estimate the accuracy of this method and satisfactory results were obtained. (author)

  16. Vol. 31 - Crystal Collimation for LHC

    CERN Document Server

    Mirarchi, Daniele; Scandale, Walter; Hall, Geoffrey

    2015-01-01

    Future upgrades of the CERN Large Hadron Collider (LHC) may demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The present collimation system has accomplished its tasks during the LHC Run I very well, where no quench with circulating beam took place with up to 150 MJ of stored energy at 4 TeV. On the other hand, uncertainty remains on the performance at the design energy of 7 TeV and with 360 MJ of stored energy. In particular, a further increase up to about 700 MJ is expected for the high luminosity upgrade (HL-LHC), where improved cleaning performance may be needed together with a reduction of collimator impedance. The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present s...

  17. Multi-view collimators for scintillation cameras

    International Nuclear Information System (INIS)

    Hatton, J.; Grenier, R.P.

    1982-01-01

    This patent specification describes a collimator for obtaining multiple images of a portion of a body with a scintillation camera comprises a body of radiation-impervious material defining two or more groups of channels each group comprising a plurality of parallel channels having axes intersecting the portion of the body being viewed on one side of the collimator and intersecting the input surface of the camera on the other side of the collimator to produce a single view of said body, a number of different such views of said body being provided by each of said groups of channels, each axis of each channel lying in a plane approximately perpendicular to the plane of the input surface of the camera and all of such planes containing said axes being approximately parallel to each other. (author)

  18. Collimation system for electron arc therapy

    International Nuclear Information System (INIS)

    Brunelli, R.J.; Carter, J.C.

    1984-01-01

    An electron collimation system for electron arc therapy treatments consists of a slit collimation system which is movable with the electron beam applicator and is designed to allow for dose compensation in the sagittal direction and a hoop-and-clamp assembly for final field shaping. By correctly designing the shape of the slit in the former and properly adjusting the components of the latter, it is possible to accomplish quite uniform shielding without causing any weight of the shielding material to rest on the patient. The slit collimation system has a specially shaped aperture for confining the radiation beam. The hoop-and-clamp assembly has hoops and clamps which locate shielding over the patient's body. The shielding locating clamps are adjustably movable radially with respect to the hoops. (author)

  19. Do we really need a collimator upgrade?

    International Nuclear Information System (INIS)

    Redaelli, S.

    2012-01-01

    Several improvements are foreseen for the LHC collimation system during the LS1 and beyond. The changes are matched to the required performance reach during the HL-LHC era. The scenarios for system upgrades are determined based on the present operational experience with the operation at 3.5 TeV, well about the beam stored energy regime of 100 MJ. The present upgrade strategy, and the uncertainties on the performance extrapolation to 7 TeV are presented. The collimation activities in LS1 are outlined and the possible works for LS2 and LS3 are presented. (author)

  20. Multi-view collimator for scintillation cameras

    International Nuclear Information System (INIS)

    Hatton, J.; Grenier, R.P.

    1979-01-01

    A collimator comprises a block or blocks of radiation-impervious material which defines a first plurality of parallel channels, each channel defining a direction of acceptance of radiation from a body. The axes of a second plurality channels define another direction of acceptance of radiation from the body and intersect the same portion of the body as the axes of the first plurality of channels thus producing a second view of the body. Where the collimator is built up as a stack of blocks, each pair of adjacent blocks defines a slice of the body which is viewed from two angles defined by the channels. (UK)

  1. Parallel hole collimator acceptance tests for SPECT and planar studies

    International Nuclear Information System (INIS)

    Babicheva, R.R.; Bennie, D.N.; Collins, L.T.; Gruenwald, S.M.

    1998-01-01

    Full text: Different kinds of collimator damage can occur either during shipping or from regular use. Imperfections of construction along the strips or their connections give rise to nonperpendicular hole alignments to the crystal face and can produce potential problems such as ring artifacts and image degradation. Gamma camera collimator hole alignments and integrity were compared in four parallel hole high resolution collimators-two new cast and two used foil collimators, one with damage to the protective surface. [1] The point source flood image of the defective collimator was non-circular as were the images of cast collimators. The image of new foil collimator was circular. [2] High count sheet flood did not show any imperfections. [3] Bone mineral densitometer was used to perform collimated X-ray beam. The collimator was placed on the scanning bed with an X-ray cassette placed directly above it. The damaged area was well demonstrated. [4] The COR offset test was taken at two extreme radii. The offset value with the defective collimator is increased by 0.53 pixel or 129% with increase of COR from radius 14 cm to 28cm. [5] The collimator hole alignment test involves performing multiple measurements of COR along the length of the collimator, and checking for variations in COR with both position of source and angle of rotation. The maximum variation in COR of the defective collimator hole alignment was 1.13 mm. Collimators require testing when new and at regular intervals, or following damage. The point source test can be used for foil collimators. The most sensitive tests were collimated X-ray source, COR offset test and collimator hole alignment

  2. Method to assist conception of collimators in nuclear medicine

    International Nuclear Information System (INIS)

    Gantet, P.; Esquerre, J.P.; Danet, B.; Roux, G.; Guiraud, R.

    1990-01-01

    Designing a collimator should begin by an accurate computation of its performances in order to minimize the usual expensive and time consuming phase of trial and error. The authors briefly describe several methods currently used, and present a method of simulation of the percussional response of collimators. The computation takes into account the attenuation of photons by the collimator septas. An other benefit is its ability to be used whatever the geometric specifications of the collimator. The program computes spatial resolution, geometric efficiency, septal penetration, as well as slice thickness when the collimator is used with a SPECT device. The study presents the results concerning two collimators: a general purpose parallel hole commercially available and a focused parallel one dedicated to a single slice SPECT system. In conclusion, this deterministic method which takes attenuation into account for collimators performances computation should be useful tool to assist conception of new collimators in nuclear medicine [fr

  3. A Simple and Inexpensive Collimator for Neutron Radiography

    DEFF Research Database (Denmark)

    Olsen, J.; Mortensen, L.

    1974-01-01

    A neutron beam collimator was constructed by means of plastic drinking “straws”. The properties of the collimator were investigated, and especially the distribution of the neutrons at different distances....

  4. ON THE USE OF THIN SCRAPERS FOR MOMENTUM COLLIMATION

    International Nuclear Information System (INIS)

    CATALAN-LASHERAS, N.

    2001-01-01

    In transverse collimation systems, thin scrapers are used as primary collimators to interact with the beam halo and increase its impact parameter on the secondary collimators or absorbers. In the same way, placing the primary collimator in a dispersion region is used for momentum collimation. However, the use of scrapers for momentum collimation presents an additional disadvantage when handling medium-low energy beams. The energy lost by ionization is non negligible and the proton can be kicked out of the RF bucket. The material and thickness of the scraper have to be carefully adjusted according to the position of secondary collimators and momentum aperture of the machine. We derive simple analytical expressions for a generic case. The same calculations have been applied to the case of the SNS accumulator ring. After careful considerations, the use of scrapers for momentum collimation was ruled out in favor of a beam in gap kicker system

  5. Grazing function g and collimation angular acceptance

    Directory of Open Access Journals (Sweden)

    Stephen G. Peggs

    2009-11-01

    Full Text Available The grazing function g is introduced—a synchrobetatron optical quantity that is analogous (and closely connected to the Twiss and dispersion functions β, α, η, and η^{′}. It parametrizes the rate of change of total angle with respect to synchrotron amplitude for grazing particles, which just touch the surface of an aperture when their synchrotron and betatron oscillations are simultaneously (in time at their extreme displacements. The grazing function can be important at collimators with limited acceptance angles. For example, it is important in both modes of crystal collimation operation—in channeling and in volume reflection. The grazing function is independent of the collimator type—crystal or amorphous—but can depend strongly on its azimuthal location. The rigorous synchrobetatron condition g=0 is solved, by invoking the close connection between the grazing function and the slope of the normalized dispersion. Propagation of the grazing function is described, through drifts, dipoles, and quadrupoles. Analytic expressions are developed for g in perfectly matched periodic FODO cells, and in the presence of β or η error waves. These analytic approximations are shown to be, in general, in good agreement with realistic numerical examples. The grazing function is shown to scale linearly with FODO cell bend angle, but to be independent of FODO cell length. The ideal value is g=0 at the collimator, but finite nonzero values are acceptable. Practically achievable grazing functions are described and evaluated, for both amorphous and crystal primary collimators, at RHIC, the SPS (UA9, the Tevatron (T-980, and the LHC.

  6. Collimator scatter and 2D dosimetry in small proton beams

    NARCIS (Netherlands)

    van Luijk, P.; van 't Veld, A.A.; Zelle, H.D.; Schippers, J.M.

    Monte Carlo simulations have been performed to determine the influence of collimator-scattered protons from a 150 MeV proton beam on the dose distribution behind a collimator. Slit-shaped collimators with apertures between 2 and 20 mm have been simulated. The Monte Carlo code GEANT 3.21 has been

  7. The usefulness of cardiofocal collimator in static renal imaging

    International Nuclear Information System (INIS)

    Evren, I.; Durak, H.; Degirmenci, B.; Derebek, E.; Oezbilek, E.; Capa, G.

    2001-01-01

    Static renal imaging is best performed using pinhole collimator. But this technique takes too much time and generally parallel hole collimators are preferred for static renal imaging in nuclear medicine departments. The purpose of this study was to investigate the usefulness of the cardio-focal collimator used for myocardial perfusion imaging in static renal scintigraphy

  8. The proton collimation system of HERA

    International Nuclear Information System (INIS)

    Seidel, M.

    1994-06-01

    This thesis is concerned with the two stage collimation system in HERA-p which is supposed to suppress this kind of background. The HERA-p collimation system consists of 12 movable tungsten jaws at three locations in the ring. A manual operation of the system is therefore rather time consuming, but also dangerous in the case of an operational mistake. The development of partially automised controls for the system is therefore an important topic of this thesis as well. In order to control the precise positioning of the jaws at the beam edge the induced hadronic showers are monitored immediately downstream the collimators. Small PIN-diode based shower detectors are used for this purpose. A detailed analysis of these shower rates turned out to be a sensitive source of information on the beam. A large section of the thesis is therefore concerned with the diagnostic possibilities of collimators in a proton machine. A passive method for the determination of the machine acceptance is presented. A second topic is the determination of diffusion rates in the beam halo. A stepwise movement of a beam limiting collimator jaw induces relaxation processes in the beam halo. From an analysis of the transient time evolution of the loss rates after the movement one can determine the diffusion coefficient in the beam halo. A completely new method is the frequency analysis of the halo induced shower rates. If the beam oscillates it scrapes periodically at the collimator which results in a modulation of the measured loss rates. The method allows measurements of slow orbit oscillations in the range of some μm. In the last section of the thesis the diffusion of halo protons as a result of beam-beam interaction is investigated. A little collection of diffusion measurements as a function of particle amplitude is presented. With the help of tracking simulations it is demonstrated that diffusion rates of the observed size can be generated by a certain modulation of the betatron frequency

  9. Collimator settings and performance in 2011 and 2012

    International Nuclear Information System (INIS)

    Bruce, R.; Assmann, R.W.; Burkart, F.; Cauchi, M.; Deboy, D.; Lari, L.; Redaelli, S; Rossi, A.; Salvachua, B.; Valentino, G.; Wollmann, D.

    2012-01-01

    Collimator settings and performance are key parameters for deciding the reach in intensity and β* in order to conclude on possible limits for the 2012 run, a summary is first given of the relevant running experience in 2011 and the collimation-related MDs. These include among others tight collimator settings, a quench test, and aperture measurements. Based on the 2011 experience, we conclude on possible running scenarios for 2012 in terms of collimator settings, intensity and β* from the collimation point of view. (authors)

  10. Collimation settings and performance in 2011 and 2012

    CERN Document Server

    Bruce, R; Burkart, F; Cauchi, M; Deboy, D; Lari, L; Redaelli, S; Rossi, A; Salvachua, B; Valentino, G; Wollmann, D

    2012-01-01

    Collimator settings and available aperture are key parameters for deciding the reach in intensity and β*. In order to conclude on possible limits for the 2012 run, a summary is first given of the relevant running experience in 2011 and the collimation-related MDs. These include among others tight collimator settings, a quench test, and aperture measurements. Based on the 2011 experience, we conclude on possible running scenarios for 2012 in terms of collimator settings, intensity and β* from the collimation point of view.

  11. Collimation settings and performance in 2011 and 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R; Assmann, R W; Burkart, F; Cauchi, M; Deboy, D; Lari, L; Redaelli, S; Rossi, A; Salvachua, B; Valentino, G; Wollmann, D [European Organization for Nuclear Research, Geneva (Switzerland)

    2012-07-01

    Collimator settings and available aperture are key parameters for deciding the reach in intensity and β*. In order to conclude on possible limits for the 2012 run, a summary is first given of the relevant running experience in 2011 and the collimation-related MDs. These include among others tight collimator settings, a quench test, and aperture measurements. Based on the 2011 experience, we conclude on possible running scenarios for 2012 in terms of collimator settings, intensity and β* from the collimation point of view.

  12. Collimation techniques for dense object flash radiography

    International Nuclear Information System (INIS)

    Mueller, K.H.

    1984-08-01

    In explosively driven experiments, flash radiography can record a wealth of information about material densities and boundaries. Obtaining accurate quantitative data from these radiographs requires careful design of the experiment so that one can control and measure the scattered radiation background that is a part of any experiment. We have used collimators at the x-ray source to match the incident x-ray flux to the transmission of the object, thereby reducing the production of scattered radiation while still preserving a complete view of the object. Multi-hole collimators (at the film plane) with a length-to-diameter ratio of approx. 20:1 have been used to measure the scattered radiation field with several exposure geometries and with various shielding methods

  13. Collimation systems in the next linear collider

    International Nuclear Information System (INIS)

    Merminga, N.; Irwin, J.; Helm, R.; Ruth, R.D.

    1991-02-01

    Experience indicates that beam collimation will be an essential element of the next generation e + E - linear colliders. A proposal for using nonlinear lenses to drive beam tails to large amplitudes was presented in a previous paper. Here we study the optimization of such systems including effects of wakefields and optical aberrations. Protection and design of the scrapers in these systems are discussed. 9 refs., 7 figs

  14. Coronal Jet Collimation by Nonlinear Induced Flows

    Energy Technology Data Exchange (ETDEWEB)

    Vasheghani Farahani, S.; Hejazi, S. M. [Department of Physics, Tafresh University, Tafresh 39518 79611 (Iran, Islamic Republic of)

    2017-08-01

    Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.

  15. Characterization of a multileaf collimator system

    International Nuclear Information System (INIS)

    Galvin, J.M.; Smith, A.R.; Lally, B.

    1993-01-01

    Commissioning measurements for a multileaf collimator installed on a dual energy accelerator with 6 and 15 MV photons are described. Detailed dosimetric characterization of the multileaf collimator is a requirement for modeling the collimator with treatment planning software. Measurements include a determination of the penumbra width, leaf transmission, between-leaf leakage, and localization of the leaf ends and sides. Standard radiographic film was used for the penumbra measurements, and separate experiments using radiochromic film and thermoluminescent dosimeters were performed to verify that distortions of the dose distribution at an edge due to changing energy sensitivity of silver bromide film are negligible. Films were analyzed with a scanning laser densitometer with a 210 micron spot. Little change in the penumbra edge distribution was noted for different positions of a leaf in the field. Experiments localizing the physical end of the leaves showed less than 1 mm deviation from the 50% decrement line. This small difference is attributed to the shaped end on the leaves. One side of a single leaf corresponded to the 50% decrement line, but the opposite face was aligned with a lower value. This difference is due to the tongue and groove used to decrease between-leaf leakage. For both energies, approximately 2% of photons incident on the multileaf collimator are transmitted and an additional 0.5% leakage occurs between the leaves. Alignment of the leaves to form a straight edge results in a penumbra profile which compares favorably with the standard technique of using alloy blocks. When the edge is stepped, the isodose lines follow the leaf pattern and the boundary is poorly defined compared to divergent blocks. 19 refs., 13 figs

  16. Single photon emission computed tomography by using fan beam collimator

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa

    1992-01-01

    A multislice fan beam collimator which has parallel collimation along the cephalic-caudul axis of a patient and converging collimation within planes that are perpendicular to that axis was designed for a SPECT system with a rotating scintillation camera, and it was constructed by the lead casting method which was developed in recent years. A reconstruction algorithm for fan beam SPECT was formed originally by combining the reconstruction algorithm of the parallel beam SPECT with that of the fan beam X-ray CT. The algorithm for fan beam SPECT was confirmed by means of computer simulation and a head phantom filled with diluted radionuclide. Not only 99m Tc but also 123 I was used as a radionuclide. A SPECT image with the fan beam collimator was compared with that of a parallel hole, low energy, high resolution collimator which was routinely used for clinical and research SPECT studies. Both system resolution and sensitivity of the fan beam collimator were ∼20% better than those of the parallel hole collimator. Comparing SPECT images obtained from fan beam collimator with those of parallel hole collimator, the SPECT images using fan beam collimator had far better resolution. A fan beam collimator is a useful implement for the SPECT study. (author)

  17. Jet collimation by turbulent viscosity. I

    International Nuclear Information System (INIS)

    Henriksen, R.N.

    1987-01-01

    In this paper it is assumed that the subscale turbulent eddies induced in an ambient medium by the emergence of a (already collimated) jet from a galactic nucleus (VLBI jet) are the source of the viscosity which causes material to be entrained into the large-scale (VLA) jet. New analytic solutions are derived by a generalization of the self-similar Ansatz used in the Landau-Squires solution to include variable density and viscosity. It is shown that such a process of viscous collimation of the VLA jets can account for the observed collimation-luminosity correlation, the magnetic flux, and the inferred mass flux of these jets. Order of magnitude comparisons of velocity and density fields with recently observed emission-line flow regions near radio jets are made. All of the viscosity-dependent observational checks imply roughly the same plausible value for the eddy viscosity. It is emphasized that storing the initial VLBI jet energy in the intermediate scales occupied by the turbulent eddies allows this energy to be largely undetected. 35 references

  18. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, Ronald J.

    1979-01-01

    An improved collimator is provided for a scintillation camera system that employs a detector head for transaxial tomographic scanning. One object of this invention is to significantly reduce the time required to obtain statistically significant data in radioisotope scanning using a scintillation camera. Another is to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a radiation source of known strength without sacrificing spatial resolution. A further object is to reduce the necessary scanning time without degrading the images obtained. The collimator described has apertures defined by septa of different radiation transparency. The septa are aligned to provide greater radiation shielding from gamma radiation travelling within planes perpendicular to the cranial-caudal axis and less radiation shielding from gamma radiation travelling within other planes. Septa may also define apertures such that the collimator provides high spatial resolution of gamma rays traveling within planes perpendicular to the cranial-caudal axis and directed at the detector and high radiation sensitivity to gamma radiation travelling other planes and indicated at the detector. (LL)

  19. Hybrid collimation for industrial gamma-ray imaging

    International Nuclear Information System (INIS)

    He, Z.; Knoll, G. F.; Smith, L. E.; Wehe, D. K.

    1999-01-01

    Portable photon imaging devices with a broad energy range of sensitivity, adequate angular resolution and high efficiency are useful in applications such as environmental remediation and industrial surveys. The vast majority of past systems built for these applications have relied on mechanical collimation although a few have used electronic collimation. To our knowledge, no devices have been built that exploit the benefits of both mechanical and electronic collimation in the same system. The combination of a mechanically-collimated camera with an electronically-collimated camera offers both the high efficiency and good angular resolution typical in a mechanically-collimated camera for lower energies and the uncoupling of spatial resolution and efficiency provided by an electronically-collimated camera at higher energies

  20. One primary collimator with optional crystal feature, tested with beam

    CERN Document Server

    EuCARD, Collaboration

    2014-01-01

    The WP8 of EuCARD aims at the design of more advanced materials and collimator concepts for high beam power in particle accelerators like LHC and FAIR. Deliverable 8.3.1 concerned the production and the validation by beam tests of an advanced collimator prototype to improve various aspects of the LHC collimation system, such as the accuracy of the collimator jaw alignment to the circulating beam, the duration of collimator setup time and the overall halo cleaning performance. A collimator prototype was built and installed in the SPS for beam tests in the running period between 2010 and 2012. Crystal collimation aspects were dealt with in a dedicated SPS experiment, which also profited from EuCARD contributions.

  1. Development of collimator insert for linac based stereotactic irradiation

    International Nuclear Information System (INIS)

    Singh, I.R.R.; Brindha, S.; Ravindran, B.P.; Rajshekhar, V.

    1999-01-01

    The aim of this study is to develop collimator inserts of various sizes which are either not commercially available or are expensive to import. The dosimetry parameters such as tissue maximum ratio (TMR), off-axis ratio (OAR) and output factor of the developed collimator insert are compared with that of the commercial collimator insert (Radionics). In order to check the suitability of the collimator insert developed locally for clinical use and to standardize the method of development, a collimator insert of 15 mm identical to the one supplied by Radionics is developed with low-melting alloy (Cerrobend). Moreover for the clinical use of the developed collimator insert, certain acceptance tests are performed which include a collimator concentricity test, beam size check and radiation leakage test. The dose verification is carried out with a thermoluminescent dosimeter ( 7 LiF rods) and an FBX chemical dosimeter in a human-head-shaped Perspex phantom filled with water. The variation between the calculated and measured dose is found to be within +2.4% for 7 LiF rods and -2.0% for the FBX chemical dosimeter thus ensuring the suitability of the developed collimator insert for clinical use. This has encouraged us to standardize the method adapted to develop the collimator insert and to develop collimator inserts of different field sizes. (author)

  2. Properties of a new variable collimator at orthovoltage energies

    International Nuclear Information System (INIS)

    Lee, K.; Butson, M.; Metcalfe, P.; University of Wollongong, Wollongong, NSW

    1996-01-01

    Full text: Beam characteristics of a Therapax DXT 300 Orthovoltage Machine are investigated using fixed collimators or 'cones' and a variable collimator. Previously, fixed collimators have always been used throughout patient treatments. The variable collimator is an optional accessory to the DXT 300 machine and has just been implemented at our centre. The variable collimator mounts to the DXT 300 at the same position as the fixed collimators and produces rectangular field sizes up to 20 x 20 cmm at 50 cm FSD. Surface/near surface charge measurements were performed for the variable collimator and various configurations of cones for a 10 x 10 cm field at 250kVp and a FSD of 50cm in solid water using a Markus Type 329 parallel plate ionisation chamber connected via a shielded triaxial cable to a 2570/1 NE Farmer electrometer. Central axis percentage depth doses and beam profiles were measured using a Scanditronix RK ionisation chamber in a RFA300 water tank for both cones and the variable collimator. This data was then transferred to the Target Series 2 computer planning system for isodose display. Measurements were performed at 250 kVp. Beam profiles were scanned both perpendicular to and along the cathode-anode direction. A change in charge measured at the surface and to 1 mm depth for the variable collimator and the cones was observed. The normal cone and the variable collimator have surface charges of 100% and 98% respectively. Maximum surface charge occurred for the open-end 'lead' cone. A comparison was made between the central axis percentage depth dose produced by the cones and variable collimator for field sizes of 10 x 10cm and 20 x 20 cm. Maximum dose for the cones is deposited at the surface whereas for the variable collimator there is a slight build-up region before maximum dose is deposited at a depth of 1 mm. Upon comparing the beam profiles produced by the variable collimator and the cones, it was observed that the width of the penumbra differed by

  3. Reflection jets and collimation of radio sources

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.

    1983-01-01

    A discussion of the hydrodynamics of jets formed by discrete portions of materials ejected from the parent galaxy through a channel, and reflected back to it as a result of an encounter with the material accumulated at the end of the channel, is the basis of the present descriptive hypothesis for a class of jets in extended radio sources. The model encompasses the view of extended radio sources as the multiple ejection of plasmoids through a channel, as well as the formation of retrojets through the interaction of a plasmon with the dense relic material at the end of a channel, and the collimation of plasmon material in channels. 14 references

  4. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard

    2013-01-01

    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  5. Preliminary assessment of beam impact consequences on LHC Collimators

    CERN Document Server

    Cauchi, M; Bertarelli, A; Bruce, R; Carra, F; Dallocchio, A; Deboy, D; Mariani, N; Rossi, A; Lari, L; Mollicone, P; Sammut, N

    2011-01-01

    The correct functioning of the LHC collimation system is crucial to attain the desired LHC luminosity performance. However, the requirements to handle high intensity beams can be demanding. In this respect, the robustness of the collimators plays an important role. An accident, which causes the proton beam to hit a collimator, might result in severe beam-induced damage and, in some cases, replacement of the collimator, with consequent downtime for the machine. In this paper, several case studies representing different realistic beam impact scenarios are shown. A preliminary analysis of the thermal response of tertiary collimators to beam impact is presented, from which the most critical cases can be identified. Such work will also help to give an initial insight on the operational constraints of the LHC by taking into account all relevant collimator damage limits.

  6. Gallium-67 imaging with low collimators and energy weighted acquisition

    International Nuclear Information System (INIS)

    Hamill, J.J.; DeVito, R.P.

    1990-01-01

    This paper reports that the medium and high energy collimators used in 67 Ga imaging have poorer resolution than low-energy collimators, such as the LEAP. The low energy collimators could be used for gallium imaging if the background under the 93 and 185 keV peaks could be reduced without degrading the signal-to-noise ratio unacceptably. energy weighted acquisition provides a means of accomplishing this background reduction. The authors have developed weighing functions for gallium imaging through LEAP and high resolution collimators. The resolution of the low energy collimators is realized while the background is comparable to, or better than, the background in normal, energy-window imaging with the medium energy collimator. The pixel noise is somewhat greater than the Poisson noise in normal gallium imaging, and some noise correlations, or noise texture, is introduced

  7. Acoustic measurements in the collimation region of the LHC

    CERN Document Server

    Deboy, D; Baccigalupi, C; Burkart, F; Cauchi, M; Derrez, C S; Lendaro, J; Masi, A; Spiezia, G; Wollmann, D

    2011-01-01

    The LHC accelerator at CERN has the most advanced collimation system ever being installed. The collimators intercept unavoidable particle losses and therefore are essential to avoid beam induced quenches of the superconducting magnets. In addition, they provide passive machine protection against mis-kicked beams. During material robustness tests on a LHC collimator prototype in 2004 and 2006, vibration and acoustic measurements have shown that a beam impact detection system should be feasible using accelerometers and microphones as sensors in the LHC. Recently, such sensors have been installed close to the primary collimators in the LHC tunnel. First analyses of raw data show that the system is sensitive enough to detect beam scraping on collimators. Therefore, the implementation of a sophisticated acousticmonitoring system is under investigation. It may be useful not only to detect beam impacts on primary collimators in case of failure, but also to derive further information on beam losses that occur during ...

  8. Beam Collimation Studies for the ILC Positron Source

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; /Fermilab; Nosochkov, Y.; Zhou, F.; /SLAC

    2008-06-26

    Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.

  9. Mechanical approach to the neutrons spectra collimation and detection

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, H.; Roshan, M. V. [Energy Engineering and Physics Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  10. Optimization of convergent collimators for pixelated SPECT systems

    International Nuclear Information System (INIS)

    Capote, Ricardo M.; Matela, Nuno; Conceição, Raquel C.; Almeida, Pedro

    2013-01-01

    Purpose: The optimization of the collimator design is essential to obtain the best possible sensitivity in single photon emission computed tomography imaging. The aim of this work is to present a methodology for maximizing the sensitivity of convergent collimators, specifically designed to match the pitch of pixelated detectors, for a fixed spatial resolution value and to present some initial results using this approach. Methods: Given the matched constraint, the optimal collimator design cannot be simply found by allowing the highest level of septal penetration and spatial resolution consistent with the imposed restrictions, as it is done for the optimization of conventional collimators. Therefore, an algorithm that interactively calculates the collimator dimensions, with the maximum sensitivity, which respect the imposed restrictions was developed and used to optimize cone and fan beam collimators with tapered square-shaped holes for low (60–300 keV) and high energy radiation (300–511 keV). The optimal collimator dimensions were locally calculated based on the premise that each hole and septa of the convergent collimator should locally resemble an appropriate optimal matched parallel collimator. Results: The optimal collimator dimensions, calculated for subcentimeter resolutions (3 and 7.5 mm), common pixel sizes (1.6, 2.1, and 2.5 mm), and acceptable septal penetration at 140 keV, were approximately constant throughout the collimator, despite their different hole incidence angles. By using these input parameters and a less strict septal penetration value of 5%, the optimal collimator dimensions and the corresponding mass per detector area were calculated for 511 keV. It is shown that a low value of focal distance leads to improvements in the average sensitivity at a fixed source-collimator distance and resolution. The optimal cone beam performance outperformed that of other optimal collimation geometries (fan and parallel beam) in imaging objects close to

  11. Tests of a silicon wafer based neutron collimator

    International Nuclear Information System (INIS)

    Cussen, L.D.; Vale, C.J.; Anderson, I.S.; Hoeghoj, P.

    2001-01-01

    A Soller slit neutron collimator has been prepared by stacking 160 μm thick single crystal silicon wafers coated on one surface with 4 μm of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators

  12. Tests of a silicon wafer based neutron collimator

    CERN Document Server

    Cussen, L D; Anderson, I S; Hoeghoj, P

    2001-01-01

    A Soller slit neutron collimator has been prepared by stacking 160 mu m thick single crystal silicon wafers coated on one surface with 4 mu m of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators.

  13. Computation of the efficiency distribution of a multichannel focusing collimator

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Venkateswaran, T.V.

    1977-01-01

    This article describes two computer methods of calculating the point source efficiency distribution functions of a focusing collimator with round tapered holes. The first method which computes only the geometric efficiency distribution is adequate for low energy collimators while the second method which computes both geometric and penetration efficiencies can be made use of for medium and high energy collimators. The scatter contribution to the efficiency is not taken into account. In the first method the efficiency distribution of a single cone of the collimator is obtained and the data are used for computing the distribution of the whole collimator. For high energy collimator the entire detector region is imagined to be divided into elemental areas. Efficiency of the elemental area is computed after suitably weighting for the penetration within the collimator septa, which is determined by three dimensional geometric techniques. The method of computing the line source efficiency distribution from point source distribution is also explained. The formulations have been tested by computing the efficiency distribution of several commercial collimators and collimators fabricated by us. (Auth.)

  14. A parabolic mirror x-ray collimator

    Science.gov (United States)

    Franks, A.; Jackson, K.; Yacoot, A.

    2000-05-01

    A robust and stable x-ray collimator has been developed to produce a parallel beam of x-rays by total external reflection from a parabolic mirror. The width of the gold-coated silica mirror varies along its length, which allows it to be bent from a plane surface into a parabolic form by application of unequal bending forces at its ends. A family of parabolas of near constant focal length can be formed by changing the screw-applied bending force, thus allowing the collimator to cater for a range of wavelengths by the turning of a screw. Even with radiation with a wavelength as short as that as Mo Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 0.07 nm), a gain in flux by a factor of 5.5 was achieved. The potential gain increases with wavelength, e.g. for Cu Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 radiation this amounts to over a factor of ten.

  15. A variable-collimation display system

    Science.gov (United States)

    Batchko, Robert; Robinson, Sam; Schmidt, Jack; Graniela, Benito

    2014-03-01

    Two important human depth cues are accommodation and vergence. Normally, the eyes accommodate and converge or diverge in tandem; changes in viewing distance cause the eyes to simultaneously adjust both focus and orientation. However, ambiguity between accommodation and vergence cues is a well-known limitation in many stereoscopic display technologies. This limitation also arises in state-of-the-art full-flight simulator displays. In current full-flight simulators, the out-the-window (OTW) display (i.e., the front cockpit window display) employs a fixed collimated display technology which allows the pilot and copilot to perceive the OTW training scene without angular errors or distortions; however, accommodation and vergence cues are limited to fixed ranges (e.g., ~ 20 m). While this approach works well for long-range, the ambiguity of depth cues at shorter range hinders the pilot's ability to gauge distances in critical maneuvers such as vertical take-off and landing (VTOL). This is the first in a series of papers on a novel, variable-collimation display (VCD) technology that is being developed under NAVY SBIR Topic N121-041 funding. The proposed VCD will integrate with rotary-wing and vertical take-off and landing simulators and provide accurate accommodation and vergence cues for distances ranging from approximately 3 m outside the chin window to ~ 20 m. A display that offers dynamic accommodation and vergence could improve pilot safety and training, and impact other applications presently limited by lack of these depth cues.

  16. Leaf sequencing algorithms for segmented multileaf collimation

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Palta, Jatinder; Ranka, Sanjay

    2003-01-01

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves

  17. Leaf sequencing algorithms for segmented multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2003-02-07

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.

  18. Collimator optimization studies for the new MIT epithermal neutron beam

    International Nuclear Information System (INIS)

    Riley, K.J.; Ali, S.J.; Harling, O.K.

    2000-01-01

    A patient collimator has been designed for the epithermal neutron facility now being commissioned at MIT. Collimator performance both in and out of field was evaluated using the Monte Carlo code MCNP. A two piece design that can accommodate different circular field sizes will be manufactured using a composite lead, epoxy, boron and lithium mixture. (author)

  19. Collimator performance evaluation by Monte-Carlo techniques

    International Nuclear Information System (INIS)

    Milanesi, L.; Bettinardi, V.; Bellotti, E.; Gilardi, M.C.; Todd-Pokropek, A.; Fazio, F.

    1985-01-01

    A computer program using Monte-Carlo techniques has been developed to simulate gamma camera collimator performance. Input data include hole length, septum thickness, hole size and shape, collimator material, source characteristics, source to collimator distance and medium, radiation energy, total events number. Agreement between Monte-Carlo simulations and experimental measurements was found for commercial hexagonal parallel hole collimators in terms of septal penetration, transfer function and sensitivity. The method was then used to rationalize collimator design for tomographic brain studies. A radius of ration of 15 cm was assumed. By keeping constant resolution at 15 cm (FWHM = 1.3.cm), SPECT response to a point source was obtained in scattering medium for three theoretical collimators. Sensitivity was maximized in the first collimator, uniformity of resolution response in the third, while the second represented a trade-off between the two. The high sensitivity design may be superior in the hot spot and/or low activity situation, while for distributed sources of high activity an uniform resolution response should be preferred. The method can be used to personalize collimator design to different clinical needs in SPECT

  20. Towards Optimum Material Choices for HL-LHC Collimator Upgrade

    CERN Document Server

    Quaranta, E.; Biancacci, N.; Bruce, R.; Carra, F.; Métral, E.; Redaelli, S.; Rossi, A.; Salvant, B.

    2016-01-01

    properties that address different limitations of the present collimation system, solutions have been found to fulfil various upgrade challenges. This paper describes the proposed staged approach to deploy new materials in the upgraded HL-LHC collimation system. Beam tests at the CERN HiRadMat facility were also performed to benchmark simulation methods and constitutive material models.

  1. Efficient Collimation and Machine Protection for the Compact Linear Collider

    CERN Document Server

    Assmann, R W

    2006-01-01

    We present a new approach to machine protection and collimation in CLIC, separating these two functions: If emergency dumps in the linac protect the downstream beam line against drive-beam failures, the energy collimation only needs to clean the beam tails and can be compact. Overall, the length of the beam-delivery system (BDS) is significantly reduced.

  2. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  3. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  4. Reflection jets and collimation of radio sources

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.

    1983-01-01

    The author proposes a description of only a certain class of jets in extended radio sources by discussing hydrodynamics of jets formed by discrete portions of material ejected from the parent galaxy through a channel and reflected back into it as a result of an encounter with the material accumulated at the end of the channel. The picture presented here combines some older ideas with recent ones. The older ideas consist of modeling of extended radio sources in terms of multiple ejection of plasmons through a channel ploughed by the first few plasmons in the ambient medium with a resupply of energy in plasmons through the conversion of bulk kinetic energy into relativistic electron energy through instability driven turbulence. The recent ideas concern the formation of retro-jets as the result of interaction of a plasmon with the dense relic material at the end of a channel and the collimation of plasmon material in channels. (Auth.)

  5. Ion beam collimating grid to reduce added defects

    Science.gov (United States)

    Lindquist, Walter B.; Kearney, Patrick A.

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  6. Beam diffusion measurements using collimator scans in the LHC

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2013-02-01

    Full Text Available The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  7. FINAL IMPLEMENTATION AND PERFORMANCE OF THE LHC COLLIMATOR CONTROL SYSTEM

    CERN Document Server

    Redaelli, S; Masi, A; Losito, R

    2009-01-01

    The 2008 collimation system of the CERN Large Hadron Collider (LHC) included 80 movable collimators for a total of 316 degrees of freedom. Before beam operation, the final controls implementation was deployed and commissioned. The control system enabled remote control and appropriate diagnostics of the relevant parameters. The collimator motion is driven with time-functions, synchronized with other accelerator systems, which allows controlling the collimator jaw positions with a micrometer accuracy during all machine phases. The machine protection functionality of the system, which also relies on function-based tolerance windows, was also fully validated. The collimator control challenges are reviewed and the final system architecture is presented. The results of the remote system commissioning and the overall performance are discussed.

  8. Trapped Mode Study in the LHC Rotatable Collimator

    CERN Document Server

    Xiao, L; Smith, J C; Caspers, F

    2010-01-01

    A rotatable collimator is proposed for the LHC phase II collimation upgrade. When the beam crosses the collimator, trapped modes will be excited that result in beam energy loss and collimator power dissipation. Some of the trapped modes can also generate transverse kick on the beam and affect the beam operation. In this paper the parallel eigensolver code Omega3P is used to search for all the trapped modes below 2GHz in the collimator, including longitudinal modes and transverse modes. The loss factors and kick factors of the trapped modes are calculated as function of the jaw positions. The amplitude ratio between transverse and longitudinal trapped mode intensity can be used as a direct measure of the position of the beam. We present simulation results and discuss the results.

  9. Micro-array collimators for X-rays and neutrons

    International Nuclear Information System (INIS)

    Cimmino, A.; Allman, B.E.; Klein, A.G.; Bastie, P.

    1998-08-01

    The authors describe the fabrication techniques of novel, compact optical elements for collimating and/or focusing beams of X-rays or thermal neutrons. These optical elements are solid composite arrays consisting of regular stacks of alternating micro-foils, analogous in action to Soller slit collimators, but up to three orders of magnitude smaller. The arrays are made of alternating metals with suitable refractive indices for reflection and/or absorption of the specific radiation. In one implementation, the arrays are made of stacked micro-foils of transmissive elements (Al, Cu) coated and/or electroplated with absorbing elements (Gd, Cd), which are repeatedly rolled or drawn and restacked to achieve the required collimation parameters. The authors present results of these collimators using both X-rays and neutrons. The performance of the collimating element is limited only by the choice of micro-foil materials and the uniformity of their interfaces

  10. Analysis appliance by gamma tomography with focused collimators

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1978-01-01

    This invention concerns nuclear medicine and specifically an image-forming appliance providing a very sensitive quantitative determination and the localization in space of the radioactivity of a body organ such as the brain of a patient to whom a substance labelled with radioactive isotopes has been administered. The characteristics of this appliance, which forms an image in a transversal scanning field by means of radioactive isotope radiations, includes several highly focused collimators, placed in line and focused inwards so that they form an arrangement that surrounds a given scanning field. Each collimator is mobile with respect to the adjacent collimator and a system moves the collimators so that the focus of each one uniformly samples at least a half of the total scanning field corresponding to a cross section. The number of detectors is an even one between two and twenty four, and the collimators are twelve in number [fr

  11. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  12. Optimization of Collimator Jaw Locations for the LHC

    CERN Document Server

    Kaltchev, D I; Servranckx, R V; Jeanneret, J B

    1996-01-01

    A highly effective collimation scheme is required in the LHC to limit heating of the vacuum chamber and superconducting magnets by protons either uncaptured at injection or scattered from the collision points. The proposed system would consist of one set of primary collimators followed by three sets of secondary collimators downstream to clean up protons scattered from the primaries. Each set of collimators would consist of four pairs of jaws - horizontal, vertical, and 45 o and 135 o skew. A study is reported of the optimization of the longitudinal positions of these jaws with the aim of minimizing the maximum betatron amplitudes of protons surviving the collimation system. This is performed using an analytical representation of the action of the jaws and is confirmed by tracking. Significant improvement can be obtained by omitting inactive jaws and adding skew jaws.

  13. Decreasing the LHC impedance with a nonlinear collimation system

    CERN Document Server

    Resta-López, J; Zimmermann, F

    2007-01-01

    A two-stage nonlinear collimation system based on a pair of skew sextupoles is presented for the LHC.We show the details of the optics design and study the halo cleaning efficiency of such a system. This nonlinear collimation system would allow opening up collimator gaps, and thereby reduce the collimator impedance, which presently limits the LHC beam intensity. Assuming the nominal LHC beam at 7 TeV, the transverse coherent tune shifts of rigid-dipole coupled-bunch modes are computed for both the baseline linear collimation system and the proposed nonlinear one. In either case, the tune shifts of the most unstable modes are compared with the stability diagrams for Landau damping.

  14. Multipinhole collimator with 20 apertures for a brain SPECT application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho, E-mail: youngho.seo@ucsf.edu [Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (United States); Huang, Qiu [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Gullberg, Grant T. [Department of Radiotracer Development and Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (United States)

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  15. A multileaf collimator field prescription preparation system for conventional radiotherapy

    International Nuclear Information System (INIS)

    Du, M.N.; Yu, C. X.; Symons, M.; Yan, D.; Taylor, R.; Matter, R.C.; Gustafson, G.; Martinez, A.; Wong, J.W.

    1995-01-01

    Purpose: The purpose of this work is to develop a prescription preparation system for efficient field shaping using a multileaf collimator that can be used in community settings as well as research institutions. The efficiency advantage of the computer-controlled multileaf collimator, over cerrobend blocks, to shape radiation fields has been shown in conformal treatments, which typically require complete volumetric computerized tomographic data for three-dimensional radiation treatment planning--a utility not readily available to the general community. As a result, most patients today are treated with conventional radiation therapy. Therefore, we believe that it is very important to fully use the same efficiency advantage of multileaf collimator as a block replacement in conventional practice. Methods and Material: The multileaf collimator prescription preparation system developed by us acquires prescription images from different sources, including film scanner and radiation treatment planning systems. The multileaf collimator angle and leaf positions are set from the desired field contour defined on the prescription image, by minimizing the area discrepancies. Interactive graphical tools include manual adjustment of collimator angle and leaf positions, and definition of portions of the field edges that require maximal conformation. Data files of the final leaf positions are transferred to the multileaf collimator controller via a dedicated communication link. Results: We have implemented the field prescription preparation system and a network model for integrating the multileaf collimator and other radiotherapy modalities for routine treatments. For routine plan evaluation, isodose contours measured with film in solid water phantom at prescription depth are overlaid on the prescription image. Preliminary study indicates that the efficiency advantage of the MLC over cerrobend blocks in conformal therapy also holds true for conventional treatments. Conclusion: Our

  16. Collimator Layouts for HL-LHC in the Experimental Insertions

    CERN Document Server

    Bruce, R; Esposito, Luigi Salvatore; Jowett, John; Lechner, Anton; Quaranta, Elena; Redaelli, Stefano; Schaumann, Michaela; Skordis, Eleftherios; Eleanor Steele, G; Garcia Morales, H; Kwee-Hinzmann, Regina

    2015-01-01

    This paper presents the layout of collimators for HL-LHC in the experimental insertions. On the incoming beam, we propose to install additional tertiary collimators to protect potential new aperture bottlenecks in cells 4 and 5, which in addition reduce the experimental background. For the outgoing beam, the layout of the present LHC with three physics debris absorbers gives sufficient protection for highluminosity proton operation. However, collisional processes for heavy ions cause localized beam losses with the potential to quench magnets. To alleviate these losses, an installation of dispersion suppressor collimators is proposed.

  17. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  18. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  19. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  20. Compton backscattered collimated x-ray source

    Science.gov (United States)

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  1. Dynamic and quasi-dynamic multileaf collimation

    International Nuclear Information System (INIS)

    Bortfeld, T.

