WorldWideScience

Sample records for multi power plant

  1. Multi-variable systems in nuclear power plant

    International Nuclear Information System (INIS)

    Collins, G.B.; Howell, J.

    1982-01-01

    Nuclear power plant are complex multi-variable dynamically interactive systems which employ many facets of systems and control theory in their analysis and design. Whole plant mathematical models must be developed and validated and in addition to their obvious role in control system synthesis and design, they are also widely used for operational constraint and plant malfunction analysis. The need for and scope of an integrated power plant control system is discussed and, as a specific example, the design of an integrated feedwater regulator is reviewed. The multi-variable frequency response analysis employed in the design is described in detail. (author)

  2. Multi-fuel multi-product operation of IGCC power plants with carbon capture and storage (CCS)

    International Nuclear Information System (INIS)

    Cormos, Ana-Maria; Dinca, Cristian; Cormos, Calin-Cristian

    2015-01-01

    This paper investigates multi-fuel multi-product operation of IGCC plants with carbon capture and storage (CCS). The investigated plant designs co-process coal with different sorts of biomass (e.g. sawdust) and solid wastes, through gasification, leading to different decarbonised energy vectors (power, hydrogen, heat, substitute natural gas etc.) simultaneous with carbon capture. Co-gasification of coal with different renewable energy sources coupled with carbon capture will pave the way towards zero emissions power plants. The energy conversions investigated in the paper were simulated using commercial process flow modelling package (ChemCAD) in order to produce mass and energy balances necessary for the proposed evaluation. As illustrative cases, hydrogen and power co-generation and Fischer–Tropsch fuel synthesis (both with carbon capture), were presented. The case studies investigated in the paper produce a flexible ratio between power and hydrogen (in the range of 400–600 MW net electricity and 0–200 MW th hydrogen considering the lower heating value) with at least 90% carbon capture rate. Special emphasis were given to fuel selection criteria for optimisation of gasification performances (fuel blending), to the selection criteria for gasification reactor in a multi-fuel multi-product operation scenario, modelling and simulation of whole process, to thermal and power integration of processes, flexibility analysis of the energy conversion processes, in-depth techno-economic and environmental assessment etc. - Highlights: • Assessment of IGCC-based energy vectors poly-generation systems with CCS. • Optimisation of gasification performances and CO 2 emissions by fuel blending. • Multi-fuel multi-product operation of gasification plants

  3. Load allocation of power plant using multi echelon economic dispatch

    Science.gov (United States)

    Wahyuda, Santosa, Budi; Rusdiansyah, Ahmad

    2017-11-01

    In this paper, the allocation of power plant load which is usually done with a single echelon as in the load flow calculation, is expanded into a multi echelon. A plant load allocation model based on the integration of economic dispatch and multi-echelon problem is proposed. The resulting model is called as Single Objective Multi Echelon Economic Dispatch (SOME ED). This model allows the distribution of electrical power in more detail in the transmission and distribution substations along the existing network. Considering the interconnection system where the distance between the plant and the load center is usually far away, therefore the loss in this model is seen as a function of distance. The advantages of this model is its capability of allocating electrical loads properly, as well as economic dispatch information with the flexibility of electric power system as a result of using multi-echelon. In this model, the flexibility can be viewed from two sides, namely the supply and demand sides, so that the security of the power system is maintained. The model was tested on a small artificial data. The results demonstrated a good performance. It is still very open to further develop the model considering the integration with renewable energy, multi-objective with environmental issues and applied to the case with a larger scale.

  4. Thermal impact assessment of multi power plant operations on estuaries

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Kim, K.H.; Harris, J.L.

    1977-01-01

    The assessment of the thermal impact of multi power plant operations on large estuaries requires careful consideration of the problems associated with: re-entrainment, re-circulation, thermal interaction, delay in the attainment of thermal equilibrium state, and uncertainty in specifying open boundaries and open boundary conditions of the regions, which are critically important in the analysis of the thermal conditions in receiving water bodies with tidal dominated, periodically reversing flow conditions. The results of an extensive study in the Hudson River at Indian Point, 42 miles upstream of the ocean end at the Battery, concluded that the tidal-transient, multi-dimensional discrete-element (UTA) thermal transport models (ESTONE, FLOTWO, TMPTWO computer codes) and the near-field far-field zone-matching methodology can be employed with a high degree of reliability in the assessment of the thermal impact of multi power plant operations on tidal dominated estuaries

  5. Multi-objective superstructure-free synthesis and optimization of thermal power plants

    International Nuclear Information System (INIS)

    Wang, Ligang; Lampe, Matthias; Voll, Philip; Yang, Yongping; Bardow, André

    2016-01-01

    The merits of superstructure-free synthesis are demonstrated for bi-objective design of thermal power plants. The design of thermal power plants is complex and thus best solved by optimization. Common optimization methods require specification of a superstructure which becomes a tedious and error-prone task for complex systems. Superstructure specification is avoided by the presented superstructure-free approach, which is shown to successfully solve the design task yielding a high-quality Pareto front of promising structural alternatives. The economic objective function avoids introducing infinite numbers of units (e.g., turbine, reheater and feedwater preheater) as favored by pure thermodynamic optimization. The number of feasible solutions found per number of mutation tries is still high even after many generations but declines after introducing highly-nonlinear cost functions leading to challenging MINLP problems. The identified Pareto-optimal solutions tend to employ more units than found in modern power plants indicating the need for cost functions to reflect current industrial practice. In summary, the multi-objective superstructure-free synthesis framework is a robust approach for very complex problems in the synthesis of thermal power plants. - Highlights: • A generalized multi-objective superstructure-free synthesis framework for thermal power plants is presented. • The superstructure-free synthesis framework is comprehensively evaluated by complex bi-objective synthesis problems. • The proposed framework is effective to explore the structural design space even for complex problems.

  6. Development of a 200kW multi-fuel type PAFC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Take, Tetsuo; Kuwata, Yutaka; Adachi, Masahito; Ogata, Tsutomu [NTT Integrated Information & Energy System Labs., Tokyo (Japan)

    1996-12-31

    Nippon Telegraph and Telephone Corporation (NFT) has been developing a 200 kW multi-fuel type PAFC power plant which can generate AC 200 kW of constant power by switching fuel from pipeline town gas to liquefied propane gas (LPG) and vice versa. This paper describes the outline of the demonstration test plant and test results of its fundamental characteristics.

  7. Development of a method to evaluate shared alternate AC power source effects in multi-unit nuclear power plants

    International Nuclear Information System (INIS)

    Jung, Woo Sik; Yang, Joon Eun

    2003-07-01

    In order to evaluate accurately a Station BlackOut (SBO) event frequency of a multi-unit nuclear power plant that has a shared Alternate AC (AAC) power source, an approach has been developed which accommodates the complex inter-unit behavior of the shared AAC power source under multi-unit Loss Of Offsite Power (LOOP) conditions. The approach is illustrated for two cases, 2 units and 4 units at a single site, and generalized for a multi-unit site. Furthermore, the SBO frequency of the first unit of the 2-unit site is quantified. The SBO frequency at a target unit of Probabilistic Safety Assessment (PSA) could be underestimated if the inter-unit dependency of the shared AAC power source is not properly modeled. The effect of the inter-unit behavior of the shared AAC power source on the SBO frequency is not negligible depending on the Common Cause Failure (CCF) characteristics among AC power sources. The methodology suggested in the present report is believed to be very useful in evaluating the SBO frequency and the core damage frequency resulting from the SBO event. This approach is also applicable to the probabilistic evaluation of the other shared systems in a multi-unit nuclear power plant

  8. Multi-fields' coordination information integrated platform for nuclear power plant operation preparation

    International Nuclear Information System (INIS)

    Yuan Chang; Li Yong; Ye Zhiqiang

    2011-01-01

    To realize the coordination in multi-fields' work and information sharing, by applying the method of Enterprise Architecture (EA), the business architecture, functional flow and application architecture of Nuclear Power Plant's operation preparation information integrated platform are designed, which can realize the information sharing and coordination of multi fields. (authors)

  9. Studies on the coordinated operation and autonomous control for multi-modular nuclear power plants

    International Nuclear Information System (INIS)

    Hui Chao; Huang Xiaojin; Wang Jie

    2011-01-01

    The tendency has always been to build ever larger single-modular reactor plants with the objective of benefiting from economies of scale. These plants have compiled admirable safety records. Nevertheless, there is concern that conventional large single reactors have become too complex by reason of placing too much reliance on engineered safeguards. The multi-modular approach offers a solution in that its use of many small reactors in conjunction with several shared turbines permits a simpler core design while, at the same time, at least partially retaining economies of scale by increasing the number of modules. Specific advantages to the multi-modular approach are as follows. First, the small-sized of the reactor core may allow the incorporation of passive safety features such as natural circulation cooling on loss of off-site electricity. Second, the individual modules are to be sized so that components related to nuclear safety can be factory-fabricated. Moreover, once the major components are made, they are to be transported to the site for rapid installation. This construction method is expected to reduce the licensing effort because the modules will be pre-licensed, and only site-specific issues will have to be considered in the final licensing process. At present, related studies show that the multi-modular approach for Generation IV can retain both the inherent safety and good economies of scale. However, the unbalanced load operation of the multi-modular power plant in which each module operates at a different power level and strong coupling between multi modules creates a complex control challenge to safe operation and control. Firstly, this paper summarizes the unbalanced load operation characteristics and challenges faced by operation and control of multi-modular power plant in the dynamic operational characteristics and requirements of coordinated control between multi modules. Secondly, detailed analysis and comparison are given in the integral

  10. Multi-Level Risk Assessment of a Power Plant Gas Turbine Applying ...

    African Journals Online (AJOL)

    Multi-Level Risk Assessment of a Power Plant Gas Turbine Applying the Criticality Index Model. ... Journal of the Nigerian Association of Mathematical Physics ... This study has carefully shown and expressed a step by step computation of the severity level of the Turbine component parts, using the Criticality Index model.

  11. High performance multi-scale and multi-physics computation of nuclear power plant subjected to strong earthquake. An Overview

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Kawai, Hiroshi; Sugimoto, Shin'ichiro; Hori, Muneo; Nakajima, Norihiro; Kobayashi, Kei

    2010-01-01

    Recently importance of nuclear energy has been recognized again due to serious concerns of global warming and energy security. In parallel, it is one of critical issues to verify safety capability of ageing nuclear power plants (NPPs) subjected to strong earthquake. Since 2007, we have been developing the multi-scale and multi-physics based numerical simulator for quantitatively predicting actual quake-proof capability of ageing NPPs under operation or just after plant trip subjected to strong earthquake. In this paper, we describe an overview of the simulator with some preliminary results. (author)

  12. A multi-criteria decision making system for damage assessment of critical components in power plants

    International Nuclear Information System (INIS)

    Jovanovic, A.; Auerkari, P.; Brear, J.M.

    1996-01-01

    A multi-criteria decision making tool for engineering applications has been developed in the European project BE5935. The tool has been developed and applied in the area of power plants, primarily for the decisions regarding the inspection and maintenance planning in the area of power plants. Practical application of the methodology and of the software is shown here for the damage assessment of critical components. (authors)

  13. Thermodynamic optimization of power plants

    NARCIS (Netherlands)

    Haseli, Y.

    2011-01-01

    Thermodynamic Optimization of Power Plants aims to establish and illustrate comparative multi-criteria optimization of various models and configurations of power plants. It intends to show what optimization objectives one may define on the basis of the thermodynamic laws, and how they can be applied

  14. Development of a Multi-Channel Ultrasonic Testing System for Automated Ultrasonic Pipe Inspection of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Cho, Hyun Joon

    2009-01-01

    Currently almost all in-service-inspection techniques, applied in domestic nuclear power plants, are partial to field inspection technique. These kinds of techniques are related to managing nuclear power plants by the operation of foreign-produced inspection devices. There have been so many needs for development of native in-service-inspection device because there is no native diagnosis device for nuclear power plant inspection yet in Korea. In this research, we developed several core techniques to make an automated ultrasonic pipe inspection system for nuclear power plants. A high performance multi-channel ultrasonic pulser/receiver module, an A/D converter module and a digital main CPU module were developed and the performance of the developed modules was verified. The S/N ratio, noise level and signal acquisition performance of the developed modules showed proper level as we designed in the beginning.

  15. Multi-objective optimization of coal-fired power plants using differential evolution

    International Nuclear Information System (INIS)

    Wang, Ligang; Yang, Yongping; Dong, Changqing; Morosuk, Tatiana; Tsatsaronis, George

    2014-01-01

    Highlights: • Multi-objective optimization of large-scale coal-fired power plants using differential evolution. • A newly-proposed algorithm for searching the fronts of decision space in a single run. • A reduction of cost of electricity by 2–4% with an optimal efficiency increase up to 2% points. • The uncertainty comes mainly from temperature- and reheat-related cost factors of steam generator. • An exergoeconomic analysis and comparison between optimal designs and one real industrial design. - Abstract: The design trade-offs between thermodynamics and economics for thermal systems can be studied with the aid of multi-objective optimization techniques. The investment costs usually increase with increasing thermodynamic performance of a system. In this paper, an enhanced differential evolution with diversity-preserving and density-adjusting mechanisms, and a newly-proposed algorithm for searching the decision space frontier in a single run were used, to conduct the multi-objective optimization of large-scale, supercritical coal-fired plants. The uncertainties associated with cost functions were discussed by analyzing the sensitivity of the decision space frontier to some significant parameters involved in cost functions. Comparisons made with the aid of an exergoeconomic analysis between the cost minimum designs and a real industrial design demonstrated how the plant improvement was achieved. It is concluded that the cost of electricity could be reduced by a 2–4%, whereas the efficiency could be increased by up to two percentage points. The largest uncertainty is introduced by the temperature-related and reheat-related cost coefficients of the steam generator. More reliable data on the price prediction of future advanced materials should be used to obtain more accurate fronts of the objective space

  16. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response

    International Nuclear Information System (INIS)

    Ju, Liwei; Li, Huanhuan; Zhao, Junwei; Chen, Kangting; Tan, Qingkun; Tan, Zhongfu

    2016-01-01

    Highlights: • Our research focuses on virtual power plant. • Electric vehicle group and demand response are integrated into virtual power plant. • Stochastic chance constraint planning is applied to overcome uncertainties. • A multi-objective stochastic scheduling model is proposed for virtual power plant. • A three-stage hybrid intelligent solution algorithm is proposed for solving the model. - Abstract: A stochastic chance-constrained planning method is applied to build a multi-objective optimization model for virtual power plant scheduling. Firstly, the implementation cost of demand response is calculated using the system income difference. Secondly, a wind power plant, photovoltaic power, an electric vehicle group and a conventional power plant are aggregated into a virtual power plant. A stochastic scheduling model is proposed for the virtual power plant, considering uncertainties under three objective functions. Thirdly, a three-stage hybrid intelligent solution algorithm is proposed, featuring the particle swarm optimization algorithm, the entropy weight method and the fuzzy satisfaction theory. Finally, the Yunnan distributed power demonstration project in China is utilized for example analysis. Simulation results demonstrate that when considering uncertainties, the system will reduce the grid connection of the wind power plant and photovoltaic power to decrease the power shortage punishment cost. The average reduction of the system power shortage punishment cost and the operation revenue of virtual power plant are 61.5% and 1.76%, respectively, while the average increase of the system abandoned energy cost is 40.4%. The output of the virtual power plant exhibits a reverse distribution with the confidence degree of the uncertainty variable. The proposed algorithm rapidly calculates a global optimal set. The electric vehicle group could provide spinning reserve to ensure stability of the output of the virtual power plant. Demand response could

  17. A Multi-State Physics Modeling approach for the reliability assessment of Nuclear Power Plants piping systems

    International Nuclear Information System (INIS)

    Di Maio, Francesco; Colli, Davide; Zio, Enrico; Tao, Liu; Tong, Jiejuan

    2015-01-01

    Highlights: • We model piping systems degradation of Nuclear Power Plants under uncertainty. • We use Multi-State Physics Modeling (MSPM) to describe a continuous degradation process. • We propose a Monte Carlo (MC) method for calculating time-dependent transition rates. • We apply MSPM to a piping system undergoing thermal fatigue. - Abstract: A Multi-State Physics Modeling (MSPM) approach is here proposed for degradation modeling and failure probability quantification of Nuclear Power Plants (NPPs) piping systems. This approach integrates multi-state modeling to describe the degradation process by transitions among discrete states (e.g., no damage, micro-crack, flaw, rupture, etc.), with physics modeling by (physic) equations to describe the continuous degradation process within the states. We propose a Monte Carlo (MC) simulation method for the evaluation of the time-dependent transition rates between the states of the MSPM. Accountancy is given for the uncertainty in the parameters and external factors influencing the degradation process. The proposed modeling approach is applied to a benchmark problem of a piping system of a Pressurized Water Reactor (PWR) undergoing thermal fatigue. The results are compared with those obtained by a continuous-time homogeneous Markov Chain Model

  18. Field tests applying multi-agent technology for distributed control. Virtual power plants and wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, G.J.; Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Kok, J.K. [Energy in the Built Environment and Networks, Petten (Netherlands)

    2007-01-15

    Multi-agent technology is state of the art ICT. It is not yet widely applied in power control systems. However, it has a large potential for bottom-up, distributed control of a network with large-scale renewable energy sources (RES) and distributed energy resources (DER) in future power systems. At least two major European R and D projects (MicroGrids and CRISP) have investigated its potential. Both grid-related as well as market-related applications have been studied. This paper will focus on two field tests, performed in the Netherlands, applying multi-agent control by means of the PowerMatcher concept. The first field test focuses on the application of multi-agent technology in a commercial setting, i.e. by reducing the need for balancing power in the case of intermittent energy sources, such as wind energy. In this case the flexibility is used of demand and supply of industrial and residential consumers and producers. Imbalance reduction rates of over 40% have been achieved applying the PowerMatcher, and with a proper portfolio even larger rates are expected. In the second field test the multi-agent technology is used in the design and implementation of a virtual power plant (VPP). This VPP digitally connects a number of micro-CHP units, installed in residential dwellings, into a cluster that is controlled to reduce the local peak demand of the common low-voltage grid segment the micro-CHP units are connected to. In this way the VPP supports the local distribution system operator (DSO) to defer reinforcements in the grid infrastructure (substations and cables)

  19. Field tests applying multi-agent technology for distributed control. Virtual power plants and wind energy

    International Nuclear Information System (INIS)

    Schaeffer, G.J.; Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Kok, J.K.

    2007-01-01

    Multi-agent technology is state of the art ICT. It is not yet widely applied in power control systems. However, it has a large potential for bottom-up, distributed control of a network with large-scale renewable energy sources (RES) and distributed energy resources (DER) in future power systems. At least two major European R and D projects (MicroGrids and CRISP) have investigated its potential. Both grid-related as well as market-related applications have been studied. This paper will focus on two field tests, performed in the Netherlands, applying multi-agent control by means of the PowerMatcher concept. The first field test focuses on the application of multi-agent technology in a commercial setting, i.e. by reducing the need for balancing power in the case of intermittent energy sources, such as wind energy. In this case the flexibility is used of demand and supply of industrial and residential consumers and producers. Imbalance reduction rates of over 40% have been achieved applying the PowerMatcher, and with a proper portfolio even larger rates are expected. In the second field test the multi-agent technology is used in the design and implementation of a virtual power plant (VPP). This VPP digitally connects a number of micro-CHP units, installed in residential dwellings, into a cluster that is controlled to reduce the local peak demand of the common low-voltage grid segment the micro-CHP units are connected to. In this way the VPP supports the local distribution system operator (DSO) to defer reinforcements in the grid infrastructure (substations and cables)

  20. Modular Multi-level converter based HVDC System for Grid Connection of Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Gnanarathna, U.N.; Chaudhary, Sanjay Kumar; Gole, A.M.

    2010-01-01

    This paper explores the application of modular multi-level converters (MMC) as a means for harnessing the power from off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter (VSC) submodules that can be easily assembled into a converter for high......-voltage and high power. The paper shows that the MMC converter has a fast response and low harmonic content in comparison with a two-level VSC option. The paper discusses the modeling approach used, including a solution to the modeling challenge imposed by the very large number of switching devices in the MMC....

  1. New multi-purpose lifting devices for the Grafenrheinfeld and Unterweser nuclear power plants; Neue Kombihebetraversen fuer die Kernkraftwerke Grafenrheinfeld und Unterweser

    Energy Technology Data Exchange (ETDEWEB)

    Aiglsdorfer, Christoph [Siempelkamp Nukleartechnik GmbH, Linz (Austria)

    2011-03-15

    After the extremely successful use of the multi-purpose lifting device and the reactor pressure vessel sealing head for the Brokdorf nuclear power plant, supplied by Siempelkamp Nukleartechnik in 2008 and 2009, a further contract was received in early 2010. E.ON Kernkraft decided to also order a multi-purpose lifting device each for the power plants at Grafenrheinfeld and Unterweser from Siempelkamp. The important innovation of the Siempelkamp multi-purpose lifting device is that it is manufactured entirely from austenitic steel. This allows it to remain in its storage location on the retracted upper core grid (UCG) in the flooded reactor pool during the unloading of the fuel elements, while the fuel elements are being changed. The advantage here for the operator is that the fuel elements change is shortened even further, and this reduces costs. Saving time is also an important requirement for the RPV sealing head. For the Brokdorf nuclear power plant, Siempelkamp manufactured and supplied the RPV sealing head. A precondition of this order was a total realisation time of seven months and to save valuable time during the outage for the operating company. With a new sealing concept, a further innovation from Siempelkamp came to bear on this contract. It makes it possible to safely handle the RPV sealing head using the multi-purpose lifting device. (orig.)

  2. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  3. Multi-scale Modeling of Power Plant Plume Emissions and Comparisons with Observations

    Science.gov (United States)

    Costigan, K. R.; Lee, S.; Reisner, J.; Dubey, M. K.; Love, S. P.; Henderson, B. G.; Chylek, P.

    2011-12-01

    The Remote Sensing Verification Project (RSVP) test-bed located in the Four Corners region of Arizona, Utah, Colorado, and New Mexico offers a unique opportunity to develop new approaches for estimating emissions of CO2. Two major power plants located in this area produce very large signals of co-emitted CO2 and NO2 in this rural region. In addition to the Environmental Protection Agency (EPA) maintaining Continuous Emissions Monitoring Systems (CEMS) on each of the power plant stacks, the RSVP program has deployed an array of in-situ and remote sensing instruments, which provide both point and integrated measurements. To aid in the synthesis and interpretation of the measurements, a multi-scale atmospheric modeling approach is implemented, using two atmospheric numerical models: the Weather Research and Forecasting Model with chemistry (WRF-Chem; Grell et al., 2005) and the HIGRAD model (Reisner et al., 2003). The high fidelity HIGRAD model incorporates a multi-phase Lagrangian particle based approach to track individual chemical species of stack plumes at ultra-high resolution, using an adaptive mesh. It is particularly suited to model buoyancy effects and entrainment processes at the edges of the power plant plumes. WRF-Chem is a community model that has been applied to a number of air quality problems and offers several physical and chemical schemes that can be used to model the transport and chemical transformation of the anthropogenic plumes out of the local region. Multiple nested grids employed in this study allow the model to incorporate atmospheric variability ranging from synoptic scales to micro-scales (~200 m), while including locally developed flows influenced by the nearby complex terrain of the San Juan Mountains. The simulated local atmospheric dynamics are provided to force the HIGRAD model, which links mesoscale atmospheric variability to the small-scale simulation of the power plant plumes. We will discuss how these two models are applied and

  4. Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant

    Science.gov (United States)

    Alsova, O. K.; Artamonova, A. V.

    2018-05-01

    This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.

  5. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    Directory of Open Access Journals (Sweden)

    Jesper G. Andreasen

    2016-04-01

    Full Text Available For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ∘ C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35 mole . The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.

  6. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Science.gov (United States)

    2012-05-18

    ... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...

  7. Efficiency improvement and exergy destruction reduction by combining a power and a multi-effect boiling desalination plant

    Directory of Open Access Journals (Sweden)

    A. A. Alsairafi

    2013-06-01

    Full Text Available Electric power and desalted seawater demand is increasing in Kuwait mainly due to residential and industrial growth, especially in summer season. In the past six years, Kuwait citizens have been facing the problem of automated power and water disconnection because of the electricity and water production is lower than the consumption. A common idea for resolving such a problem is to build new power plants but this solution is not practical due to environmental issues. Another choice but more engineer challenging approach for resolving this problem is to improve the efficiency and performance of the already existing power plants. Currently, there are six power plants in Kuwait; four of them have both stand-alone gas-turbine and steam-turbine power plants, one is steam power plant and one is gas turbine power plant. Combined power and desalination plant are more attractive in Kuwait since they have higher thermal efficiency than traditional ones and both electric power and process heat (e.g., desalting can be produced simultaneously. The relatively low temperature multi-effect desalination (MED process (around 75oC saturated temperature as the heat source is thermodynamically the most efficient of all thermal distillation processes (source, and consumes about 2 kWh/m3 pumping energy. In this study, factors affecting the performance of a combined power and MED-desalination plant have been studied. This includes the atmospheric humidity, compressor inlet air temperature, top brine temperature, desalination unit capacity, cooling water temperature, and the number of evaporation stages of the MED unit. A first- and second-law analysis of the proposed system was carried out under several operating conditions. As an example, a 125 MW Siemens V94.2 gas turbine of Al-Zour gas turbine power plant in Kuwait has been selected. It is found that the overall thermal efficiency of the proposed system increases significantly as the desalination unit capacity

  8. Environmental impact assessment of coal power plants in operation

    OpenAIRE

    Bartan Ayfer; Kucukali Serhat; Ar Irfan

    2017-01-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly as...

  9. Multi-region fuzzy logic controller with local PID controllers for U-tube steam generator in nuclear power plant

    Directory of Open Access Journals (Sweden)

    Puchalski Bartosz

    2015-12-01

    Full Text Available In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.

  10. A hybrid non-dominated sorting genetic algorithm and its application on multi-objective optimal design of nuclear power plant

    International Nuclear Information System (INIS)

    Chen, Lei; Yan, Changqi; Liao, Yi; Song, Feifei; Jia, Zhen

    2017-01-01

    Highlights: • The optimization ability of NSGA-II is improved. • The design targets can be obvious optimized through optimization methodology. • Multi-objective optimization is implanted into the design of nuclear power plant. - Abstract: The design of nuclear component can be optimized by seeking out the best combination of article operational and structural parameters. Through multi-objective optimization, the optimized scheme can not only meets the design requirements, but also satisfies the safety regulations. In this work, a hybrid non-dominated sorting genetic algorithm is proposed, and its performance is verified by comparing it with its prototype and immune memory clone constraint multi-objective algorithm through four test-functions; the designs of the steam generator and the primary loop of Qinshan I nuclear power plant are optimized by the proposed algorithm. The results show that the algorithm outperforms the other two through overall evaluation; the reactor inlet temperature is an important parameter which influences the distribution of the Pareto optimal front; through optimization, the weight of the steam generator can be reduced by 16.5%, and the primary flow-rate can be reduced by 17.0%, the weight of the primary loop can be reduced by 11.4%, and the volume can be reduced by 9.8%.

  11. Dynamic analysis of multi layer foundation of steam turbines in nuclear power plants

    International Nuclear Information System (INIS)

    Hosseni, D.

    1999-01-01

    In this work, the coupled Rotor-pedestal-foundation motion is modeled and formulated. Transfer matrix method is implemented in the modeling. The model is adequate for multi layer foundation systems of steam turbines in nuclear power plants. The rotor modeled used is distributed mass model. Bearings are modeled with eight stiffness and damping coefficients and pedestals by mass, stiffness and damping property. Foundation is modeled with distributed mass and stiffness properties in which properties in vertical and horizontal direction may be different. The model is examined using analytical results and good agreement is achieved. Results of the coupled modeling indicate less error in comparison with previous separate modeling and lumped-mass methods

  12. Vibrations of wind power plants; Schwingungen von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    means of a multi-component simulation and the finite element method (B. Schlecht, T. Rosenloechre, T. Schulze); (15) Impact of modelling on the simulation of the dynamics of the powertrain at wind power plants (T. Hecquet, S. Hauptmann, M. Kuehn, B. Marrant, J. Peeters, K. Smolders, J. Schwarte, F. Stache); (16) Aeroelastic rotors in the multi-component simulation (R. Schelenz, S. Flock, D. Moeller); (17) Investigations at hybrid tower constructions of wind power plants (J. Gruenberg, M. Hansen, S. Kromminga); (18) Vibration behaviour of pile founded wind power plants (J. Grabe, S. Henke, J. Duehrkop); (19) Operation behaviour and vibration behaviour of a powertrain of wind power plants (T. Gellermann); (20) Technical and financial results of a 5 years of condition monitoring on 8 wind turbines farm (F. Fugon, F. Wery); (21) Interactions of unbalanced states during the operation of a wind power plant and impact on the lifetime of all components (J. Holling, M. Bergmann); (22) Vibration dampers in wind power plants (T. Schumacher); (23) Advanced analysis of sensory data yields focused fault indications for industrial machinery, electrical power systems, and physical infrastructure (P. Johnson); (24) Connecting elements for wind power plants with enhanced vibration resistance (U. Hasselmann, T. Braun); (25) FMEA based vibration monitoring of wind power plants (J. Loesl, E. Becker); (26) Counterbalancing of generators at wind power plants (D. Franke, G. Schmidt); (27) Geotechnical measurements of the interaction surface-monopile at FINO (J. Gattermann, U. Berndt, J. Stahlmann); (28) APSOvib registered - tailor-made elastomer bearing for wind power plants (R. Eberlein).

  13. Modeling of Combined Heat and Power Plant Based on a Multi-Stage Gasifier and Internal Combustion Engines of Various Power Outputs

    Science.gov (United States)

    Khudyakova, G. I.; Kozlov, A. N.; Svishchev, D. A.

    2017-11-01

    The paper is concerned with an integrated system of internal combustion engine and mini combined heat and power plant (ICE-CHP). The system is based on multi-stage wood biomass gasification. The use of producer gas in the system affects negatively the internal combustion engine performance and, therefore, reduces the efficiency of the ICE-CHP plant. A mathematical model of an internal combustion engine running on low-calorie producer gas was developed using an overview of Russian and foreign manufacturers of reciprocating units, that was made in the research. A thermal calculation was done for four-stroke gas engines of different rated power outputs (30, 100 and 250 kW), running on producer gas (CO2 - 10.2, CO - 45.8, N2 - 38.8%). Thermal calculation demonstrates that the engine exhaust gas temperature reaches 500 - 600°C at the rated power level and with the lower engine power, the temperature gets higher. For example, for an internal combustion engine power of 1000 kW the temperature of exhaust gases equals 400°C. A comparison of the efficiency of engine operation on natural gas and producer gas shows that with the use of producer gas the power output declines from 300 to 250 kWe. The reduction in the effective efficiency in this case makes up 2%. The measures are proposed to upgrade the internal combustion engine to enable it to run on low-calorie producer gas.

  14. Cross-connected onsite emergency A.C. power supplies for multi-unit nuclear power plant sites

    International Nuclear Information System (INIS)

    Martore, J.A.; Voss, J.D.; Duncil, B.

    1987-01-01

    Recently, utility management, both at the corporate and plant operations levels, have reinforced their commitment to assuring increased plant reliability and availability. One means of achieving this objective involves an effective preventive maintenance program with technical specifications which allow implementation of certain preventive maintenance without plant shutdown. To accomplish this, Southern California Edison Company (SCE) has proposed a design change for San Onofre nuclear generating station (SONGS) units 2 and 3 to permit on emergency diesel generator for one unit to perform as an available AC power source for both units. Technical specifications for SCE's SONGS units 2 and 3, as at most nuclear power plants, currently require plant shutdown should one of the two dedicated onsite emergency AC power sources (diesel generators) become inoperable for more than 72 hours. This duration hinders root cause failure analysis, tends to limit the flexibility of preventive maintenance and precludes plant operation in the event of component failure. Therefore, this proposed diesel generator cross-connect design change offers an innovative means for averting plant shutdown should a single diesel generator become inoperable for longer than 72 hours. (orig./GL)

  15. Facing technological challenges of Solar Updraft Power Plants

    Science.gov (United States)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  16. Multi-criteria sustainability analysis of thermal power plant Kolubara-A Unit 2

    International Nuclear Information System (INIS)

    Škobalj, P.; Kijevčanin, M.; Afgan, N.; Jovanović, M.; Turanjanin, V.; Vučićević, B.

    2017-01-01

    The paper presents a possible approach for creating business decisions based on multi-criteria analysis. Seven options for a possible revitalization of the thermal power plant “Kolubara”-A Unit No. 2 with energy indicators of sustainable development (EISD) are presented in this paper. The chosen EISD numerically express the essential features of the analyzed options, while the sustainability criteria indicate the option quality within the limits of these indicators. In this paper, the criteria for assessing the sustainability options are defined based on several aspects: economic, social, environmental and technological. In the process of assessing the sustainability of the considered options the Analysis and Synthesis of Parameters under Information Deficiency (ASPID) method was used. In this paper, the EISD show that production and energy consumption are closely linked to economic, environmental and other indicators, such as economic and technological development of local communities with employment being one of the most important social parameter. Multi-criteria analysis for the case study of the TPP “Kolubara”-A clearly indicated recommendations to decision makers on the choice of the best available options in dependence on the energy policy. - Highlights: • Options for sustainable generation of electricity have been proposed. • Energy Indicators of Sustainable Development have been formed. • ASPID methodology has been implemented.

  17. The Research on Operation Strategy of Nuclear Power Plant with Multi-reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Maoyao; Peng, Minjun; Cheng Shouyu [Harbin Engineering University, Harbin (China)

    2014-08-15

    In this paper, the operation characteristics and control strategy of nuclear power plant (NPP) with multi-modular pressurized water reactors (PWR) were researched through simulation. The main objective of this research was to ensure the coordinated operation and satisfy the convenience of turbine-generator and reactor's load adjustment in NPP with multi-reactors (MR). According to the operation characteristics of MR-NPP, the operation and control strategy was proposed, which was 'he average allocation of load for each reactor and maintaining average temperature of coolant at a constant? The control system was designed based the operation and control strategy. In order to research the operation characteristics and control strategy of MR-NPP, the paper established the transient analysis model which included the reactors and thermal hydraulic models, turbine model, could simulate and analyze on different operating conditions such as load reducing, load rising. Based on the proposed operation and control strategy and simulation models, the paper verified and validated the operation strategy and control system through load reducing, load rising. The results of research simulation showed that the operation strategy was feasible and can make the MR-NPP running safely as well as steadily on different operating conditions.

  18. The Research on Operation Strategy of Nuclear Power Plant with Multi-reactors

    International Nuclear Information System (INIS)

    Fang, Maoyao; Peng, Minjun; Cheng Shouyu

    2014-01-01

    In this paper, the operation characteristics and control strategy of nuclear power plant (NPP) with multi-modular pressurized water reactors (PWR) were researched through simulation. The main objective of this research was to ensure the coordinated operation and satisfy the convenience of turbine-generator and reactor's load adjustment in NPP with multi-reactors (MR). According to the operation characteristics of MR-NPP, the operation and control strategy was proposed, which was 'he average allocation of load for each reactor and maintaining average temperature of coolant at a constant? The control system was designed based the operation and control strategy. In order to research the operation characteristics and control strategy of MR-NPP, the paper established the transient analysis model which included the reactors and thermal hydraulic models, turbine model, could simulate and analyze on different operating conditions such as load reducing, load rising. Based on the proposed operation and control strategy and simulation models, the paper verified and validated the operation strategy and control system through load reducing, load rising. The results of research simulation showed that the operation strategy was feasible and can make the MR-NPP running safely as well as steadily on different operating conditions

  19. A modular approach to modeling power plant systems

    International Nuclear Information System (INIS)

    Yee, N.S.

    1990-01-01

    This paper reports on power plants which are large, non-linear systems with numerous interactions between its component parts. In the analysis of such complex systems, dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. A simulation can be used to answer the what if questions that are asked when replacing components, changing operational procedures, or training operators. While there are many applications for the simulation of power plant components and systems, its use is often discouraged because it can be difficult and expensive. Power plant engineering is itself a multi-disciplinary field involving fluid mechanics, heat transfer, thermodynamics, chemical engineering, nuclear engineering, and electrical engineering. Simulation requires, in addition, knowledge in model formulation, computer programming and numerical solution of differential equations

  20. Demand Response Integration Through Agent-Based Coordination of Consumers in Virtual Power Plants

    DEFF Research Database (Denmark)

    Clausen, Anders; Umair, Aisha; Ma, Zheng

    2016-01-01

    of industrial loads. Coordination happens in response to Demand Response events, while considering local objectives in the industrial domain. We illustrate the applicability of our approach on a Virtual Power Plant scenario with three simulated greenhouses. The results suggest that the proposed design is able...... Power Plant design that is able to balance the demand of energy-intensive, industrial loads with the supply situation in the electricity grid. The proposed Virtual Power Plant design uses a novel inter-agent, multi-objective, multi-issue negotiation mechanism, to coordinate the electricity demands...... to coordinate the electricity demands of industrial loads, in compliance with external Demand Response events....