    1995-01-01

    Several recent investigations deal with the problem of how to produce arbitrary two-dimensional x-ray fluence distributions by means of a multileaf collimator (MLC), an approach, which could be called multileaf modulation. The goal of this approach is to facilitate the delivery of compensated or intensity-modulated fields. The present work gives an overview of these developments. The hardware requirements on MLCs for this special application are specified. Most commercially available MLCs fulfill these requirement sufficiently, however, the MLC control software is generally not capable of controlling an MLC dynamically. There is also the question of how to verify the dynamic movement of the leaves. Some minimum requirements on a control software suitable for application in clinical practice are therefore specified. An alternative, the stepwise or 'quasi-dynamic' movement of the MLC-leaves, is also discussed with respect to practicality. In this case the control is easier, but the demands on the stability of the accelerator for small dose deliveries are higher. Nevertheless, it can be expected that, for reasons of ease of control and verification, the quasi-dynamic technique will become the method of choice in the near future, while the slightly more effective fully dynamic technique will become available later in the future. In any case, multileaf modulation is an interesting and important alternative to the tomotherapy-concept

  2. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator

    International Nuclear Information System (INIS)

    Brenner, David J; Elliston, Carl D; Hall, Eric J; Paganetti, Harald

    2009-01-01

    Proton radiotherapy represents a potential major advance in cancer therapy. Most current proton beams are spread out to cover the tumor using passive scattering and collimation, resulting in an extra whole-body high-energy neutron dose, primarily from proton interactions with the final collimator. There is considerable uncertainty as to the carcinogenic potential of low doses of high-energy neutrons, and thus we investigate whether this neutron dose can be significantly reduced without major modifications to passively scattered proton beam lines. Our goal is to optimize the design features of a patient-specific collimator or pre-collimator/collimator assembly. There are a number of often contradictory design features, in terms of geometry and material, involved in an optimal design. For example, plastic or hybrid plastic/metal collimators have a number of advantages. We quantify these design issues, and investigate the practical balances that can be achieved to significantly reduce the neutron dose without major alterations to the beamline design or function. Given that the majority of proton therapy treatments, at least for the next few years, will use passive scattering techniques, reducing the associated neutron-related risks by simple modifications of the collimator assembly design is a desirable goal.

  3. Mechanical Design for Robustness of the LHC Collimators

    CERN Document Server

    Bertarelli, Alessandro; Assmann, R W; Calatroni, Sergio; Dallocchio, Alessandro; Kurtyka, Tadeusz; Mayer, Manfred; Perret, Roger; Redaelli, Stefano; Robert-Demolaize, Guillaume

    2005-01-01

    The functional specification of the LHC Collimators requires, for the start-up of the machine and the initial luminosity runs (Phase 1), a collimation system with maximum robustness against abnormal beam operating conditions. The most severe cases to be considered in the mechanical design are the asynchronous beam dump at 7 TeV and the 450 GeV injection error. To ensure that the collimator jaws survive such accident scenarios, low-Z materials were chosen, driving the design towards Graphite or Carbon/Carbon composites. Furthermore, in-depth thermo-mechanical simulations, both static and dynamic, were necessary.This paper presents the results of the numerical analyses performed for the 450 GeV accident case, along with the experimental results of the tests conducted on a collimator prototype in Cern TT40 transfer line, impacted by a 450 GeV beam of 3.1·1013

  4. Collimator fast failure losses for various HL-LHC configurations

    CERN Document Server

    Lari, L; Redaelli, S

    2014-01-01

    The upgrade of the Large Hadron Collider (LHC), in terms of beam intensity and energy, implies an increasing risk of severe damage in particular in case of beam losses during fast failures. For this reason, efforts were put in developing simulation tools to allow studies of asynchronous dump accidents, including realistic additional failure scenarios. The scope of these studies is to understand realistic beam loads in different collimators, in order to improve the actual LHC collimation system design, to provide feedbacks on optics design and to elaborate different mitigation actions. Simulations were set up with a modified SixTrack collimation routine able to simulate erroneous firing of a single dump kicker or the simultaneous malfunction of all the 15 kickers. In such a context, results are evaluated from the whole LHC collimation system point of view.

  5. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  6. The LHC Collimator Controls Architecture - Design and beam tests

    CERN Document Server

    Redaelli, S; Gander, P; Jonker, M; Lamont, M; Losito, R; Masi, A; Sobczak, M

    2007-01-01

    The LHC collimation system will require simultaneous management by the LHC control system of more than 500 jaw positioning mechanisms in order to ensure the required beam cleaning and machine protection performance in all machine phases, from injection at 450 GeV to collision at 7 TeV. Each jaw positionis a critical parameter for the machine safety. In this paper, the architecture of the LHC collimator controls is presented. The basic design to face the accurate control of the LHC collimators and the interfaces to the other components of LHC Software Application and control infrastructures are described. The full controls system has been tested in a real accelerator environment in the CERN SPS during beam tests with a full scale collimator prototype. The results and the lessons learned are presented.

  7. Collimation issues for the PEP-II B-factory

    International Nuclear Information System (INIS)

    Sullivan, M.

    1997-12-01

    This note describes how beam collimation affects detector backgrounds at the collision point for the PEP-II B-factory, a joint effort of three laboratories: LBNL, LLNL, and SLAC. Beam collimation controls the transverse size as well as the maximum allowed energy spread of the beam. The location of synchrotron radiation masks is determined by the transverse size of the beam in that the masks must prevent radiation generated by beam particles located at large transverse beam positions from directly striking the detector beam pipe. Collimation of the energy spread of the beam is important in the control of backgrounds produced by beam particles that strike a gas molecule (lost beam particles). The author describes some preliminary information from background studies during the first months of commissioning the high energy ring of the PEP-II B-factory and present some model predictions for synchrotron radiation backgrounds when collimators are not present

  8. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    International Nuclear Information System (INIS)

    Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd

    2012-01-01

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  9. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  10. LHC collimator controls for a safe LHC operation

    International Nuclear Information System (INIS)

    Redaelli, S.; Assmann, R.; Losito, R.; Donze, M.; Masi, A.

    2012-01-01

    The Large Hadron Collider (LHC) collimation system is designed to protect the machine against beam losses and consists of 108 collimators, 100 of which are movable, located along the 27 km long ring and in the transfer lines. The cleaning performance and machine protection role of the system depend critically on accurate jaw positioning. A fully redundant control system has been developed to ensure that the collimators dynamically follow optimum settings in all phases of the LHC operational cycle. Jaw positions and collimator gaps are interlocked against dump limits defined redundantly as functions of time, beam energy and the β functions, which describe the focusing property of the beams. In this paper, the architectural choices that guarantee a safe LHC operation are presented. Hardware and software implementations that ensure the required performance are described. (authors)

  11. Errors generated with the use of rectangular collimation

    International Nuclear Information System (INIS)

    Parks, E.T.

    1991-01-01

    This study was designed to determine whether various techniques for achieving rectangular collimation generate different numbers and types of errors and remakes and to determine whether operator skill level influences errors and remakes. Eighteen students exposed full-mouth series of radiographs on manikins with the use of six techniques. The students were grouped according to skill level. The radiographs were evaluated for errors and remakes resulting from errors in the following categories: cone cutting, vertical angulation, and film placement. Significant differences were found among the techniques in cone cutting errors and remakes, vertical angulation errors and remakes, and total errors and remakes. Operator skill did not appear to influence the number or types of errors or remakes generated. Rectangular collimation techniques produced more errors than did the round collimation techniques. However, only one rectangular collimation technique generated significantly more remakes than the other techniques

  12. Applications of slant collimators to cardiovascular nuclear medicine

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Toshio; Hayashi, Makoto; Kagawa, Masaaki; Kozuka, Takahiro

    1980-01-01

    The RI examination of hearts is attracting increasingly interest as cardiovascular nuclear medicine in recent years. As for the background, there are the development of such radioactive agents with high heart-muscle specificity as 201 TICI and the minicomputer capability of measuring rapid contraction and expansion of hearts. Under the situation, the variety of contrivance in collimators is attempted for higher accuracy in grasping the form and function of hearts. With a 30 deg inclination slant type collimator (made by EDC firm) which became available, its applications as cardiovascular nuclear medicine have been examined in heart-muscle scintigraphy and heart RI angiography. These results are described. In the above connection, a bifocal collimator and a seven pinhole collimator are also explained briefly. (J.P.N.)

  13. COLLIMATORS AND MATERIALS FOR HIGH INTENSITY HEAVY ION SYNCHROTRONS

    CERN Document Server

    Stadlmann, J; Kollmus, H; Spiller, P; Strasik, I; Tahir, N A; Tomut, M; Trautmann, C

    2012-01-01

    The operation of high power high brightness accelerators requires huge efforts for beam cleaning and machine protection. Within the WP 8 (ColMat) of the EU research framework EuCARD[1] we investigate new materials and methods for beam collimation and machine protection. We present an overview of these activities at the GSI Helmholtzzentrum f¨ur Schwerionenforschung, Darmstadt. Simulations of accidental beam losses in LHC and SIS100 have been performed. Scenarios for halo collimation of heavy ions and protons in SIS100 routine operation have been investigated. A prototype of a cryogenic collimator for charge exchange losses during intermediate charge state heavy ion operation in SIS100 has been build and tested with beam. Several candidates of advanced composite materials for collimation system upgrades of present and future high power accelerators have been irradiated and their properties are being characterized. Most deliverables and milestones of the R&D programme were already reached before the end of...

  14. Collimation of particle beams from thick accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [N. Copernicus Astronomical Center, Warszawa (Poland); Wilson, D B [Cambridge Univ. (UK). Inst. of Astronomy

    1981-11-01

    The acceleration and collimation of particle beams in the funnel of thick accretion discs is studied in the approximation that the flow is optically thin. Such flows can be collimated to within approximately 0.1 radians by sufficiently thick discs. The flow cannot convert more than a small fraction of the disc's (super-Eddington) luminosity into the energy flow of a narrow beam without being optically thick.

  15. Imaging electron flow from collimating contacts in graphene

    Science.gov (United States)

    Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2018-04-01

    The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B  =  0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B  =  0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ  =  9° for electron flow from the collimating contact, compared with Δθ  =  54° for the non-collimating case.

  16. Segmented abutting fields irradiation using multileaf collimators

    International Nuclear Information System (INIS)

    Nishimura, Tetsuo

    1998-01-01

    The object of this study is to evaluate the clinical feasibility of segmented abutting fields irradiation (SAFI) using multileaf collimators (MLCs), in which the target volume is divided into several segments to create complex irregular field without use of alloy blocks. A linear accelerator with 26 pairs of roundly ended MLCs of 1 cm in width was tested in this study. In SAFI, radiation leakage occurs at the abutment sites with these MLCs. Film dosimetry was used to determine the optimal length of the MLC overlap to minimize dose profile variation in abutting fields. A mantle field was investigated as a clinical application. Without overlapping the MLCs, radiation leakage at the abutments appeared as a peak of the dose profile. With more overlapping, the profile exhibited a minimized variation with a two-peak pattern. With excessive overlapping, the peak was reversed due to decreased dose. Variation of the profile was minimized with an overlap of 2.0-2.2 mm. The level of variation and the optimal length of overlap were found to be independent of the sites of measurement. Reproducibility was confirmed by repeated measurements. With the mantle field, SAFI using MLCs revealed an profile equivalent to use of alloy blocking fields in all respects other than the variations at the abutting sites. If the length of the MLC abutment overlap differs by site, clinical application of SAFI using MLCs would be quite complicated. The optimal length of the overlap was found to be 2.0 mm and to be independent of the sites of abutment. Therefore, we conclude that SAFI using MLCs of 1 cm in width is feasible for clinical use. (author)

  17. Mini-beam collimator applications at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shenglan, E-mail: sxu@anl.gov [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keefe, Lisa J.; Mulichak, Anne [IMCA CAT, Argonne National Laboratory, Argonne, IL 60439 (United States); Yan Lifen; Alp, Ercan E.; Zhao Jiyong [X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fischetti, Robert F. [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-{mu}m pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio . Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside . This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-{mu}m pinhole has been added to create a 'quad-collimator', resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Moessbauer Microscopic system at sector 3-ID.

  18. Mini-beam collimator applications at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Xu Shenglan; Keefe, Lisa J.; Mulichak, Anne; Yan Lifen; Alp, Ercan E.; Zhao Jiyong; Fischetti, Robert F.

    2011-01-01

    In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-μm pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio . Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside . This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-μm pinhole has been added to create a 'quad-collimator', resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Moessbauer Microscopic system at sector 3-ID.

  19. Development and deployment of the Collimated Directional Radiation Detection System

    Science.gov (United States)

    Guckes, Amber L.; Barzilov, Alexander

    2017-09-01

    The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.

  20. Remodelagem do sistema computacional para dosimetria em radioterapia por nêutrons e fótons baseado em métodos estocásticos - SISCODES

    OpenAIRE

    Bruno Machado Trindade

    2011-01-01

    O presente trabalho apresenta a remodelagem do Sistema Computacional para Dosimetria em Radioterapia por Nêutrons e Fótons Baseado em Métodos Estocásticos . SISCODES. Para isso mostra a proposta inicial e estado anterior do sistema, as modificações e expansões propostas e executadas, e o estado atual de desenvolvimento do sistema. Melhorias futuras são propostas ao final do trabalho. O SISCODES é um sistema que permite a execução de planejamento computacional 3D em radioterapia, através de si...

  1. Management of radioactive wastes from HNMD (Hospital Naval Marcilio Dias) and from IRD (Instituto de Radioprotecao e Dosimetria) due to the accident in Goiania

    International Nuclear Information System (INIS)

    Peres, S.S.; Silva, J.J.G.

    1988-01-01

    A description of the methods and procedures for the management of the radwastes from HNMD (Hospital Naval Marcilio Dias) and from IRD (Instituto de Radioprotecao e Dosimetria) due to the radioactive accident at Goiania City, is presented. Basically the radwastes are consituted by excreta of persons involved in the accident and materials used for medicals care of patients. The method employed for treatment of faeces was its aggregation in lime and cement and for the case of urine, ion exchange resing, was used. Others type of radwastes were compacted or simply conditionned. Many releases to the environment, were possible. (author) [pt

  2. Dosimetria e monitoração de feixes estreitos de raios-X, produzidos por acelerador linear de particulas, para aplicação em radiocirurgia

    OpenAIRE

    Jose Carlos Ferraz de Campos

    1986-01-01

    Resumo: O presente trabalho teve como objetivo principal investigar as características principais de dosimetria e monitoração de feixes finos de raios-x, e sua aplicação a um Acelerador Linear de Partículas de 4 MV, para seu emprego na Radiocirurgia. Com esta finalidade, construiu-se um sistema de colimação adicional, composto de 3 colimadores de Chumbo, que permite, a partir do campo mínimo protocolar produzido pelo acelerador, obter os feixes finos de 6, 10 e 15 mm de diâmetros. Um siste...

  3. Optimization of detector size and collimator for PG-SPECT

    International Nuclear Information System (INIS)

    Ishikawa, M.; Kobayashi, T.; Kanda, K.

    2000-01-01

    A current absorbed dose evaluation method in a Boron Neutron Capture Therapy demands boron reaction rate from a boron concentration of an affected part supposed from a neutron flux and a boron concentration in blood measured by an activation method of a gold wire indirectly and converts it into an absorbed dose. So we devised a PG-SEPCT (Prompt Gamma-ray Single Photon Emission Computed Tomography) system to evaluate an absorbed dose directly by measuring prompt gamma-rays. Ordinary SPECT system uses a big NaI scintillator for detector so that measurement is done in low background gamma-ray environment. However, a conventional detector and collimator system cannot be just applied to PG-SPECT system because a background radiation coexists abundantly (PG-SPECT system is set in irradiation room). Accordingly PG-SPECT system requires a dedicated detector and collimator system. In order to reduce efficiency for background gamma-rays, we arranged detectors in a collimator to shield from background gamma-rays. We examined the most suitable collimator shape. The optimization condition of a dedicated collimator system is as follows: 1) the smallest particle size that can be distinguished is 1 cm. 2) necessary counts at measurement target center is not less than 10,000. (author)

  4. Tissue compensation using dynamic collimation on a linear accelerator

    International Nuclear Information System (INIS)

    Gaballa, Hani E.; Mitev, George; Zwicker, Robert D.; Ting, Joseph Y.; Tercilla, Oscar F.

    1995-01-01

    Purpose: The availability of computer-controlled collimators on some accelerators has led to techniques for dynamic beam modification, mainly to simulate beam wedge filters. This work addresses the practical aspects of dynamic tissue compensation in one dimension using available treatment-planning software. Methods and Materials: Data derived from the treatment-planning program is used with an iterative calculational routine to determine the monitor unit settings needed for the collimator-controlling computer. The method was first tested by simulating a 60 deg. physical wedge. Further studies were carried out on a specially fabricated plastic phantom that modeled the sagittal contour of the upper torso, neck, and lower head regions. Results: Dynamic wedge point doses generated by the planning program agreed within 1% with the values directly measured in a polystyrene phantom. In the patient phantom, dynamic collimation achieved calculated dose uniformity within 0.5% in a reference plane near the phantom midline. A comparison of computer-generated and measured point doses in this case showed agreement within 3%. Conclusions: Dynamic collimation can provide effective compensation for contours that vary primarily along one direction. A conventional treatment-planning program can be used to plan dynamic collimation and deliver a prescribed dose with reliable accuracy

  5. Optimization of planar self-collimating photonic crystals.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier J

    2013-07-01

    Self-collimation in photonic crystals has received a lot of attention in the literature, partly due to recent interest in silicon photonics, yet no performance metrics have been proposed. This paper proposes a figure of merit (FOM) for self-collimation and outlines a methodical approach for calculating it. Performance metrics include bandwidth, angular acceptance, strength, and an overall FOM. Two key contributions of this work include the performance metrics and identifying that the optimum frequency for self-collimation is not at the inflection point. The FOM is used to optimize a planar photonic crystal composed of a square array of cylinders. Conclusions are drawn about how the refractive indices and fill fraction of the lattice impact each of the performance metrics. The optimization is demonstrated by simulating two spatially variant self-collimating photonic crystals, where one has a high FOM and the other has a low FOM. This work gives optical designers tremendous insight into how to design and optimize robust self-collimating photonic crystals, which promises many applications in silicon photonics and integrated optics.

  6. Plasma tubes becoming collimated as a result of magnetohydrodynamic pumping

    International Nuclear Information System (INIS)

    Yun, Gunsu S.; Bellan, Paul M.

    2010-01-01

    Collimated magnetized plasma structures are commonly observed on galactic, stellar, and laboratory scales. The Caltech plasma gun produces magnetically driven plasma jets bearing a striking resemblance to astrophysical jets and solar coronal loops by imposing boundary conditions analogous to those plasmas. This paper presents experimental observations of gun-produced plasma jets that support a previously proposed magnetohydrodynamic (MHD) pumping model [P. M. Bellan, Phys. Plasmas 10, 1999 (2003)] as a universal collimation mechanism. For any initially flared, magnetized plasma tube with a finite axial current, the model predicts (i) magnetic pumping of plasma particles from a constricted region into a bulged region and (ii) tube collimation if the flow slows down at the bulged region leading to accumulation of mass and thus concentrating the azimuthal magnetic flux frozen in the mass flow (i.e., increasing the pinch force). Time- and space-resolved spectroscopic measurements of gun-produced plasmas have confirmed the highly dynamic nature of the process leading to a collimated state, namely, (i) suprathermal Alfvenic flow (30-50 km/s), (ii) large density amplification from ∼10 17 to ∼10 22 m -3 in an Alfvenic time scale (5-10 μs), and (iii) flow slowing down and mass accumulation at the flow front, the place where the tube collimation occurs according to high-speed camera imaging. These observations are consistent with the predictions of the MHD pumping model, and offer valuable insight into the formation mechanism of laboratory, solar, and astrophysical plasma structures.

  7. An improved scattering routine for collimation tracking studies at LHC

    CERN Document Server

    Tambasco, Claudia; Salvachua Ferrando, Maria Belen; Cavoto, Gianluca

    The present Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Collimation project. The LHC accelerates proton beams up to 7 TeV colliding in the experiment detectors installed in four points of the accelerator ring. The LHC is built to store a energy of 360MJ for each beam. The energy deposition induced by local beam losses could quench the superconducting magnets located around the accelerator beam pipes. To prevent and keep under control dangerous beam losses, an efficient collimation system is required. In addition, the achievable LHC beam intensity is related to the beam loss rate and, consequently, to the cleaning efficiency of the collimation system. Collimation studies at LHC are carried out also by means of simulations by using SixTrack, a dedicated simulation tool that tracks a large numbers of particles for many turns around the ring. The SixTrack code includes a scattering routine to model proton interactions with the material of the collimators j...

  8. Collimated fast electron beam generation in critical density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Iwawaki, T., E-mail: iwawaki-t@eie.eng.osaka-u.ac.jp; Habara, H.; Morita, K.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Baton, S.; Fuchs, J.; Chen, S. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); Nakatsutsumi, M. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); European X-Ray Free-Electron Laser Facility (XFEL) GmbH (Germany); Rousseaux, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Filippi, F. [La SAPIENZA, University of Rome, Dip. SBAI, 00161 Rome (Italy); Nazarov, W. [School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland (United Kingdom)

    2014-11-15

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.

  9. Status report of the baseline collimation system of CLIC. Part I

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  10. Status report of the baseline collimation system of CLIC. Part II

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  11. Optical effects on neutron guide tubes produced by collimation

    International Nuclear Information System (INIS)

    Margaca, F.M.A.; Falcao, A.N.; Sequeira, A.D.; Salgado, J.F.

    1991-01-01

    The collimation of a neutron beam carried by a guide tube is shown to procedure extensive regions of umbra and penumbra on the inner walls of the guide tube whenever a diaphragm is used at the exit. The region of umbra renders useless a certain length of the guide-tube end while in the region of penumbra the guide exhibits a faint luminosity. These optical effects are particularly important for stringent collimation. It is shown that these effects render impossible the implementation of the 'equal-flight-paths' design currently used for small-angle neutron scattering instruments, which use guide segments and a diaphragm in the collimation assembly. As a consequence, these operate most of the time in strongly unmatched configurations. It is shown that the optimized design formerly proposed by the authors, in which, whenever possible, the full luminous source area is used, not only avoids the optical effects mentioned but also guarantees the highest detector count rate. (orig.)

  12. Self-collimation-based photonic crystal notch filters

    International Nuclear Information System (INIS)

    Lee, Sun-Goo; Kim, Seong-Han; Kee, Chul-Sik; Kim, Kap-Joong

    2017-01-01

    We introduce a design concept of an optical notch filter (NF) utilizing two perfectly reflecting mirrors and a beam splitter. Based on the new design concept, a photonic crystal (PC)-NF based on the self-collimation phenomenon in a two-dimensional PC is proposed and studied through finite-difference time-domain simulations and experimental measurements in a microwave region. The transmission properties of the self-collimation-based PC-NF were demonstrated to be controlled by adjusting the values of parameters such as the radius of rods in the line-defect beam splitter, distance between the two perfectly reflecting mirrors, and radius of rods on the outermost surface of the perfectly reflecting mirrors. Our results indicate that the proposed design concept could provide a new approach to manipulate light propagation, and the PC-NF could increase the applicability of the self-collimation phenomenon in a PC. (paper)

  13. Reliability review of the LHC collimators low level control system

    International Nuclear Information System (INIS)

    Masi, A.; Donze, M.; Losito, R.

    2011-01-01

    The LHC collimators' low level control system is responsible for the positioning, with an accuracy of a few um, of more than 500 motor axes located around the entire LHC tunnel and synchronized at us level,The collimators' axes position is verified in Real Time, monitoring at 100 Hz more than 700 LVDT positioning sensors. Apart from the challenging requirements of timing and positioning accuracy, the system is characterized by a high level of reliability since the collimators have the crucial function of machine protection. In this paper we focus on the architectural and technical choices adopted to guarantee the level of reliability required by the application. We also present the tools and solutions developed to manage this huge control system making the support easier and faster for its operation. (authors)

  14. Novel Materials for Collimators at LHC and its Upgrades

    CERN Document Server

    AUTHOR|(CDS)2108536; Dallocchio, Alessandro; Garlasche, Marco; Gentini, Luca; Gradassi, Paolo; Guinchard, Michael; Redaelli, Stefano; Rossi, Adriana; Sacristan De Frutos, Oscar; Carra, Federico; Quaranta, Elena

    2015-01-01

    Collimators for last-generation particle accelerators like the LHC, must be designed to withstand the close interaction with intense and energetic particle beams, safely operating over an extended range of temperatures in harsh environments, while minimizing the perturbing effects, such as instabilities induced by RF impedance, on the circulating beam. The choice of materials for collimator active components is of paramount importance to meet these requirements, which are to become even more demanding with the increase of machine performances expected in future upgrades, such as the High Luminosity LHC (HL-LHC). Consequently, a farreaching R&D program has been launched to develop novel materials with excellent thermal shock resistance and high thermal and electrical conductivity, replacing or complementing materials used for present collimators. Molybdenum Carbide - Graphite and Copper-Diamond composites have been so far identified as the most promising materials. The manufacturing methods, properties and...

  15. Advanced materials for future Phase II LHC collimators

    CERN Document Server

    Dallocchio, A; Arnau Izquierdo, G; Artoos, K

    2009-01-01

    Phase I collimators, equipped with Carbon-Carbon jaws, effectively met specifications for the early phase of LHC operation. However, the choice of carbon-based materials is expected to limit the nominal beam intensity mainly because of the high RF impedance and limited efficiency of the collimators. Moreover, C/C may be degraded by high radiation doses. To overcome these limitations, new Phase II secondary collimators will complement the existing system. Their extremely challenging requirements impose a thorough material investigation effort aiming at identifying novel materials combining very diverse properties. Relevant figures of merit have been identified to classify materials: Metal-diamonds composites look a promising choice as they combine good thermal, structural and stability properties. Molybdenum is interesting for its good thermal stability. Ceramics with non-conventional RF performances are also being evaluated. The challenges posed by the development and industrialization of these materials are ...

  16. Modeling skin collimation using the electron pencil beam redefinition algorithm

    International Nuclear Information System (INIS)

    Chi, Pai-Chun M.; Hogstrom, Kenneth R.; Starkschall, George; Antolak, John A.; Boyd, Robert A.

    2005-01-01

    Skin collimation is an important tool for electron beam therapy that is used to minimize the penumbra when treating near critical structures, at extended treatment distances, with bolus, or using arc therapy. It is usually made of lead or lead alloy material that conforms to and is placed on patient surface. Presently, commercially available treatment-planning systems lack the ability to model skin collimation and to accurately calculate dose in its presence. The purpose of the present work was to evaluate the use of the pencil beam redefinition algorithm (PBRA) in calculating dose in the presence of skin collimation. Skin collimation was incorporated into the PBRA by terminating the transport of electrons once they enter the skin collimator. Both fixed- and arced-beam dose calculations for arced-beam geometries were evaluated by comparing them with measured dose distributions for 10- and 15-MeV beams. Fixed-beam dose distributions were measured in water at 88-cm source-to-surface distance with an air gap of 32 cm. The 6x20-cm 2 field (dimensions projected to isocenter) had a 10-mm thick lead collimator placed on the surface of the water with its edge 5 cm inside the field's edge located at +10 cm. Arced-beam dose distributions were measured in a 13.5-cm radius polystyrene circular phantom. The beam was arced 90 deg. (-45 deg. to +45 deg. ), and 10-mm thick lead collimation was placed at ±30 deg. . For the fixed beam at 10 MeV, the PBRA-calculated dose agreed with measured dose to within 2.0-mm distance to agreement (DTA) in the regions of high-dose gradient and 2.0% in regions of low dose gradient. At 15 MeV, the PBRA agreed to within a 2.0-mm DTA in the regions of high-dose gradient; however, the PBRA underestimated the dose by as much as 5.3% over small regions at depths less than 2 cm because it did not model electrons scattered from the edge of the skin collimation. For arced beams at 10 MeV, the agreement was 1-mm DTA in the high-dose gradient regions, and 2

  17. A circular multifocal collimator for 3D SPECT imaging

    International Nuclear Information System (INIS)

    Guillemaud, R.; Grangeat, P.

    1993-01-01

    In order to improve sensitivity of 3D Single Photon Emission Tomography (SPECT) image, a cone-beam collimator can be used. A new circular multifocal collimator is proposed. The multiple focal points are distributed on a transaxial circle which is the trajectory of the focal points during the circular acquisition. This distribution provides a strong focusing at the center of the detector like a cone-beam collimator, with a good sensitivity, and a weak transaxial focusing at the periphery. A solution for an analytical multifocal reconstruction algorithm has been derived. Grangeat algorithm is proposed to use for this purpose in order to reconstruct with a good sensitivity the region of interest. (R.P.) 3 refs

  18. Updated Simulation Studies of Damage Limit of LHC Tertiary Collimators

    CERN Document Server

    AUTHOR|(CDS)2085459; Bertarelli, Alessandro; Bruce, Roderik; Carra, Federico; Cerutti, Francesco; Gradassi, Paolo; Lechner, Anton; Redaelli, Stefano; Skordis, Eleftherios

    2015-01-01

    The tertiary collimators (TCTs) in the LHC, installed in front of the experiments, in standard operation intercept fractions of 10−3 halo particles. However, they risk to be hit by high-intensity primary beams in case of asynchronous beam dump. TCT damage thresholds were initially inferred from results of destructive tests on a TCT jaw, supported by numerical simulations, assuming simplified impact scenarios with one single bunch hitting the jaw with a given impact parameter. In this paper, more realistic failure conditions, including a train of bunches and taking into account the full collimation hierarchy, are used to derive updated damage limits. The results are used to update the margins in the collimation hierarchy and could thus potentially have an influence on the LHC performance.

  19. Impedance Studies for the Phase 2 LHC Collimators

    CERN Document Server

    Métral, E; Grudiev, A; Kroyer, T; Zotter, B; Roncarolo, F; Salvant, B

    2010-01-01

    The LHC phase 2 collimation project aims at gaining a factor ten in cleaning efficiency, robustness and impedance reduction. From the impedance point of view, several ideas emerged during the last year, such as using dielectric collimators, slots or rods in copper plates, or Litz wires. The purpose of this paper is to discuss the possible choices, showing analytical estimates, electromagnetic simulations performed using Maxwell, HFSS and GdFidL, and preliminary bench measurements. The corresponding complex tune shifts are computed for the different cases and compared on the stability diagram defined by the settings of the Landau octupoles available in the LHC at 7 TeV.

  20. A fast algorithm for computer aided collimation gamma camera (CACAO)

    Science.gov (United States)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.

    2000-08-01

    The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.

  1. Interactions of collimation, sampling and filtering on spect spatial resolution

    International Nuclear Information System (INIS)

    Tsui, B.M.W.; Jaszczak, R.J.

    1984-01-01

    The major factors which affect the spatial resolution of single-photon emission computer tomography (SPECT) include collimation, sampling and filtering. A theoretical formulation is presented to describe the relationship between these factors and their effects on the projection data. Numerical calculations were made using commercially available SPECT systems and imaging parameters. The results provide an important guide for proper selection of the collimator-detector design, the imaging and the reconstruction parameters to avoid unnecessary spatial resolution degradation and aliasing artifacts in the reconstructed image. In addition, the understanding will help in the fair evaluation of different SPECT systems under specific imaging conditions

  2. Apparatus and Experimental Procedures to Test Crystal Collimation

    CERN Document Server

    Montesano, S

    2012-01-01

    UA9 is an experimental setup operated in the CERN-SPS in view of investigating the feasibility of halo collimation assisted by bent crystals. The test collimation system is composed of one crystal acting as primary halo deflector in the horizontal plane and an absorber. Different crystals are tested in turn using two-arm goniometers with an angular reproducibility of better than 10 microrad. The performance of the system is assessed through the study of the secondary and tertiary halo in critical areas, by using standard machine instrumentation and few customized equipments. The alignment of the crystal is verified by measuring the loss rate close to the crystal position. The collimation efficiency is computed by intercepting the deflected halo with a massive collimator or with an imaging device installed into a Roman Pot. The leakage of the system is evaluated in the dispersion suppressor by means of movable aperture restrictions. In this contribution the setup and the experimental methods in use are revisit...

  3. The practical Pomeron for high energy proton collimation

    Science.gov (United States)

    Appleby, R. B.; Barlow, R. J.; Molson, J. G.; Serluca, M.; Toader, A.

    2016-10-01

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC.

  4. The practical Pomeron for high energy proton collimation

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, R.B. [University of Manchester, The Cockcroft Institute, Manchester (United Kingdom); Barlow, R.J.; Toader, A. [The University of Huddersfield, Huddersfield (United Kingdom); Molson, J.G. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Serluca, M. [CERN, Geneva (Switzerland)

    2016-10-15

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC. (orig.)

  5. MD1878: Operation with primary collimators at tighter settings

    CERN Document Server

    AUTHOR|(CDS)2078850; Amorim, David; Biancacci, Nicolo; Bruce, Roderik; Buffat, Xavier; Carver, Lee Robert; Fiascaris, Maria; Mereghetti, Alessio; Redaelli, Stefano; Rossi, Roberto; Salvachua Ferrando, Belen Maria; Soderen, Martin; Trad, Georges; CERN. Geneva. ATS Department

    2017-01-01

    Primary (TCP) collimators of the betatron cleaning insertion determine the betatron cut of the LHC beam. During the 2016 they were set at 5.5 nominal beam sigmas at 6.5 TeV (i.e. by using a normalized emittance ε* = 3:5 μm is used). Reducing their settings is a possible way to push the ß* at the LHC, which depends on the collimation hierarchy. This study aims at understanding possible limitations of operating the LHC with tighter settings of the primary collimators. This is a crucial input to the choice of operational configuration in terms of ß* at the LHC as well as at the HL-LHC. This study follows a successful MD done in block 3 to understand limitations from TCP impedance [1]. The outcome of this MD can also have an impact for the design of the FCC collimation system, which is currently based on the present TCP gaps. Studies of beam stability as a function of octupole current, transverse feedback gain (ADT) and transverse separation at the IPs were also carried out.

  6. Collimator design for neutron imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Sommargren, G.E.; Lerche, R.A.

    1981-01-01

    Several pinhole collimator geometries for use in neutron imaging experiments have been modeled and compared. Point spread functions are shown for a cylinder, hyperbola, intersecting cones, and a five-zone approximation to the intersecting cones. Of the geometries studied, the intersecting cones appear the most promising with respect to neutron efficiency, field of view, and isoplanatism

  7. Implementation of intensity modulation with dynamic multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J W; Yu, C; Jaffray, D [William Beaumont Hospital, Royal Oak, MI (United States)

    1995-12-01

    The computer-controlled multileaf collimator (MLC) marks one of the most important advances in radiation therapy. The device efficiently replaces manual blocking to shape fields and can be used to modulate beam intensity. The results of a research programme at William Beaumont Hospital, aimed at bringing dynamic intensity modulation into clinical use, are discussed.

  8. Tandem collimators for the JET tangential gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Soare, Sorin; Balshaw, Nick; Blanchard, Patrick; Craciunescu, Teddy; Croft, David; Curuia, Marian; Edlington, Trevor; Kiptily, Vasily; Murari, Andrea; Prior, Phil; Sanders, Steven; Syme, Brian; Zoita, Vasile

    2011-01-01

    The tangential gamma-ray spectrometer (TGRS) of the JET tokamak fusion facility is an important diagnostics for investigating the fast particle evolution. A well defined field of view for the TGRS diagnostics is essential for its proper operation and this is to be determined by a rather complex system of collimators and shields both for the neutron and gamma radiations. A conceptual design for this system has been carried out with the main design target set to maximize the signal-to-background ratio at the spectrometer detector, the ratio being defined in terms of the plasma emitted gamma radiation and the gamma-ray background. As a first phase of the TGRS diagnostics upgrade a set of two tandem collimators has been designed with the aim of determining a quasi-tangential field of view through JET tokamak plasmas. A modular design of the tandem system has been developed in order to allow for the construction of different configurations for deuterium and deuterium-tritium discharges. The internal structure of the collimators consists of nuclear grade lead and high density polyethylene slabs arranged in an optimized pattern. The performance of a simplified geometry of the tandem collimator configuration has been evaluated by neutron and photon transport calculations and the numerical results show that the design parameters can be attained.

  9. Improved self-reliance shearing interferometric technique for collimation testing

    Science.gov (United States)

    Zhao, Mingshan; Li, Guohua; Wang, Zhaobing; Jing, Yaling; Li, Yi

    1995-06-01

    Self-reference single plate shearing interferometric technique used for collimation testing of light beams are briefly reviewed. Two improved configurations of this self-reference interferometry with an inclined screen and matched half-field interferograms are described in detail. Sensitivity of these configurations is analyzed and compared with that of the existing ones.

  10. Laser welding of a beryllium/tantalum collimator

    International Nuclear Information System (INIS)

    Lingenfelter, A.C.; Anglin, C.D.

    1985-01-01

    This report describes the methods utilized in the fabrication of a collimator from 0.001 inch thick beryllium and tantalum foil. The laser welding process proved to be an acceptable method for joining the beryllium in a standing edge joint configuration

  11. Improvements in or relating to neutron beam collimators

    International Nuclear Information System (INIS)

    Lundberg, D.A.

    1975-01-01

    Reference is made to collimators suitable for use in neutron therapy equipment. The design of such collimators presents considerable difficulties, since neutrons are very penetrating. Scattering processes are also much more significant with neutrons than with x-rays or γ-rays. A further difficulty is that neutron activation causes some materials to become radioactive, which may present a hazard to users of the equipment. A novel form of collimator is described that overcomes these disadvantages to some extent. It comprises a body containing W for moderating the neutrons by inelastic collision processes, a slow neutron absorbing material intimately mixed with the W for reducing collisions between slow neutrons and the W atoms, a hydrogenous material for further moderating the neutrons to thermal energies by elastic collision processes with H atoms and for absorbing the thermal neutrons by capture processes, and a material having a density of at least 10g/cm 3 for attenuating γ-radiation produced in the hydrogenous material during neutron capture processes. The collimator is of sufficient thickness to be substantially opaque to neutrons of predetermined energy. The slow neutron absorbing material may be B, the hydrogenous material may be polyethylene, and the high density material may be Pb. Alternative methods of using and packing the various materials are described. (U.K.)

  12. Crystal Collimation Cleaning Measurements with Proton Beams in LHC

    CERN Document Server

    Rossi, Roberto; Andreassen, Odd Oyvind; Butcher, Mark; Dionisio Barreto, Cristovao Andre; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Lamas Garcia, Inigo; Redaelli, Stefano; Scandale, Walter; Serrano Galvez, Pablo; Rijllart, Adriaan; Valentino, Gianluca; CERN. Geneva. ATS Department

    2016-01-01

    During this MD, performed on July 29th, 2016, bent silicon crystal were tested with proton beams for a possible usage of crystal-assisted collimation. Tests were performed at both injection energy and flat top using horizontal and vertical crystal. Loss maps with crystals at 6.5 TeV were measured.

  13. DOUBLE-WALL COLLIMATOR DESIGN OF THE SNS PROJECT

    International Nuclear Information System (INIS)

    SIMOS, N.; LUDEWIG, H.; CATALAN-LASHERAS, N.; CRIVELLO, S.

    2001-01-01

    The collimator absorber array of the Spallation Neutron Source (SNS) project is responsible for stopping the 1.0 GeV protons that are in the halo of the beam. It is estimated that 0.1% of the 2 MW beam will be intercepted by the adopted collimating scheme implemented at various sections of the beam transport and accumulation. This paper summarizes the conceptual design of the collimator absorber as well as the supporting detailed analysis that were performed and guided the design process. Key requirement in the design process is the need for the collimator beam tube to minimize beam impedance while closely following its beta function. Due to lack of available experimental data, the long-term behavior of irradiated materials in an environment where they interface with coolant flow becomes an issue. Uncertainties in the long-term behavior prompted a special double-wall design that will enable not only beam halo interception but also the efficient transfer of deposited energy both under normal and off-normal conditions to the coolant flow. The thermo-mechanical response of the double wall beam tube and of a particle bed surrounding it are discussed in detail in the paper

  14. A high-orbit collimating infrared earth simulator

    International Nuclear Information System (INIS)

    Zhang Guoyu; Jiang Huilin; Fang Yang; Yu Huadong; Xu Xiping; Wang, Lingyun; Liu Xuli; Huang Lan; Yue Shixin; Peng Hui

    2007-01-01

    The earth simulator is the most important testing equipment ground-based for the infrared earth sensor, and it is also a key component in the satellite controlling system. for three orbit heights 18000Km, 35786Km and 42000Km, in this paper we adopt a project of collimation and replaceable earth diaphragm and develop a high orbit collimation earth simulator. This simulator can afford three angles 15.19 0 , 17.46 0 and 30.42 0 , resulting simulating the earth on the ground which can be seen in out space by the satellite. In this paper we introduce the components, integer structure, and the earth's field angles testing method of the earth simulator in detail. Germanium collimation lens is the most important component in the earth simulator. According to the optical configuration parameter of Germanium collimation lens, we find the location and size of the earth diaphragm and the hot earth by theoretical analyses and optics calculation, which offer foundation of design in the study of the earth simulator. The earth angle is the index to scale the precision of earth simulator. We test the three angles by experiment and the results indicate that three angles errors are all less than ±0.05 0

  15. Geometric beam coupling impedance of LHC secondary collimators

    Science.gov (United States)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  16. EPICS Controlled Collimator for Controlling Beam Sizes in HIPPO

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, Arthur Soriano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-03

    Controlling the beam spot size and shape in a diffraction experiment determines the probed sample volume. The HIPPO - High-Pressure-Preferred Orientation– neutron time-offlight diffractometer is located at the Lujan Neutron Scattering Center in Los Alamos National Laboratories. HIPPO characterizes microstructural parameters, such as phase composition, strains, grain size, or texture, of bulk (cm-sized) samples. In the current setup, the beam spot has a 10 mm diameter. Using a collimator, consisting of two pairs of neutron absorbing boron-nitride slabs, horizontal and vertical dimensions of a rectangular beam spot can be defined. Using the HIPPO robotic sample changer for sample motion, the collimator would enable scanning of e.g. cylindrical samples along the cylinder axis by probing slices of such samples. The project presented here describes implementation of such a collimator, in particular the motion control software. We utilized the EPICS (Experimental Physics Interface and Control System) software interface to integrate the collimator control into the HIPPO instrument control system. Using EPICS, commands are sent to commercial stepper motors that move the beam windows.

  17. Execution of mantle field with multileaf collimator: A simple approach

    Directory of Open Access Journals (Sweden)

    Prabhakar Ramachandran

    2008-01-01

    Full Text Available Background: Until very recently mantle field radiotherapy remained the gold standard for the treatment of favorable early-stage Hodgkin′s lymphoma. The classic mantle includes all the major lymph nodes above the diaphragm and extends from the inferior portion of the mandible to the level of the insertion of the diaphragm. Aims: To describe a simple technique that has been devised to treat the mantle field with the help of multileaf collimator and using computed tomography (CT-based treatment planning. Materials and Methods: CT scan was performed with the patient in the supine position and the datasets were transferred to the Eclipse™ treatment planning system. Elekta Precise™ linear accelerator equipped with 40 pairs of multileaf collimator (MLC was used for the execution of the mantle field. The MLC′s shapes were designed to take the shape of the conventional customized blocks used for treatment of mantle field. The anterior mantle field was divided into three separate MLC segments with the collimator kept at 0°. The first MLC segment was shaped to cover the neck, clavicular regions, and mediastinum. The second and the third MLC segments covered the right and left axilla, respectively. The posterior fields were opposed to the anterior subfields in a similar fashion. The dose was prescribed at the midplane, using reference points. Results and Conclusion: The technique described in this study is very simple, easy to implement, and avoids unnecessary delay in the execution of the mantle field. The mantle field can be easily shaped with the multileaf collimators, without any collimator rotation.

  18. Vectorial analysis of the collimated beam of a small Gaussian source

    Science.gov (United States)

    Cao, Changqing; Wang, Ting; Zeng, Xiaodong; Feng, Zhejun; Zhang, Wenrui; Zhang, Xiaobing; Chen, Kun

    2018-03-01

    A vectorial analysis method to describe the collimated beam is proposed, the formulas of the intensity distribution and divergence angles represented in terms of Bessel functions are derived, and the propagation properties such as the vectorial structure of the collimated field and the shape of the beam spot are discussed in detail. Omitting the vectorial nature of the collimated beam can cause an error of 7.6% in determining the intensity distribution on the optical axis of the collimated beam.

  19. Evaluation of dual γ-ray imager with active collimator using various types of scintillators.

    Science.gov (United States)

    Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung

    2011-10-01

    The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.

    Science.gov (United States)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2017-05-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.