  1. Thermoeconomic optimization of a combined-cycle solar tower power plant

    International Nuclear Information System (INIS)

    Spelling, James; Favrat, Daniel; Martin, Andrew; Augsburger, Germain

    2012-01-01

    A dynamic model of a pure-solar combined-cycle power plant has been developed in order to allow determination of the thermodynamic and economic performance of the plant for a variety of operating conditions and superstructure layouts. The model was then used for multi-objective thermoeconomic optimization of both the power plant performance and cost, using a population-based evolutionary algorithm. In order to examine the trade-offs that must be made, two conflicting objectives will be considered, namely minimal investment costs and minimal levelized electricity costs. It was shown that efficiencies in the region of 18–24% can be achieved, and this for levelized electricity costs in the region of 12–24 UScts/kWh e , depending on the magnitude of the initial investment, making the system competitive with current solar thermal technology. -- Highlights: ► Pure-solar combined-cycle studied using thermoeconomic tools. ► Multi-objective optimization conducted to determine Pareto-optimal power plant designs. ► Levelised costs between 12 and 24 UScts/kWhe predicted. ► Efficiencies between 18 and 24% predicted.

  2. Fiscal 1980 Sunshine Project research report. Development of hydrothermal power plant (Development of binary cycle power plant). Supplement. Research on plant technology; 1980 nendo nessui riyo hatsuden plant no kaihatsu seika hokokusho. Binary cycle hatsuden palnt no kaihatsu bessatsu (plant gijutsu kenkyu chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Research was made on new geothermal power plant technologies such as downhole pump and dual boiler for development of the 10MW class binary cycle power plant using geothermal energy. In heat cycle calculation of dual boilers, the cycle performance of a subcritical multi-stage evaporation cycle with R-114 heat medium was obtained through cycle calculation, heat conduction calculation and profitability calculation. The calculation result suggested possible considerable reduction of heat loss due to heat exchange at a preheater and evaporator, and considerable reduction of discharge loss of hot water by such multi-stage evaporation cycle. In American, every geothermal binary cycle power plant adopts pressurized heat exchange between hot water and heat medium by using downhole pumps, and pressurized reinjection of hot water into the ground. Since downhole pump itself not yet satisfies its requirements enough, it is said that Department of Energy is now under consideration on the future R and D. (NEDO)

  3. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  4. Energy optimization methodology of multi-chiller plant in commercial buildings

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Myat, Aung; Khambadkone, Ashwin

    2017-01-01

    This study investigates the potential energy savings in commercial buildings through optimized operation of a multi-chiller plant. The cooling load contributes 45–60% of total power consumption in commercial and office buildings, especially at tropics. The chiller plant operation is not optimal in most of the existing buildings because the chiller plant is either operated at design condition irrespective of the cooling load or optimized locally due to lack of overall chiller plant behavior. In this study, an overall energy model of chiller plant is developed to capture the thermal behavior of all systems and their interactions including the power consumption. An energy optimization methodology is proposed to derive optimized operation decisions for chiller plant at regular intervals based on building thermal load and weather condition. The benefits of proposed energy optimization methodology are examined using case study problems covering different chiller plant configurations. The case studies result confirmed the energy savings achieved through optimized operations is up to 40% for moderate size chiller plant and around 20% for small chiller plant which consequently reduces the energy cost and greenhouse gas emissions. - Highlights: • Energy optimization methodology improves the performance of multi-chiller plant. • Overall energy model of chiller plant accounts all equipment and the interactions. • Operation decisions are derived at regular interval based on time-varying factors. • Three case studies confirmed 20 to 40% of energy savings than conventional method.

  5. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  6. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  7. Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant

    International Nuclear Information System (INIS)

    Liu, Xingrang; Bansal, R.C.

    2014-01-01

    Highlights: • A coal fired power plant boiler combustion process model based on real data. • We propose multi-objective optimization with CFD to optimize boiler combustion. • The proposed method uses software CORBA C++ and ANSYS Fluent 14.5 with AI. • It optimizes heat flux transfers and maintains temperature to avoid ash melt. - Abstract: The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the

  8. Challenges in Implementing a Multi-Partnership Geothermal Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gosnold, Will; Mann, Michael [Universit of North Dakota; Salehfar, Hossein

    2017-03-02

    The UND-CLR binary geothermal power plant project is a piggyback operation on a secondary-recovery water-flood project in the Cedar Hills oil field in the Williston Basin. Two open-hole horizontal wells at 2,300 m and 2,400 m depths with lateral lengths of 1,290 m and 860 m produce water at a combined flow of 51 l s -1 from the Lodgepole formation (Miss.) for injection into the Red River formation (Ordovician). The hydrostatic head for the Lodgepole is at ground surface and the pumps, which are set at 650 m depth, have run continuously since 2009. Water temperature at the wellhead is 103 °C and CLR passes the water through two large air-cooled heat exchangers prior to injection. In all aspects, the CLR water flood project is ideal for demonstration of electrical power production from a low-temperature geothermal resource. However, implementation of the project from concept to power production was analogous to breaking trail in deep snow in an old growth forest. There were many hidden bumps, detours, and in some instances immoveable barriers. Problems with investors, cost share, contracts with CLR, resistance from local industry, cost of installation, delays by the ORC supplier, and the North Dakota climate all caused delays and setbacks. Determination and problem solving by the UND team eventually overcame most setbacks, and in April 2016, the site began generating power. Figure 1: Schematic of the water supply well at the UND CLR binary geothermal power plant REFERENCES Williams, Snyder, and Gosnold, 2016, Low Temperature Projects Evaluation and Lesson Learned, GRC Transactions, Vol. 40, 203-210 Gosnold, LeFever, Klenner, Mann, Salehfar, and Johnson, 2010, Geothermal Power from Coproduced Fluids in the Williston Basin, GRC Transactions, Vol. 34, 557-560

  9. A Fuzzy Multi-Criteria SWOT Analysis: An Application to Nuclear Power Plant Site Selection

    Directory of Open Access Journals (Sweden)

    Mehmet Ekmekcioglu

    2011-08-01

    Full Text Available SWOT (Strengths, Weaknesses, Opportunities and Threats analysis is a commonly used and an important technique for analyzing internal and external environments in order to provide a systematic approach and support for a decision making. SWOT is criticized mostly for considering only qualitative examination of environmental factors, no priority for various factors and strategies, and no vagueness of the factors under fuzziness. In this paper, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution integrated with fuzzy AHP (Analytical Hierarchy Process is used to develop fuzzy multi-criteria SWOT analysis in order to overcome these shortcomings. Nuclear power plant site selection, which is a strategic and important issue for Turkeyrs energy policy making, is considered as an application case study that demonstrated the applicability of the developed fuzzy SWOT model.

  10. Health-safety and environmental risk assessment of power plants using multi criteria decision making method

    Directory of Open Access Journals (Sweden)

    Jozi Ali Seyed

    2011-01-01

    Full Text Available Growing importance of environmental issues at global and regional levels including pollution of water, air etc. as well as the outcomes such as global warming and climate change has led to being considered environmental aspects as effective factors for power generation. Study ahead, aims at examination of risks resulting from activities of Yazd Combined Cycle Power Plant located in Iran. Method applied in the research is analytical hierarchy process. After identification of factors causing risk, the analytical hierarchy structure of the power plant risks were designed and weight of the criteria and sub-criteria were calculated by intensity probability product using Eigenvector Method and EXPERT CHOICE Software as well. Results indicate that in technological, health-safety, biophysical and socio economic sections of the power plant, factors influenced by the power plant activities like fire and explosion, hearing loss, quantity of groundwater, power generation are among the most important factors causing risk in the power plant. The drop in underground water levels is the most important natural consequence influenced on Yazd Combined Cycle Power Plant.

  11. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  12. Risk analysis of NPP in multi-unit site for configuration of AAC power source

    International Nuclear Information System (INIS)

    Kim, Myung Ki

    2000-01-01

    Because of the difficulties in finding new sites for nuclear power plants, more units are being added to the existing sites. In these multi-unit sites, appropriate countermeasures should be established to cope with the potential station blackout (SBO) accident. Currently, installation of additional diesel generator (DG) is considered to ensure an alternative AC power source, but it has not been decided yet how many DGs should be installed in a multi-unit site. In this paper, risk informed decision making method, which evaluates reliability of electrical system, core damage frequency, and site average core damage frequency, is introduced to draw up the suitable number of DG in multi-unit site. The analysis results show that installing two DGs lowered the site average core damage frequency by 1.4% compared to one DG in six unit site. In the light of risk-informed decisions in regulatory guide 1.174, there is no difference of safety between two alternatives. It is concluded that one emergency diesel generator sufficiently guarantees safety against station blackout of nuclear power plants in multi-unit site. (author)

  13. Reliable control system for nuclear power plant

    International Nuclear Information System (INIS)

    Okamoto, Tetsuo; Miyazaki, Shiro

    1980-01-01

    The System 1100 for nuclear power plants is the measuring and control system which utilizes the features of the System 1100 for electric power market in addition to the results of nuclear instrumentation with EBS-ZN series, and it has the following features. The maintenance and inspection in operation are easy. The construction of control loops is made flexibly by the combination of modules. The construction of multi-variable control system using mainly feed forward control is easy. Such functions as the automatic switching of control modes can be included. The switching of manual and automatic operations is easy, and if some trouble occurred in a module, the manual operation can be made. The aseismatic ability is improved by rigid structure cubicles. Nonflammable materials are used for wires, multi-core cables, paints and printed boards. The anti-noise characteristics are improved, and the reliability is high. The policy of developing the System 1100 for nuclear power plants, the type approval tests on modules and units and the type approval test on the system are described. The items of the system type approval test were standard performance test, earthquake test, noise isolation test, temperature and humidity test, and drift test. The aseismatic cubicle showed good endurance in its vibration test. (Kako, I.)

  14. Employing modern power plant simulators in nuclear power plants

    International Nuclear Information System (INIS)

    Niedorf, V.; Storm, J.

    2005-01-01

    At the present state of the art, modern power plant simulators are characterized by new qualitative features, thus enabling operators to use them far beyond the traditional field of training. In its first part, this contribution presents an overview of the requirements to be met by simulators for multivalent uses. In part two, a survey of the uses and perspectives of simulation technology in power plants is presented on the basis of experience accumulated by Rheinmetall Defence Electronics (RDE).Modern simulators are shown to have applications by far exceeding traditional training areas. Modular client - sever systems on standard computers allow inexpensive uses to be designed at several levels, thus minimizing maintenance cost. Complex development and running time environments, like the SEMS developed by RDE, have made power plant simulators the workhorses of power plant engineers in all power plant areas. (orig.)

  15. Inertial Fusion Power Plant Concept of Operations and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Anklam, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knutson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunne, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kasper, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheehan, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lang, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mau, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  16. Toward autonomous operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Kitamura, M.

    1994-01-01

    Issues toward realization of autonomous operation as well as maintenance of nuclear power plants are reviewed in this paper. First, the necessity and significance of the technical program aiming at the establishment of autonomous nuclear plant are discussed through reviewing the history and current status computerized operation of complex artifacts. Then, key technologies currently studied to meet the need within the framework of artificial intelligence (AI) and advanced robotics are described. Among such AI-technologies are distributed multi-agent system, operator thinking model, and advanced man-machine interface design. Advances in robot technology attained include active sensing technique and multi-unit autonomous maintenance robot systems. Techniques for simulation of human action have been pursued as basic issues for understanding mechanisms behind human behavior. In addition to the individual developments, methodological topics relevant to the autonomy of nuclear facilities are briefly addressed. The concepts called methodology diversity and dynamic functionality restoration (realization) are introduced and discussed as the underlining principles to be considered in the development of the autonomous nuclear power plants. (author)

  17. A seismic analysis of nuclear power plant components subjected to multi-excitations of earthquakes

    International Nuclear Information System (INIS)

    Ichiki, T.; Matsumoto, T.; Gunyasu, K.

    1977-01-01

    In this analysis, the modal analysis methods are used to determine the seismic responses of structural systems instead of the direct integration method. These results have been compared with some kinds of other analytical methods, and investigated the accuracy of numerical results of these analysis, applying to such components as Reactor Pressure Vessel and Reactor Internals of an actual plant. The results of this method of analysis are summarized as follows: (1) one of the seismic analysis methods concerning systems subjected to multi-excitations of earthquakes has been presented to the conference of JSME. Although the analytical theory presented to that conference is correct, it has a serious problem about the accuracy of numerical results. This computer program and theory cannot be used practically due to the time necessary to calculate. However, the method described in this paper overcomes those serious problems stated above and has no problem about the computer time and precision. So, it is possible to apply this method to the seismic design of an actual nuclear power plant practically. (2) The feed back effects of the seismic responses of Reactor Internals to Reactor Building are considered so small that we can separate the model of Reactor Internals from Reactor Building. (3) The results of seismic response of Reactor Internals are fairly consistent with those obtained from the model coupled with Reactor Building. (4) This analysis method can be extended to the model of Reactor Internals subjected to more than two random excitations of earthquakes. (5) It is possible that this analysis method is also applied to the seismic analysis of such three-dimensional systems as piping systems subjected to multi-excitations of earthquakes

  18. Control oriented concentrating solar power (CSP) plant model and its applications

    Science.gov (United States)

    Luo, Qi

    Solar receivers in concentrating solar thermal power plants (CSP) undergo over 10,000 start-ups and shutdowns, and over 25,000 rapid rate of change in temperature on receivers due to cloud transients resulting in performance degradation and material fatigue in their expected lifetime of over 30 years. The research proposes to develop a three-level controller that uses multi-input-multi-output (MIMO) control technology to minimize the effect of these disturbances, improve plant performance, and extend plant life. The controller can be readily installed on any vendor supplied state-of-the-art control hardware. We propose a three-level controller architecture using multi-input-multi-output (MIMO) control for CSP plants that can be implemented on existing plants to improve performance, reliability, and extend the life of the plant. This architecture optimizes the performance on multiple time scalesreactive level (regulation to temperature set points), tactical level (adaptation of temperature set points), and strategic level (trading off fatigue life due to thermal cycling and current production). This controller unique to CSP plants operating at temperatures greater than 550 °C, will make CSPs competitive with conventional power plants and contribute significantly towards the Sunshot goal of 0.06/kWh(e), while responding with agility to both market dynamics and changes in solar irradiance such as due to passing clouds. Moreover, our development of control software with performance guarantees will avoid early stage failures and permit smooth grid integration of the CSP power plants. The proposed controller can be implemented with existing control hardware infrastructure with little or no additional equipment. In the thesis, we demonstrate a dynamics model of CSP, of which different components are modelled with different time scales. We also show a real time control strategy of CSP control oriented model in steady state. Furthermore, we shown different controllers

  19. Kansas Power Plants

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Power Plants database depicts, as point features, the locations of the various types of power plant locations in Kansas. The locations of the power plants...

  20. Simulation research on multivariable fuzzy model predictive control of nuclear power plant

    International Nuclear Information System (INIS)

    Su Jie

    2012-01-01

    To improve the dynamic control capabilities of the nuclear power plant, the algorithm of the multivariable nonlinear predictive control based on the fuzzy model was applied in the main parameters control of the nuclear power plant, including control structure and the design of controller in the base of expounding the math model of the turbine and the once-through steam generator. The simulation results show that the respond of the change of the gas turbine speed and the steam pressure under the algorithm of multivariable fuzzy model predictive control is faster than that under the PID control algorithm, and the output value of the gas turbine speed and the steam pressure under the PID control algorithm is 3%-5% more than that under the algorithm of multi-variable fuzzy model predictive control. So it shows that the algorithm of multi-variable fuzzy model predictive control can control the output of the main parameters of the nuclear power plant well and get better control effect. (author)

  1. Development of a method of lifetime assessment of power plant components under complex multi-axial vibration loads

    International Nuclear Information System (INIS)

    Fesich, Thomas M.

    2012-01-01

    In general, technical components are loaded and stressed by forces and moments both constant and variable over time. Multi-axial stress conditions can arise as a function of the load on, and/or the geometry of, a component. Assessing the impact on stability of multi-axial stress conditions is a problem for which no generally valid solution has as yet been found, especially when loads and stresses vary over time. This is also due to the fact that the development over time of stresses can give rise to very complex stress conditions. Assessing the lifetime of power plant components subjected to complex vibration loads and stresses often is not reliable if performed by means of conventional codes and approaches, or is associated with high degrees of conservatism. The MPA AIM-Life concept developed at the Stuttgart MPA/IMWF, which is an advanced and verified strength hypothesis based on energy considerations, allows such assessments to be made more reliably, numerically efficient, and avoiding excessive conservatism. (orig.)

  2. Hydroelectric Power Plants Dobsina

    International Nuclear Information System (INIS)

    Majercak, V.; Srenkelova, Z.; Kristak, J.G.

    1997-01-01

    In this brochure the Hydroelectric Power Plants Dobsina, (VED), subsidiary of the utility Slovenske Elektrarne, a.s. (Slovak Electric, plc. Bratislava) are presented. VED is mainly aimed at generating peak-load electrical energy and maintenance of operational equipment. Reaching its goals, company is first of all focused on reliability of production, economy and effectiveness, keeping principles of work safety and industry safety standards and also ecology. VED operates eight hydroelectric power plants, from which PVE Ruzin I and PVE Dobsina I are pump storage ones and they are controlled directly by the Slovak Energy Dispatch Centre located in Zilina thought the system LS 3200. Those power plants participate in secondary regulation of electrical network of Slovakia. They are used to compensate balance in reference to foreign electrical networks and they are put into operation independently from VED. Activity of the branch is focused mainly on support of fulfilment of such an important aim as electric network regulation. Beginnings of the subsidiary Hydroelectric Power Plants Dobsina are related to the year of 1948. After commissioning of the pump storage Hydroelectric Power Plants Dobsina in 1953, the plant started to carry out its mission. Since that time the subsidiary has been enlarged by other seven power plants, through which it is fulfilling its missions nowadays. The characteristics of these hydroelectric power plants (The pump-storage power plant Dobsina, Small hydroelectric power plant Dobsina II, Small hydroelectric power plant Rakovec, Small hydroelectric power plant Svedlar, Hydroelectric power plant Domasa, The pump-storage power plant Ruzin, and Small hydroelectric power plant Krompachy) are described in detail. Employees welfare and public relations are presented

  3. Comparative studies between nuclear power plants and hydroelectric power plants

    International Nuclear Information System (INIS)

    Menegassi, J.

    1984-01-01

    This paper shows the quantitative evolution of the power plants in the main countries of the world. The Brazilian situation is analysed, with emphasys in the technical and economical aspects related to power production by hidroelectric or nuclear power plants. The conclusion is that the electricity produced by hidro power plants becomes not economics when is intended to be produced at large distances from the demand centers. (Author) [pt

  4. Study on the coal mixing ratio optimization for a power plant

    Science.gov (United States)

    Jin, Y. A.; Cheng, J. W.; Bai, Q.; Li, W. B.

    2017-12-01

    For coal-fired power plants, the application of blended coal combustion has been a great issue due to the shortage and rising prices of high-rank coal. This paper describes the optimization of blending methods between Xing'an lignite coal, Shaltala lignite coal, Ura lignite coal, and Inner Mongolia bituminous coal. The multi-objective decision-making method based on fuzzy mathematics was used to determine the optimal blending ratio to improve the power plant coal-fired economy.

  5. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  6. Evaluation of power plants in Turkey using Analytic Network Process (ANP)

    International Nuclear Information System (INIS)

    Atmaca, Ediz; Basar, Hasan Burak

    2012-01-01

    Energy is one of the most important parameters of the development of societies. Low cost, clean and secure energy supply is a common issue for all countries. Every country spends commercial and political effort to avoid not having sufficient energy and to ensure an uninterrupted energy supply. This study attempts to determine the suitability of existing power plants in Turkey and the plants that are being considered for establishment in the near future. The alternatives which are being considered are natural gas, wind, geothermal, hydroelectric, and coal/lignite energy plants as well as nuclear energy plants. By using the multi-criteria decision making technique of Analytic Network Process (ANP), a multi-criteria evaluations of six different energy plants were performed with respect to the major criteria such as technology and sustainability, economical suitability, life quality and socio-economic impacts. -- Highlights: ► The study attempted to lay out the criteria based on which power plant investments are evaluated. ► In the energy industry in Turkey and in the world, it is considerably difficult to access data on energy. ► This study will provide significant support for people working in the energy area and related decision makers in Turkey. ► The study is also thought to provide benefit decision makers in the world energy industry. ► It can provide great benefit in ensuring the security of the energy to be produced from power plant investments.

  7. Fuzzy MCDM framework for locating a nuclear power plant in Turkey

    International Nuclear Information System (INIS)

    Erol, İsmail; Sencer, Safiye; Özmen, Aslı; Searcy, Cory

    2014-01-01

    Turkey has recently initiated a project to revise its nuclear policy. The revised nuclear energy policy considers searching for possible alternative locations for future nuclear power plants in Turkey. At the most basic level, the public cannot accurately evaluate whether it is willing to support nuclear energy unless it has an idea about where the power plants are likely to be located. It is argued that the selection of a facility location is a multi-criteria decision-making problem including both quantitative and qualitative criteria. In this research, given the multi-criteria nature of the nuclear facility location selection problem, a new decision tool is proposed to rank the alternative nuclear power plant sites in Turkey. The proposed tool is based on fuzzy Entropy and t norm based fuzzy compromise programming to deal with the vagueness of human judgments. Finally, a discussion and some concluding remarks are provided. - Highlights: • Fuzzy MCDM approach is developed to select nuclear power plant location in Turkey. • The proposed framework employs fuzzy entropy and fuzzy compromise programming. • A criterion set was developed using a map by The Turkish Atomic Energy Authority. • Cilingoz is found to be the best with the index values 0.6584 and 0.0838. • The proposed tool can be considered a tool to evaluate the alternative sites

  8. Method of diagnosing a nuclear power plant

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Kawano, Koji

    1983-01-01

    Purpose : To exactly diagnose a nuclear power plant even upon occurrence of an abnormal state. Method : A statistical data calculation device prepares multidimensional vectors on every statistical amount for the unit of flowrate, pressure, temperature and neutron flux data in a nuclear power plant. A comparison-and-reference device compares them with the statistical amount rendered into multi-dimensional vectors corresponding to the generation of abnormality on every time in a normal operation for each of the fluctuation amount stored in a comparison and reference-value-store device. The diagnosis device performs diagnosis while using both of the standard pattern previously prepared and stored in the comparison and standard-value-store device and the pattern learnt and stored in the comparison and reference-value-store device. (Seki, T.)

  9. Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants

    International Nuclear Information System (INIS)

    Ahmadi, Pouria; Dincer, Ibrahim; Rosen, Marc A.

    2011-01-01

    A comprehensive exergy, exergoeconomic and environmental impact analysis and optimization is reported of several combined cycle power plants (CCPPs). In the first part, thermodynamic analyses based on energy and exergy of the CCPPs are performed, and the effect of supplementary firing on the natural gas-fired CCPP is investigated. The latter step includes the effect of supplementary firing on the performance of bottoming cycle and CO 2 emissions, and utilizes the first and second laws of thermodynamics. In the second part, a multi-objective optimization is performed to determine the 'best' design parameters, accounting for exergetic, economic and environmental factors. The optimization considers three objective functions: CCPP exergy efficiency, total cost rate of the system products and CO 2 emissions of the overall plant. The environmental impact in terms of CO 2 emissions is integrated with the exergoeconomic objective function as a new objective function. The results of both exergy and exergoeconomic analyses show that the largest exergy destructions occur in the CCPP combustion chamber, and that increasing the gas turbine inlet temperature decreases the CCPP cost of exergy destruction. The optimization results demonstrates that CO 2 emissions are reduced by selecting the best components and using a low fuel injection rate into the combustion chamber. -- Highlights: → Comprehensive thermodynamic modeling of a combined cycle power plant. → Exergy, economic and environmental analyses of the system. → Investigation of the role of multiobjective exergoenvironmental optimization as a tool for more environmentally-benign design.

  10. Development of a multi-path ultrasonic flow meter for the application to feedwater flow measurement in nuclear power plants

    International Nuclear Information System (INIS)

    Jong, J. C.; Ha, J. H.; Kim, Y. H.; Jang, W. H.; Park, K. S.; Park, M. S.; Park, M. H.

    2002-01-01

    In this work, we propose a method to measure the feedwater flow using multi-path ultrasonic flow meter (UFM). Since the UFM measures a path velocity at which the ultrasonic wave is propagated, the flow profile may be important to convey the path velocity to the velocity averaged over the entire cross section of the flowing medium. The conventional UFM has used the smooth-wall circular pipe model presented by Nikurades. However, this model covers a lower range which is less than 3.2 million while the Reynolds number of the feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we proposed the non-linear correlation model that combines the ratio between the DP output and proposed the non-linear correlation model that combines the ratio between the DP output and UFM output. Experiments were performed using both computer simulation and newly constructed NPPs' test data. The uncertainty analysis result shows that the proposed method has reasonably lower uncertainty than conventional UFM

  11. Seismic PSA method for multiple nuclear power plants in a site

    Energy Technology Data Exchange (ETDEWEB)

    Hakata, Tadakuni [Nuclear Safety Commission, Tokyo (Japan)

    2007-07-15

    The maximum number of nuclear power plants in a site is eight and about 50% of power plants are built in sites with three or more plants in the world. Such nuclear sites have potential risks of simultaneous multiple plant damages especially at external events. Seismic probabilistic safety assessment method (Level-1 PSA) for multi-unit sites with up to 9 units has been developed. The models include Fault-tree linked Monte Carlo computation, taking into consideration multivariate correlations of components and systems from partial to complete, inside and across units. The models were programmed as a computer program CORAL reef. Sample analysis and sensitivity studies were performed to verify the models and algorithms and to understand some of risk insights and risk metrics, such as site core damage frequency (CDF per site-year) for multiple reactor plants. This study will contribute to realistic state of art seismic PSA, taking consideration of multiple reactor power plants, and to enhancement of seismic safety. (author)

  12. Flood hazards for nuclear power plants

    International Nuclear Information System (INIS)

    Yen, B.C.

    1988-01-01

    Flooding hazards for nuclear power plants may be caused by various external geophysical events. In this paper the hydrologic hazards from flash floods, river floods and heavy rain at the plant site are considered. Depending on the mode of analysis, two types of hazard evaluation are identified: 1) design hazard which is the probability of flooding over an expected service period, and 2) operational hazard which deals with real-time forecasting of the probability of flooding of an incoming event. Hazard evaluation techniques using flood frequency analysis can only be used for type 1) design hazard. Evaluation techniques using rainfall-runoff simulation or multi-station correlation can be used for both types of hazard prediction. (orig.)

  13. Improvement of Off-site Dose Assessment Code for Operating Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juyub; Kim, Juyoul; Shin, Kwangyoung [FNC Technology Co. Ltd., Yongin (Korea, Republic of); You, Songjae; Moon, Jongyi [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    XOQDOQ code which calculates atmospheric Dispersion factor was included into INDAC also. A research on the improvement of off-site dose assessment system for an operating nuclear power plant was performed by KINS in 2011. As a result, following improvements were derived: - Separation of dose assessment for new and existing facilities - Update of food ingestion data - Consideration of multi-unit operation and so on In order to reflect the results, INDAC is under modification. INDAC is an integrated dose assessment code for an operating nuclear power plant and consists of three main modules: XOQDOQ, GASDOS and LIQDOS. The modules are under modification in order to improve the accuracy of assessment and usability. Assessment points for multi-unit release can be calculated through the improved code and the method on dose assessment for multi-unit release has been modified, so that the dose assessment result of multi-unit site becomes more realistic by relieving excessive conservatism. Finally, as the accuracy of calculation modules has been improved, the reliability of dose assessment result has been strengthened.

  14. Evaluation criteria for enhanced solar–coal hybrid power plant performance

    International Nuclear Information System (INIS)

    Zhao, Yawen; Hong, Hui; Jin, Hongguang

    2014-01-01

    Attention has been directed toward hybridizing solar energy with fossil power plants since the 1990s to improve reliability and efficiency. Appropriate evaluation criteria were important in the design and optimization of solar–fossil hybrid systems. Two new criteria to evaluate the improved thermodynamic performances in a solar hybrid power plant were developed in this study. Correlations determined the main factors influencing the improved thermodynamic performances. The proposed criteria can be used to effectively integrate solar–coal hybridization systems. Typical 100 MW–1000 MW coal-fired power plants hybridized with solar heat at approximately 300 °C, which was used to preheat the feed water before entering the boiler, were evaluated using the criteria. The integration principle of solar–coal hybrid systems was also determined. The proposed evaluation criteria may be simple and reasonable for solar–coal hybrid systems with multi-energy input, thus directing system performance enhancement. - Highlights: • New criteria to evaluate the solar hybrid power plant were developed. • Typical solar–coal hybrid power plants were evaluated using the criteria. • The integration principle of solar–coal hybrid systems was determined. • The benefits of the solar–coal hybrid system are enhanced at lower solar radiation

  15. Environmental impact assessment of coal power plants in operation

    Directory of Open Access Journals (Sweden)

    Bartan Ayfer

    2017-01-01

    Full Text Available Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS. The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.

  16. Environmental impact assessment of coal power plants in operation

    Science.gov (United States)

    Bartan, Ayfer; Kucukali, Serhat; Ar, Irfan

    2017-11-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS). The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.

  17. Less power plants

    International Nuclear Information System (INIS)

    TASR

    2003-01-01

    In the Slovak Republic the number of company power plants decreased as against 2001 by two sources. In present time only 35 companies have their own power plants. The companies Slovnaft, Kappa Sturovo, Slovensky hodvab Senica, Matador Puchov, Maytex Liptovsky MikuIas, Kovohuty Krompachy, Chemko Strazske and some Slovak sugar factories belong to the largest company power plants in force of distributing companies. Installed output of present 35 company sources is 531 MW. The largest of separate power plants as Paroplynovy cyklus Bratislava (218 MW) and VD Zilina (72 MW) belong to independent sources. Total installed output of Slovak sources was 8306 MW in the end of last year

  18. Economic benefits of broadened local area networks for electric power plants

    International Nuclear Information System (INIS)

    Holmes, T.

    1988-01-01

    The paper discusses economic benefits which influenced the choice of a broadband local area network for a power plant instead of an alternative multi-cable communication network. Broadband communication networks can offer significant economies over alternative technologies. One-time, cost avoidance savings and recurring annual savings are estimated to total $5.1 million in the first year. The cost/benefit analysis presented here can be used as a guide by other utilities to analyze communication networking alternatives. The paper also includes a discussion of local area network attributes relevant to the power plant installation

  19. The economics of long-term operation of nuclear power plants

    International Nuclear Information System (INIS)

    Lokhov, Alexey; Huerta, Alejandro; Dufresne, Luc; Giraud, Anne; Osouf, Nicolas

    2012-01-01

    Refurbishment and long-term operation (LTO) of existing nuclear power plants (NPPs) today are crucial to the competitiveness of the nuclear industry in OECD countries as existing nuclear power plants produce base-load power at a reliable cost. A number of nuclear power plants, most notably 73 units in the United States (up to 2012), have been granted lifetime extensions of up to 60 years, a development that is being keenly watched in other OECD countries. In many of these (e.g. France, Switzerland), there is no legal end to the operating licence, but continued operation is based on the outcomes of periodic safety reviews. This study analyses technical and economic data on the upgrade and lifetime extension experience in OECD countries. A multi-criteria assessment methodology is used considering various factors and parameters reflecting current and future financial conditions of operation, political and regulatory risks, the state of the plants' equipment and the general role of nuclear power in the country's energy policy. The report shows that long-term operation of nuclear power plants has significant economic advantages for most utilities envisaging LTO programmes. In most cases, the continued operation of NPPs for at least ten more years is profitable even taking into account the additional costs of post-Fukushima modifications, and remains cost-effective compared to alternative replacement sources

  20. Study and discussion on management of nuclear island in-service inspection procedure system in nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Xueliang; Fan Yancheng

    2014-01-01

    In-service inspection of nuclear island is the important way for keeping safety operation of nuclear power plant. Taking Daya Bay Nuclear Power Plant as example, the management problems of in-service inspection system was studied and discussed from the angle of references, contents, classifications etc. Based on comparison with French practice, some points of view on perfection of in-service inspection system and improvement of management ability under future multi-bases and multi-units management mode were presented. (authors)

  1. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  2. An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

    Directory of Open Access Journals (Sweden)

    H. Shayeghi

    2017-12-01

    Full Text Available This paper presents an online two-stage Q-learning based multi-agent (MA controller for load frequency control (LFC in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs. The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO algorithm and are fixed. The second one is a reinforcement learning (RL based supplementary controller that has a flexible structure and improves the output of the first stage adaptively based on the system dynamical behavior. Due to the use of RL paradigm integrated with PID controller in this strategy, it is called RL-PID controller. The primary motivation for the integration of RL technique with PID controller is to make the existing local controllers in the industry compatible to reduce the control efforts and system costs. This novel control strategy combines the advantages of the PID controller with adaptive behavior of MA to achieve the desired level of robust performance under different kind of uncertainties caused by stochastically power generation of DERs, plant operational condition changes, and physical nonlinearities of the system. The suggested decentralized controller is composed of the autonomous intelligent agents, who learn the optimal control policy from interaction with the system. These agents update their knowledge about the system dynamics continuously to achieve a good frequency oscillation damping under various severe disturbances without any knowledge of them. It leads to an adaptive control structure to solve LFC problem in the multi-source power system with stochastic DERs. The results of RL-PID controller in comparison to the traditional PID and fuzzy-PID controllers is verified in a multi-area power system integrated with DERs through some performance indices.

  3. Efficient Approach for Harmonic Resonance Identification of Large Wind Power Plants

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    Unlike conventional power systems where the resonance frequencies are mainly determined by the passive components parameters, large Wind Power Plants (WPPs) may introduce additional harmonic resonances because of the interactions of the wideband control systems of power converters with each other...... and with passive components. This paper presents an efficient approach for identification of harmonic resonances in large WPPs containing power electronic converters, cable, transformer, capacitor banks, shunt reactors, etc. The proposed approach introduces a large WPP as a Multi-Input Multi-Output (MIMO) control...... system by considering the linearized models of the inner control loops of grid-side converters. Therefore, the resonance frequencies of the WPP resulting from passive components and the control loop interactions are identified based on the determinant of the transfer function matrix of the introduced...

  4. Accident prevention in power plants

    International Nuclear Information System (INIS)

    Steyrer, H.

    Large thermal power plants are insured to a great extent at the Industrial Injuries Insurance Institute of Instrument and Electric Engineering. Approximately 4800 employees are registered. The accident frequency according to an evaluation over 12 months lies around 79.8 per year and 1000 employees in fossil-fired power plants, around 34.1 per year and 1000 employees in nuclear power plants, as in nuclear power plants coal handling and ash removal are excluded. Injuries due to radiation were not registered. The crucial points of accidents are mechanical injuries received on solid, sharp-edged and pointed objects (fossil-fired power plants 28.6%, nuclear power plants 41.5%), stumbling, twisting or slipping (fossil-fired power plants 21.8%, nuclear power plants 19.5%) and injuries due to moving machine parts (only nuclear power plants 12.2%). However, accidents due to burns or scalds obtain with 4.2% and less a lower portion than expected. The accident statistics can explain this fact in a way that the typical power plant accident does not exist. (orig./GL) [de

  5. An approach to evaluating alternatives for wind power plant locations

    Directory of Open Access Journals (Sweden)

    Rehman, Ateekh Ur

    2016-12-01

    Full Text Available Multi-criteria decision approaches are preferred for achieving multi-dimensional sustainable renewable energy goals. A more critical issue faced by the wind power industry is the selection of a location to tap prospective energy, which needs to be evaluated on multiple measures. In this paper, the aim is to assess and rank alternative wind power plant locations in Saudi Arabia. The approach presented here takes multiple criteria into consideration, such as wind speed, wind availability, site advantages, terrain details, risk and uncertainty, technology used, third party support, projected demand, types of customers, and government policies. A comparative analysis of feasible alternatives that satisfy all multi- criteria objectives is carried out. The results obtained are subjected to sensitivity analysis. Concepts such as ‘threshold values’ and ‘attribute weights’ make the approach more sensitive.

  6. How to deal with financial risk under the life circles of nuclear power plant

    International Nuclear Information System (INIS)

    Chen Shilong

    2010-01-01

    Nuclear power plants don't necessarily form enterprise boundary, in the background of nuclear power booming, what characteristics of financial risk exist in nuclear power plant, how to deal with such financial risk and how to sustain a stable development of nuclear power ? Based on the enterprise boundary theory of transaction fees, the separate of the nuclear power plant owner, engineering company and operating company comply with the cost-efficient principle. The financial risk of the plant owner come from the cash flow characteristics under different life circles of its nuclear power plants, due to the passivation of the asset structure in the construction and early operation periods, considering the effects of asset structure on financial risk is meaningless. Based on the owners with single reactor or constructing reactors, big-scale investment holding company is needed to conduct professional asset management, and to diversify the financial risk, on the other hand, professional engineering and operation companies can realize the scale and the multi-reactor advantages. (author)

  7. Operational safety performance and economical efficiency evaluation for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang

    2012-01-01

    The economical efficiency of nuclear power includes a series of environmental parameters, for example, cleanliness. Nuclear security is the precondition and guarantee for its economy, and both are the direct embodiment of the social benefits of nuclear power. Through analyzing the supervision and management system on the effective operation of nuclear power plants, which has been put forward by the International Atomic Energy Agency (IAEA), the World Association of Nuclear Operators (WANO), the U.S. Nuclear Regulatory Commission (NRC), and other organizations, a set of indexs on the safety performance and economical efficiency of nuclear power are explored and established; Based on data envelopment analysis, a DEA approach is employed to evaluate the efficiency of the operation performance of several nuclear power plants, Some primary conclusion are achieved on the basis of analyzing the threshold parameter's sensitivity and relativity which affected operational performance. To address the conflicts between certain security and economical indicators, a multi-objective programming model is established, where top priority is given to nuclear safety, and the investment behavior of nuclear power plant is thereby optimized. (authors)

  8. Nuclear power plant monitoring using real-time learning neural network

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Tuerkcan, E.; Ciftcioglu, O.