  1. Evaluation of parathyroid imaging methods with 99mTc-MIBI. The comparison of planar images obtained using a pinhole collimator and a parallel-hole collimator

    International Nuclear Information System (INIS)

    Fujii, Hirofumi; Iwasaki, Ryuichiro; Hashimoto, Jun; Nakamura, Kayoko; Kunieda, Etsuo; Sanmiya, Toshikazu; Kubo, Atsushi; Ogawa, Koichi; Inagaki, Kazutoshi

    1999-01-01

    Parathyroid scintigraphy with 99m Tc-MIBI was performed using two kinds of collimators, namely, a pinhole one and a parallel-hole one, to evaluate which one was more suitable for the detection of hyperfunctioning parathyroid lesions. In the studies using 99m Tc source, the pinhole collimator showed better efficiency and spatial resolution in the distance where the parathyroid scan are actually performed. In the phantom study, the nodular activities modeling parathyroid lesions were visualized better on the images obtained using the pinhole collimator. In clinical studies for 30 patients suspicious of hyperparathyroidism, hyperfunctioning parathyroid nodules were better detected when the pinhole collimator was used. In conclusion, the pinhole collimator was thought to be more suitable for parathyroid scintigraphy with 99m Tc-MIBI than the parallel-hole collimator. (author)

  2. Evaluation of parathyroid imaging methods with {sup 99m}Tc-MIBI. The comparison of planar images obtained using a pinhole collimator and a parallel-hole collimator

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hirofumi; Iwasaki, Ryuichiro; Hashimoto, Jun; Nakamura, Kayoko; Kunieda, Etsuo; Sanmiya, Toshikazu; Kubo, Atsushi [Keio Univ., Tokyo (Japan). School of Medicine; Ogawa, Koichi; Inagaki, Kazutoshi

    1999-07-01

    Parathyroid scintigraphy with {sup 99m}Tc-MIBI was performed using two kinds of collimators, namely, a pinhole one and a parallel-hole one, to evaluate which one was more suitable for the detection of hyperfunctioning parathyroid lesions. In the studies using {sup 99m}Tc source, the pinhole collimator showed better efficiency and spatial resolution in the distance where the parathyroid scan are actually performed. In the phantom study, the nodular activities modeling parathyroid lesions were visualized better on the images obtained using the pinhole collimator. In clinical studies for 30 patients suspicious of hyperparathyroidism, hyperfunctioning parathyroid nodules were better detected when the pinhole collimator was used. In conclusion, the pinhole collimator was thought to be more suitable for parathyroid scintigraphy with {sup 99m}Tc-MIBI than the parallel-hole collimator. (author)

  3. Choreographing Couch and Collimator in Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Yang Yingli; Zhang Pengpeng; Happersett, Laura; Xiong Jianping; Yang Jie; Chan, Maria; Beal, Kathryn; Mageras, Gig; Hunt, Margie

    2011-01-01

    Purpose: To design and optimize trajectory-based, noncoplanar subarcs for volumetric modulated arc therapy (VMAT) deliverable on both Varian TrueBEAM system and traditional accelerators; and to investigate their potential advantages for treating central nervous system (CNS) tumors. Methods and Materials: To guide the computerized selection of beam trajectories consisting of simultaneous couch, gantry, and collimator motion, a score function was implemented to estimate the geometric overlap between targets and organs at risk for each couch/gantry angle combination. An initial set of beam orientations is obtained as a function of couch and gantry angle, according to a minimum search of the score function excluding zones of collision. This set is grouped into multiple continuous and extended subarcs subject to mechanical limitations using a hierarchical clustering algorithm. After determination of couch/gantry trajectories, a principal component analysis finds the collimator angle at each beam orientation that minimizes residual target-organ at risk overlaps. An in-house VMAT optimization algorithm determines the optimal multileaf collimator position and monitor units for control points within each subarc. A retrospective study of 10 CNS patients compares the proposed method of VMAT trajectory with dynamic gantry, leaves, couch, and collimator motion (Tra-VMAT); a standard noncoplanar VMAT with no couch/collimator motion within subarcs (Std-VMAT); and noncoplanar intensity-modulated radiotherapy (IMRT) plans that were clinically used. Results: Tra-VMAT provided improved target dose conformality and lowered maximum dose to brainstem, optic nerves, and chiasm by 7.7%, 1.1%, 2.3%, and 1.7%, respectively, compared with Std-VMAT. Tra-VMAT provided higher planning target volume minimum dose and reduced maximum dose to chiasm, optic nerves, and cochlea by 6.2%, 1.3%, 6.3%, and 8.4%, respectively, and reduced cochlea mean dose by 8.7%, compared with IMRT. Tra-VMAT averaged

  4. Dosimetry with slow films in Interventional Radiology; Dosimetria con peliculas lentas en Radiologia Intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Ten, J.I.; Guibelalde, E.; Fernandez, J.M.; Canevaro, L.; Ramirez, R.; Vano, E. [Grupo de Fisica Medica. Departamento de Radiologia. Facultad de Medicina. Universidad Complutense de Madrid. Martin Lagos s/n CP 28040, Madrid (Spain)

    1998-12-31

    In this work it is presented a method for evaluation of patients doses in Interventional Radiology (RI). The method proposed in this work allows the simultaneous valoration of the product dose-area (PDA), the dose in the patient skin (DES) and the distribution of the irradiated fields, all of they together with their corresponding dose levels. The latter sometimes can be essential since the possible damages in skin depend not only of the doses, but also the irradiated area. The method has been resulted adequate for to evaluate doses to patients in Interventional Radiology procedures. It was possible to apply it as a routine form seeing that its not interfering significantly in the normal development of the medical intervention. The fundamental advantages of this dosimetric method in relation with the unique PDA measure or with the utilization of TLD is that it provide information about the total irradiated area, distribution and length of fields, collimation and wedge used besides that allow to determine the most irradiated zone. The visualization of the irradiated regions and the length fields utilized suggest the possibility to optimize the realization protocols of the interventional procedure in the cases in which it is considered that the doses have been very elevated. (Author)

  5. Mechanical Engineering and Design of the LHC Phase II Collimators

    CERN Document Server

    Bertarelli, A; Gentini, L; Mariani, N; Perret, R; Timmins, M A

    2010-01-01

    Phase II collimators will complement the existing system to improve the expected high RF impedance and limited efficiency of Phase I jaws. An international collaborative effort has been launched to identify novel advanced materials responding to the very challenging requirements of the new collimators. Complex numerical calculations simulating extreme conditions and experimental tests are in progress. In parallel, an innovative modular design concept of the jaw assembly is being developed to allow fitting in alternative materials, minimizing the thermally induced deformations, withstanding accidents and accepting high radiation doses. Phase II jaw assembly is made up of a molybdenum back-stiffener ensuring high geometrical stability and a modular jaw split in threes sectors. Each sector is equipped with a high-efficiency independent cooling circuit. Beam position monitors (BPM) are embedded in the jaws to fasten setup time and improve beam monitoring. An adjustment system will permit to fine-tune the jaw flat...

  6. Simulator for beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  7. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  8. Radiation collimator for use with high energy radiation beams

    International Nuclear Information System (INIS)

    Malak, S.P.

    1978-01-01

    A collimator is described for use with a beam of radiation, and in particular, for use in controlling the cross-sectional size and shape of the radiation beam and intercepting undesired off-focus radiation in an x-ray apparatus. The collimator is positioned adjacent to the source of radiation and embodies a plurality longitudinally extending leaves pivotally mounted on and between two supports, the leaves move about their pivots to close overlapping relation to define a hollow cone. The cone defines an aperture at its narrow end which can be adjusted in size and shape by rotation of the two supports which are adaptable to being moved one relative to the other, to cause an expansion or contraction of the hollow cone and correspondingly an increase or decrease of the cross-sectional size and/or shape of the radiation beam passing through the aperture

  9. Collimation in the Transfer Lines to the LHC

    CERN Document Server

    Burkhardt, Helmut; Kadi, Yacine; Kain, Verena; Risselada, Thys; Weterings, Wim

    2005-01-01

    Injection intensities for the LHC are over an order of magnitude above damage level. The TI 2 and TI 8 transfer lines between the SPS and LHC are each about 2.5 km long and comprise many active elements running in pulsed mode. The collimation system in the transfer lines is designed to dilute the beam energy sufficiently in case of accidental beam loss or mis-steered beam. A system using three collimator families spaced by 60 degrees in phase advance, both in the horizontal and the vertical plane has been chosen. We discuss the reasons for this choice, the layout and, the expected performance of the system in terms of maximum amplitudes and energy deposition.

  10. Polarimetric evidence against a collimated outflow in the Horsehead Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; Gledhill, T M; Scarrott, S M

    1985-08-01

    Imaging polarimetry of the Horsehead Nebula in Orion shows that the 'jaw' region of the nebula, which includes a proposed collimated flow from a highly reddened star B33-6, is illuminated by a distant source, sigma Orionis, and not by B33-6. The polarization pattern also shows features which suggest the presence of magnetically aligned dust grains in the surrounding medium. The possible structure of the aligning field is discussed.

  11. Method of making a low energy gamma ray collimator

    International Nuclear Information System (INIS)

    Muehllehner, Gerd.

    1975-01-01

    Described herein is a method for making a low energy gamma ray collimator which involves corrugating lead foil strips by passing them through pinion wire rollers and gluing corrugated strips between straight strips using an adhesive such as epoxy to build up a honeycomb-like structure. A thin aluminum sheet is glued to both edges of the strips to protect them and to provide a more rigid assembly which may be sawed to a desired shape. (Patent Office Record)

  12. Anti-collimation of ballistic electrons by a potential barrier

    Science.gov (United States)

    Coleridge, P. T.; Taylor, R. P.; Sachrajda, A. S.; Adams, J. A.

    1994-03-01

    A pair of Quantum Point Contacts separated by a continuous barrier have been fabricated using the surface gate technique. Transport measurements for each component of this system and for various combinations have shown both additive and non-additive behaviour. The results are explained by a combination of reflection by the barrier of electrons collimated by the Quantum Point Contacts and transport by diffusion across the barrier.

  13. Fourier correction for spatially variant collimator blurring in SPECT

    International Nuclear Information System (INIS)

    Xia, W.; Lewitt, R.M.; Edholm, P.R.

    1995-01-01

    In single-photon emission computed tomography (SPECT), projection data are acquired by rotating the photon detector around a patient, either in a circular orbit or in a noncircular orbit. The projection data of the desired spatial distribution of emission activity is blurred by the point-response function of the collimator that is used to define the range of directions of gamma-ray photons reaching the detector. The point-response function of the collimator is not spatially stationary, but depends on the distance from the collimator to the point. Conventional methods for deblurring collimator projection data are based on approximating the actual distance-dependent point-response function by a spatially invariant blurring function, so that deconvolution methods can be applied independently to the data at each angle of view. A method is described in this paper for distance-dependent preprocessing of SPECT projection data prior to image reconstruction. Based on the special distance-dependent characteristics of the Fourier coefficients of the sinogram, a spatially variant inverse filter can be developed to process the projection data in all views simultaneously. The algorithm is first derived from fourier analysis of the projection data from the circular orbit geometry. For circular orbit projection data, experimental results from both simulated data and real phantom data indicate the potential of this method. It is shown that the spatial filtering method can be extended to the projection data from the noncircular orbit geometry. Experiments on simulated projection data from an elliptical orbit demonstrate correction of the spatially variant blurring and distortion in the reconstructed image caused by the noncircular orbit geometry

  14. Evaluation of the penumbras of a Philips multileaf collimator

    International Nuclear Information System (INIS)

    Lafay, F.; Malet, C.; Mombard, C.; Ginestet, C.; Blondel, E.; Desfarges, Y.; Dupin, G.

    1995-01-01

    Since January 1995, a Philips SL20 linear accelerator which is connected to a multileaf collimator has been used. Computer-controlled multileaf collimators open up the opportunity to practice conformal radiotherapy. Its aim is to adjust as well as possible the Planning Target Volume (PTV) to the effective treated volume with an homogeneous dose distribution in the PTV, and to protect healthy tissues and delicate organs. This is possible by means of a multileaf collimator by increasing the number of complex fields with different incidences during a same session. Moreover, the Beam's Eye View function of the three-dimensional treatment planning system allows to define the shape of complex fields. For rectangular fields, the penumbra is defined by the distance between the 80% and 20% isodoses relative to the beam axis. In addition, the distances between, respectively, the 95% and 50% isodoses, the 90% and 50% isodoses, the 50% and 20% isodoses relative to the beam axis have been analysed. Different penumbras were evaluated. The result of this work will enable to adjust the reference isodose to the PTV either by integrating this result into dosimetry software, or by taking it into account for drawing the PTV

  15. Simulation of the collimator of the residual stress instrument

    International Nuclear Information System (INIS)

    Li, Jian; Wang, Xiaoying; Xie, Chaomei

    2009-04-01

    In order to understand the detailed influence from the collimator system to the main index of the Residual Stress Nertron Diffractometer (RSND) such as the flux at sample position, and the resolution of the spectrometer, the MCStas simulation software is used to build the proper Model of the Collimator system to complete the calculation and simulation. During the simulation, the authors setup the divergence and length of each collimator to check if it had big effect to the whole system. Based on the simulation, the authors obtained an optimized result: When the α 1 =α 2 =30', the horizontal flux at the sample position can be 2.3 x 10 6 n·cm -2 ·s -1 , the vertical flux can be 3.5 x 10 6 n·cm -2 ·s -1 , and when the α 1 =α 2 =10' the best resolution of the spectrometer can be 0.2 degree. This is a valuable result for the RDND. (authors)

  16. Algorithms for optimal sequencing of dynamic multileaf collimators

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay

    2004-01-01

    Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves

  17. Clinical use of a simulation-multileaf collimator

    International Nuclear Information System (INIS)

    Marx, M.; Vacha, P.; Riis, B.; Feyerabend, T.; Richter, E.

    1998-01-01

    Background: At the University of Luebeck, radiotherapy is delivered by a 6/18-MV linear accelerator. Using the integrated multileaf collimator, irradiation of individually shaped treatment fields is possible in place of alloy blocks. Due to unsatisfactory pretherapeutic review of the radiation-field-specific multileaf collimator (MLC) configuration, we developed a simulation-multileaf collimator (SMLC) and assessed its feasibility at different tumor sites. Material and Methods: The SMLC is made of a perspex carrier with 52 horizontal sliding leaves. The position of each leaf is calculated by a 3D treatment-planning computer. The technician manually adjusts the leaves according to the beams-eye-view plot of the planning computer. Consequently, the SMLC is mounted on the therapy simulator at a distance of 64.8 cm from the focus. The treatment fields and the position of the leaves are documented by X-ray films. Results: Using the SMLC, radiation oncologists are able to review exactly the leaf configuration of each MLC-shaped radiation field and to correlate the MLC-shaped radiation field with the treated volume, the organs at risk and the port films acquired by the Portal Vision trademark system. Conclusion: The SMLC is a new tool to review radiation planning that uses an MLC in daily routine. The use of the SMLC improves the documentation and the quality assurance. It accelerates the treatment field review at the linear accelerator by comparing the SMLC simulator films with the portal images. (orig.) [de

  18. Self-collimation in photonic crystals. Applications and opportunities

    International Nuclear Information System (INIS)

    Noori, Mina; Soroosh, Mohammad; Baghban, Hamed

    2018-01-01

    A comprehensive review considering recent advances in self-collimation and its applications in optical integration is covered in the current article. Self-collimation is compared to the conventional technique of photonic bandgap engineering to control the light propagation in photonic crystal-based structures. It is fully discussed how the self-collimation phenomenon can be tailored to be independent of the incident angle and polarization. This adds substantial flexibility to the structure to overcome light coupling challenges and simultaneously aids in the omission of bulk and challenging elements, including polarizers and lenses from optical integrated circuits. Additionally, designed structures have the potential to be rescaled to operate in any desired frequency range thanks to the scalability rule in the field of electromagnetics. Moreover, it is shown that one can boost the coupling efficiency by applying an anti-reflection property to the structure, which provides not only efficient index matching but also the matching between external waves with uniform amplitude and Bloch waves with periodic amplitude. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. First Sub-arcsecond Collimation of Monochromatic Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Apoorva G; Abbas, Sohrab; Treimer, Wolfgang, E-mail: nintsspd@barc.gov.in

    2010-11-01

    We have achieved the tightest collimation to date of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. An optimised silicon {l_brace}111{r_brace} Bragg prism has collimated 5.26A neutrons down to 0.58 arcsecond. In conjunction with a similarly optimised Bragg prism analyser of opposite asymmetry, this ultra-parallel beam yielded a 0.62 arcsecond wide rocking curve. This beam has produced the first SUSANS spectrum in Q {approx} 10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability of characterising agglomerates upto 150 {mu}m in size. The super-collimation has also enabled recording of the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. An analysis of this pattern yielded the beam transverse coherence length of 175 {mu}m (FWHM), the greatest achieved to date for A wavelength neutrons.

  20. Algorithms for optimal sequencing of dynamic multileaf collimators

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2004-01-07

    Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves.

  1. Evaluation of the penumbras of a Philips multileaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Lafay, F; Malet, C; Mombard, C; Ginestet, C [Centre de Lutte Contre le Cancer Leon-Berard, 69 - Lyon (France); Blondel, E [Isotec, Saint-Quentin (France); Desfarges, Y; Dupin, G [Philips Medical System, Lyon (France)

    1995-12-01

    Since January 1995, a Philips SL20 linear accelerator which is connected to a multileaf collimator has been used. Computer-controlled multileaf collimators open up the opportunity to practice conformal radiotherapy. Its aim is to adjust as well as possible the Planning Target Volume (PTV) to the effective treated volume with an homogeneous dose distribution in the PTV, and to protect healthy tissues and delicate organs. This is possible by means of a multileaf collimator by increasing the number of complex fields with different incidences during a same session. Moreover, the Beam`s Eye View function of the three-dimensional treatment planning system allows to define the shape of complex fields. For rectangular fields, the penumbra is defined by the distance between the 80% and 20% isodoses relative to the beam axis. In addition, the distances between, respectively, the 95% and 50% isodoses, the 90% and 50% isodoses, the 50% and 20% isodoses relative to the beam axis have been analysed. Different penumbras were evaluated. The result of this work will enable to adjust the reference isodose to the PTV either by integrating this result into dosimetry software, or by taking it into account for drawing the PTV.

  2. Independent checks of linear accelerators equipped with multileaf collimators

    International Nuclear Information System (INIS)

    Pavlikova, I.; Ekendahl, D.; Horakova, I.

    2005-01-01

    National Radiation Protection Institute (NRPI) provides independent checks of therapeutic equipment as a part of state supervision. In the end of 2003, the audit was broaden for linear accelerators equipped with multileaf collimators (MLC). NRPI provides TLD postal audits and on-site independent checks. This contribution describes tests for multileaf collimators and intensity modulated radiation therapy (IMRT) technique that are accomplished within the independent on-site check of linear accelerators. The character and type of tests that are necessary to pursue for multileaf collimator depends on application technique. There are three basic application of the MLC. The first we call 'static MLC' and it serves for replacing conventional blocking or for adjusting the field shape to match the beam's-eye view projection of a planning target volume during an arc rotation of the x-ray beam. This procedure is called conformal radiotherapy. The most advanced technique with MLC is intensity modulated radiation therapy. The dose can be delivered to the patient with IMRT in various different ways: dynamic MLC, segmented MLC and IMRT arc therapy. Independent audits represent an important instrument of quality assurance. Methodology for independent check of static MLC was successfully verified on two types of accelerators: Varian and Elekta. Results from pilot measurements with dynamic MLC imply that the methodology is applicable for Varian accelerators. In the future, the experience with other types of linear accelerators will contribute to renovation, modification, and broaden independent checks methodology. (authors)

  3. A rotating-slit-collimator-based gamma radiation mapper.

    Science.gov (United States)

    Nilsson, Jonas M C; Finck, Robert R; Rääf, Christopher L

    2017-10-01

    For situations with radioactive material out of control where it may be physically difficult or prohibited to access areas close to the source, measurements from distance may be the only way to assess the radiation environment. Using collimated detectors will provide means to locate the direction of the radiation from the source. To investigate the possibilities of mapping gamma emitting radioactive material in a closed non-enterable area, a tentative system for mapping radioactive materials from a distance was built. The system used a computer controlled cylindrical rotating slit collimator with a high purity germanium detector placed in the cylinder. The system could be placed on a car-towed trailer, with the centre of the detector about 1.4 m above ground. Mapping was accomplished by the use of a specially developed image reconstruction algorithm that requires measurements from two or more locations around the area to be investigated. The imaging capability of the system was tested by mapping an area, 25 by 25 m 2 , containing three 330 MBq 137 Cs point sources. Using four locations outside the area with about 20 min measuring time in each location and applying the image reconstruction algorithm on the deconvoluted data, the system indicated the three source locations with an uncertainty of 1-3 m. The results demonstrated the potential of using collimated mobile gamma radiometry combined with image reconstruction to localize gamma sources inside non-accessible areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Locating gamma radiation source by self collimating BGO detector system

    Energy Technology Data Exchange (ETDEWEB)

    Orion, I; Pernick, A; Ilzycer, D; Zafrir, H [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center; Shani, G [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The need for airborne collimated gamma detector system to estimate the radiation released from a nuclear accident has been established. A BGO detector system has been developed as an array of separate seven cylindrical Bismuth Germanate scintillators, one central detector symmetrically surrounded by six detectors. In such an arrangement, each of the detectors reduced the exposure of other detectors in the array to a radiation incident from a possible specific spatial angle, around file array. This shielding property defined as `self-collimation`, differs the point source response function for each of the detectors. The BGO detector system has a high density and atomic number, and therefore provides efficient self-collimation. Using the response functions of the separate detectors enables locating point sources as well as the direction of a nuclear radioactive plume with satisfactory angular resolution, of about 10 degrees. The detector`s point source response, as function of the source direction, in a horizontal plane, has been predicted by analytical calculation, and was verified by Monte-Carlo simulation using the code EGS4. The detector`s response was tested in a laboratory-scale experiment for several gamma ray energies, and the experimental results validated the theoretical (analytical and Monte-Carlo) results. (authors).

  5. Mechanical Engineering and Design of Novel Collimators for HL-LHC

    CERN Document Server

    Carra, F; Dallocchio, A; Gentini, L; Gradassi, P; Maitrejean, G; Manousos, A; Mariani, N; Mounet, N; Quaranta, E; Redaelli, S; Vlachoudis, V

    2014-01-01

    In view of High Luminosity LHC (HL-LHC) upgrades, collimator materials may become a limit to the machine performance: the high RF impedance of Carbon-Carbon composites used for primary and secondary collimators can lead to beam instabilities, while the Tungsten alloy adopted in tertiary collimators exhibits low robustness in case of beam-induced accidents. An R&D program has been pursued to develop new materials overcoming such limitations. Molybdenum-Graphite, in addition to its outstanding thermal conductivity, can be coated with pure molybdenum, reducing collimator impedance by a factor of 10. A new secondary collimator is being designed around this novel composite. New high-melting materials are also proposed to improve the robustness of tertiary collimators. New collimators will also be equipped with BPMs, significantly enhancing the alignment speed and the beta-star reach. This implies additional constraints of space, as well as detailed static and fatigue calculations on cables and connectors. This...

  6. Optimal Shape of a Gamma-ray Collimator: single vs double knife edge

    Science.gov (United States)

    Metz, Albert; Hogenbirk, Alfred

    2017-09-01

    Gamma-ray collimators in nuclear waste scanners are used for selecting a narrow vertical segment in activity measurements of waste vessels. The system that is used by NRG uses tapered slit collimators of both the single and double knife edge type. The properties of these collimators were investigated by means of Monte Carlo simulations. We found that single knife edge collimators are highly preferable for a conservative estimate of the activity of the waste vessels. These collimators show much less dependence on the angle of incidence of the radiation than double knife edge collimators. This conclusion also applies to cylindrical collimators of the single knife edge type, that are generally used in medical imaging spectroscopy.

  7. LHC Collimators with Embedded Beam Position Monitors: a New Adbanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  8. LHC Collimators with Embedded Beam Position Monitors: A New Advanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M A

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  9. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  10. Characterization of parallel-hole collimator using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Karunanithi, Sellam; Kumar, Praveen; Bal, Chandrasekhar; Kumar, Rakesh

    2015-01-01

    Accuracy of in vivo activity quantification improves after the correction of penetrated and scattered photons. However, accurate assessment is not possible with physical experiment. We have used Monte Carlo Simulation to accurately assess the contribution of penetrated and scattered photons in the photopeak window. Simulations were performed with Simulation of Imaging Nuclear Detectors Monte Carlo Code. The simulations were set up in such a way that it provides geometric, penetration, and scatter components after each simulation and writes binary images to a data file. These components were analyzed graphically using Microsoft Excel (Microsoft Corporation, USA). Each binary image was imported in software (ImageJ) and logarithmic transformation was applied for visual assessment of image quality, plotting profile across the center of the images and calculating full width at half maximum (FWHM) in horizontal and vertical directions. The geometric, penetration, and scatter at 140 keV for low-energy general-purpose were 93.20%, 4.13%, 2.67% respectively. Similarly, geometric, penetration, and scatter at 140 keV for low-energy high-resolution (LEHR), medium-energy general-purpose (MEGP), and high-energy general-purpose (HEGP) collimator were (94.06%, 3.39%, 2.55%), (96.42%, 1.52%, 2.06%), and (96.70%, 1.45%, 1.85%), respectively. For MEGP collimator at 245 keV photon and for HEGP collimator at 364 keV were 89.10%, 7.08%, 3.82% and 67.78%, 18.63%, 13.59%, respectively. Low-energy general-purpose and LEHR collimator is best to image 140 keV photon. HEGP can be used for 245 keV and 364 keV; however, correction for penetration and scatter must be applied if one is interested to quantify the in vivo activity of energy 364 keV. Due to heavy penetration and scattering, 511 keV photons should not be imaged with HEGP collimator

  11. Comparison of fan beam, slit-slat and multi-pinhole collimators for molecular breast tomosynthesis.

    Science.gov (United States)

    van Roosmalen, Jarno; Beekman, Freek J; Goorden, Marlies C

    2018-05-16

    Recently, we proposed and optimized dedicated multi-pinhole molecular breast tomosynthesis (MBT) that images a lightly compressed breast. As MBT may also be performed with other types of collimators, the aim of this paper is to optimize MBT with fan beam and slit-slat collimators and to compare its performance to that of multi-pinhole MBT to arrive at a truly optimized design. Using analytical expressions, we first optimized fan beam and slit-slat collimator parameters to reach maximum sensitivity at a series of given system resolutions. Additionally, we performed full system simulations of a breast phantom containing several tumours for the optimized designs. We found that at equal system resolution the maximum achievable sensitivity increases from pinhole to slit-slat to fan beam collimation with fan beam and slit-slat MBT having on average a 48% and 20% higher sensitivity than multi-pinhole MBT. Furthermore, by inspecting simulated images and applying a tumour-to-background contrast-to-noise (TB-CNR) analysis, we found that slit-slat collimators underperform with respect to the other collimator types. The fan beam collimators obtained a similar TB-CNR as the pinhole collimators, but the optimum was reached at different system resolutions. For fan beam collimators, a 6-8 mm system resolution was optimal in terms of TB-CNR, while with pinhole collimation highest TB-CNR was reached in the 7-10 mm range.

  12. Slit-Slat Collimator Equipped Gamma Camera for Whole-Mouse SPECT-CT Imaging

    Science.gov (United States)

    Cao, Liji; Peter, Jörg

    2012-06-01

    A slit-slat collimator is developed for a gamma camera intended for small-animal imaging (mice). The tungsten housing of a roof-shaped collimator forms a slit opening, and the slats are made of lead foils separated by sparse polyurethane material. Alignment of the collimator with the camera's pixelated crystal is performed by adjusting a micrometer screw while monitoring a Co-57 point source for maximum signal intensity. For SPECT, the collimator forms a cylindrical field-of-view enabling whole mouse imaging with transaxial magnification and constant on-axis sensitivity over the entire axial direction. As the gamma camera is part of a multimodal imaging system incorporating also x-ray CT, five parameters corresponding to the geometric displacements of the collimator as well as to the mechanical co-alignment between the gamma camera and the CT subsystem are estimated by means of bimodal calibration sources. To illustrate the performance of the slit-slat collimator and to compare its performance to a single pinhole collimator, a Derenzo phantom study is performed. Transaxial resolution along the entire long axis is comparable to a pinhole collimator of same pinhole diameter. Axial resolution of the slit-slat collimator is comparable to that of a parallel beam collimator. Additionally, data from an in-vivo mouse study are presented.

  13. Radiation leakage dose from Elekta electron collimation system.

    Science.gov (United States)

    Pitcher, Garrett M; Hogstrom, Kenneth R; Carver, Robert L

    2016-09-08

    This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out-of field leakage dose. Specifically, off-axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out-of-field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out-of-field dose profiles. Off-axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in-plane, cross-plane, and both diagonal axes using a cylindrical ionization chamber with the 10 × 10 and 20 × 20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in-field beam flatness met our acceptance criteria (± 3% on major and ±4% on diagonal axes) and that out-of-field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross-plane out-of-field dose profiles showed greater leakage dose than in-plane profiles, attributed to the curved edges of the upper X-ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10 × 10 and 20 × 20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding model-ing of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions

  14. Effects of hole tapering on cone-beam collimation for brain SPECT imaging

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Kijewski, Marie Foley; Moore, Stephen C.

    2006-01-01

    New collimator manufacturing technologies, such as photoetching, electrical discharge machining, and stereolithography, expand the range of possible cone-beam collimator configurations. For example, it might now be possible for brain SPECT to make a short-focusing cone-beam collimator with tapered holes that increase in size with distance from the collimator surface; conventional lead-casting techniques produce holes of constant size and, consequently, varying septal thicknesses. Moreover, the changes in hole shape and loss of close packing due to focusing leads to thicker septa in the collimator periphery, especially for shorter focal lengths. We investigated the potential advantages of new cone-beam collimator manufacturing processes, and proposed a new design for very short focal-length collimators for brain SPECT imaging. We compared three cone-beam collimators, a conventional collimator manufactured using casting techniques (CC), a novel collimator with uniform hole sizes on the collimator surface and constant hole size through the collimator thickness (FC), and a novel collimator with uniform hole sizes and tapered holes (TC). We determined the resolution of each collimator analytically for focal lengths ranging from 20-50 cm, and adjusted the entrance hole sizes of FC and TC to equalize resolution of all collimators. Sensitivity was calculated at several locations by Monte Carlo simulation. Sensitivity was higher at all points for TC and FC than for CC, and higher for TC than for FC. The differences in sensitivity were larger for shorter focal lengths. For a point on the focal line at 10 cm in front of the collimator entrance surface, the sensitivity gain for TC compared to CC was 7% and 45% for focal lengths of 50 and 20 cm, respectively. The sensitivity gain for a 20-cm focal length, compared to CC, averaged over all locations, was 44% for TC and 23% for FC. We have shown that the new collimator designs made possible by new manufacturing techniques will

  15. Validity of medium-energy collimator for sentinel lymphoscintigraphy imaging

    International Nuclear Information System (INIS)

    Tsushima, Hiroyuki; Yamanaga, Takashi; Shimonishi, Yoshihiro; Kosakai, Kazuhisa; Takayama, Teruhiko; Kizu, Hiroto; Noguchi, Atsushi; Onoguchi, Masahisa

    2007-01-01

    For lymphoscintigraphy to detect sentinel lymph node (SLN) in the breast cancer, the lead shielding of the injection site is often used to avoid artifacts, but the method tends to cover the neighborhood SLN. To exclude this defect, authors developed ME (medium-energy) method where ME collimator and energy setting shifted to its higher region were employed. This paper described the development and validity evaluation of the ME method. Performed were examinations with 3 acrylic phantoms of the injection site (IS), LN and combination of IS+LN (CB): IS was a cylinder, containing 40 MBq of 99m Tc-pertechnetate and LN, a plate with 30 sealed holes having 0.78-400 kBq. CB phantom consisted from LN-simulating holes (each, 40 kBq) placed linearly around the center of IS in H and S directions. Imaging was conducted with 2 kinds of 2-detector gamma camera, FORTE (ADAGA) and DSX rectangular (Sopha Medical Corp.). CB phantom was found optimally visualized by ME collimator at 146, rather than 141, keV. In clinic, 99m Tc-Sn-colloid 40 MBq was given near the tumor of a patient and imaging was done with or without the lead shield with FORTE equipped with low energy high-resolution or ME collimator for their comparison. The present ME method described above set at 146 keV was found to give the image with excellent contrast and without false positive when compared with the lead shield method hitherto. (R.T.)

  16. Hard X-ray imaging with a slat collimated telescope

    International Nuclear Information System (INIS)

    Lu Zhuguo; Kotov, Yu.D.; Suslov, A.Yu.

    1995-01-01

    Imaging experiments with a slat collimated hard X-ray telescope are described in this paper demonstrating the feasibility of the direct demodulation imaging method used in hard X-ray scanning modulation experiments. On 25 September 1993 an X-ray raster scan observation of Cyg X-1 was performed in a balloon flight with the hard X-ray telescope HAPI-4. An experiment to image radioactive X-ray sources was performed in the laboratory before. In both experiments the expected X-ray images were obtained, confirming the imaging capability of this method. (orig.)

  17. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  18. Integrated simulation tools for collimation cleaning in HL-LHC

    CERN Document Server

    Bruce, R; Cerutti, F; Ferrari, A; Lechner, A; Marsili, A; Mirarchi, D; Ortega, P G; Redaelli, S; Rossi, A; Salvachua, B; Sinuela, D P; Tambasco, C; Vlachoudis, V; Mereghetti, A; Assmann, R; Lari, L; Gibson, S M; Nevay, LJ; Appleby, R B; Molson, J; Serluca, M; Barlow, R J; Rafique, H; Toader, A

    2014-01-01

    The Large Hadron Collider is designed to accommodate an unprecedented stored beam energy of 362 MJ in the nominal configuration and about the double in the high-luminosity upgrade HL-LHC that is presently under study. This requires an efficient collimation system to protect the superconducting magnets from quenches. During the design, it is therefore very important to accurately predict the expected beam loss distributions and cleaning efficiency. For this purpose, there are several ongoing efforts in improving the existing simulation tools or developing new ones. This paper gives a brief overview and status of the different available codes.

  19. Optimized dose conformation of multi-leaf collimator fields

    International Nuclear Information System (INIS)

    Serago, Christopher F.; Buskirk, Steven J.; Foo, May L.; McLaughlin, Mark P.

    1996-01-01

    Purpose/Objective: Current commercially available multi-leaf collimators (MLC) have leaf widths of about 1 cm. These leaf widths may produce stepped dose gradients at the fields edges at the 50% dose level. Small local perturbations of the dose distribution from the prescribed/expected dose distribution may not be acceptable for some clinical applications. Improvements to the conformation of the MLC dose distribution may be achieved using multiple exposures per MLC field, with either shifting the table/patient position, or rotating the orientation of the MLC jaws between exposures. Material and Methods: Dose distributions for MLC, primary jaws only, and lead alloy block fields were measured with film dosimetry for 6 and 20 MV photon beams in a solid water phantom. Square, circular, and typical clinical prostate, brain, lung, esophagus, and head and neck fields were measured. MLC field shapes were produced using a commercial MLC with a leaf width of 1 cm at the treatment isocenter. The dose per MLC field was delivered in either single (conventional) or multiple exposures. The table(patient) position or the collimator rotation was shifted between exposures when multiple exposure MLC fields were used. Differences in the dose distribution were evaluated at the 90% and 50% isodose level. Displacements of the measured 50% isodose from the prescribed/expected 50% isodose were measured at 5 degree intervals. Results: Measurements of the penumbra at a 10 cm depth for square fields show that using double exposure MLC fields with .5 cm table index decreases the effective penumbra by 1 mm. For clinical shaped fields, displacements between the prescribed/expected 50% isodose and the measured 50% isodose for conventional single exposure MLC fields are measured to be as great as 9 mm, and discrepancies on the order of 5 to 6 mm are common. In contrast, the maximum displacement errors measured with multiple exposure MLC fields are less than 5 mm and rarely more than 4 mm. In some

  20. Characteristic of laser diode beam propagation through a collimating lens.

    Science.gov (United States)

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  1. Off-momentum collimation and cleaning in the energy ramp in the LHC

    CERN Document Server

    Quaranta, Elena; Giulini Castiglioni Agosteo, Stefano Luigi Maria

    This Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Collimation project. The LHC is a two-beam proton collider, built to handle a stored energy of 360MJ for each beam. Since the energy deposition from particle losses could quench the superconducting magnets, a system of collimators has been installed in two cleaning insertions in the ring and in the experimental areas. The achievable LHC beam intensity is directly coupled to the beam loss rate and, consequently, to the cleaning eciency of the collimation system. This study analyses the collimation cleaning performance in dierent scenarios inside the accelerator. First, simulations are performed of the transverse losses in the LHC collimation system during the acceleration process. The results are compared with data taken during a dedicated session at the LHC machine. Simulations are also performed to predict the collimation eciency during future operation at higher energy. Furthermore, an investigation of t...

  2. Three-dimensional single-photon emission computed tomography using cone beam collimation (CB-SPECT)

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Floyd, C.E. Jr.; Manglos, S.H.; Greer, K.L.; Coleman, R.E.

    1986-01-01

    A simple and economically practical method of improving the sensitivity of camera-based SPECT was developed using converging (cone-beam) collimation. This geometry is particularly advantageous for SPECT devices using large field-of-view cameras in imaging smaller, centrally located activity distributions. Geometric sensitivities, spatial resolutions, and fields-of-view of a cone-beam collimator having a focal length of 48 cm and a similarly designed parallel hole collimator were compared analytically. At 15 cm from the collimator surface the point-source sensitivity of the cone-beam collimator was 2.4 times the sensitivity of the parallel-hole collimator. SPECT projection data (simulated using Monte Carlo methodology) were reconstructed using a 3-D filtered backprojection algorithm. Cone-beam emission CT (CB-SPECT) seems potentially useful for animal investigations, pediatric studies, and for brain imaging

  3. Cerrobend collimation effect on electron beams; Efeito de colimacoes de cerrobend em feixes de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Furnari, Laura; Albino, Lucas D.; Ribeiro, Victor A.B.; Santos, Gabriela R., E-mail: laurafurnari@hotmail.com [Universidade de Sao Paulo (InRad/FM/USP), SP (Brazil). Faculdade de Medicina. Hospital das Clinicas. Instituto de Radiologia

    2012-12-15

    The aim of this work was to discuss about the cerrobend collimation effect on clinical electron beams. When a cerrobend collimation is used, both the percentage depth dose (PDD) and the absolute dose that is delivered to the patient changes. It was analyzed how those parameters change and it was evaluated in which cases a correction factor should be applied due to this collimation. It was founded that, when the smallest dimension of the collimation is smaller than the minimum radius to lateral scatter equilibrium, the collimation will change the PDD in such a way that it should take into account in the treatment planning. For one specific collimation usually applied in head and neck treatments, it was found that no correction factor is necessary. (author)

  4. First Design of a Proton Collimation System for 50 TeV FCC-hh

    CERN Document Server

    Fiascaris, Maria; Mirarchi, Daniele; Redaelli, Stefano

    2016-01-01

    We present studies aimed at defining a first conceptual solution for a collimation system for the hadron-hadron option for the Future Circular Collider (FCC-hh). The baseline collimation layout is based on the scaling of the present LHC collimation system to the FCC-hh energy. It currently includes a dedicated betatron cleaning insertion as well as collimators in the experimental insertions to protect the inner triplets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at top energy taking into account mechanical and optics imperfections. Based on these studies the collimator settings needed to protect the machine are defined. The performance of the collimation system is then assessed with particle tracking simulation tools assuming a perfect machine.

  5. Evaluation of the response of a round hole scintillation camera collimator by the Fourier analysis method

    International Nuclear Information System (INIS)

    Hernandez, A.; Millan, S.; Yzuel, M.J.

    1986-01-01

    The Fourier analysis method was used to investigate the response of scintillation camera collimators with parallel holes. This method which takes into account the septal penetration was applied to the case of round hole collimators having a hexagonal distribution. Modulation transfer functions, MTF have been determined to verify the accuracy of the computed Fourier coefficients of the collimator function. Comparisons between the geometric and the penetrating plus geometric transfer function are shown for round and hexagonal holes. (author)

  6. Auxiliary collimating device for obtaining irradiation fields of any shape for high energy radiotherapy apparatus

    International Nuclear Information System (INIS)

    Piret, P.; Fraikin, H.; Hubert, A.

    1976-01-01

    An auxiliary collimator is added to the main collimator of a radiotherapy apparatus and comprises a master-container filled with mercury and a localizing container containing a block of nonabsorbent material having a predetermined shape; means being provided for automatically positioning these containers with respect to the main collimator and for allowing the mercury to enter the localizing container when once it has taken its working position

  7. Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation

    International Nuclear Information System (INIS)

    You, S.; Yun, G.S.; Bellan, P.M.

    2005-01-01

    Highly collimated, plasma-filled magnetic-flux tubes are frequently observed on galactic, stellar, and laboratory scales. We propose that a single, universal magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic-flux tubes are ubiquitous. Experimental evidence from carefully diagnosed laboratory simulations of astrophysical jets confirms this assertion and is reported here. The magnetohydrodynamic process pumps plasma into a magnetic-flux tube and the stagnation of the resulting flow causes this flux tube to become collimated

  8. Design and fabrication of multigrid X-ray collimators. [For airborne x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Acton, L W; Joki, E G; Salmon, R J [Lockheed Missiles and Space Co., Palo Alto, Calif. (USA). Lockheed Palo Alto Research Lab.

    1976-08-01

    Multigrid X-ray collimators continue to find wide application in space research. This paper treats the principles of their design and fabrication and summarizes the experience obtained in making and flying thirteen such collimators ranging in angular resolution from 10 to 0.7 arc min FWHM. Included is a summary of a survey of scientist-users and industrial producers of collimator grids regarding grid materials, precision, plating, hole quality and results of acceptance testing.

  9. Preliminary Comparison of the Response of LHC Tertiary Collimators to Proton and Ion Beam Impacts

    CERN Document Server

    Cauchi, M; Bertarelli, A; Carra, F; Cerutti, F; Lari, L; Mollicone, P; Sammut, N

    2013-01-01

    The CERN Large Hadron Collider is designed to bring into collision protons as well as heavy ions. Accidents involving impacts on collimators can happen for both species. The interaction of lead ions with matter differs to that of protons, thus making this scenario a new interesting case to study as it can result in different damage aspects on the collimator. This paper will present a preliminary comparison of the response of collimators to proton and ion beam impacts.

  10. MERLIN Cleaning Studies with Advanced Collimator Materials for HL-LHC

    CERN Document Server

    Valloni, A.; Mereghetti, A.; Molson, J. G.; Appleby, R.; Bruce, R.; Quaranta, E.; Redaelli, S.

    2016-01-01

    The challenges of the High-Luminosity upgrade of the Large Hadron Collider require improving the beam collimation system. An intense R&D program has started at CERN to explore novel materials for new collimator jaws to improve robustness and reduce impedance. Particle tracking simulations of collimation efficiency are performed using the code MERLIN which has been extended to include new materials based on composites. After presenting two different implementations of composite materials tested in MERLIN, we present simulation studies with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  11. Dose characteristics of in-house-built collimators for stereotactic radiotherapy with a linear accelerator

    International Nuclear Information System (INIS)

    Norrgaard, F. Stefan E.; Kulmala, Jarmo A.J.; Minn, Heikki R.I.; Sipilae, Petri M.

    1998-01-01

    Dose characteristics of a stereotactic radiotherapy unit based on a standard Varian Clinac 4/100 4 MV linear accelerator, in-house-built Lipowitz collimators and the SMART stereotactic radiotherapy treatment planning software have been determined. Beam collimation is constituted from the standard collimators of the linear accelerator and a tertiary collimation consisting of a replaceable divergent Lipowitz collimator. Four collimators with isocentre diameters of 15, 25, 35 and 45 mm, respectively, were constructed. Beam characteristics were measured in air, acrylic or water with ionization chamber, photon diode, electron diode, diamond detector and film. Monte Carlo simulation was also applied. The radiation leakage under the collimators was less than 1% at 50 mm depth in water. Specific beam characteristics for each collimator were imported to SMART and dose planning with five non-coplanar converging 140 deg. arcs separated by 36 deg. angles was performed for treatment of a RANDO phantom. Dose verification was made with TLD and radiochromic film. The in-house-built collimators were found to be suitable for stereotactic radiotherapy and patient treatments with this system are in progress. (author)

  12. Cardiac single-photon emission-computed tomography using combined cone-beam/fan-beam collimation

    International Nuclear Information System (INIS)

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-01-01

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images

  13. Anatomically shaped cranial collimation (ACC) for lateral cephalometric radiography: a technical report.

    Science.gov (United States)

    Hoogeveen, R C; van der Stelt, P F; Berkhout, W E R

    2014-01-01

    Lateral cephalograms in orthodontic practice display an area cranial of the base of the skull that is not required for diagnostic evaluation. Attempts have been made to reduce the radiation dose to the patient using collimators combining the shielding of the areas above the base of the skull and below the mandible. These so-called "wedge-shaped" collimators have not become standard equipment in orthodontic offices, possibly because these collimators were not designed for today's combination panoramic-cephalometric imaging systems. It also may be that the anatomical variability of the area below the mandible makes this area unsuitable for standardized collimation. In addition, a wedge-shaped collimator shields the cervical vertebrae; therefore, assessment of skeletal maturation, which is based on the stage of development of the cervical vertebrae, cannot be performed. In this report, we describe our investigations into constructing a collimator to be attached to the cephalostat and shield the cranial area of the skull, while allowing the visualization of diagnostically relevant structures and markedly reducing the size of the irradiated area. The shape of the area shielded by this "anatomically shaped cranial collimator" (ACC) was based on mean measurements of cephalometric landmarks of 100 orthodontic patients. It appeared that this collimator reduced the area of irradiation by almost one-third without interfering with the imaging system or affecting the quality of the image. Further research is needed to validate the clinical efficacy of the collimator.

  14. A new approach to evaluate the response functions for conical and cylindrical collimators

    International Nuclear Information System (INIS)

    Gigante, G.E.

    1989-01-01

    A new approach to the evaluation of the conical collimator response function is shown. The basic collimator formulae are reviewed. The collimator response function has been found in a very easy way. An approximate solution has been introduced. Studying the response of a measuring system, the use of this approximation strongly reduces the complexity of the relations to be used; therefore it would provide a useful starting point for a Monte Carlo calculation. The errors introduced are less than 10%. Approximate relations that allow the evaluation of the response of conical and cylindrical collimators to plane and line sources are also given. (orig.)

  15. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT.

    Science.gov (United States)

    Rong, Xing; Frey, Eric C

    2013-08-01

    Post-therapy quantitative 90Y bremsstrahlung single photon emission computed tomography (SPECT) has shown great potential to provide reliable activity estimates, which are essential for dose verification. Typically 90Y imaging is performed with high- or medium-energy collimators. However, the energy spectrum of 90Y bremsstrahlung photons is substantially different than typical for these collimators. In addition, dosimetry requires quantitative images, and collimators are not typically optimized for such tasks. Optimizing a collimator for 90Y imaging is both novel and potentially important. Conventional optimization methods are not appropriate for 90Y bremsstrahlung photons, which have a continuous and broad energy distribution. In this work, the authors developed a parallel-hole collimator optimization method for quantitative tasks that is particularly applicable to radionuclides with complex emission energy spectra. The authors applied the proposed method to develop an optimal collimator for quantitative 90Y bremsstrahlung SPECT in the context of microsphere radioembolization. To account for the effects of the collimator on both the bias and the variance of the activity estimates, the authors used the root mean squared error (RMSE) of the volume of interest activity estimates as the figure of merit (FOM). In the FOM, the bias due to the null space of the image formation process was taken in account. The RMSE was weighted by the inverse mass to reflect the application to dosimetry; for a different application, more relevant weighting could easily be adopted. The authors proposed a parameterization for the collimator that facilitates the incorporation of the important factors (geometric sensitivity, geometric resolution, and septal penetration fraction) determining collimator performance, while keeping the number of free parameters describing the collimator small (i.e., two parameters). To make the optimization results for quantitative 90Y bremsstrahlung SPECT more

  16. SU-E-T-11: A Dosimetric Comparison of Robotic Prostatic Radiosugery Using Multi- Leaf Collimation Vs Circular Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J; Yang, J; Lamond, J; Lavere, N; Laciano, R; Ding, W; Arrigo, S; Brady, L [Philadelphia Cyberknife, Philadelphia, PA (United States)

    2014-06-01

    Purpose: The study compared the dosimetry plans of Stereotatic Body Radiotherapy (SBRT) prostate cancer patients using the M6 Cyberknife with Multi-leaf Collimation (MLC) compared with the plans using G4 Cyberknife with circular collimators. Methods: Eight previously treated prostate cancer patients' SBRT plans using circular collimators, designed with Multiplan v3.5.3, were used as a benchmark. The CT, contours and the optimization scripts were imported into Multiplan v5.0 system and replanned with MLC. The same planning objectives were used: more than 95% of PTV received 36.25Gy, 90% of prostate received 40Gy and maximum dose <45Gy, in five fractions. For organs at risk, less than 1cc of rectum received 36Gy and less than 10cc of bladder received 37Gy. Plans were evaluated on parameters derived from dose volume. The beam number, MU and delivery time were recorded to compare the treatment efficiency. Results: The mean CTV volume was 41.3cc (27.5∼57.6cc) and mean PTV volume was 76.77cc (59.1∼99.7cc). The mean PTV coverage was comparable between MLC (98.87%) and cone (98.74%). MLC plans had a slightly more favorable homogeneity index (1.22) and conformity index (1.17), than the cone (1.24 and 1.15). The mean rectum volume of 36 Gy (0.52cc) of MLC plans was slightly larger than cone (0.38cc) and the mean bladder volume of 37 Gy was smaller in MLC (1.82cc) than in cone plans (3.09cc). The mean number of nodes and beams were 65.9 and 80.5 in MLC vs 65.9 and 203.6 in cone. The mean MUs were significantly less for MLC plans (24,228MUs) than cone (32,347MUs). The total delivery time (which included 5 minutes for setup) was less, 29.6min (26∼32min) for MLC vs 45min (35∼55min) for cone. Conclusion: While the differences in the dosimetry between the MLC and circular collimator plans were rather minor, the MLC plans were much more efficient and required significantly less treatment time.

  17. Penumbra measurements of BeamModulatorTM multi leaf collimator

    International Nuclear Information System (INIS)

    Lu Xiaoguang; Wang Yunlai; Huo Xiaoqing; Sha Xiangyan; Miao Xiongfei

    2010-01-01

    Objective: To evaluate the penumbra of a new multileaf collimator equipped with Elekta Synergy accelerator. Methods: The penumbra were derived from beam profiles measured in air and water using PinPoint ion chamber with PTW MP3 water phantom. Variations of penumbra with X-ray beam energy, depth in water, and leaf position were investigated. Results: The penumbra in air for 6 MV X-ray was 2 mm less than that at depth of maximal dose in water. The penumbra of leaf side was 1 mm less than that of the leaf end. The penumbra had close relationship with beam energy, depth in water and leaf position. penumbra increased with beam quality and water depth. The leaf position had great influence on the penumbra. Conclusions: The penumbra of the multileaf collimator is related to its original design and radiation delivery technique. Special considerations should be taken into during treatment planning. Regular measurement should be performed to guarantee the delivery quality. (authors)

  18. Calibration issues of the TFTR multichannel neutron collimator

    International Nuclear Information System (INIS)

    Goeler, S. von; Johnson, L.C.; Bitter, M.; Efthimion, P.C.; Roquemore, A.L.

    1996-01-01

    The calibration procedures for the detectors in the Neutron Collimator are reviewed. The absolute calibration was performed for the NE451 detectors, in situ, by moving a DT neutron generator in the TFTR vacuum vessel across each sight line. This calibration was transferred to other detectors in the same channel. Four new sight lines have been installed at a different toroidal location, which view the plasma through the vacuum vessel port cover rather than through thinned windows. The new detectors are cross-calibrated to the NE451 detectors with a jog shot procedure, where the plasma is quickly shifted in major radius over a distance of 30 cm. The jog shot procedure shows that scattered neutrons account approximately for 30% of the signal of the new central channels. The neutron source strength from the collimator agrees within 10% with the source strength from global neutron monitors in the TFTR test cell. Detector non-linearity is discussed. Another special issue is the behavior of the detectors during T-puffs, where the DD/DT neutron ratio changes rapidly

  19. X-ray microscopy using collimated and focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.; Kwiatek, W.M.; Gordon, B.M.

    1987-01-01

    X-ray microscopy is a field that has developed rapidly in recent years. Two different approaches have been used. Zone plates have been employed to produce focused beams with sizes as low as 0.07 μm for x-ray energies below 1 keV. Images of biological materials and elemental maps for major and minor low Z have been produced using above and below absorption edge differences. At higher energies collimators and focusing mirrors have been used to make small diameter beams for excitation of characteristic K- or L-x rays of all elements in the periodic table. The practicality of a single instrument combining all the features of these two approaches is unclear. The use of high-energy x rays for x-ray microscopy has intrinsic value for characterization of thick samples and determination of trace amounts of most elements. A summary of work done on the X-26 beam line at the National Synchrotron Light Source (NSLS) with collimated and focused x rays with energies above 4 keV is given here. 6 refs., 5 figs., 1 tab

  20. Direct fission fragment energy converter - Magnetic collimator option

    International Nuclear Information System (INIS)

    Tsvetkov, P. V.; Hart, R. R.

    2006-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. In addition to the extensive computational effort, the scaled prototype experimental proof-of-principle program was conducted to validate basic physics of the concept. The program was focused on electromagnetic components and experimental demonstration of performance. This paper summarizes the final results of the 6-years research program including both computational and experimental efforts. Potential future research and development and anticipated applications are discussed. (authors)

  1. Description and benefits of dynamic collimation in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Popova, Y.; Hersemeule, G.; Klausz, R.; Souchay, H.

    2015-01-01

    X-ray field to image receptor active area alignment is usually tested in mammographic QC. In digital breast tomosynthesis (dBT), the source moves during the acquisition, generating a displacement of the X-ray beam edges relative to the detector, in or out of the detector active area. To minimise unnecessary radiation while maximising the useful field of view, a solution consisting in adjusting the collimation with the source rotation was implemented on the GE SenoClaire dBT system. This solution is described and tested using three different methods based on: (1) images from the detector, (2) a non-screen film and (3) a semiconductor tool providing the X-ray intensity profile. Method 1 demonstrated a maximum positioning error of 0.3 mm. Method 2 was found non-applicable; Method 3 provided measurements within 1.5 mm. Dynamic collimation enables maintaining an X-ray field to detector congruence comparable with 2D. Measuring the position of the X-ray field edges using a dedicated tool makes routine QC possible. (authors)

  2. An energy-optimized collimator design for a CZT-based SPECT camera

    International Nuclear Information System (INIS)

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2016-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radiotracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collimator, which is independent of the photon energy, performs reasonably well for commonly used radiotracers with low- to medium-energy levels of gamma emissions. Using the Geant4 simulation toolkit, we simulated and evaluated a parallel-hole collimator mounted to a CZT detector. With the pixel-geometry-matching collimation, the pitch of the collimator hole was fixed to match the pixel size of the CZT detector throughout this work. Four variables, hole shape, hole length, hole radius/width and the source-to-collimator distance were carefully studied. Scatter and penetration of the collimator, sensitivity and spatial resolution of the system were assessed for four radionuclides including "5"7Co, "9"9"mTc, "1"2"3I and "1"1"1In, with respect to the aforementioned four variables. An optimal collimator was then decided upon such that it maximized the total relative sensitivity (TRS) for the four considered radionuclides while other performance parameters, such as scatter, penetration and spatial resolution, were benchmarked to prevalent commercial scanners and collimators. Digital phantom studies were also performed to validate the system with the optimal square-hole collimator (23 mm hole length, 1.28 mm hole width, and 0.32 mm septal thickness) in terms of contrast, contrast-to-noise ratio and recovery ratio. This study demonstrates promise of our proposed energy-optimized collimator to be used in a CZT-based gamma camera, with comparable or even better imaging performance versus

  3. Comparing planar image quality of rotating slat and parallel hole collimation: influence of system modeling

    International Nuclear Information System (INIS)

    Holen, Roel van; Vandenberghe, Stefaan; Staelens, Steven; Lemahieu, Ignace

    2008-01-01

    The main remaining challenge for a gamma camera is to overcome the existing trade-off between collimator spatial resolution and system sensitivity. This problem, strongly limiting the performance of parallel hole collimated gamma cameras, can be overcome by applying new collimator designs such as rotating slat (RS) collimators which have a much higher photon collection efficiency. The drawback of a RS collimated gamma camera is that, even for obtaining planar images, image reconstruction is needed, resulting in noise accumulation. However, nowadays iterative reconstruction techniques with accurate system modeling can provide better image quality. Because the impact of this modeling on image quality differs from one system to another, an objective assessment of the image quality obtained with a RS collimator is needed in comparison to classical projection images obtained using a parallel hole (PH) collimator. In this paper, a comparative study of image quality, achieved with system modeling, is presented. RS data are reconstructed to planar images using maximum likelihood expectation maximization (MLEM) with an accurate Monte Carlo derived system matrix while PH projections are deconvolved using a Monte Carlo derived point-spread function. Contrast-to-noise characteristics are used to show image quality for cold and hot spots of varying size. Influence of the object size and contrast is investigated using the optimal contrast-to-noise ratio (CNR o ). For a typical phantom setup, results show that cold spot imaging is slightly better for a PH collimator. For hot spot imaging, the CNR o of the RS images is found to increase with increasing lesion diameter and lesion contrast while it decreases when background dimensions become larger. Only for very large background dimensions in combination with low contrast lesions, the use of a PH collimator could be beneficial for hot spot imaging. In all other cases, the RS collimator scores better. Finally, the simulation of a

  4. Joint optimization of collimator and reconstruction parameters in SPECT imaging for lesion quantification

    International Nuclear Information System (INIS)

    McQuaid, Sarah J; Southekal, Sudeepti; Kijewski, Marie Foley; Moore, Stephen C

    2011-01-01

    Obtaining the best possible task performance using reconstructed SPECT images requires optimization of both the collimator and reconstruction parameters. The goal of this study is to determine how to perform this optimization, namely whether the collimator parameters can be optimized solely from projection data, or whether reconstruction parameters should also be considered. In order to answer this question, and to determine the optimal collimation, a digital phantom representing a human torso with 16 mm diameter hot lesions (activity ratio 8:1) was generated and used to simulate clinical SPECT studies with parallel-hole collimation. Two approaches to optimizing the SPECT system were then compared in a lesion quantification task: sequential optimization, where collimation was optimized on projection data using the Cramer–Rao bound, and joint optimization, which simultaneously optimized collimator and reconstruction parameters. For every condition, quantification performance in reconstructed images was evaluated using the root-mean-squared-error of 400 estimates of lesion activity. Compared to the joint-optimization approach, the sequential-optimization approach favoured a poorer resolution collimator, which, under some conditions, resulted in sub-optimal estimation performance. This implies that inclusion of the reconstruction parameters in the optimization procedure is important in obtaining the best possible task performance; in this study, this was achieved with a collimator resolution similar to that of a general-purpose (LEGP) collimator. This collimator was found to outperform the more commonly used high-resolution (LEHR) collimator, in agreement with other task-based studies, using both quantification and detection tasks.

  5. Improved electron collimation system design for Elekta linear accelerators.

    Science.gov (United States)

    Pitcher, Garrett M; Hogstrom, Kenneth R; Carver, Robert L

    2017-09-01

    Prototype 10 × 10 and 20 × 20-cm 2 electron collimators were designed for the Elekta Infinity accelerator (MLCi2 treatment head), with the goal of reducing the trimmer weight of excessively heavy current applicators while maintaining acceptable beam flatness (±3% major axes, ±4% diagonals) and IEC leakage dose. Prototype applicators were designed initially using tungsten trimmers of constant thickness (1% electron transmission) and cross-sections with inner and outer edges positioned at 95% and 2% off-axis ratios (OARs), respectively, cast by the upstream collimating component. Despite redefining applicator size at isocenter (not 5 cm upstream) and reducing the energy range from 4-22 to 6-20 MeV, the designed 10 × 10 and 20 × 20-cm 2 applicator trimmers weighed 6.87 and 10.49 kg, respectively, exceeding that of the current applicators (5.52 and 8.36 kg, respectively). Subsequently, five design modifications using analytical and/or Monte Carlo (MC) calculations were applied, reducing trimmer weight while maintaining acceptable in-field flatness and mean leakage dose. Design Modification 1 beveled the outer trimmer edges, taking advantage of only low-energy beams scattering primary electrons sufficiently to reach the outer trimmer edge. Design Modification 2 optimized the upper and middle trimmer distances from isocenter for minimal trimmer weights. Design Modification 3 moved inner trimmer edges inward, reducing trimmer weight. Design Modification 4 determined optimal X-ray jaw positions for each energy. Design Modification 5 adjusted middle and lower trimmer shapes and reduced upper trimmer thickness by 50%. Design Modifications 1→5 reduced trimmer weights from 6.87→5.86→5.52→5.87→5.43→3.73 kg for the 10 × 10-cm 2 applicator and 10.49→9.04→8.62→7.73→7.35→5.09 kg for the 20 × 20-cm 2 applicator. MC simulations confirmed these final designs produced acceptable in-field flatness and met IEC-specified leakage dose at 7, 13, and 20 Me

  6. High-resolution field shaping utilizing a masked multileaf collimator.

    Science.gov (United States)

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm

  7. Time Periodic Control of a Multi-Blade Helicopter.

    Science.gov (United States)

    1988-05-01

    part of an element of p X rotor inflow ratio; Langrangian multiplier; Poincare exponent H rotor inflow ratio with respect to the hub *P plane A...and a $ complex conjugate pair in the right- half plane resulting from ( the longitudinal velocity and pitch coupling. Without a horizontal tail, the ... Poincare Exponents . . .. 182 VI. Controller Gains ...... ................ 184 viii I ’Q List of Symbols Listed below are the principal symbols used in this

  8. Lumbar spine radiography — poor collimation practices after implementation of digital technology

    DEFF Research Database (Denmark)

    Zetterberg, Lars Gøran; Espeland, Ansgar

    2011-01-01

    Objectives: The transition from analogue to digital radiography may have reduced the motivation to perform proper collimation, as digital techniques have made it possible to mask areas irradiated outside the area of diagnostic interest (ADI). We examined the hypothesis that collimation practices...

  9. Aperture Determination in the LHC Based on an Emittance Blowup Technique with Collimator Position Scan

    CERN Document Server

    Assmann, R W; del Carmen Alabau, M; Giovannozzi, M; Muller, GJ; Redaelli, S; Schmidt, F; Tomas, R; Wenninger, J; Wollmann, D

    2011-01-01

    A new method to determine the LHC aperture was proposed. The new component is a collimator scan technique that refers the globally measured aperture limit to the shadow of the primary collimator, expressed in sigmas of rms beam size. As a by-product the BLM response to beam loss is quantified. The method is described and LHC measurement results are presented.

  10. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Van Audenhaege, Karen, E-mail: karen.vanaudenhaege@ugent.be; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian [Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University–iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000 (Belgium); Metzler, Scott D. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Moore, Stephen C. [Division of Nuclear Medicine, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115 (United States)

    2015-08-15

    In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.

  11. Simulation study for high resolution alpha particle spectrometry with mesh type collimator

    International Nuclear Information System (INIS)

    Park, Seunghoon; Kwak, Sungwoo; Kang, Hanbyeol; Shin, Jungki; Park, Iljin

    2014-01-01

    An alpha particle spectrometry with a mesh type collimator plays a crucial role in identifying specific radionuclide in a radioactive source collected from the atmosphere or environment. The energy resolution is degraded without collimation because particles with a high angle have a longer path to travel in the air. Therefore, collision with the background increases. The collimator can cut out particles which traveling at a high angle. As a result, an energy distribution with high resolution can be obtained. Therefore, the mesh type collimator is simulated for high resolution alpha particle spectrometry. In conclusion, the collimator can improve resolution. With collimator, the collimator is a role of cutting out particles with a high angle, so, low energy tail and broadened energy distribution can be reduced. The mesh diameter is found out as an important factor to control resolution and counting efficiency. Therefore, a target particle, for example, 235 U, can be distinguished by a detector with a collimator under a mixture of various nuclides, for example: 232 U, 238 U, and 232 Th

  12. Conceptual Analysis of Fission Fragment Magnetic Collimator Reactors

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Parish, Theodore A.

    2002-01-01

    As part of the current research work within the US DOE NERI Direct Electricity Conversion (DEC) Project on methods for utilizing direct electricity conversion in nuclear reactors, a detailed study of a Fission Fragment Magnetic Collimator Reactor (FFMCR) has been performed. The FFMCR concept is an advanced DEC system that combines advantageous design solutions proposed for application in both fission and fusion reactors. The present study was focused on determining the electrical efficiency and other important operational aspects of the FFMCR concept. In principle, acceptable characteristics have been demonstrated, and results obtained are presented in the paper. Technological visibility of the FFMCR concept and required further design development are discussed. Preliminary characteristics of the promising design are outlined. (authors)

  13. Faraday cup dosimetry in a proton therapy beam without collimation

    International Nuclear Information System (INIS)

    Grusell, Erik; Isacsson, Ulf; Montelius, Anders; Medin, Joakim

    1995-01-01

    A Faraday cup in a proton beam can give an accurate measurement of the number of protons collected by the cup. It is shown that the collection efficiency with a proper design can be close to unity. To be able to calibrate an ionization chamber from such a measurement, as is recommended in some dosimetry protocols, the energy spectrum of the proton beam must be accurately known. This is normally not the case when the lateral beam extension is defined by collimators. Therefore a method for relating an ionization chamber measurement in an uncollimated beam to the total number of protons in the beam has been developed and is described together with experimental results from calibrating an ionization chamber using this method in the therapeutic beam in Uppsala. This method is applicable to ionization chambers of any shape and the accuracy is estimated to be 1.6% (1 SD). (Author)

  14. Augmented reality aiding collimator exchange at the LHC

    International Nuclear Information System (INIS)

    Martínez, Héctor; Fabry, Thomas; Laukkanen, Seppo; Mattila, Jouni; Tabourot, Laurent

    2014-01-01

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities

  15. Optimizing renal DMSA-scintigraphy with 7-pinhole collimator

    International Nuclear Information System (INIS)

    Botsch, H.; Pottmeyer, A.; Savaser, A.; Lochner, B.; Felix, R.

    1982-01-01

    Multiple pinhole emission tomographic imaging techniques are currently being applied to imaging of organs of a limited size. The purpose of this study was to evaluate the feasibility of this technique in kidney imaging with Tcsup(99m)-DMSA. A 7-pinhole collimator having 4.5 mm. pinhole apertures was used in conjunction with a widefield camera. Left and right kidney were imaged separately. Twelve small renal cysts with a diameter of 1 to 3.5 cm. verified by US or CAT were investigated by 7-pinhole and planar scintigraphy. Eight of 12 renal cysts were identified by 7-pinhole scintigraphy whereas only one cyst was seen by planar scintigraphy. The borderline of cysts detection was 1.5 cm. in 7-pinhole tomography. Basing on these comparative studies and experiences on many patient investigations it seems reasonable to perform renal scintigraphy with 7-pinhole tomography in a routine manner. (orig.)

  16. Beam collimator for a particle accelerator. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R

    1977-12-01

    The beam collimator for the electron beam coming from an electron accelerator consists of aperture plates and penumbra trimmers aligned parallel to them. To protect the patient from scattered radiation, additional tube plates are arranged between the radiation source and the patient. Continuous matching of the radiation field to the dimensions of a focus is achieved by providing a support plate outside the beam path which holds the tube plates. In this arrangement, the tube plates are aligned parallel to the edges of the aperture plates limiting the beam cone. The tube plates have different widths. They can be moved out of the beam path. Lining the inner walls of the tube plates with acrylic glass prevents the generation of secondary electrons and X-rays.

  17. Clinical significance of multi-leaf collimator calibration errors

    International Nuclear Information System (INIS)

    Norvill, Craig; Jenetsky, Guy

    2016-01-01

    This planning study investigates the clinical impact of multi-leaf collimator (MLC) calibration errors on three common treatment sites; head and neck (H&N), prostate and stereotactic body radiotherapy (SBRT) for lung. All plans used using either volumetric modulated adaptive therapy or dynamic MLC techniques. Five patient plans were retrospectively selected from each treatment site, and MLC errors intentionally introduced. MLC errors of 0.7, 0.4 and 0.2 mm were sufficient to cause major violations in the PTV planning criteria for the H&N, prostate and SBRT lung plans. Mean PTV dose followed a linear trend with MLC error, increasing at rates of 3.2–5.9 % per millimeter depending on treatment site. The results indicate that an MLC quality assurance program that provides sub-millimeter accuracy is an important component of intensity modulated radiotherapy delivery techniques.

  18. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  19. A proposal for quality assurance of multi-leaf collimators

    International Nuclear Information System (INIS)

    Hounsell, A R; Jordan, T J; Williams, P C

    1995-01-01

    Multi-leaf collimators (MLC's) are rapidly entering clinical service in many Institutes through-out the World. Commercial MLC's are reliable but highly complex devices that have new and sometimes complex maintenance and quality assurance (QA) requirements. The experience gained from installing the prototype Philips MLC and from using and maintaining two production model Philips MLC's - one four years old, one six months old - will be used to define the requirements of a QA schedule for MLC's. Problems specific to MLC's such as leaf positioning and radiation leakage between the leaves will be discussed and methods for measuring these problems presented. Recommendations for the frequency for performing these checks based on our experiences will be made. Preventative maintenance times, machine down times due to the MLC and planned Quality Control down times will be reported

  20. Augmented reality aiding collimator exchange at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Héctor, E-mail: hector.martinez@sensetrix.com [SenseTrix, PL 20 FI-00101 Helsinki (Finland); Fabry, Thomas [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); Laukkanen, Seppo [SenseTrix, PL 20 FI-00101 Helsinki (Finland); Mattila, Jouni [Tampere University of Technology, PO Box 527, FI-33101 Tampere (Finland); Tabourot, Laurent [SYMME, Université de Savoie, Polytech Annecy-Chambéry, 5 chemin de Bellevue, 74944 Annecy le Vieux (France)

    2014-11-01

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities.

  1. Collimation in the Transfer Lines to the LHC

    CERN Document Server

    Burkhardt, H; Kadi, Y; Kain, V; Weterings, W

    2004-01-01

    The intensities foreseen for injection into the LHC are over an order of magnitude above the expected damage levels. The TI 2 and TI 8 transfer lines between the SPS and LHC are each about 2.5 km long and comprise many magnet families. Despite planned power supply surveillance and interlocks, failure modes exist which could result in uncontrolled beam loss and serious transfer line or LHC equipment damage. We describe the collimation system in the transfer lines that has been designed to provide passive protection against damage at injection. Results of simulations to develop a conceptual design are presented. The optical and physical installation constraints are described, and the resulting element locations and expected system performance presented, in terms of the phase space coverage, local element temperature rises and the characteristics of the beam transmitted into the LHC.

  2. Energy budget in collimated gamma-ray bursts

    International Nuclear Information System (INIS)

    Tudose, Valeriu; Biermann, Peter

    2003-01-01

    There is increasing evidence for the existence of collimation in some, if not most, of the gamma-ray bursts. This would have direct implications, for instance, on the energy budget, the rate of events, but also indirect consequences for the theoretical models because it provides a tool to differentiate between their predictions. We consider the case of a structured jet, i.e. we assume the energy within the jet varies as a power-law, being a function of the angle between the jet axis and an arbitrary direction. We analyze first the situation in which the jet axis and the line of sight have a particular orientation, then we relax this assumption by allowing for an arbitrary viewing angle with respect to the symmetry axis of the jet. A qualitative study of the total energy content of the jet is performed. It turns out that the 'real' energy could be higher than what is inferred from observations. (authors)

  3. Self-collimating photonic crystal polarization beam splitter.

    Science.gov (United States)

    Zabelin, V; Dunbar, L A; Le Thomas, N; Houdré, R; Kotlyar, M V; O'Faolain, L; Krauss, T F

    2007-03-01

    We present theoretical and experimental results of a polarization splitter device that consists of a photonic crystal (PhC) slab, which exhibits a large reflection coefficient for TE and a high transmission coefficient for TM polarization. The slab is embedded in a PhC tile operating in the self-collimation mode. Embedding the polarization-discriminating slab in a PhC with identical lattice symmetry suppresses the in-plane diffraction losses at the PhC-non-PhC interface. The optimization of the PhC-non-PhC interface is thereby decoupled from the optimization of the polarizing function. Transmissions as high as 35% for TM- and 30% for TE-polarized light are reported.

  4. A collimator-converter system for IEC propulsion

    International Nuclear Information System (INIS)

    Momota, Hiromu; Miley, George H.

    2002-01-01

    The collimator-converter system extracts fusion power from D- 3 He fueled IEC devices and provides electricity needed to operate ionic thrusters and other-power components. The whole system is linear and consists of a series of collimator units at the center, magnetic expander units at both sides of the fusion units, followed by direct energy converters at both ends. This system is enclosed in a vacuum chamber with a magnetic channel provided by magnetic solenoids out of respective chambers. The fusion unit consists of an IEC fusion core, a pair of coils anti-parallel to the solenoid coils, and a stabilization coil that stabilizes the position of coil pair coils. The IEC fusion core is installed at the center of the pair coils. After the magnetic expander, velocities of fusion particles from D- 3 He fueled IEC units are directed to the magnetic channel, which guides energetic fusion particles as well as leaking unburned fuel components to a high-efficiency traveling wave direct energy converter (TWDEC). Leaking unburned fuel components are separated with a magnetic separator at the entrance of a direct energy converter and pumped out for further refueling. A TWDEC is made of an array of metallic meshed grids, each of which is connected to every terminal with an external transmission circuit. The transmission line couples to the direct energy converter. Substations for electricity, a cryogenic plant, and various power control systems are outside of the vacuum chamber. The length of the cylindrical system is essentially determined by the proton energy of 14.8 MeV and the radius should be large so as to reduce power flow density. The present system provides 250 MW f fusion power and converting it to 150 MW c electricity. Its size is 150 m(length)x6.6 m(diameter) in size and 185 tons in weight

  5. Dosimetric Characteristics of Dual Photon Energy Using Independent Collimator Jaws

    International Nuclear Information System (INIS)

    Kim, Jeung Kee; Choi, Young Min; Lee, Hyung Sik; Hur, Won Joo

    1996-01-01

    Purpose : The accurate dosimetry of independent collimator equipped for 6MV and 15MV X-ray beam was investigated to search for the optimal correction factor. Methods and Materials : The field size factors, beam quality and dose distribution were measured by using 6MV, 15MV X-ray. Field size factors were measured FROM 3X3cm 2 to 35X35cm 2 by using 0.6cc ion chamber (NE 2571) at Dmax. Beam qualities were measured at different field sizes, off-axis distances and depths. Isodose distributions at different off-axis distance using 10X10cm 2 field were also investigated and compared with symmetric field. Results : 1) Relative field size factors was different along lateral distance with maximum changes in 3.1% for 6MV and 5% for 15MV. But the field size factors of asymmetric fields were identical to the modified central-axis values in symmetric field, which corrected by off-axis ratio at Dmax. 2) The HVL and PDD was decreased by increasing off-axis distance. PDD was also decreased by increasing depth For field size more than 5X5cm 2 and depth less than 15cm, PDD of asymmetric field differs FROM that of symmetric one (0.5∼2% for 6MV and 0.4∼1.4% for 15MV). 3) The measured isodose curves demonstrate divergence effects and reduced doses adjacent to the edge close to the flattening filter center was also observed. Conclusion : When asymmetric collimator is used, calculation of MU must be corrected with off-axis and PDD with a caution of under dose in central axis

  6. Orthovoltage computer planning with a new type of variable collimator

    International Nuclear Information System (INIS)

    Beckham, W.A.; Hill, R.F.; Perez, M.D.

    1996-01-01

    Full text: The Liverpool Hospital Radiation Oncology Department has recently installed and commissioned a Pantak Therapax DXT-300 orthovoltage therapy treatment unit. Purchased with this was a variable collimator capable of producing rectangular fields up to 20 x 20 cm 2 . Occasionally patients who are treated with, for example, mediastinal deep therapy portals go on to have further megavoltage therapy (eg. total body irradiation (TBI)). The orthovoltage dose distribution in lung tissue can be the limiting factor in terms of proceeding with TBI due to the inherent risk of radiation induced pneumonitis. The present work assesses the ability of the Department's Varian Cadplan treatment planning system (TPS) to calculate dosage distribution for orthovoltage radiation fields delineated by the variable collimator. Data was collected using a Scanditronix RFA-300 beam data acquisition system (BDAS). For each of four qualities (0.85, 1.7, 2.6, and 3.8 mm Cu) profile data at five depths and central axis depth dose data were collected for square field sizes of 3, 4, 6, 8, 10, 12, 15 and 20 cm 2 , as input to the TPS. Isodose distributions produced by the TPS were then checked against the BDAS collected isodoses. Good agreement was found under these conditions of irradiation of a homogeneous medium. Work is ongoing to assess the accuracy of the TPS for simple heterogeneities which are introduced to these orthovoltage beams. It is expected that the heterogeneity correction method used by the TPS will be in error when higher atomic number (Z) media are introduced (eg. bone analogues) due to the fact that the algorithm assumes that tissue attenuation is related solely to electron density, which is generally valid for megavoltage photon beams where Compton interactions are predominant. With the increasing contribution from photo-electric interaction processes as the orthovoltage beam quality decreases, preliminary results have shown increasing TPS deviation under these

  7. SU-F-T-671: Effects of Collimator Material On Proton Minibeams

    International Nuclear Information System (INIS)

    Lee, E; Sandison, G; Cao, N; Stewart, R; Meyer, J; Eagle, J; Marsh, S

    2016-01-01

    Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) and neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to

  8. Sistema computacional para dosimetria de nêutrons e fótons baseado em métodos estocásticos aplicado a radioterapia e radiologia

    Directory of Open Access Journals (Sweden)

    Bruno Machado Trindade

    2011-04-01

    Full Text Available OBJETIVO: Este artigo mostra um procedimento de conversão de imagens de tomografia computadorizada ou de ressonância magnética em modelo de voxels tridimensional para fim de dosimetria. Este modelo é uma representação personalizada do paciente que pode ser usado na simulação, via código MCNP (Monte Carlo N-Particle, de transporte de partículas nucleares, reproduzindo o processo estocástico de interação de partículas nucleares com os tecidos humanos. MATERIAIS E MÉTODOS: O sistema computacional desenvolvido, denominado SISCODES, é uma ferramenta para planejamento computacional tridimensional de tratamentos radioterápicos ou procedimentos radiológicos. Partindo de imagens tomográficas do paciente, o plano de tratamento é modelado e simulado. São então mostradas as doses absorvidas, por meio de curvas de isodoses superpostas ao modelo. O SISCODES acopla o modelo tridimensional ao código MCNP5, que simula o protocolo de exposição à radiação ionizante. RESULTADOS: O SISCODES vem sendo utilizado no grupo de pesquisa NRI/CNPq na criação de modelos de voxels antropomórficos e antropométricos que são acoplados ao código MCNP para modelar braquiterapias e teleterapias aplicadas a tumores em pulmões, pelve, coluna, cabeça, pescoço, e outros. Os módulos atualmente desenvolvidos no SISCODES são apresentados junto com casos exemplos de planejamento radioterápico. CONCLUSÃO: O SISCODES provê de maneira rápida a criação de modelos de voxels personalizados de qualquer paciente que podem ser usados em simulações por códigos estocásticos tipo MCNP. A combinação da simulação via MCNP com um modelo personalizado do paciente traz grandes melhorias na dosimetria de tratamentos radioterápicos.

  9. Personal monitoring services available at Institute for Radiation Protection of ENEA; Il servizo di dosimetria personale dell'Istituto per la Radioprotezione dell'ENEA

    Energy Technology Data Exchange (ETDEWEB)

    Fantuzzi, E.; Bonarelli, T. [ENEA Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente

    1999-07-01

    Personnel monitoring provides the means to measure and record the radiation doses received by individual workers. The ionising radiation decree (230/95) set out the circumstances when the assessment and recording of person's exposure is legally required. Many employers issue dosemeters to staff even though there is no legal requirement to do so. This may be part of a quality assurance programme or as a reassurance measure. Dosemeter readings will serve to ensure compliance with legal dose limits and assure the employer that radiation exposure is as low as reasonably achievable. The ENEA (National Agency for New Technology, Energy and the Environment) IRP (Institute for Radiation Protection) individual monitoring service has been running for over 30 years. It offers personnel dosemeters which are based on its expertise and backed up by continual research and development. The report provides details of the dosemeters in use at IRP enable to decide which ones most suit the needs and shows IMS's organisation, customer and communications, dose reports form and administrative items. A short mention of future development will also be given. [Italian] La dosimetria individuale fornisce gli strumenti per misurare e registrare le dosi da radiazioni ionizzanti ricevute dai lavoratori esposti. Il decreto legislativo 230/95 stabilisce le circostanze in cui il monitoraggio individuale e' legalmente richiesto. Molti datori di lavoro forniscono dosimetri individuali anche quando non vi e' una richiesta legale spesso per seguire le regole di un programma di assicurazione di qualita' relativo alla radioprotezione o per ottenere una conferma che il principio ALARA sia soddisfatto. Il servzio di dosimetria personale dell'Istituto per la Radioprotezione dell'ENEA e' attivo da oltre 30 anni e offre dosimetri sviluppati sulla propria esperienza nelle tecniche dosimetriche che vengono continuamente aggiornati e adeguati rispecchiando lo stato dell

  10. Magnetic collimation and metal foil filtering for electron range and fluence modulation

    International Nuclear Information System (INIS)

    Phaisangittisakul, N.; D'Souza, W.D.; Ma Lijun

    2004-01-01

    We investigated the use of magnetically collimated electron beams together with metal filters for electron fluence and range modulation. A longitudinal magnetic field collimation method was developed to reduce skin dose and to improve the electron beam penumbra. Thin metal foils were used to adjust the energies of magnetically collimated electrons. The effects for different types of foils such as Al, Be, Cu, Pb, and Ti were studied using Monte Carlo calculations. An empirical pencil beam dose calculation model was developed to calculate electron dose distributions under magnetic collimation and foil modulation. An optimization method was developed to produce conformal dose distributions for simulated targets such as a horseshoe-shaped target. Our results show that it is possible to produce an electron depth dose enhancement peak using similar techniques of producing a spread-out Bragg peak. In conclusion, our study demonstrates new aspects of using magnetic collimation and foil filtration for producing fluence and range modulated electron dose distributions

  11. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    International Nuclear Information System (INIS)

    Fuenzalida, M.; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C.

    2011-01-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  12. [Evaluation of Dose Reduction of the Active Collimator in Multi Detector Row CT].

    Science.gov (United States)

    Ueno, Hiroyuki; Matsubara, Kosuke

    The purpose of this study was to evaluate the performance of active collimator by changing acquisition parameters and obtaining dose profiles in z-axis direction. Dose profiles along z-axis were obtained using XRQA2 Gafchromic film. As a result, the active collimator reduced overranging about 55% compared to that without the active collimator. In addition, by changing the combination of X-ray beam width (32 mm, 40 mm), pitch factor (1.4, 0.6), and the X-ray tube rotation time (0.5 s/rot, 1.0 s/rot), the overranging changed from 19.4 to 34.9 mm. Although the active collimator is effective for reducing overranging, it is necessary to adjust acquisition parameters by taking the properties of the active collimator for acquisition parameters, especially setting beam width, into consideration.

  13. Global and Local Loss Suppression in the UA9 Crystal Collimation Experiment

    CERN Document Server

    Montesano, S

    2012-01-01

    UA9 was operated in the CERN-SPS for some years in view of investigating the feasibility of the halo collimation assisted by bent crystals. Silicon crystals 2 mm long with bending angles of about 150 μrad are used as primary collimators. The crystal collimation process is obtained consistently through channeling with high efficiency. The loss profiles in the area of the crystal collimator setup and in the downstream dispersion suppressor area show a steady reduction of slightly less than one order of magnitude at the onset of the channeling process. This result holds both for protons and for lead ions. The corresponding loss map in the accelerator ring is accordingly reduced. These observations strongly support our expectation that the coherent deflection of the beam halo by a bent crystal should enhance the collimation efficiency in hadron colliders, such as LHC.

  14. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamalonis, A. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Weber, J. K. R., E-mail: rweber@anl.gov; Alderman, O. L. G. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Argonne National Laboratory, Argonne, Illinois 60439 (United States); Neuefeind, J. C.; Carruth, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Skinner, L. B. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Argonne National Laboratory, Argonne, Illinois 60439 (United States); Stony Brook University, Stony Brook, New York 11794 (United States); Benmore, C. J. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-09-15

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 Å{sup −1}, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å{sup −1}, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q ∼ 9.5 Å{sup −1} was significantly decreased when the collimators were installed.

  15. Advantage of fan beam collimators for contrast recovery of hyperfixation in clinical SPECT

    International Nuclear Information System (INIS)

    Vera, P.

    1997-01-01

    The influence of the collimator on the contrast recovery of hyperfixation was studied using a dual-headed single photon emission computer tomography (SPECT) system with standard clinical acquisition parameters. Three parallel collimator sets and two fan beam collimator sets were tested with a Jaszczak phantom. The six spheres of the phantom were filled with 99m Tc, and four background levels were progressively obtained by adding radioactivity to the cylinder of the phantom, providing four hyperfixation levels. The effects of angular sampling and reconstruction filters have been tested. The statistical analysis was performed with analysis of variance (ANOVA). This study demonstrates the advantage of ultra-high resolution fan beam collimators for contrast recovery of hyperfixation with SPECT when using 64 projections over 360 degree, in particular when the contrast is low. The authors also demonstrate that fan beam collimators permit smaller size hyperfixation detection

  16. A facility to produce collimated neutron beams at the Legnaro Laboratories

    International Nuclear Information System (INIS)

    Colautti, P.; Talpo, G.; Tornielli, G.

    1988-01-01

    The 7 MV Van de Graaff and the 16 MV Tandem accelerators at the Legnaro National Laboratories can be used to produce fast neutron fluxes of moderate intensity, ranging in energy from 1 MeV to 50 MeV. A W-polyethylene-Pb cylindrical collimator has been constructed in order to produce a collimated neutron beam, with well defined dose and microdose characteristics for radiobiological experiments. The collimator can be assembled in different configurations allowing both for different thicknesses and different beam apertures. Dosimetric measurements have been made with a d(4.5)+Be source. These demonstrate sharp beam edges with attenuation behind the shield of 20% with the 15 cm collimator and 1.5% with the 50 cm collimator. (author)

  17. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    Energy Technology Data Exchange (ETDEWEB)

    Fuenzalida, M. [Universidad de la Frontera, Temuco (Chile). Programa de Magister en Fisica Medica; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C., E-mail: fisicamedica@incancer.c [Instituto Nacional del Cancer, Santiago (Chile). Unidad de Fisica Medica

    2011-07-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  18. Observation of strong leakage reduction in crystal assisted collimation of the SPS beam

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Mirarchi, D. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Imperial College, London (United Kingdom); Montesano, S.; Redaelli, S. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Rossi, R. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Schoofs, P.; Smirnov, G. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Bagli, E.; Bandiera, L.; Baricordi, S. [INFN Sezione di Ferrara, Dipartimento di Fisica, Università di Ferrara, Ferrara (Italy); and others

    2015-09-02

    In ideal two-stage collimation systems, the secondary collimator–absorber should have its length sufficient to exclude practically the exit of halo particles with large impact parameters. In the UA9 experiments on the crystal assisted collimation of the SPS beam a 60 cm long tungsten bar is used as a secondary collimator–absorber which is insufficient for the full absorption of the halo protons. Multi-turn simulation studies of the collimation allowed to select the position for the beam loss monitor downstream the collimation area where the contribution of particles deflected by the crystal in channeling regime but emerging from the secondary collimator–absorber is considerably reduced. This allowed observation of a strong leakage reduction of halo protons from the SPS beam collimation area, thereby approaching the case with an ideal absorber.

  19. Compatibility of metal additive manufactured tungsten collimator for SPECT/MRI integration

    Energy Technology Data Exchange (ETDEWEB)

    Samudi, Amine M [INTEC, Ghent University/iMinds, Ghent (Belgium); Van Audenhaege, Karen [ELIS, Ghent University/iMinds, Gent (Belgium); Vermeeren, Gunter; Martens, Luc [INTEC, Ghent University/iMinds, Ghent (Belgium); Van Holen, Roel [ELIS, Ghent University/iMinds, Gent (Belgium); Joseph, Wout [INTEC, Ghent University/iMinds, Ghent (Belgium)

    2015-05-18

    We optimized the MR-compatibility of a novel tungsten collimator, produced with metal additive manufacturing that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the current density due to the gradient field and adapted the collimators by smart design to reduce the induced eddy currents. The z-gradient coil and the collimator were modeled with SEMCAD. The gradient strength was 510 mT/m, the gradient efficiency was about 3.4 mT/m/A. The setup was simulated with a working frequency of 10 kHz. The system consists of 7 identical collimators and digital silicon photomultipliers assembled in a ring. We evaluated the global reduction in current density J (reduction) based on the sum of all current densities in the collimator. We applied the following optimizations on the collimator: 1. We reduced the excessive material in the flanges. 2. We applied horizontal slits of 2 mm in the collimator surface. 3. We reduced material in the core; the photons are attenuated before they reach the core. The collimator will need a supporting structure. 4. The supporting structure can be avoided by using two vertical slits in the middle of the collimator. 5. We used a Z-shaped slit instead of the vertical slit. Results of simulations show that smaller flanges reduce the current density with 23%. The horizontal slits reduce the eddy currents with 6%. Using less material in the core or applying vertical slits results in the same reduction of current density. However, the vertical slits are cheaper because a hollow collimator requires supporting structures during production. Both can be combined if z-shaped slits are used to prevent attenuation problems. The reduction is then 27%. Finally, when all previous adaptations are combined, the reduction in eddy currents is about 56.3%.