    1994-01-01

    In the present research, artificial neural network (ANN) with real-time adaptive learning is developed for the plant wide monitoring of Borssele Nuclear Power Plant (NPP). Adaptive ANN learning capability is integrated to the monitoring system so that robust and sensitive on-line monitoring is achieved in real-time environment. The major advantages provided by ANN are that system modelling is formed by means of measurement information obtained from a multi-output process system, explicit modelling is not required and the modelling is not restricted to linear systems. Also ANN can respond very fast to anomalous operational conditions. The real-time ANN learning methodology with adaptive real-time monitoring capability is described below for the wide-range and plant-wide data from an operating nuclear power plant. The layered neural network with error backpropagation algorithm for learning has three layers. The network type is auto-associative, inputs and outputs are exactly the same, using 12 plant signals. (author)

  9. Development of model reference adaptive control theory for electric power plant control applications

    Energy Technology Data Exchange (ETDEWEB)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis. An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.

  10. Off-shore nuclear power plant

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1980-01-01

    In order to avoid losses of energy and seawater pollution an off-shore nuclear power plant is coupled with a power plant which utilizes the temperature difference between seawater and hot reactor cooling water. According to the invention the power plant has a working media loop which is separated from the nuclear power plant. The apparative equipment and the operational characteristics of the power plant are the subject of the patent. (UWI) [de

  11. Analysis on the public acceptance of nuclear power plant and its policies

    International Nuclear Information System (INIS)

    Choi, Young Sung

    1994-02-01

    In the current situation of requiring the public acceptance of nuclear power plant, it may be necessary to understand what the public think about this plant and to find out the public preference values for its policies. For this purpose, multi-attribute utility (MAU) model was applied to analyze the public perception pattern for five power production systems. And the conjoint measurement technique was applied to measure quantitative values of public preferences for imaginary policy alternatives. To study the feasibility of these methods, mail survey was conducted to the qualified sample who had the experience of visiting nuclear power plant. Diagnosis of their perception pattern for five power production systems was made by the simplified MAU model. Estimation of the quantitative preference values for potential policy alternatives was made by the conjoint measurement technique, which made it possible to forecast the effectiveness of each option. The results from the qualified sample and the methods used in this study would be helpful to set up new policy of nuclear power plant

  12. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  13. Power plant cycle chemistry - a currently neglected power plant chemistry discipline

    International Nuclear Information System (INIS)

    Bursik, A.

    2005-01-01

    Power plant cycle chemistry seems to be a stepchild at both utilities and universities and research organizations. It is felt that other power plant chemistry disciplines are more important. The last International Power Cycle Chemistry Conference in Prague may be cited as an example. A critical review of the papers presented at this conference seems to confirm the above-mentioned statements. This situation is very unsatisfactory and has led to an increasing number of component failures and instances of damage to major cycle components. Optimization of cycle chemistry in fossil power plants undoubtedly results in clear benefits and savings with respect to operating costs. It should be kept in mind that many seemingly important chemistry-related issues lose their importance during forced outages of units practicing faulty plant cycle chemistry. (orig.)

  14. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  15. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  16. Advanced Power Plant Development and Analyses Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  17. Advanced Power Plant Development and Analysis Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  18. Prospects for the utilization of small nuclear plants for civil ships, floating heat and power stations and power seawater desalination complexes

    International Nuclear Information System (INIS)

    Polunichev, V.I.

    2000-01-01

    Small power nuclear reactor plants developed by OKB Mechanical Engineering are widely used as propulsion plants in various civil ships. Russia is the sole country in the world that possesses a powerful icebreaker and transport fleet which offers effective solution for vital socio-economic tasks of Russia's northern regions by maintaining a year-round navigation along the Arctic sea route. In the future, intensification of freighting volumes is expected in Arctic seas and at estuaries of northern rivers. Therefore, further replenishment of nuclear-powered fleet is needed by new generation ice-breakers equipped with advanced reactor plants. Adopted progressive design and technology solutions, reliable equipment and safety systems being continuously perfected on the basis of multi year operation experience feedback, addressing updated safety codes and achievement of science and technology, allow the advanced propulsion reactor plants of this type to be recommended as energy sources for floating heat and power co-generation stations and power-seawater desalination complexes. (author)

  19. The innovative simulator for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, A [The Inst. of Applied Energy, Tokyo (Japan); Ohashi, H; Akiyama, M [Univ. of Tokyo (Japan). Dept. of Nuclear Engineering

    1994-12-31

    Nuclear power simulators are becoming more and more important tools for ensuring the safety and the reliability during the whole cycle of plants from design to operation. Recently, there has been remarkable progress in computer science such as increase of computing speed, refinement of mathematical models and emergence of various AI technologies. By fully exploiting this progress to nuclear plant simulators, it becomes possible to achieve much faster, more extensive and more realistic simulation than ever. The Institute of Applied Energy (IAE) has organized a feasibility study on the advanced simulator since 1990, to develop the concept of nuclear power plant simulators in future. In this study, several academic organizations make fundamental researches on parallelization of transient analyses, large-scale parallel computing, thermal-hydraulic analysis using cellular automata, code development methodology by module-integration and task scheduling methods for parallel compilers. The concept and impact of the innovative simulator, as a multipurpose simulator complex, are summarized from the viewpoints of wide range scenarios including severe accidents, 3D multi-media interface, much faster than real-time simulation, and innovative algorithms for analyses of thermal-hydraulics, structure, neutronkinetics and their coupled phenomena. (orig.) (2 refs., 2 figs.).

  20. The innovative simulator for nuclear power plants

    International Nuclear Information System (INIS)

    Kurosawa, A.; Ohashi, H.; Akiyama, M.

    1994-01-01

    Nuclear power simulators are becoming more and more important tools for ensuring the safety and the reliability during the whole cycle of plants from design to operation. Recently, there has been remarkable progress in computer science such as increase of computing speed, refinement of mathematical models and emergence of various AI technologies. By fully exploiting this progress to nuclear plant simulators, it becomes possible to achieve much faster, more extensive and more realistic simulation than ever. The Institute of Applied Energy (IAE) has organized a feasibility study on the advanced simulator since 1990, to develop the concept of nuclear power plant simulators in future. In this study, several academic organizations make fundamental researches on parallelization of transient analyses, large-scale parallel computing, thermal-hydraulic analysis using cellular automata, code development methodology by module-integration and task scheduling methods for parallel compilers. The concept and impact of the innovative simulator, as a multipurpose simulator complex, are summarized from the viewpoints of wide range scenarios including severe accidents, 3D multi-media interface, much faster than real-time simulation, and innovative algorithms for analyses of thermal-hydraulics, structure, neutronkinetics and their coupled phenomena. (orig.) (2 refs., 2 figs.)

  1. Japan's policy on the nuclear power plant life management, life management for nuclear power plants and measures to cope with aging

    International Nuclear Information System (INIS)

    Takuma, Masao

    2002-01-01

    Full text: Nuclear Plant is born after a lengthy, multi-year construction period, and ends its life decades later, having generated a vast amount of electricity. Its period of operation is, far longer than its period of construction. 'Construction' is the process of 'creating something of value', a new nuclear plant, using technology. 'Operation' is the process of 'raising the child with care' so that its potential can be realized to the fullest over the course of its life. From the view point of plant life management, it is appropriate to divide the life of a power plant into three stages, 'fostering, mature and aging', from the start of operation to the end of its operation. It is important to manage a plant accordingly. It is recently become important to the Utility companies under the competitive power market to manage aging plants effectively, in order to extend its life with sustained high level of performances, with plant safety in the first place. Whether this is, in fact, possible or not, depends upon how the plant was operated in the prior stages, that means, depends upon how it was 'brought up'. This report briefly shows what are important points of management in these 3 stages, and also describes general significances of plant maintenance and inspection, with the practices applied to the plants in Japan. Currently 52 plants Light Water Reactor Nuclear Plants are in operation in Japan, and 13 plants within next 5 years and 23 plants within 10 years are regarded as aged plants. So the contents of periodic inspections by the government and maintenance requirements on the Utilities will be modified to keep and enhance safe and stable operations of the aged plants. In the year 1994, Japanese Government released the report 'Basic Concepts on the Nuclear Power Plant Aging', the objectives of which was the evaluation of the soundness of major equipment and to establish the concepts of aging measures, assuming the plant to be operated 60 years. Utilities, in

  2. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process

    International Nuclear Information System (INIS)

    Xu Gang; Yang Yongping; Lu Shiyuan; Li Le; Song Xiaona

    2011-01-01

    In China, coal-fired power plants are the main supplier of electricity, as well as the largest consumer of coal and water resources and the biggest emitter of SO x , NO x , and greenhouse gases (GHGs). Therefore, it is important to establish a scientific, reasonable, and feasible comprehensive evaluation system for coal-fired power plants to guide them in achieving multi-optimisation of their thermal, environmental, and economic performance. This paper proposes a novel comprehensive evaluation method, which is based on a combination of the grey relational analysis (GRA) and the analytic hierarchy process (AHP), to assess the multi-objective performance of power plants. Unlike the traditional evaluation method that uses coal consumption as a basic indicator, the proposed evaluation method also takes water consumption and pollutant emissions as indicators. On the basis of the proposed evaluation method, a case study on typical 600 MW coal-fired power plants is carried out to determine the relevancy rules among factors including the coal consumption, water consumption, pollutant, and GHG emissions of power plants. This research offers new ideas and methods for the comprehensive performance evaluation of complex energy utilisation systems, and is beneficial to the synthesised consideration of resources, economy, and environment factors in system optimising and policy making. - Research highlights: → We proposed a comprehensive evaluation method for coal-fired power plants. → The method is based on the grey relational analysis (GRA). → The method also introduces the idea of the analytic hierarchy process (AHP). → The method can assess thermal, economic and environmental performance. → The method can play an active role in guiding power plants' improvements.

  3. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Xu Gang, E-mail: xg2008@ncepu.edu.c [Key Lab of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Yang Yongping, E-mail: yyp@ncepu.edu.c [Key Lab of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Lu Shiyuan; Li Le [Key Lab of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Song Xiaona [Electromechanical Practice Center, Beijing Information Science and Technology University, Beijing (China)

    2011-05-15

    In China, coal-fired power plants are the main supplier of electricity, as well as the largest consumer of coal and water resources and the biggest emitter of SO{sub x}, NO{sub x}, and greenhouse gases (GHGs). Therefore, it is important to establish a scientific, reasonable, and feasible comprehensive evaluation system for coal-fired power plants to guide them in achieving multi-optimisation of their thermal, environmental, and economic performance. This paper proposes a novel comprehensive evaluation method, which is based on a combination of the grey relational analysis (GRA) and the analytic hierarchy process (AHP), to assess the multi-objective performance of power plants. Unlike the traditional evaluation method that uses coal consumption as a basic indicator, the proposed evaluation method also takes water consumption and pollutant emissions as indicators. On the basis of the proposed evaluation method, a case study on typical 600 MW coal-fired power plants is carried out to determine the relevancy rules among factors including the coal consumption, water consumption, pollutant, and GHG emissions of power plants. This research offers new ideas and methods for the comprehensive performance evaluation of complex energy utilisation systems, and is beneficial to the synthesised consideration of resources, economy, and environment factors in system optimising and policy making. - Research highlights: {yields} We proposed a comprehensive evaluation method for coal-fired power plants. {yields} The method is based on the grey relational analysis (GRA). {yields} The method also introduces the idea of the analytic hierarchy process (AHP). {yields} The method can assess thermal, economic and environmental performance. {yields} The method can play an active role in guiding power plants' improvements.

  4. Industrial safety in power plants

    International Nuclear Information System (INIS)

    1987-01-01

    The proceedings of the VGB conference 'Industrial safety in power plants' held in the Gruga-Halle, Essen on January 21 and 22, 1987, contain the papers reporting on: Management responsibility for and legal consequences of industrial safety; VBG 2.0 Industrial Accident Prevention Regulation and the power plant operator; Operational experience gained with wet-type flue gas desulphurization systems; Flue gas desulphurization systems: Industrial-safety-related requirements to be met in planning and operation; the effects of the Hazardous Substances Ordinance on power plant operation; Occupational health aspects of heat-exposed jobs in power plants; Regulations of the Industrial Accident Insurance Associations concerning heat-exposed jobs and industrial medical practice; The new VBG 30 Accident Prevention Regulation 'Nuclear power plants'; Industrial safety in nuclear power plants; safe working on and within containers and confined spaces; Application of respiratory protection equipment in power plants. (HAG) [de

  5. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  6. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  7. Controlling engineering project changes for multi-unit, multi-site standardized nuclear power plants

    International Nuclear Information System (INIS)

    Randall, E.; Boddeker, G.; McGugin, H.; Strother, E.; Waggoner, G.

    1978-01-01

    Multibillioin dollar multiple nuclear power plant projects have numerous potential sources of engineering changes. The majority of these are internally generated changes, client generated changes, and changes from construction, procurement, other engineering organizations, and regulatory organizations. For multiunit, multisite projects, the use of a standardized design is cost effective. Engineering changes can then be controlled for a single standardized design, and the unit or site unique changes can be treated as deviations. Once an effective change procedure is established for change control of the standardized design, the same procedures can be used for control of unit or site unique changes

  8. The Palo Verde story: a foundation for future multi-station nuclear power plants

    International Nuclear Information System (INIS)

    Brunt, Jr.E.E.Van; Ferguson, C.

    1987-01-01

    In 1973, the design and planning for the Palo Verde Nuclear Generating Station Was started featuring three 3800 MWt Combustion Engineering Standard System 80 Nuclear Steam Supply Systems. Arizona Public Service Company (APS) was the Project Manager and Operating Agent and Bechtel Power Corporation the architect/engineer and constructor. The Palo Verde units are located in a desert environment some 50 miles west of Phoenix, Arizona. It is a 'dry site' in that there are no liquid discharges from the site. The cooling tower makeup water sewage is waste effluent from the City of Phoenix treated at an on site reclamation facility. The effluent has had primary and secondary treatment at the Phoenix plant prior to delivery to PVNGS. The units are physically separate from each other but are of identical design. There are no shared safety systems between the units. Unit 1 and Unit 2 are both in commercial operation (January, 1986 and September, 1986 respectively). Unit 3 is scheduled to load fuel late in the first quarter of 1987. This paper presents some of the engineering and management practices used during design, construction, and startup and operational experiences and other unique features of this multi-unit nuclear station. The site arrangement is shown in Figure 1

  9. Constructing A Multi-Microgrid with the Inclusion of Renewable Energy in Oman's Rural Power System

    Directory of Open Access Journals (Sweden)

    Nasser Hosseinzadeh

    2018-01-01

    Full Text Available This paper investigates the possibility of constructing multi-microgrids by interlinking the rural area systems in the Al Wusta governorate of the Sultanate of Oman, which are currently being supplied by diesel generators. It is proposed to enhance the rural system under study by switching off small diesel stations and replacing them with wind turbines. The microgrids formed in this way are then interlinked together to create multi-microgrids. The paper studies the interlinked multi-microgrids under different scenarios; in terms of voltage profiles and power flow using the ETAP software package. This study contributes to the feasibility study of retiring some diesel power plants and using renewable energy resources in rural Oman.

  10. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  11. Power plants 2010. Lectures

    International Nuclear Information System (INIS)

    2010-01-01

    The proceedings include the following lectures: Facing the challenges - new structures for electricity production. Renewable energies in Europe - chances and challenges. Nuclear outlook in the UK. Sustainable energy for Europe. Requirements of the market and the grid operator at the electricity production companies. Perspectives for the future energy production. Pumped storage plants - status and perspectives. Nuclear power/renewable energies -partners or opponents? New fossil fired power stations in Europe - status and perspectives. Nuclear energy: outlook for new build and lifetime extension in Europe. Biomass in the future European energy market - experiences for dong energy. Meeting the EU 20:20 renewable energy targets: the offshore challenges. DESERTEC: sustainable electricity for Europe, Middle East and North Africa. New power plants in Europe - a challenge for project and quality management. Consideration of safely in new build activities of power plants. Challenges to an integrated development in Maasvlakte, Netherlands. Power enhancement in EnBW power plants. Operational experiences of CCS pilot plants worldwide. Two years of operational experiences with Vattenfall's oxyfuel pilot plant. Pre-conditions for CCS. Storage technologies for a volatile generation. Overview: new generation of gas turbines.

  12. The year 2000 power plant

    International Nuclear Information System (INIS)

    Roman, H.T.

    1989-01-01

    Every utility seeks extended service life from its existing power plants before building new ones. It is not easy to justify a new power plant. The licensing and cost of new plants have become uncertain. In response to these conditions, electric utilities are undertaking plant life-extension studies and, in some cases, reconditioning/upgrading old power plants to significantly increase useful service life. Other technologies like robotics and artificial intelligence/expert systems are also being developed to reduce operating and maintenance (O and M) expenses, to remove workers from potentially hazardous environments, and to reduce plant downtime. Together, these steps represent an interim solution, perhaps providing some relief for the next few decades. However, there are serious physical and economic limits to retrofitting new technology into existing power plants. Some old plants will simply be beyond their useful life and require retirement. In nuclear plants, for instance, retrofit may raise important and time-consuming licensing/safety issues. Based on their robotics and artificial intelligence experience, the authors of this article speculate bout the design of the year 2000 power plant - a power plant they feel will naturally incorporate liberal amounts of robotic and artificial intelligence technologies

  13. The challenge of financing nuclear power plants

    International Nuclear Information System (INIS)

    Csik, B.J.

    1999-01-01

    To date, more then 500 nuclear power reactors have been successfully financed and built. Experience in recent nuclear projects confirms that nuclear power will not cease to be a viable option due to a worldwide financing constraint. For financing nuclear plants there are special considerations: large investment; long lead and construction times; complex technology; regulatory risk and political risk. The principal preconditions to financing are a national policy supporting nuclear power; creditworthiness; economic competitiveness; project feasibility; assurance of adequate revenues; acceptability of risks; and no open-ended liabilities. Generally, nuclear power plants are financed conventionally through multi-sources, where a package covers the entire cost. The first source, the investor/owner/operator responsible for building and operating the plant, should cover a sizable portion of the overall investment. In addition, bond issues, domestic bank credits etc. and, in case of State-owned or controlled enterprises, donations and credits from public entities or the governmental budget, should complete the financing. A financially sound utility should be able to meet this challenge. For importing technology, bids are invited. Export credits should form the basis of foreign financing, because these have favorable terms and conditions. Suppliers from several countries may join in a consortium subdividing the scope of supply and involve several Export Credit Agencies (ECAs). There are also innovative financing approaches that could be applied to nuclear projects. Evolutionary Reactors with smaller overall investment, shorter construction times, reliance on proven technology, together with predictable regulatory regimes and reliable long-term national policies favorable to nuclear power, should make it easier to meet the future challenges of financing. (author)

  14. Optimal Multi-scale Demand-side Management for Continuous Power-Intensive Processes

    Science.gov (United States)

    Mitra, Sumit

    With the advent of deregulation in electricity markets and an increasing share of intermittent power generation sources, the profitability of industrial consumers that operate power-intensive processes has become directly linked to the variability in energy prices. Thus, for industrial consumers that are able to adjust to the fluctuations, time-sensitive electricity prices (as part of so-called Demand-Side Management (DSM) in the smart grid) offer potential economical incentives. In this thesis, we introduce optimization models and decomposition strategies for the multi-scale Demand-Side Management of continuous power-intensive processes. On an operational level, we derive a mode formulation for scheduling under time-sensitive electricity prices. The formulation is applied to air separation plants and cement plants to minimize the operating cost. We also describe how a mode formulation can be used for industrial combined heat and power plants that are co-located at integrated chemical sites to increase operating profit by adjusting their steam and electricity production according to their inherent flexibility. Furthermore, a robust optimization formulation is developed to address the uncertainty in electricity prices by accounting for correlations and multiple ranges in the realization of the random variables. On a strategic level, we introduce a multi-scale model that provides an understanding of the value of flexibility of the current plant configuration and the value of additional flexibility in terms of retrofits for Demand-Side Management under product demand uncertainty. The integration of multiple time scales leads to large-scale two-stage stochastic programming problems, for which we need to apply decomposition strategies in order to obtain a good solution within a reasonable amount of time. Hence, we describe two decomposition schemes that can be applied to solve two-stage stochastic programming problems: First, a hybrid bi-level decomposition scheme with

  15. Applications of wavelet transforms for nuclear power plant signal analysis

    International Nuclear Information System (INIS)

    Seker, S.; Turkcan, E.; Upadhyaya, B.R.; Erbay, A.S.

    1998-01-01

    The safety of Nuclear Power Plants (NPPs) may be enhanced by the timely processing of information derived from multiple process signals from NPPs. The most widely used technique in signal analysis applications is the Fourier transform in the frequency domain to generate power spectral densities (PSD). However, the Fourier transform is global in nature and will obscure any non-stationary signal feature. Lately, a powerful technique called the Wavelet Transform, has been developed. This transform uses certain basis functions for representing the data in an effective manner, with capability for sub-band analysis and providing time-frequency localization as needed. This paper presents a brief overview of wavelets applied to the nuclear industry for signal processing and plant monitoring. The basic theory of Wavelets is also summarized. In order to illustrate the application of wavelet transforms data were acquired from the operating nuclear power plant Borssele in the Netherlands. The experimental data consist of various signals in the power plant and are selected from a stationary power operation. Their frequency characteristics and the mutual relations were investigated using MATLAB signal processing and wavelet toolbox for computing their PSDs and coherence functions by multi-resolution analysis. The results indicate that the sub-band PSD matches with the original signal PSD and enhances the estimation of coherence functions. The Wavelet analysis demonstrates the feasibility of application to stationary signals to provide better estimates in the frequency band of interest as compared to the classical FFT approach. (author)

  16. Estimation of environmental external costs between coal fired power plant and nuclear power plant

    International Nuclear Information System (INIS)

    Moon, G. H.; Kim, S. S.

    2000-01-01

    First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power pant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environment impact into monetary values. To do this, AIRPACTS and Impacts of Atmospheric Release model developed by IAEA were used. The environmental external cost of Samcheonpo coal power plant was estimated about 25 times as much as that of Younggwang nuclear power plant. This result implies that nuclear power plant is a clean technology compared with coal power plant. This study suggests that the external cost should be reflected in the electric system expansion plan in order to allocate energy resources efficiently and to reduce economic impact stemming from the environmental regulation emerged recently on a global level

  17. Organization patterns of PWR power plants

    International Nuclear Information System (INIS)

    Leicman, J.

    1980-01-01

    Organization patterns are shown for the St. Lucia 1, North Anna, Sequoyah, and Beaver Valley nuclear power plants, for a typical PWR power plant in the USA, for the Biblis/RWE-KWU nuclear power plants and for a four-unit nuclear power plant operated by Electricite de France as well as for the Loviisa power plant. Organization patterns are also shown for relatively independent and non-independent nuclear power plants according to IAEA recommendations. (J.P.)

  18. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  19. Research and design of distributed intelligence fault diagnosis system in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongkuo; Xie Chunli; Cheng Shouyu; Xia Hong

    2011-01-01

    In order to further reduce the misoperation after the faults occurring of nuclear power plant, according to the function distribution of nuclear power equipment and the distributed control features of digital instrument control system, a nuclear power plant distributed condition monitoring and fault diagnosis system was researched and designed. Based on decomposition-integrated diagnostic thinking, a fuzzy neural network and RBF neural network was presented to do the distributed local diagnosis and multi-source information fusion technology for the global integrated diagnosis. Simulation results show that the developed distributed status monitoring and fault diagnosis system can diagnose more typical accidents of PWR to provide effective diagnosis and operation information. (authors)

  20. A geographic information system for gas power plant location using analytical hierarchy process and fuzzy logic

    International Nuclear Information System (INIS)

    Alavipoor, F. S.; Karimi, S.; Balist, J.; Khakian, A. H.

    2016-01-01

    This research recommends a geographic information system-based and multi-criteria evaluation for locating a gas power plant in Natanz City in Iran. The multi-criteria decision framework offers a hierarchy model to select a suitable place for a gas power plant. This framework includes analytic hierarchy process, fuzzy set theory and weighted linear combination. The analytic hierarchy process was applied to compare the importance of criteria among hierarchy elements classified by environmental group criteria. In the next step, the fuzzy logic was used to regulate the criteria through various fuzzy membership functions and fuzzy layers were formed by using fuzzy operators in the Arc-GIS environment. Subsequently, they were categorized into 6 classes using reclassify function. Then weighted linear combination was applied to combine the research layers. Finally, the two approaches were analyzed to find the most suitable place to set up a gas power plant. According to the results, the utilization of GAMMA fuzzy operator was shown to be suitable for this site selection.

  1. The IEAGHG Power Plant Assessment Program (PPAP). Development and testing June 2002-October 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    The Power Plant Assessment Program (PPAP) is an Excel based program which allows alternative CO{sub 2} capture technologies for centralised power generation to be compared using multi-criteria analysis. This report outlines recent development work on the program and the results obtained from evaluating a range of novel capture processes with it.

  2. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  3. The Optimal Dispatch of a Power System Containing Virtual Power Plants under Fog and Haze Weather

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2016-01-01

    Full Text Available With the growing influence of fog and haze (F-H weather and the rapid development of distributed energy resources (DERs and smart grids, the concept of the virtual power plant (VPP employed in this study would help to solve the dispatch problem caused by multiple DERs connected to the power grid. The effects of F-H weather on photovoltaic output forecast, load forecast and power system dispatch are discussed according to real case data. The wavelet neural network (WNN model was employed to predict photovoltaic output and load, considering F-H weather, based on the idea of “similar days of F-H”. The multi-objective optimal dispatch model of a power system adopted in this paper contains several VPPs and conventional power plants, under F-H weather, and the mixed integer linear programming (MILP and the Yalmip toolbox of MATLAB were adopted to solve the dispatch model. The analysis of the results from a case study proves the validity and feasibility of the model and the algorithms.

  4. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized through- put maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  5. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized throughput maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  6. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  7. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  8. Small hydroelectric power plants

    International Nuclear Information System (INIS)

    Helgesen, Boerre

    2002-01-01

    Small hydroelectric power plants are power plants of 1 - 10 MW. For a supplier, this is an unnatural limit. A more natural limit involves compact engine design and simplified control system. The article discusses most of the engine and electrotechnical aspects in the development, construction and operation of such a plant

  9. The Kuroshio power plant

    CERN Document Server

    Chen, Falin

    2013-01-01

    By outlining a new design or the Kuroshio power plant, new approaches to turbine design, anchorage system planning, deep sea marine engineering and power plant operations and maintenance are explored and suggested. The impact on the local environment, particularly in the face of natural disasters, is also considered to provide a well rounded introduction to plan and build a 30MW pilot power plant. Following a literature review, the six chapters of this book propose a conceptual design by focusing on the plant's core technologies and establish the separate analysis logics for turbine design and

  10. Optimal sizing of a multi-source energy plant for power heat and cooling generation

    International Nuclear Information System (INIS)

    Barbieri, E.S.; Dai, Y.J.; Morini, M.; Pinelli, M.; Spina, P.R.; Sun, P.; Wang, R.Z.

    2014-01-01

    Multi-source systems for the fulfilment of electric, thermal and cooling demand of a building can be based on different technologies (e.g. solar photovoltaic, solar heating, cogeneration, heat pump, absorption chiller) which use renewable, partially renewable and fossil energy sources. Therefore, one of the main issues of these kinds of multi-source systems is to find the appropriate size of each technology. Moreover, building energy demands depend on the climate in which the building is located and on the characteristics of the building envelope, which also influence the optimal sizing. This paper presents an analysis of the effect of different climatic scenarios on the multi-source energy plant sizing. For this purpose a model has been developed and has been implemented in the Matlab ® environment. The model takes into consideration the load profiles for electricity, heating and cooling for a whole year. The performance of the energy systems are modelled through a systemic approach. The optimal sizing of the different technologies composing the multi-source energy plant is investigated by using a genetic algorithm, with the goal of minimizing the primary energy consumption only, since the cost of technologies and, in particular, the actual tariff and incentive scenarios depend on the specific country. Moreover economic considerations may lead to inadequate solutions in terms of primary energy consumption. As a case study, the Sino-Italian Green Energy Laboratory of the Shanghai Jiao Tong University has been hypothetically located in five cities in different climatic zones. The load profiles are calculated by means of a TRNSYS ® model. Results show that the optimal load allocation and component sizing are strictly related to climatic data (e.g. external air temperature and solar radiation)

  11. Study on key technologies of optimization of big data for thermal power plant performance

    Science.gov (United States)

    Mao, Mingyang; Xiao, Hong

    2018-06-01

    Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.

  12. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  13. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  14. Range based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-08-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in Wireless Mesh Networks (WMNs). In this paper, researchers present a range based dynamic power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified...

  15. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  16. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    International Nuclear Information System (INIS)

    Lee, Jin Woo

    2016-01-01

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant

  17. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo [KEPCo, Gimcheon (Korea, Republic of)

    2016-05-15

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant.

  18. Impact of fuel cell power plants on multi-objective optimal operation management of distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, T. [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Zeinoddini-Meymand, H. [Islamic Azad University, Kerman Branch, Kerman (Iran, Islamic Republic of)

    2012-06-15

    This paper presents an interactive fuzzy satisfying method based on hybrid modified honey bee mating optimization and differential evolution (MHBMO-DE) to solve the multi-objective optimal operation management (MOOM) problem, which can be affected by fuel cell power plants (FCPPs). The objective functions are to minimize total electrical energy losses, total electrical energy cost, total pollutant emission produced by sources, and deviation of bus voltages. A new interactive fuzzy satisfying method is presented to solve the multi-objective problem by assuming that the decision-maker (DM) has fuzzy goals for each of the objective functions. Through the interaction with the DM, the fuzzy goals of the DM are quantified by eliciting the corresponding membership functions. Then, by considering the current solution, the DM acts on this solution by updating the reference membership values until the satisfying solution for the DM can be obtained. The MOOM problem is modeled as a mixed integer nonlinear programming problem. Evolutionary methods are used to solve this problem because of their independence from type of the objective function and constraints. Recently researchers have presented a new evolutionary method called honey bee mating optimization (HBMO) algorithm. Original HBMO often converges to local optima, in order to overcome this shortcoming, we propose a new method that improves the mating process and also, combines the modified HBMO with DE algorithm. Numerical results for a distribution test system have been presented to illustrate the performance and applicability of the proposed method. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  20. Offshore atomic power plants

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Various merits of offshore atomic power plants are illustrated, and their systems are assessed. The planning of the offshore atomic power plants in USA is reviewed, and the construction costs of the offshore plant in Japan were estimated. Air pollution problem may be solved by the offshore atomic power plants remarkably. Deep water at low temperature may be advantageously used as cooling water for condensers. Marine resources may be bred by building artificial habitats and by providing spring-up equipments. In the case of floating plants, the plant design can be standardized so that the construction costs may be reduced. The offshore plants can be classified into three systems, namely artificial island system, floating system and sea bottom-based system. The island system may be realized with the present level of civil engineering, but requires the development of technology for the resistance of base against earthquake and its calculation means. The floating system may be constructed with conventional power plant engineering and shipbuilding engineering, but the aseismatic stability of breakwater may be a problem to be solved. Deep water floating system and deep water submerging system are conceivable, but its realization may be difficult. The sea bottom-based system with large caissons can be realized by the present civil engineering, but the construction of the caissons, stability against earthquake and resistance to waves may be problems to be solved. The technical prediction and assessment of new plant sites for nuclear power plants have been reported by Science and Technology Agency in 1974. The construction costs of an offshore plant has been estimated by the Ministry of International Trade and Industry to be yen71,026/kW as of 1985. (Iwakiri, K.)

  1. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  2. Hybrid combined cycle power plant

    International Nuclear Information System (INIS)

    Veszely, K.

    2002-01-01

    In case of re-powering the existing pressurised water nuclear power plants by the proposed HCCPP solution, we can increase the electricity output and efficiency significantly. If we convert a traditional nuclear power plant unit to a HCCPP solution, we can achieve a 3.2-5.5 times increase in electricity output and the achievable gross efficiency falls between 46.8-52% and above, depending on the applied solution. These figures emphasise that we should rethink our power plant technologies and we have to explore a great variety of HCCPP solutions. This may give a new direction in the development of nuclear reactors and power plants as well.(author)

  3. Open Source Power Plant Simulator Development Under Matlab Environment

    International Nuclear Information System (INIS)

    Ratemi, W.M.; Fadilah, S.M.; Abonoor, N

    2008-01-01

    In this paper an open source programming approach is targeted for the development of power plant simulator under Matlab environment. With this approach many individuals can contribute to the development of the simulator by developing different orders of complexities of the power plant components. Such modules can be modeled based on physical principles, or using neural networks or other methods. All of these modules are categorized in Matlab library, of which the user can select and build up his simulator. Many international companies developed its own authoring tool for the development of its simulators, and hence it became its own property available for high costs. Matlab is a general software developed by mathworks that can be used with its toolkits as the authoring tool for the development of components by different individuals, and through the appropriate coordination, different plant simulators, nuclear, traditional , or even research reactors can be computerly assembled. In this paper, power plant components such as a pressurizer, a reactor, a steam generator, a turbine, a condenser, a feedwater heater, a valve, a pump are modeled based on physical principles. Also a prototype modeling of a reactor ( a scram case) based on neural networks is developed. These modules are inserted in two different Matlab libraries one called physical and the other is called neural. Furthermore, during the simulation one can pause and shuffle the modules selected from the two libraries and then proceed the simulation. Also, under the Matlab environment a PID controller is developed for multi-loop plant which can be integrated for the control of the appropriate developed simulator. This paper is an attempt to base the open source approach for the development of power plant simulators or even research reactor simulators. It then requires the coordination among interested individuals or institutions to set it to professionalism. (author)

  4. A Site Selection Model for a Straw-Based Power Generation Plant with CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Hao Lv

    2014-10-01

    Full Text Available The decision on the location of a straw-based power generation plant has a great influence on the plant’s operation and performance. This study explores traditional theories for site selection. Using integer programming, the study optimizes the economic and carbon emission outcomes of straw-based power generation as two objectives, with the supply and demand of straw as constraints. It provides a multi-objective mixed-integer programming model to solve the site selection problem for a straw-based power generation plant. It then provides a case study to demonstrate the application of the model in the decision on the site selection for a straw-based power generation plant with a Chinese region. Finally, the paper discusses the result of the model in the context of the wider aspect of straw-based power generation.

  5. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  6. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  7. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  8. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  9. Problems of power plant capital demands

    International Nuclear Information System (INIS)

    Slechta, V.; Bohal, L.

    1986-01-01

    The problems are discussed of requirements for investment for power plants in Czechoslovakia. Since the construction was finished of coal-burning 110 MW power plants with six power units, specific capital cost has steadily been growing. The growth amounts to 6 to 8% per year while the principle has been observed that specific capital cost decreases with increased unit power. Attention is paid to the cost of the subcontractors of the building and technological parts of a power plant and to the development of productivity of labour. A comparison is tabulated of cost for coal-burning power plants with 100 MW and 200 MW units and for nuclear power plants with WWER-440 reactors. Steps are suggested leading to a reduction of the capital cost of nuclear power plants. It is stated that should not these steps be taken, the envisaged development of nuclear power would be unbearable for the Czechoslovak national economy. (Z.M.). 8 tabs., 3 refs

  10. Co-combustion of gasified contaminated waste wood in a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project demonstrates the technical and economical feasibility of the producing and cofiring of product gas from demolition waste wood. For this purpose LCV product gas is generated in an atmospheric circulating fluidized bed (CFB) gasification plant, cooled and cleaned and transported to the boiler of a 600 MWe pulverized coal fired power plant. Gas cooling and cleaning takes place in a waste heat boiler and a multi stage wet gas cleaning train. Steam raised in the waste heat boiler is exported to the power plant. On an annual basis 70,000 tons of steam coal are substituted by 150,000 tons of contaminated demolition waste wood (50,000 tons oil equivalent), resulting in a net CO2 emission reduction of 170,000 tons per year, while concurrently generating 205 GWh of electrical power. The wood gasification plant was built by NV EPZ (now incorporated in Essent Energi BV) for Amergas BV, now a 100% subsidiary of Essent Energie BV. The gasification plant is located at the Amer Power Station of NV EPZ Production (now Essent Generation) at Geertruidenberg, The Netherlands. Demonstrating several important design features in wood gasification, the plant started hot service in the Spring of 2000, with first gasification accomplished in the Summer of 2000 and is currently being optimized. (au)

  11. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  12. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  13. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  14. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  15. Coordinated control of wind power plants in offshore HVDC grids

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.

    2017-01-01

    power between different countries, and different synchronous areas. It is very likely that they will then be combined with offshore wind power plant (OWPP) connections in the North Sea, transforming it in a multi terminal DC (MTDC) grid and, therefore, in a fully meshed offshore DC grid in near future......During the recent years, there has been a significant penetration of offshore wind power into the power system and this trend is expected to continue in the future. The North Sea in Europe has higher potential for offshore wind power; therefore, the North Seas Countries' Offshore Grid initiative....... However, increased penetration of offshore wind power into the power system poses several challenges to its security. This thesis deals with two main research challenges, (1) Develop, and analyze the coordinated control strategies for AC voltage and reactive power control in the cluster of OWPPs connected...