  20. Automated collimation testing by determining the statistical correlation coefficient of Talbot self-images.

    Science.gov (United States)

    Rana, Santosh; Dhanotia, Jitendra; Bhatia, Vimal; Prakash, Shashi

    2018-04-01

    In this paper, we propose a simple, fast, and accurate technique for detection of collimation position of an optical beam using the self-imaging phenomenon and correlation analysis. Herrera-Fernandez et al. [J. Opt.18, 075608 (2016)JOOPDB0150-536X10.1088/2040-8978/18/7/075608] proposed an experimental arrangement for collimation testing by comparing the period of two different self-images produced by a single diffraction grating. Following their approach, we propose a testing procedure based on correlation coefficient (CC) for efficient detection of variation in the size and fringe width of the Talbot self-images and thereby the collimation position. When the beam is collimated, the physical properties of the self-images of the grating, such as its size and fringe width, do not vary from one Talbot plane to the other and are identical; the CC is maximum in such a situation. For the de-collimated position, the size and fringe width of the self-images vary, and correspondingly the CC decreases. Hence, the magnitude of CC is a measure of degree of collimation. Using the method, we could set the collimation position to a resolution of 1 μm, which relates to ±0.25   μ    radians in terms of collimation angle (for testing a collimating lens of diameter 46 mm and focal length 300 mm). In contrast to most collimation techniques reported to date, the proposed technique does not require a translation/rotation of the grating, use of complicated phase evaluation algorithms, or an intricate method for determination of period of the grating or its self-images. The technique is fully automated and provides high resolution and precision.

  1. Compatibility of metal additive manufactured tungsten collimator for SPECT/MRI integration

    International Nuclear Information System (INIS)

    Samudi, Amine M; Van Audenhaege, Karen; Vermeeren, Gunter; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-01-01

    We optimized the MR-compatibility of a novel tungsten collimator, produced with metal additive manufacturing that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the current density due to the gradient field and adapted the collimators by smart design to reduce the induced eddy currents. The z-gradient coil and the collimator were modeled with SEMCAD. The gradient strength was 510 mT/m, the gradient efficiency was about 3.4 mT/m/A. The setup was simulated with a working frequency of 10 kHz. The system consists of 7 identical collimators and digital silicon photomultipliers assembled in a ring. We evaluated the global reduction in current density J (reduction) based on the sum of all current densities in the collimator. We applied the following optimizations on the collimator: 1. We reduced the excessive material in the flanges. 2. We applied horizontal slits of 2 mm in the collimator surface. 3. We reduced material in the core; the photons are attenuated before they reach the core. The collimator will need a supporting structure. 4. The supporting structure can be avoided by using two vertical slits in the middle of the collimator. 5. We used a Z-shaped slit instead of the vertical slit. Results of simulations show that smaller flanges reduce the current density with 23%. The horizontal slits reduce the eddy currents with 6%. Using less material in the core or applying vertical slits results in the same reduction of current density. However, the vertical slits are cheaper because a hollow collimator requires supporting structures during production. Both can be combined if z-shaped slits are used to prevent attenuation problems. The reduction is then 27%. Finally, when all previous adaptations are combined, the reduction in eddy currents is about 56.3%.

  2. Sci-Thur PM – Brachytherapy 05: Surface Collimation Applied to Superficial Flap High Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Derek; Sabondjian, Eric; Lawrence, Kailin; Sankreacha, Raxa [University of Toronto, Carlo Fidani Peel Regional Cancer Center, Carlo Fidani Peel Regional Cancer Center, University of Toronto (Canada)

    2016-08-15

    Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations were sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.

  3. Sci-Thur PM – Brachytherapy 05: Surface Collimation Applied to Superficial Flap High Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Liu, Derek; Sabondjian, Eric; Lawrence, Kailin; Sankreacha, Raxa

    2016-01-01

    Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations were sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.

  4. Clinical use of a simulation-multileaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Marx, M; Vacha, P; Riis, B; Feyerabend, T; Richter, E [Medizinische Univ., Luebeck (Germany). Klinik fuer Strahlentherapie und Nuklearmedizin

    1998-07-01

    Background: At the University of Luebeck, radiotherapy is delivered by a 6/18-MV linear accelerator. Using the integrated multileaf collimator, irradiation of individually shaped treatment fields is possible in place of alloy blocks. Due to unsatisfactory pretherapeutic review of the radiation-field-specific multileaf collimator (MLC) configuration, we developed a simulation-multileaf collimator (SMLC) and assessed its feasibility at different tumor sites. Material and Methods: The SMLC is made of a perspex carrier with 52 horizontal sliding leaves. The position of each leaf is calculated by a 3D treatment-planning computer. The technician manually adjusts the leaves according to the beams-eye-view plot of the planning computer. Consequently, the SMLC is mounted on the therapy simulator at a distance of 64.8 cm from the focus. The treatment fields and the position of the leaves are documented by X-ray films. Results: Using the SMLC, radiation oncologists are able to review exactly the leaf configuration of each MLC-shaped radiation field and to correlate the MLC-shaped radiation field with the treated volume, the organs at risk and the port films acquired by the Portal Vision {sup trademark} system. Conclusion: The SMLC is a new tool to review radiation planning that uses an MLC in daily routine. The use of the SMLC improves the documentation and the quality assurance. It accelerates the treatment field review at the linear accelerator by comparing the SMLC simulator films with the portal images. (orig.) [Deutsch] Hintergrund: Seit 1994 werden Patienten an der Luebecker Universitaetsklinik fuer Strahlentherapie und Nuklearmedizin an einem Linearbeschleuniger bestrahlt, der mit einem Multileaf-Kollimator ausgeruestet ist. Dieser ermoeglicht die Bestrahlung individuell geformter Zielvolumina ohne gegossene Individualsatelliten. Wegen der unzureichenden praetherapeutischen Kontrolle der Lamellenkonfiguration des Multileaf-Kollimators wurde ein Simulations

  5. Introduction of a novel ultrahigh sensitivity collimator for brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Ae, E-mail: miaepark@bwh.harvard.edu; Kijewski, Marie Foley; Lyon, Morgan C.; Horky, Laura; Moore, Stephen C. [Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keijzers, Ronnie; Keijzers, Mark [Nuclear Fields USA, Des Plaines, Illinois 60018 (United States)

    2016-08-15

    Purpose: Noise levels of brain SPECT images are highest in central regions, due to preferential attenuation of photons emitted from deep structures. To address this problem, the authors have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. This hybrid collimator consisted of ultrashort cone-beam holes in the central regions and slant-holes in the periphery (USCB). We evaluated this collimator for quantitative brain imaging tasks. Methods: Owing to the uniqueness of the USCB collimation, the hole pattern required substantial variations in collimator parameters. To utilize the lead-casting technique, the authors designed two supporting plates to position about 37 000 hexagonal, slightly tapered pins. The holes in the supporting plates were modeled to yield the desired focal length, hole length, and septal thickness. To determine the properties of the manufactured collimator and to compute the system matrix, the authors prepared an array of point sources that covered the entire detector area. Each point source contained 32 μCi of Tc-99m at the first scan time. The array was imaged for 5 min at each of the 64 shifted locations to yield a 2-mm sampling distance, and hole parameters were calculated. The sensitivity was also measured using a point source placed along the central ray at several distances from the collimator face. High-count projection data from a five-compartment brain phantom were acquired with the three collimators on a dual-head SPECT/CT system. The authors calculated Cramer-Rao bounds on the precision of estimates of striatal and background activity concentration. In order to assess the new collimation system to detect changes in striatal activity, the authors evaluated the precision of measuring a 5% decrease in right putamen activity. The authors also reconstructed images of projection data obtained by summing data from the individual phantom

  6. Installing collimators in the next long shut-down: plans, status and challenges

    CERN Document Server

    Parma, V

    2011-01-01

    The first part of the collimation upgrade plan features the installation of 4 collimators in the 2 DS of point 3, in addition to the upgrade of the existing collimation system. What makes this upgrade so special is that for the first time collimators will be placed within the continuous cryostat of the LHC sectors. For this purpose, 16 main dipoles and 8 main quadrupoles will have to be disconnected and displaced by about 4.5 m, as well as the 2 electrical feedboxes (DFBAs) on either side of the DS, in order to create the space required for installing the additional collimators. The collimators themselves, although remaining of the warm type, feature a design substantially different from the others, mainly imposed by tight space constraints. These collimator modules will have to be complemented by a special bypass cryostat whose function is to preserve the continuity of the technical systems along the arcs (magnet powering, cryogenics and insulation vacuum), while providing cold to warm transitions to the bea...

  7. Studies on the optimal collimation of fast neutrons for neutron therapy

    International Nuclear Information System (INIS)

    Pfister, G.

    1973-08-01

    Optimal dimensions and materials of collimators for the neutron therapy installations under construction in Hamburg and Heidelberg were investigated by computer simulation of clinical irradiations. The neutron transport from the source through collimator and phantom was calculated by numerical solution of the Boltzmann equation by the Ssub(N) method with first collision correction. It was shown that the collimater quantity can be the same for both installations if the same materials are used. With homogeneous distribution of the materials in the collimator, tungsten was found to be most suitable, but almost the same results were achieved with nickel. Alloys of various elements did not improve W/Fe and Fe/(CH 2 )sub(n) distribution significantly improved the collimator quantity. The radiation scattering component is reduced by filters, by smaller beam cross sections, and by longer collimators. The γ quanta which are due to nuclear excitation and by the isotopes produced in the collimator are not dangerous to the patient. Long-term activation of the collimator material should, however, be allowed for in order to ensure radiation protection of the operating personnel. A hardening of the neutron energy spectra on the sides of the useful radiation beam could be determined. (orig./AK) [de

  8. Beam feasibility study of a collimator with in-jaw beam position monitors

    Science.gov (United States)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  9. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, L [Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia, CA (Canada); Thomas, C; Syme, A [Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia, CA (Canada); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Medical Physics, Nova Scotia Cancer Centre, Halifax, Nova Scotia (Canada)

    2016-06-15

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depicting the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases

  10. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    International Nuclear Information System (INIS)

    MacDonald, L; Thomas, C; Syme, A

    2016-01-01

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depicting the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases

  11. Design and development of collimator for 9 MeV BARC-ECIL linac

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Barnwal, Rajesh; Mahendra Kumar; Nayak, Susanta; Barje, S.R.; Sinha, A.K.; Mittal, K.C.; Chakravarthy, D.P.; Gantayet, L.M.; Baiswar, Rishabh

    2011-01-01

    High Energy electron beam technology is useful for both fundamental and applied research in the sciences, and also in many technical and industrial fields. It has been estimated that there are approximately 26,000 accelerators worldwide. The collimator is designed to function with a 9 MeV LINAC Test Facility (LTF) at ECIL, Hyderabad. The accelerated electron beam hits a tantalum target and X-Rays generated though the target are fed to the collimator. Thereafter, collimated high energy X-Rays will be used for cargo scanning. The X-ray collimator will complement the existing system at LTF, ECIL to get collimated fan beam. A collaborative effort has been made to identify novel and advanced materials to achieve low coefficient of friction for various lateral and angular movements of collimator plates weighing nearly 5 tons. Complex numerical calculations simulating extreme conditions and experimental tests have been undertaken using Ansys. In parallel, an innovative modular design concept of the assembly has been developed to allow fitting in alternative materials, minimizing the load induced deformations, withstanding accidents and accepting desired radiation doses. The collimator plates are made up of mild steel blocks of IS 2062A grade ensuring high geometrical stability. The assembly structures for the collimator are made up of high stiffness I-beams ISMB 150. Each plate has been machined with high precision Electric Discharge Machining (EDM) and Surface Grinding processes. The plates are also hard chrome plated to provide corrosion resistance and increase surface hardness. A full scale collimator prototype has been manufactured to validate each feature of the new design at the LTF, ECIL, Hyderabad. (author)

  12. Numerical modeling of a fast-neutron collimator for the Alcator A fusion device

    International Nuclear Information System (INIS)

    Fisher, W.A.

    1982-12-01

    A numerical procedure is developed to analyze neutron collimators used for spatial neutron measurements of plasma neutrons. The procedure is based upon Monte-Carlo methods and uses a standard Monte-Carlo code. The specific developments described herein involve a new approach to represent complex spatial details in a method that is conservative of computer time, retains accuracy and required only modest changes in already-developed Monte-Carlo procedures. The procedure was used to model the Alcator A collimator. The collimator consists of 448 cells and has a measured spatial point source response of 0.7 cm. The numerical procedure successfully predicts this response

  13. Peripheral dose in photon beams from a linear accelerator with a multileaf collimator

    International Nuclear Information System (INIS)

    Lope Lope, R.; Lozano Flores, F.; Gracia Sorrosal, J.; Font Gomez, J.A.; Hernandez Vitoria, A.

    2001-01-01

    Radiation doses outside the radiotherapy treatment field are of radiation protection interest when anatomical structures with very low dose tolerances might be involved. One of the major sources of peripheral dose, scatter from secondary collimators, depends on the configuration of the collimator. In this study, peripheral dose was measured at two depths for 6 and 18 MV photons from a linac Primus (Siemens) with a multileaf collimator (MLC). Comparative measurements were made both with leaves and with the upper jaw positioned at the field edge near to the detector. Configuring the MLC leaves at the field edge yielded a reduction in peripheral dose. (author)

  14. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  15. Brain SPECT with short focal-length cone-beam collimation

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-01-01

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR CRB ) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR CRB , compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR CRB increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR CRB were relatively robust to mismatches

  16. Crystal Collimation with Lead Ion Beams at Injection Energy in the LHC

    CERN Document Server

    Rossi, Roberto; Andreassen, Arvid; Butcher, Mark; Dionisio Barreto, Cristovao Andre; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Lamas Garcia, Inigo; Redaelli, Stefano; Scandale, Walter; Serrano Galvez, Pablo; Rijllart, Adriaan; Valentino, Gianluca; Galluccio, Francesca; CERN. Geneva. ATS Department

    2015-01-01

    During this MD, performed on December 2nd 2015, bent silicon crystals were tested with ion beams for a possible usage of crystal-assisted collimation. Tests were performed at injection energy, using both horizontal and vertical crystals. Ion channeling was observed for the first time with LHC beams at the record energy of 450 GeV and the channeled beams were probed with scans performed with secondary collimators. Measurements of cleaning efficiency of a crystal-based collimation system were also performed.

  17. Design of a pre-collimator system for neutronics benchmark experiment

    International Nuclear Information System (INIS)

    Cai Xinggang; Liu Jiantao; Nie Yangbo; Bao Jie; Ruan Xichao; Lu Yanxia

    2013-01-01

    Benchmark experiment is an important means to inspect the reliability and accuracy of the evaluated nuclear data, the effect/background ratios are the important parameters to weight the quality of experimental data. In order to obtain higher effect/background ratios, a pre-collimator system was designed for benchmark experiment. This system mainly consists of a pre-collimator and a shadow cone, The MCNP-4C code was used to simulate the background spectra under various conditions, from the results we found that with the pre-collimator system have a very marked improvement in the effect/background ratios. (authors)

  18. Experimental research on rear collimator in γ-ray industrial CT

    International Nuclear Information System (INIS)

    Wu Zhifang; Liu Jinhui

    2009-01-01

    Rear collimator is one of the key components in the γ-ray industrial CT, which plays an important role in removing scattering influence and improving the CT spatial resolution. High-performance CT is always associated with a high-quality collimator. By means of experiments, this paper discusses the behavior of collimators with different shapes and structures from the aspects of detector output signal, mass attenuation coefficient of the inspected object and quality of the actual CT image. The qualitative and quantitative results are reached, which are helpful for the design of high-performance industrial CT.

  19. Compact collimators designed with a modified point approximation for light-emitting diodes

    Science.gov (United States)

    Luo, Tao; Wang, Gang

    2017-09-01

    We present a novel freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a compact collimated lenses with Aspect Ratio = 0.219 is presented. Moreover, the utility efficiency (UE) inside the angle defined by ideal concentrator hypothesis with different lens-to-LED size ratios for both this lens and TIR lens are presented. A prototype of the collimator lens is also made to verify the practical performance of the lens, which has light distribution very compatible with the simulation results.

  20. Multileaf Collimator Characteristics and Reliability Requirements for IMRT Elekta System

    International Nuclear Information System (INIS)

    Liu, Chihray; Simon, Thomas A.; Fox, Christopher; Li, Jonathan; Palta, Jatinder R.

    2008-01-01

    Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm

  1. Collimation and material science studies (ColMat) at GSI.

    CERN Document Server

    Stadlmann, J; Kollmus, H; Krause, M; Mustafin, E; Petzenhauser, I; Spiller, P; Strasik, I; Tahir, N; Tomut, M; Trautmann, C

    2010-01-01

    Within the frame of the EuCARD program, the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt is performing accelerator R&D in workpackage 8: ColMat. The coordinated effort is focussed on materials aspects important for building the FAIR accelerator facility at GSI and the LHC upgrade at CERN. Accelerator components and especially protection devices have to be operated in high dose environments. The radiation hazard occurs either by the primary proton and ion beams or the secondary radiation after initial beam loss. Detailed numerical simulations have been carried out to study the damage caused to solid targets by the full impact of the LHC beam as well as the SPS beam. Tungsten, copper and graphite as possible collimator materials have been studied. Experimental an theoretical studies on radiation damage on materials used for the LHC upgrade and the FAIR accelerators are performed at the present GSI experimental facilities. Technical decisions based on these results will have an impact on the F...

  2. A collimated neutron detector for RFP plasmas in MST

    Energy Technology Data Exchange (ETDEWEB)

    Capecchi, W. J., E-mail: capecchi@wisc.edu; Anderson, J. K.; Bonofiglo, P. J.; Kim, J.; Sears, S. [University of Wisconsin- Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    The neutron emissivity profile in the Madison Symmetric Torus is being reconstructed through the use of a collimated neutron detector. A scintillator-photomultiplier tube (PMT) system is employed to detect the fusion neutrons with the plasma viewing volume defined by a 55 cm deep, 5 cm diameter aperture. Effective detection of neutrons from the viewing volume is achieved through neutron moderation using 1300 lbs of high density polyethylene shielding, which modeling predicts attenuates the penetrating flux by a factor of 10{sup 4} or more. A broad spectrum of gamma radiation is also present due to the unconfined fusion proton bombardment of the thick aluminum vacuum vessel. A 15 cm cylindrical liquid scintillator of 3.8 cm diameter is used to further increase directional sensitivity. A fast (5 ns rise time) preamplifier and digitization at 500 MHz prevent pulse pile-up even at high count rates (∼10{sup 4}/s). The entire neutron camera system is situated on an adjustable inclining base which provides the differing plasma viewing volumes necessary for reconstruction of the neutron emissivity profile. This profile, directly related to the fast-ion population, allows for an investigation of the critical fast-ion pressure gradient required to destabilize a neutral beam driven Alfvénic mode which has been shown to transport fast ions.

  3. Novel adaptive fiber-optics collimator for coherent beam combination.

    Science.gov (United States)

    Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2014-12-15

    In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.

  4. Gate-controlled quantum collimation in nanocolumn resonant tunnelling transistors

    International Nuclear Information System (INIS)

    Wensorra, J; Lepsa, M I; Trellenkamp, S; Moers, J; Lueth, H; Indlekofer, K M

    2009-01-01

    Nanoscaled resonant tunneling transistors (RTT) based on MBE-grown GaAs/AlAs double-barrier quantum well (DBQW) structures have been fabricated by a top-down approach using electron-beam lithographic definition of the vertical nanocolumns. In the preparation process, a reproducible mask alignment accuracy of below 10 nm has been achieved and the all-around metal gate at the level of the DBQW structure has been positioned at a distance of about 20 nm relative to the semiconductor nanocolumn. Due to the specific doping profile n ++ /i/n ++ along the transistor nanocolumn, a particular confining potential is established for devices with diameters smaller than 70 nm, which causes a collimation effect of the propagating electrons. Under these conditions, room temperature optimum performance of the nano-RTTs is achieved with peak-to-valley current ratios above 2 and a peak current swing factor of about 6 for gate voltages between -6 and +6 V. These values indicate that our nano-RTTs can be successfully used in low power fast nanoelectronic circuits.

  5. Multileaf collimator characteristics and reliability requirements for IMRT Elekta system.

    Science.gov (United States)

    Liu, Chihray; Simon, Thomas A; Fox, Christopher; Li, Jonathan; Palta, Jatinder R

    2008-01-01

    Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm.

  6. Methodology for Multileaf Collimator Quality Assurance in clinical conditions

    International Nuclear Information System (INIS)

    Diaz M, R. M.; Rodriguez Z, M.; Juarez D, A.; Romero R, R.

    2013-01-01

    Multileaf Collimators (MLCs) have become an important technological advance as part of clinical linear accelerators (linacs) for radiotherapy. Treatment planning and delivery were substantially modified after these devices. However, it was needed to develop Quality Assurance (QA) methodologies related to the performance of these developments. The most common methods for QA of MLC are made in basic conditions that hardly cover all possible difficulties in clinical practice. Diaz et. el. developed a methodology based upon volumetric detectors bidimensional arrays that can be extended to more demanding situations. In this work, the Auril methodology of Diaz et. al. was implemented to the irradiation with the linac gantry in horizontal position. A mathematical procedure was developed to ease the dosimetric centering of the device with the Auril centering tool. System calibration was made as in the typical Auril methodology. Patterns with leaf misplacements in known positions were irradiated. the method allowed the detection of leafs' misplacements with a minimum number of false positives. We concluded that Auril methodology can be applied in clinical conditions. (Author)

  7. Review of BLM thresholds at tertiary LHC collimators

    CERN Document Server

    AUTHOR|(CDS)2257482; Zanetti, Marco

    The Large Hadron Collider is designed to accelerate protons at the unprecedented energy of 7 TeV. With a total stored energy of 360 MJ, even tiny losses can cause machine downtime or induce damage to sensitive accelerator components. The Beam Loss Monitors (BLMs) are an important component of the complex LHC protection system. They consist of a series of ionisation chambers located all around the ring to detect secondary particle showers induced by beam losses. The monitors are assigned thresholds such that if the radiation generated by the loss is too high, the BLM triggers a beam dump, preventing the loss to grow excessively. BLM signals are recorded for different integration windows, in order to detect losses on very different time scales, ranging from the extremely short ones (taking place over half a turn) to those very close to steady state (i.e. lasting for more than a minute). The LHC is equipped with a complex collimation system, to provide the machine with passive protection in case of transient los...

  8. Modification of a three-dimensional treatment planning system for the use of multi-leaf collimators in conformation radiotherapy

    International Nuclear Information System (INIS)

    Boesecke, R.; Becker, G.; Alandt, K.; Pastyr, O.; Doll, J.; Schlegel, W.; Lorenz, W.J.

    1991-01-01

    The multi-leaf collimator of the DKFZ is designed as a low cost add-on device for conventional linear accelerators for radiotherapy. The technical specification of the computer controlled collimator is briefly described . A major limitation in the use of the wide capabilities of multi-leaf collimators in the clinic is still an appropriate treatment planning system. This paper describes treatment planning and dose calculation techniques for multi-leaf collimators and shows examples where the capabilities of the collimators are used extensively. (author). 18 refs.; 8 figs.; 2 tabs

  9. WE-AB-BRB-10: Filmless QA of CyberKnife MLC-Collimated and Iris-Collimated Fields

    International Nuclear Information System (INIS)

    Gersh, J

    2015-01-01

    Purpose: Current methods of CK field shape QA is based on the use of radiochromic film. Though accurate results can be attained, these methods are prone to error, time consuming, and expensive. The techniques described herein perform similar QA using the FOIL Detector (Field, Output, and Image Localization). A key feature of this in-house QA solution, and central to this study, is an aSi flat-panel detector which provides the user with the means to perform accurate, immediate, and quantitative field analysis. Methods: The FOIL detector is automatically aligned in the CK beam using fiducial markers implanted within the detector case. Once the system is aligned, a treatment plan is delivered which irradiates the flat-panel imager using the field being tested. The current study tests each of the clinically-used fields shaped using the Iris variable-aperture collimation system using a plan which takes 6 minutes to deliver. The user is immediately provided with field diameter and beam profile, as well as a comparison to baseline values. Additionally, the detector is used to acquire and analyze leaf positions of the InCise multi-leaf collimation system. Results: Using a 6-minute plan consisting of 11 beams of 25MU-per-beam, the FOIL detector provided the user with a quantitative analysis of all clinically-used field shapes. The FOIL detector was also able to clearly resolve field edge junctions in a picket fence test, including slight over-travel of individual leaves as well as inter-leaf leakage. Conclusion: The FOIL system provided comparable field diameter and profile data when compared to methods using film; providing results much faster and with 5% of the MU used for film. When used with the MLC system, the FOIL detector provided the means for immediate quantification of the performance of the system through analysis of leaf positions in a picket fence test field. Author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts

  10. Variable Circular Collimator in Robotic Radiosurgery: A Time-Efficient Alternative to a Mini-Multileaf Collimator?

    International Nuclear Information System (INIS)

    Water, Steven van de; Hoogeman, Mischa S.; Breedveld, Sebastiaan; Nuyttens, Joost J.M.E.; Schaart, Dennis R.; Heijmen, Ben J.M.

    2011-01-01

    Purpose: Compared with many small circular beams used in CyberKnife treatments, beam's eye view-shaped fields are generally more time-efficient for dose delivery. However, beam's eye view-shaping devices, such as a mini-multileaf collimator (mMLC), are not presently available for CyberKnife, although a variable-aperture collimator (Iris, 12 field diameters; 5-60 mm) is available. We investigated whether the Iris can mimic noncoplanar mMLC treatments using a limited set of principal beam orientations (nodes) to produce time-efficient treatment plans. Methods and Materials: The data from 10 lung cancer patients and the beam-orientation optimization algorithm 'Cycle' were used to generate stereotactic treatment plans (3 x 20 Gy) for a CyberKnife virtually equipped with a mMLC. Typically, 10-16 favorable beam orientations were selected from 117 available robot node positions using beam's eye view-shaped fields with uniform fluence. Second, intensity-modulated Iris plans were generated by inverse optimization of nonisocentric circular candidate beams targeted from the same nodes selected in the mMLC plans. The plans were evaluated using the mean lung dose, lung volume receiving ≥20 Gy, conformality index, number of nodes, beams, and monitor units, and estimated treatment time. Results: The mMLC plans contained an average of 12 nodes and 11,690 monitor units. For a comparable mean lung dose, the Iris plans contained 12 nodes, 64 beams, and 21,990 monitor units. The estimated fraction duration was 12.2 min (range, 10.8-13.5) for the mMLC plans and 18.4 min (range, 12.9-28.5) for the Iris plans. In contrast to the mMLC plans, the treatment time for the Iris plans increased with an increasing target volume. The Iris plans were, on average, 40% longer than the corresponding mMLC plans for small targets ( 3 ) and ≤121% longer for larger targets. For a comparable conformality index, similar results were obtained. Conclusion: For stereotactic lung irradiation, time

  11. WE-AB-BRB-10: Filmless QA of CyberKnife MLC-Collimated and Iris-Collimated Fields

    Energy Technology Data Exchange (ETDEWEB)

    Gersh, J [Gibbs Cancer Center and Research Institute - Pelham, Greer, SC (United States); Spectrum Medical Physics, LLC, Greenville, SC (United States)

    2015-06-15

    Purpose: Current methods of CK field shape QA is based on the use of radiochromic film. Though accurate results can be attained, these methods are prone to error, time consuming, and expensive. The techniques described herein perform similar QA using the FOIL Detector (Field, Output, and Image Localization). A key feature of this in-house QA solution, and central to this study, is an aSi flat-panel detector which provides the user with the means to perform accurate, immediate, and quantitative field analysis. Methods: The FOIL detector is automatically aligned in the CK beam using fiducial markers implanted within the detector case. Once the system is aligned, a treatment plan is delivered which irradiates the flat-panel imager using the field being tested. The current study tests each of the clinically-used fields shaped using the Iris variable-aperture collimation system using a plan which takes 6 minutes to deliver. The user is immediately provided with field diameter and beam profile, as well as a comparison to baseline values. Additionally, the detector is used to acquire and analyze leaf positions of the InCise multi-leaf collimation system. Results: Using a 6-minute plan consisting of 11 beams of 25MU-per-beam, the FOIL detector provided the user with a quantitative analysis of all clinically-used field shapes. The FOIL detector was also able to clearly resolve field edge junctions in a picket fence test, including slight over-travel of individual leaves as well as inter-leaf leakage. Conclusion: The FOIL system provided comparable field diameter and profile data when compared to methods using film; providing results much faster and with 5% of the MU used for film. When used with the MLC system, the FOIL detector provided the means for immediate quantification of the performance of the system through analysis of leaf positions in a picket fence test field. Author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts

  12. Design of a Multi-Pinhole Collimator for I-123 DaTscan Imaging on Dual-Headed SPECT Systems in Combination with a Fan-Beam Collimator.

    Science.gov (United States)

    King, Michael A; Mukherjee, Joyeeta M; Könik, Arda; Zubal, I George; Dey, Joyoni; Licho, Robert

    2016-02-01

    For the 2011 FDA approved Parkinson's Disease (PD) SPECT imaging agent I-123 labeled DaTscan, the volume of interest (VOI) is the interior portion of the brain. However imaging of the occipital lobe is also required with PD for calculation of the striatal binding ratio (SBR), a parameter of significance in early diagnosis, differentiation of PD from other disorders with similar clinical presentations, and monitoring progression. Thus we propose the usage of a combination of a multi-pinhole (MPH) collimator on one head of the SPECT system and a fan-beam on the other. The MPH would be designed to provide high resolution and sensitivity for imaging of the interior portion of the brain. The fan-beam collimator would provide lower resolution but complete sampling of the brain addressing data sufficiency and allowing a volume-of-interest to be defined over the occipital lobe for calculation of SBR's. Herein we focus on the design of the MPH component of the combined system. Combined reconstruction will be addressed in a subsequent publication. An analysis of 46 clinical DaTscan studies was performed to provide information to define the VOI, and design of a MPH collimator to image this VOI. The system spatial resolution for the MPH was set to 4.7 mm, which is comparable to that of clinical PET systems, and significantly smaller than that of fan-beam collimators employed in SPECT. With this set, we compared system sensitivities for three aperture array designs, and selected the 3 × 3 array due to it being the highest of the three. The combined sensitivity of the apertures for it was similar to that of an ultra-high resolution fan-beam (LEUHRF) collimator, but smaller than that of a high-resolution fan-beam collimator (LEHRF). On the basis of these results we propose the further exploration of this design through simulations, and the development of combined MPH and fan-beam reconstruction.

  13. Performance study of a fan beam collimator designed for a multi-modality small animal imaging device

    International Nuclear Information System (INIS)

    Sabbir Ahmed, ASM; Kramer, Gary H.; Semmler, Wolfrad; Peter, Jorg

    2011-01-01

    This paper describes the methodology to design and conduct the performances of a fan beam collimator. This fan beam collimator was designed to use with a multi-modality small animal imaging device and the performance of the collimator was studied for a 3D geometry. Analytical expressions were formulated to calculate the parameters for the collimator. A Monte Carlo model was developed to analyze the scattering and image noises for a 3D object. The results showed that the performance of the fan beam collimator was strongly dependent on the source distribution and position. The fan beam collimator showed increased counting efficiency in comparison to a parallel hole collimator. Inside attenuating medium, the increased attenuating effect outweighed the fan beam increased counting efficiency.

  14. A new collimator for measurement of rCBF by means of gamma camera

    International Nuclear Information System (INIS)

    Zechmann, W.; Oberladstaetter, M.; Raccabona, G.; Vogl, G.; Gerstenbrand, F.

    1982-01-01

    Atraumatic measurement of rCBF by means of gamma camera and conventional collimators requires high doses of 133 Xenon to obtain high count rates over the cerebral ROI's. The input of time-activity curve of breathing air by means of a probe measurement is not possible on line without difficulties. A new collimator, developed by ours, which is comparable with standard rCBF-Multiprobe systems, which allows high countrates and low dose of 133 Xenon is presented. A special air bypass enables to get the breathing curve with simple ROI technique. The collimator can easily be adapted to the camera by means of an insert adapter ring. With this collimator the rCBF measurement with conventional equipment of a nuclear medicine department is possible. (Author)

  15. The design of the detector and collimators for a hybrid scanner

    International Nuclear Information System (INIS)

    Vauramo, E.; Virjo, A.

    1977-01-01

    The hybrid scanner is a scanning device in which a long crystal with two or more photomultiplier (PM) tubes acts as a gamma camera along the crystal axis; the device acts as a linear scanner in a direction perpendicular to the crystal axis. A detailed analysis of the intrinsic resolution and uniformity is given for a two-PM-tube hybrid scanner (with one PM tube at each end) and the expressions derived should help the designer to choose the best crystal system. Collimation theory is discussed for the general hybrid scanner. Expressions and graphs are given to help in the design of a collimator with the best balance between the conflicting requirements of resolution, sensitivity, depth independence and freedom from artifacts (collimator holes may be seen in the image at high energy). Examples of practical collimators are given for energies of 80 to 140, 364, 511, 662 and 840 keV. (author)

  16. Charged particle beams collimation in electrostatic mirrors of the cylindrical, spherical and hyperbolic types

    International Nuclear Information System (INIS)

    Saulebekov, A.O.; Asylbekova, S.N.; Tazhibaeva, S.D.; Abdrakhmanova, N.G.

    2004-01-01

    The equation corresponding to the conditions of the collimations of the first, second orders have been obtained. It was shown that high quality of beam parallelism is combined with high angular dispersion on energy. (author)

  17. Tomographic images of cerebral blood flow using a slant hole collimator

    International Nuclear Information System (INIS)

    Wraight, E.P.; Barber, R.W.; Crossland, P.; Maltby, P.

    1983-01-01

    The feasibility of using a rotating slant hole (RSH) collimator on simple tomographic equipment such as a standard gamma camera interfaced to a general purpose Nuclear Medicine computer is reported for producing images of cerebral blood flow following the administration of 123 I-iodoamphetamine to patients. Initial studies produced satisfactory images, thus opening the possibility of tomographic cerebral blood flow imaging to centres not possessing sophisticated tomographic equipment. Planar resolution is superior to that reported for a 25 0 RSH collimator. Axial resolution is not as good at small source distances but is comparable at distances beyond 10 cm. Sensitivity is comparable to other RSH collimators and is similar to Technicare's parallel hole general all purpose collimator. (UK)

  18. Betatron-collimation Studies for Heavy Ions in the FCC-hh

    CERN Multimedia

    Logothetis Agaliotis, Efstathios

    2018-01-01

    One of the biggest challenges in the design of the FCC-hh is the collimation system. From LHC experience it is known that a collimation system optimized for proton cleaning has a significantly reduced efficiency for heavy ions. The study presented in this contribution evaluates the betatron-collimation efficiency for the heavy-ion operation with lead nuclei at a beam energy of 50 Z TeV in the system designed for proton operation. The fragmentation processes of the main beam particles in the primary collimator are simulated with FLUKA and fragments are individually tracked with SixTrack until being lost in the downstream aperture. In this way a first-impact loss-map is obtained, identifying locations where high energy deposition are to be expected. This provides a first-level assessment of feasibility and allows to include countermeasures in the conceptual accelerator design.

  19. Energy Deposition in Adjacent LHC Superconducting Magnets from Beam Loss at LHC Transfer Line Collimators

    CERN Document Server

    Beavan, S; Kain, V

    2006-01-01

    Injection intensities for the LHC are over an order of magnitude above the damage threshold. The collimation system in the two transfer lines is designed to dilute the beam sufficiently to avoid damage in case of accidental beam loss or mis-steered beam. To maximise the protection for the LHC most of the collimators are located in the last 300 m upstream of the injection point where the transfer lines approach the LHC machine. To study the issue of possible quenches following beam loss at the collimators part of the collimation section in one of the lines, TI 8, together with the adjacent part of the LHC has been modeled in FLUKA. The simulated energy deposition in the LHC for worst-case accidental losses and as well as for losses expected during a normal filling is presented.

  20. Trapped Mode Study For A Rotatable Collimator Design For The LHC Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Liling; Ng, Cho-Kuen; Smith, Jeffery Claiborne; Caspers, Fritz; /SLAC /CERN

    2009-06-23

    A rotatable collimator is proposed for the LHC phase II collimation upgrade. When the beam crosses the collimator, it will excite trapped modes that can contribute to the beam energy loss and power dissipation on the vacuum chamber wall. Transverse trapped modes can also generate transverse kicks on the beam and may thus affect the beam quality. In this paper, the parallel eigensolver code Omega3P is used to search for all the trapped modes below 2 GHz in two collimator designs, one with rectangular and the other with circular vacuum chamber. It is found that the longitudinal trapped modes in the circular vacuum chamber design may cause excessive heating. Adding ferrite tiles on the circular vacuum chamber wall can strongly damp these trapped modes. We will present and discuss the simulation results.

  1. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING

    International Nuclear Information System (INIS)

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-01-01

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND

  2. Collimation quench test with 6.5 TeV proton beams

    CERN Document Server

    Salvachua Ferrando, Belen Maria; Bruce, Roderik; Hermes, Pascal Dominik; Holzer, Eva Barbara; Jacquet, Delphine; Kalliokoski, Matti; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Skordis, Eleftherios; Valentino, Gianluca; Valloni, Alessandra; Wollmann, Daniel; Zerlauth, Markus; CERN. Geneva. ATS Department

    2016-01-01

    We show here the analysis of the MD test that aimed to quench the superconducting magnets in the dispersion suppressor region downstream of the main betatron collimation system. In Run I there were several attempts to quench the magnets in the same region. This was done by exciting the Beam 2 in a controlled way using the transverse damper and generating losses leaking from the collimation cleaning. No quench was achieved in 2013 with a maximum of 1 MW of beam power loss absorbed by the collimation system at 4 TeV beam energy. In 2015 a new collimation quench test was done at 6.5 TeV aiming at similar power loss over longer period, 5-10 s. The main outcome of this test is reviewed.

  3. Optimization of a pinhole collimator in a SPECT scintillating fiber detector system: a Monte Carlo analysis

    International Nuclear Information System (INIS)

    Hademenos, G.J.

    1994-01-01

    Monte Carlo simulations were used to optimize the dimensions of a lead pinhole collimator in a photon emission computed tomography (SPECT) system consisting of a line of equally spaced Tc-99m point sources and a plastic scintillating fiber detector. The optimization was performed by evaluating the spatial resolution and scanner sensitivity for each source distribution location and collimator parameter variation. An optimal spatial resolution of 0.43 cm FWHM was observed for a source distribution positioned 2.0 cm from the collimated scintillating fiber detection system with a pinhole radius of 1.0 mm and a collimator thickness of 3.0 cm for a 10,000 emission photon simulation. The optimal sensitivity occurred for a source distance of 2.0 cm, a radius of 3.0 mm and a thickness of 3.0 cm. (author)

  4. The Performance of Reflecting Multichannel Collimators as a Neutron Beam Filter and Polarizer

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Passell, L.; Stecher-Rasmussen, F.

    1963-01-01

    Summarizes the results obtained to date from a study of the properties of reflecting multi-channel collimators. The measurements have not yet been completed but enough information is available to give an indication of the capabilities of the system....

  5. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    Science.gov (United States)

    Simpson, D. R.

    1981-06-01

    Multi-pinhole gamma camera collimation was introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. A possible method for improving the images obtained by this technique by combining two multi-pinhole views taken 90 deg apart was investigated. Collimators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 sq mm, while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration.

  6. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2014-02-01

    Full Text Available Collimators with embedded beam position monitor (BPM button electrodes will be installed in the Large Hadron Collider (LHC during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  7. Comparison of LHC collimator beam-based alignment to BPM-Interpolated centers

    CERN Document Server

    Valentino, G; Assmann, R W; Bruce, R; Muller, G J; Redaelli, S; Rossi, A; Lari, L

    2012-01-01

    The beam centers at the Large Hadron Collider collimators are determined by beam-based alignment, where both jaws of a collimator are moved in separately until a loss spike is detected on a Beam LossMonitor downstream. Orbit drifts of more than a few hundred micrometers cannot be tolerated, as they would compromise the performance of the collimation system. Beam Position Monitors (BPMs) are installed at various locations around the LHC ring, and a linear interpolation of the orbit can be obtained at the collimator positions. In this paper, the results obtained from beam-based alignment are compared with the orbit interpolated from the BPM data throughout the 2011 and 2012 LHC proton runs.

  8. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  9. Relationship between the pitch of modulation collimators and the determination accuracy of source positions

    International Nuclear Information System (INIS)

    Fujii, Masami; Nishimura, Jun

    1989-01-01

    The celestial positions of X-ray bursters and gamma-ray burst sources can be accurately determined with rotating modulation collimators which possess wide fields of view and also high angular resolutions. Since the determination accuracy is dependent on the signal to noise ratio of incident photons, the distribution of signal power is analysed and the optimum pitch of the modulation collimator for a burst of a given size is discussed. (author)

  10. Significance of self magnetic field in long-distance collimation of laser-generated electron beams

    OpenAIRE

    Chen, Shi; Huang, Jiaofeng; Niu, Yifei; Dan, Jiakun; Chen, Ziyu; Li, Jianfeng

    2014-01-01

    Long-distance collimation of fast electron beams generated by laser-metallic-wire targets has been observed in recent experiments, while the mechanism behind this phenomenon remains unclear. In this work, we investigate in detail the laser-wire interaction processes with a simplified model and Classical Trajectory Monte Carlo simulations, and demonstrate the significance of the self magnetic fields of the beams in the long-distance collimation. Good agreements of simulated image plate pattern...

  11. Evaluating the variation of response of ionizing chamber type pencil for different collimators

    International Nuclear Information System (INIS)

    Andrade, Lucio das Chagas de; Peixoto, Jose Guilherme Pereira

    2014-01-01

    The pencil ionization chamber is used in dosimetric procedures for X-ray beams in the energy range of a scanner. Calibration of such camera is still being extensively studied because the procedure is different from the others. To study the variation of response of the camera for different collimators was analyzed three different collimators. It was found that among the other showed the best response was the opening of 30 mm. (author)

  12. Poster - 23: Dosimetric Characterization and Transferability of an Accessory Mounted Mini-Beam Collimator

    International Nuclear Information System (INIS)

    Davis, William; Crewson, Cody; Alexander, Andrew; Cranmer-Sargison, Gavin; Kundapur, Vijayananda

    2016-01-01

    Objective: The dosimetric characterization of an accessory-mounted mini-beam collimator across three beam matched linear accelerators. Materials and Methods: Percent depth dose and profiles were measured for the open and mini-beam collimated fields. The average beam quality and peak-to-valley dose ratio (PVDR), the ratio of average peak dose to average valley dose, were obtained from these measurements. The open field relative output and the mini-beam collimator factor, the ratio of the mini-beam dose to open field dose at the beam center, were measured for square fields of side 2, 3, 4, and 5 cm. Mini-beam output as a function of collimator inclination angle relative to the central axis was also investigated. Results and Discussion: Beam quality for both the open and mini-beam collimated fields agreed across all linacs to within ±1.0%. The PVDR was found to vary by up to ±6.6% from the mean. For the 2, 3, and 4 cm fields the average open field relative output with respect to the 5 cm field was 0.874±0.4%, 0.921±0.3%, and 0.962±0.1%. The average collimator factors were 0.450±3.9%, 0.443±3.9%, 0.438±3.9%, and 0.434±3.9%. A decrease in collimator factor greater than 7% was found for an inclination angle change of 0.09°. Conclusion: The mini-beam collimator has revealed a difference between the three linacs not apparent in the open field data, yet transferability can still be attained through thorough dosimetric characterization.

  13. Modulation transfer function assessment in parallel beam and fan beam collimators with square and cylindrical holes.

    Science.gov (United States)

    Khorshidi, Abdollah; Ashoor, Mansour

    2014-05-01

    This study investigates modulation transfer function (MTF) in parallel beam (PB) and fan beam (FB) collimators using the Monte Carlo method with full width at half maximum (FWHM), square and circular-shaped holes, and scatter and penetration (S + P) components. A regulation similar to the lead-to-air ratio was used for both collimators to estimate output data. The hole pattern was designed to compare FB by PB parameters. The radioactive source in air and in a water phantom placed in front of the collimators was simulated using MCNP5 code. The test results indicated that the square holes in PB (PBs) had better FWHM than did the cylindrical (PBc) holes. In contrast, the cylindrical holes in the FB (FBc) had better FWHM than the square holes. In general, the resolution of FBc was better than that of the PBc in air and scatter mediums. The S + P decreased for all collimators as the distance from the source to the collimator surface (z) increased. The FBc had a lower S + P than FBs, but PBc had a higher S + P than PBs. Of the FB and PB collimators with the identical hole shapes, PBs had a smaller S + P than FBs, and FBc had a smaller S + P than PBc. The MTF value for the FB was greater than for the PB and had increased spatial frequency; the FBc had higher MTF than the FBs and PB collimators. Estimating the FB using PB parameters and diverse hole shapes may be useful in collimator design to improve the resolution and efficiency of SPECT images.

  14. Patient restraining device for the pinhole collimator and gamma scintillation camera

    International Nuclear Information System (INIS)

    Kay, T.D.