  16. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  17. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  18. Control room conceptual design of nuclear power plant with multiple modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Jia Qianqian; Qu Ronghong; Zhang Liangju

    2014-01-01

    A conceptual design of the control room layout for the nuclear power plant with multiple modular high temperature gas-cooled reactors has been developed. The modular high temperature gas-cooled reactors may need to be grouped to produce as much energy as a utility demands to realize the economic efficiency. There are many differences between the multi-modular plant and the current NPPs in the control room. These differences may include the staffing level, the human-machine interface design, the operation mode, etc. The potential challenges of the human factor engineering (HFE) in the control room of the multi-modular plant are analyzed, including the operation workload of the multi-modular tasks, how to help the crew to keep situation awareness of all modules, and how to support team work, the control of shared system between modules, etc. A concept design of control room for the multi-modular plant is presented based on the design aspect of HTR-PM (High temperature gas-cooled reactor pebble bed module). HFE issues are considered in the conceptual design of control room for the multi-modular plant and some design strategies are presented. As a novel conceptual design, verifications and validations are needed, and focus of further work is sketch out. (author)

  19. The end of cheap electric power from nuclear power plants. 2. ed.

    International Nuclear Information System (INIS)

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  20. Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power

    Directory of Open Access Journals (Sweden)

    Fang-Fang Li

    2015-07-01

    Full Text Available To maximize annual power generation and to improve firm power are important but competing goals for hydropower stations. The firm power output is decisive for the installed capacity in design, and represents the reliability of the power generation when the power plant is put into operation. To improve the firm power, the whole generation process needs to be as stable as possible, while the maximization of power generation requires a rapid rise of the water level at the beginning of the storage period. Taking the minimal power output as the firm power, both the total amount and the reliability of the hydropower generation are considered simultaneously in this study. A multi-objective model to improve the comprehensive benefits of hydropower stations are established, which is optimized by Non-dominated Sorting Genetic Algorithm-II (NSGA-II. The Three Gorges Cascade Hydropower System (TGCHS is taken as the study case, and the Pareto Fronts in different search spaces are obtained. The results not only prove the effectiveness of the proposed method, but also provide operational references for the TGCHS, indicating that there is room of improvement for both the annual power generation and the firm power.

  1. Financing of nuclear power plant using resources of power generation

    International Nuclear Information System (INIS)

    Slechta, V.; Milackova, H.

    1987-01-01

    It is proved that during the lifetime of a power plant, financial resources are produced from depreciation and from the profit for the delivered electrical power in an amount allowing to meet the cost of construction, interests of credits, the corporation taxes, and the means usable by the utility for simple reproduction of the power plant, additional investment, or for the ultimate decommissioning of the nuclear power plant. The considerations are simplified to 1 MW of installed capacity of a WWER-440 nuclear power plant. The breakdown is shown of the profit and the depreciation over the power plant lifetime, the resources of regular payments of credit instalments for the construction and the method of its calculation, and the income for the state budget and for the utility during the plant liofetime. (J.B.). 5 tabs., 5 refs

  2. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  3. Wind Plant Power Optimization and Control under Uncertainty

    Science.gov (United States)

    Jha, Pankaj; Ulker, Demet; Hutchings, Kyle; Oxley, Gregory

    2017-11-01

    The development of optimized cooperative wind plant control involves the coordinated operation of individual turbines co-located within a wind plant to improve the overall power production. This is typically achieved by manipulating the trajectory and intensity of wake interactions between nearby turbines, thereby reducing wake losses. However, there are various types of uncertainties involved, such as turbulent inflow and microscale and turbine model input parameters. In a recent NREL-Envision collaboration, a controller that performs wake steering was designed and implemented for the Longyuan Rudong offshore wind plant in Jiangsu, China. The Rudong site contains 25 Envision EN136-4 MW turbines, of which a subset was selected for the field test campaign consisting of the front two rows for the northeasterly wind direction. In the first row, a turbine was selected as the reference turbine, providing comparison power data, while another was selected as the controlled turbine. This controlled turbine wakes three different turbines in the second row depending on the wind direction. A yaw misalignment strategy was designed using Envision's GWCFD, a multi-fidelity plant-scale CFD tool based on SOWFA with a generalized actuator disc (GAD) turbine model, which, in turn, was used to tune NREL's FLORIS model used for wake steering and yaw control optimization. The presentation will account for some associated uncertainties, such as those in atmospheric turbulence and wake profile.

  4. Multiple-state based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint...

  5. A Systematic Multi-Time Scale Solution for Regional Power Grid Operation

    Science.gov (United States)

    Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.

    2017-10-01

    Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.

  6. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  7. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  8. Multi-barrier containment for nuclear power plants

    International Nuclear Information System (INIS)

    Koehler, A.C.; Leppke, D.M.; Corcoran, R.W.

    1968-01-01

    The multi-barrier containment concept and the basic structural design citeria for its adaptation to PWR systems are described. Some of the significant factors that led to the acceptance of the concept are also discussed

  9. Hybrid wind-power-distillation plant

    Directory of Open Access Journals (Sweden)

    Ninić Neven

    2012-01-01

    Full Text Available This paper reports and elaborates on the idea of a solar distiller and an offshore wind power plant operating together. The subject under discussion is a single-stage solar distillation plant with vaporization, using adiabatic expansion in the gravitational field inside a wind power plant supporting column. This scheme divides investment costs for electric power and distillate production. In the region of the Adriatic Sea, all electric power produced could be “converted” to hydrogen using less than 10% of the distillate produced.

  10. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  11. Power plants 2009. Lectures

    International Nuclear Information System (INIS)

    2009-01-01

    Within the Annual Conference 2009 of the VGB PowerTech e.V. (Essen, Federal Republic of Germany) from 23rd to 25th May, 2009, in Lyon (France) the following lectures were held: (1) Electricity demand, consequences of the financial and economic crisis - Current overview 2020 for the EU-27 (Hans ten Berge); (2) Status and perspectives of the electricity generation mix in France (Bernard Dupraz); (3) European electricity grid - status and perspective (Dominique Maillard); (4) Technologies and acceptance in the European energy market (Gordon MacKerran); (5) EPR construction in Finland, China, France, (Claude Jaouen); (6) EPR Flamanville 3: A project on the path towards nuclear revival (Jacques Alary); (7) Worldwide nuclear Revival and acceptance (Luc Geraets); (8) An overview on the status of final disposal of radioactive wastes worldwide (Piet Zuidema); (9) Who needs pumped storage plants? PSP are partner to grid stability and renewable energies (Hans-Christoph Funke); (10) Sustainable use of water resources to generate electricity safely and efficiently (Patrick Tourasse); (11) The growth strategy of RWE Innogy - Role of RES in RWE strategy (Fritz Vahrenholt); (12) Solar technologies towards grid parity - key factors and timeframe (G. Gigliucci); (13) Overview on CCS technologies and results of Vattenfalls oxyfuel pilot plant (Philippe Paelinck); (14) Development perspectives of lignite-based IGCC-plants with CCS (Dietmar Keller); (15) Post combustion capture plants - concept and plant integration (Wolfgang Schreier); (16) CCS fossil power generation in a carbon constraint world (Daniel Hofmann); (17) CEZ group strategy in Central and South Eastern Europe (Jan Zizka); (18) Strategy and projects of DONG Energy (Jens Erik Pedersen); (19) E.ON coal-based power generation of the future - The highly efficient power plant and downstream separation of carbon dioxide (Gerhard Seibel); (20) Final sage of first supercritical 460 MW e l. CFB Boiler construction - firs

  12. Chemistry in power plants 2011

    International Nuclear Information System (INIS)

    2011-01-01

    Within the VGB Powertech conference from 25th to 27th October, 2011, in Munich (Federal Republic of Germany), the following lectures and poster contributions were presented: (1) The revised VGB standard for water-steam-cycle Chemistry; (2) Switchover from neutral operation to oxygen treatment at the power station Stuttgart-Muenster of EnBW Kraftwerke AG; (3) Steam contamination with degradation products of organic matters present in the feedwater of the Lanxess-Rubber cogeneration plant; (4) Laboratory scale on-line noble metal deposition experiments simulating BWR plant conditions; (5) Building a new demin installation for the power plant EPZ in Borssele; (6) Replacement of the cooling tower installations in the nuclear power plant Goesgen-Daenien AG; (7) Aging of IEX resins in demin plants - Cost optimisation by adaptation of regenerants; (8) The largest DOW trademark EDI System at a combined cycled plant in Europe; (9) Upgrading river Main water to boiler feed water - Experiences with ultrafiltration; (10) Experiences with treatment of the water-steam-cycle in the RDF power plant Nehlsen Stavenhagen with film-forming amines; (11) Comparative modelling of the bubbles thermal collapse and cavitations for estimation of bubbles collapse influence; (12) Overcoming the steam quality - issues from an HRSG for the production of process steam; (13) Legionella - new requirements for power plant operation; (14) How the right chemistry in the FGD helps to improve the removal in the waste water treatment plant; (15) High efficiency filtration in dry/semi-dry FGD plants; (16) Expanding the variety of renewable fuels in the biomass power plant Timelkam using the chemical input control; (17) Corrosion, operating experiences and process improvements to increase the availability and operating time of the biomass power plant Timelkam; (18) The influence of temperature on the measurement of the conductivity of highly diluted solutions; (19) A multiparameter instrumentation approach

  13. A comparison of steady-state ARIES and pulsed PULSAR tokamak power plants

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1994-01-01

    The multi-institutional ARIES study has completed a series of three steady-state and two pulsed cost-optimized conceptual designs of commercial tokamak fusion power plants that vary the level of assumed advances in technology and physics. The cost benefits of various design options are compared quantitatively. Possible means to improve the economic competitiveness of fusion are suggested

  14. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  15. Small-scale power plant potential in Finland

    International Nuclear Information System (INIS)

    Helynen, S.

    1993-01-01

    The presentation discusses the small-scale power plant potential in Finland. The study of the potential is limited to W-scale power plants producing both electric power and heat using solid fuels. The basic power plant dimensioning and electric power load determination is based on traditional boiler and gas turbine technology. The possible sites for power plants are communities using district heating, and industrialized sites needing process steam or heat. In 1990 70 % (17 TWh) of district heat was produced by gas turbines. Ten communities have an own back-pressure power plant, and 40 communities buy heat from industrial plants, owing back-pressure power generation. Additionally about 40 communes buy district heat from companies, owned by power companies and industry. Estimates of small-scale power plant potential has been made plant wise on the basis of district heat loads and industrial heat needs. The scale of the plants has been limited to scale 3 MWe or more. The choosing of the fuel depends on the local conditions. The cheapest indigenous fuels in many communes are industrial wood wastes, and both milled and sod peat. The potential of steam technology based small-scale power plants has been estimated to be about 50 plants in 1992/1993, the total power of which is 220-260 MW. The largest estimate is base situation, in which there would be energy cooperation between the communes and industry. The fuel used by the power plants would be about 5.4-6.6 TWh/a corresponding to 270-330 million FIM/a. The total investment costs of the plants would be about 2.0 billion FIM. The plants would employ about 250 persons, and the fuel supply (wood or peat) about 100 persons

  16. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  17. Guiding rules for development of intelligent monitoring system of nuclear power plants

    International Nuclear Information System (INIS)

    Kitamura, M.; Furukawa, H.; Kozma, R.; Washio, T.

    1996-01-01

    General frameworks and major component techniques for intelligent monitoring of nuclear power plants are presented. The key concept, diversity-based design, is to provide advisory information through consensus of multiple agents, each performing operational decision-making by focusing on mutually different information obtained from the plant. The multi-agent design scheme allows to attain high credibility and tolerance against sensor failure in fault detection and causal reasoning. The advantage of the proposed scheme realized by multiple neural networks was clearly demonstrated through numerical experiments with anomalies in a pressurized water reactor. Relevant techniques are also introduced for diagnostic information evaluation in specified symptoms, and for remedial procedure synthesis. A new architecture for future implementation of the proposed scheme, worm-type multi-agent system, is also proposed as a promising candidate. (author)

  18. Power control of the Angra-2 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Souza Mendes, J.E. de

    1986-01-01

    The systems for the power control of the Nuclear Power Plant Angra 2 have a high degree of automation so that few operator actions are required during power operation. The power control strategy and the operation principles of the control systems, here presented, make possible a great flexibility of the Plant operation. (Author) [pt

  19. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  20. Utility survey on nuclear power plant siting and nuclear energy centers

    International Nuclear Information System (INIS)

    Cope, D.F.; Bauman, H.F.

    1977-01-01

    Most of the large U.S. utilities were surveyed by telephone and mail on questions concerning nuclear power plant siting and nuclear energy centers (NECs). The main purpose of the survey was for guidance of ERDA's NEC program. The questions covered the following topics: availability of sites; impact of environmental and other restraints; plans for development of multi-unit sites; interest in NEC development; interest in including fuel-cycle facilities in NECs; and opinions on the roles desired for the state and Federal governments in power plant siting. The main conclusion of the survey was that, while many utilities were considering multiple-unit sites of 2 to 5 units, none were planning larger energy centers at the present time. However, several expressed interest in NECs as a long-range future development

  1. Development of non-destructive diagnosis technology for pipe internal in thermal power plants based on robotics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungho; Kim, Changhoi; Seo, Yongchil; Lee, Sunguk; Jung, Seungho; Jung, Seyoung

    2011-11-15

    The Pipelines of power plants may have tiny crack by corrosion. Pipe safety inspection should be performed periodically and non-periodically to ensure their safety and integrity. It is difficult to inspection pipes inside defect since pipes of power plant is covered thermal insulation material. Normally pipes inspection was performed part of pipes on outside. A mobile robot was developed for the inspection of pipe of 100 mm inside diameter. The robot is adopted screw type drive mechanism in order to move vertical, horizontal pipes inside. The multi-laser and camera module, which is mounted in front of the robot, captures a sequence of 360 degree shapes of the inner surface of a pipe. The 3D inner shape of pipe is reconstructed from a multi laser triangulation techniques for the inspection of pipes.

  2. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  3. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  4. Cooling towers of nuclear power plants

    International Nuclear Information System (INIS)

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  5. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  6. Nuclear power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, K [Ceskoslovenska Komise pro Atomovou Energii, Prague

    1978-05-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO/sub 2/, NO/sub 2/, ash and soot emissions with /sup 133/Xe and /sup 85/Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts.

  7. Nuclear power plants and the environment

    International Nuclear Information System (INIS)

    Barabas, K.

    1978-01-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO 2 , NO 2 , ash and soot emmisions with 133 Xe and 85 Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts. (O.K.)

  8. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  9. Remote-automation of nuclear power plant equipment inspection and maintenance

    International Nuclear Information System (INIS)

    Sasaki, Masayoshi; Kawamura, Hironobu; Nakano, Yoshiyuki; Izumi, Shigeru.

    1984-01-01

    The remotely operated automation of the checkup and maintenance of nuclear power generation facilities has largely contributed to the rise of capacity ratio of plants due to the shortening of regular inspection period and to the reduction of radiation exposure dose during working, the labor saving in working and so on. In this paper, the new technologies adopted in an automatic fuel exchanger, a remotely operated automatic CRD exchanger, a new type channel handling machine, pressure-withstanding main steam line plugs and so on for No.2 plant in the Fukushima No.2 Nuclear Power Station, Tokyo Electric Power Co., Inc., are reported. Besides, the state of development of new remotely operated automatic machines for nuclear power use, such as CRD disassembling and cleaning device, volume reduction equipment for spent fuel channel boxes and control rods, multi-functional robots for use under high radiation and so on is described. Also the trend of development of latest robot technology which will be put in practical use in near future is outlined, such as a running manipulator for checkup and inspection, a variable form crawler vehicle and a five-leg movable manipulator. (Kako, I.)

  10. Mitigation of severe accidents in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Soederman, E.

    1987-01-01

    Sweden is the first country to build filtered venting systems, the first one became operable at Barsebaeck nuclear power plant in 1985. In new concepts, now being installed in Sweden, an enhanced containment spray system is the basic element and the filtered venting is only the secondary mitigating system. The filter is a new design, a submerged multi venturi scrubber. The Swedish strategy has been built on three basics: improved knowledge through research; containment integrity through mitigating systems; and accident management to prevent severe accidents. 2 figs

  11. Operating experience feedback on lose of offsite power supply for nuclear power plant

    International Nuclear Information System (INIS)

    Jiao Feng; Hou Qinmai; Che Shuwei

    2013-01-01

    The function of the service power system of a nuclear power plant is to provide safe and reliable power supply for the nuclear power plant facilities. The safety of nuclear power plant power supply is essential for nuclear safety. The serious accident of Fukushima Daiichi nuclear power plant occurred due to loss of service power and the ultimate heat sink. The service power system has two independent offsite power supplies as working power and auxiliary power. This article collected events of loss of offsite power supply in operating nuclear power plants at home and abroad, and analyzed the plant status and cause of loss of offsite power supply events, and proposed improvement measures for dealing with loss of offsite power supply. (authors)

  12. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  13. Report on countermeasure to plant life management of the nuclear power plants at three electric power companies

    International Nuclear Information System (INIS)

    1999-01-01

    Three nuclear power reactors of the Fukushima-1 nuclear power plant, the Mihama-1 power plant and the Tsuruga-1 power plant were investigated according to the estimation plan shown in the Fundamental Concept on Plant Life Management of Agency of Natural Resources and Energy, Ministry of International Trade and Industry on April, 1996. Their reports contained the technical evaluation against, the responsive items to and the future examinations of the plant life management. In special, in the responsive items, some items to be added to the present maintenance process and some technical developmental problems are described in details and concretely. (G.K.)

  14. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  15. Automation technology in power plants

    International Nuclear Information System (INIS)

    Essen, E.R.

    1995-01-01

    In this article a summery of the current architecture of modern process control systems in power plants and future trends have been explained. The further development of process control systems for power plants is influenced both by the developments in component and software technologies as well as the increased requirements of the power plants. The convenient and low cost configuration facilities of new process control systems have now reached a significance which makes it easy for customers to decide to purchase. (A.B.)

  16. Virtual Power Plant and Microgrids controller for Energy Management based on optimization techniques

    Directory of Open Access Journals (Sweden)

    Maher G. M. Abdolrasol

    2017-06-01

    Full Text Available This paper discuss virtual power plant (VPP and Microgrid controller for energy management system (EMS based on optimization techniques by using two optimization techniques namely Backtracking search algorithm (BSA and particle swarm optimization algorithm (PSO. The research proposes use of multi Microgrid in the distribution networks to aggregate the power form distribution generation and form it into single Microgrid and let these Microgrid deal directly with the central organizer called virtual power plant. VPP duties are price forecast, demand forecast, weather forecast, production forecast, shedding loads, make intelligent decision and for aggregate & optimizes the data. This huge system has been tested and simulated by using Matlab simulink. These paper shows optimizations of two methods were really significant in the results. But BSA is better than PSO to search for better parameters which could make more power saving as in the results and the discussion.

  17. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  18. Power control strategy of a photovoltaic power plant for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Francois, Bruno [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Degobert, Philippe [Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Robyns, Benoit [Hautes Etudes d' Ingenieur, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP)

    2008-07-01

    Photovoltaic power plants operates currently maximal power point tracking (MPPT). For microgrid applications, however, a PV power plant can not operate in the MPPT mode in all conditions. When a microgrid is islanded from the grid with few loads, a limitation of the produced power by PV plants is required and prescribed by the Distribution System Operator. This paper proposes a power control technique integrated into a dynamic model of a PV power plant by using equivalent continuous models of power electronic converters. The power limitation mode of the PV is performed by applying the correct PV terminal voltage, which corresponds to the prescribed power reference. The proposed global model is validated by simulations with the help of Matlab-Simulink trademark. (orig.)

  19. A nuclear power plant status monitor

    International Nuclear Information System (INIS)

    Chu, B.B.; Conradi, L.L.; Weinzimmer, F.

    1986-01-01

    Power plant operation requires decisions that can affect both the availability of the plant and its compliance with operating guidelines. Taking equipment out of service may affect the ability of the plant to produce power at a certain power level and may also affect the status of the plant with regard to technical specifications. Keeping the plant at a high as possible production level and remaining in compliance with the limiting conditions for operation (LCOs) can dictate a variety of plant operation and maintenance actions and responses. Required actions and responses depend on the actual operational status of a nuclear plant and its attendant systems, trains, and components which is a dynamic situation. This paper discusses an Electric Power Research Institute (EPRI) Research Project, RP 2508, the objective of which is to combine the key features of plant information management systems with systems reliability analysis techniques in order to assist nuclear power plant personnel to perform their functions more efficiently and effectively. An overview of the EPRI Research Project is provided along with a detailed discussion of the design and operation of the PSM portion of the project

  20. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  1. Summary of nuclear power plant construction

    International Nuclear Information System (INIS)

    Tamura, Saburo

    1973-01-01

    Various conditions for the construction of nuclear power plants in Japan without natural resources were investigated. Expansion of the sites of plants, change of reactor vessels, standardization of nuclear power plants, possiblity of the reduction of construction period, approaching of nuclear power plants to consuming cities, and group construction were studied. Evaluation points were safety and economy. Previous sites of nuclear power plants were mostly on plane ground or cut and enlarge sites. Proposals for underground or offshore plants have been made. The underground plants were made at several places in Europe, and the ocean plant is now approved in U.S.A. as a plant on a man-made island. Vessels for containing nuclear reactors are the last barriers to the leakage of radioactive substance. At the initial period, the vessels were made of steel, which were surrounded by shielding material. Those were dry well type containers. Then, vessel type changed to pressure-suppression type wet containers. Now, it tends to concrete (PC or RC) type containers. There is the policy on the standardization of nuclear power plants by U.S.A.E.C. in recent remarkable activity. The merit and effect of the standardization were studied, and are presented in this paper. Cost of the construction of nuclear power plants is expensive, and interest of money is large. Then, the reduction of construction period is an important problem. The situations of plants approaching to consuming cities in various countries were studied. Idea of group construction is described. (Kato, T.)

  2. Nuclear power plant

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rineisky, A.A.

    1975-01-01

    The invention is aimed at designing a nuclear power plant with a heat transfer system which permits an accelerated fuel regeneration maintaining relatively high initial steam values and efficiency of the steam power circuit. In case of a plant with three circuits the secondary cooling circuit includes a steam generator with preheater, evaporator, steam superheater and intermediate steam superheater. At the heat supply side the latter is connected with its inlet to the outlet of the evaporator and with its outlet to the low-temperature side of the secondary circuit

  3. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  4. VGB Congress 'Power Plants 2006'

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The VGB Congress 'Power Plants' took place in Dresden, 27 th to 29 th September 2006 under the auspices of the Federal Minister for Economics and Technology, Michael Glos. The motto of this year's Congress was 'Future becomes Reality - Investments in New Power Plants'. More than 1,200 participants from Germany and abroad attended the plenary and technical lectures on the topics 'Market and Competition' as well as 'Technology, Operation and Environment' for information and discussion. Special papers were dealing with further issues like 'Generation Market in Europe', 'Clean Power Technology Platform', French policy for new power plants as well as potentials and technology of renewables. (orig.)

  5. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  6. Virtual power plant mid-term dispatch optimization

    International Nuclear Information System (INIS)

    Pandžić, Hrvoje; Kuzle, Igor; Capuder, Tomislav

    2013-01-01

    Highlights: ► Mid-term virtual power plant dispatching. ► Linear modeling. ► Mixed-integer linear programming applied to mid-term dispatch scheduling. ► Operation profit maximization combining bilateral contracts and the day-ahead market. -- Abstract: Wind power plants incur practically zero marginal costs during their operation. However, variable and uncertain nature of wind results in significant problems when trying to satisfy the contracted quantities of delivered electricity. For this reason, wind power plants and other non-dispatchable power sources are combined with dispatchable power sources forming a virtual power plant. This paper considers a weekly self-scheduling of a virtual power plant composed of intermittent renewable sources, storage system and a conventional power plant. On the one hand, the virtual power plant needs to fulfill its long-term bilateral contracts, while, on the other hand, it acts in the market trying to maximize its overall profit. The optimal dispatch problem is formulated as a mixed-integer linear programming model which maximizes the weekly virtual power plant profit subject to the long-term bilateral contracts and technical constraints. The self-scheduling procedure is based on stochastic programming. The uncertainty of the wind power and solar power generation is settled by using pumped hydro storage in order to provide flexible operation, as well as by having a conventional power plant as a backup. The efficiency of the proposed model is rendered through a realistic case study and analysis of the results is provided. Additionally, the impact of different storage capacities and turbine/pump capacities of pumped storage are analyzed.

  7. Nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  8. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  9. Applying machine learning techniques for forecasting flexibility of virtual power plants

    DEFF Research Database (Denmark)

    MacDougall, Pamela; Kosek, Anna Magdalena; Bindner, Henrik W.

    2016-01-01

    network as well as the multi-variant linear regression. It is found that it is possible to estimate the longevity of flexibility with machine learning. The linear regression algorithm is, on average, able to estimate the longevity with a 15% error. However, there was a significant improvement with the ANN...... approach to investigating the longevity of aggregated response of a virtual power plant using historic bidding and aggregated behaviour with machine learning techniques. The two supervised machine learning techniques investigated and compared in this paper are, multivariate linear regression and single...... algorithm achieving, on average, a 5.3% error. This is lowered 2.4% when learning for the same virtual power plant. With this information it would be possible to accurately offer residential VPP flexibility for market operations to safely avoid causing further imbalances and financial penalties....

  10. Physical and financial virtual power plants

    International Nuclear Information System (INIS)

    Willems, Bert

    2005-01-01

    Regulators in Belgium and the Netherlands use different mechanisms to mitigate generation market power. In Belgium, antitrust authorities oblige the incumbent to sell financial Virtual Power Plants, while in the Netherlands regulators have been discussing the use of physical Virtual Power Plants. This paper uses a numerical game theoretic model to simulate the behavior of the generation firms and to compare the effects of both systems on the market power of the generators. It shows that financial Virtual Power Plants are better for society. (Author)

  11. Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities.

    Science.gov (United States)

    Wu, Tingzhu; Lin, Yue; Zheng, Lili; Guo, Ziquan; Xu, Jianxing; Liang, Shijie; Liu, Zhuguagn; Lu, Yijun; Shih, Tien-Mo; Chen, Zhong

    2018-02-19

    An optimal design of light-emitting diode (LED) lighting that benefits both the photosynthesis performance for plants and the visional health for human eyes has drawn considerable attention. In the present study, we have developed a multi-color driving algorithm that serves as a liaison between desired spectral power distributions and pulse-width-modulation duty cycles. With the aid of this algorithm, our multi-color plant-growth light sources can optimize correlated-color temperature (CCT) and color rendering index (CRI) such that photosynthetic luminous efficacy of radiation (PLER) is maximized regardless of the number of LEDs and the type of photosynthetic action spectrum (PAS). In order to illustrate the accuracies of the proposed algorithm and the practicalities of our plant-growth light sources, we choose six color LEDs and German PAS for experiments. Finally, our study can help provide a useful guide to improve light qualities in plant factories, in which long-term co-inhabitance of plants and human beings is required.

  12. Training of power plant operating personnel

    International Nuclear Information System (INIS)

    Kraftwerksschule, E.V.

    1986-01-01

    In Germany, professional training of power plant operating personnel became an important issue in the fifties, when power plant parameters as well as complexity of instrumentation and control increased considerably. Working Groups of VGB Technische Vereiningung der Grosskraftwerketreiber e.v. (Association of Large Power Plant Operators) developed a professional career for power plant operating personnel and defined pre-requisites, scope and objectives of training. In 1957 the German utilities founded KRAFTWERKSSCHULE E.V. (kws) as a school for theoretical training and for guidance of practical training in the power plants. KWS is a non-profit organisation and independent of authorities. Today KWS has 127 members in Germany and in 6 other countries. The objectives of KWS include the training of: -Kraftwerker (control room operators; - Kraftwerksmesiter (shift supervisors); and - shift engineers; according the guidelines of the VGB

  13. Advanced digital technology - improving nuclear power plant performance through maintainability

    International Nuclear Information System (INIS)

    Ford, J.L.; Senechal, R.R.; Altenhein, G.D.; Harvey, R.P.

    1998-01-01

    In today's energy sector there is ever increasing pressure on utilities to operate power plants at high capacity factors. To ensure nuclear power is competitive into the next century, it is imperative that strategic design improvements be made to enhance the performance of nuclear power plants. There are a number of factors that affect a nuclear power plant's performance; lifetime maintenance is one of the major contributors. The maturing of digital technology has afforded ABB the opportunity to make significant design improvements in the area of maintainability. In keeping with ABB's evolutionary advanced nuclear plant design approach, digital technology has systematically been incorporated into the control and protection systems of the most recent Korean nuclear units in operation and under construction. One example of this was the multi-functional design team approach that was utilized for the development of ABB's Digital Plant Protection System (DPPS). The design team consisted of engineers, maintenance technicians, procurement specialists and manufacturing personnel in order to provide a complete perspective on all facets of the design. The governing design goals of increased reliability and safety, simplicity of design, use of off-the-shelf products and reduced need for periodic surveillance testing were met with the selection of proven ABB-Advant Programmable Logic Controllers (PLCs) as the heart of the DPPS. The application of digital PLC technology allows operation for extended periods without requiring routine maintenance or re-calibration. A well documented commercial dedication program approved by the United States Nuclear Regulatory Commission (US NRC) as part of the System 80+ TM Advanced Light Water Reactor Design Certification Program, allowed the use of off-the shelf products in the design of the safety protection system. In addition, a number of mechanical and electrical improvements were made which support maintainability. The result is a DPPS

  14. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Pack, R.W.

    1978-01-01

    The Electric Power Research Institute has started research in human factors in nuclear power plants. One project, completed in March 1977, reviewed human factors problems in operating power plants and produced a report evaluating those problems. A second project developed computer programs for evaluating operator performance on training simulators. A third project is developing and evaluating control-room design approaches. A fourth project is reviewing human factors problems associated with power-plant maintainability and instrumentation and control technician activities. Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The Electric Power Research Institute (EPRI) has undertaken four projects studying the application of human factors engineering principles to nuclear power plants. (author)

  15. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  16. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    Science.gov (United States)

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  17. TAPCHAN Wave Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    The Tapered Channel Wave Power Plant (TAPCHAN) is based on a new method for wave energy conversion. The principle of operation can be explained by dividing the system into the following four sub-systems: Firstly, a collector which is designed to concentrate the water energy and optimize collection efficiency for a range of frequencies and directions. Secondly, the energy converter, in which the energy of the collected waves is transformed into potential energy in an on-shore water reservoir. This is the unique part of the power plant. It consists of a gradually narrowing channel with wall heights equal to the filling level of the reservoir (typical heights 3-7 m). The waves enter the wide end of the channel and as they propagate down the narrowing channel, the wave height is amplified until the wavecrests spill over the walls. Thirdly, a reservoir which provides a stable water supply for the turbines. Finally, the hydroelectric power plant, where well established techniques are used for the generation of electric power. The water turbine driving the electric generator is of a low head type, such as a Kaplan or a tubular turbine. It must be designed for salt water operation and should have good regulation capabilities. Power plants based on the principle described, are now offered on a commercial basis.

  18. Plant life management and maintenance technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Ikegami, Tsukasa; Aoki, Masataka; Shimura, Takao; Kaimori, Kimihiro; Koike, Masahiro

    2001-01-01

    Nuclear power generation occupying an important position for energy source in Japan and supplying about one third of total electric power usage is now required for further upgrading of its economics under regulation relaxation of electric power business. And, under execution retardation of its new planning plant, it becomes important to operate the already established plants for longer term and to secure their stability. Therefore, technical development in response to the plant life elongation is promoted under cooperation of the Ministry of Economics and Industries, electric power companies, literate, and plant manufacturers. Under such conditions, the Hitachi, Ltd. has progressed some technical developments on check inspection, repairs and maintenance for succession of the already established nuclear power plants for longer term under securing of their safety and reliability. And in future, by proposing the check inspection and maintenance program combined with these technologies, it is planned to exert promotion of maintenance program with minimum total cost from a viewpoint of its plant life. Here were described on technologies exerted in the Hitachi, Ltd. such as construction of plant maintenance program in response to plant life elongation agreeing with actual condition of each plant, yearly change mechanism grasping, life evaluation on instruments and materials necessary for maintenance, adequate check inspection, repairs and exchange, and so forth. (G.K.)

  19. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kling, A

    1977-01-13

    The wind power plant described has at least one rotor which is coupled to an electricity generator. The systems are fixed to a suspended body so that it is possible to set up the wind power plant at greater height where one can expect stronger and more uniform winds. The anchoring on the ground or on a floating body is done by mooring cables which can simultaneously have the function of an electric cable. The whole system can be steered by fins. The rotor system itself consists of at least one pair of contrarotating, momentum balanced rotors.

  20. Application of genetic algorithm for reliability allocation in nuclear power plants

    International Nuclear Information System (INIS)

    Yang, Joon-Eon; Hwang, Mee-Jung; Sung, Tae-Yong; Jin, Youngho

    1999-01-01

    Reliability allocation is an optimization process of minimizing the total plant costs subject to the overall plant safety goal constraints. Reliability allocation was applied to determine the reliability characteristics of reactor systems, subsystems, major components and plant procedures that are consistent with a set of top-level performance goals; the core melt frequency, acute fatalities and latent fatalities. Reliability allocation can be performed to improve the design, operation and safety of new and/or existing nuclear power plants. Reliability allocation is a kind of a difficult multi-objective optimization problem as well as a global optimization problem. The genetic algorithm, known as one of the most powerful tools for most optimization problems, is applied to the reliability allocation problem of a typical pressurized water reactor in this article. One of the main problems of reliability allocation is defining realistic objective functions. Hence, in order to optimize the reliability of the system, the cost for improving and/or degrading the reliability of the system should be included in the reliability allocation process. We used techniques derived from the value impact analysis to define the realistic objective function in this article

  1. Regulatory challenges related to the licensing of a new nuclear power plant

    International Nuclear Information System (INIS)

    Maris, M.

    2010-01-01

    Assuring the safety and security of nuclear power plants is recognized world-wide as a challenge for all stakeholders. Particular attention goes to plants planned to be built in countries with not sufficiently developed industrial and regulatory infrastructure and experience. A construction and commissioning project, which is usually an international undertaking, gives opportunities to all national stakeholders to develop further their organisations and competences. In the present paper the duties of a regulatory body are recalled as well as the human resources and competences needed for the licensing of a new nuclear power plant. The regulatory body and its technical safety organization(s) should be strengthened and the international cooperation should contribute to this in a systematic and coordinated way. In particular, the donor country should support the necessary development of the regulatory competences and of an effective safety assessment process supporting the national licensing process. Appropriate support can be provided by the International Atomic Energy Agency (IAEA) and through other bi-lateral or multi-lateral programmes

  2. Reliability of emergency ac power systems at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project

  3. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  4. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  5. Risks in the operation of hydroelectric power plants and nuclear power in Brazil

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1986-01-01

    A comparison between the utilization of electrical energy generated by hydroelectric power plant and nuclear power plant is made. The risks from nuclear installations and the environmental effects of hydroelectric power plants and nuclear power plants are presented. (E.G.) [pt

  6. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile

    International Nuclear Information System (INIS)

    Cardemil, José Miguel; Cortés, Felipe; Díaz, Andrés; Escobar, Rodrigo

    2016-01-01

    Highlights: • Thermodynamic evaluation of geothermal-solar hybrid systems. • A multi-parameter analysis for different cycle configurations. • Performance comparison between two operation modes. • Overview of the technical applicability of the hybridization. - Abstract: A thermodynamic model was developed using Engineering Equation Solver (EES) to evaluate the performance of single and double-flash geothermal power plants assisted by a parabolic trough solar concentrating collector field, considering four different geothermal reservoir conditions. The benefits of delivering solar thermal energy for either the superheating or evaporating processes were analyzed in order to achieve the maximum 2"n"d law efficiency for the hybrid schemes and reduce the geothermal resource consumption for a constant power production. The results of the hybrid single-flash demonstrate that the superheating process generates additional 0.23 kWe/kWth, while supplying solar heat to evaporate the geothermal brine only delivers 0.16 kWe/kWth. The double-flash hybrid plant simulation results allow obtaining 0.29 kWe/kWth and 0.17 kW/kWth by integrating solar energy at the superheater and evaporator, respectively. In this context, the hybrid single-flash power plant is able to produce at least 20% additional power output, depending on the characteristics of the geothermal resource. Moreover, all of the cases analyzed herein increased the exergy efficiency of the process by at least 3%. The developed model also allowed assessing the reduction on the consumption of the geothermal fluid from the reservoir when the plant power output stays constant, up to 16% for the hybrid single-flash, and 19% for the hybrid double-flash. Based on the results obtained in this study, the solar-geothermal hybrid scheme increases the power generation compared with geothermal-only power plants, being an attractive solution for improved management of the geothermal reservoir depletion rates. The study shows

  7. Nuclear power plant operating experience, 1976

    International Nuclear Information System (INIS)

    1977-11-01

    This report is the third in a series of reports issued annually that summarize the operating experience of U.S. nuclear power plants in commercial operation. Power generation statistics, plant outages, reportable occurrences, fuel element performance, occupational radiation exposure and radioactive effluents for each plant are presented. Summary highlights of these areas are discussed. The report includes 1976 data from 55 plants--23 boiling water reactor plants and 32 pressurized water reactor plants

  8. The operation of nuclear power plants

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The duties to be performed in managing the operation of a nuclear power plant are highly diverse, as will be explained in this contribution by the examples of the Grafenrheinfeld Nuclear Power Station. The excellent safety record and the high availabilities of German nuclear power plants demonstrate that their operators have adopted the right approaches. Systematic evaluation of the operating experience accumulated inhouse and in other plants is of great significance in removing weak spots and improving operation. The manifold and complex activities in the structure of organization and of activities in a nuclear power plant require a high degree of division of labor. (orig.) [de

  9. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  10. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph method

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Seong, Poong Hyun

    2004-01-01

    In this study, The Fuzzy Signed Digraph method which has been researched and applied to the chemical process is improved and applied to the fault diagnosis of the pressurizer in nuclear power plants. The Fuzzy Signed-Digraph (FSD) is the method which applies the fuzzy number to the Signed-Digraph (SDG) method. The current SDG methods have many merits as follows: (1) SDG method can directly use the value of sensors not the alarm to the fault diagnosis. (2) This method can diagnose the fault independent on the pattern. (3) This method can diagnose the faults fastly because the method uses the cause-effect relation instead of the complex control equation among the variables. But, they are not proper to be applied to the diagnosis of the multi-faults and to diagnose faults on real time. It is because the unmeasured nodes in those methods must be connected to each other in order to find out the single fault under the single-fault assumption. These methods need long CPU time and cannot be applied to the multi-faults diagnosis. We propose a method in which the values of the unmeasured nodes are calculated from the relations between the unmeasured nodes and the measured nodes. By using this method, the CPU time for diagnosis can be reduced. This CPU time reduction makes the real-time diagnosis possible. This method can also be applied for the multi-faults diagnosis. This method is applied to the diagnosis of the pressurizer of the nuclear power plant KORI-2 in Korea. (author)

  11. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S A; Grunsrud, G P [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1999-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  12. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Grunsrud, G.P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1998-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  13. Power plant asset market evaluations: Forecasting the costs of power production

    International Nuclear Information System (INIS)

    Lefton, S.A.; Grunsrud, G.P.

    1998-01-01

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs

  14. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  15. Nuclear power and heating plants in the electric power system. Part I

    International Nuclear Information System (INIS)

    Kalincik, L.

    1975-01-01

    Procedures used and results obtained in the following works are described: Incorporation of the nuclear power plants in the power system in the long term perspective; physical limitations on the WWER 440 reactor power changes during fuel campaigns; evaluation of the consumption and start-up characteristics of WWER type nuclear power plants (2x440 MWe); evaluation of refuelling campaigns distribution of nuclear power plant units with regard to comprehensive control properties of nuclear power plants; the possibilities are investigated of the utilization of the WWER type reactor for heat supply in Czechoslovakia. (author)

  16. Optimized production planning model for a multi-plant cultivation system under uncertainty

    Science.gov (United States)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  17. Reliability of the emergency AC power system at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.; Baranowsky, P.W.

    1983-01-01

    The reliability of the emergency ac power systems typical of most nuclear power plants was estimated, and the cost and increase in reliability for several improvements were estimated. Fault trees were constructed based on a detailed design review of the emergency ac power systems of 18 nuclear plants. The failure probabilities used in the fault trees were calculated from extensive historical data collected from Licensee Event Reports (LERs) and from operating experience information obtained from nuclear plant licensees. No one or two improvements can be made at all plants to significantly increase the industry-average emergency ac power system reliability; rather the most beneficial improvements are varied and plant specific. Improvements in reliability and the associated costs are estimated using plant specific designs and failure probabilities

  18. Romanian achievement in hydro-power plants

    International Nuclear Information System (INIS)

    Cardu, M.; Bara, T.

    1998-01-01

    This paper briefly deals with the achievements relating to Hydro-electric Power Plants within the process of development of the National Power System in Romania. Also presented is the Romanian industry contribution to hydro-electrical power plant equipment manufacturing. (author)

  19. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  20. Coordinated frequency control from offshore wind power plants connected to multi terminal DC system considering wind speed variation

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Altin, Müfit; Hansen, Anca Daniela

    2017-01-01

    A coordinated fast primary frequency control scheme from offshore wind power plants (OWPPs) integrated to a three terminal high voltage DC (HVDC) system is proposed in this study. The impact of wind speed variation on the OWPP active power output and thus on the AC grid frequency and DC grid...... the active power support from OWPP with a ramp rate limiter and (iii) An alternative method for the wind turbine overloading considering rotor speed. The effectiveness of the proposed control scheme is demonstrated on a wind power plant integrated into a three terminal HVDC system developed in DIg......SILIENT PowerFactory. The results show that the proposed coordinated frequency control method performs effectively at different wind speeds and minimises the secondary effects on frequency and DC voltage....

  1. Countermeasure to plant life management of the nuclear power plants out of Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Some investigations on countermeasure to plant life management of the nuclear power plants were begun since beginning of 1990s under cooperation with Ministry of International Trade and Industry and all electric power companies under consideration of recent state on abroad and at concept of preventive conservation implementation against the plant life management. As a result, the Tokyo Electric Power Company, the Kansai Electric Power Company and the Japan Atomic Power Company settled each program on countermeasure to plant life management of the Fukushima-1 Power Plant, the Mihama-1 Power Plant and the Tsuruga-1 Power Plant, respectively, which were reported to the Atomic Energy Safety Commission to issue on February, 1999, after deliberation in the Adviser Group of Ministry of International Trade and Industry. Such investigations on countermeasure to the plant life management are also conducted out of Japan in parallel to those in Japan, which contain programs reflecting states of operation and maintenance of nuclear power plants and atmosphere around atomic energy in each country. Here were described on some present states of the countermeasures to plant life management in U.S.A., France, Germany, Sweden, England and so forth. (G.K.)

  2. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    International Nuclear Information System (INIS)

    Nabeshima Kunihiko; Suzuki Katsuo; Nose, Shoichi; Kudo, Kazuhiko

    1996-01-01

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs

  3. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kunihiko, Nabeshima; Katsuo, Suzuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Nose, Shoichi; Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-12-31

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs.

  4. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  5. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  6. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  7. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants

    KAUST Repository

    Mahfouz, Abdullah Bin

    2011-02-13

    Thermal desalination systems are typically integrated with power plants to exploit the excess heat resulting from the power-generation units. Using seawater in cooling the power plant and the desalination system is a common practice in many parts of the world where there is a shortage of freshwater. Biofouling is one of the major problems associated with the usage of seawater in cooling systems. Because of the dynamic variation in the power and water demands as well as the changes in the characteristics of seawater and the process, there is a need to develop an optimal policy for scheduling biocide usage and cleaning maintenance of the heat exchangers. The objective of this article is to introduce a systematic procedure for the optimization of scheduling the dosing of biocide and dechlorination chemicals as well as cleaning maintenance for a power production/thermal desalination plant. A multi-period optimization formulation is developed and solved to determine: the optimal levels of dosing and dechlorination chemicals; the timing of maintenance to clean the heat-exchange surfaces; and the dynamic dependence of the biofilm growth on the applied doses, the seawater-biocide chemistry, the process conditions, and seawater characteristics for each time period. The technical, economic, and environmental considerations of the system are accounted for. A case study is solved to elucidate the applicability of the developed optimization approach. © 2011 Springer-Verlag.

  8. Possible Power Estimation of Down-Regulated Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe

    The penetration of offshore wind power is continuously increasing in the Northern European grids. To assure safety in the operation of the power system, wind power plants are required to provide ancillary services, including reserve power attained through down-regulating the wind farm from its...... power plant. The developed procedure, the PossPOW algorithm, can also be used in the wind farm control as it yields a real-time wind farm power curve. The modern wind turbines have a possible power signal at the turbine level and the current state of the art is to aggregate those signals to achieve...... the wind farm scale production capacity. However the summation of these individual signals is simply an over-estimation for the wind power plant, due to reduced wake losses during curtailment. The determination of the possible power with the PossPOW algorithm works as follows: firstly the second...

  9. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  10. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  11. Man and nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    According to the Inst. fuer Unfallforschung/TUeV Rheinland, Koeln, the interpretation of empirical data gained from the operation of nuclear power plants at home and abroad during the period 1967-1975 has shown that about 38% of all reactor accidents were caused by human failures. These occured either during the design and construction, the commissioning, the reconditioning or the operation of the plants. This very fact stresses human responsibility for the safety of nuclear power plants, in spite of those plants being automated to a high degree and devices. (orig.) [de

  12. Reactor power control device in BWR power plant

    International Nuclear Information System (INIS)

    Kurosawa, Tsuneo.

    1997-01-01

    The present invention provides a device for controlling reactor power based on a start-up/shut down program in a BWR type reactor, as well as for detecting deviation, if occurs, of the power from the start-up/shut down program, to control a recycling flow rate control system or control rod drive mechanisms. Namely, a power instruction section successively executes the start-up/shut down program and controls the coolant recycling system and the control rod driving mechanisms to control the power. A current state monitoring and calculation section receives a process amount, calculates parameters showing the plant state, compares/monitors them with predetermined values, detecting the deviation, if occurs, of the plant state from the start-up/shut down program, and prevents output of a power increase control signal which leads to power increase. A forecasting and monitoring/calculation section forecasts and calculates the plant state when not yet executed steps of the start-up/shut down program are performed, stops the execution of the start-up/shut down program in the next step in a case of forecasting that the results of the calculation will deviate from the start-up/shut down program. (I.S.)

  13. International power plant business

    Energy Technology Data Exchange (ETDEWEB)

    Grohe, R.

    1986-03-03

    At the Brown Boveri press seminar 'Energy' in Baden-Baden Rainer Grohe, member of the Brown Boveri board, Mannheim, gave a survey of the activities on the international power plant market in recent years. He showed the vacuities which must be taken into account in this sector today. The drastic escalation of demands on power plant suppliers has lead not to a reduction of protagonists but to an increase. (orig.).

  14. Ecological impacts and damage - comparison of selected components for nuclear and conventional power plants (example of Mochovce nuclear power plant)

    International Nuclear Information System (INIS)

    Bucek, M.

    1984-01-01

    A comparison is given of ecological damage for the nuclear power plant in Mochovce and a conventional power plant with the same power. Ecological effects and damage are divided into three groups: comparable damage, ecological damage caused only by conventional power plants and ecological damage caused only by nuclear power plants. In the first group the factors compared are land requisition, consumption of utility water and air consumption. In the second group are enumerated losses of crops (cereals, sugar beet, potatoes, oleaginous plants) and losses caused by increased disease rate owing to polluted environment by conventional power plants. In the third group health hazards are assessed linked with ionizing radiation. Also considered are vent stack escapes. (E.S.)

  15. Space nuclear reactor power plants

    International Nuclear Information System (INIS)

    Buden, D.; Ranken, W.A.; Koenig, D.R.

    1980-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on space nuclear power plant components has been initiated by the Department of Energy. The missions that are foreseen, the current power plant concept, the technology program plan, and early key results are described

  16. Methodology for Scaling Fusion Power Plant Availability

    International Nuclear Information System (INIS)

    Waganer, Lester M.

    2011-01-01

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, 'Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the 'teething' problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated 'mature' subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  17. Dispatchable Solar Power Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Price, Henry [Solar Dynamics LLC, Broomfield, CO (United States)

    2018-01-31

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant can provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion turbines

  18. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  19. Development of nuclear power plant Risk Monitor

    International Nuclear Information System (INIS)

    Yang Xiaoming; Sun Jinlong; Ma Chao; Wang Lin; Gu Xiaohui; Bao Zhenli; Qu Yong; Zheng Hao

    2014-01-01

    Risk Monitor is a tool to monitor the real-time risk of a nuclear power plant for risk management and comprehensive decision-making, which has been widely used all over the world. The nuclear power plant Risk Monitor applies the real-time risk model with low-complicacy that could reflect the plant's actual configuration, automatically reads the plant's configuration information from the engineering system through the developed interface, and efficiently analyzes the plant's risk Dy the intelligent parallel-computing method in order to provide the risk basement for the safety management of nuclear power plant. This paper generally introduces the background, architecture, functions and key technical features of a nuclear power plant Risk Monitor, and validates the risk result, which could well reflect the plant's risk information and has a significant practical value. (authors)

  20. Reliability of the emergency ac-power system at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.; Baranowsky, P.W.

    1982-01-01

    The reliability of the emergency ac-power systems typical of several nuclear power plants was estimated, the costs of several possible improvements was estimated. Fault trees were constructed based on a detailed design review of the emergency ac-power systems of 18 nuclear plants. The failure probabilities used in the fault trees were calculated from extensive historical data collected from Licensee Event Reports (LERs) and from operating experience information obtained from nuclear plant licensees. It was found that there are not one or two improvements that can be made at all plants to significantly increase the industry-average emergency ac-power-system reliability, but the improvements are varied and plant-specific. Estimates of the improvements in reliability and the associated cost are estimated using plant-specific designs and failure probabilities

  1. The application of plant information system on third Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liu Wangtian

    2005-01-01

    Plant overall control has been applied in Qinshan Nuclear Power Plant, which enhances the security of plant operation, but it is not enough to improve the technical administration level. In order to integrate the overall information and to improve the technical administration level more. Third Qinshan Nuclear Power Plant applies the plant information system. This thesis introduces the application of plant information system in Third Qinshan Nuclear Power Plant and the effect to the plant after the system is carried into execution, in addition, it does more analysis and exceptions for application of plant information system in the future. (authors)

  2. The atlas of large photovoltaic power plants

    International Nuclear Information System (INIS)

    Ducuing, S.; Guillier, A.; Guichard, M.A.

    2015-01-01

    This document reports all the photovoltaic power plants whose installed power is over 1 MWc and that are operating in France or in project. 446 power plants have been reviewed and their cumulated power reaches 2822 MWc. For each plant the following information is listed: the name of the municipality, the operator, the power capacity, the manufacturer of the photovoltaic panels and the type of technology used, the type of installation (on the ground, on the roof, on the facade, as sun protection,...), the yearly power output (kWh), and the date of commissioning. This review shows that 86% of these plants are ground-based. (A.C.)

  3. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Heat supply from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stach, V [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1978-05-01

    The current state of world power production and consumption is assessed. Prognoses made for the years 1980 to 2000 show that nuclear energy should replace the major part of fossil fuels not only in the production of power but also in the production of heat. In this respect high-temperature reactors are highly prospective. The question is discussed of the technical and economic parameters of dual-purpose heat and power plants. It is, however, necessary to solve problems arising from the safe siting of nuclear heat and power plants and their environmental impacts. The economic benefits of combined power and heat production by such nuclear plants is evident.

  5. Elecnuc. Nuclear power plants in the world. 1997

    International Nuclear Information System (INIS)

    Maubacq, F.; Tailland, C.

    1997-04-01

    This small booklet provides information about all type of nuclear power plants worldwide. It is based on the data taken from the CEA/DSE/SEE Elecnuc database. The content comprises: the 1996 highlights, the main characteristics of the different type of reactors in operation or under construction, the map of the French nuclear power plant sites, the worldwide status of nuclear power plants at the end of 1996, the nuclear power plants in operation, under construction or on order (by groups of reactor-types), the power capacity evolution of power plants in operation, the net and gross capacity of the power plants on the grid, the commercial operation and grid connection forecasts, the first achieved or expected power generation supplied by a nuclear reactor for each country and the power generation from nuclear reactors, the performance indicator of the PWR units in France, the trends of the power generation indicator worldwide, the nuclear power plants in operation, under construction, on order, planned, cancelled, decommissioned and exported worldwide, the schedule of steam generator replacements, and the MOX fuel plutonium recycling programme. (J.S.)

  6. Technical report on dc power supplies in nuclear power plants

    International Nuclear Information System (INIS)

    1977-06-01

    Emergency electrical power supplies, both a.c. and d.c. for nuclear power plants are important to safety. For this reason, the electric power systems for operating nuclear plants and those plants under licensing review have been required to provide a high degree of reliability. It is this high reliability that provides confidence that sufficient safety margin exists against loss of all d.c. power for extended periods of time to allow an orderly examination of safety issues, such as this. However, because of the importance of the a.c. and d.c. power systems, the staff has been expending effort to review the reliability of these systems and shall continue to do so in the future

  7. Improving nuclear power plant safety through operator aids

    International Nuclear Information System (INIS)

    1987-12-01

    In October 1986, the IAEA convened a one-week Technical Committee Meeting on Improving Nuclear Power Plant Safety Through Operator Aids. The term ''operator aid'' or more formally ''operator support system'' refers to a class of devices designed to be added to a nuclear power plant control station to assist an operator in performing his job and thereby decrease the probability of operator error. The addition of a carefully planned and designed operator aid should result in an increase in nuclear power plant safety and reliability. Operator aids encompass a wide range of devices from the very simple, such as color coding a display to distinguish it out of a group of similar displays, to the very complex, such as a computer-generated video display which concentrates a number of scattered indicator readings located around a control room into a concise display in front of the operator. This report provides guidelines and information to help make a decision as to whether an operator aid is needed, what kinds of operator aids are available and whether it should be purchased or developed by the utility. In addition, a discussion is presented on advanced operator aids to provide information on what may become available in the future. The broad scope of these guidelines makes it most suitable for use by a multi-disciplinary team. The document consists of two parts. The recommendations and results of the meeting discussions are given in the first part. The second part is the annex where the papers presented at the Technical Committee Meeting are printed. A separate abstract was prepared for each of the 10 papers. Refs, figs and tabs

  8. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  9. Fuzzy logic based power-efficient real-time multi-core system

    CERN Document Server

    Ahmed, Jameel; Najam, Shaheryar; Najam, Zohaib

    2017-01-01

    This book focuses on identifying the performance challenges involved in computer architectures, optimal configuration settings and analysing their impact on the performance of multi-core architectures. Proposing a power and throughput-aware fuzzy-logic-based reconfiguration for Multi-Processor Systems on Chip (MPSoCs) in both simulation and real-time environments, it is divided into two major parts. The first part deals with the simulation-based power and throughput-aware fuzzy logic reconfiguration for multi-core architectures, presenting the results of a detailed analysis on the factors impacting the power consumption and performance of MPSoCs. In turn, the second part highlights the real-time implementation of fuzzy-logic-based power-efficient reconfigurable multi-core architectures for Intel and Leone3 processors. .

  10. Operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.

    1987-01-01

    This textbook gives a systematic introduction into the operational and maintenance activities in nuclear power plants with pressurized water reactors. Subjects: (1) Setup and operational behaviour of power reactors, (2) setup of nuclear power plants, (3) radiation protection and nuclear safety, (4) nuclear fuel, (5) constructional layout of nuclear power plants, (6) management, and (7) maintenance. 158 figs., 56 tabs

  11. Power plant conceptual studies in Europe

    International Nuclear Information System (INIS)

    Maisonnier, D.; Campbell, D.; Cook, I.; Pace, L. Di; Giancarli, L.; Hayward, J.; Puma, A. Li; Medrano, M.; Norajitra, P.; Roccella, M.; Sardain, P.; Tran, M.Q.; Ward, D.

    2007-01-01

    The European fusion programme is 'reactor oriented' and it is aimed at the successive demonstration of the scientific, the technological and the economic feasibility of fusion power. The European Power Plant Conceptual Study (PPCS) has been a study of conceptual designs of five commercial fusion power plants and the main emphasis was on system integration. It focused on five power plant models which are illustrative of a wider spectrum of possibilities. They are all based on the tokamak concept and they have approximately the same net electrical power output, 1500 MWe. These span a range from relatively near-term, based on limited technology and plasma physics extrapolations, to an advanced conception. The PPCS allows one to clarify the concept of DEMO, the device that will bridge the gap between ITER and the first-of-a-kind fusion power plant. An assessment of the PPCS models with limited extrapolations highlighted a number of issues that must be addressed to establish the DEMO physics and technological basis

  12. Development of Structural Health Monitoring System for pipes in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Eom, H. S.; Choi, Y. C.; Shin, S. H.; Youn, D. B.; Park, J. H.

    2010-01-01

    Structural health monitoring (SHM) has becoming an important issue in the maintenance of various structures such as large steel plates, vessels, and pipes in nuclear power plants. There are important factors to be considered in developing an SHM system. With consideration of these factors, we have developed a computerized multi-channel ultrasonic system that can handle array transducers and generate a high-power pulse for online SHM of the plates and pipes. The proposed system is compact but has all the necessary functions for SHM of important structure such as pipes and plates in a NPP

  13. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  14. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  15. Modeling of the wind power plant using software DIgSILENT Power factory

    International Nuclear Information System (INIS)

    Mladenovski, Ljubisha; Iliev, Atanas; Fushtikj, Vangel

    2004-01-01

    This paper presents a method for creating a model of the wind power plant NORDEX N-60 in the DIgSILENT Power factory software. At the beginning, the characteristics of the wind power plant and the used software are shortly described. The next step is modeling the part of the power system where the wind power plant will be connected to the grid The modeling of the turbine part and the generator part of the wind power plant is made with blocks, which are part of the machine block of the composite model. Finally, the results obtained from performed practically oriented simulations are presented in graphical form. Design of the model of the wind power plant NORDEX N-60 was performed at the Faculty of Electrical Engineering, at the University of Rostock, Germany, as a part of the DYSIMAC project. (Author)

  16. Preparation and practice for nuclear power plant operation

    International Nuclear Information System (INIS)

    Wu Xuesong; Lu Tiezhong

    2015-01-01

    The operational preparation of the nuclear power plant is an important work in nuclear power plant production preparation. Due to the construction period of nuclear power plant from starting construction to production is as long as five years, the professional requirements of nuclear power operation are very strict, and the requirements for nuclear safety are also extremely high. Especially after the Fukushima accident, higher requirements for the safe operation of nuclear power plant are posed by competent authorities of the national level, regulatory authorities and each nuclear power groups. Based on the characteristics of the construction phase of nuclear power plant and in combination with engineering practice, this paper expounds the system established in the field of nuclear power plant operation and generally analyses the related management innovation. (authors)

  17. Simulation technology for power plants

    International Nuclear Information System (INIS)

    Kuwabara, Kazuo; Yanai, Katsuya.

    1988-01-01

    In the simulation of nuclear power stations, there are the simulation for the training of plant operation, the plant simulation for analyzing the operation of an electric power system, the simulation for controlling a core, the simulation for the safety analysis of reactors, the simulation for the design analysis of plants and so on as the typical ones. The outline and the technical features of these simulations are described. With the increase of capacity and complexity of thermal power plants, recently the automation of operation has advanced rapidly. The chance of starting up and stopping plants by operators themselves is few, and the chance of actually experiencing troubles also is few as the reliability of plants improved. In order to maintain the ability of coping with plant abnormality, an operation supporting system is strongly demanded. Operation training simulators and used widely now, and there are the simulators for analysis, those of replica type, those of versatile compact type and so on. The system configuration, modeling techniques, training function and others of the replica type are explained. In hydroelectric plants, the behavior of water in penstocks, the characteristics of water turbines, the speed control system for water turbines and the characteristics of generators become the main subjects of simulation. These are described. (Kako, I.)

  18. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  19. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  20. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-02-01

    During the third quarter of 1990 the Finnish nuclear power plant units Loviisa 1 and 2 and TVO I and II were in commercial operation for most of the time. The annual maintenance outages of the Loviisa plant units were held during the report period. All events during this quarter are classified as Level hero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were below authorised limits. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  1. Italian steam power plants

    Energy Technology Data Exchange (ETDEWEB)

    von Rautenkranz, J

    1939-01-01

    A brief history of geothermal power production in Italy is presented. Boric acid has been produced on an industrial scale since 1818. The first electrical power was generated in 1904, and by 1939 the output of geothermal power plants had reached 500 GWh, with major expansion of facilities planned.

  2. Nuclear power plants: 2009 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the turn of 2009/2010, nuclear power plants were available for energy supply in 30 countries of the world. A total of 437 nuclear power plants, which is one plant less than at the 2008/2009 turn, were in operation with an aggregate gross power of approx. 391 GWe and an aggregate net power, respectively, of 371 GWe. The available gross power of nuclear power plants did not changed noticeably from 2008 to the end of 2009. In total 2 nuclear generating units were commissioned in 2009. One NPP started operation in India and one in Japan. Three nuclear generating units in Japan (2) und Lithuania (1) were decomissioned in 2009. 52 nuclear generating units, i.e. 10 plants more than at the end of 2008, with an aggregate gross power of approx. 51 GWe, were under construction in 14 countries end of 2009. New or continued projects are notified from (number of new projects): China (+9), Russia (1), and South Korea (1). Some 84 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  3. Nuclear power plants: 2008 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    At the turn of 2008/2009, nuclear power plants were available for energy supply in 31 countries of the world. A total of 438 nuclear power plants, which is one plant less than at the 2007/2008 turn, were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. The available gross power of nuclear power plants didn't changed noticeabely from 2007 to the end of 2008. No nuclear generating unit was commissioned in 2008. One nuclear generating unit in the Slovak Republic was decomissioned in 2008. 42 nuclear generating units, i.e. 10 plants more than at the end of 2007, with an aggregate gross power of approx. 38 GWe, were under construction in 14 countries end of 2008. New or continued projects are notified from (in brackets: number of new projects): Bulgaria (2), China (5), South Korea (2), Russia (1), and the Slovak Republic (2). Some 80 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another approximately 120 units are in their preliminary project phases. (orig.)

  4. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  5. Effect of special features of nuclear power plants

    International Nuclear Information System (INIS)

    Scharf, H.

    1986-01-01

    Special features of nuclear power plants are reported with the Muelheim-Kaerlich pressurized water reactor as the reference plant. This nuclear reactor uses 'Once Through Steam Generators (OTSG)' with 'Integrated Economizer' to provide the turbine with superheated steam. The implementation of OTSG allows to operate the plant with constant steam pressure over the entire power range, and with constant main coolant temperature over a power range from 15% power to 100% power. Control of the plant during power operation is provided by the 'Integrated Control System', which simultaneously sends signals to the plant's subsystems reactor, OTSG, and turbine to get optimum response of the plant during power transients. The characteristics of this 'Integrated Control System' and its different modes of operation are presented. (orig./GL)

  6. Owners of nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.S.

    1979-12-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of December 1, 1979. The list includes all plants licensed to operate, under construction, docketed for NRC safety and envionmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally cancelled. In many cases, ownership may be in the process of changing as a result of antitrust license conditions and hearings, altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified

  7. Nuclear and thermal power plants and the environment

    International Nuclear Information System (INIS)

    Mejstrik, V.

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared. (Z.M.)

  8. Nuclear and thermal power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Mejstrik, V [Ceskoslovenska Akademie Ved, Pruhonice. Ustav Krajinne Ekologie

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower than in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared.

  9. The safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Do nuclear power plants present an unjustifiable risk Can there be confidence in their safety The Uranium Institute invited a group of senior safety experts from eight different Western countries operating different types of reactors to provide an authoritative explanation for non-specialists of the basic principles of reactor safety, their application and their implications. The report presents the group's opinion on the level of safety achieved in the Western nuclear power plants with which the authors are directly familiar. Although many of the points made may well also be true for non-Western reactors, the report does not cover them except where specifically stated. It does describe and discuss the causes of the Chernobyl disaster. It does not compare nuclear power with other fuels, nor does it deal with its benefits, since however great the benefits from the peaceful use of nuclear power, and its own advantages over other fuels, they could not compensate for lack of safety. The conclusion reached is that the risk associated with electricity production at nuclear power plants can be kept very low. Proper use of the extensive knowledge available today can guarantee operation of nuclear power plants at very high safety levels, carrying very low risks, both to health and of contamination of the environment: risks that are continually lowered by upgrading existing plants and their operation, and by the design of future power plants. (author).

  10. DENINT power plant cost benefit analysis code: Analysis of methane fuelled power plant/district heating system

    International Nuclear Information System (INIS)

    Cincotti, V.; D'Andrea, A.

    1989-07-01

    The DENINT power plant cost benefit analysis code takes into consideration, not only power production costs at the generator terminals, but also, in the case of cogeneration, the costs of the fuel supply and heat and power distribution systems which depend greatly on the location of the plant. The code is able to allow comparisons of alternatives with varying annual operation hours, fuel cost increases, and different types of fossil fuels and production systems. For illustrative purposes, this paper examines two methane fired cogeneration plant/district heating alternatives

  11. Energy analysis and projecting of power plants

    International Nuclear Information System (INIS)

    Jirlow, K.

    1975-01-01

    Energy analysis aims at a better explanation of energy flow and energy exchange at different production processes. In this report the energy budget is analysed for separate nuclear power plants and for expanding systems of power plants. A mathematical model is developed for linear and exponential expanding of nuclear power. The profitableness for nuclear power plants in Sweden is considered to be good. (K.K.)

  12. AC power flow importance measures considering multi-element failures

    International Nuclear Information System (INIS)

    Li, Jian; Dueñas-Osorio, Leonardo; Chen, Changkun; Shi, Congling

    2017-01-01

    Quantifying the criticality of individual components of power systems is essential for overall reliability and management. This paper proposes an AC-based power flow element importance measure, while considering multi-element failures. The measure relies on a proposed AC-based cascading failure model, which captures branch overflow, bus load shedding, and branch failures, via AC power flow and optimal power flow analyses. Taking the IEEE 30, 57 and 118-bus power systems as case studies, we find that N-3 analyses are sufficient to measure the importance of a bus or branch. It is observed that for a substation bus, its importance is statistically proportional to its power demand, but this trend is not observed for power plant buses. While comparing with other reliability, functionality, and topology-based importance measures popular today, we find that a DC power flow model, although better correlated with the benchmark AC model as a whole, still fails to locate some critical elements. This is due to the focus of DC-based models on real power that ignores reactive power. The proposed importance measure is aimed to inform decision makers about key components in complex systems, while improving cascading failure prevention, system backup setting, and overall resilience. - Highlights: • We propose a novel importance measure based on joint failures and AC power flow. • A cascading failure model considers both AC power flow and optimal power flow. • We find that N-3 analyses are sufficient to measure the importance of an element. • Power demand impacts the importance of substations but less so that of generators. • DC models fail to identify some key elements, despite correlating with AC models.

  13. Guinea_WADC00321_ADBG_Guinea_Power_Plants

    Data.gov (United States)

    United Nations Cartographic Section — Data for power plants with total installed generating capacity > 10 mw from the Platts World Electric Power Plants Database (WEPP 2006). Plants were georeferenced...

  14. Commissioning of the nuclear power plant

    International Nuclear Information System (INIS)

    Furtado, P.M.; Rolf, F.

    1984-01-01

    Nuclear Power Plant Angra 2, located at Itaorna Beach-Angra dos Reis is the first plant of the Brazilian-German Agreement to be commissioned. The Nuclear Power Plant is a pressurized water reactor rated at 3765 Mw thermal/1325 Mw electrical. For commissioning purpose the plant is divided into 110 systems. Plant commissioning objective is to demonstrate the safe and correct operation of each plan component, system and of the whole plant in agreement with design conditions, licensing requirements and contractual obligations. This work gives a description of plant commissioning objectives, activities their time sequence, and documentation. (Author) [pt

  15. Cost and performance of fossil fuel power plants with CO2 capture and storage

    International Nuclear Information System (INIS)

    Rubin, Edward S.; Chen, Chao; Rao, Anand B.

    2007-01-01

    CO 2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO 2 (typically by 85-90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15-30% for current CCS systems. To characterize such impacts, an alternative definition of the 'energy penalty' is proposed in lieu of the

  16. Current production costs in various power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Weible, H.

    1977-01-01

    The costs of producing electric power were evaluated for flowing water power plants, storage and pumped storage power plants, bituminous coal power plants, heating oil power plants (fired with heavy heating oil), natural gas-fired power plants, gas turbines, pressurized water reactors, and boiling water reactors. The calculational methods used for evaluating costs and the input data for methods used for the KOSKON and KOSKERN computer programs are described. It is emphasized that the calculations are examples to indicate the possible effects of the cost program and are only as valid as the input data. (JSR)

  17. Water regime of steam power plants

    International Nuclear Information System (INIS)

    Oesz, Janos

    2011-01-01

    The water regime of water-steam thermal power plants (secondary side of pressurized water reactors (PWR); fossil-fired thermal power plants - referred to as steam power plants) has changed in the past 30 years, due to a shift from water chemistry to water regime approach. The article summarizes measures (that have been realised by chemists of NPP Paks) on which the secondary side of NPP Paks has become a high purity water-steam power plant and by which the water chemistry stress corrosion risk of heat transfer tubes in the VVER-440 steam generators was minimized. The measures can also be applied to the water regime of fossil-fired thermal power plants with super- and subcritical steam pressure. Based on the reliability analogue of PWR steam generators, water regime can be defined as the harmony of construction, material(s) and water chemistry, which needs to be provided in not only the steam generators (boiler) but in each heat exchanger of steam power plant: - Construction determines the processes of flow, heat and mass transfer and their local inequalities; - Material(s) determines the minimal rate of general corrosion and the sensitivity for local corrosion damage; - Water chemistry influences the general corrosion of material(s) and the corrosion products transport, as well as the formation of local corrosion environment. (orig.)

  18. Docommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Essmann, J.

    1981-01-01

    The German utilities operating nuclear power plants have long concerned themselves with aspects of decommissioning and for this purpose an engineering company was given a contract to study the entire spectrum of decommissioning. The results of this study have been available in autumn 1980 and it is possible to discuss all the aspects of decommissioning on a new basis. Following these results no change in the design concept of LWR nuclear power plants in operation or under construction is necessary because the techniques, necessary for decommissioning, are fully available today. The technical feasibility of decommissioning for power plants of Biblis A and KRB type has been shown in detail. The calculations of the quantity of waste produced during removal of a nuclear power plant could be confirmed and it could be determined with high procedure. The radiation dose to the decommissioning personnel is in the range of the radiation protection regulations and is in the same range as the radiation dose to the personnel within a yearly inservice inspection. (AF)

  19. Power system stabilising features from wind power plants augmented with energy storage

    DEFF Research Database (Denmark)

    Tarnowski, Germán C.; Kjær, Philip C; Lærke, Rasmus

    2014-01-01

    This paper describes a wind power plant augmented with energy storage, configured to provide ancillary services (primary reserve, inertial response, power oscillation damping) for enhancement of power system stability. Energy storage can complement wind power plants thus reducing the need for any...... overload or curtailment to allow active power modulation. A 12MW + 1.6MW augmented plant is used for demonstration of representative performance of the particular ancillary service control algorithms...

  20. Cooling towers for thermal power plants

    International Nuclear Information System (INIS)

    Chaboseau, J.

    1987-01-01

    After a brief recall on cooling towers testing and construction, this paper presents four examples of very large French nuclear power plant cooling towers, and one of an Australian thermal power plant [fr

  1. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data

    Science.gov (United States)

    Zoran, M. A.; Nicolae, D. N.; Talianu, C. L.; Ciobanu, M.; Ciuciu, J. G.

    2005-10-01

    The synergistic use of multi-temporal and multi-spectral remote sensing data offers the possibility of monitoring of environment quality in the vicinity of nuclear power plants (NPP). Advanced digital processing techniques applied to several LANDSAT, MODIS and ASTER data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air for NPP Cernavoda , Romania . Cernavoda Unit 1 power plant, using CANDU technology, having 706.5 MW power, is successfully in operation since 1996. Cernavoda Unit 2 which is currently under construction will be operational in 2007. Thermal discharge from nuclear reactor cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube river. Water temperature distributions captured in thermal IR imagery are correlated with meteorological parameters. Additional information regarding flooding events and earthquake risks is considered . During the winter, the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall, there is a larger thermal plume extending 5-6 km far along Danube Black Sea Canal, and the temperature change is about 1.0 oC. Variation of surface water temperature in the thermal plume is analyzed. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and to stratification in summer. Hydrodynamic simulation leads to better understanding of the mechanisms by which waste heat from NPP Cernavoda is dissipated in the environment.

  2. Permanent cessation of Tokai power plant's operation

    International Nuclear Information System (INIS)

    Satoh, T.

    1998-01-01

    Tokai power plant (166MWe, Magnox type: GCR) is the first commercial reactor in Japan and has been kept operating stable since its commissioning in July 1996. During this period it has produced electricity of approximately 27.7 billion KWh (as of March 1997) and its stable operation has contributed greatly to the stable supply of electricity in Japan. Furthermore, technologies in various fields have been developed, demonstrated and accumulated through the construction and operation of Tokai power plant. It also contributes to training for many nuclear engineers, and constructions and operations of nuclear power stations by other Japanese power companies. As a pioneer, it has been achieved to develop and popularize Japanese nuclear power generation. On the other hand, Tokai power plant has small capacity in its electric power output, even though the size of the reactor and heat exchangers are rather bigger than those of LWR due to the characteristics of GCR. Therefore, the generation cost is higher than the LWR. Since there is no plant whose reactor type is the same as that of Tokai power plant, the costs for maintenance and fuel cycle are relatively higher than that of LWR. Finally we concluded that the longer we operate it, the less we can take advantage of it economically. As a result of the evaluation for the future operation of Tokai power plant including the current status for supply of electricity by the Japanese utilities and study of decommissioning by Japanese government, we decided to have a plan of stopping its commercial operation of Tokai power plant in the end of March, 1998, when we completely consume its fuel that we possess. From now on, we set about performing necessary studies and researches on the field of plant characterization, remote-cutting, waste disposal for carrying out the decommissioning of Tokai power plant safely and economically. We are going to prepare the decommissioning planning for Tokai power plant in a few years based on the

  3. Study of the influencies of Angra-1 nuclear power plant construction in Angra dos Reis

    International Nuclear Information System (INIS)

    Ferreira Netto, L.