    1977-01-01

    A patient restraining device for use with the pinhole collimator of a conventional Gamma Scintillation Camera, the restraining device being made of an adapter ring and a patient holder. The adapter ring is secured directly to the pinhole collimator while the holder is adjustably mounted on the adapter. The adapter ring is so designed to accommodate a variety of holders so as to enable the scanning of many different areas of a patient's anatomy by the scintillation camera

  15. Quality control program of multi-leaf collimation based EPID for teams with Rapidarc

    International Nuclear Information System (INIS)

    Pujades Claumarchirant, M. C.; Richart Sancho, J.; Gimeno Olmos, J.; Lliso Valverde, F.; Carmona Mesenguer, V.; Garcia Martinez, M. T.; Palomo Llinares, R.; Ballester Pallares, F.; Perez Calatayud, J.

    2013-01-01

    The objective of this work is to show a collection of different recommendations on the control of quality of collimation multi-leaf system and present the selection of tests based on the electronic imaging device (EPID) portal that have decided to establish in our Center, where in addition to the requirements of quality assurance generic for collimation multi-leaf system quality control methods have been included for RapidArc. (Author)

  16. Poster - 23: Dosimetric Characterization and Transferability of an Accessory Mounted Mini-Beam Collimator

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William; Crewson, Cody; Alexander, Andrew; Cranmer-Sargison, Gavin; Kundapur, Vijayananda [University of Saskatchewan Department of Physics and engineering Physics, Saskatchewan Cancer Agency Department of Medical Physics, Saskatchewan Cancer Agency Department of Medical Physics, Saskatchewan Cancer Agency Department of Medical Physics, Saskatchewan Cancer Agency Department of Medical Physics (Canada)

    2016-08-15

    Objective: The dosimetric characterization of an accessory-mounted mini-beam collimator across three beam matched linear accelerators. Materials and Methods: Percent depth dose and profiles were measured for the open and mini-beam collimated fields. The average beam quality and peak-to-valley dose ratio (PVDR), the ratio of average peak dose to average valley dose, were obtained from these measurements. The open field relative output and the mini-beam collimator factor, the ratio of the mini-beam dose to open field dose at the beam center, were measured for square fields of side 2, 3, 4, and 5 cm. Mini-beam output as a function of collimator inclination angle relative to the central axis was also investigated. Results and Discussion: Beam quality for both the open and mini-beam collimated fields agreed across all linacs to within ±1.0%. The PVDR was found to vary by up to ±6.6% from the mean. For the 2, 3, and 4 cm fields the average open field relative output with respect to the 5 cm field was 0.874±0.4%, 0.921±0.3%, and 0.962±0.1%. The average collimator factors were 0.450±3.9%, 0.443±3.9%, 0.438±3.9%, and 0.434±3.9%. A decrease in collimator factor greater than 7% was found for an inclination angle change of 0.09°. Conclusion: The mini-beam collimator has revealed a difference between the three linacs not apparent in the open field data, yet transferability can still be attained through thorough dosimetric characterization.

  17. Pitfalls of tungsten multileaf collimator in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States) and Indiana University Health Proton Therapy Center (Formerly Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 (United States)

    2011-12-15

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase

  18. Testing of dynamic multileaf collimator by dynamic log file

    International Nuclear Information System (INIS)

    Ono, Kaoru; Nakamura, Tetsuji; Yamato, Shinichirou; Miyazawa, Masanori

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy. In the dynamic multileaf collimator (MLC) method of IMRT delivery, because of the relatively small gaps between opposed leaves and because most regions are shielded by leaves most of the time, the delivered dose is very sensitive to MLC leaf positional accuracy. A variation of ±0.2 mm in the gap width can result in a dose variation of ±3% for each clinical dynamic MLC field. Most often the effects of leaf motion are inferred from dose deviations on film or from variations in ionization measurements. These techniques provide dosimetric information but do not provide detailed information for diagnosing delivery problems. Therefore, a dynamic log file (Dynalog file) was used to verify dynamic MLC leaf positional accuracy. Measuring for narrow gaps using the thickness gauge could detect a log file accuracy of approximately 0.1 mm. The accuracy of dynamic MLC delivery depends on the accuracy with which the velocity of each leaf is controlled. We studied the relationship between leaf positional accuracy and leaf velocity. Leaf velocity of 0.7 cm/sec caused approximately 0.2 mm leaf positional variation. We then analyzed leaf positional accuracy for the clinical dynamic MLC field using Dynalog File Viewer (Varian Medical Systems, Inc., Palo Alto, California (CA)), and developed a new program that can analyze more detailed leaf motions. Using this program, we can obtain more detailed information, and therefore can determine the source of dose uncertainties for the dynamic MLC field. (author)

  19. Study on the optical properties of the off-axis parabolic collimator with eccentric pupil

    Science.gov (United States)

    Li, Gang; Gao, Xin; Duan, Jing; Zhang, Henjin

    2017-02-01

    The off-axis parabolic collimator with eccentric pupil has the advantages of wide spectrum, simple structure, easy assembly and adjustment, high performance price ratio. So, it is widely used for parameters testing and image quality calibration of ground-based and space-based cameras. In addition to the Strehl ratio, resolution, wavefront aberration, modulation transfer function, the general evaluation criteria on the imaging quality of the optical system, the beam parallelism characterize the collimator angle resolving capability and collimation condition of the collimator with the target board, can be measured easily ,quickly and operation process is simple, but the study mainly focus on how to measure it so far. In order to solve Quantitative calculation of this problem, firstly, the discussion of aberration condition of the off- axis parabolic is carried out based on the primary aberration theory. Secondly, analysis on the influencing factor on collimator optical properties is given, including the geometrical aberrations of spherical aberration, coma, astigmatism , the relation between the position of the eccentric pupil and the aberration and optical element surface wavefront aberration, after that, according to the basis of diffraction and wavefront aberration theory, the paper deduced calculation method of the beam parallelism, at last, an example of a 400mm diameter off-axis parabolic collimator with eccentric pupil is given to calculate, the practical results shows that calculation data is well in accordance with actual measurement data and results can meet the demand and has a guiding significance to the actual project manufacture and the theory analysis.

  20. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-04-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs, made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  1. Collimator duct for neutron radiographs using a source of 241Am-Be

    International Nuclear Information System (INIS)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, A.X.

    2009-01-01

    With the aim of designing a collimator system to realize Neutron Radiographs using source of 241 Am-Be, a collimator was designed using two removable modules. One parameter of merit to be considered in the building of a collimator is the intensity of the neutron beam on the image plane. Therefore, the choice of the inner coating material is of utmost importance. As the scattered neutrons can reduce the resolution of the neutron radiographic image, it would be opportune to capture them so that the neutron beam is aligned. Thus, an aligning module made of an absorbent material was designed, to coat the wall end extensions of the collimator. Two other parameters are essential to configure a collimator system: the length, L, and diameter of the opening, D. Geometric resolution of the neutron radiographic image is defined by the ratio L/D, as well as the neutron flux on the image plane. Simulations with code MCNP-4B were conducted to select the geometry of the collimator, the materials for the structure and coating and the dimensions for the L and D parameters and aluminum was chosen as the structural material and cadmium for coating. (author)

  2. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2017-08-01

    Full Text Available During Long Shutdown 1, 18 Large Hadron Collider (LHC collimators were replaced with a new design, in which beam position monitor (BPM pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β^{*} and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  3. Evaluating Red Reflex and Surgeon Preference Between Nearly-Collimated and Focused Beam Microscope Illumination Systems.

    Science.gov (United States)

    Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David

    2015-08-01

    To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.

  4. High contrast laser beam collimation testing using two proximately placed holographic optical elements

    Science.gov (United States)

    Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.

    2018-05-01

    Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.

  5. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    Science.gov (United States)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  6. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Science.gov (United States)

    Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg

    2017-08-01

    During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  7. Impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Kubo, H. Dale; Wilder, Richard B.; Pappas, Conrad T.E.

    1999-01-01

    Purpose: The authors undertook a study to analyze the impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans. Methods and Materials: Twelve cases involving primary brain tumors, metastases, or arteriovenous malformations that had been planned with BrainLAB's conventional circular collimator-based radiosurgery system were re-planned using a β-version of BrainLAB's treatment planning software that is compatible with MRC Systems' and BrainLAB's micro-multileaf collimators. These collimators have a minimum leaf width of 1.7 mm and 3.0 mm, respectively, at isocenter. The clinical target volumes ranged from 2.7-26.1 cc and the number of static fields ranged from 3-5. In addition, for 4 prostate cancer cases, 2 separate clinical target volumes were planned using MRC Systems' and BrainLAB's micro-multileaf collimators and Varian's multileaf collimator: the smaller clinical target volume consisted of the prostate gland and the larger clinical target volume consisted of the prostate and seminal vesicles. For the prostate cancer cases, treatment plans were generated using either 6 or 7 static fields. A 'PITV ratio', which the Radiation Therapy Oncology Group defines as the volume encompassed by the prescription isodose surface divided by the clinical target volume, was used as a measure of the quality of treatment plans (a PITV ratio of 1.0-2.0 is desirable). Bladder and rectal volumes encompassed by the prescription isodose surface, isodose distributions and dose volume histograms were also analyzed for the prostate cancer patients. Results: In 75% of the cases treated with radiosurgery, a PITV ratio between 1.0-2.0 could be achieved using a micro-multileaf collimator with a leaf width of 1.7-3.0 mm at isocenter and 3-5 static fields. When the clinical target volume consisted of the prostate gland, the micro-multileaf collimator with a minimum leaf width of 3.0 mm allowed one to decrease the median volume of bladder and

  8. Effectiveness of the use of emission data by fan beam collimator for TCT on TCT/ECT simultaneous acquisition

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Nishimura, Yoshihiro; Murase, Kenya

    2003-01-01

    On transmission CT (TCT)/emission CT (ECT) simultaneous acquisition in the three detector SPECT system (one fan beam collimator for TCT and two parallel-hole collimators for ECT), count loss of the ECT data of the fan beam collimator for TCT occurs, which may deteriorate image quality. We thought that it might be possible to retrieve the ECT counts and improve image quality, when ECT data of the fan beam collimator for TCT were added to ECT data of two other parallel-hole collimators. To prove our hypothesis, we performed a phantom and clinical studies. We compared the ECT images of the following protocols: ECT data of a fan beam collimator+ECT data of two parallel beam collimators with attenuation correction (protocol A), ECT data of two parallel beam collimators with attenuation correction (protocol B), ECT data of two parallel beam collimators without attenuation correction (protocol C). In the phantom study, pixel counts of protocol A were as 1.3 to 1.6 times as protocol B. Profile curve improved up to 7 to 10%. Clinical images also improved. In conclusion, ECT data of the fan beam collimator for TCT can be retrieved to increase ECT counts, which improved image quality. (author)

  9. A comparative study of collimation in bedside chest radiography for preterm infants in two teaching hospitals

    International Nuclear Information System (INIS)

    Stollfuss, J.; Schneider, K.; Krüger-Stollfuss, I.

    2015-01-01

    •Potential factors influencing non-optimal image collimation in the setting of bedside chest X-ray in preterm infants were investigated.•A comparable rate of optimal images was observed in two hospitals.•Size, weight or disease severity had no influence on collimation quality.•Unrelated to the years of experience a large variation of the technician in correct collimation was noted (18–86%).•Individualized quality control and education is necessary. Potential factors influencing non-optimal image collimation in the setting of bedside chest X-ray in preterm infants were investigated. A comparable rate of optimal images was observed in two hospitals. Size, weight or disease severity had no influence on collimation quality. Unrelated to the years of experience a large variation of the technician in correct collimation was noted (18–86%). Individualized quality control and education is necessary. Unnecessary exposure of the abdomen, arms or head may lead to a substantial increase of the radiation dose in portable chest X-rays on the neonatal intensive care unit. The objective was to identify potential factors influencing inappropriate exposure of non-thoracic structures in two teaching hospitals. The study analysed 200 consecutive digital chest radiographs in 20 preterm neonates (mean gestation 25 ± 1 weeks). Demographical data, tube settings and exposure parameters were recorded. To grade the collimation, we used a scoring system with a maximum of 12 exposed non-thoracic structures. Length of gestation, age, the radiographer, years of experience in performing X-rays and the number of in situ catheters or lines, were correlated with collimation quality. There was no significant difference between the rates of optimal images obtained in the two hospitals (0.32 vs 0.39, n.s.). Scores showed that most suboptimal images had only mildly reduced image quality (1.40 ± 1.38 vs 1.20 ± 1.43, n.s.). Length of gestation or presence of surgical drains, catheters and

  10. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    International Nuclear Information System (INIS)

    Hermes, Pascal Dominik

    2016-01-01

    The CERN Large Hadron Collider (LHC) stores and collides proton and 208 Pb 82+ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new tracking

  11. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Pascal Dominik

    2016-12-19

    The CERN Large Hadron Collider (LHC) stores and collides proton and {sup 208}Pb{sup 82+} beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new

  12. SU-E-T-604: Dosimetric Dependence On the Collimator Angle in Prostate Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Khan, M; Rehman, J; Khan, M; Chow, J

    2014-01-01

    Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT

  13. SU-E-T-604: Dosimetric Dependence On the Collimator Angle in Prostate Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M; Rehman, J; Khan, M [The Islaimia University of Bahawalpur, Bahawalpur, Punjab (Pakistan); Chow, J [Princess Margaret Cancer Center, Toronto, ON (Canada)

    2014-06-01

    Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT.

  14. Course of training in Specific internal dosimetry for the patient; Curso de capacitacion en dosimetria interna especifica para el paciente

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, A.M.; Michelin, S.C. [Dosimetria Interna, Autoridad Regulatoria Nuclear, Av. Del Libertador 8250 CP (429BNP), Buenos Aires (Argentina); Gomez P, I.M. [Sociedad Argentina de Radioproteccion, Av. del Libertador 8250, Buenos Aires (Argentina)]. e-mail: arojo@cae.arn.gov.ar

    2006-07-01

    In this work the experience obtained in a course organized in Argentina to qualify professionals in the radiopharmaceutical dosimetry using the methodology MIRD and the patient's images is presented. The motivation to carry out it was based on the continuous development of new radiopharmaceuticals with therapeutic purposes that makes necessary the knowledge of the distribution of the absorbed dose to be able to establish the dose-response relationship. The main objective was the study of the biokinetic model and those techniques available that starting from images can contribute information of specific parameters of the patient to calculate with more accuracy the doses in the tumor and in different organs. In the design of the program of this course it was considered to approach the different focuses for the calculation of specific dose of the patient and includes the following topics: the patient's radiological protection, new concepts in damages by radiations (bystander effect), methodology for the internal dosimetry by radiopharmaceuticals, dosimetric systems (MIRD/ICRP), revision of the physical phantoms, design of kinetic studies, compartmental models, calculation tools and the demonstration of the programs SAAM and OLINDA; calculation of activity starting from the patient's images (planar and SPECT). Principles of the gamma camera: the dispersed radiation, calculation of the activity with planar images, the attenuation, correction of the dispersed radiation, collimation problems. SPECT: the common method of reconstruction, basic principles, method of filtered over head projection and iterative methods (MLEM/OSEM), measurement of the attenuation maps, problems of the penetration in the collimator (I-131, I-123), effects of partial volume, incorporation of corrections in an iterative reconstruction. Dosimetry in bone marrow, discussion of study cases of new radiopharmaceuticals. Internal dosimetry in small scale for electrons and photons

  15. Aplicativo para dosimetria interna usando a distribuição biocinética de fótons baseada em imagens de medicina nuclear

    Directory of Open Access Journals (Sweden)

    Viriato Leal Neto

    2014-10-01

    Full Text Available Objetivo: Este artigo apresenta uma forma de se obterem estimativas de dose em pacientes submetidos a tratamentos radioterápicos a partir da análise das regiões de interesse em imagens de medicina nuclear. Materiais e Métodos: Foi desenvolvido o software denominado DoRadIo (Dosimetria das Radiações Ionizantes, que recebe as informações sobre os órgãos fontes e o órgão alvo e retorna resultados gráficos e numéricos. As imagens de medicina nuclear utilizadas foram obtidas de catálogos disponibilizados por físicos médicos. Nas simulações utilizaram-se modelos computacionais de exposição constituídos por fantomas de voxels acoplados ao código Monte Carlo EGSnrc. O software foi desenvolvido no Microsoft Visual Studio 2010 com o modelo de projeto Windows Presentation Foundation e a linguagem de programação C#. Resultados: Da aplicação das ferramentas foram obtidos: o arquivo para otimização das simulações Monte Carlo utilizando o EGSnrc, a organização e compactação dos resultados dosimétricos com todas as fontes, a seleção das regiões de interesse, a contagem da intensidade dos tons de cinza nas regiões de interesse, o arquivo das fontes ponderadas e, finalmente, todos os resultados gráficos e numéricos. Conclusão: A interface de usuários pode ser adaptada para uso em clínicas de medicina nuclear como ferramenta computacional auxiliar na estimativa da atividade administrada.

  16. Technology assessment of multileaf collimation: a North American users survey

    International Nuclear Information System (INIS)

    Klein, Eric E.; Tepper, Joel; Sontag, Mark; Franklin, Michael; Ling, Clifton; Kubo, Dale

    1999-01-01

    Purpose: The American Association of Physicists in Medicine (AAPM) initiated an Assessment of Technology Subcommittee (ATS) to help the radiotherapy community evaluate emerging technologies. The ATS decided to first address multileaf collimation (MLC) by means of a North American users survey. The survey attempted to address issues such as MLC utility, efficacy, cost-effectiveness, and customer satisfaction. Methods and Materials: The survey was designed with 38 questions, with cross-tabulation set up to decipher a particular clinic's perception of MLC. The surveys were coded according to MLC types, which were narrowed to four: Elekta, Siemens, Varian 52-leaf, and Varian 80-leaf. A 40% return rate was desired. Results: A 44% (108 of 250) return was achieved. On an MLC machine, 76.5% of photon patients are being treated with MLC. The main reasons for not using MLC were stair stepping, field size limitation, and physician objection. The most common sites in which MLC is being used are lung, pelvis, and prostate. The least used sites are head and neck and mantle fields. Of the facilities, 31% claimed an increase in number of patients being treated since MLC was installed, and 44% claimed an increase in the number of fields. Though the staffing for block cutting has decreased, therapist staffing has not. However, 91% of the facilities claimed a decreased workload for the therapists, despite the increase in daily treated patients and fields. Of the facilities that justified MLC purchase for more daily patients, 63% are actually treating more patients. Only 26% of the facilities that justified an MLC purchase for intensity-modulated radiotherapy (IMRT) are currently using it for that purpose. The satisfaction rating (1 = low to 5 = high) for department groups averaged 4.0. Therapists ranked MLC as 4.6. Conclusions: Our survey shows that most users have successfully introduced MLC into the clinic as a block replacement. Most have found MLC to be cost-effective and

  17. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Mirarchi, D.; Redaelli, S.; Scandale, W.; Hall, G.

    2017-01-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  18. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Science.gov (United States)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2017-06-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.

  19. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Mirarchi, D.; Redaelli, S.; Scandale, W. [CERN, European Organization for Nuclear Research, Geneva 23 (Switzerland); Hall, G. [Imperial College, Blackett Laboratory, London (United Kingdom)

    2017-06-15

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  20. The Mechanical Design of a Collimator and Cryogenic Bypass for Installation in the Dispersion Suppressors of the LHC

    CERN Document Server

    Ramos, D; Bertarelli, A; Cherif, A; Chritin, N; Claret, R; Gentini, L; Lombard, D; Minginette, P; Moyret, P; Redondas, M; Renaglia, T; Timmins, M

    2012-01-01

    A project to install collimators in the dispersion suppressor regions of the LHC was launched early 2010, aiming to reduce the power deposition in superconducting magnets by a factor of 10. To be placed in the continuous arc cryostat, the design of such collimators had to comply with challenging integration, functional and time constraints. A pre-study for a cold collimator solution was launched in parallel with an alternative design consisting of a room temperature collimator and a cryogenic bypass. The second was eventually preferred, as it was based on proven LHC technologies for cryogenic, vacuum, electrical and collimator material solutions, despite the increased difficulty on the mechanical integration and assembly. This paper presents the mechanical design of a cryogenic bypass for the LHC continuous cryostat andrespective collimator unit, both made to comply with the functionality of existing LHC systems. The approach taken to achieve a reliable design within schedule will be explained alongside the m...

  1. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    Science.gov (United States)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  2. The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Echner, G G; Kilby, W; Rhein, B; Lang, C; Schlegel, W [Department of Medical Physics, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Lee, M; Earnst, E; Sayeh, S; Dooley, J R; Lessard, E; Maurer, C R Jr [Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, CA 94089 (United States); Schlaefer, A; Blanck, O [Institute for Robotics and Cognitive Systems, University of Luebeck, Gebaeude 64, Ratzeburger Allee 160, D-23538 Luebeck (Germany)], E-mail: wkilby@accuray.com

    2009-09-21

    Robotic radiosurgery using more than one circular collimator can improve treatment plan quality and reduce total monitor units (MU). The rationale for an iris collimator that allows the field size to be varied during treatment delivery is to enable the benefits of multiple-field-size treatments to be realized with no increase in treatment time due to collimator exchange or multiple traversals of the robotic manipulator by allowing each beam to be delivered with any desired field size during a single traversal. This paper describes the Iris(TM) variable aperture collimator (Accuray Incorporated, Sunnyvale, CA, USA), which incorporates 12 tungsten-copper alloy segments in two banks of six. The banks are rotated by 30 deg. with respect to each other, which limits the radiation leakage between the collimator segments and produces a 12-sided polygonal treatment beam. The beam is approximately circular, with a root-mean-square (rms) deviation in the 50% dose radius of <0.8% (corresponding to <0.25 mm at the 60 mm field size) and an rms variation in the 20-80% penumbra width of about 0.1 mm at the 5 mm field size increasing to about 0.5 mm at 60 mm. The maximum measured collimator leakage dose rate was 0.07%. A commissioning method is described by which the average dose profile can be obtained from four profile measurements at each depth based on the periodicity of the isodose line variations with azimuthal angle. The penumbra of averaged profiles increased with field size and was typically 0.2-0.6 mm larger than that of an equivalent fixed circular collimator. The aperture reproducibility is {<=}0.1 mm at the lower bank, diverging to {<=}0.2 mm at a nominal treatment distance of 800 mm from the beam focus. Output factors (OFs) and tissue-phantom-ratio data are identical to those used for fixed collimators, except the OFs for the two smallest field sizes (5 and 7.5 mm) are considerably lower for the Iris Collimator. If average collimator profiles are used, the assumption

  3. The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery

    International Nuclear Information System (INIS)

    Echner, G G; Kilby, W; Rhein, B; Lang, C; Schlegel, W; Lee, M; Earnst, E; Sayeh, S; Dooley, J R; Lessard, E; Maurer, C R Jr; Schlaefer, A; Blanck, O

    2009-01-01

    Robotic radiosurgery using more than one circular collimator can improve treatment plan quality and reduce total monitor units (MU). The rationale for an iris collimator that allows the field size to be varied during treatment delivery is to enable the benefits of multiple-field-size treatments to be realized with no increase in treatment time due to collimator exchange or multiple traversals of the robotic manipulator by allowing each beam to be delivered with any desired field size during a single traversal. This paper describes the Iris(TM) variable aperture collimator (Accuray Incorporated, Sunnyvale, CA, USA), which incorporates 12 tungsten-copper alloy segments in two banks of six. The banks are rotated by 30 deg. with respect to each other, which limits the radiation leakage between the collimator segments and produces a 12-sided polygonal treatment beam. The beam is approximately circular, with a root-mean-square (rms) deviation in the 50% dose radius of <0.8% (corresponding to <0.25 mm at the 60 mm field size) and an rms variation in the 20-80% penumbra width of about 0.1 mm at the 5 mm field size increasing to about 0.5 mm at 60 mm. The maximum measured collimator leakage dose rate was 0.07%. A commissioning method is described by which the average dose profile can be obtained from four profile measurements at each depth based on the periodicity of the isodose line variations with azimuthal angle. The penumbra of averaged profiles increased with field size and was typically 0.2-0.6 mm larger than that of an equivalent fixed circular collimator. The aperture reproducibility is ≤0.1 mm at the lower bank, diverging to ≤0.2 mm at a nominal treatment distance of 800 mm from the beam focus. Output factors (OFs) and tissue-phantom-ratio data are identical to those used for fixed collimators, except the OFs for the two smallest field sizes (5 and 7.5 mm) are considerably lower for the Iris Collimator. If average collimator profiles are used, the assumption of

  4. SU-F-E-20: A Mathematical Model of Linac Jaw Calibration Integrated with Collimator Walkout

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y; Corns, R; Huang, V [Fraser Valley Cancer Centre - BC Cancer Agency, Surrey, BC (United Kingdom)

    2016-06-15

    Purpose: Accurate jaw calibration is possible, but it does not necessarily achieve good junctions because of collimator rotation walkout. We developed a mathematical model seeking to pick an origin for calibration that minimizes the collimator walkout effect. Methods: We use radioopaque markers aligned with crosshair on the EPID to determine the collimator walkout at collimator angles 0°, 90° and 270°. We can accurately calibrate jaws to any arbitrary origin near the radiation field centre. While the absolute position of an origin moves with the collimator walkout, its relative location to the crosshair is an invariant. We studied two approaches to select an optimal origin. One approach seeks to bring all three origin locations (0°–90°–270°) as close as possible by minimizing the perimeter of the triangle formed by these points. The other approach focuses on the gap for 0°–90° junctions. Results: Our perimeter cost function has two variables and non-linear behaviour. Generally, it does not have zero-perimeter-length solution which leads to perfect jaw matches. The zero solution can only be achieved, if the collimator rotates about a single fixed axis. In the second approach, we can always get perfect 0°–0° and 0°–90° junctions, because we ignore the 0°–270° situation. For our TrueBeams, both techniques for selecting an origin improved junction dose inhomogeneities to less than ±6%. Conclusion: Our model considers the general jaw matching with collimator rotations and proposes two potential solutions. One solution optimizes the junction gaps by considering all three collimator angles while the other only considers 0°–90°. The first solution will not give perfect matching, but can be clinically acceptable with minimized collimator walkout effect, while the second can have perfect junctions at the expense of the 0°–270° junctions. Different clinics might choose between these two methods basing on their clinical practices.

  5. Collimator and energy window optimization for 90Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study

    International Nuclear Information System (INIS)

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Pirayesh Islamian, Jalil

    2016-01-01

    Treatment efficacy of radioembolization using Yttrium-90 ( 90 Y) microspheres is assessed by the 90 Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of 90 Y microspheres distribution. One of the main reasons of the poor image quality in 90 Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the 90 Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the 90 Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8 mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a 90 Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35–3.3 mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for 90 Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3 mm. Geometry of the ME parallel-hole collimator and energy

  6. Use of an amorphous silicon electronic portal imaging device for multileaf collimator quality control and calibration

    International Nuclear Information System (INIS)

    Baker, S J K; Budgell, G J; MacKay, R I

    2005-01-01

    Multileaf collimator (MLC) calibration and quality control is a time-consuming procedure typically involving the processing, scanning and analysis of films to measure leaf and collimator positions. Faster and more reliable calibration procedures are required for these tasks, especially with the introduction of intensity modulated radiotherapy which requires more frequent checking and finer positional leaf tolerances than previously. A routine quality control (QC) technique to measure MLC leaf bank gain and offset, as well as minor offsets (individual leaf position relative to a reference leaf), using an amorphous silicon electronic portal imaging device (EPID) has been developed. The technique also tests the calibration of the primary and back-up collimators. A detailed comparison between film and EPID measurements has been performed for six linear accelerators (linacs) equipped with MLC and amorphous silicon EPIDs. Measurements of field size from 4 to 24 cm with the EPID were systematically smaller than film measurements over all field sizes by 0.4 mm for leaves/back-up collimators and by 0.2 mm for conventional collimators. This effect is due to the gain calibration correction applied by the EPID, resulting in a 'flattening' of primary beam profiles. Linac dependent systematic differences of up to 0.5 mm in individual leaf/collimator positions were also found between EPID and film measurements due to the difference between the mechanical and radiation axes of rotation. When corrections for these systematic differences were applied, the residual random differences between EPID and film were 0.23 mm and 0.26 mm (1 standard deviation) for field size and individual leaf/back-up collimator position, respectively. Measured gains (over a distance of 220 mm) always agreed within 0.4 mm with a standard deviation of 0.17 mm. Minor offset measurements gave a mean agreement between EPID and film of 0.01 ± 0.10 mm (1 standard deviation) after correction for the tilt of the

  7. SU-F-E-20: A Mathematical Model of Linac Jaw Calibration Integrated with Collimator Walkout

    International Nuclear Information System (INIS)

    Zhao, Y; Corns, R; Huang, V

    2016-01-01

    Purpose: Accurate jaw calibration is possible, but it does not necessarily achieve good junctions because of collimator rotation walkout. We developed a mathematical model seeking to pick an origin for calibration that minimizes the collimator walkout effect. Methods: We use radioopaque markers aligned with crosshair on the EPID to determine the collimator walkout at collimator angles 0°, 90° and 270°. We can accurately calibrate jaws to any arbitrary origin near the radiation field centre. While the absolute position of an origin moves with the collimator walkout, its relative location to the crosshair is an invariant. We studied two approaches to select an optimal origin. One approach seeks to bring all three origin locations (0°–90°–270°) as close as possible by minimizing the perimeter of the triangle formed by these points. The other approach focuses on the gap for 0°–90° junctions. Results: Our perimeter cost function has two variables and non-linear behaviour. Generally, it does not have zero-perimeter-length solution which leads to perfect jaw matches. The zero solution can only be achieved, if the collimator rotates about a single fixed axis. In the second approach, we can always get perfect 0°–0° and 0°–90° junctions, because we ignore the 0°–270° situation. For our TrueBeams, both techniques for selecting an origin improved junction dose inhomogeneities to less than ±6%. Conclusion: Our model considers the general jaw matching with collimator rotations and proposes two potential solutions. One solution optimizes the junction gaps by considering all three collimator angles while the other only considers 0°–90°. The first solution will not give perfect matching, but can be clinically acceptable with minimized collimator walkout effect, while the second can have perfect junctions at the expense of the 0°–270° junctions. Different clinics might choose between these two methods basing on their clinical practices.

  8. Measurements and analysis of a high-brightness electron beam collimated in a magnetic bunch compressor

    Science.gov (United States)

    Zhou, F.; Bane, K.; Ding, Y.; Huang, Z.; Loos, H.; Raubenheimer, T.

    2015-05-01

    A collimator located in a magnetic bunch compressor of a linear accelerator driven x-ray free electron laser has many potential applications, such as the removal of horns in the current distribution, the generation of ultrashort beams, and as a diagnostic of the beam slice emittance. Collective effects, however, are a major concern in applying the technique. Systematic measurements of emittance and analysis were performed using a collimator in the first bunch compressor of the Linac Coherent Light Source (LCLS). In the nominal, undercompressed configuration using the collimator we find that the y emittance (nonbending plane) is not increased, and the x emittance (in the bending plane) is increased by about 25%, in comparison to the injector emittance. From the analysis we conclude that the parasitic effects associated with this method are dominated by coherent synchrotron radiation (CSR), which causes a "systematic error" for measuring slice emittance at the bending plane using the collimation method. In general, we find good agreement between the measurements and simulations including CSR. However, for overcompressed beams at smaller collimator gaps, an extra emittance increase is found that does not agree with 1D simulations and is not understood.

  9. UA9 Results from Crystal Collimation Tests in the SPS & Future Strategy

    CERN Document Server

    Scandale, W

    2013-01-01

    The UA9 Collaboration, with support by EuCARD-AccNet, is investigating how bent crystals, used as primary collimators, could assist and improve the collimation process in modern hadron colliders like the LHC. From 2009 onwards the UA9 Collaboration has successfully tested silicon crystals at the SPS, performing measurements of the associated collimation efficiency by means of various methods and detectors. This report presents the main UA9 results, obtained with protons and Pb ions at 120 GeV/c and 270 GeV/c per charge from 2009 to 2012, which indicate that crystal assisted collimation is well mastered and understood. Specifically, reduced loss rates were demonstrated close to the crystal, as well as in a downstream off-momentum region, and, indeed, all around the ring. In addition, the importance of the crystal miscut angle was elucidated and a first industrial goniometer compliant with LHC specifications has become available. At the end of the report, the near-term plan for LHC crystal collimation is descri...

  10. Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo

    CERN Document Server

    Shiltsev, V.; Drozhdin, A.; Johnson, T.; Legan, A.; Mokhov, N.; Reilly, R.; Still, D.; Tesarek, R.; Zagel, J.; Peggs, S.; Assmann, R.; Previtali, V.; Scandale, W.; Chesnokov, Y.; Yazynin, I.; Guidi, V.; Ivanov, Y.

    2010-01-01

    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding be...

  11. Analysis and experimental investigation for collimator reflective mirror surface deformation adjustment

    Directory of Open Access Journals (Sweden)

    Chia-Yen Chan

    2017-01-01

    Full Text Available Collimator design is essential for meeting the requirements of high-precision telescopes. The collimator diameter should be larger than that of the target for alignment. Special supporting structures are required to reduce the gravitational deformation and control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors (M1. A ZERODURÂŽ mirror 620 mm in diameter for a collimator was analyzed using the finite element method to obtain the deformation induced by the supporting structures and adjustment mechanism. Zernike polynomials were also adopted to fit the optical surface and separate corresponding aberrations. The computed and measured wavefront aberration configurations for the collimator M1 were obtained complementally. The wavefront aberrations were adjusted using fine adjustment screws using 3D optical path differences map of the mirror surface. Through studies using different boundary conditions and inner ring support positions, it is concluded that the optical performance was excellent under a strong enough supporter. The best adjustment position was attained and applied to the actual collimator M1 to prove the correctness of the simulation results.

  12. Collimation effects on the radiation detectors in the iCT image quality

    International Nuclear Information System (INIS)

    Carvalho, Diego Vergacas de Sousa; Kirita, Rodrigo; Mesquita, Carlos Henrique de; Hamada, Margarida Mizue; Ferreira, Erick Oliveira; Dantas, Carlos Costa

    2013-01-01

    This work studies the collimation effect in radiation detectors on the image quality of the iCT scanner, in which the path traversed by radiation beams is similar to a fan. The collimators were made of lead, 5 cm deep and 12 cm high, with rectangular holes (slits) of 2 x 5 mm, 4 x 10 mm (width x height) and circular hole of 5 mm diameter. The matrix images reconstructed from the data obtained with these collimation holes are presented. The spatial resolution of the image depends on the geometry of the collimator. One of the major advantages of narrow beam transmission tomography is the so-called hard field property. This property is capable of producing high quality images, though it decreases the count value and it takes a longer time. In contrast, a large collimation diameter produces a fuzzy image but with a faster scanning time. Moreover, the enlargement of the aperture from 2 x 5 mm to 4 x 10 mm barely affects the image quality. The aperture from 4 x 10 mm and 5 mm diameter presented similar quality image. (author)

  13. Design and development of new collimator cones for fractionated stereotactic radiation therapy in Samsung Medical Center.

    Science.gov (United States)

    Ahn, Y C; Ju, S G; Kim, D Y; Choi, D R; Huh, S J; Park, Y H; Lim, D H; Kim, M K

    1999-05-01

    In stereotactic radiotherapy using X-Knife system, the commercially supplied collimator cone system had a few mechanical limitations. The authors have developed new collimator cones to overcome these limitations and named them "SMC type" collimator cones. We made use of cadmium-free cerrobend alloy within the stainless steel cylinder housing. We made nine cones of relatively larger sizes (3.0 cm to 7.0 cm in diameter) and of shorter length with bigger clearance from the isocenter than the commercial cones. The cone housing and the collimator cones were designed to insert into the wedge mount of the gantry head to enable double-exposure linac-gram taking. The mechanical accuracy of pointing to the isocenter was tested by ball test and cone rotation test, and the dosimetric measurements were performed, all of which were with satisfactory results. A new innovative quality assurance procedure using linac-grams on the patients at the actual treatment setup was attempted after taking 10 sets of AP and lateral linac-grams and the overall mechanical isocenter accuracy was excellent (average error = 0.4 +/- 0.2 mm). We have developed the SMC type collimator cone system mainly for fractionated stereotactic radiation therapy use with our innovative ideas. The new cones' mechanical accuracy and physical properties were satisfactory for clinical use, and the verification of the isocenter accuracy on the actual treatment setup has become possible.

  14. Evaluation of Beam Loss and Energy Depositions for a Possible Phase II Design for LHC Collimation

    International Nuclear Information System (INIS)

    Lari, L.; Assmann, R.; Bracco, C.; Brugger, M.; Cerutti, F.; Doyle, E.; Ferrari, A.; Keller, L.; Lundgren, S.; Markiewicz, Thomas W.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Smith, J.; Vlachoudis, V.; Weiler, T.

    2011-01-01

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  15. Evaluation of Beam Losses And Energy Deposition for a Possible Phase II Design for LHC Collimation

    International Nuclear Information System (INIS)

    Lari, L.; Bracco, C.; Assmann, R.W.; Brugger, M.; Cerutti, F.; Ferrari, A.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Vlachoudis, V.; Weiler, T.; Doyle, J.E.; Keller, L.; Lundgren, S.A.; Markiewicz, T.W.; Smith, J.C.

    2011-01-01

    The Large Hadron Collider (LHC) beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  16. Collimation effects on the radiation detectors in the iCT image quality

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Diego Vergacas de Sousa; Kirita, Rodrigo; Mesquita, Carlos Henrique de; Hamada, Margarida Mizue, E-mail: dvcarvalho@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ferreira, Erick Oliveira; Dantas, Carlos Costa [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2013-07-01

    This work studies the collimation effect in radiation detectors on the image quality of the iCT scanner, in which the path traversed by radiation beams is similar to a fan. The collimators were made of lead, 5 cm deep and 12 cm high, with rectangular holes (slits) of 2 x 5 mm, 4 x 10 mm (width x height) and circular hole of 5 mm diameter. The matrix images reconstructed from the data obtained with these collimation holes are presented. The spatial resolution of the image depends on the geometry of the collimator. One of the major advantages of narrow beam transmission tomography is the so-called hard field property. This property is capable of producing high quality images, though it decreases the count value and it takes a longer time. In contrast, a large collimation diameter produces a fuzzy image but with a faster scanning time. Moreover, the enlargement of the aperture from 2 x 5 mm to 4 x 10 mm barely affects the image quality. The aperture from 4 x 10 mm and 5 mm diameter presented similar quality image. (author)

  17. Comparison of different Bremsstrahlung converters and collimators for Nuclear Resonance Fluorescence setup at IFUSP

    International Nuclear Information System (INIS)

    Lopez, P.N; Corrales, Y.; Manso Guevara, M.V; Martins, M.N.

    2007-01-01

    Nuclear Resonance Fluorescence (NRF) setup will install in the new electron accelerator, which is in final stage of installation at the Physics Institute of Sao Paulo University (IFUSP). The Bremsstrahlung facility and the setup for photon scattering should be designed such that the background radiation caused by scattering photons and the production of neutrons is minimized. In this order the Monte Carlo simulation studies show the best options for the different elements of the NRF setup, and how to link these elements to the particularities of the irradiation room. In the present stage the simulations has been included the studies of different Bremsstrahlung converters and collimators. Several materials (Ta, W, Au, Nb, Cu) for Bremsstrahlung converters were studied. Detailed analyses of intensity as well as the opening angles of Bremsstrahlung radiation were carried out, for different converter thickness. For the collimator two materials (Cu and Pb) were studied in the simulations. Several opening angles and thickness (40 - 100 cm) were studied. The Bremsstrahlung beam collimation for different energy bins, and the photon scattering from the collimator ,were used as quality parameters of the collimators. (Author)

  18. Aperture correction with an asymmetrically trimmed gaussian weight in SPECT with a fan-beam collimator

    International Nuclear Information System (INIS)

    Kamiya, Ryo; Ogawa, Koichi

    2013-01-01

    The aim of the study is to improve the spatial resolution of single photon emission computed tomography (SPECT) images acquired with a fan-beam collimator. The aperture angle of a hole in the fan-beam collimator depends on the position of the collimator. To correct the aperture effect in an iterative image reconstruction, an asymmetrically trimmed Gaussian weight was used for a model. To confirm the validity of our method, point source phantoms and brain phantom were used in the simulation, and we applied the method to the clinical data. The results of the simulation showed that the spatial resolution of point sources improved from about 6 to 2 pixels full width at half maximum, and the corrected point sources were isotropic. The results of the simulation with the brain phantom showed that our proposed method could improve the spatial resolution of the phantom, and our method was effective for different fan-beam collimators with different focal lengths. The results of clinical data showed that the quality of the reconstructed image was improved with our proposed method. Our proposed aperture correction method with the asymmetrically trimmed Gaussian weighting function was effective in improving the spatial resolution of SPECT images acquired with the fan-beam collimator. (author)

  19. Iterative correction method for shift-variant blurring caused by collimator aperture in SPECT

    International Nuclear Information System (INIS)

    Ogawa, Koichi; Katsu, Haruto

    1996-01-01

    A collimation system in single photon computed tomography (SPECT) induces blurring on reconstructed images. The blurring varies with the collimator aperture which is determined by the shape of the hole (its diameter and length), and with the distance between the collimator surface and the object. The blurring has shift-variant properties. This paper presents a new iterative method for correcting the shift-variant blurring. The method estimates the ratio of 'ideal projection value' to 'measured projection value' at each sample point. The term 'ideal projection value' means the number of photons which enter the hole perpendicular to the collimator surface, and the term 'measured projection value' means the number of photons which enter the hole at acute angles to the collimator aperture axis. If the estimation is accurate, ideal projection value can be obtained as the product of the measured projection value and the estimated ratio. The accuracy of the estimation is improved iteratively by comparing the measured projection value with a weighted summation of several estimated projection value. The simulation results showed that spatial resolution was improved without amplification of artifacts due to statistical noise. (author)

  20. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Directory of Open Access Journals (Sweden)

    Hegazy Aya Hamdy

    2018-01-01

    Full Text Available Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1 shielding-collimator material, (2 Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3 thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  1. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Science.gov (United States)

    Hegazy, Aya Hamdy; Skoy, V. R.; Hossny, K.

    2018-04-01

    Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal) with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1) shielding-collimator material, (2) Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3) thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  2. SPECT imaging of 131I (364 keV): importance of collimation

    International Nuclear Information System (INIS)

    Clarke, L.P.; Saw, C.B.; Leong, L.K.; Serafini, A.N.

    1985-01-01

    A low sensitivity medium energy collimator (LSMEC) designed with thick septa and long bore (theoretical leakage 131 I for a SPECT system operated in both planar and tomographic imaging modes. The collimator was designed to minimize the influence of photon penetration on spatial resolution, in particular the resolution index FWTM. Overall spatial resolution for the planar imaging mode at 10 cm from the collimator face was found to be 11.6 mm FWHM and 21.6 mm FWTM. The corresponding transverse plane and slice thickness resolution was of the order of 17 mm FWHM and 31 mm FWTM, for a radius of rotation of 16 cm. A SPECT resolution phantom was imaged. Two quadrants of cold rods were well resolved, with rod dimensions of 16 and 12.7 mm respectively, the resolution being comparable to that obtained using 99 Tcsup(m) (140 keV) and a low-energy high-resolution collimator. NEMA sensitivity obtained was 75 cpm/μCi 131 I. The resolution measurements obtained suggest that this collimator should be useful for SPECT imaging with 131 I in either radioimmunoimaging or radioimmunotherapy. (author)

  3. Impact of the A48 collimator on the Tevatron B0 dipoles

    CERN Document Server

    Nicolas, L Y

    2003-01-01

    To protect the CDF detector components in an event of an abort kicker prefire (AKP) in the Tevatron, a new collimator is to be installed at the A48 location during the summer 2003 shutdown. Detailed calculations have shown that this 0.5-m long ''single L-shape'' steel collimator will intercept a bunch of protons when such an incident occurs, providing reliable protection of the CDF main detector at an AKP. It will also mitigate the backgrounds induced by elastic beam-gas interactions upstream of B0. Although the Roman Pot detectors downstream of the A48 collimator will see an increased background, the amount of radiation they will receive either resulting from beam halo interactions in the collimator or during an AKP will not damage their sensitive parts. Secondaries resulting from beam halo interactions with the A48 collimator do not noticeably affect the downstream dipoles. The case of an AKP is quite different. As opposed to halo hits in the ''single-L shape'' unit (around 10 sup 5 p/s), a bunch lost on A4...

  4. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    Science.gov (United States)

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-07

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.