    1982-01-01

    The report presents a comprehensive evaluation of the influence caused by Angra-1 Nuclear Power Plants (Central Nuclear Almirante Alvaro Alberto) construction on the Angra dos Reis City - Rio de Janeiro - Brazil. The analysis performed adopts a multi-dimensional methodology with four analysis dimensions: political-institutional, physical-territorial, social-economic and temporal. (author)

  4. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun

    1994-02-01

    In this work, the Fuzzy Signed Digraph(FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators

  5. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Seong, Poong Hyun

    1994-01-01

    In this work, the Fuzzy Signed Digraph (FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators. (Author)

  6. Power plants and safety 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The papers of this volume deal with the whole range of safety issues from planning and construction to the operation of power plants, and discuss also issues like availability and safety of power plants, protective clothes and their incommodating effect, alternatives for rendering hot-water generators safe and the safety philosophy in steam turbine engineering. (HAG) [de

  7. China’s Nuclear Power Plants in Operation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Qinshan Plant Phase I Located in Haiyan,Zhejiang Province,Qinshan Nuclear Power Plant Phase I is t he first 300-megawatt pressurized water reactor (PWR) nuclear power plant independently designed,constructed,operated and managed by China.The plant came into commercial operation in April 1994.

  8. Operating experience in nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The nuclear power plants in the Federal Republic of Germany kept their portion of power supply into the public grid system constant in 1983, compared to 1982. The generation had an absolute increase of 3.6% and amounts now to 65.9 TWh. Particularly mentioned should be the generation of the Grafenrheinfeld Nuclear Power Plant which is holding the 'World Record' with 9.969 TWh. The availability of the plants was generally satisfactory, as far as long-term retrofit measures with long outage periods were not necessary, as it was the case in Brunsbuettel and Wuergassen. The planned retrofit phases have been completed in all power plants. As far as safety is concerned, there was no reason to recommended a change of the present fundamental planning- and operation aspects. (orig.) [de

  9. Mathematical optimization techniques for managing selective catalytic reduction for a fleet of coal-fired power plants

    Science.gov (United States)

    Alanis Pena, Antonio Alejandro

    Major commercial electricity generation is done by burning fossil fuels out of which coal-fired power plants produce a substantial quantity of electricity worldwide. The United States has large reserves of coal, and it is cheaply available, making it a good choice for the generation of electricity on a large scale. However, one major problem associated with using coal for combustion is that it produces a group of pollutants known as nitrogen oxides (NO x). NOx are strong oxidizers and contribute to ozone formation and respiratory illness. The Environmental Protection Agency (EPA) regulates the quantity of NOx emitted to the atmosphere in the United States. One technique coal-fired power plants use to reduce NOx emissions is Selective Catalytic Reduction (SCR). SCR uses layers of catalyst that need to be added or changed to maintain the required performance. Power plants do add or change catalyst layers during temporary shutdowns, but it is expensive. However, many companies do not have only one power plant, but instead they can have a fleet of coal-fired power plants. A fleet of power plants can use EPA cap and trade programs to have an outlet NOx emission below the allowances for the fleet. For that reason, the main aim of this research is to develop an SCR management mathematical optimization methods that, with a given set of scheduled outages for a fleet of power plants, minimizes the total cost of the entire fleet of power plants and also maintain outlet NO x below the desired target for the entire fleet. We use a multi commodity network flow problem (MCFP) that creates edges that represent all the SCR catalyst layers for each plant. This MCFP is relaxed because it does not consider average daily NOx constraint, and it is solved by a binary integer program. After that, we add the average daily NOx constraint to the model with a schedule elimination constraint (MCFPwSEC). The MCFPwSEC eliminates, one by one, the solutions that do not satisfy the average daily

  10. Advances in multi-unit nuclear power plant probabilistic risk assessment

    International Nuclear Information System (INIS)

    Modarres, Mohammad; Zhou, Taotao; Massoud, Mahmoud

    2017-01-01

    The Fukushima Dai-ichi accident highlighted the importance of risks from multiple nuclear reactor unit accidents at a site. As a result, there has been considerable interest in Multi-Unit Probabilistic Risk Assessment (MUPRA) in the past few years. For considerations in nuclear safety, the MUPRA estimates measures of risk and identifies contributors to risk representing the entire site rather than the individual units in the site. In doing so, possible unit-to-unit interactions and dependencies should be modeled and accounted for in the MUPRA. In order to effectively account for these risks, six main commonality classifications—initiating events, shared connections, identical components, proximity dependencies, human dependencies, and organizational dependencies—may be used. This paper examines advances in MUPRA, offers formal definitions of multi-unit site risk measures and proposes quantitative approaches and data to account for unit-to-unit dependencies. Finally, a parametric approach for the multi-unit dependencies has been discussed and a simple example illustrates application of the proposed methodology. - Highlights: • This paper will discuss the technical aspects of an integrated MUPRA, including consideration of dependencies and assessment of the multi-unit dependency data and models for quantifying such dependencies. • The paper also provides discussions on formal definitions and metrics for multi-unit site risks. • The parametric methods are used to address multi-unit dependency situations. • A conceptual two-unit logic example is used to demonstrate the application of proposed methodology.

  11. Multi-stage fuzzy PID power system automatic generation controller in deregulated environments

    International Nuclear Information System (INIS)

    Shayeghi, H.; Shayanfar, H.A.; Jalili, A.

    2006-01-01

    In this paper, a multi-stage fuzzy proportional integral derivative (PID) type controller is proposed to solve the automatic generation control (AGC) problem in a deregulated power system that operates under deregulation based on the bilateral policy scheme. In each control area, the effects of the possible contracts are treated as a set of new input signals in a modified traditional dynamical model. The multi-stage controller uses the fuzzy switch to blend a proportional derivative (PD) fuzzy logic controller with an integral fuzzy logic input. The proposed controller operates on fuzzy values passing the consequence of a prior stage on to the next stage as fact. The salient advantage of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter variations and system nonlinearities. This newly developed strategy leads to a flexible controller with simple structure that is easy to implement, and therefore, it can be useful for the real world power systems. The proposed method is tested on a three area power system with different contracted scenarios under various operating conditions. The results of the proposed controller are compared with those of the classical fuzzy PID type controller and classical PID controller through some performance indices to illustrate its robust performance

  12. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  13. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    International Nuclear Information System (INIS)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis

  14. Nuclear Plant Analyzer: an interactive TRAC/RELAP Power-Plant Simulation Program

    International Nuclear Information System (INIS)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.; Mahaffy, J.; Turner, M.; Wiley, R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis

  15. Optimizing the Utility Power of a Geothermal Power Plant using Variable Frequency Drive (VFD) (Case Study: Sibayak Geothermal Power Plant)

    Science.gov (United States)

    Sinaga, R. H. M.; Manik, Y.

    2018-03-01

    Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.

  16. TVA's nuclear power plant experience

    International Nuclear Information System (INIS)

    Willis, W.F.

    1979-01-01

    This paper reviews TVA's nuclear power plant design and construction experience in terms of schedule and capital costs. The completed plant in commercial operation at Browns Ferry and six additional plants currently under construction represent the nation's largest single commitment to nuclear power and an ultimate investment of $12 billion by 1986. The presentation is made in three separate phases. Phase one will recapitulate the status of the nuclear power industry in 1966 and set forth the assumptions used for estimating capital costs and projecting project schedules for the first TVA units. Phase two describes what happened to the program in the hectic early 1979's in terms of expansion of scope (particularly for safety features), the dramatic increase in regulatory requirements, vendor problems, stretchout of project schedules, and unprecedented inflation. Phase three addresses the assumptions used today in estimating schedules and plant costs for the next ten-year period

  17. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Zhou, Xinping; Yang, Jiakuan; Xiao, Bo; Wang, Fen

    2009-01-01

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh) -1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  18. Owners of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  19. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  20. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  1. Intelligent power plant simulator for educational purposes

    International Nuclear Information System (INIS)

    Seifi, A.; Seifi, H.; Ansari, M. R.; Parsa Moghaddam, M.

    2001-01-01

    An Intelligent Tutoring System can be effectively employed for a power plant simulator so that the need for instructor in minimized. In this paper using the above concept as well as object oriented programming and SIMULINK Toolbox of MATLAB, an intelligent tutoring power plant simulator is proposed. Its successful application on a typical 11 MW power plant is demonstrated

  2. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  3. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    International Nuclear Information System (INIS)

    Feretic, Danilo; Cavlina, Nikola

    2010-01-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  4. Power from waste. [Power plant at landfill site

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1991-01-01

    Base Load Systems Ltd, a company in the United Kingdom, has just commissioned a power plant in Leicestershire which uses waste gases from a landfill site. The gases power two specially modified turbo charged engine and generator packages. The plant will use approximately 100 cu meters of landfill gas per hour and is expected to feed 1.5MW of electrical power into the supply network of East Midlands Electricity. Once the landfill site has been completely filled and capped with clay, it is estimated that the electrical power output will be 4 MW. At present, since their are no customers for heat in the vicinity, 100 KW of the electricity produced are used to run fans to dissipate the 2.5 MW of waste heat. Base load is also involved elsewhere in combined heat and power projects. (UK).

  5. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  6. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1992-01-01

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Third Annual Technical Progress report summarizes the period from September 1991 to October 1992. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. His philosophy, is to improve public perception of the safety of nuclear power plants by incorporating a high degree of automation where a greatly simplified operator control console minimizes the possibility of human error in power plant operations. To achieve this goal, a hierarchically distributed control system with automated responses to plant upset conditions was pursued in this research. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 stem plant. Emphasized in this Third Annual Technical Progress Report is the continuing development of the in-plant intelligent control demonstration for the final project milestone and includes: simulation validation and the initial approach to experiment formulation

  7. The plant efficiency of fusion power stations

    International Nuclear Information System (INIS)

    Darvas, J.; Foerster, S.

    1976-01-01

    Due to the circulating energy, lower efficiencies are to be expected with fusion power plants than with nuclear fission power plants. According to the systems analysis, the mirror machine is not very promising as a power plant. The plant efficiency of the laser fusion strongly depends on the laser efficiency about which one can only make speculative statements at present. The Tokamak requires a relatively low circulating energy and is certainly able to compete regarding efficiency as long as the consumption time can be kept large (> 100 sec) and the dead time between the power pulses small ( [de

  8. Optimizing NSSS power and turbine/generator performance for standardized nuclear power plant designs in tropical climates

    International Nuclear Information System (INIS)

    Parece, M.V.; Stack, T.G.; Huffman, A.D.

    2007-01-01

    The EPR was developed by AREVA as a standardized nuclear power plant design that could be deployed throughout the world. The first EPR is currently being constructed at Olkiluoto, Finland. Many of the plant systems for this first-of-a-kind unit are optimized for the climate and heat rejection method (once-through cooling) used at Olkiluoto. Two such systems are the Nuclear Steam Supply System (NSSS) and the Turbine/Generator (T/G) system. To achieve the EPR's target net electrical output for tropical climates and various condenser heat rejection methods, design studies were performed that showed that the NSSS and T/G system designs developed for the Olkiluoto site conditions required modification. The business case for EPR on U.S. sites where average ambient temperature is above 60 F, implies an economical design that provides an average net electrical output of at least 1600 MWe. It has been shown through parametric studies that the key features of the design needed to achieve this goal are: -) rated core thermal power of 4590 MWth, which is supported by plant systems, structures and components; -) the use of mechanical draft cooling towers rather than natural draft cooling towers; -) a low pressure turbine design with reduced exhaust annulus area; and -) a multi-pressure condenser configuration

  9. Tasks of a power engineer in future thermal power plants

    International Nuclear Information System (INIS)

    Freymeyer, P.; Scherschmidt, F.

    1982-01-01

    Today already the power plants provide plenty of tasks and problems to the electrical engineer in the fields of power and conductive engineering. A completely new orientation of power engineering leads to larger, more complex system and even to systems unknown so far. In conductive engineering entirely new solutions have come in view. There are a lot of interesting topics for the electrical engineer in the rearrangement and advance into virgin territory of thermal power plants. (orig.) [de

  10. Prospects for power plant technology

    International Nuclear Information System (INIS)

    Schilling, H.D.

    1993-01-01

    Careful conservation of resources in the enlarged context of the rational utilization of energy, the environment and capital will determine future power plant technology. The mainstays will be the further development of power plant concepts based on fossil (predominantly coal) and nuclear fuels; world-wide, also regenerative and CO 2 -free hydro-electric power will play a role. Rapid conversion of the available potential requires clear, long-term stable and reliable political framework conditions for the release of the necessary entrepreneurial forces. (orig.) [de

  11. Partner of nuclear power plants

    International Nuclear Information System (INIS)

    Gribi, M.; Lauer, F.; Pauli, W.; Ruzek, W.

    1992-01-01

    Sulzer, the Swiss technology group, is a supplier of components and systems for nuclear power plants. Important parts of Swiss nuclear power stations, such as containments, reactor pressure vessels, primary pipings, are made in Winterthur. Sulzer Thermtec AG and some divisions of Sulzer Innotec focus their activities on servicing and backfitting nuclear power plants. The European market enjoys priority. New types of valves or systems are developed as economic solutions meeting more stringent criteria imposed by public authorities or arising from operating conditions. (orig.) [de

  12. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  13. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  14. Analysis on perception of nuclear power plant and the preference of its policy alternatives for public acceptance

    International Nuclear Information System (INIS)

    Choi, Young Sung; Lee, Byong Whi

    1995-01-01

    Public acceptance has become an important factor in nuclear power program particularly after Chernobyl accident and recent rapid democratization in Korea. Methods reflection public opinions in order to improve public acceptance are firstly to understand what the public think about nuclear power plant and secondly to find out the public preference values for its policies. For this purpose, simplified multi-attribute utility(MAU) model was applied to analyze the public perception for five power production system. And the conjoint analysis was applied to find out he quantitative values of public preferences for twelve policy alternatives to improve the safety and support communities surrounding nuclear power plants in Korea. To implement these perception and preference analyses, mail survey was conducted to the qualified sample who had the experience of visiting nuclear power plant. Diagnosis of their perception pattern for five power production systems was made by the simplified MAU model. Estimation of the quantitative preference values for potential policy alternatives was made by the conjoint measurement technique, which made it possible to forecast the effectiveness of each option. The results from the qualified sample and the methods used in this study would be helpful to set up new policy of nuclear power plant. 4 figs., 7 tabs., 18 refs. (Author)

  15. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  16. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  17. Orthogonal worldviews in a cultural landscape of a power plant technology : multicultural communities of Chinese and Malay

    NARCIS (Netherlands)

    Shamsudin, F.; Midden, C.J.H.

    2007-01-01

    In this study, we explore whether people’s worldviews are orthogonal. An orthogonal structure of worldviews was found from two independent studies in multi-cultural communities to be affected by a coal power plant technology. The two-dimensional worldview orientations were in rectangular(orthogonal)

  18. Comparison of health and environmental effects of nuclear power plants and lignite-burning power plants

    International Nuclear Information System (INIS)

    Horacek, P.; Chytil, I.; Razga, J.

    1988-01-01

    The individual factors are discussed which characterize the impact of nuclear power plants and lignite-burning power plants on human health and on the environment. The study proceeds from the IAEA categorization of these impacts. In this light, attention is centred on the impact of the normal operation of power plants and on accidents. The former category is further divided into regional impacts such as the emission of chemical substances, the emission of radioactive substances, heat emissions and the sum of regional factors, and on global impacts such as emissions of carbon dioxide, emissions of long-lived radionuclides and the sum of global impacts. It is stated that research should pay more attention to the dangers of the effects of such a state of affairs when the infrastructure contaminated after a large-scale accident would be put out of operation, and the dangers of such a situation especially in small countries with great population densities. Such accidents represent the biggest danger of the use of nuclear power. The greatest danger of coal-burning power plants is their global impact on the atmosphere caused by the increasing concentration of carbon dioxide from burning fossil fuels. (Z.M.). 4 figs., 13 refs

  19. Control of renewable distributed power plants

    OpenAIRE

    Bullich Massagué, Eduard

    2015-01-01

    The main objective of this master thesis is to design a power plant controller for a photo- voltaic (PV) power plant. In a first stage, the current situation of the status of the electrical grid is analysed. The electrical network structure is moving from a conventional system (with centralized power generation, unidirectional power ows, easy control) to a smart grid system consisting on distributed generation, renewable energies, smart and complex control architecture and ...

  20. Owners of nuclear power plants: Percentage ownership of commercial nuclear power plants by utility companies

    International Nuclear Information System (INIS)

    Wood, R.S.

    1987-08-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of June 1, 1987. The list includes all plants licensed to operate, under construction, docked for NRC safety and environmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally canceled. In many cases, ownership may be in the process of changing as a result of altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified. Part I lists plants alphabetically with their associated applicants/licensees and percentage ownership. Part II lists applicants/licensees alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses (OL's). Footnotes for both parts appear at the end of this document

  1. Ardennes nuclear power plant

    International Nuclear Information System (INIS)

    1974-12-01

    The SENA nuclear power plant continued to operate, as before, at authorized rated power, namely 905MWth during the first half year and 950MWth during the second half year. Net energy production:2028GWh; hours phased to the line: 7534H; availability factor: 84%; utilization factor: 84%; total shutdowns:19; number of scrams:10; cost per KWh: 4,35 French centimes. Overall, the plant is performing very satisfactory. Over the last three years net production has been 5900GWh, corresponding to in average utilization factor of 83%

  2. Latina nuclear power plant

    International Nuclear Information System (INIS)

    1976-03-01

    In the period under review, the Latina power plant produced 1009,07 million kWh with a utilization factor of 72% and an availability factor of 80,51%. The disparity between the utilization and availability factors was mainly due to the shutdown of the plant owing to trade union strife. The reasons for non-availability (19,49%) were almost all related to the functioning of the conventional part and the general servicing of the plant (18 September-28 October). During the shutdown for maintenance, an inspection of the steel members and parts of the core stabilizing structure was made in order to check for the familiar oxidation phenomena caused by CO 2 ; the results of the inspection were all satisfactory. Operation of the plant during 1974 was marked by numerous power cutbacks as a result of outages of the steam-raising units (leaks from the manifolds) and main turbines (inspection and repairs to the LP rotors). Since it was first brought into commercial operation, the plant has produced 13,4 thousand million kWh

  3. Dynamic Frequency Response of Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit

    according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...

  4. Power plant perspectives for sugarcane mills

    International Nuclear Information System (INIS)

    Bocci, E.; Di Carlo, A.; Marcelo, D.

    2009-01-01

    Biomass, integral to life, is one of the main energy sources that modern technologies could widely develop, overcoming inefficient and pollutant uses. The sugarcane bagasse is one of the more abundant biomass. Moreover, the fluctuating sugar and energy prices force the sugarcane companies to implement improved power plants. Thanks to a multiyear collaboration between University of Rome and University of Piura and Chiclayo, this paper investigates, starting from the real data of an old sugarcane plant, the energy efficiency of the plant. Furthermore, it explores possible improvements as higher temperature and pressure Rankine cycles and innovative configurations based on gasifier plus hot gas conditioning and gas turbine or molten carbonate fuel cells. Even if the process of sugar extraction from sugarcane and the relative Rankine cycles power plants are well documented in literature, this paper shows that innovative power plant configurations can increase the bagasse-based cogeneration potential. Sugarcane companies can become electricity producers, having convenience in the use of sugarcane leaves and trash (when it is feasible). The worldwide implementation of advanced power plants, answering to a market competition, will improve significantly the renewable electricity produced, reducing CO 2 emissions, and increasing economic and social benefits.

  5. Optimal control systems in hydro power plants

    International Nuclear Information System (INIS)

    Babunski, Darko L.

    2012-01-01

    The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)

  6. ALARA at nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.

    1991-01-01

    Implementation of the ALARA principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed through a variety of dose reduction techniques. Initiatives by the ICRP, NCRP, NRC, INPO, EPRI, and BNL ALARA Center have all contributed to a heightened interest and emphasis on dose reduction. The NCRP has formed Scientific Committee 46-9 which is developing a report on ALARA at Nuclear Power Plants. It is planned that this report will include material on historical aspects, management, valuation of dose reduction ($/person-Sv), quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report

  7. Overview of seismic resistant design of Indian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Sharma, G.K.; Hawaldar, R.V.K.P.; Vinod Kumar

    2007-01-01

    Safe operation of a Nuclear Power Plant (NPP) is of utmost importance. NPPs consist of various Structure, System and Equipment (SS and E) that are designed to resist the forces generated due to a natural phenomenon like earthquake. An earthquake causes severe oscillatory ground motion of short duration. Seismic resistant design of SS and E calls for evaluation of effect of severe ground shaking for assuring the structural integrity and operability during and after the occurrence of earthquake event. Overall exercise is a multi-disciplinary approach. First of standardized 220 MWe design reactor is Narora Atomic Power Station. Seismic design was carried out as per state of art then, for the first time. The twelve 220 MWe reactors and two 540 MWe reactors designed since 1975 have been seismically qualified for the earthquake loads expected in the region. Seismic design of 700 MWe reactor is under advanced stage of finalization. Seismic re-evaluation of six numbers of old plants has been completed as per latest state of art. Over the years, expertise have been developed at Nuclear Power Corporation of India Limited, Bhabha Atomic Research Centre, prominent educational institutes, research laboratories and engineering consultants in the country in the area of seismic design, analysis and shake table testing. (author)

  8. Adaptive Reactive Power Control of PV Power Plants for Improved Power Transfer Capability under Ultra-Weak Grid Conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2018-01-01

    with the unity power factor. Then, considering the reactive power compensation from PV inverters, the minimum SCR in respect to Power Factor (PF) is derived, and the optimized coordination of the active and reactive power is exploited. It is revealed that the power transfer capability of PV power plant under...... of a 200 MW PV power plant demonstrate that the proposed method can ensure the rated power transfer of PV power plant with the SCR of 1.25, provided that the PV inverters are operated with the minimal PF=0.9.......This paper analyzes the power transfer limitation of the PV power plant under the ultra-weak grid condition, i.e., when the Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a minimum SCR of 2 is required for the PV power plant to deliver the rated active power when operating...

  9. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-12-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO 1 and II were in operation for almost the whole second quarter of 1991. The load factor average was 87.4 %. In consequence of a fire, which broke out in the switchgear building, connections to both external grids were lost and TVO II relied on power supplied by four back-up diesels for 7.5 hrs. The event is classified as Level 2 on the International Nuclear Event Scale. The process of examining the non-leaking fuel bundles removed from the Loviisa nuclear reactors has continued. The examinations have revealed, so far, that the uppermost spacing lattices of the bundles exhibit deformations similar to those detected in the leaking fuel bundles removed from the reactors. This event is classified as Level 1 on the International Nuclear Event Scale. Other events in this quarter which are classified according to the International Nuclear Event Scale are Level Zero (Below Scale) on the Scale. The Finnish Centre for Radiation and Nuclear Safety has assessed the safety of the Loviisa and Olkiluoto nuclear power plants based on the new regulations issued on 14.2.1991 by the Council of State. The safety regulations are much more stringent than those in force when the Loviisa and Olkiluoto nuclear power plants were built. The assessment indicated that the TVO nuclear power plant meets these safety regulations. The Loviisa nuclear power plant meets the requirements with the exception of certain requirements related to the ensuring of safety functions and provision for accidents. At the Loviisa nuclear power plant there are several projects under consideration to enhance safety

  10. Safety Assessment - Swedish Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B. [Luleaa Univ. of Technology (Sweden)

    1996-12-31

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs.

  11. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  12. Nuclear power plants: 2004 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In late 2004, nuclear power plants were available for power supply or were under construction in 32 countries worldwide. A total of 441 nuclear power plants, i.e. two plants more than in late 2003, were in operation with an aggregate gross power of approx. 386 GWe and an aggregate net power, respectively, of 362 GWe, in 31 countries. The available capacity of nuclear power plants increased by approx. 5 GWe as a result of the additions by the six units newly commissioned: Hamaoka 5 (Japan), Ulchin 6 (Korea), Kalinin 3 (Russia), Khmelnitski 2 (Ukraine), Qinshan II-2 (People's Republic of China), and Rowno 4 (Ukraine). In addition, unit 3 of the Bruce A nuclear power plant in Canada with a power of 825 MWe was restarted after an outage of many years. Contrary to earlier plans, a recommissioning program was initiated for the Bruce A-1 and A-2 units, which are also down at present. Five plants were decommissioned for good in 2004; Chapelcross 1 to 4 with 50 MWe each in the United Kingdom, and Ignalina 1 with 1 300 MWe in Lithuania. 22 nuclear generating units with an aggregate gross power of 19 GWe in nine countries were under construction in late 2004. In India, construction work was started on a new project, the 500 MWe PFBR prototype fast breeder reactor. In France, the EDF utility announced its intention to build an EPR on the Flamanville site beginning in 2007. (orig.)

  13. Seismic reevaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    Hennart, J.C.

    1978-01-01

    The codes and regulations governing Nuclear Power Plant seismic analysis are continuously becoming more stringent. In addition, design ground accelerations of existing plants must sometimes be increased as a result of discovery of faulting zones or recording of recent earthquakes near the plant location after plant design. These new factors can result in augmented seismic design criteria. Seismic reanalysius of the existing Nuclear Power Plant structures and equipments is necessary to prevent the consequences of newly postulated accidents that could cause undue risk to the health or safety of the public. This paper reviews the developments of seismic analysis as applied to Nuclear Power Plants and the methods used by Westinghouse to requalify existing plants to the most recent safety requirements. (author)

  14. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-01-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  15. Robotics for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-10-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics.

  16. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  17. Evaluation of occupational exposure to ELF magnetic fields at power plants in Greece in the context of European directives

    International Nuclear Information System (INIS)

    Christopoulou, Maria; Govari, Chrysa; Tsaprouni, Panagiota; Karabetsos, Efthymios

    2015-01-01

    The scope of this paper is to comparatively present the extremely low-frequency (ELF) measurements performed at four power plants in Greece, focusing on: (a) the worst-case exposure conditions, (b) the existence of magnetic field harmonic components, (c) the technical similarities among the power plants and (d) comparison of the measured percentages of reference levels at typical working areas in the power plants. A detailed measurement methodology is proposed, including broadband on-site inspection of the working areas, weighted averaged root-mean-square and peak values of magnetic flux density, percentage of reference levels, according to 1998 ICNIRP guidelines and harmonic analysis of the multi-frequency magnetic fields. During the analysis of the occupational exposure in all power plants, the new Directive 2013/35/EU has been taken into account. The study concludes by proposing a mapping procedure of working areas into certain zones, in order to take measures for workers safety. (authors)

  18. Transportable nuclear power plant TEC-M with two reactor plants of improved safety

    International Nuclear Information System (INIS)

    Ogloblin, B.G.; Sazonov, A.G.; Svishchev, A.M.; Gromov, B.F.; Zelensky, V.N.; Komkova, O.I.; Sidorov, V.I.; Tolstopyatov, V.P.; Toshinsky, G.I.

    1993-01-01

    Liquid metals are the best to meet the requirements of inherently safety nuclear power plants among the coolants used. A great experience has been gained in lead coolant power plant development and operation as applied to transportable power set-ups. Low chemical activity of this coolant with respect to air-water interaction is a determining factor for this coolant. The transportable nuclear power plant is described. It is intended to generate electric power for populated areas placed a long distance from the main electric power supply sources where it is difficult or not economical to deliver the conventional types of fuel. There are several remote areas in Siberia, Kamchatka in need of this type of power plant

  19. A virtual power plant model for time-driven power flow calculations

    Directory of Open Access Journals (Sweden)

    Gerardo Guerra

    2017-11-01

    Full Text Available This paper presents the implementation of a custom-made virtual power plant model in OpenDSS. The goal is to develop a model adequate for time-driven power flow calculations in distribution systems. The virtual power plant is modeled as the aggregation of renewable generation and energy storage connected to the distribution system through an inverter. The implemented operation mode allows the virtual power plant to act as a single dispatchable generation unit. The case studies presented in the paper demonstrate that the model behaves according to the specified control algorithm and show how it can be incorporated into the solution scheme of a general parallel genetic algorithm in order to obtain the optimal day-ahead dispatch. Simulation results exhibit a clear benefit from the deployment of a virtual power plant when compared to distributed generation based only on renewable intermittent generation.

  20. Monitoring support system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashikawa, Yuichi; Kubota, Rhuji; Tanaka, Keiji; Takano, Yoshiyuki

    1996-01-01

    The nuclear power plants in Japan reach to 49 plants and supply 41.19 million kW in their installed capacities, which is equal to about 31% of total electric power generation and has occupied an important situation as a stable energy supplying source. As an aim to keeping safe operation and working rate of the power plants, various monitoring support systems using computer technology, optical information technology and robot technology each advanced rapidly in recent year have been developed to apply to the actual plants for a plant state monitoring system of operators in normal operation. Furthermore, introduction of the emergent support system supposed on accidental formation of abnormal state of the power plants is also investigated. In this paper, as a monitoring system in the recent nuclear power plants, design of control panel of recent central control room, introduction to its actual plant and monitoring support system in development were described in viewpoints of improvement of human interface, upgrade of sensor and signal processing techniques, and promotion of information service technique. And, trend of research and development of portable miniature detector and emergent monitoring support system are also introduced in a viewpoint of labor saving and upgrade of the operating field. (G.K.)

  1. Plant life management study of Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    1999-01-01

    Already more than twenty-five years have passed since the first commercial LWR plant went into operation in Japan. In this situation, MITI and 3 electric utilities (Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Japan Atomic Power Company) have started a plant life management (PLM) study from 1994 to evaluate the long-term integrity of major systems, structures and components of aged LWR plants and ensure the safe, steady and highly reliable long-term operation. It consists of two phases: part 1 study and part 2 study. The part 1 study started in 1994 and focused on seven typical safety-related components. The part 1 study reports were made public in 1996. The part 2 study started in 1997. In this study we reviewed not only safety-related components but also plant reliability related components. The part 2 study reports were opened to the public in February 1999. This paper shows a summary of the part 2 study and our future PLM program. (author)

  2. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  3. Toxic releases from power plants

    International Nuclear Information System (INIS)

    Rubin, E.S.

    1999-01-01

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results

  4. Availability of thermal power plants 1977-1986

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1987-01-01

    To get a picture of power plant availability and its influencing factors, availability data have been acquired and evaluated by VGB according to different design and operation parameters since 1970. The present volume is the 16th annual statistics since 1970. It covers the decade of 1977 to 1986 and contains availability data of 384 power plants in Germany and abroad, with a total of 94.896 MW and 3.768 plant years. Data are presented on fossil-fuelled units, units with a combined gas/steam cycle, nuclear power plants and gas turbine systems, with further sub-categories according to unit size, fuel, type, years of operation, and operating regime. German plants are reviewed separately. All power data are gross data measured at the generator terminals. For a comparative evaluation, the data of 1986 are supplemented by yearly averages since 1977 and averages for the decade from 1977 to 1986. Since 1978, nonavailability data are categorized as 'unscheduled' and 'scheduled' nonavailabilities. For availability data of 1970 to 1976, see the VGB publication 'Availability of thermal power plants, 1970 to 1981'. (orig./UA) [de

  5. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  6. Human factors estimation methods in nuclear power plant

    International Nuclear Information System (INIS)

    Takano, Kenichi; Yoshino, Kenji; Nagasaka, Akihiko; Ishii, Keichiro; Nakasa, Hiroyasu

    1985-01-01

    To improve the operational and maintenance work reliability, it is neccessary for workers to maintain his performance always at high level, that leads to decreasing mistaken judgements and operations. This paper inuolves the development and evaluation of ''Multi-Purpose Physiological Information Measurement system'' to estimate human performance and conditions with a highly fixed quantity. The following itemes is mentioned : (1) Most suitable physiological informations are selected to measure worker' performance in nuclear power plant with none-disturbance, ambulatory, continual, and multi channel measurement. (2) Relatively important physiological informations are measured with the real-time monitoring functions. (electrocardiogram, respirometric functions and EMG (electromyogram) pulse rete). (3) It is made to optimize the measurement condition and analysing methods in the use of a noise-cut function and a D.C. drift cutting method. (4) As a example, it is clear that, when the different weight is loaded to the arm and make it strech-bend motion, the EMG signal is measured and analysed by this system, the analysed EMG pulse rate and maximum amplitude is related to the arm loaded weight. (author)

  7. Multi-objective optimal power flow with FACTS devices

    International Nuclear Information System (INIS)

    Basu, M.

    2011-01-01

    This paper presents multi-objective differential evolution to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). The proposed approach has been examined and tested on the modified IEEE 30-bus and 57-bus test systems. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, strength pareto evolutionary algorithm 2 and pareto differential evolution.

  8. Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles

    International Nuclear Information System (INIS)

    Prebeg, Pero; Gasparovic, Goran; Krajacic, Goran; Duic, Neven

    2016-01-01

    Highlights: • Optimization of supply side long-term energy planning of large power system. • Integration of renewable sources and electrical vehicles in large power system. • Multi-level, multi-objective optimization for a design of energy system. • Historical river flow data analysis for modeling of aggregated hydropower potential. - Abstract: Due to the stochastic nature and variability of renewable energy sources (RES), it is necessary to integrate still expensive storage capacities into an energy system with a high share of RES and to model appropriate energy market. The study presented here considers all energy carriers, however, only the electricity carrier is modeled in detail, with notion taken for the heating demand that is covered but without proper modeling of storage. A proposed two-level approach with multi-objective optimization on the global level, was used to design a Croatian Energy System (CES), where electric vehicles (EVs) are integrated to serve as battery storage in Vehicle-to-Grid (V2G) mode, for a scenario between 2015 and 2050. In addition, case study includes nine aggregated hydro power plants, one for each river basin in Croatia. Also, case study includes solar and wind power plants modeled for six locations in Croatia: Osijek, Zagreb, Rijeka, Sibenik, Split and Dubrovnik. The resulting Pareto front suggests that with assumed future costs of fuels and technology certain level of conventional energy sources will have to remain in the energy system to take into the account unfavourable weather conditions and to cover heating demand, which also results in significantly lower load factors for those power plants. Also, variants with more RES share have lower total energy system load factor and significantly higher installed capacity.

  9. Occupational dose control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Viktorsson, C.; Lochard, J.; Benedittini, M.; Baum, J.; Khan, T.A.

    1990-01-01

    Reduction in occupational exposure at nuclear power plants is desirable not only in the interest of the health and safety of plant personnel, but also because it enhances the safety and reliability of the plants. This report summarises the current trends of doses to workers at nuclear power plants and the achievements and developments regarding methods for their reduction

  10. Multi-criteria evaluation and priority analysis for localization equipment in a thermal power plant using the AHP (analytic hierarchy process)

    International Nuclear Information System (INIS)

    Yagmur, Levent

    2016-01-01

    Ensuring the safety of its energy supply is one of the main issues for newly industrialized/developing countries when utilizing domestic sources for electricity generation. Turkey depends heavily on imported gas to generate electricity, and the ratio of natural gas power generation to total electricity production is nearly 50%. Coal-fired thermal power plants using domestic resources are considered a good option to decrease the large amount of imported natural gas, and to supply a secure energy demand. However, electricity generation from coal-fired power plants using local lignite reserves is not adequate to maintain a secure energy mix and provide sustainable development, as Turkey does not have indigenous energy sector technology. Therefore, technology transfer and its localization are crucial for newly industrialized/developing countries such as Turkey. The aim of this study is to use the analytic hierarchy process to determine a priority analysis in relation to localization equipment for a thermal power plant. Parameters involved, such as readiness of both infrastructure and human resources, manpower as skilled labor, market potential for equipment developed by transferred technology, and competition in global/internal market, are related to localization in thermal power plant technologies, and are considered in relation to the country's technological capability, design ability, possession of materials/equipment, and ability to erect a plant. Results of analysis show that the boiler is the most important piece of equipment in this respect, and that heaters and fans are ranked after the boiler with respect to local conditions. - Highlights: • Localization of foreign technology was determined for developing countries. • An evaluation and priority analysis were performed for parts of a thermal power plant. • Analytic hierarchy process was applied for the hierarchical ordering of parts when transferring technology.

  11. Nuclear power plants of the nineties

    International Nuclear Information System (INIS)

    Weyermann, P.

    1989-01-01

    Nuclear power plants which will be available in the second half of the nineties are introduced. The demands which utilities must put on such a power plant that it covers their needs and meets the necessary acceptance of the public are presented. 8 figs

  12. I and C upgrading at nuclear power plants

    International Nuclear Information System (INIS)

    Tamiri, A.

    2003-01-01

    Continuing the operation of existing nuclear power plants will help reduce the number of new base-load nuclear and fossil power plants that need to be built. Old nuclear power plants in Canada are operating with analog instrumentation and control systems. For a number of reasons, such as changes and improvements in the applicable standards and design, maintenance problems due to the lack of spares, technical obsolescence, the need to increase power production, availability, reliability and safety, and in order to reduce operation and maintenance costs, instrumentation and control upgrading at nuclear power plants in a cost effective manner should be considered the greatest priority. Failures of instrumentation and control (I and C) due to aging and obsolescence issues may have an immediate negative impact on plant reliability and availability and also affect long-term plant performance and safety. In today's competitive marketplace, power plants are under pressure to cut spending on maintenance while reducing the risk of equipment failure that could cause unplanned outage. To improve plant safety and availability, old nuclear power plants will require investment in new technologies that can improve the performance and reduce the costs of generation by addressing the long term reliability of systems by up-grading to modem digital instrumentation and control and optimization opportunities. Boiler drum level control at nuclear power plants is critical for both plant protection and equipment safety and applies equality to high and low levels of water within the boiler drum. Plant outage studies at Pickering Nuclear have identified boiler drum level control and feed water control systems as major contributors to plant unavailability. Ways to improve transient and steady state response, upgrading existing poor analog control systems for boiler level and feed-water control systems at Pickering Nuclear, with enhanced and robust controller will be discussed in this paper

  13. The spherical tokamak fusion power plant

    International Nuclear Information System (INIS)

    Wilson, H.R.; Voss, G.; Ahn, J.W.

    2003-01-01

    The design of a 1GW(e) steady state fusion power plant, based on the spherical tokamak concept, has been further iterated towards a fully self-consistent solution taking account of plasma physics, engineering and neutronics constraints. In particular a plausible solution to exhaust handling is proposed and the steam cycle refined to further improve efficiency. The physics design takes full account of confinement, MHD stability and steady state current drive. It is proposed that such a design may offer a fusion power plant which is easy to maintain: an attractive feature for the power plants following ITER. (author)

  14. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-09-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in operation for almost all the time in the first quarter of 1992. The load factor average was 99.8%. All events which are classified on the International Nuclear Event Scale were level 0/below scale on the Scale. Occupational radiation doses and releases of radioactive material off-site remained well below authorised limits. Only quantities of radioactive material insignificant to radiation exposure, originating from the nuclear power plants, were detected in samples collected in the vicinity of the nuclear power plants

  15. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Caneghem, A.E. von

    1975-07-24

    The invention applies to a wind power plant in which the wind is used to drive windmills. The plant consists basically of a vertical tube with a lateral wind entrance opening with windmill on its lower end. On its upper end, the tube carries a nozzle-like top which increases the wind entering the tube by pressure decrease. The wind is thus made suitable for higher outputs. The invention is illustrated by constructional examples.

  16. VGB-requirements regarding technical data for power plants

    International Nuclear Information System (INIS)

    Richnow, Joerg

    2009-01-01

    Much of the technical plant data resulting from the planning, construction and start-up of power plants is needed for subsequent management and maintenance. Because of this, VGB has taken the initiative and has defined standard minimum requirements from power plant operators for technical plant data. They relate to the details and structure of this data, the definition of material classes and characteristics for the main power plant components and IT implementation for delivery of the technical plant data. (orig.)

  17. The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Sanz, J.; Vujic, J.L.

    1996-01-01

    Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ''steady state'' (SS) or ''equivalent steady state'' (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used

  18. CO₂ Capture Membrane Process for Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [Research Triangle Inst. International, Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Inst. International, Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. International, Research Triangle Park, NC (United States)

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO

  19. Nuclear power plants: 2005 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Nuclear power plants were available for power supply and under construction, respectively, in 32 countries of the world as per end of 2005. A total of 444 nuclear power plants, i.e. three plants more than at the end of 2004, with an aggregate gross power of approx. 389 GWe and an aggregate net power of 370 GWe, respectively, were in operation in 31 countries. The available capacity of nuclear power plants increased by some 4,5 GWe as a result of the capacities added by the four newly commissioned units of Higashidori 1 (Japan), Shika 2 (Japan), Tarapur 4 (India), and Tianwan 1 (China). In addition, unit A-1 of the Pickering nuclear power station in Canada, with 825 MWe, was restarted after a downtime of several years. Two plants were decommissioned for good in 2005: Obrigheim in Germany, and Barsebaeck 2 in Sweden. 23 nuclear generating units, i.e. one unit more than in late 2004, with an aggregate gross power of approx. 19 GWe were still under construction in nine countries by late 2005. In Pakistan, construction of a new project, Chasnupp 2, was started; in China, construction was begun of two units, Lingao Phase 2, units 3 and 4, and in Japan, the Shimane 3 generating unit is being built. (orig.)

  20. Nuclear power plant

    International Nuclear Information System (INIS)

    Aisaka, Tatsuyoshi; Kamahara, Hisato; Yanagisawa, Ko.

    1982-01-01

    Purpose: To prevent corrosion stress cracks in structural materials in a BWR type nuclear power plant by decreasing the oxygen concentration in the reactor coolants. Constitution: A hydrogen injector is connected between the condensator and a condensate clean up system of a nuclear power plant. The injector is incorporated with hydrogenated compounds formed from metal hydrides, for example, of alloys such as lanthanum-nickel alloy, iron titanium alloy, vanadium, palladium, magnesium-copper alloy, magnesium-nickel alloy and the like. Even if the pressure of hydrogen obtained from a hydrogen bomb or by way of water electrolysis is changed, the hydrogen can always be injected into a reactor coolant at a pressure equal to the equilibrium dissociation pressure for metal hydride by introducing the hydrogen into the hydrogen injector. (Seki, T.)

  1. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Swain, A.D.

    1981-01-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants. (orig.) [de

  2. Beloyarsk Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  3. MCFC power plant with CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Noboru [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    Fuel cell power plant has been developed for many years with expectation of high system efficiency. In the meantime the gas turbine combined cycle has shown its considerable progress in improving system efficiency. Fuel cell power plant will no longer be attractive unless it exceeds the gas turbine combined cycle at least in the system efficiency. It is said CO{sub 2} separation could improve the efficiency of fuel cell power plant. IHI has developed the CO{sub 2} separator for fuel cell power plant. This study describes that the CO{sub 2} separator can increase the efficiency of the molten carbonate fuel cell (MCFC) power plant by 5% and the expected efficiency reaches 63 % in HHV basis.

  4. Coordinated Multi-Objective Control of Regulating Resources in Multi-Area Power Systems with Large Penetration of Wind Power Generation

    DEFF Research Database (Denmark)

    Nyeng, Preben; Yang, Bo; Ma, Jian

    2008-01-01

    This paper describes a control algorithm for a Wide Area Energy Storage and Management System (WAEMS). The WAEMS is designed to meet the demand for fast, accurate and reliable regulation services in multi-area power systems with a significant share of wind power and other intermittent generation...

  5. Qualification of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    1984-01-01

    With the ultimate aim of reducing the possibility of human error in nuclear power plant operations, the Guidebook discusses the organizational aspects, the staffing requirements, the educational systems and qualifications, the competence requirements, the ways to establish, preserve and verify competence, the specific aspects of personnel management and training for nuclear power plant operations, and finally the particular situations and difficulties to be overcome by utilities starting their first nuclear power plant. An important aspect presented in the Guidebook is the experience in training and qualification of nuclear power plant personnel in various countries: Argentina, Belgium, Canada, Czechoslovakia, France, Federal Republic of Germany, Spain, Sweden, United Kingdom and United States of America

  6. Investigation toward laser driven IFE power plant

    International Nuclear Information System (INIS)

    Nakai, S.; Kozaki, Y.; Izawa, Y.

    2001-01-01

    Inertial fusion energy (IFE) is becoming feasible due to the increasing understanding of implosion physics. Reactor technology issues have begun to be developed. Based on the conceptual design of Laser Driven IFE Power Plant, the technical and physical issues have been examined. R and D on key issues that affect the feasibility of power plant have been proceeded taking into account the collaboration in the field of laser driver, fuel pellet, reaction chamber and system design. It is concluded that the technical feasibility of IFE power plant seems to be reasonably high. Coordination and collaboration scheme of reactor technology experts in Japan on Laser Driven IFE Power Plant is being proceeded. (author)

  7. German risk study 'nuclear power plants, phase B'

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1989-01-01

    The results of the German risk study 'Nuclear power plants, phase B' indicate that an accident in a nuclear power plant which cannot be managed by the safety systems according to design, is extremely improbable: Its probability is at about 3 to 100,000 per year and plant. Even if the safety systems fail, emergency measures can be effected in a nuclear power plant to prevent an accident. These in-plant emergency measures diminish the probability of a core meltdown to about 4 to 1,000,000 per year and plant. Hence, the accident risk is greatly reduced. The information given by the author are to smooth the emotional edge in the discussion about the safety of nuclear power plants. (orig.) [de

  8. Working in a virtual power plant

    International Nuclear Information System (INIS)

    Thibault, G.; Smadja, S.

    1999-01-01

    Graphical simulations on computer providing a virtual and reversible experience can now be used for maintenance in nuclear power plants allowing operations to be tested and tools to be optimised. Eventually, operatives will be trained to work in virtual nuclear power plants in complete safety. (authors)

  9. Development of intelligent database program for PSI/ISI data management of nuclear power plant

    International Nuclear Information System (INIS)

    Um, Byong Guk; Park, Un Su; Park, Ik Keun; Park, Yun Won; Kang, Suk Chul

    1998-01-01

    An intelligent database program has been developed under fully compatible with windows 95 for the construction of total support system and the effective management of Pre-/In-Service Inspection data. Using the database program, it can be executed the analysis and multi-dimensional evaluation of the defects detected during PSI/ISI in the pipe and the pressure vessel of the nuclear power plants. And also it can be used to investigate the NDE data inspected repetitively and the contents of treatment, and to offer the fundamental data for application of evaluation data related to Fracture Mechanics Analysis(FMA). Furthermore, the PSI/ISI database loads and material properties can be utilized to secure the higher degree of safety, integrity, reliability, and life-prediction of components and systems in nuclear power plant.

  10. Applicability of the 'constructional fire prevention for industrial plants' to power plants

    International Nuclear Information System (INIS)

    Hammacher, P.

    1978-01-01

    Power plants, especially nuclear power plants, are considered because of their high value and large construction volume to be among the most important industrial constructions of our time. They have a very exposed position from the point of view of fire prevention because of their constructional and operational concept. The efforts in the Federal Republic of Germany to standardize laws and regulations for fire prevention in industrial plants (industrial construction code, DIN 18230) must be supported if only because they would simplify the licensing procedure. However these regulations cannot be applied in many cases and especially in the main buildings of thermal power plants without restricting or even endangering the function or the safety of such plants. At the present state of the art many parts of the power plant can surely be defined as 'fire safe'. Fire endangered plant components and rooms are protected according to their importance by different measures (constructional measures, fire-fighting equipments, extractors for flue gases and for heat, fire-brigade of the plant). (orig.) [de

  11. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  12. Environmental impacts of power plants and transmission lines in power system planning

    International Nuclear Information System (INIS)

    Miracapillo, C.; Moreschini, G.; Rome Univ. 'La Sapienza'

    1992-01-01

    This paper deals with a criterion to assess the environmental impacts of power plants and transmission lines in power system planning. First, the effects of hydro-plants, thermal plants and transmission lines are reviewed. Then, a number of methods for the evaluation of the environmental impacts of civil and industrial plants are described. A new criterion is proposed to introduce the evaluation of the environmental impact and related costs into methods for power system planning. Finally, the criterion is applied to a simple case

  13. An advanced computational algorithm for systems analysis of tokamak power plants

    International Nuclear Information System (INIS)

    Dragojlovic, Zoran; Rene Raffray, A.; Najmabadi, Farrokh; Kessel, Charles; Waganer, Lester; El-Guebaly, Laila; Bromberg, Leslie

    2010-01-01

    A new computational algorithm for tokamak power plant system analysis is being developed for the ARIES project. The objective of this algorithm is to explore the most influential parameters in the physical, technological and economic trade space related to the developmental transition from experimental facilities to viable commercial power plants. This endeavor is being pursued as a new approach to tokamak systems studies, which examines an expansive, multi-dimensional trade space as opposed to traditional sensitivity analyses about a baseline design point. The new ARIES systems code consists of adaptable modules which are built from a custom-made software toolbox using object-oriented programming. The physics module captures the current tokamak physics knowledge database including modeling of the most-current proposed burning plasma experiment design (FIRE). The engineering model accurately reflects the intent and design detail of the power core elements including accurate and adjustable 3D tokamak geometry and complete modeling of all the power core and ancillary systems. Existing physics and engineering models reflect both near-term as well as advanced technology solutions that have higher performance potential. To fully assess the impact of the range of physics and engineering implementations, the plant cost accounts have been revised to reflect a more functional cost structure, supported by an updated set of costing algorithms for the direct, indirect, and financial cost accounts. All of these features have been validated against the existing ARIES-AT baseline case. The present results demonstrate visualization techniques that provide an insight into trade space assessment of attractive steady-state tokamaks for commercial use.

  14. Pagbilao power plant, Pagbilao, Quezon, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Flake, P.M. [Mirant Philippines Corp. (Philippines)

    2004-08-01

    This 700 MW coal-fired station isn't new, but POWER is honoring it as a top plant of 2004. Why? 12 years ago, Pagbilao pioneered the build-own-transfer (BOT) approach to power project development in the Philippines. Since the plant was commissioned in 1996, it has run more reliably and cleanly every year and thus played a major role in raising the standard of living for Filipino citizens. The article highlights notable plant features with which the plant has been equipped or retrofitted. 2 figs.

  15. Electromagnetic compatibility of nuclear power plants

    International Nuclear Information System (INIS)

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants

  16. Fire scenarios in nuclear power plant

    International Nuclear Information System (INIS)

    Asp, I.B.; MacDougall, E.A.; Hall, R.E.

    1978-01-01

    This report defines a Design Base Fire and looks at 3 major areas of a hypothetical model for a Nuclear Power Plant. In each of these areas a Design Base Fire was developed and explained. In addition, guidance is given for comparing fire conditions of a given Nuclear Power Plant with the model plant described. Since there is such a wide variation in nuclear plant layouts, model areas were chosen for simplicity. The areas were not patterned after any existing plant area; rather several plant layouts were reviewed and a simplified model developed. The developed models considered several types of fires. The fire selected was considered to be the dominant one for the case in point. In general, the dominant fire selected is time dependent and starts at a specific location. After these models were developed, a comparison was drawn between the model and an operating plant for items such as area, cable numbers and weight, tray sizes and lengths. The heat loads of the model plant are summarized by area and compared with those of an actual operating plant. This document is intended to be used as a guide in the evaluation of fire hazards in nuclear power stations and a summarization of one acceptable analytical methodology to accomplish this

  17. Modifications at operating nuclear power plants

    International Nuclear Information System (INIS)

    Duffy, T.J.; Gazda, P.A.

    1985-01-01

    Modifications at operating nuclear power plants offer the structural engineer many challenges in the areas of scheduling of work, field adjustments, and engineering staff planning. The scheduling of structural modification work for operating nuclear power plants is normally closely tied to planned or unplanned outages of the plant. Coordination between the structural engineering effort, the operating plant staff, and the contractor who will be performing the modifications is essential to ensure that all work can be completed within the allotted time. Due to the inaccessibility of some areas in operating nuclear power plants or the short time available to perform the structural engineering in the case of an unscheduled outrage, field verification of a design is not always possible prior to initiating the construction of the modification. This requires the structural engineer to work closely with the contractor to promptly resolve problems due to unanticipated interferences or material procurement problems that may arise during the course of construction. The engineering staff planning for structural modifications at an operating nuclear power plant must be flexible enough to permit rapid response to the common ''fire drills,'' but controlled enough to ensure technically correct designs and to minimize the expenditure of man-hours and the resulting engineering cost

  18. Ventilation-air conditioner system in nuclear power plant

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko.

    1989-01-01

    This invention concerns a ventilation-air conditioner system which enables, upon occurrence of accidents in a nuclear power plant, continuous operation for other adjacent nuclear power plants with no effect of accidents. Air supply system and exhaust system are operated during usual operaiton. If loss of coolants accidents should occur in an adjacent nuclear power plants, operation is switched from ventilation operaiton to the operation of re-cycling system based on an AND logic of three signals, that is, a pressure HIGH signal for the reactor container, a water level LOW signal for the reactor and a radioactivity signal of the ventilation-air conditioner sytem on the side of air supply in the nuclear power plant. Thus, nuclear reactor buildings of the nuclear power plant are from the external atmosphere. Therefore, the radioactivity HIGH signal for switching to the emergency air conditioner system of the nuclear power plant is not actuated due to the loss of coolant accidents in the adjacent nuclear power plant. In addition, since the atmospheric temperature in the nuclear reactor building can be maintained by a cooling device disposed to the recycling system, reactor shutdown can be prevented. (I.S.)

  19. Availability of thermal power plants 1981-1990

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1991-01-01

    The present volume covers the period of 1981 to 1990 and contains availability data of power plants in Germany and abroad. Data are presented on fossil-fuelled units, units with a combined gas/steam cycle, nuclear power plants and gas turbines. The fossil-fuelled units are broken down by unit size, years of operation, fuel, type of combustion (dry, melt) and type (mono, duo units, subcritical and supercritical systems). Nuclear power stations are arranged by type of reactor (PWR, BWR), unit size and years of operation. Combined cycle power plants are listed separately due to their different technical concepts. Apart from availability and utilisation values of gas turbines there are data on reliability and the number of successful and unsuccessful starts. In general the data are first given for all plants and then for the German plants in particular. Performance values are gross values measured at generator terminals and, as the number of plants, they are end-of-the-year figures [de

  20. Abstract flexibility description for virtual power plant scheduling

    OpenAIRE

    Fröhling, Judith

    2017-01-01

    In the ongoing paradigm shift of the energy market from big power plants to more and more small and decentralized power plants, virtual power plants (VPPs) play an important role. VPPs bundle the capacities of the small and decentralized resources (DER). Planing of VPP operation, that is also called scheduling, relies on the flexibilities of controllable DER in the VPP, e.g., combined heat and power plants (CHPs), heat pumps and batteries. The aim of this thesis is the development of an abstr...

  1. World nuclear power plant capacity

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the background information for statistics and analysis developed by NUKEM in its monthly Market Report on the Nuclear Fuel Cycle. The assessments in this Special Report are based on the continuous review of individual nuclear power plant projects. This Special Report begins with tables summarizing a variety of nuclear power generating capacity statistics for 1990. It continues with a brief review of the year's major events regarding each country's nuclear power program. The standard NUKEM Market Report tables on nuclear plant capacity are given on pages 24 and 25. Owing to space limitations, the first year shown is 1988. Please refer to previous Special Reports for data covering earlier years. Detailed tables for each country list all existing plants as well as those expected by NUKEM to be in commercial operation by the end of 2005. An Appendix containing a list of abbreviations can be found starting on page 56. Only nuclear power plants intended for civilian use are included in this Special Report. Reactor lifetimes are assumed to be 35 years for all light water reactors and 30 years for all other reactor types, unless other data or definite decommissioning dates have been published by the operators. (orig./UA) [de

  2. Hydroelectric power and hydroelectric power plants. V. 1

    International Nuclear Information System (INIS)

    1991-06-01

    Following the oil crises of 1973 and 1979, there was renewed and justifiable interest in small hydroelectric plants. The maximum power of these plants rarely exceeds 10 MW, and their development will surely increase in the coming decades. Hydraulic power is a national renewable resource, unaffected by geopolitical problems, and above all, non polluting. Many countries with their own hydraulic resources in both the industrialized and the developing world have expressed needs for the development of small hydroelectric plants. Hidroenergia 91 Conference is the opportunity to take stock of knowledge gained in the vast field of small hydroelectric plants. The meeting is divided into four subjects: 1 methods for decision aid; 2 environmental impact and accompanying answers; 3 national development policy; 4 world market and international cooperation. This meeting contains 75 papers, 8 papers are in the INIS scope and 72 papers are in the ENERGY DATA BASE scope

  3. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  4. Carbon dioxide recovery from gas-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Ricardo Salgado; Barbosa, Joao Roberto [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Energia]. E-mails: martinsr@epenergy.com; barbosa@mec.ita.br; Prado, Eduardo Lanari [Rice Univ., Houston, TX (United States). Jones Graduate School of Business]. E-mail: pradoe@epenergy.com; Vieira, Adriana de Moura [Instituto Brasileiro de Mercado de Capitais (IBMEC), Rio de Janeiro, RJ (Brazil). Dept. de Financas]. E-mail: vieiraa@epenergy.com

    2000-07-01

    Since 1996 the Brazilian electric sector has undergone a major restructuring. The aim of such change is to reduce the State's participation in the sector, and to induce the growth of private investments. In particular, this event created several opportunities for thermal power plant projects, leading to competition at the generation level. In this scenario of increased competition, the power plant efficiency becomes a key element for determining the feasibility and profitability of the project. Moreover, the utilization of the plant's own effluents as feedstock or as a source of additional revenue will impact positively in its economics. As an example, long term additional revenues could be created by the sale of CO{sub 2} extracted from the combustion products of thermal power plants. The production of CO{sub 2} also contributes to mitigate the environmental impacts of the power plant project by significantly reducing its airborne emissions. This paper shows how a gas-fired power plant can extract and utilize CO{sub 2} to generate additional revenue, contributing to a more competitive power plant. (author)

  5. Scenarios for multi-unit inertial fusion energy plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    This work describes: (a) the motivation for considering fusion in general, and Inertial Fusion Energy (IFE) in particular, to produce hydrogen fuel powering low-emission vehicles; (b) the general requirements for any fusion electric plant to produce hydrogen by water electrolysis at costs competitive with present consumer gasoline fuel costs per passenger mile, for advanced car architectures meeting President Clinton's 80 mpg advanced car goal, and (c) a comparative economic analysis for the potential cost of electricity (CoE) and corresponding cost of hydrogen (CoH) from a variety of multi-unit IFE plants with one to eight target chambers sharing a common driver and target fab facility. Cases with either heavy-ion or diode-pumped, solid-state laser drivers are considered, with ''conventional'' indirect drive target gains versus ''advanced, e.g. Fast Ignitor'' direct drive gain assumptions, and with conventional steam balance-of-plant (BoP) versus advanced MHD plus steam combined cycle BoP, to contrast the potential economics under ''conventional'' and ''advanced'' IFE assumptions, respectively

  6. ELECNUC Nuclear power plants in the world - 2013 edition

    International Nuclear Information System (INIS)

    2013-01-01

    This small booklet summarizes in a series of tables the figures relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2012 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2012/01/01; Worldwide status of nuclear power plants (12/31/2012); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2012; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2012; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2012; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2012; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2012; Long term shutdown units at 12/31/2012; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  7. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  8. Quality assurance in nuclear power plant

    International Nuclear Information System (INIS)

    Magalhaes, M.T. de

    1981-01-01

    The factors related to the licensing procedures of a nuclear power plant (quality assurance and safety analysis) are presented and discussed. The consequences of inadequate attitudes towards these factors are shown and suggestions to assure the safety of nuclear power plants in Brazil are presented. (E.G.) [pt

  9. Safe operation of power plants. Pt. 1

    International Nuclear Information System (INIS)

    Freymeyer, P.

    1977-01-01

    Electrotechniques were given a dominating role in the construction of nuclear power plants. The operation of power plants - particularly nuclear power plants - is impossible without the use of electrotechnical and control means. Despite of all reserve in the development and despite of the conservative attitude it is necessary to use the newest results of development and to incite the development ot new electronic systems for the solution of these tasks. (orig.) [de

  10. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  11. Evolution of Onsite and Offsite Power Systems in US Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mathew, Roy K.

    2015-01-01

    The AC electric power system is the source of power for station auxiliaries during normal operation and for the reactor protection system and emergency safety features during abnormal and accident conditions. Since the construction of early plants in US, the functional adequacy and requirements of the offsite power systems, safety and non safety related onsite electric power systems have changed considerably to ensure that these systems have adequate redundancy, independence, quality, maintenance and testability to support safe shutdown of the nuclear plant. The design of AC systems has evolved from a single train to multiple (up to four) redundant trains in the current evolutionary designs coupled with other auxiliary AC systems. The early plants were designed to cope with a Loss of Offsite Power (LOOP) event through the use of onsite power supplies only. However operating experience has indicated that onsite and offsite power AC power systems can fail due to natural phenomena (earthquakes, lightning strikes, fires, geomagnetic storms, tsunamis, etc.) or operational abnormalities such as loss of a single phase, switching surges or human error. The onsite DC systems may not be adequately sized to support plant safe shutdown over an extended period if AC power cannot be restored within a reasonable time. This paper will discuss the requirements to improve availability and reliability of offsite and onsite alternating current (AC) power sources to U.S. Nuclear Power Plants. In addition, the paper will discuss the requirements and guidance beyond design basis events. (author)

  12. Intelligent distributed control for nuclear power plants

    International Nuclear Information System (INIS)

    Klevans, E.H.; Edwards, R.M.; Ray, A.; Lee, K.Y.; Garcia, H.E.: Chavez, C.M.; Turso, J.A.; BenAbdennour, A.

    1991-01-01

    In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Second Annual Technical Progress report covers the period from September 1990 to September 1991. It summarizes the second year accomplishments while the appendices provide detailed information presented at conference meetings. These are two primary goals of this research. The first is to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz, a project consultant during the first year of the project. This philosophy, as presented in the first annual technical progress report, is to improve public perception of the safety of nuclear power plants by incorporating a high degree automation where greatly simplified operator control console minimizes the possibility of human error in power plant operations. A hierarchically distributed control system with automated responses to plant upset conditions is the focus of our research to achieve this goal. The second goal is to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-II steam plant

  13. Tactical supply chain planning for a forest biomass power plant under supply uncertainty

    International Nuclear Information System (INIS)

    Shabani, Nazanin; Sowlati, Taraneh; Ouhimmou, Mustapha; Rönnqvist, Mikael

    2014-01-01

    Uncertainty in biomass supply is a critical issue that needs to be considered in the production planning of bioenergy plants. Incorporating uncertainty in supply chain planning models provides improved and stable solutions. In this paper, we first reformulate a previously developed non-linear programming model for optimization of a forest biomass power plant supply chain into a linear programming model. The developed model is a multi-period tactical-level production planning problem and considers the supply and storage of forest biomass as well as the production of electricity. It has a one-year planning horizon with monthly time steps. Next, in order to incorporate uncertainty in monthly available biomass into the planning, we develop a two-stage stochastic programming model. Finally, to balance the risk and profit, we propose a bi-objective model. The results show that uncertainty in availability of biomass has an additional cost of $0.4 million for the power plant. Using the proposed stochastic optimization model could reduce this cost by half. - Highlights: • Developed a two-stage stochastic optimization model to consider supply uncertainty. • Maximized the profit of a forest biomass power plant value chain. • Minimized two risk measures, variability index and downside risk, to manage risks. • Stochastic optimization model provided feasible solution for all scenarios. • Results showed a trade-off between profit and risk management

  14. Nuclear power plant operation 2016. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2017-05-15

    A report is given on the operating results achieved in 2016, events important to plant safety, special and relevant repair, and retrofit measures from nuclear power plants in Germany. Reports about nuclear power plants in Belgium, Finland, the Netherlands, Switzerland, and Spain will be published in a further issue.

  15. Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants

    International Nuclear Information System (INIS)

    Niknam, Taher; Kavousi Fard, Abdollah; Baziar, Aliasghar

    2012-01-01

    This paper assesses the operation and management of electrical energy, hydrogen production and thermal load supplement by the Fuel Cell Power Plants (FCPP) in the distribution systems with regard to the uncertainties which exist in the load demand as well as the price of buying natural gas for FCPPs, fuel cost for residential loads, tariff for purchasing electricity, tariff for selling electricity, hydrogen selling price, operation and maintenance cost and the price of purchasing power from the grid. Therefore, a new modified multi-objective optimization algorithm called Teacher-Learning Algorithm (TLA) is proposed to integrate the optimal operation management of Proton Exchange Membrane FCPPs (PEM-FCPPs) and the optimal configuration of the system through an economic model of the PEM-FCPP. In order to improve the total ability of TLA for global search and exploration, a new modification process is suggested such that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated power systems, in this paper for the first time, the DFR problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to see the feasibility and the superiority of the proposed method, a standard test system is investigated as the case study. The simulation results are investigated in four different scenarios to show the effect of hydrogen production and thermal recovery more evidently. -- Highlights: ► Present an economical and thermal modeling of PEM-FCPPs. ► Present an approach for optimal operation of PEM-FCPPs in a stochastic environment. ► Consider benefits of thermal recovery and Hydrogen production for PEM-FCPPs. ► Present several scenarios for management of PEM-FCPPs.

  16. Vital areas at nuclear power plants

    International Nuclear Information System (INIS)

    Cameron, D.F.

    1985-01-01

    Vital area analysis of nuclear power plants has been performed for the Nuclear Regulatory Commission by the Los Alamos National Laboratory from the late 1970's through the present. The Los Alamos Vital Area Study uses a fault-tree modeling technique to identify vital areas and equipment at nuclear power plants to determine their vulnerability. This technique has been applied to all operating plants and approximately one-half of those under construction in the US. All saboteur-induced loss-of-coolant accidents and transients and the systems needed to mitigate them are considered. As a result of this effort, security programs at nuclear power plants now include vulnerability studies that identify targets in a systematic manner, and thus unnecessary protection has been minimized. 1 ref., 8 figs., 1 tab

  17. Dukovany nuclear power plant in 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Data on the power generation, nuclear safety, and gaseous and liquid releases into the environment were extracted from the 1993 annual report of the Dukovany nuclear power plant. Operation of the plant was safe and reliable in 1993. Three events were classed as INES category 1. The plant's Failure Commission dealt with 100 events which brought about a total electricity generation loss of 217,624 MWh, corresponding to about 22 reactor-days. Out of this, 26.8 % was due to human error. Three fires occurred at the power plant site. Releases of radioactive aerosols, tritium, noble gases and radioiodine into air and of tritium, corrosion products, and fission products into the aquatic environment were below annual limits. The collective dose equivalent was 1.78 manSv in 1993. (Z.S.). 2 tabs., 11 figs

  18. Fitting of power generated by nuclear power plants into the Hungarian electricity system

    International Nuclear Information System (INIS)

    Lengyel, Gyula; Potecz, Bela

    1984-01-01

    The moderate increase of electrical energy demands (3% at present) can only be met by the parallel application of fossil and nuclear power plants and by electric power import via the transmission lines of the CMEA countries. The changes in the electrical energy and fuel demands and the development of the available capacities during the last 35 years are reviewed. The major purpose of Hungarian power economy is to save hydrocarbon fuels by taking advantages of power import opportunities by operating nuclear power plants at maximum capacity and the coal fired power stations at high capacity. The basic principles, the algorithm applied to optimize the load distribution of the electrical power system are discussed in detail with special attention to the role of nuclear power. The planned availability of nuclear power plants and the amount of electricity generated by nuclear plants should also be optimized. (V.N.)

  19. Seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.

    2001-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  20. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  1. Treatment of some power plant waters

    International Nuclear Information System (INIS)

    Konecny, C.; Vanura, P.; Franta, P.; Marhol, M.; Tejnecky, M.; Fidler, J.

    1987-01-01

    Major results are summed up obtained in 1986 in the development of techniques for the treatment of coolant in the fuel transport and storage tank, of reserve coolant in the primary circuit and of waste water from the special nuclear power plant laundries, containing new washing agent Alfa-DES. A service test of the filter filled with Czechoslovak-made cation exchanger Ostion KSN in the boric acid concentrate filter station showed that the filter can be used in some technological circuits of nuclear power plants. New decontamination agents are also listed introduced in production in Czechoslovakia for meeting the needs of nuclear power plants. (author). 6 refs

  2. Nuclear power plant's safety and risk

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1975-01-01

    Starting with a comprehensive safety strategy as evolved over the past years and the present legal provisions for the construction and operation of nuclear power plants, the risk of the intended operation, of accidents and unforeseen events is discussed. Owing to the excellent safety record of nuclear power plants, main emphasis in discussing accidents is given to the precautionary analysis within the framework of the licensing procedure. In this context, hypothetical accidents are mentioned only as having been utilized for general risk comparisons. The development of a comprehensive risk concept for a completely objective safety assessment of nuclear power plants remains as a final goal. (orig.) [de

  3. Radioactive waste management for German nuclear power plants

    International Nuclear Information System (INIS)

    Weh, R.; Methling, D.; Sappok, M.

    1996-01-01

    In Germany, back-end fuel cycle provisions must be made for the twenty nuclear power plants currently run by utilities with an aggregate installed power of 23.4 GWe, and the four nuclear power plants already shut down. In addition, there are the shut down nuclear power plants of the former German Democratic Republic, and a variety of decommissioned prototype nuclear power plants built with the participation of the federal government and by firms other than utilities. The nuclear power plants operated by utilities contribute roughly one third of the total electricity generation in public power plants, thus greatly ensuring a stable energy supply in Germany. The public debate in Germany, however, focuses less on the good economic performance of these plants, and the positive acceptance at their respective sites, but rather on their spent fuel and waste management which, allegedly, is not safe enough. The spent fuel and waste management of German nuclear power plants is planned on a long-term basis, and executed in a responsible way by proven technical means, in the light of the provisions of the Atomic Act. Each of the necessary steps of the back end of the fuel cycle is planned and licensed in accordance with German nuclear law provisions. The respective facilities are built, commissioned, and monitored in operation with the dedicated assistance of expert consultants and licensing authorities. Stable boundary conditions are a prerequisite in ensuring the necessary stability in planning and running waste management schemes. As producers of waste, nuclear power plants are responsible for safe waste management and remain the owners of that waste until it has been accepted by a federal repository. (orig./DG) [de

  4. Plant nominal power uprating offers attractive possibilities

    International Nuclear Information System (INIS)

    Bruyere, Michel

    2004-01-01

    Increasing the rated thermal power of an existing plant represents a particularly profitable way for a plant operator to increase electricity production. For PWR plants, a 5% increase in power can, in fact, generally be achieved without significantly modifying systems and equipments based upon the margin in the original design. Larger power increases can be achieved in the case of S.G. replacement. Based on recent analysis of a 3 loop PWR, 900 MWe, up to 12% power uprating is feasible with an appropriate replacement S.G. The general rule is to perform power uprating without significant increase of average primary temperature. This is mainly a result of consideration of S.G. tube corrosion, of fuel clad corrosion and of core safety margins (DNBR margins in particular). This paper will present a general overview of the analyses for large power uprating: program of work, main conclusions on the following items: 1. Safety demonstration (accident analysis, safeguard systems capacity verification, required protection setpoints modifications...) 2. Normal operation review (possible consequences of power uprating on the plant maneuverability and on the fuel management performances) 3. Systems and components mechanical integrity review and potential effect on the plant lifetime of the new operating conditions

  5. Power control device of an atomic power plant

    International Nuclear Information System (INIS)

    Ootsuka, Shiro; Ito, Takero.

    1980-01-01

    Purpose: To improve the power controllability of an atomic power plant by improving the controllability, response and stability of the recirculation flow rate. Constitution: The power control device comprises a power detector of the reactor, which detects and operates the reactor power from the thermal power, neutron flux or the process quantity controlling the same, and a deviation detector which seeks deviation between the power signal of the power detector and the power set value of the reactor or power station. By use of the power control device constituted in this manner, the core flow rate is regulated by the power signal of the deviation detector thereby to control the power. (Aizawa, K.)

  6. Barsebaeck power plant - safety and emergency measures

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A Swedish-Danish Committee on safety at the Swedish nuclear power plant Barsebaeck was established in 1979 in order to evaluate the nuclear safety at Barsebaeck with a view to the reactor accident at the Three-Mile-Island nuclear power plant March 28, 1979. According to the committees mandate the investigations of the Kemeny Commission, the Rogouin investigation, investigations of the American Nuclear Regulatory Commission, and the Swedish report ''Safe nuclear power'' have been taken into consideration by the Committee. Furthermore, it has formed the basis for the Committees work that the authority responsibility for the safety at Barsebaeck lies with the Swedish authorities, and that these authorities have evaluated the safety aspects before the permissions for operation of the Barsebaeck power plant were given and hereafter currently in connection with the inspection of the power plant. The report prepared by the Commission treats aspects as: a) Nuclear safety at the Barsebaeck power plant, b) reactor safety and emergency provisions, c) common elements in the emergency provision situation in Sweden and Denmark, d) ongoing investigations on course of events during accidents and release limiting safety systems. (BP)

  7. VAr reserve concept applied to a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    to wind power plants. This paper proposes two different VAr reserve control strategies for a wind power plant. The amount of dynamic VAr available most of the operation time, makes the wind power plant (WPP) a good candidate to include a VAr reserve management system. Two different ways of implementing...... a VAr management system are proposed and analyzed. Such a reactive power reserve may be provided by the wind power plant since the amount of reactive power installed for most active power working points exceeds the demand required by the grid operator. Basically, this overrated reactive power capacity...... is a consequence of sizing wind turbine facilities for maximum active power level. The reactive power losses, due to active power transportation inside the plant (normally two transformers), and P-Q wind turbine characteristics define the P-Q reserve chart. By utilizing the intrinsic overrated reactive power...

  8. Electric power plant international. 1976--1977 edition

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    ''Electric Power Plant International'' is intended to provide a comprehensive commercial and technical information source for use by suppliers, operators, and potential purchasers of power plant, and also by suppliers of materials and services to such organizations. It contains information that will help those considering the purchase of power plant to gain a reasonable understanding of the factors that should be taken into account when making a purchasing decision. Consideration is given to the operation, maintenance, and modification of power systems that will be of relevance to those currently operating plant. The publication is designed to act as an interface between suppliers and users of power plant. As part of this function, reference sections contain listings of all the companies that have been located throughout the world, supplying prime movers, generators, generator sets, and fixed-frequency inverter systems. Details of products currently available from these companies are included wherever possible and this is being continuously up-dated and extended to give increased coverage in future editions. The Electrical Research Association Ltd. does not manufacture or supply power plant (apart from some special-purpose static inverter systems), but would be pleased to receive requirement details from any company wishing to inquire about plant purchase. These will be forwarded to appropriate suppliers throughout the world who will be able to submit tenders for suitable products. Inquiry forms are included in Chapter 6 for this purpose.

  9. Concept of underground nuclear power plant

    International Nuclear Information System (INIS)

    Onishi, Sotoaki

    1976-01-01

    The concept of constructing nuclear power plants on the sea or underground as the future sitting is based on moving the present power plants on the ground with actual results to the sea or underground without changing the design. The underground nuclear power plants have many similar points to underground hydro-electric power stations with many achievements in the construction viewpoint, though they have their proper difficult problems. Of course, it requires to excavate larger underground caves than the case of underground hydro-electric power plants. The maximum dimensions of the caves have been determined through experience in practice. Therefore the developments of design theory and construction technique are desirable in this field. In discussing underground construction, two evaluating methods are considered for the shielding effect of base rocks. The minimum vertical distance up to ground surface from the center of the cave differs depending upon the in-cave pressure, and the conditions of base rock, soil and underground water in case of the accident assumed in the design, and is approximately 60m, if the cave is assumed to be an indefinite cylindrical shape, by the safer side calculation in the above two evaluations. (Wakatsuki, Y.)