  5. Multileaf collimator intercomparison for intensity modulated radiation therapy implementation

    International Nuclear Information System (INIS)

    Viteri, Juan Fernando Delgado

    2006-01-01

    In this work a dosimetric comparison between three multileaf collimator systems is presented: a Varian Millennium with 120 leaves, Brainlab mMLC m3 and Varian Mark II both with 52 leaves. The width projection at isocenter level in field's central region are: 0,5 cm; 0,35 cm and 1,0 cm respectively. Common dosimetric characteristics for the three systems in static mode and dynamic capabilities for the two first were compared. In dynamic mode, tests validating proper MLC function through film irradiation were done, such MLC stability, MU linearity, treatment interruptions sensitivity, stability of MLC in dynamic mode, leaf speed stability, were found within ±3% deviation in all cases. Dose rate linearity showed differences when this parameter decreases in dynamic mode. Average dose errors for fixed width gaps moving at constant speed were found to be proportional to gap errors and inversely proportional to the gap width. Output factors differences delivered through a sweeping gap were found less than ±1% when the gantry was in a lateral position. For the three MLC systems, when comparing beam profiles for the same field was observed that for mMLC presents the sharpest dose gradient region. In the output factors small differences where observed in every MLC system. Dosimetric leaf gap was determined for MLC 120, mMLC and MLC 52, obtained values for a 6 MV beam are: (0,202 ± 0,054) cm; (0,157 ± 0,070) cm and (0,189 ± 0,081) cm respectively. The transmission showed an increase with depth and field width for 6 MV in all the three systems. Average values obtained with ionization chamber for this energy were: (1,630 ± 0,018)% for MLC 120; (1,291 ± 0,029)% for mMLC and (1,638 ± 0,010)% for MLC 52. When obtained through film irradiation, inter and intra leaf transmission showed an off axis dependent behavior for MLC 120 and mMLC. Scatter produced by MLC as a 6 MV open reference field ratio was: (0,297 ± 0,024)% for MLC 120; (0,239 ± 0,052)% for mMLC and (0,202 ± 0

  6. Scientific production of the Radioprotection and Dosimetry Institute (IRD): preliminary bibliometric evaluation of the journal articles; Producao cientifica do Instituto de Radioprotecao e Dosimetria (IRD): avaliacao bibliometrica preliminar dos artigos de periodicos

    Energy Technology Data Exchange (ETDEWEB)

    Gusmao Pedrini, A de [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil); [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Biologia; [Universidade Santa Ursula, Rio de Janeiro, RJ (Brazil). Centro de Ciencias Biologicas

    1994-12-31

    A total of 114 articles (1974-1991, this last year the most productive) in 28 periodicals were published. The periodical core production is made up of: Health Physics, Radiation Protection Dosimetry, Radioprotecao e Dosimetria, Radiologia Brasileira. 53% were written in cooperation with 33 institutions. The 155 authors and 376 authorship were mainly in collective and triple-authorship articles. Mean productivity/author was 2.8 articles which is lower than that of Price. The most productivity author produced 14 articles + 19 co-authors in 7 periodicals on environmental radiation protection while 88 authors produced 1 article. The productive elite (12 authors) accounted for 72 articles, 26% above the average according to Lotka, with 111 out of a total of 376 authorships in 20 periodicals. The elite forms an inter departmental communication network with authors who write about environmental, occupational and individual radiation protection. (author). 17 refs, 1 tab.

  7. Collimation system for a laboratory of primary and secondary ionizing radiation calibration

    International Nuclear Information System (INIS)

    Oliveira, S.R.; David, M.G.

    2003-01-01

    This work is part of a cooperation plan between the LNMRI/IRD and the LCR/UERJ, for the a primary calibration at the IRD and a secondary laboratory at the LCR, both calibrated for mammographic beams which will be part a Calibration National Network. For the mounting of the primary laboratory, the first step was to install two additional collimators in order to guarantee that the beam area over the ionization chamber to satisfy the calibration international standards. So, the collimators were constructed obeying the geometric rules, the first being of conic format and the second of the cylindrical format, therefore avoiding the effects of the scattering radiation on the edges. By using this collimation system it was possible to verify the uniformity of the radiation field incident the ionization chamber to be over 98% of the total area, guaranteeing better precision of the measurement

  8. Detectability of pulmonary nodules with electronic collimation and conventional antiscatter grid

    International Nuclear Information System (INIS)

    Plenkovich, D.; Plavsic, B.; Robinson, A.E.; Lichtenstein, R.L.

    1989-01-01

    Electronic collimation is a method for rejection of scattered radiation and veiling glare in digital radiography. Digital images of a frozen, unembalmed, human chest phantom with simulated pulmonary nodules were obtained with use of the electronic collimation technique and a conventional 10:1 antiscatter grid. Observers were asked to locate multiple nodules and to record one of three levels of confidence. For each criterion, the total number of correct responses was divided by the total number of nodules to obtain the ordinate of a point. The total number of false-positive answers generated was divided by the number of images to obtain the abscissa of the point. The analysis was repeated for each scatter rejection method and for either the lungs or the mediastinum. The electronic collimation technique has improved the detectability of nodules projected over the mediastinum

  9. Designing and Building a Collimation System for the High-Intensity LHC Beam

    CERN Document Server

    Assmann, R W; Baishev, I S; Bruno, L; Brugger, M; Chiaveri, Enrico; Dehning, Bernd; Ferrari, A; Goddard, B; Jeanneret, J B; Jiménez, M; Kain, V; Kaltchev, D I; Lamont, M; Ruggiero, F; Schmidt, R; Sievers, P; Uythoven, J; Vlachoudis, V; Vos, L; Wenninger, J

    2003-01-01

    The Large Hadron Collider (LHC) will collide proton beams at 14 TeV c.m. with unprecedented stored intensities. The transverse energy density in the beam will be about three orders of magnitude larger than previously handled in the Tevatron or in HERA, if compared at the locations of the betatron collimators. In particular, the population in the beam halo is much above the quench level of the superconducting magnets. Two LHC insertions are dedicated to collimation with the design goals of preventing magnet quenches in regular operation and preventing damage to accelerator components in case of irregular beam loss. We discuss the challenges for designing and building a collimation system that withstands the high power LHC beam and provides the required high cleaning efficiency. Plans for future work are outlined.

  10. Verification of source and collimator configuration for Gamma Knife Perfexion using panoramic imaging

    International Nuclear Information System (INIS)

    Cho, Young-Bin; Prooijen, Monique van; Jaffray, David A.; Islam, Mohammad K.

    2010-01-01

    Purpose: The new model of stereotactic radiosurgery system, Gamma Knife Perfexion, allows automatic selection of built-in collimation, eliminating the need for the time consuming manual collimator installation required with previous models. However, the configuration of sources and collimators inside the system does not permit easy access for the verification of the selected collimation. While the conventional method of exposing a film at the isocenter is useful for obtaining composite dose information, it is difficult to interpret the data in terms of the integrity of each individual source and corresponding collimation. The primary aim of this study was to develop a method of verifying the geometric configuration of the sources and collimator modules of the Gamma Knife Perfexion. In addition, the method was extended to make dose measurements and verify the accuracy of dose distributions calculated by the mathematical formalism used in the treatment planning system, Leksell Gamma Plan. Methods: A panoramic view of all of 192 cobalt sources was simultaneously acquired by exposing a radiochromic film wrapped around the surface of a cylindrical phantom. The center of the phantom was mounted at the isocenter with its axis aligned along the longitudinal axis of the couch. The sizes and shapes of the source images projected on the phantom surface were compared to those calculated based on the manufacturer's design specifications. The measured dose at various points on the film was also compared to calculations using the algorithm of the planning system. Results: The panoramic images allowed clear identification of each of the 192 sources, verifying source integrity and selected collimator sizes. Dose on the film surface is due to the primary beam as well as phantom scatter and leakage contributions. Therefore, the dose at a point away from the isocenter cannot be determined simply based on the proportionality of collimator output factors; the use of a dose computation

  11. Structured mirror array for two-dimensional collimation of a chromium beam in atom lithography

    International Nuclear Information System (INIS)

    Zhang Wan-Jing; Ma Yan; Li Tong-Bao; Zhang Ping-Ping; Deng Xiao; Chen Sheng; Xiao Sheng-Wei

    2013-01-01

    Direct-write atom lithography, one of the potential nanofabrication techniques, is restricted by some difficulties in producing optical masks for the deposition of complex structures. In order to make further progress, a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions. The best collimation is obtained when the laser red detunes by natural line-width of transition 7 S 3 → 7 P 0 4 of the chromium atom. The collimation ratio is 0.45 vertically (in x axis), and it is 0.55 horizontally (in y axis). The theoretical model is also simulated, and success of our structured mirror array is achieved. (atomic and molecular physics)

  12. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses

    International Nuclear Information System (INIS)

    Cai Hongbo; Zhu Shaoping; Wu Sizhong; Chen Mo; Zhou Cangtao; He, X. T.; Yu Wei; Nagatomo, Hideo

    2011-01-01

    The efficient magnetic collimation of fast electron flow transporting in overdense plasmas is investigated with two-dimensional collisional particle-in-cell numerical simulations. It is found that the specially engineered targets exhibiting either high-resistivity-core-low-resistivity-cladding structure or low-density-core-high-density-cladding structure can collimate fast electrons. Two main mechanisms to generate collimating magnetic fields are found. In high-resistivity-core-low-resistivity-cladding structure targets, the magnetic field at the interfaces is generated by the gradients of the resistivity and fast electron current, while in low-density-core-high-density-cladding structure targets, the magnetic field is generated by the rapid changing of the flow velocity of the background electrons in transverse direction (perpendicular to the flow velocity) caused by the density jump. The dependences of the maximal magnetic field on the incident laser intensity and plasma density, which are studied by numerical simulations, are supported by our analytical calculations.

  13. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    International Nuclear Information System (INIS)

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying; Liu, Xiao-jun; Guo, Jian-zhong

    2015-01-01

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations

  14. Demonstration of a collimated in situ method for determining depth distributions using gamma-ray spectrometry

    CERN Document Server

    Benke, R R

    2002-01-01

    In situ gamma-ray spectrometry uses a portable detector to quantify radionuclides in materials. The main shortcoming of in situ gamma-ray spectrometry has been its inability to determine radionuclide depth distributions. Novel collimator designs were paired with a commercial in situ gamma-ray spectrometry system to overcome this limitation for large area sources. Positioned with their axes normal to the material surface, the cylindrically symmetric collimators limited the detection of un attenuated gamma-rays from a selected range of polar angles (measured off the detector axis). Although this approach does not alleviate the need for some knowledge of the gamma-ray attenuation characteristics of the materials being measured, the collimation method presented in this paper represents an absolute method that determines the depth distribution as a histogram, while other in situ methods require a priori knowledge of the depth distribution shape. Other advantages over previous in situ methods are that this method d...

  15. Heavy-Ion Collimation at the Large Hadron Collider Simulations and Measurements

    CERN Document Server

    AUTHOR|(CDS)2083002; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with t...

  16. Impedance study on HL-LHC’s collimation and protection system

    CERN Document Server

    AUTHOR|(CDS)2206357; Migliorati, Mauro; salvant, Benoit; Biancacci, Nicolo

    In this thesis work the coupling impedance of the foreseen HL-LHC’s (High Luminosity Large Hadron Collider) collimation and protection system will be analyzed in detail. In particular the devices of interest will be the TCSPM and the TDIS, which are a secondary collimator and an injection protection system. This work is structured in two parts, the first one is composed by three chapters in which it will be explained: what are the LHC and the collimators, which formulas were used in order to carry out this study, which tools and measurements techniques were adopted to characterize the different materials. The second part is composed of two chapters and it will show and comment the results obtained during a year of studies.

  17. Crystal Collimation efficiency measured with the Medipix detector in SPS UA9 experiment.

    CERN Document Server

    Laface, E; Tlustos, L; Ippolito, V

    2010-01-01

    The UA9 experiment was performed in 6 MDs from May to November 2009 with the goal of studying the collimation properties of a crystal in the framework of a future exploitation in the LHC collimation system. An important parameter evaluated for the characterization of the crystal collimation is the efficiency of halo extraction when the crystal is in channeling mode. In this paper it is explained how this efficiency can be measured using a pixel detector, the Medipix, installed in the Roman Pot of UA9. The number of extracted particles counted by the Medipix is compared with the total number of circulating particles measured by the Beam Current Transformers (BCTs): from this comparison the efficiency of the system composed by the crystal, used in channeling mode, and a tungsten absorber is proved to be greater than 85%.

  18. Beam Collimation and Machine-Detector Interface at the International Linear Collider

    CERN Document Server

    Mokhov, Nikolai V; Kostin, Mikhail A

    2005-01-01

    Synchrotron radiation, spray from the dumps and extraction lines, beam-gas and beam halo interactions with collimators and other components in the ILC beam delivery system create fluxes of muons and other secondaries which can exceed the tolerable levels at a detector by a few orders of magnitude. It is shown that with a multi-stage collimation system, magnetized iron spoilers which fill the tunnel and a set of masks in the detector, one can hopefully meet the design goals. Results of modeling with the STRUCT and MARS15 codes of beam loss and energy deposition effects are presented in this paper. We concentrate on collimation system and mask design and optimization, short- and long-term survivability of the critical components (spoilers, absorbers, magnets, separators, dumps), dynamic heat loads and radiation levels in magnets and other components, machine-related backgrounds and damage in collider detectors, and environmental aspects (prompt dose, ground-water and air activation).

  19. Transverse and Longitudinal Beam Collimation in a High-Energy Proton Collider (LHC)

    CERN Document Server

    Catalan-Lasheras, N

    1998-01-01

    In the Large Hadron Collider (LHC), particles from the beam halo might potentially impinge on the vacuum chamber, effecting harmful transitions of the superconducting magnets ("quenches"). This can be prevented by the collimation system which confines the particle losses to special, non superconducting sections of the machine. Due to the high energy and intensity of the LHC, any removal system must attain an unprecedented efficiency. The cleaning system was designed on the basis of purely geometric and optical models which neglect non linear effects and assume perfectly absorbing materials. In a second step, true scattering in matter is considered. A series of machine developments (MD) were carried out in 1996-7 with the principal aim of validating the design assumptions. A collimation system comparable to that of the LHC was employed. The predictions of the numerical model used to compute the LHC collimation system efficiency were compared with the data acquired during the measurement sessions. The experimen...

  20. Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder.

    Science.gov (United States)

    Deprez, Karel; Vandenberghe, Stefaan; Van Audenhaege, Karen; Van Vaerenbergh, Jonas; Van Holen, Roel

    2013-01-01

    The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. A complex collimator with 20 loftholes with 500 μm diameter pinhole opening was designed and produced (16 mm thick and 70 × 52 mm(2) transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 μm thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. The density of the collimator was equal to 17.31 ± 0.10 g∕cm(3) (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 μm. The aperture positions have a mean deviation of 5 μm, the maximum deviation was 174 μm and the minimum deviation was -122 μm. The mean aperture diameter is 464 ± 19 μm. The calculated and measured sensitivity and

  1. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.

    Science.gov (United States)

    Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2013-01-11

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1  MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

  2. Wavefront control of the Large Optics Test and Integration Site (LOTIS) 6.5m Collimator

    Energy Technology Data Exchange (ETDEWEB)

    West, Steven C.; Bailey, Samuel H.; Burge, James H.; Cuerden, Brian; Hagen, Jeff; Martin, Hubert M.; Tuell, Michael T.

    2010-06-20

    The LOTIS Collimator provides scene projection within a 6.5m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5{mu}m wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f/15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110nmrms wavefront error in ambient air over the 6.5mcollimated beam.

  3. Development and Beam Tests of an Automatic Algorithm for Alignment of LHC Collimators with Embedded BPMs

    CERN Document Server

    Valentino, G; Gasior, M; Mirarchi, D; Nosych, A A; Redaelli, S; Salvachua, B; Assmann, R W; Sammut, N

    2013-01-01

    Collimators with embedded Beam Position Monitor (BPM) buttons will be installed in the LHC during the upcoming long shutdown period. During the subsequent operation, the BPMs will allow the collimator jaws to be kept centered around the beam trajectory. In this manner, the best possible beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation, as the BPM measurements are affected by non-linearities, which vary with the distance between opposite buttons, as well as the difference between the beam and the jaw centers. The successful test results, as well as some considerations for eventual operation in the LHC are also presented.

  4. Metal micro-arrays for collimating neutrons and X-rays

    International Nuclear Information System (INIS)

    Allman, B.E.; Cimmino, A.; Klein, A.G.; Hamilton, W.A.

    1998-08-01

    The authors describe the theory, fabrication and experimental results of novel, compact optical elements for collimating and/or focusing beams of X-rays or thermal neutrons. These optical elements are solid composites consisting of regular stacks of alternating micro-foils, analogous in action to Soller slits. They are made out of pairs of metals with suitable refractive indices for reflection and/or absorption of the radiation. The performance of these proof-in-principle collimating elements is limited only by the choice of micro-foil materials and the uniformity of their interfaces

  5. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Mohd Rafi Mohd Solleh; Abdul Aziz Tajuddin; Abdul Aziz Mohamed; Eid Mahmoud Eid Abdel Munem; Mohamad Hairie Rabir; Julia Abdul Karim; Yoshiaki, Kiyanagi

    2011-01-01

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 10 8 n/ cm 2 / s. According to IAEA (2001) flux of 1.00 x 10 9 n/ cm 2 / s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  6. Quantitative analysis of the errors positioning of a multi leaf collimator for volumetric arcoterapia treatments

    International Nuclear Information System (INIS)

    Gomez Gonzalez, N.; Garcia Repiso, S.; Martin Rincon, C.; Cons Perez, N.; Saez Beltran, M.; Delgado Aparicio, J. M.; Perez alvarez, M. E.; Verde Velasco, J. M.; Ramos Pacho, J. A.; Sena Espinel, E. de

    2013-01-01

    The precision in the positioning of the multi leaf collimation system of a linear accelerator is critical, especially in treatments of IMRT, where small mistakes can cause relevant dosimetry discrepancies regarding the calculated plan. To assess the accuracy and repeatability of the blades positioning can be used controls, including the one known as fence test whose image pattern allows you to find anomalies in a visual way. The objective of this study is to develop a method which allows to quantify the positioning errors of the multi leaf collimator from this test. (Author)

  7. Non-diverging analytic expression for the on-axis sensitivity of converging collimators: analytic derivation

    International Nuclear Information System (INIS)

    Accorsi, R; Metzler, S D

    2006-01-01

    The expressions for the sensitivity of converging collimators found in the literature diverge at points near the focal locus of the collimator. In this paper, an analytical formula that does not diverge is derived and compared to that available in the literature. An analysis is provided to predict the cases in which use of the new formula is advisable. Since the first expression derived is rather complex, approximations were made to reach simpler formulae. The formulae derived can be used to define and extend the realm of applicability of the literature expression in the cases identified in their derivation

  8. High-frequency impedance of small-angle tapers and collimators

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2010-10-01

    Full Text Available Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya’s formula (for axisymmetric geometry, much less is known about the behavior of the impedance in the high-frequency limit. In this paper we develop an analytical approach to the high-frequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

  9. Effect of an applied pressure gradient on a magnetically collimated arc

    Energy Technology Data Exchange (ETDEWEB)

    Neidigh, R V [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Weaver, C H [University of Tennessee (United States)

    1958-07-01

    This report describes experimental observations made in connection with a magnetically collimated arc having an applied pressure gradient along its length and presents possible explanations of the phenomena observed. It is believed to be pertinent to thermonuclear research because it involves the transport of plasma across a magnetic field and the acceleration of ions without use of solid electrodes and furnishes evidence concerning the behavior inside magnetically collimated arc discharges as the pressure is decreased. The observations are repeatable to an unusual degree and are believed to be sufficiently interesting to be reported at this time, even though a thorough understanding of the entire mechanism involved has not been reached.

  10. Channeling-based collimators for generation of microbeams produced by silicon micromachining technology

    International Nuclear Information System (INIS)

    Guidi, V.; Antonini, A.; Milan, E.; Ronzoni, A.; Martinelli, G.; Biryukov, V.M.; Chesnokov, Yu.A.

    2006-01-01

    The growing interest on micro-beams in recent years and the combined development of channeling technology in high-energy physics have opened the way to new concepts for micro-beams devices. Silicon micromachining technology is here applied to manufacture micro-collimators in inexpensive and feasible ways. Both dry and wet etchings can be employed for the purpose, though the latter technique appears to be cheaper and easier. Two designs for micro-collimator devices have been considered and preliminary samples have been produced accordingly

  11. Collimator optimization for small animal radiation therapy at a micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Manuela C. [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology; Glatting, Gerhard [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Giordano, Frank A.; Wenz, Frederik; Fleckenstein, Jens [Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology; Brockmann, Marc A. [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology; University Medical Center Mainz (Germany). Dept. of Neuroradiology

    2017-05-01

    In radiation therapy of small animals treatment depths range from a few millimetres to several centimetres. In order to spare surrounding organs at risk steep dose gradients are necessary. To minimize the treatment time, and therefore the strain to the animals, a high dose rate is required. A description how these parameters can be optimized through an appropriate choice of collimators with different source surface distances (SSD) as well as different materials and geometries is presented. An industrial micro-CT unit (Y.Fox, YXLON GmbH, Hamburg, Germany) was converted into a precision irradiator for small animals. Different collimators of either stainless steel (Fe) with cylindrical bores (SSD = 42 mm) or tungsten (W) with conical bores (SSD = 14 mm) were evaluated. The dosimetry of very small radiation fields presents a challenge and was performed with GafChromic EBT3 films (Ashland, Vayne, KY, USA) in a water phantom. The films were calibrated with an ionization chamber in the uncollimated field. Treatments were performed via a rotation of the objects with a fixed radiation source. As expected, the shorter SSD of the W-collimators resulted in a (4.5 ± 1.6)-fold increase of the dose rates compared to the corresponding Fe-collimators. The ratios of the dose rates at 1 mm and 10 mm depth in the water phantom was (2.6 ± 0.2) for the Fe- and (4.5 ± 0.1) for the W-collimators. For rotational treatments in a cylindrical plastic phantom maximum dose rates of up to 1.2 Gy/min for Fe- and 5.1 Gy/min for W-collimators were measured. Choosing the smallest possible SSD leads to a high dose rate and a high surface dose, which is of advantage for the treatment of superficial target volumes. For larger SSD the dose rate is lower and the depth dose curve is shallower. This leads to a reduction of the surface dose and is best suited for treatments of deeper seated target volumes. Divergent collimator bores have, due to the reduced scatter within the collimators, a steeper

  12. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papotti, G [CERN; Redaelli, S. [CERN; Valentino, G. [Malta U.; Valentino, G. [CERN; Valuch, D. [CERN; Xu, C. [CERN

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  13. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    International Nuclear Information System (INIS)

    Du, Weiliang; Gao, Song

    2011-01-01

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  14. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weiliang; Gao, Song [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030 (United States)

    2011-08-15

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  15. Wide-band all-angle acoustic self-collimation by rectangular sonic crystals with elliptical bases

    International Nuclear Information System (INIS)

    Cicek, Ahmet; Kaya, Olgun Adem; Ulug, Bulent

    2011-01-01

    Self-collimation of acoustic waves in the whole angular range of ±90 0 in the second and third bands of a two-dimensional rectangular sonic crystal with elliptical basis is demonstrated by examining the band structure and equifrequency contours. 70% and 77% of the second and third bands are available for wide-band all-angle self-collimation spanning a bandwidth of approximately 29% and 25% of the central frequencies of the all-angle self-collimation frequency ranges, respectively. Self-collimation of waves over large distances with a small divergence of beam width in the transverse direction is demonstrated through computations based on the finite element method. The second and third bands available for self-collimation are seen to vary linearly in the vast mid-range where a small group velocity dispersion prevents temporal divergence of waves with different frequencies.

  16. Modeling of a collimator micro-multilayers in the Pinnacle planning system

    International Nuclear Information System (INIS)

    Garcia Hernandez, T.; Brualla Gonzalez, L.; Vicedo Gonzalez, A.; Rosello Ferrando, J.; Granero Cabanero, D.

    2013-01-01

    To model and validate, in the system of planning and calculation Pinnacle, a micro-multilayers collimator mounted on an accelerator Siemens Primus. The objective is to take advantage of the improvements offered by the algorithm of convolution of cone collapsed and the capacity of the system of modeling the rounded end of the blades. (Author)

  17. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    Science.gov (United States)

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Dose distributions of x-ray fields as shaped with multileaf collimators

    International Nuclear Information System (INIS)

    Zhu, Y.; Boyer, A.L.; Desobry, G.E.

    1992-01-01

    Multileaf collimators (MLC) with various blade widths were simulated using standard cerrobend blocks, and three-dimensional dose computations were carried out to study the resultant radiation field edges. The study suggests that multileaf collimation to the outside of the desired field edge will lead to overdose outside the field, whereas multileaf collimation to the inside of the desired field edge will lead to underdose inside the field. When the direction of travel of the leaves with respect to the field edge is near 45 o , the 50% isodose of a multileaf-collimated beam will fall close to the desired edge with no underdose when the leaf corners are allowed to insert into the desired field edge by 1.2 mm for 6 MV x-rays and 1.4 mm for 18 MV x-rays using a 1 cm wide leaf. These blade offsets account for the scattering of photons and electrons in the medium within the penumbral region. (author)

  19. Design considerations for primary neutron beam collimation on the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Howells, W.S.

    1980-09-01

    A scheme for the design of primary neutron beam collimation is presented which is based on ray diagrams. The practical application of the ideas is outlined and the influence of various constraints such as beam shutters is discussed. The ideas are illustrated with examples which include the layouts for some typical instruments. (author)

  20. Analysis of transport of collimated radiation in a participating media using the lattice Boltzmann method

    International Nuclear Information System (INIS)

    Mishra, Subhash C.; Vernekar, Rohan Ranganath

    2012-01-01

    Application of the lattice Boltzmann method (LBM) recently proposed by Asinari et al. [Asinari P, Mishra SC, Borchiellini R. A lattice Boltzmann formulation to the analysis of radiative heat transfer problems in a participating medium. Numer Heat Transfer B 2010; 57:126–146] is extended to the analysis of transport of collimated radiation in a planar participating medium. To deal with azimuthally symmetric radiation in planar medium, a new lattice structure for the LBM is used. The transport of the collimated component in the medium is analysed by two different, viz., flux splitting and direct approaches. For different angles of incidence of the collimated radiation, the LBM formulation is tested for the effects of the extinction coefficient, the anisotropy factor, and the boundary emissivities on heat flux and emissive power distributions. Results are compared with the benchmark results obtained using the finite volume method. Both the approaches in LBM provide accurate results. -- Highlights: ► Transport of collimated radiation in participating media is studied. ► Usage of Lattice Boltzmann method (LBM) is extended in this study. ► In LBM, flux splitting and direct approaches are proposed. ► Effects of various parameters are studied on heat flux and temperature profiles. ► In all cases, LBM provides correct results.

  1. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    Science.gov (United States)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  2. Performance evaluation of a crystal-enhanced collimation system for the LHC

    CERN Document Server

    Previtali, Valentina; Assmann, Ralph

    2010-01-01

    The Large Hadron Collider (LHC) has been constructed at CERN (Conseil Européen pour la Recherche Nucléaire, Geneva, Switzerland), and recently started up. The LHC beams, currently accelerated to 3.5 TeV, are meant to reach the nominal energy of 7 TeV, and a total stored energy, in nominal conditions, of 360 MJ per beam. The contrast between the huge stored power and the delicate cryogenic environment calls for a sophisticated collimation system. For overcoming the limitations of the actual collimation system, different upgrade solutions have been considered; this Ph.D. work gives a first performance evaluation of a crystal-enhanced collimation system by analytical, experimental and simulation investigations. In this work, two crystal collimation experiments are described: the T980 (Teva- tron, Chicago, U.S.) and the UA9 (SPS, CERN, Geneva, Switzerland). The data are analyzed and actual crystal performances are measured. These experimental results and their cross-check with dedicated simulations constitute...

  3. 3CML: a software application for quality control of multi leaf collimators

    International Nuclear Information System (INIS)

    Miras, H.; Perez, M. A.; Macias, J.; Moreno, J. C.; Campo, J. L.; Ortiz, M.; Arrans, R.; Ortiz, A.; Terron, J. A.; Fernandez, D.

    2011-01-01

    The treatments of intensity modulated radiotherapy (IMRT) require a deep knowledge of the accuracy, precision and reproducibility of positioning of the plates that make up the multi leaf collimator (MLC). We have developed a computer application, 3CML, to analyze an image corresponding to a pattern of separate bands irradiation to determine the deviations of the positioning of the blades on the nominal values.

  4. Principles for generation of time-dependent collimator settings during the LHC cycle

    CERN Document Server

    Bruce, R; Redaelli, S

    2011-01-01

    The settings of the LHC collimators have to be changed during the cycle of injection, ramp and squeeze to account for variations in the orbit, beam size and normalized distance to the beam center. We discuss the principles for how the settings are calculated and show a software tool that computes them as time-dependent functions from beambased data and theoretical optics models.

  5. Modeling of beam-induced damage of the LHC tertiary collimators

    Directory of Open Access Journals (Sweden)

    E. Quaranta

    2017-09-01

    Full Text Available Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC, which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β^{*} and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  6. Outgassing measurement of an LHC collimator and estimation for the NEG performances

    CERN Document Server

    Kamiya, Junichiro; Jimenez, J M; Bregliozzi, G

    2011-01-01

    The outgassing rate of the collimators in the Large Hadron Collider (LHC) at CERN has an important role for the life-time of the Non-Evaporable Getter (NEC), and an accurate analysis allows the definition of future activities, like NEC vacuum activation. For these reasons, both, total outgassing rate and gas composition of a secondary collimator have been measured in the laboratory. The outgassing rate decreases by about two orders of magnitude by after bake-out and moreover, repeated bake-out further reduced the outgassing rate. The gas transmission through the NEC coated beam pipes and the resulting pressure distributions near the collimator were also measured in a dedicated setup. It is found that the main gas component after just 2 m of NEC coated beam pipe is CH(4) due to the extreme pumping speed of NEC for the other gases. Large amount of outgassing for H(2) and carbon related molecules are released when moving the collimator jaws. It is found that the NEC is very effective even in such case with large...

  7. Microstrip silicon detectors in a bent crystal based collimation system: The UA9 experiment

    International Nuclear Information System (INIS)

    Bolognini, D.

    2010-01-01

    In a hadron accelerator like Lhc, a collimation system needs to be developed to protect the accelerator itself from the beam loss damage, increasing the beam luminosity. At present, a classical robust multi-stage collimation system (based on amorphous jaws) allows to protect Lhc, but limits the luminosity to the 40% of the nominal value. In order to solve this problem, a series of low-impedance collimation systems is being developed for the second Lhc collimation phase: among these, a key role could be played by bent crystals. In a bent crystal, in fact, charged particles can be deviated in a given direction with a high efficiency, reducing the impedance and increasing the luminosity. After the satisfactory results on extracted beams, it was decided to test bent crystals on a circular accelerator (the Super Proton Synchrotron Sps at CERN): the UA9 experiment was born. In order to qualify the crystal behavior, a tracking system has been developed: the system is based on microstrip silicon detectors readout by self-triggering ASICs with a spatial resolution of the order of 5 μm; the system, completely remotely controlled and based on the optical fiber transmission, would be able to measure the beam halo phase space x - x 1 . This paper, after a brief introduction of the UA9 experiment, will describe the tracking system and the first results obtained in the commissioning phase and data takings with a detector prototype.

  8. Modeling of beam-induced damage of the LHC tertiary collimators

    Science.gov (United States)

    Quaranta, E.; Bertarelli, A.; Bruce, R.; Carra, F.; Cerutti, F.; Lechner, A.; Redaelli, S.; Skordis, E.; Gradassi, P.

    2017-09-01

    Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC), which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β* and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  9. Studies on heavy ion losses from collimation cleaning at the LHC

    CERN Document Server

    Hermes, P D; Jowett, J M; Redaelli, S; Salvachua, B M; Valentino, G; Wollmann, D

    2015-01-01

    The LHC collimation system protects superconducting magnets from beam losses. By design, it was optimized for the high-intensity proton challenges but so far provided adequate protection also during the LHC heavy-ion runs with 208Pb82+ ions up to a beam energy of 4 Z TeV. Ion beam cleaning brings specific challenges due to different physical interactions with the collimator materials and might require further improvements for operation at 7 Z TeV. In this article, we study heavy-ion beam losses leaking out of the LHC collimation system, both in measurement and simulations. The simulations are carried out using both ICOSIM, with a simplified ion physics model implemented, and SixTrack, including more detailed starting conditions from FLUKA but without including online scattering in subsequent collimator hits. The results agree well with measurements overall, although some discrepancies are present. The reasons for the discrepancies are investigated and, on this basis, the requirements for an improved simulatio...

  10. Freeform TIR collimators for the removal of angular color variation in white LED spotlights

    NARCIS (Netherlands)

    Prins, C.R.; Schneider, C.; IJzerman, W.L.; Tukker, T.W.; Thije Boonkkamp, ten J.H.M.; Winston, R.; Gordon, J.

    2013-01-01

    Angular color variation in white, phosphor-converted LEDs causes undesirable yellow rings in the beams of spotlights. We developed an inverse method to design TIR collimators that remove the angular color variation for point light sources and significantly reduce color variation for extended light

  11. The effect of laser beam size in a zig-zag collimator on transverse ...

    Indian Academy of Sciences (India)

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on trans- ... resolution spectroscopy, many-body physics, precision measurements, atom lithogra- ..... torr) at a distance of 180 cm from the Kr gas inlet chamber.

  12. Penumbra characteristics of square photon beams delimited by a GEMS multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Briot, E; Julia, F [Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France)

    1995-12-01

    A multi-leaf collimator (MLC) has been designed to replace directly the standard collimator of a SATURNE IV Series linac. It consists of 2 x 32 tungsten leaves and one set of upper block jaws. Isodose curves and dose profiles were measured for symmetric fields at the depth of the maximum and the reference depths for 6 MV, 10 MV, 18 MV photon beams. The penumbra (80%-20%) corresponding to the face and the side of the leaves have been compared with the standard collimators. Along with the X direction, the field delimitation is performed primarily with the leaves which are continuously variable in position. Along the Y direction, the field is initially approximated by the closure of opposite leaf pairs; then the Y upper jaws produce the exact size of the required field. As the leaves move linearly the penumbra (80%-20%) corresponding to the leaf ends is minimized and held constant at all positions by curvature of their faces. Penumbra obtained with the superposition of leaves and Y jaws depend on their relative position. The penumbra is minimum when the leaf side and the Y jaw edge coincide and the comparison of the measurement values with the conventional collimator shows that the differences are within 1 mm. When the leaves delineating the field are not entirely covered by the Y block upper jaws, the penumbra increases, and the junction of the opposing leaves, a width increase up to 3.5 mm has been measured.

  13. Thermal behavior of TAXN and TCDXM D2 collimator mask, Finite element studies

    CERN Document Server

    Sklariks, Stepans

    2015-01-01

    The objective of this project was to perform thermal loading simulations of TCDXM (D2 collimator mask) and TAXN so as to allow the preliminary evaluation of the suitability of the given parts for the upcoming high luminosity upgrade that is to be performed in LHC in the nearest future.

  14. Fast Automatic Beam-Based Alignment of the LHC Collimator Jaws

    CERN Document Server

    AUTHOR|(CDS)2080813; Assmann, R W

    2014-01-01

    The CERN Large Hadron Collider (LHC) in Geneva, Switzerland is the largest and most powerful particle accelerator ever built. With a circumference of 27 km, it is designed to collide particles in two counter-rotating beams at a centre-of-mass energy of 14 TeV to explore the fundamental forces and constituents of matter. Due to its potentially destructive high energy particle beams, the LHC is equipped with several machine protection systems. The LHC collimation system is tasked with scattering and absorbing beam halo particles before they can quench the superconducting magnets. The 108 collimators also protect the machine from damage in the event of very fast beam losses, and shields sensitive devices in the tunnel from radiation over years of operation. Each collimator is made up of two blocks or ‘jaws’ of carbon, tungsten or copper material. The collimator jaws need be placed symmetrically on either side of the beam trajectory, to clean halo particles with maximum efficiency. The beam orbit and beam siz...

  15. Influence of atomic screening on fragmentation of ultrarelativistic lead ions in LHC collimators

    DEFF Research Database (Denmark)

    Baggesen, Jan C.; Sørensen, Allan H.

    2009-01-01

    ) electromagnetic dissociation dominates the fragmentation in medium to heavy target materials. Due to the extended range of the interaction at high energies, atomic screening affects the dissociation in the LHC collimators. We determine the magnitude of the reduction in cross section relative to the unscreened...

  16. Investigation of Collimator Influential Parameter on SPECT Image Quality: a Monte Carlo Study

    Directory of Open Access Journals (Sweden)

    Banari Bahnamiri Sh

    2015-03-01

    Full Text Available Background: Obtaining high quality images in Single Photon Emission Tomography (SPECT device is the most important goal in nuclear medicine. Because if image quality is low, the possibility of making a mistake in diagnosing and treating the patient will rise. Studying effective factors in spatial resolution of imaging systems is thus deemed to be vital. One of the most important factors in SPECT imaging in nuclear medicine is the use of an appropriate collimator for a certain radiopharmaceutical feature in order to create the best image as it can be effective in the quantity of Full Width at Half Maximum (FWHM which is the main parameter in spatial resolution. Method: In this research, the simulation of the detector and collimator of SPECT imaging device, Model HD3 made by Philips Co. and the investigation of important factors on the collimator were carried out using MCNP-4c code. Results: The results of the experimental measurments and simulation calculations revealed a relative difference of less than 5% leading to the confirmation of the accuracy of conducted simulation MCNP code calculation. Conclusion: This is the first essential step in the design and modelling of new collimators used for creating high quality images in nuclear medicine

  17. Status of UA9, the Crystal Collimation Experiment in the SPS

    CERN Document Server

    Scandale, W

    2011-01-01

    UA9 was operated at the CERN-SPS for more than two years to investigate the feasibility of halo collimation with bent crystals. Silicon crystals 2 mm long with bending angles of about 170 μrad were used as primary collimators. The crystal collimation process was steadily achieved through channeling, with high efficiency. The crystal orientation was easily set and optimized with an installed goniometer that has an angular accuracy of about ± 10 μrad. In channeling orientation, the loss rate of the halo particles interacting with the crystal is reduced by half an order of magnitude, whilst the residual off momentum halo escaping from the crystal-collimator area is reduced by a factor two to five. The crystal channeling efficiency of about 75% is reasonably consistent with simulations and with single pass data collected in the extracted proton beam of the SPS North Experimental Area. The accumulated observations, shown in this paper, support our expectation that the coherent deflection of the beam halo by a b...

  18. Improvement on image quality of single photon ECT with converging collimator system

    International Nuclear Information System (INIS)

    Murayama, Hideo; Nohara, Norimasa; Tanaka, Eiichi

    1986-01-01

    Single photon emission computed tomography (SPECT) with converging collimator system was proposed to improve quality of reconstructed images. The collimator system was designed to enhance sensitivity at the center region of field-of-view, where the probability photons escape the attenuating medium is smaller than at the off-center region. In order to evaluate efficiency of the improvement on image quality, the weighting function of projection, which is defined as relative sensitivity to the average on the lateral sampling of projection, was adopted to the image reconstruction algorithm of Radial Post Correction method. Statistical mean square noise in a reconstructed image was formulated in this method. Simulation studies using typical weighting function showed that center-enhanced weighting function brings effective improvement on image quality, especially, at the center region of cold area surrounded by annularly distributed activity. A new SPECT system was proposed as one example of the converging collimator systems. The system is composed of four gamma cameras with four fan-beam collimators, which have different focal distances one another. Simple simulation studies showed that the proposed system has reasonable center-enhanced weighting function, and the image quality based on the proposed system was fairly improved as compared with one based on uniform weighting function at the center region of the field-of-view. (author)

  19. Investigation of collimator materials for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2085459; Bertarelli, Alessandro; Redaelli, Stefano

    This PhD thesis work has been carried out at the European Organisation for Nuclear Research (CERN), Geneva, Switzerland), in the framework of the High Luminosity (HL) upgrade of the Large Hadron Collider (LHC). The HL-LHC upgrade will bring the accelerator beyond the nominal performance: it is planning to reach higher stored beam energy up to 700 MJ, through more intense proton beams. The present multi-stage LHC collimation system was designed to handle 360 MJ stored beam energy and withstand realistic losses only for this nominal beam. Therefore, the challenging HL-LHC beam parameters pose strong concerns for beam collimation, which call for important upgrades of the present system. The objective of this thesis is to provide solid basis for optimum choices of materials for the different collimators that will be upgraded for the baseline layout of the HL-LHC collimation system. To achieve this goal, material-related limitations of the present system are identified and novel advanced composite materials are se...

  20. Summary of the CERN Workshop on Materials for Collimators and Beam Absorbers

    CERN Document Server

    Schmidt, R; Bertarelli, A; Ferrari, A; Weterings, W; Mokhov, N V

    2008-01-01

    The main focus of the workshop was on collimators and beam absorbers for (mainly) High Energy Hadron Accelerators, with the energy stored in the beams far above damage limit. The objective was to better understand the technological limits imposed by mechanisms related to beam impact on materials. The idea to organise this workshop came up during the High Intensity High Brightness Hadron Beams, ICFA-HB2006 in Japan [1]. The workshop was organised 3-5 September 2007 at CERN, with about 60 participants, including 20 from outside CERN. About 30 presentations were given [2]. The event was driven by the LHC challenge, with more than 360 MJoule stored in each proton beam. The entire beam or its fraction will interact with LHC collimators and beam absorbers, and with the LHC beam dump blocks. Collimators and beam absorbers are also of the interest for other labs and accelerators: - CERN: for the CNGS target, for SPS beam absorbers (extraction protection) and collimators for protecting the transfer line between SPS an...

  1. Collimation system for the VUV free-electron laser at the TESLA test facility

    International Nuclear Information System (INIS)

    Schlarb, H.

    2001-11-01

    To perform a proof-of-principle experiment for a Free Electron Laser operating at VUV wavelengths an undulator has been installed in the TESLA Test Facility linac phase I. To meet the requirements on the magnetic field quality in the undulator, a hybrid type structure with NdFeB permanent magnets has been chosen. The permanent magnets are sensitive to radiation by high energy particles. In order to perform the various experiments planned at the TESLA Test Facility linac, a collimator section has been installed to protect the undulator from radiation. In this thesis the design, performance and required steps for commissioning the collimator system are presented. To identify potential difficulties for the linac operation, the beam halo and the dark current transport through the entire linac is discussed. Losses of primary electrons caused by technical failures, component misalignments, and operation errors are investigated by tracking simulations, in order to derive a complete understanding of the absorbed dose in the permanent magnets of the undulator. Various topics related to a collimator system such as the removal of secondary particles produced at the collimators, generation and shielding of neutrons, excitation of wake fields, and beam based alignment concepts are important subjects of this thesis. (orig.)

  2. Optimized procedure for calibration and verification multileaf collimator from Elekta Synergy accelerator

    International Nuclear Information System (INIS)

    Castel Millan, A.; Perellezo Mazon, A.; Fernandez Ibiza, J.; Arnalte Olloquequi, M.; Armengol Martinez, S.; Rodriguez Rey, A.; Guedea Edo, F.

    2011-01-01

    The objective of this work is to design an optimized procedure for calibration and verification of a multileaf collimator used so as to allow the EPID and the image plate in a complementary way, using different processing systems. With this procedure we have two equivalent alternative as the same parameters obtained for the calibration of multileaf Elekta Synergy accelerator.

  3. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    Science.gov (United States)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  4. Feasibility study on low-dosage digital tomosynthesis (DTS) using a multislit collimation technique

    Science.gov (United States)

    Park, S. Y.; Kim, G. A.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kang, S. Y.; Kim, K. S.; Lim, H. W.; Lee, H. W.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.

    2018-04-01

    In this study, we investigated an effective low-dose digital tomosynthesis (DTS) where a multislit collimator placed between the X-ray tube and the patient oscillates during projection data acquisition, partially blocking the X-ray beam to the patient thereby reducing the radiation dosage. We performed a simulation using the proposed DTS with two sets of multislit collimators both having a 50% duty cycle and investigated the image characteristics to demonstrate the feasibility of this proposed approach. In the simulation, all projections were taken at a tomographic angle of θ = ± 50° and an angle step of Δθ =2°. We utilized an iterative algorithm based on a compressed-sensing (CS) scheme for more accurate DTS reconstruction. Using the proposed DTS, we successfully obtained CS-reconstructed DTS images with no bright-band artifacts around the multislit edges of the collimator, thus maintaining the image quality. Therefore, the use of multislit collimation in current real-world DTS systems can reduce the radiation dosage to patients.

  5. Wood metal. A material of interest for the preparation of individual collimators and radiation protective means

    International Nuclear Information System (INIS)

    Schumann, E.; Keiner, P.; Klose, E.