  10. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  11. Human factors in atomic power plant

    International Nuclear Information System (INIS)

    Kawano, Ryutaro

    1997-01-01

    To ensure safety should have priority over all other things in atomic power plants. In Chernobyl accident, however, various human factors including the systems for bulb check after inspection and communication, troubles in the interface between hardwares such as warning speakers and instruments, and their operators, those in education and training for operators and those in the general management of the plant have been pointed out. Therefore, the principles and the practical measures from the aspect of human factors in atomic power plants were discussed here. The word, ''human factor'' was given a definition in terms of the direct cause and the intellectual system. An explanatory model for human factors, model SHEL constructed by The Tokyo Electric Power Co., Ltd., Inc. was presented; the four letter mean software(S), hardware(H), environment(E) and liveware(L). In the plants of the company, systemic measures for human error factors are taken now in all steps not only for design, operation and repairing but also the step for safety culture. Further, the level required for the safety against atomic power is higher in the company than those in other fields. Thus, the central principle in atomic power plants is changing from the previous views that technology is paid greater importance to a view regarding human as most importance. (M.N.)

  12. Seismic review of existing nuclear power plants

    International Nuclear Information System (INIS)

    Yanev, P.I.; Mayes, R.L.; Jones, L.R.

    1975-01-01

    Because of developments in the fields of earthquake and structural engineering over the last two decades, the codes, standards and design criteria for Nuclear Power Plants and other critical structures have changed substantially. As a result, plants designed only a few years ago do not satisfy the requirements for new plants. Accordingly, the Regulatory Agencies are requiring owners of older Nuclear Power Plants to re-qualify the plants seismically, using codes, standards, analytical techniques and knowledge developed in recent years. Seismic review consists of three major phases: establishing the design and performance criteria, re-qualifying the structures, and re-qualifying the equipment. The authors of the paper have been recently involved in the seismic review of existing nuclear power plants in the United States. This paper is a brief summary of their experiences

  13. Stainless steels in power plant and plant construction. Papers

    International Nuclear Information System (INIS)

    1994-01-01

    The conference report comprises 14 papers on the corrosion characteristics of stainless steels in power plant and plant engineering. 9 papers are available as separate records in the ENERGY database. (MM) [de

  14. Power uprates in nuclear power plants: international experiences and approaches for implementation

    International Nuclear Information System (INIS)

    Kang, Ki Sig

    2008-01-01

    The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants

  15. Affective imagery and acceptance of replacing nuclear power plants.

    Science.gov (United States)

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. © 2011 Society for Risk Analysis.

  16. A multi-channel isolated power supply in non-equipotential circuit

    Science.gov (United States)

    Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da

    2018-04-01

    A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.

  17. Safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Weihe, G. von; Pamme, H.

    2003-01-01

    Experience shows that German nuclear power plants have always been operated reliably and safely. Over the years, the safety level in these plants has been raised considerably so that they can stand any comparison with other countries. This is confirmed by the two reports published by the Federal Ministry for the Environment on the nuclear safety convention. Behind this, there must obviously stand countless appropriate 'good practices' and a safety management system in nuclear power plants. (orig.) [de

  18. An analyser for power plant operations

    International Nuclear Information System (INIS)

    Rogers, A.E.; Wulff, W.

    1990-01-01

    Safe and reliable operation of power plants is essential. Power plant operators need a forecast of what the plant will do when its current state is disturbed. The in-line plant analyser provides precisely this information at relatively low cost. The plant analyser scheme uses a mathematical model of the dynamic behaviour of the plant to establish a numerical simulation. Over a period of time, the simulation is calibrated with measurements from the particular plant in which it is used. The analyser then provides a reference against which to evaluate the plant's current behaviour. It can be used to alert the operator to any atypical excursions or combinations of readings that indicate malfunction or off-normal conditions that, as the Three Mile Island event suggests, are not easily recognised by operators. In a look-ahead mode, it can forecast the behaviour resulting from an intended change in settings or operating conditions. Then, when such changes are made, the plant's behaviour can be tracked against the forecast in order to assure that the plant is behaving as expected. It can be used to investigate malfunctions that have occurred and test possible adjustments in operating procedures. Finally, it can be used to consider how far from the limits of performance the elements of the plant are operating. Then by adjusting settings, the required power can be generated with as little stress as possible on the equipment. (6 figures) (Author)

  19. Elecnuc - Nuclear power plants in the world - 2009 edition

    International Nuclear Information System (INIS)

    2009-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2008 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2008/01/01, Worldwide status of nuclear power plants (12/31/2008), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2008, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear powe plants by country at the end 2008, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2008, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2008, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2008, Long term shutdown units at 12/31/2008, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  20. Atmospheric dispersion modeling of primary pollutants from electric power plants: Application to a coal-fired power plant

    International Nuclear Information System (INIS)

    McIlvaine, C.M.

    1994-01-01

    The normal operation of a power plant generally releases pollutants to the atmosphere. The objective of this paper is to describe a modeling method to estimate the changes in air pollutant concentrations that result from these emissions. This modeling approach is applicable to coal, biomass, oil, and natural gas technologies. As an example, this paper uses a hypothetical 500 megawatt (MW) coal-fired power plant, located at a Southeast Reference site in the U.S. and at a Southwest Reference Site. The pollutants resulting from the operation of the power plant may be classified as primary (emitted directly from the plant) or secondary (formed in the atmosphere from primary pollutants). The primary pollutants of interest in this paper are nitrogen oxides (NO x , sulfur dioxide SO 2 , particulate matter and metals

  1. Owners of nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS)

  2. Nuclear power plant insurance - experience and loss statistics

    International Nuclear Information System (INIS)

    Feldmann, J.; Dangelmaier, P.

    1982-01-01

    Nuclear power plants are treated separately when concluding insurance contracts. National insurance pools have been established in industrial countries, co-operating on an international basis, for insuring a nuclear power plant. In combined property insurance, the nuclear risk is combined with the fire risk. In addition, there are the engineering insurances. Of these, the one of significance for nuclear power plants is the machinery insurance, which can be covered on the free insurance market. Nuclear power plants have had fewer instances of damage than other, conventional installations. (orig.) [de

  3. Development on database for foreign nuclear power plants

    International Nuclear Information System (INIS)

    Okuda, Yasunori; Yanagi, Chihiro

    1999-01-01

    The Nuclear Information Project in Institute of Nuclear Technology, Institute of Nuclear Safety Systems, Inc. (INSS) has been carrying out two activities related to technical information about nuclear power plants. The first is collection and analysis of accidents and incidents (troubles) of nuclear power plants in U.S.A. and West Europe and making draft of action proposals. The second is collection of main laws, government ordinances, regulatory guides, standard and domestic and international technical news connected with nuclear power plants. This report describes these two data bases about nuclear power plants details. (author)

  4. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  5. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-08-01

    In the Quarterly Reports on the operation of the Finnish nuclear power plants such events and observations are described relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Also other events of general interest are reported. The report also includes a summary of the radiation safety of the plants' workers and the environment, as well as tabulated data on the production and load factors of the plants. The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in commercial operation during the whole first quarter of 1991. The load factor average was 99.1 %. Failures have been detected in the uppermost spacing lattices of nuclear fuel bundles removed from the Loviisa nuclear reactors. Further investigations into the significance of the failures have been initiated. In this quarter, renewed cooling systems for the instrumentation area were introduced at Loviisa 1. The modifications made in the systems serve to ensure reliable cooling of the area even during the hottest summer months when the possibility exists that the temperature of the automation equipment could rise too high causing malfunctions which could endanger plant safety. Occupational radiation doses and external releases of radioactivity were below prescribed limits in this quarter. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  6. Topical problems of preparation of electric power engineers for nuclear power plants

    International Nuclear Information System (INIS)

    Marko, S.; Darula, I.; Simunek, P.

    1981-01-01

    The principles are discussed of university-level education of future specialists for nuclear power plants. It is based on the unity of practice-oriented education and research. The individual jobs in a nuclear power plant are viewed as a complex man-technology system in which ergonomy as science of the human factor in homotechnical systems is maximally employed. The importance is emphasized of cooperation of universities and colleges with nuclear power plants. (author)

  7. A landscape simulation system for power plants

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Yoshida, Miki; Usami, Yoshiaki.

    1997-01-01

    As scenes of power plants give many influences to environments, the plants that harmonized with the environments are demanded. We developed a landscape simulation system for the plants by using computer graphics technologies. This system has functions to generate realistic images about plant buildings and environments. Since the system contains information of ridge lines in addition to usual terrain data, the terrain shapes are expressed more precisely. Because the system enables users to visualize plant construction plans, the advance evaluations of plant scenes become possible. We regard this system as useful for environmental assessment of power plants. (author)

  8. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  9. Impact of power uprate on environmental qualification of equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Raheja, R.D.; Mohiuddin, A.; Alsammarae, A.

    1996-01-01

    Many nuclear power facilities are finding it economically beneficial to increase reactor output, from operating plants, by resorting to power uprates. A power uprate implies that a utility can increase the reactor output, or the megawatts generated, by increasing steam pressure without adding or changing any plant systems. This is perhaps one of the least expensive options for increasing the generating capacity of a power plant. However, a nuclear plant requires a comprehensive review of the plant systems, structures and components to assure their capability to withstand the resulting increased normal and accident plant conditions. A power uprate will typically result in a plant operating at higher than the originally designed environmental conditions. Safety related equipment in nuclear plants is presently qualified to the UFSAR Chapter 15 accident events and the resulting temperatures, pressures, radiation levels etc. These values will increase when the reactor is producing a higher MWe output. Components that are sensitive to the environment must be re-evaluated and assessed to determine their acceptability and operability under the revised environmental conditions. Most safety-related mechanical and electrical equipment will require an assessment from an environmental qualification standpoint. Utilities must perform this task in a systematic, auditable and cost effective manner to optimize their resources and minimize plant costs associated with modifications, replacements or equipment testing. This paper discusses various approaches and provides recommendations to achieve equipment qualification while satisfying the plant's objective of a power uprate

  10. Harmonics in a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  11. Nuclear Power Station Kalkar, 300 MWe Prototype Nuclear Power Plant with Fast Sodium Cooled Reactor (SNR-300), Plant description

    International Nuclear Information System (INIS)

    1984-06-01

    The nuclear power station Kalkar (SNR-300) is a prototype with a sodium cooled fast reactor and a thermal power of 762 MW. The present plant description has been made available in parallel to the licensing procedure for the reactor plant and its core Mark-Ia as supplementary information for the public. The report gives a detailed description of the whole plant including the prevention measures against the impact of external and plant internal events. The radioactive materials within the reactor cooling system and the irradiation protection and surveillance measures are outlined. Finally, the operation of the plant is described with the start-up procedures, power operation, shutdown phases with decay heat removal and handling procedures

  12. A trend to small nuclear power plants?

    International Nuclear Information System (INIS)

    Lameira, Fernando Soares

    2000-01-01

    The release of fossil fuel greenhouse gases and the depletion of cheap oil reserves outside the Persic Gulf suggest a promising scenario for the future of nuclear power. But the end of the Cold War, the crisis of the state, axiological questions and globalization may lead to a marked for small power plants. The purpose of this paper is to analyze these factors, since they are not always considered all together in the future scenarios for nuclear power. It is concluded that the current evolutionary trend of nuclear power projects toward big plants may become one of the main barriers for the introduction of new plants in the future. It is suggested that a combination of fission reactors with technologies unavailable in the 1950's, when the design characteristics of the current nuclear power plants were established, could be considered to overcome this barrier. (author)

  13. Power plant instrumentation and control handbook a guide to thermal power plants

    CERN Document Server

    Basu, Swapan

    2014-01-01

    The book discusses instrumentation and control in modern fossil fuel power plants, with an emphasis on selecting the most appropriate systems subject to constraints engineers have for their projects. It provides all the plant process and design details, including specification sheets and standards currently followed in the plant. Among the unique features of the book are the inclusion of control loop strategies and BMS/FSSS step by step logic, coverage of analytical instruments and technologies for pollution and energy savings, and coverage of the trends toward filed bus systems and integratio

  14. Nuclear power plant V-2

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -2 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - December 1976; first controlled reactor power - 7 August 1984, 2 August 1985; connection to the grid - 20 August 1984, 9 August 1985; commercial operation - 14 February 1985, 18 December 1985. This leaflet contains: NPP V-2 construction; Major technological equipment [WWER 440 V230 type reactor; Nuclear Power plant operation safety (Safety barriers; Safety systems [Active safety systems, Passive safety systems]); Centralized heat supply system; Scheme of Bohunice V-2 NPP and technical data

  15. Steam power plant

    International Nuclear Information System (INIS)

    Campbell, J.W.E.

    1981-01-01

    This invention relates to power plant forced flow boilers operating with water letdown. The letdown water is arranged to deliver heat to partly expanded steam passing through a steam reheater connected between two stages of the prime mover. (U.K.)

  16. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Lehtinen, Pekka

    1987-05-01

    These general reviews of the operation of the Finnish nuclear power plants concentrate on such events and discoveries related to reactor and radiation safety that the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the perssonnel or the environment. For remedying certain defects found in the administrative procedures concerning plant operation and maintenance, the Loviisa power plant was shut down for several days

  17. Power plant of Creys-Malville options and descriptions

    International Nuclear Information System (INIS)

    Saitcevsky, B.; Robert, E.; Casini, R.; Janberg, K.; Megy, J.; Crette, J.P.; Granito, F.; Leduc, J.

    The power plant of CREYS-MALVILLE is the third stage of a program which began with the experimental pile RAPSODIE and the demonstration power plant PHENIX. This is a first industrial realization in which the prime contractor will be NERSA and of which the steam plant will be supplied by the SUPER-PHENIX group under license of the Commissariat a l'Energie Atomique (CEA). The power plant of CREYS-MALVILLE will be a base loaded power plant. The essentials of the options which were taken for PHENIX, were preserved (fuel UO 2 -PUO 2 , integral primary system, core instrumentation, handling mechanisms, etc.). The principal modifications have to do with the number of secondary systems, the primary sodium purification system, and the steam generators etc. A general description of the power and its operation is given

  18. Financing Solar Thermal Power Plants

    International Nuclear Information System (INIS)

    Price, Henry W.; Kistner, Rainer

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  19. Financing solar thermal power plants

    International Nuclear Information System (INIS)

    Kistner, R.; Price, H.

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  20. Financing Solar Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, Rainer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Price, Henry W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1999-04-14

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier’s perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  1. Business case uncertainty of power plants in future energy systems with wind power

    International Nuclear Information System (INIS)

    Brouwer, Anne Sjoerd; Broek, Machteld van den; Özdemir, Özge; Koutstaal, Paul; Faaij, André

    2016-01-01

    The European power sector is transforming due to climate policies and an increased deployment of intermittent RES. The sector will require thermal power plants for the decades to come, but their business cases are (negatively) affected by this transformation. This study presents a novel tool to quantify the effect of policy, price and project-related uncertainties on power plant business cases. This tool can support policymakers in stimulating necessary investments in new thermal generation capacity. We find that these investments are currently unsound (power plants recoup on average –12% to 59% of their initial investment). Future climate policy, i.e. the CO_2 price, has a very strong impact on business cases (affects the profitability by 5–40%-points). The impact of the deployment of wind power is average (2–8%-point difference between 10% and 21% wind penetration). Variations in annual wind power production barely affect the profitability (variation of ±1%-point). To stimulate new investments, policymakers should first decrease the uncertainty in business cases caused by policy. Durable climate policy is especially important. Also, policies to increase the profits of thermal power plants should be carefully considered and implemented. This combined approach will reduce the revenue gap that needs to be bridged by supportive policies. - Highlights: • The operation of thermal power plants is affected by CO_2 prices and wind power. • A new tool quantifies the effect of their uncertainty on power plant profitability. • New power plants are unprofitable and show a large spread in expected profits. • Uncertain future climate policy is a key factor in all business cases (±56% change). • Increasing wind power penetration (10–21%) decreases profitability by 14%.

  2. CAP--a combined codes, alarms and paging system--effective in nuclear and fossil-fueled power plants

    International Nuclear Information System (INIS)

    Foster, W.M.; Anderson, M.E.

    1981-01-01

    The CAP system now employed in two TVA power generating facilities has proven to be effective in both operational and emergency alerting and voice communications. Alternatives to emergency signalling point to advantages of a distributed amplifier/speaker system providing multi-signal and voice capabilities. Inclusion of a CAP-type system in all nuclear and fossil-fueled power plants is recommended, particularly in view of new NCR emergency alerting guidelines recently published. Outdoor-area warning is also included. Paper No. 80 JPGC 803-7

  3. Application of fieldbus techniques in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xu; Chen Hang; Yu Shuxin; Zhang Xinli

    2012-01-01

    The successful application experience of fieldbus techniques in thermal power plants and nuclear power plants are outlined first. And then, the application of fieldbus techniques in domestic 3rd-generation nuclear power plant (NPP) project is discussed. After that, the solution to the potential problems of fieldbus techniques application in NPP is provided. (authors)

  4. Integration of renewable energies into the German power system and their influence on investments in new power plants. Integrated consideration of effects on power plant investment and operation

    Energy Technology Data Exchange (ETDEWEB)

    Harthan, Ralph Oliver

    2015-01-14

    The increasing share of renewable energies in the power sector influences the economic viability of investments in new conventional power plants. Many studies have investigated these issues by considering power plant operation or the long-term development of the power plant fleet. However, power plant decommissioning, investment and operation are intrinsically linked. This doctoral thesis therefore presents a modelling framework for an integrated consideration of power plant decommissioning, investment and operation. In a case study focusing on Germany, the effects of the integration of renewable energies on power plant decommissioning, investment and operation are evaluated in the context of different assumptions regarding the remaining lifetime of nuclear power plants. With regard to the use of nuclear power, a phase-out scenario and a scenario with lifetime extension of nuclear power plants (by on average 12 years) are considered. The results show that static decommissioning (i.e. considering fixed technical lifetimes) underestimates the capacity available in the power sector in the scenario without lifetime extension since retrofit measures (versus decommissioning) are not taken into account. In contrast, capacity available in the case of nuclear lifetime extension is overestimated since mothballing (versus regular operation) is not considered. If the impact on decommissioning decisions of profit margins accrued during power plant operation are considered (''dynamic decommissioning''), the electricity price reduction effect due to a lifetime extension is reduced by more than half in comparison to static decommissioning. Scarcity situations do not differ significantly between the scenarios with and without lifetime extension with dynamic decommissioning; in contrast, there is a significantly higher need for imports without lifetime extension with static decommissioning. The case study demonstrates that further system flexibility is needed for

  5. Integration of renewable energies into the German power system and their influence on investments in new power plants. Integrated consideration of effects on power plant investment and operation

    International Nuclear Information System (INIS)

    Harthan, Ralph Oliver

    2015-01-01

    The increasing share of renewable energies in the power sector influences the economic viability of investments in new conventional power plants. Many studies have investigated these issues by considering power plant operation or the long-term development of the power plant fleet. However, power plant decommissioning, investment and operation are intrinsically linked. This doctoral thesis therefore presents a modelling framework for an integrated consideration of power plant decommissioning, investment and operation. In a case study focusing on Germany, the effects of the integration of renewable energies on power plant decommissioning, investment and operation are evaluated in the context of different assumptions regarding the remaining lifetime of nuclear power plants. With regard to the use of nuclear power, a phase-out scenario and a scenario with lifetime extension of nuclear power plants (by on average 12 years) are considered. The results show that static decommissioning (i.e. considering fixed technical lifetimes) underestimates the capacity available in the power sector in the scenario without lifetime extension since retrofit measures (versus decommissioning) are not taken into account. In contrast, capacity available in the case of nuclear lifetime extension is overestimated since mothballing (versus regular operation) is not considered. If the impact on decommissioning decisions of profit margins accrued during power plant operation are considered (''dynamic decommissioning''), the electricity price reduction effect due to a lifetime extension is reduced by more than half in comparison to static decommissioning. Scarcity situations do not differ significantly between the scenarios with and without lifetime extension with dynamic decommissioning; in contrast, there is a significantly higher need for imports without lifetime extension with static decommissioning. The case study demonstrates that further system flexibility is needed for

  6. Construction of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Jicha, J.

    1989-01-01

    The Temelin nuclear power plant with four WWER-1000 reactors is designed to supply electricity in an amount of 23 TWh/yr and heat in an amount of 8000 TJ/yr in the first stage. The maximum heat extraction should be 922 MW. The plant construction includes the building of 10 buildings, the total cost being 52 thousand million Czechoslovak crowns. Another 41 investment items are associated with the plant construction. The most important of them include constructions for leading out the electric power, for standby electricity supply for the power plant, and for the extraction of heat from the plant and its supply to the town of Ceske Budejovice. The first unit should be started up for test performance in November 1992, the second in 1994 and the whole power plant should be complete by 1998. The state of the construction by February 1989 is described in detail. Attention is also paid to the preparatory activity for the operation and to social welfare of the personnel. (Z.M.)

  7. Energy audit: thermal power, combined cycle, and cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Abbi, Yash Pal

    2012-07-01

    The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. The author attempts to refresh the fundamentals of the science and engineering of thermal power plants, establish its link with the real power plant performance data through case studies, and further develop techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.

  8. Environmental effects of thermal power plants

    International Nuclear Information System (INIS)

    Gerlitzky, M.; Friedrich, R.; Unger, H.

    1986-02-01

    Reviewing critically the present literature, the effects of thermal power plants on the environment are studied. At first, the loads of the different power plant types are compiled. With regard to the effects of emission reduction proceedings the pollutant emissions are quantified. The second chapter shows the effects on the ecological factors, which could be caused by the most important emission components of thermal power plants. Where it is possible, relations between immissions respectively depositions and their effects on climate, man, flora, fauna and materials will be given. This shows that many effects depend strongly on the local landscape, climate and use of natural resources. Therefore, it appears efficient to ascertain different load limits. The last chapter gives a suggestion for an ecological compatibility test (ECT) of thermal power plants. In modular form the ECT deals with the emission fields, waste heat, pollution burden of air and water, noise, loss of area and aesthetical aspects. Limits depending on local conditions and use of area will be discussed. (orig.) [de

  9. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  10. A multi-channel AC power supply controller

    International Nuclear Information System (INIS)

    Su Hong; Li Xiaogang; Ma Xiaoli; Zhou Bo; Yin Weiwei

    2003-01-01

    A multi-channel ac power supply controller developed recently by authors is introduced briefly in this paper. This controller is a computer controlled multi-electronic-switch device. This controller was developed for the automatic control and monitoring system of a 220 V ac power supply system, it is a key front-end device of the automatic control and monitoring system. There is an electronic switch in each channel, the rated load power is ≤1 kW/each channel. Another function is to sample the 220 V ac output voltage so that computer can monitor the operation state of each electronic switch. Through these switches, the 220 V ac power supply is applied to some device or apparatus that need to be powered by 220 V ac power supply. In the design, a solid-state relay was employed as an electronic switch. This controller can be connected in cascade mode. There are 8 boxes at most can be connected in cascade mode. The length of control word is 8 bit, which contains addressing information and electronic switch state setting information. The sampling output of the controller is multiplexed. It is only one bit that indicates the operating state of an electronic switch. This controller has been used in an automatic control and monitoring system for 220 V ac power supply system

  11. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Science.gov (United States)

    2011-07-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-244; Docket No. 72-67] R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent Fuel Storage Installation; Notice of... Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R...

  12. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Hennig, J.; Bohr, E.

    1976-04-01

    This annotated bibliography is a first attempt to give a survey of the kind of literature which is relevant for the ergonomic working conditions in nuclear power plants. Such a survey seems to be useful in view of the fact that the 'factor human being' comes recently more and more to the fore in nuclear power plants. In this context, the necessity is often pointed out to systematically include our knowledge of the performance capacity and limits of human beings when designing the working conditions for the personnel of nuclear power plants. For this reason, the bibliography is so much intended for the ergonomics experts as for the experts of nuclear engineering. (orig./LN) [de

  13. Closures for underground nuclear power plants

    International Nuclear Information System (INIS)

    1981-10-01

    This study demonstrates that, with the appropriate selection of an access concept on the underground nuclear power plant, it is possible to design a gate complying with the increased requirements of the construction of an underground nuclear power plant. The investigations revealed that a comparison leakage of 42 mm in diameter for the failure of seals is too conservative. When selecting suitable seals a leakage being more extensive than the above mentioned one can be prevented even in case of disturbance lasting several months. The closure structures of the personnel and material accesses do not represent any weak point within the concept of the construction method for underground nuclear power plants. (orig./HP)

  14. Power plant at sea

    International Nuclear Information System (INIS)

    Roggen, M.

    2000-01-01

    Drilling platforms are rather inefficient when it comes to their own power supply. In view of ecotax and their environmental image, the offshore industry particularly the Norwegians is highly committed to changing this situation. An efficient power plant, specially designed for the offshore industry, might just prove to be the answer to their prayers

  15. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    International Nuclear Information System (INIS)

    1986-06-01

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant

  16. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-15

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant.

  17. The operating staff of nuclear power plants

    International Nuclear Information System (INIS)

    Schlegel, G.; Christ, W.

    1988-01-01

    The training of its staff is one of the pillars of the safe and economical operation of a power plant. This is why power plant owners began to systematically train their staff already in the 50s, and why they created central training facilities. Staff members who have undergone this training make an indispensable contribution to the acceptedly high safety and availability of German power plants. The substantial cost of creating training facilities and of schooling plant staff is considered to be an investment for the future. Low labour turnover permits careful observation and development of staff and leads to a high standard of knowledge and experience. (orig./HSCH) [de

  18. Ways to Improve Russian Coal-Fired Power Plants

    International Nuclear Information System (INIS)

    Tumanovskii, A. G.; Olkhovsky, G. G.

    2015-01-01

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed

  19. Ways to Improve Russian Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G. [JSC “All-Russia Thermal Engineering Institute,” (Russian Federation)

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  20. Osiris and SOMBRERO inertial confinement fusion power plant designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe

  1. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    Science.gov (United States)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  2. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  3. Competitiveness of biomass-fueled electrical power plants.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  4. Slovak Electric, plc, Bohunice Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    A brief account of activities carried out by the Bohunice Nuclear Power Plant in 1998 is presented. These activities are reported under the headings: (1) Operation and electric power generation; (2) Nuclear and radiation safety; (3) Maintenance and scheduled refuelling out-gages; (4) Investment and WWER units upgrading; (5) Power Plants Personnel; (6) Public relations

  5. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  6. The use of BEACON monitoring in plant power uprates

    International Nuclear Information System (INIS)

    Miller, Wade

    2003-01-01

    BEACON is the core support software technology that provides Utilities with continuous 3-D core power distribution monitoring, operational analysis capability, and operations support capability. BEACON monitoring delivers quantifiable plant margins for both reload design and plant operations improvement. When linked to Plant Power Upratings, BEACON permits an improvement in fuel cycle economics through higher peaking factors, higher power levels and higher discharge burnups. Operational flexibility of Uprated Plants is enhanced through elimination of axial power shape and core power tilt specifications. Also, the number of flux maps for these plants is reduced and local power is monitored continuously, permitting faster power escalation. Integrated 3-D power distribution analysis capabilities provide core designers with historical margin data that permits a reduction in core follow requirements as well as reduced curve book data related scope. Examples of specific Uprated Plant applications will be discussed. In anticipation of future needs of Uprated Plants, plans to integrate the technology of BEACON with COLSS are being executed. Finally, the capability to monitor Crud Induced Power Shift (axial offset) is also planned for incorporation into BEACON in the near future and will be discussed

  7. Small hydroelectric power plants - shelf goods or tailor-made?

    International Nuclear Information System (INIS)

    Aas, Trond R.

    2002-01-01

    If small hydroelectric power plants are defined to be hydroelectric power plants of up to a few 1000 kW, they should be shelf goods because of cost considerations. Design of small hydroelectric power plants is a many-sided optimization task, on a level with constructing larger hydro power plants. But the budget for a small hydro power plant does not permit any comprehensive evaluations. The most important costs are the one-time costs in the form of investments and the following annual costs in the form of operation and maintenance, and losses. Financing costs are not considered in this article

  8. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    A survey of the main questions of decommissioning of nuclear power plants will be given in the sight of German utilities (VDEW-Working group 'Stillegung'). The main topics are: 1) Definitions of decommissioning, entombment, removal and combinations of such alternatives; 2) Radioactive inventory (build up and decay); 3) Experience up to now; 4) Possibilities to dismantle are given by possibility to repair nuclear power plants; 5) Estimated costs, waste, occupational radiation dose; 6) German concept of decommissioning. (orig./HK) [de

  9. The first in Poland demonstrative ORC power plant of low power output

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Wladyslaw; Borsukiewicz-Gozdur, Aleksandra; Stachel, Aleksander A. [West Pomeranian Univ. of Technology, Szczecin (Poland); Klonowicz, Wojciech; Hanausek, Pawel [Turboservice Sp. z o.o., Lodz (Poland); Klonowicz, Piotr; Magiera, Radomir [Lodz Univ. of Technology (Poland)

    2010-07-01

    A description of the power plant working according to the organic Clausius-Rankine cycle (ORC) and developed at the Department of Heat Engineering (KTC), West Pomeranian University of Technology in Szczecin, is presented. The ORC power plant is powered by the low temperature heat of hot water with the temperature of up to 100 C. The hot water heat is here converted into mechanical energy that is generated by a turbine and used to drive a centrifugal air compressor. The ORC turbine is supplied with dry, saturated vapour of the R227ea working fluid of low boiling point. The working fluid vapour is generated in a combined preheater-evaporator heat exchanger. The results of calculations and experimental measurements are presented and supplemented with conclusions derived from the ORC power plant operation. Perspective modernization of the ORC power plant scheme is also outlined. (orig.)

  10. Research of the Power Plant Operational Modes

    Directory of Open Access Journals (Sweden)

    Koismynina Nina M.

    2017-01-01

    Full Text Available In this article the algorithm of the power plant operational modes research is offered. According to this algorithm the program for the modes analysis and connection power transformers choice is developed. The program can be used as educational means for studying of the power plant electric part, at the same time basic data are provided. Also the program can be used for the analysis of the working power plants modes. Checks of the entered data completeness and a choice correctness of the operational modes are provided in the program; in all cases of a deviation from the correct decisions to the user the relevant information is given.

  11. Environmental impact due to nuclear power plants

    International Nuclear Information System (INIS)

    Kellermann, O.; Balfanz, H.P.

    1975-01-01

    The environmental impact due to nuclear power plants is smaller than that due to fossil-fired power plants. The risks of the nuclear power plant operation are determined by the quantity and the probability of the release of radioactive materials. According to the value, the risks of normal operation can be compared to the accident risks. An attempt should be made to effectively reduce the remaining risk at unfavourable sites with the emphasis on accidents with larger effects than design basis accidents. (orig./LH) [de

  12. Nuclear power plant outage optimisation strategy

    International Nuclear Information System (INIS)

    2002-10-01

    Competitive environment for electricity generation has significant implications for nuclear power plant operations, including among others the need of efficient use of resources, effective management of plant activities such as on-line maintenance and outages. Nuclear power plant outage management is a key factor for good, safe and economic nuclear power plant performance which involves many aspects: plant policy, co-ordination of available resources, nuclear safety, regulatory and technical requirements and, all activities and work hazards, before and during the outage. This technical publication aims to communicate these practices in a way they can be used by operators and utilities in the Member States of the IAEA. It intends to give guidance to outage managers, operating staff and to the local industry on planning aspects, as well as examples and strategies experienced from current plants in operation on the optimization of outage period. This report discusses the plant outage strategy and how this strategy is actually implemented. The main areas identified as most important for outage optimization by the utilities and government organizations participating in this report are: organization and management; outage planning and preparation, outage execution, safety outage review, and counter measures to avoid extension of outages and to easier the work in forced outages. This report was based on discussions and findings by the authors of the annexes and the participants of an Advisory Group Meeting on Determinant Causes for Reducing Outage Duration held in June 1999 in Vienna. The report presents the consensus of these experts regarding best common or individual good practices that can be used at nuclear power plants with the aim to optimize

  13. Comparison and evaluation of nuclear power plant options for geosynchronous power stations

    International Nuclear Information System (INIS)

    Williams, J.R.

    1975-01-01

    A solution to the safety, safeguards, and radwaste disposal problems of nuclear power is to locate the breeder reactor power plants far out in geosynchronous orbit and beam the power to earth with microwaves. The generation of nuclear power in space is technologically feasible and has already been demonstrated on a small scale. It has also been shown that high efficiency microwave transmission of power from synchronous orbit to earth is feasible and is not hazardous. The reactor safety problem would be virtually eliminated because of the remoteness of the satellite power station in geosynchronous orbit. The worst possible accident at such a plant would have negligible effect on the earth, certainly less than the high altitude nuclear explosions which have been conducted in the past. Accidental re-entry from geosynchronous orbit could not occur because of the very large velocity change required. The safeguards problem can be virtually eliminated by adopting the following procedures: 1) The plant is initially started up using U-235 fuel or bred plutonium or U-233 from another geosynchronous power plant, 2) Once the plant is operating, only nonhazardous fertile materials (thorium or depleted uranium) are shipped up from earth, 3) The fissile fuel is bred and used in space, and none of this highly toxic fissile material is ever returned to earth. The radioactive waste could be concentrated and ejected in canisters into deep space away from the earth. The geosynchronous nuclear power plant offers unlimited nuclear power without nuclear hazards or nuclear pollution, but at somewhat higher cost. Whether or not society will be willing to pay these higher costs of nuclear power from space, or whether new energy resources such as nuclear fusion or solar power become feasible, remains to be seen. A prudent course to follow would be to give careful consideration to all future options for large scale energy generation, including the option of nuclear power from space

  14. HVDC transmission from isorated nuclear power plant

    International Nuclear Information System (INIS)

    Takenaka, Kiyoshi; Takasaki, Masahiro; Ichikawa, Tatemi; Hayashi, Toshiyuki

    1985-01-01

    HVDC transmission directly from nuclear power plant is considered as one of the patterns of long distance and large capacity transmission system. This reports considers two route HVDC transmission from PWR type nuclear power plant, and analyzes dynamic response characteristics due to bus fault, main protection failure and etc. using the AC-DC Power System Simulator. (author)

  15. Brighter for small power plants

    International Nuclear Information System (INIS)

    Haaland, Leif

    2003-01-01

    The article presents a small tunnel drilling machine aimed at using for the construction of small hydroelectric power plants and mentions briefly some advantages economically and environmentally of both the machine and the power production solution

  16. Thermal power plants and environment

    International Nuclear Information System (INIS)

    1997-01-01

    Recent versions of the air quality models which are reviewed and approved from the Environmental Protection Agency (EPA) are analysed in favour of their application in simple and complex terrain, different meteorological conditions and modifications in the sources of pollutant emissions. Improvement of the standard methods for analysis of the risks affecting the environment from different energy sources has been carried out. The application of the newly introduced model enabled (lead to performing) risk analysis of the coal power plants compared to other types of energy sources. Detailed investigation of the risk assessment and perception from coal power plants, has been performed and applied to the Macedonian coal power plants. Introducing the concept of 'psychological pollution', a modification of the standard models and programs for risk assessment from various energy sources has been suggested (proposed). The model has been applied to REK Bitola, where statistically relevant differences in relation to the control groups have been obtained. (Original)

  17. Maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Lashgari, Farbod.

    1995-01-01

    This paper is about maintenance of nuclear power plants. In part one, the outage management of nuclear power plants has described. Meaning of the outage and objectives of outage management is given in introduction. The necessity of a long-term outage strategy is shown in chapter one. The main parts of an outage are as follows: Planning; Preparation; Execution, Each of them and also post-outage review have been explained in the followed chapters. Part two deals with technical details of main primary components of nuclear power plant type WWER. After an introduction about WWER reactors, in each chapter first the general and detailed description of main primary components has given and then their maintenance schedules and procedures. Chapter about reactor and steam generator is related to both types of WWER-440 and WWER-1000, but chapter about reactor coolant pump has specified to WWER-1000 to be more in details.(author)

  18. Reliability Characteristics of Power Plants

    Directory of Open Access Journals (Sweden)

    Zbynek Martinek

    2017-01-01

    Full Text Available This paper describes the phenomenon of reliability of power plants. It gives an explanation of the terms connected with this topic as their proper understanding is important for understanding the relations and equations which model the possible real situations. The reliability phenomenon is analysed using both the exponential distribution and the Weibull distribution. The results of our analysis are specific equations giving information about the characteristics of the power plants, the mean time of operations and the probability of failure-free operation. Equations solved for the Weibull distribution respect the failures as well as the actual operating hours. Thanks to our results, we are able to create a model of dynamic reliability for prediction of future states. It can be useful for improving the current situation of the unit as well as for creating the optimal plan of maintenance and thus have an impact on the overall economics of the operation of these power plants.

  19. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Science.gov (United States)

    2011-12-15

    ... Service Oglethorpe Power Corporation; Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA... related to possible financial assistance to Oglethorpe Power Corporation's (Oglethorpe) for the... online at the following Web site: http://www.rurdev.usda.gov/UWP-OglethorpePower.html and at the: Warren...

  20. Low-power wind plants

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Shevchenko, Yu.V.; Shikhajlov, N.A.; Kokhanevich, V.P.; Tanan, G.L.

    1993-01-01

    Design peculiarities, as well as the prospects of development and introduction of the low-power (from 0.5 up to 4 kW) wind power plants (WPP) are considered. The variants of WPP with vertical and horizontal rotation axis are described. The data characterizing cost and structure of expenditures on WPP manufacture and operation are given