    1978-01-01

    On the grounds of its physical properties Wood metal is suitable for the preparation of individual collimators, shields and other radiation protective means in clinical radiology. Advantages and disadvantages of these self-made protective means are discussed. Its use for constructing special shielding elements and filters applied in radiotherapy as well as for shielding syringes applied in nuclear medicine is demonstrated. (author)

  6. An inverse method for the design of TIR collimators to achieve a uniform color light beam

    NARCIS (Netherlands)

    Prins, C.R.; Thije Boonkkamp, ten J.H.M.; Tukker, T.W.; IJzerman, W.L.

    2012-01-01

    Color over Angle (CoA) variation in the light output of white LEDs is a common and unsolved problem. In this article we introduce a new method to reduce CoA variation using a special collimator. The method is based on analytical inverse design methods. We present a numerical algorithm to solve the

  7. An inverse method for the design of TIR collimators to achieve a uniform color light beam

    NARCIS (Netherlands)

    Prins, C.R.; Thije Boonkkamp, ten J.H.M.; Tukker, T.W.; IJzerman, W.L.

    2013-01-01

    Color-over-angle (CoA) variation in the light output of white LEDs is a common and unsolved problem. In this article we introduce a new method to reduce CoA variation using a special collimator. The method is based on analytical inverse design methods. We present a numerical algorithm to solve the

  8. Practical modifications to photon planning algorithms to handle asymmetric collimators. 142

    International Nuclear Information System (INIS)

    Stevens, P.H.

    1987-01-01

    Current linear accelerators have flattening filters designed to give a uniform dose at depth in water. The resulting variation in photon flux and mean energy across the beam must be accounted for when designing algorithms that include dependent movement of collimators. A suitable algorithm is described based on measurements at 6 and 24 MeV. 2 refs.; 3 figs.; 1 table

  9. Comparative results on collimation of the SPS beam of protons and Pb ions with bent crystals

    CERN Document Server

    Scandale, W.; Assmann, R.; Bracco, C.; Cerutti, F.; Christiansen, J.; Gilardoni, S.; Laface, E.; Losito, R.; Masi, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Previtali, V.; Redaelli, S.; Valentino, G.; Schoofs, P.; Smirnov, G.; Tlustos, L.; Bagli, E.; Baricordi, S.; Dalpiaz, P.; Guidi, V.; Mazzolari, A.; Vincenzi, D.; Dabagov, S.; Murtas, F.; Carnera, A.; Della Mea, G.; De Salvador, D.; Lombardi, A.; Lytovchenko, O.; Tonezzer, M.; Cavoto, G.; Ludovici, L.; Santacesaria, R.; Valente, P.; Galluccio, F.; Afonin, A.G.; Bulgakov, M.K.; Chesnokov, Yu.A.; Maisheev, V.A.; Yazynin, I.A.; Kovalenko, A.D.; Taratin, A.M.; Uzhinskiy, V.V.; Gavrikov, Yu.A.; Ivanov, Yu.M.; Lapina, L.P.; Skorobogatov, V.V.; Ferguson, W.; Fulcher, J.; Hall, G.; Pesaresi, M.; Raymond, M.; Rose, A.; Ryan, M.; Zorba, O.; Robert-Demolaize, G.; Markiewicz, T.; Oriunno, M.; Wienands, U.

    2011-01-01

    New experiments on crystal assisted collimation have been carried out at the CERN SPS with stored beams of 120 Gev/c protons and Pb ions. Bent silicon crystals of 2 mm long with about 170 mu rad bend angle and a small residual torsion were used as primary collimators. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with the crystal nuclei is minimal. The loss reduction was about 6 for protons and about 3 for Pb ions. Lower reduction value for Pb ions can be explained by their considerably larger ionization losses in the crystal. In one of the crystals, the measured fraction of the Pb ion beam halo deflected in channeling conditions was 74\\%, a value very close to that for protons. The intensity of the off-momentum halo leaking out from the collimation station was measured in the first high dispersion area downstream. The particle population in the shadow of the secondary collimator-absorber was considerably smaller in channeling conditions than for amorphous orienta...

  10. Technical Note: Modeling a complex micro-multileaf collimator using the standard BEAMnrc distribution

    International Nuclear Information System (INIS)

    Kairn, T.; Kenny, J.; Crowe, S. B.; Fielding, A. L.; Franich, R. D.; Johnston, P. N.; Knight, R. T.; Langton, C. M.; Schlect, D.; Trapp, J. V.

    2010-01-01

    Purpose: The component modules in the standard BEAMnrc distribution may appear to be insufficient to model micro-multileaf collimators that have trifaceted leaf ends and complex leaf profiles. This note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined by a complex collimation device can be completed using BEAMnrc's standard VARMLC component module. Methods: That this simple collimator model can produce spatially and dosimetrically accurate microcollimated fields is illustrated using comparisons with ion chamber and film measurements of the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms. Results: Monte Carlo dose calculations for on-axis and off-axis fields are shown to produce good agreement with experimental values, even on close examination of the penumbrae. Conclusions: The use of a VARMLC model of the micro-multileaf collimator, along with a commissioned model of the associated linear accelerator, is therefore recommended as an alternative to the development or use of in-house or third-party component modules for simulating stereotactic radiotherapy and radiosurgery treatments. Simulation parameters for the VARMLC model are provided which should allow other researchers to adapt and use this model to study clinical stereotactic radiotherapy treatments.

  11. Collimation method using an image processing technique for an assembling-type antenna

    Science.gov (United States)

    Okuyama, Toshiyuki; Kimura, Shinichi; Fukase, Yutaro; Ueno, Hiroshi; Harima, Kouichi; Sato, Hitoshi; Yoshida, Tetsuji

    1998-10-01

    To construct highly precise space structures, such as antennas, it is essential to be able to collimate them with high precision by remote operation. Surveying techniques which are commonly used for collimating ground-based antennas cannot be applied to space systems, since they require relatively sensitive and complex instruments. In this paper, we propose a collimation method that is applied to mark-patterns mounted on an antenna dish for detecting very slight displacements. By calculating a cross- correlation function between the target and reference mark- patterns, and by interpolating this calculated function, we can measure the displacement of the target mark-pattern in sub-pixel precision. We developed a test-bed for the measuring system and evaluated several mark-patterns suitable for our image processing technique. A mark-pattern with which enabled to detect displacement within an RMS error of 1/100 pixels was found. Several tests conducted using this chosen pattern verified the robustness of the method to different light conditions and alignment errors. This collimating method is designed for application to an assembling-type antenna which is being developed by the Communications Research Laboratory.

  12. Time collimation for elastic neutron scattering instrument at a pulsed source

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.

    1996-01-01

    Conditions for carrying out elastic neutron scattering experiments using the time-of-flight technique are considered. It is shown that the employment of time dependent neutron beam collimation in the source-sample flight path increases the luminosity of the spectrometer under certain resolution restrictions. 3 refs., 8 figs

  13. Absorbed doses from intraoral radiography with special emphasis on collimator dimensions

    International Nuclear Information System (INIS)

    Stenstroem, B.; Henrikson, C.O.; Holm, B.; Richter, S.; Huddinge Univ. Hospital, Huddinge

    1986-01-01

    Thermoluminescence dosimeters were used in a phantom head and on patients to measure the absorbed dose to organs of special interest from full surveys with intraoral films (20 exposures) and single bitewing exposures. Two x-ray machines were used, operating at 65 kVp. The apertures of the circular tube collimators had diameters of 55 mm and 48 mm. Rectangular (35 mm x44 mm) tube collimators were also used. The distance from the x-ray focus to the open end of the collimators (FSD) was 0.20 and 0.35 m. Exposure values for Kodak Ultra-Speed film (speed group D) were used. The maximum skin dose measured from the full surveys decreased by 25 per cent on changing from the circular to the rectangular apertures. Using 0.35 m FSD and rectangular collimator the maximum skin dose was 13 mGy. The absorbed doses to the salivary glands and the thyroid gland were significantly reduced on changing from circular to rectangular apertures. The doses in the central part of the parotid and the thyroid glands were then 0.5 and 0.12 mGy, respectively, from a full survey with 20 intraoral films. With a leaded shield the thyroid dose was reduced to 0.05 mGy. All dose values could be further reduced by 40 per cent by using Kodak Ektaspeed film (speed group E)

  14. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    International Nuclear Information System (INIS)

    Simpson, D.R.

    1981-01-01

    Recently, multi-pinhole gamma camera collimation has been introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. This study has investigated a possible method for improving the images obtained by this technique by two multi-pinhole views taken 90 0 apart. During the course of this work, multi-pinhole collimation was also applied to in vivo imaging of the disintegration of tablets. Collimmators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 mm 2 , while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration. Further experiments are planned using this technique to measure gastric emptying times disintegration times of various tablet formulations. Limitations of multi-pinhole technique included problems such as limited ranges of viewing and artifacts introduced due to incomplete sampling

  15. The multi leaf collimator for fast neutron therapy at louvain-la-Neuve

    International Nuclear Information System (INIS)

    Denis, J.M.; Richard, F.; Vynckier, S.; Wambersie, A.; Meulders, J.P.; Lannoye, E.; Longree, Y.; Ryckewaert, G.

    1996-01-01

    The multi-leaf collimator of the fast neutron therapy facility at Louvain-la-Neuve is described, as well as some of the physics experiments performed in order to evaluate the attenuation of neutron beams in different materials and thus optimize the composition of collimator leaves. The multi-leaf collimator consists of two sets of 22 leaves each, which can be moved independently. They are made of iron and their thickness is 95 cm. Seven borated polyethylene disks are located in the distal part of the leaves in order to absorb more efficiently the low-energy component of the neutron spectrum. The width of the leaves is 1 cm at their distal part. The leaves can more 11 cm outwards and 6 cm inwards from their reference position, and field size up to 25.7 x 24.8 cm as well as irregular field shapes, can be obtained. The inner part of the leaves and their two sides are always focused on the target. The complete multi-leaf collimator can rotate around the beam axis, from -90 deg to + 90 deg from the reference position. The width of the penumbra (80 - 20 % isodoses) is 0.64 cm and 1.17 cm at the depth of the maximum buildup and at 10 cm in depth respectively, for a 10 x 10 cm field size. The collimator is adequate for the energy of the p(65)+Be neutron beam of Louvain-la-Neuve and has been adapted to the fixed vertical beam. It has been designed following the original plans of Scanditronix, adjusted and fully assembled at the workshop of the Centre de Recherches du Cyclotron (CRC). Systematic measurements were performed in order to optimize the design and the composition of the leaves. In particular the attenuations of the actual beam and of monoenergetic neutron beams were measured in different materials such as iron and polyethylene. Above (upstream) the multi-leaf collimator, a fixed pre-collimator (iron thickness 50 cm; section 1 x 1 m) defines a conical aperture aligned on the largest opening of the leaves. It contains the two transmission chambers and a 2 cm thick

  16. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging.

    Science.gov (United States)

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2013-10-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ -rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution.

  17. Collimator Selection in Nuclear Medicine Imaging Using I-123 Generated by Te-124 Reaction

    International Nuclear Information System (INIS)

    Kim, Hee Joung; Son, Hye Kyung; Nam, Ki Pyo; Lee, Hee Kyung; Bong, Joung Kyun

    1996-01-01

    In the case of I-123 from the Te-124(p,2n)reaction, the radionuclidic impurity is the high-energy gamma-emitting I-124, which interferes greatly with nuclear medicine images. The choice of a collimator can affect the quality of clinical SPECT images of [I-123]MIBG, [I-123]μ-CIT, or [I-123]IPT. The tradeoffs that two different collimators make among spatial resolution, sensitivity, and scatter were studied by imaging a line source at 5 cm, 10 cm, 15 cm distance using a number of plexiglass sheets between source and collimator, petridish, two-dimensional Hoffman brain phantom, Jaszczak phantom, and three-dimensional Hoffman brain phantom after filling with I-123. (FWHM, FWTM, Sensitivity) for low-energy ultrahigh-resolution parallel-hole(LEUHRP) collimator and medium-energy general-purpose(MEGP) collimator were measured as (9.27 mm, 61.27 mm, 129 CPM/μCi) and (10.53 mm, 23.17 mm, 105CPM/μ/Ci), respectively. The image quality of two-dimensional Hoffman brain phantom with LEUHRP looked better than the one with MEGP. However, the image quality of Jaszczak phantom and three-dimensional Hoffman brain phantom with LEUHRP looked much worse than the one with MEGP because of scatter contributions in three-dimensional imaging situation. The results suggest that the MEGP is preferable to LEUHRP for three-dimensional imaging studies of [I-123]MIBG, [I-123] β-CIT, or [I-123] IPT.

  18. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J., E-mail: c.ridley@ed.ac.uk [The School of Engineering and the Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Kamenev, Konstantin V. [The School of Engineering and the Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2015-09-15

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm{sup 3}. The signal is typically too weak to introduce any further sample environment in the 30–50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or “printed”) collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques.

  19. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg; Kamenev, Konstantin V.

    2015-01-01

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm 3 . The signal is typically too weak to introduce any further sample environment in the 30–50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or “printed”) collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques

  20. SU-G-BRC-04: Collimator Angle Optimization in Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Johnson, C; Bartlett, G; Das, I [Indiana University- School of Medicine, Indianapolis, IN (United States)

    2016-06-15

    Purpose: Volumetric modulated arc therapy (VMAT) has revolutionized radiation treatment by decreasing treatment time and monitor units, thus reducing scattered and whole body radiation dose. As the collimator angle changes the apparent leaf gap becomes larger which can impact plan quality, organ at risk (OAR) sparing as well as IMRT QA passing rate which is investigated. Methods: Two sites (prostate and head and neck) that have maximum utilization of VMAT were investigated. Two previously treated VMAT patients were chosen. For each patient 10 plans were created by maintaining constant optimization constraints while varying collimator angles from 0-90 deg at an interval of 10 degrees for the first arc and the appropriate complimentary angle for the second arc. Plans were created with AAA algorithm using 6 MV beam on a Varian IX machine with Millennium 120 MLC. The dose-volume histogram (DVH) for each plan was exported and dosimetric parameters (D98, D95, D50, D2) as well homogeneity index (HI) and conformity index (CI) were computed. Each plan was validated for QA using ArcCheck with gamma index passing criteria of 2%/2 mm and 3%/3 mm. Additionally, normal tissue complication probability (NTCP) for each OAR was computed using Uzan-Nahum software. Results: The CI values for both sites had no impact as target volume coverage in every collimator angle were the same since it was optimized for adequate coverage. The HI which is representative of DVH gradient or dose uniformity in PTV showed a clear trend in both sites. The NTCP for OAR (brain and cochlea) in H&N plan and (bladder and rectum) in prostate plan showed a distinct superiority for collimator angles between 15-30 deg. The gamma passing rates were not correlated with angle. Conclusion: Based on CI, HI, NTCP and gamma passing index, it can be concluded that collimator angles should be maintained within 15–30 deg.

  1. SU-G-BRC-04: Collimator Angle Optimization in Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Andersen, A; Johnson, C; Bartlett, G; Das, I

    2016-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) has revolutionized radiation treatment by decreasing treatment time and monitor units, thus reducing scattered and whole body radiation dose. As the collimator angle changes the apparent leaf gap becomes larger which can impact plan quality, organ at risk (OAR) sparing as well as IMRT QA passing rate which is investigated. Methods: Two sites (prostate and head and neck) that have maximum utilization of VMAT were investigated. Two previously treated VMAT patients were chosen. For each patient 10 plans were created by maintaining constant optimization constraints while varying collimator angles from 0-90 deg at an interval of 10 degrees for the first arc and the appropriate complimentary angle for the second arc. Plans were created with AAA algorithm using 6 MV beam on a Varian IX machine with Millennium 120 MLC. The dose-volume histogram (DVH) for each plan was exported and dosimetric parameters (D98, D95, D50, D2) as well homogeneity index (HI) and conformity index (CI) were computed. Each plan was validated for QA using ArcCheck with gamma index passing criteria of 2%/2 mm and 3%/3 mm. Additionally, normal tissue complication probability (NTCP) for each OAR was computed using Uzan-Nahum software. Results: The CI values for both sites had no impact as target volume coverage in every collimator angle were the same since it was optimized for adequate coverage. The HI which is representative of DVH gradient or dose uniformity in PTV showed a clear trend in both sites. The NTCP for OAR (brain and cochlea) in H&N plan and (bladder and rectum) in prostate plan showed a distinct superiority for collimator angles between 15-30 deg. The gamma passing rates were not correlated with angle. Conclusion: Based on CI, HI, NTCP and gamma passing index, it can be concluded that collimator angles should be maintained within 15–30 deg.

  2. 3D gamma-ray imaging systems in nuclear medicine and collimator purposes

    International Nuclear Information System (INIS)

    Strocovsky, S.G.; Otero, D.

    2013-01-01

    Single photon gamma-ray imaging systems, currently used in Nuclear Medicine, are fundamentally based on the Gamma Camera (CG) and their associated SPECT technique. The modern CG presents no essential changes in the method used to form the image compared to the camera designed by H. O. Anger (Pat US 3.011.057, 1961).The current CG, as well as the proposed by Anger, uses a collimator for the formation of images. However, this element imposes a severe limit on the maximum attainable spatial resolution and dramatically decreases the sensitivity of the whole system. As a result, CG images are, generally, low quality with high Poisson noise. On the other hand, Strocovsky, S. and D. Otero, have presented the principles of a new technique, called Full Aperture Imaging (FAI) based on a novel coded imaging technique and differential detection. FAI does not use a collimator and outperforms the CG, in sensitivity and spatial resolution. In addition, FAI allows to register 3D information in a single acquisition, while SPECT requires sequential acquisition of images for the same purpose. In this paper, a review of the gamma-ray imaging systems developed to the present is made. Several types of SPECT systems, coded imaging systems, diffractive lenses, Compton camera, multiple no-planar detectors/collimators modules and the new FAI system are included. The role of collimators in the formation of CG images is critically examined and compared to the method used in FAI. Simulated Monte Carlo Images that allow to compare CG versus FAI in identical conditions are shown. We propose a novel use of collimators in FAI, for reduction of the field of view, with 100% collection efficiency. FAI is based on data-intensive computing and in proven conventional planar detectors of CG technology, so FAI surpasses the other described systems in the combination of sensitivity, spatial resolution, 3D information acquisition, and simplicity of design. (author)

  3. Evaluation of general-purpose collimators against high-resolution collimators with resolution recovery with a view to reducing radiation dose in myocardial perfusion SPECT: A preliminary phantom study.

    Science.gov (United States)

    Armstrong, Ian S; Saint, Kimberley J; Tonge, Christine M; Arumugam, Parthiban

    2017-04-01

    There is a growing focus on reducing radiation dose to patients undergoing myocardial perfusion imaging. This preliminary phantom study aims to evaluate the use of general-purpose collimators with resolution recovery (RR) to allow a reduction in patient radiation dose. Images of a cardiac torso phantom with inferior and anterior wall defects were acquired on a GE Infinia and Siemens Symbia T6 using both high-resolution and general-purpose collimators. Imaging time, a surrogate for administered activity, was reduced between 35% and 40% with general-purpose collimators to match the counts acquired with high-resolution collimators. Images were reconstructed with RR with and without attenuation correction. Two pixel sizes were also investigated. Defect contrast was measured. Defect contrast on general-purpose images was superior or comparable to the high-resolution collimators on both systems despite the reduced imaging time. Infinia general-purpose images required a smaller pixel size to be used to maintain defect contrast, while Symbia T6 general-purpose images did not require a change in pixel size to that used for standard myocardial perfusion SPECT. This study suggests that general-purpose collimators with RR offer a potential for substantial dose reductions while providing similar or better image quality to images acquired using high-resolution collimators.

  4. A new method for elimination of artifacts produced by collimator septum effect in gamma-camera images

    International Nuclear Information System (INIS)

    Uchida, Isao; Onai, Yoshio; Tomaru, Teizo; Irifune, Toraji; Kakegawa, Makoto.

    1978-01-01

    Collimator artifacts may be present within the images produced by collimators whose septal width approaches the inherent resolution of the gamma-camera system. As the inherent resolution of the gamma-camera is improved, collimator artifacts become more prominent. The purpose of this study is to eliminate collimator artifacts from gamma-camera images. To eliminate the septum effect produced by high-energy parallel-hole collimators with thick septa, the following method was used: X and Y signals from the detector are made to ride on the triangular waves changing periodically, and resultant position signals obtained by this processing are applied to the corresponding deflection circuits in the CRT display. The oscillation amplitude of processed position signals can be regulated by the frequency and amplitude of the triangular waves. Regulation of the oscillation amplitude of position signals, which would produce maximum reduction of collimator artifacts, was to approach the spatial frequency responses of the overall processed line spread functions obtained experimentally to those of the Gaussian functions with FWHM equal to the geometric resolution calculated from the equation given by Gerber and Miller. In images of a pancreas phantom containing 131 I, collimator artifacts were clearly seen in the unprocessed case, but were eliminated in the processed case. (auth.)

  5. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Science.gov (United States)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  6. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-02-01

    Full Text Available The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC. However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  7. Efficacy of a dynamic collimator for overranging dose reduction in a second- and third-generation dual source CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Ronald; Dijkshoorn, Marcel L.; Straten, Marcel van [Erasmus MC, Department of Radiology and Nuclear Medicine, P.O. Box 2240, Rotterdam (Netherlands)

    2017-09-15

    The purpose of this study was to assess the efficacy of the renewed dynamic collimator in a third-generation dual source CT (DSCT) scanner and to determine the improvements over the second-generation scanner. Collimator efficacy is defined as the percentage overranging dose in terms of dose-length product (DLP) that is blocked by the dynamic collimator relative to the total overranging dose in case of a static collimator. Efficacy was assessed at various pitch values and different scan lengths. The number of additional rotations due to overranging and effective scan length were calculated on the basis of reported scanning parameters. On the basis of these values, the efficacy of the collimator was calculated. The second-generation scanner showed decreased performance of the dynamic collimator at increasing pitch. Efficacy dropped to 10% at the highest pitch. For the third-generation scanner the efficacy remained above 50% at higher pitch. Noise was for some pitch values slightly higher at the edge of the imaged volume, indicating a reduced scan range to reduce the overranging dose. The improved dynamic collimator in the third-generation scanner blocks the overranging dose for more than 50% and is more capable of shielding radiation dose, especially in high pitch scan modes. (orig.)

  8. Efficacy of a dynamic collimator for overranging dose reduction in a second- and third-generation dual source CT scanner

    International Nuclear Information System (INIS)

    Booij, Ronald; Dijkshoorn, Marcel L.; Straten, Marcel van

    2017-01-01

    The purpose of this study was to assess the efficacy of the renewed dynamic collimator in a third-generation dual source CT (DSCT) scanner and to determine the improvements over the second-generation scanner. Collimator efficacy is defined as the percentage overranging dose in terms of dose-length product (DLP) that is blocked by the dynamic collimator relative to the total overranging dose in case of a static collimator. Efficacy was assessed at various pitch values and different scan lengths. The number of additional rotations due to overranging and effective scan length were calculated on the basis of reported scanning parameters. On the basis of these values, the efficacy of the collimator was calculated. The second-generation scanner showed decreased performance of the dynamic collimator at increasing pitch. Efficacy dropped to 10% at the highest pitch. For the third-generation scanner the efficacy remained above 50% at higher pitch. Noise was for some pitch values slightly higher at the edge of the imaged volume, indicating a reduced scan range to reduce the overranging dose. The improved dynamic collimator in the third-generation scanner blocks the overranging dose for more than 50% and is more capable of shielding radiation dose, especially in high pitch scan modes. (orig.)

  9. MHD Collimation Mechanism in Arched Flux Ropes Characterized Using Volumetric, Time-Dependent B-Vector Measurements

    Science.gov (United States)

    Haw, Magnus A.; Bellan, Paul M.

    2017-10-01

    Laboratory measurements of B(x,t) in a volume enclosing portions of two arched flux ropes show flux rope collimation driven by gradients in axial current density. These measurements verify the three predictions of a proposed MHD collimation mechanism: (1) axial magnetic forces exist in current channels with spatially varying minor radius, (2) these forces can drive counterpropagating axial flows, and (3) this process collimates the flux rope. This mechanism may explain the axial uniformity of solar loops and is relevant to other systems with current channels of varying minor radius such as solar prominences and astrophysical jets.

  10. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    Science.gov (United States)

    Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.

    2018-03-01

    The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  11. A new type industrial total station based on target automatic collimation

    Science.gov (United States)

    Lao, Dabao; Zhou, Weihu; Ji, Rongyi; Dong, Dengfeng; Xiong, Zhi; Wei, Jiang

    2018-01-01

    In the case of industrial field measurement, the present measuring instruments work with manual operation and collimation, which give rise to low efficiency for field measurement. In order to solve the problem, a new type industrial total station is presented in this paper. The new instrument can identify and trace cooperative target automatically, in the mean time, coordinate of the target is measured in real time. For realizing the system, key technology including high precision absolutely distance measurement, small high accuracy angle measurement, target automatic collimation with vision, and quick precise controlling should be worked out. After customized system assemblage and adjustment, the new type industrial total station will be established. As the experiments demonstrated, the coordinate accuracy of the instrument is under 15ppm in the distance of 60m, which proved that the measuring system is feasible. The result showed that the total station can satisfy most industrial field measurement requirements.

  12. Neutron Flux Distribution on Neutron Radiography Facility After Fixing the Collimator

    International Nuclear Information System (INIS)

    Supandi; Parikin; Mohtar; Sunardi; Roestam, S

    1996-01-01

    The Radiography Neutron Facility consists of an inner collimator, outer collimator, main shutter, second shutter and the sample chamber with 300 mm in diameter. Neutron beam quality depends on the neutron flux intensities distribution, L/D ratio Cd ratio, neutron/gamma ratio. The results show that the neutron flux intensity was 2.83 x 107 n cm-2.s-1, with deviation of + 7.8 % and it was distributed homogeneously at the sample position of 200 mm diameter. The beam characteristics were L/D ratio 98 and Rod 8, and neutron gamma ratio 3.08 x 105n.cm-2.mR-1 and Reactor Power was 20 MW. This technique can be used to examine sample with diameter of < 200 mm

  13. High collimated coherent illumination for reconstruction of digitally calculated holograms: design and experimental realization

    Science.gov (United States)

    Morozov, Alexander; Dubinin, German; Dubynin, Sergey; Yanusik, Igor; Kim, Sun Il; Choi, Chil-Sung; Song, Hoon; Lee, Hong-Seok; Putilin, Andrey; Kopenkin, Sergey; Borodin, Yuriy

    2017-06-01

    Future commercialization of glasses-free holographic real 3D displays requires not only appropriate image quality but also slim design of backlight unit and whole display device to match market needs. While a lot of research aimed to solve computational issues of forming Computer Generated Holograms for 3D Holographic displays, less focus on development of backlight units suitable for 3D holographic display applications with form-factor of conventional 2D display systems. Thereby, we report coherent backlight unit for 3D holographic display with thickness comparable to commercially available 2D displays (cell phones, tablets, laptops, etc.). Coherent backlight unit forms uniform, high-collimated and effective illumination of spatial light modulator. Realization of such backlight unit is possible due to holographic optical elements, based on volume gratings, constructing coherent collimated beam to illuminate display plane. Design, recording and measurement of 5.5 inch coherent backlight unit based on two holographic optical elements are presented in this paper.

  14. Collimated proton acceleration in light sail regime with a tailored pinhole target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. Y.; Zepf, M. [Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena (Germany); Yan, X. Q. [State Key Laboratory of Nuclear Physics and Technology and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871 (China)

    2014-06-15

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.

  15. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    Directory of Open Access Journals (Sweden)

    M. Borg

    2018-03-01

    Full Text Available The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  16. Mode-mismatched confocal thermal-lens microscope with collimated probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Humberto, E-mail: hcabrera@ictp.it [SPIE-ICTP Anchor Research Laboratory, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste (Italy); Centro Multidisciplinartio de Ciencias, Instituto Venezolano de Investigaciones Científicas (IVIC), Mérida 5101 (Venezuela, Bolivarian Republic of); Korte, Dorota; Franko, Mladen [Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica (Slovenia)

    2015-05-15

    We report a thermal lens microscope (TLM) based on an optimized mode-mismatched configuration. It takes advantage of the coaxial counter propagating tightly focused excitation and collimated probe beams, instead of both focused at the sample, as it is in currently known TLM setups. A simple mathematical model that takes into account the main features of the instrument is presented. The confocal detection scheme and the introduction of highly collimated probe beam allow enhancing the versatility, limit of detection (LOD), and sensitivity of the instrument. The theory is experimentally verified measuring ethanol’s absorption coefficient at 532.8 nm. Additionally, the presented technique is applied for detection of ultra-trace amounts of Cr(III) in liquid solution. The achieved LOD is 1.3 ppb, which represents 20-fold enhancement compared to transmission mode spectrometric techniques and a 7.5-fold improvement compared to previously reported methods for Cr(III) based on thermal lens effect.

  17. D1A, a high resolution neutron powder diffractometer with a bank of mylar collimators

    International Nuclear Information System (INIS)

    Hewat, A.W.; Bailey, I.

    1976-01-01

    This paper describes a first attempt at following the design criteria set out earlier for a high resolution conventional powder diffractometer. An existing machine, D1A, has been modified using a bank of ten high pressure 3 He counters and almost perfect 10minutes of arc mylar foil collimators. The system is more successful than earlier multicollimator arrangements because each of the collimator/counters is virtually identical; this permits automatic addition of the intensities so that a single high resolution profile, up to X40 times as intense as on the original diffractometer, is obtained just as easily as on a single counter machine. A comparison is made with the other powder diffractometers, D1B and D2 at the ILL. (Auth.)

  18. Development of advanced industrial SPECT system with 12-gonal diverging-collimator

    International Nuclear Information System (INIS)

    Park, Jang Guen; Jung, Sung-Hee; Kim, Jong Bum; Moon, Jinho; Han, Min Cheol; Kim, Chan Hyeong

    2014-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising diagnosis technique to investigate the dynamic behavior of process media. In the present study, a 12-gonal industrial SPECT system was developed using diverging collimators, and its performance was compared with those of hexagonal and 24-gonal systems. Of all of the systems, the 12-gonal type showed the best performance, providing (1) a detection-efficiency map without edge artifacts, (2) the best image resolution, and (3) reconstruction images that correctly furnish multi-source information. Based on the performance of the three different types of configurations, a SPECT system with 12-gonal type configuration was found most suitable for investigating and visualization of flow dynamics in industrial process systems. - highlights: • Industrial SPECT provides the dynamic behavior of multiphase industrial processes. • The present study compared performance of various industrial SPECT systems. • The 12-gonal SPECT system with diverging-collimator provides the best performance

  19. Reflector automatic acquisition and pointing based on auto-collimation theodolite

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu

    2018-01-01

    An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.

  20. Solar concentrator with integrated tracking and light delivery system with collimation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  1. Construction and bench testing of a prototype rotatable collimator for the LHC

    CERN Document Server

    Markiewicz, T; Keller, L; Aberle, O; Bertarelli, A; Gradassi, P; Marsili, A; Redaelli, S; Rossi, A; Salvachua, B; Valentino, G

    2014-01-01

    A second generation prototype rotatable collimator has been fabricated at SLAC and delivered to CERN for further vacuum, metrology, function and impedance tests. The design features two cylindrical Glidcop jaws designed to each absorb 12 kW of beam in steady state and up to 60 kW in transitory beam loss with no damage and minimal thermal distortion [1]. The design is motivated by the use of a radiation resistant high Z low impedance readily available material. A vacuum rotation mechanism using the standard LHC collimation jaw positioning motor system allows each jaw to be rotated to present a new 2 cm high surface to the beam if the jaw surface were to be damaged by multiple full intensity beam bunch impacts in a asynchronous beam abort. Design modifications to improve on the first generation prototype, pre-delivery functional tests performed at SLAC and post-delivery test results at CERN are presented.

  2. A Collimation Scheme for Ions Changing Charge State in the LEIR Ring

    CERN Document Server

    Pasternak, Jaroslaw; Carli, Christian; Chanel, Michel; Mahner, Edgar

    2005-01-01

    Avalanche-like pressure rise and an associated decrease of the beam life-time, caused by (i) beam loss due to charge exchange interactions with rest gas molecules and (ii) electron capture from the electron beam of the electron cooler and (iii) ion impact induced outgassing, is a potential limitation for heavy ion accelerators. The vacuum system of the LEIR ring as to be upgraded to reach the dynamical vacuum pressure in the low 10-12 Torr range necessary to reach design performance. A collimation system to intercept lost ions by absorber blocks made of low beam-induced outgassing material will be installed. This paper reviews the collimation scheme and simulations of beam loss patterns around the ring.

  3. MC simulation of the collimation effects on measurement precision of high-resolution logging

    International Nuclear Information System (INIS)

    Wu Wensheng; Xiao Lizhi

    2010-01-01

    In this paper,the MCNP code is used to calculate responses to detector counting rate and formation sensitivity in oil-well logging with different opening shapes and angles of the γ-ray source aperture and detector collimator. The results show that the opening shape and angle of the source aperture affect the measurement precision far more than the opening shape and angle of the detector collimator, and the influences are greater than that of the formation sensitivity. A logging system that is equipped with a γ-ray source having a cuniform aperture of 45 degree opening angle, and a window aperture of 0 degree opening angle for a long-spacing detector or a short-spacing detector, and 5 degree-15 degree opening angle for a middle-spacing detector, will improve the measurement precision. (authors)

  4. Collimated proton acceleration in light sail regime with a tailored pinhole target

    International Nuclear Information System (INIS)

    Wang, H. Y.; Zepf, M.; Yan, X. Q.

    2014-01-01

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated

  5. Beam collimation and transport of laser-accelerated protons by a solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Tauschwitz, A; Bagnoud, V [GSI - Hemholtzzentrum fur Schwerionenforschung GmbH, Plasmaphysik and PHELIX, Planckstrasse 1, 64291 Darmstadt (Germany); Daido, H; Tampo, M [Photo Medical Research Center, JAEA, 8-1 Umemidai, Kizugawa-city, Kyoto, 619-0215 (Japan); Schollmeier, M, E-mail: k.harres@gsi.d [Sandia National Laboratories, Albuquerque NM 87185 (United States)

    2010-08-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10{sup 12} particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  6. Research and development of novel advanced materials for next-generation collimators

    CERN Document Server

    Bertarelli, A; Carra, F; Dallocchio, A; Gil Costa, M; Mariani, N

    2011-01-01

    The study of innovative collimators is essential to handle the high energy particle beams required to explore unknown territory in basic research. This calls for the development of novel advanced materials, as no existing metal-based or carbon-based material possesses the combination of physical, thermal, electrical and mechanical properties, imposed by collimator extreme working conditions. A new family of materials, with promising features, has been identified: metal-diamond composites. These materials are to combine the outstanding thermal and physical properties of diamond with the electrical and mechanical properties of metals. The best candidates are Copper-Diamond (Cu-CD) and Molybdenum-Diamond (Mo-CD). In particular, Mo-CD may provide interesting properties as to mechanical strength, melting temperature, thermal shock resistance and, thanks to its balanced material density, energy absorption. The research program carried out on these materials at CERN and collaborating partners is presented, mainly fo...

  7. Beam collimation and transport of laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M; Tauschwitz, A; Bagnoud, V; Daido, H; Tampo, M; Schollmeier, M

    2010-01-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10 12 particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  8. Design and evaluation of two multi-pinhole collimators for brain SPECT.

    Science.gov (United States)

    Chen, Ling; Tsui, Benjamin M W; Mok, Greta S P

    2017-10-01

    SPECT is a powerful tool for diagnosing or staging brain diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) but is limited by its inferior resolution and sensitivity. At the same time, pinhole SPECT provides superior resolution and detection efficiency trade-off as compared to the conventional parallel-hole collimator for imaging small field-of-view (FOV), which fits for the case of brain imaging. In this study, we propose to develop and evaluate two multi-pinhole (MPH) collimator designs to improve the imaging of cerebral blood flow and striatum. We set the target resolutions to be 12 and 8 mm, respectively, and the FOV at 200 mm which is large enough to cover the whole brain. The constraints for system optimization include maximum and minimum detector-to-center-of-FOV (CFOV) distances of 344 and 294 mm, respectively, and minimal radius-of-rotation (ROR) of 135 mm to accommodate patients' shoulder. According to the targeted FOV, resolutions, and constraints, we determined the pinhole number, ROR, focal length, aperture acceptance angle, and aperture diameter which maximized the system sensitivity. We then assessed the imaging performance of the proposed MPH and standard low-energy high-resolution (LEHR) collimators using analytical simulations of a digital NCAT brain phantom with 99m Tc-HMPAO/ 99m Tc-TRODAT-1 distributions; Monte Carlo simulations of a hot-rod phantom; and a Defrise phantom using GATE v6.1. Projections were generated over 360° and reconstructed using the 3D MPH/LEHR OS-EM methods with up to 720 updates. The normalized mean square error (NMSE) was calculated over the cerebral and striatal regions extracted from the reconstructed images for 99m Tc-HMPAO and 99m Tc-TRODAT-1 simulations, respectively, and average normalized standard deviation (NSD) based on 20 noise realizations was assessed on selected uniform 3D regions as the noise index. Visual assessment and image profiles were applied to the results of Monte Carlo

  9. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    International Nuclear Information System (INIS)

    Ellison, C.L.; Fuchs, J.

    2010-01-01

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  10. MACS, the manipulation and collimation system on the NPD at LANSCE

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Goldstone, J.A.; Lovell, K.J.

    1991-01-01

    The practical problems associated with beam collimation and specimen manipulation at a pulsed neutron source are identical to those on a steady state source. However extra constraints result from the limited space available and from the time of flight analysis of the diffracted neutrons. A manipulation and collimation system (MACS) has been designed for the neutron powder diffractometer (NPD) at the Los Alamos spallation neutron source (LANSCE). It provides specimen motion and aperture positioning with accuracies of better than 0.1mm and is constructed as a rigid unit. For flat sided specimens sampling volumes less than 30 mm 3 have been obtained demonstrating the viability of making spatially resolved strain measurements at a pulsed neutron source. 3 figs

  11. The new transfer line collimation system for the LHC high luminosity era

    CERN Document Server

    Kain, V; Goddard, B; Maciariello, F; Meddahi, M; Mereghetti, A; Steele, G; Velotti, F; Gianfelice-Wendt, E

    2014-01-01

    A set of passive absorbers is located at the end of each of the 3 km long injection lines to protect the LHC in case of failures during the extraction process from the LHC’s last pre-injector or in the beam transfer itself. In case of an erroneous extraction, the absorbers have to attenuate the beam to a safe level and be robust enough themselves to survive the impact. These requirements are difficult to fulfill with the very bright and intense beams produced by the LHC injectors for the high luminosity era. This paper revisits the requirements for the LHC transfer line collimation system and the adapted strategy to fulfill these for the LHC high luminosity era. A possible solution for the new transfer line collimation system is presented.

  12. Wavefront sensing and adaptive control in phased array of fiber collimators

    Science.gov (United States)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change

  13. Three routes to jet collimation by the Balbus-Hawley magnetorotational instability

    OpenAIRE

    Williams, Peter Todd

    2005-01-01

    Three completely different lines of work have recently led to the conclusion that the magnetorotational instability (MRI) may create a hoop-stress that collimates jets. One argument is based upon consideration that magnetohydrodynamic turbulence, in general, and turbulence driven by the MRI, in particular, is more nearly viscoelastic than it is viscous. Another argument is based upon the dispersion relation for the MRI in the context of 1D simulations of core collapse. Yet a third argument re...

  14. Calculations of safe collimator settings and β^{*} at the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2015-06-01

    Full Text Available The first run of the Large Hadron Collider (LHC at CERN was very successful and resulted in important physics discoveries. One way of increasing the luminosity in a collider, which gave a very significant contribution to the LHC performance in the first run and can be used even if the beam intensity cannot be increased, is to decrease the transverse beam size at the interaction points by reducing the optical function β^{*}. However, when doing so, the beam becomes larger in the final focusing system, which could expose its aperture to beam losses. For the LHC, which is designed to store beams with a total energy of 362 MJ, this is critical, since the loss of even a small fraction of the beam could cause a magnet quench or even damage. Therefore, the machine aperture has to be protected by the collimation system. The settings of the collimators constrain the maximum beam size that can be tolerated and therefore impose a lower limit on β^{*}. In this paper, we present calculations to determine safe collimator settings and the resulting limit on β^{*}, based on available aperture and operational stability of the machine. Our model was used to determine the LHC configurations in 2011 and 2012 and it was found that β^{*} could be decreased significantly compared to the conservative model used in 2010. The gain in luminosity resulting from the decreased margins between collimators was more than a factor 2, and a further contribution from the use of realistic aperture estimates based on measurements was almost as large. This has played an essential role in the rapid and successful accumulation of experimental data in the LHC.

  15. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    Energy Technology Data Exchange (ETDEWEB)

    Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.; Hyer, Daniel E. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Hill, Patrick M. [Department of Human Oncology, University of Wisconsin, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Gao, Mingcheng; Laub, Steve; Pankuch, Mark [Division of Medical Physics, CDH Proton Center, 4455 Weaver Parkway, Warrenville, Illinois 60555 (United States)

    2015-03-15

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ{sub x1},σ{sub x2},σ{sub y1},σ{sub y2}) together with the spatial location of the maximum dose (μ{sub x},μ{sub y}). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.

  16. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    International Nuclear Information System (INIS)

    Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.; Hyer, Daniel E.; Hill, Patrick M.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark

    2015-01-01

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ x1 ,σ x2 ,σ y1 ,σ y2 ) together with the spatial location of the maximum dose (μ x ,μ y ). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets

  17. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    Science.gov (United States)

    Gelover, Edgar; Wang, Dongxu; Hill, Patrick M.; Flynn, Ryan T.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark; Hyer, Daniel E.

    2015-01-01

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σx1,σx2,σy1,σy2) together with the spatial location of the maximum dose (μx,μy). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets. PMID:25735287

  18. Comparison of measured and Monte Carlo calculated dose distributions from circular collimators for radiosurgical beams

    International Nuclear Information System (INIS)

    Esnaashari, K. N.; Allahverdi, M.; Gharaati, H.; Shahriari, M.

    2007-01-01

    Stereotactic radiosurgery is an important clinical tool for the treatment of small lesions in the brain, including benign conditions, malignant and localized metastatic tumors. A dosimetry study was performed for Elekta 'Synergy S' as a dedicated Stereotactic radiosurgery unit, capable of generating circular radiation fields with diameters of 1-5 cm at iso centre using the BEAM/EGS4 Monte Carlo code. Materials and Methods: The linear accelerator Elekta Synergy S equipped with a set of 5 circular collimators from 10 mm to 50 mm in diameter at iso centre distance was used. The cones were inserted in a base plate mounted on the collimator linac head. A PinPoint chamber and Wellhofer water tank chamber were selected for clinical dosimetry of 6 MV photon beams. The results of simulations using the Monte Carlo system BEAM/EGS4 to model the beam geometry were compared with dose measurements. Results: An excellent agreement was found between Monte Carlo calculated and measured percentage depth dose and lateral dose profiles which were performed in water phantom for circular cones with 1, 2, 3, 4 and 5 cm in diameter. The comparison between calculation and measurements showed up to 0.5 % or 1 m m difference for all field sizes. The penumbra (80-20%) results at 5 cm depth in water phantom and SSD=95 ranged from 1.5 to 2.1 mm for circular collimators with diameter 1 to 5 cm. Conclusion: This study showed that BEAMnrc code has been accurate in modeling Synergy S linear accelerator equipped with circular collimators

  19. Calculations of safe collimator settings and β* at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Redaelli, S.

    2015-06-01

    The first run of the Large Hadron Collider (LHC) at CERN was very successful and resulted in important physics discoveries. One way of increasing the luminosity in a collider, which gave a very significant contribution to the LHC performance in the first run and can be used even if the beam intensity cannot be increased, is to decrease the transverse beam size at the interaction points by reducing the optical function β*. However, when doing so, the beam becomes larger in the final focusing system, which could expose its aperture to beam losses. For the LHC, which is designed to store beams with a total energy of 362 MJ, this is critical, since the loss of even a small fraction of the beam could cause a magnet quench or even damage. Therefore, the machine aperture has to be protected by the collimation system. The settings of the collimators constrain the maximum beam size that can be tolerated and therefore impose a lower limit on β*. In this paper, we present calculations to determine safe collimator settings and the resulting limit on β*, based on available aperture and operational stability of the machine. Our model was used to determine the LHC configurations in 2011 and 2012 and it was found that β* could be decreased significantly compared to the conservative model used in 2010. The gain in luminosity resulting from the decreased margins between collimators was more than a factor 2, and a further contribution from the use of realistic aperture estimates based on measurements was almost as large. This has played an essential role in the rapid and successful accumulation of experimental data in the LHC.

  20. Heavy-Ion Collimation at the Large Hadron Collider: Simulations and Measurements

    OpenAIRE

    Hermes, Pascal Dominik; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    2017-01-01

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets ca...